xref: /linux/fs/namespace.c (revision 64f0962c33d52524deb32d7c34ab8b2c271ee1a3)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h>		/* acct_auto_close_mnt */
20 #include <linux/ramfs.h>	/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27 
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30 
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37 
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct list_head *mountpoint_hashtable __read_mostly;
40 static struct kmem_cache *mnt_cache __read_mostly;
41 static struct rw_semaphore namespace_sem;
42 
43 /* /sys/fs */
44 struct kobject *fs_kobj;
45 EXPORT_SYMBOL_GPL(fs_kobj);
46 
47 /*
48  * vfsmount lock may be taken for read to prevent changes to the
49  * vfsmount hash, ie. during mountpoint lookups or walking back
50  * up the tree.
51  *
52  * It should be taken for write in all cases where the vfsmount
53  * tree or hash is modified or when a vfsmount structure is modified.
54  */
55 DEFINE_BRLOCK(vfsmount_lock);
56 
57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 {
59 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
61 	tmp = tmp + (tmp >> HASH_SHIFT);
62 	return tmp & (HASH_SIZE - 1);
63 }
64 
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 
67 /*
68  * allocation is serialized by namespace_sem, but we need the spinlock to
69  * serialize with freeing.
70  */
71 static int mnt_alloc_id(struct mount *mnt)
72 {
73 	int res;
74 
75 retry:
76 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
77 	spin_lock(&mnt_id_lock);
78 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
79 	if (!res)
80 		mnt_id_start = mnt->mnt_id + 1;
81 	spin_unlock(&mnt_id_lock);
82 	if (res == -EAGAIN)
83 		goto retry;
84 
85 	return res;
86 }
87 
88 static void mnt_free_id(struct mount *mnt)
89 {
90 	int id = mnt->mnt_id;
91 	spin_lock(&mnt_id_lock);
92 	ida_remove(&mnt_id_ida, id);
93 	if (mnt_id_start > id)
94 		mnt_id_start = id;
95 	spin_unlock(&mnt_id_lock);
96 }
97 
98 /*
99  * Allocate a new peer group ID
100  *
101  * mnt_group_ida is protected by namespace_sem
102  */
103 static int mnt_alloc_group_id(struct mount *mnt)
104 {
105 	int res;
106 
107 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
108 		return -ENOMEM;
109 
110 	res = ida_get_new_above(&mnt_group_ida,
111 				mnt_group_start,
112 				&mnt->mnt_group_id);
113 	if (!res)
114 		mnt_group_start = mnt->mnt_group_id + 1;
115 
116 	return res;
117 }
118 
119 /*
120  * Release a peer group ID
121  */
122 void mnt_release_group_id(struct mount *mnt)
123 {
124 	int id = mnt->mnt_group_id;
125 	ida_remove(&mnt_group_ida, id);
126 	if (mnt_group_start > id)
127 		mnt_group_start = id;
128 	mnt->mnt_group_id = 0;
129 }
130 
131 /*
132  * vfsmount lock must be held for read
133  */
134 static inline void mnt_add_count(struct mount *mnt, int n)
135 {
136 #ifdef CONFIG_SMP
137 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
138 #else
139 	preempt_disable();
140 	mnt->mnt_count += n;
141 	preempt_enable();
142 #endif
143 }
144 
145 /*
146  * vfsmount lock must be held for write
147  */
148 unsigned int mnt_get_count(struct mount *mnt)
149 {
150 #ifdef CONFIG_SMP
151 	unsigned int count = 0;
152 	int cpu;
153 
154 	for_each_possible_cpu(cpu) {
155 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
156 	}
157 
158 	return count;
159 #else
160 	return mnt->mnt_count;
161 #endif
162 }
163 
164 static struct mount *alloc_vfsmnt(const char *name)
165 {
166 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 	if (mnt) {
168 		int err;
169 
170 		err = mnt_alloc_id(mnt);
171 		if (err)
172 			goto out_free_cache;
173 
174 		if (name) {
175 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
176 			if (!mnt->mnt_devname)
177 				goto out_free_id;
178 		}
179 
180 #ifdef CONFIG_SMP
181 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 		if (!mnt->mnt_pcp)
183 			goto out_free_devname;
184 
185 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
186 #else
187 		mnt->mnt_count = 1;
188 		mnt->mnt_writers = 0;
189 #endif
190 
191 		INIT_LIST_HEAD(&mnt->mnt_hash);
192 		INIT_LIST_HEAD(&mnt->mnt_child);
193 		INIT_LIST_HEAD(&mnt->mnt_mounts);
194 		INIT_LIST_HEAD(&mnt->mnt_list);
195 		INIT_LIST_HEAD(&mnt->mnt_expire);
196 		INIT_LIST_HEAD(&mnt->mnt_share);
197 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
198 		INIT_LIST_HEAD(&mnt->mnt_slave);
199 #ifdef CONFIG_FSNOTIFY
200 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
201 #endif
202 	}
203 	return mnt;
204 
205 #ifdef CONFIG_SMP
206 out_free_devname:
207 	kfree(mnt->mnt_devname);
208 #endif
209 out_free_id:
210 	mnt_free_id(mnt);
211 out_free_cache:
212 	kmem_cache_free(mnt_cache, mnt);
213 	return NULL;
214 }
215 
216 /*
217  * Most r/o checks on a fs are for operations that take
218  * discrete amounts of time, like a write() or unlink().
219  * We must keep track of when those operations start
220  * (for permission checks) and when they end, so that
221  * we can determine when writes are able to occur to
222  * a filesystem.
223  */
224 /*
225  * __mnt_is_readonly: check whether a mount is read-only
226  * @mnt: the mount to check for its write status
227  *
228  * This shouldn't be used directly ouside of the VFS.
229  * It does not guarantee that the filesystem will stay
230  * r/w, just that it is right *now*.  This can not and
231  * should not be used in place of IS_RDONLY(inode).
232  * mnt_want/drop_write() will _keep_ the filesystem
233  * r/w.
234  */
235 int __mnt_is_readonly(struct vfsmount *mnt)
236 {
237 	if (mnt->mnt_flags & MNT_READONLY)
238 		return 1;
239 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 		return 1;
241 	return 0;
242 }
243 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244 
245 static inline void mnt_inc_writers(struct mount *mnt)
246 {
247 #ifdef CONFIG_SMP
248 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
249 #else
250 	mnt->mnt_writers++;
251 #endif
252 }
253 
254 static inline void mnt_dec_writers(struct mount *mnt)
255 {
256 #ifdef CONFIG_SMP
257 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
258 #else
259 	mnt->mnt_writers--;
260 #endif
261 }
262 
263 static unsigned int mnt_get_writers(struct mount *mnt)
264 {
265 #ifdef CONFIG_SMP
266 	unsigned int count = 0;
267 	int cpu;
268 
269 	for_each_possible_cpu(cpu) {
270 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
271 	}
272 
273 	return count;
274 #else
275 	return mnt->mnt_writers;
276 #endif
277 }
278 
279 static int mnt_is_readonly(struct vfsmount *mnt)
280 {
281 	if (mnt->mnt_sb->s_readonly_remount)
282 		return 1;
283 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 	smp_rmb();
285 	return __mnt_is_readonly(mnt);
286 }
287 
288 /*
289  * Most r/o & frozen checks on a fs are for operations that take discrete
290  * amounts of time, like a write() or unlink().  We must keep track of when
291  * those operations start (for permission checks) and when they end, so that we
292  * can determine when writes are able to occur to a filesystem.
293  */
294 /**
295  * __mnt_want_write - get write access to a mount without freeze protection
296  * @m: the mount on which to take a write
297  *
298  * This tells the low-level filesystem that a write is about to be performed to
299  * it, and makes sure that writes are allowed (mnt it read-write) before
300  * returning success. This operation does not protect against filesystem being
301  * frozen. When the write operation is finished, __mnt_drop_write() must be
302  * called. This is effectively a refcount.
303  */
304 int __mnt_want_write(struct vfsmount *m)
305 {
306 	struct mount *mnt = real_mount(m);
307 	int ret = 0;
308 
309 	preempt_disable();
310 	mnt_inc_writers(mnt);
311 	/*
312 	 * The store to mnt_inc_writers must be visible before we pass
313 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
314 	 * incremented count after it has set MNT_WRITE_HOLD.
315 	 */
316 	smp_mb();
317 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
318 		cpu_relax();
319 	/*
320 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
321 	 * be set to match its requirements. So we must not load that until
322 	 * MNT_WRITE_HOLD is cleared.
323 	 */
324 	smp_rmb();
325 	if (mnt_is_readonly(m)) {
326 		mnt_dec_writers(mnt);
327 		ret = -EROFS;
328 	}
329 	preempt_enable();
330 
331 	return ret;
332 }
333 
334 /**
335  * mnt_want_write - get write access to a mount
336  * @m: the mount on which to take a write
337  *
338  * This tells the low-level filesystem that a write is about to be performed to
339  * it, and makes sure that writes are allowed (mount is read-write, filesystem
340  * is not frozen) before returning success.  When the write operation is
341  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
342  */
343 int mnt_want_write(struct vfsmount *m)
344 {
345 	int ret;
346 
347 	sb_start_write(m->mnt_sb);
348 	ret = __mnt_want_write(m);
349 	if (ret)
350 		sb_end_write(m->mnt_sb);
351 	return ret;
352 }
353 EXPORT_SYMBOL_GPL(mnt_want_write);
354 
355 /**
356  * mnt_clone_write - get write access to a mount
357  * @mnt: the mount on which to take a write
358  *
359  * This is effectively like mnt_want_write, except
360  * it must only be used to take an extra write reference
361  * on a mountpoint that we already know has a write reference
362  * on it. This allows some optimisation.
363  *
364  * After finished, mnt_drop_write must be called as usual to
365  * drop the reference.
366  */
367 int mnt_clone_write(struct vfsmount *mnt)
368 {
369 	/* superblock may be r/o */
370 	if (__mnt_is_readonly(mnt))
371 		return -EROFS;
372 	preempt_disable();
373 	mnt_inc_writers(real_mount(mnt));
374 	preempt_enable();
375 	return 0;
376 }
377 EXPORT_SYMBOL_GPL(mnt_clone_write);
378 
379 /**
380  * __mnt_want_write_file - get write access to a file's mount
381  * @file: the file who's mount on which to take a write
382  *
383  * This is like __mnt_want_write, but it takes a file and can
384  * do some optimisations if the file is open for write already
385  */
386 int __mnt_want_write_file(struct file *file)
387 {
388 	struct inode *inode = file_inode(file);
389 
390 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
391 		return __mnt_want_write(file->f_path.mnt);
392 	else
393 		return mnt_clone_write(file->f_path.mnt);
394 }
395 
396 /**
397  * mnt_want_write_file - get write access to a file's mount
398  * @file: the file who's mount on which to take a write
399  *
400  * This is like mnt_want_write, but it takes a file and can
401  * do some optimisations if the file is open for write already
402  */
403 int mnt_want_write_file(struct file *file)
404 {
405 	int ret;
406 
407 	sb_start_write(file->f_path.mnt->mnt_sb);
408 	ret = __mnt_want_write_file(file);
409 	if (ret)
410 		sb_end_write(file->f_path.mnt->mnt_sb);
411 	return ret;
412 }
413 EXPORT_SYMBOL_GPL(mnt_want_write_file);
414 
415 /**
416  * __mnt_drop_write - give up write access to a mount
417  * @mnt: the mount on which to give up write access
418  *
419  * Tells the low-level filesystem that we are done
420  * performing writes to it.  Must be matched with
421  * __mnt_want_write() call above.
422  */
423 void __mnt_drop_write(struct vfsmount *mnt)
424 {
425 	preempt_disable();
426 	mnt_dec_writers(real_mount(mnt));
427 	preempt_enable();
428 }
429 
430 /**
431  * mnt_drop_write - give up write access to a mount
432  * @mnt: the mount on which to give up write access
433  *
434  * Tells the low-level filesystem that we are done performing writes to it and
435  * also allows filesystem to be frozen again.  Must be matched with
436  * mnt_want_write() call above.
437  */
438 void mnt_drop_write(struct vfsmount *mnt)
439 {
440 	__mnt_drop_write(mnt);
441 	sb_end_write(mnt->mnt_sb);
442 }
443 EXPORT_SYMBOL_GPL(mnt_drop_write);
444 
445 void __mnt_drop_write_file(struct file *file)
446 {
447 	__mnt_drop_write(file->f_path.mnt);
448 }
449 
450 void mnt_drop_write_file(struct file *file)
451 {
452 	mnt_drop_write(file->f_path.mnt);
453 }
454 EXPORT_SYMBOL(mnt_drop_write_file);
455 
456 static int mnt_make_readonly(struct mount *mnt)
457 {
458 	int ret = 0;
459 
460 	br_write_lock(&vfsmount_lock);
461 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
462 	/*
463 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
464 	 * should be visible before we do.
465 	 */
466 	smp_mb();
467 
468 	/*
469 	 * With writers on hold, if this value is zero, then there are
470 	 * definitely no active writers (although held writers may subsequently
471 	 * increment the count, they'll have to wait, and decrement it after
472 	 * seeing MNT_READONLY).
473 	 *
474 	 * It is OK to have counter incremented on one CPU and decremented on
475 	 * another: the sum will add up correctly. The danger would be when we
476 	 * sum up each counter, if we read a counter before it is incremented,
477 	 * but then read another CPU's count which it has been subsequently
478 	 * decremented from -- we would see more decrements than we should.
479 	 * MNT_WRITE_HOLD protects against this scenario, because
480 	 * mnt_want_write first increments count, then smp_mb, then spins on
481 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
482 	 * we're counting up here.
483 	 */
484 	if (mnt_get_writers(mnt) > 0)
485 		ret = -EBUSY;
486 	else
487 		mnt->mnt.mnt_flags |= MNT_READONLY;
488 	/*
489 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
490 	 * that become unheld will see MNT_READONLY.
491 	 */
492 	smp_wmb();
493 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
494 	br_write_unlock(&vfsmount_lock);
495 	return ret;
496 }
497 
498 static void __mnt_unmake_readonly(struct mount *mnt)
499 {
500 	br_write_lock(&vfsmount_lock);
501 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
502 	br_write_unlock(&vfsmount_lock);
503 }
504 
505 int sb_prepare_remount_readonly(struct super_block *sb)
506 {
507 	struct mount *mnt;
508 	int err = 0;
509 
510 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
511 	if (atomic_long_read(&sb->s_remove_count))
512 		return -EBUSY;
513 
514 	br_write_lock(&vfsmount_lock);
515 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
516 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
517 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 			smp_mb();
519 			if (mnt_get_writers(mnt) > 0) {
520 				err = -EBUSY;
521 				break;
522 			}
523 		}
524 	}
525 	if (!err && atomic_long_read(&sb->s_remove_count))
526 		err = -EBUSY;
527 
528 	if (!err) {
529 		sb->s_readonly_remount = 1;
530 		smp_wmb();
531 	}
532 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
534 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 	}
536 	br_write_unlock(&vfsmount_lock);
537 
538 	return err;
539 }
540 
541 static void free_vfsmnt(struct mount *mnt)
542 {
543 	kfree(mnt->mnt_devname);
544 	mnt_free_id(mnt);
545 #ifdef CONFIG_SMP
546 	free_percpu(mnt->mnt_pcp);
547 #endif
548 	kmem_cache_free(mnt_cache, mnt);
549 }
550 
551 /*
552  * find the first or last mount at @dentry on vfsmount @mnt depending on
553  * @dir. If @dir is set return the first mount else return the last mount.
554  * vfsmount_lock must be held for read or write.
555  */
556 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
557 			      int dir)
558 {
559 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
560 	struct list_head *tmp = head;
561 	struct mount *p, *found = NULL;
562 
563 	for (;;) {
564 		tmp = dir ? tmp->next : tmp->prev;
565 		p = NULL;
566 		if (tmp == head)
567 			break;
568 		p = list_entry(tmp, struct mount, mnt_hash);
569 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
570 			found = p;
571 			break;
572 		}
573 	}
574 	return found;
575 }
576 
577 /*
578  * lookup_mnt - Return the first child mount mounted at path
579  *
580  * "First" means first mounted chronologically.  If you create the
581  * following mounts:
582  *
583  * mount /dev/sda1 /mnt
584  * mount /dev/sda2 /mnt
585  * mount /dev/sda3 /mnt
586  *
587  * Then lookup_mnt() on the base /mnt dentry in the root mount will
588  * return successively the root dentry and vfsmount of /dev/sda1, then
589  * /dev/sda2, then /dev/sda3, then NULL.
590  *
591  * lookup_mnt takes a reference to the found vfsmount.
592  */
593 struct vfsmount *lookup_mnt(struct path *path)
594 {
595 	struct mount *child_mnt;
596 
597 	br_read_lock(&vfsmount_lock);
598 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 	if (child_mnt) {
600 		mnt_add_count(child_mnt, 1);
601 		br_read_unlock(&vfsmount_lock);
602 		return &child_mnt->mnt;
603 	} else {
604 		br_read_unlock(&vfsmount_lock);
605 		return NULL;
606 	}
607 }
608 
609 static struct mountpoint *new_mountpoint(struct dentry *dentry)
610 {
611 	struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
612 	struct mountpoint *mp;
613 
614 	list_for_each_entry(mp, chain, m_hash) {
615 		if (mp->m_dentry == dentry) {
616 			/* might be worth a WARN_ON() */
617 			if (d_unlinked(dentry))
618 				return ERR_PTR(-ENOENT);
619 			mp->m_count++;
620 			return mp;
621 		}
622 	}
623 
624 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 	if (!mp)
626 		return ERR_PTR(-ENOMEM);
627 
628 	spin_lock(&dentry->d_lock);
629 	if (d_unlinked(dentry)) {
630 		spin_unlock(&dentry->d_lock);
631 		kfree(mp);
632 		return ERR_PTR(-ENOENT);
633 	}
634 	dentry->d_flags |= DCACHE_MOUNTED;
635 	spin_unlock(&dentry->d_lock);
636 	mp->m_dentry = dentry;
637 	mp->m_count = 1;
638 	list_add(&mp->m_hash, chain);
639 	return mp;
640 }
641 
642 static void put_mountpoint(struct mountpoint *mp)
643 {
644 	if (!--mp->m_count) {
645 		struct dentry *dentry = mp->m_dentry;
646 		spin_lock(&dentry->d_lock);
647 		dentry->d_flags &= ~DCACHE_MOUNTED;
648 		spin_unlock(&dentry->d_lock);
649 		list_del(&mp->m_hash);
650 		kfree(mp);
651 	}
652 }
653 
654 static inline int check_mnt(struct mount *mnt)
655 {
656 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
657 }
658 
659 /*
660  * vfsmount lock must be held for write
661  */
662 static void touch_mnt_namespace(struct mnt_namespace *ns)
663 {
664 	if (ns) {
665 		ns->event = ++event;
666 		wake_up_interruptible(&ns->poll);
667 	}
668 }
669 
670 /*
671  * vfsmount lock must be held for write
672  */
673 static void __touch_mnt_namespace(struct mnt_namespace *ns)
674 {
675 	if (ns && ns->event != event) {
676 		ns->event = event;
677 		wake_up_interruptible(&ns->poll);
678 	}
679 }
680 
681 /*
682  * vfsmount lock must be held for write
683  */
684 static void detach_mnt(struct mount *mnt, struct path *old_path)
685 {
686 	old_path->dentry = mnt->mnt_mountpoint;
687 	old_path->mnt = &mnt->mnt_parent->mnt;
688 	mnt->mnt_parent = mnt;
689 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
690 	list_del_init(&mnt->mnt_child);
691 	list_del_init(&mnt->mnt_hash);
692 	put_mountpoint(mnt->mnt_mp);
693 	mnt->mnt_mp = NULL;
694 }
695 
696 /*
697  * vfsmount lock must be held for write
698  */
699 void mnt_set_mountpoint(struct mount *mnt,
700 			struct mountpoint *mp,
701 			struct mount *child_mnt)
702 {
703 	mp->m_count++;
704 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
705 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
706 	child_mnt->mnt_parent = mnt;
707 	child_mnt->mnt_mp = mp;
708 }
709 
710 /*
711  * vfsmount lock must be held for write
712  */
713 static void attach_mnt(struct mount *mnt,
714 			struct mount *parent,
715 			struct mountpoint *mp)
716 {
717 	mnt_set_mountpoint(parent, mp, mnt);
718 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
719 			hash(&parent->mnt, mp->m_dentry));
720 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
721 }
722 
723 /*
724  * vfsmount lock must be held for write
725  */
726 static void commit_tree(struct mount *mnt)
727 {
728 	struct mount *parent = mnt->mnt_parent;
729 	struct mount *m;
730 	LIST_HEAD(head);
731 	struct mnt_namespace *n = parent->mnt_ns;
732 
733 	BUG_ON(parent == mnt);
734 
735 	list_add_tail(&head, &mnt->mnt_list);
736 	list_for_each_entry(m, &head, mnt_list)
737 		m->mnt_ns = n;
738 
739 	list_splice(&head, n->list.prev);
740 
741 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
742 				hash(&parent->mnt, mnt->mnt_mountpoint));
743 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
744 	touch_mnt_namespace(n);
745 }
746 
747 static struct mount *next_mnt(struct mount *p, struct mount *root)
748 {
749 	struct list_head *next = p->mnt_mounts.next;
750 	if (next == &p->mnt_mounts) {
751 		while (1) {
752 			if (p == root)
753 				return NULL;
754 			next = p->mnt_child.next;
755 			if (next != &p->mnt_parent->mnt_mounts)
756 				break;
757 			p = p->mnt_parent;
758 		}
759 	}
760 	return list_entry(next, struct mount, mnt_child);
761 }
762 
763 static struct mount *skip_mnt_tree(struct mount *p)
764 {
765 	struct list_head *prev = p->mnt_mounts.prev;
766 	while (prev != &p->mnt_mounts) {
767 		p = list_entry(prev, struct mount, mnt_child);
768 		prev = p->mnt_mounts.prev;
769 	}
770 	return p;
771 }
772 
773 struct vfsmount *
774 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775 {
776 	struct mount *mnt;
777 	struct dentry *root;
778 
779 	if (!type)
780 		return ERR_PTR(-ENODEV);
781 
782 	mnt = alloc_vfsmnt(name);
783 	if (!mnt)
784 		return ERR_PTR(-ENOMEM);
785 
786 	if (flags & MS_KERNMOUNT)
787 		mnt->mnt.mnt_flags = MNT_INTERNAL;
788 
789 	root = mount_fs(type, flags, name, data);
790 	if (IS_ERR(root)) {
791 		free_vfsmnt(mnt);
792 		return ERR_CAST(root);
793 	}
794 
795 	mnt->mnt.mnt_root = root;
796 	mnt->mnt.mnt_sb = root->d_sb;
797 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
798 	mnt->mnt_parent = mnt;
799 	br_write_lock(&vfsmount_lock);
800 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
801 	br_write_unlock(&vfsmount_lock);
802 	return &mnt->mnt;
803 }
804 EXPORT_SYMBOL_GPL(vfs_kern_mount);
805 
806 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
807 					int flag)
808 {
809 	struct super_block *sb = old->mnt.mnt_sb;
810 	struct mount *mnt;
811 	int err;
812 
813 	mnt = alloc_vfsmnt(old->mnt_devname);
814 	if (!mnt)
815 		return ERR_PTR(-ENOMEM);
816 
817 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
818 		mnt->mnt_group_id = 0; /* not a peer of original */
819 	else
820 		mnt->mnt_group_id = old->mnt_group_id;
821 
822 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 		err = mnt_alloc_group_id(mnt);
824 		if (err)
825 			goto out_free;
826 	}
827 
828 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 	atomic_inc(&sb->s_active);
830 	mnt->mnt.mnt_sb = sb;
831 	mnt->mnt.mnt_root = dget(root);
832 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 	mnt->mnt_parent = mnt;
834 	br_write_lock(&vfsmount_lock);
835 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
836 	br_write_unlock(&vfsmount_lock);
837 
838 	if ((flag & CL_SLAVE) ||
839 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
840 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
841 		mnt->mnt_master = old;
842 		CLEAR_MNT_SHARED(mnt);
843 	} else if (!(flag & CL_PRIVATE)) {
844 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
845 			list_add(&mnt->mnt_share, &old->mnt_share);
846 		if (IS_MNT_SLAVE(old))
847 			list_add(&mnt->mnt_slave, &old->mnt_slave);
848 		mnt->mnt_master = old->mnt_master;
849 	}
850 	if (flag & CL_MAKE_SHARED)
851 		set_mnt_shared(mnt);
852 
853 	/* stick the duplicate mount on the same expiry list
854 	 * as the original if that was on one */
855 	if (flag & CL_EXPIRE) {
856 		if (!list_empty(&old->mnt_expire))
857 			list_add(&mnt->mnt_expire, &old->mnt_expire);
858 	}
859 
860 	return mnt;
861 
862  out_free:
863 	free_vfsmnt(mnt);
864 	return ERR_PTR(err);
865 }
866 
867 static inline void mntfree(struct mount *mnt)
868 {
869 	struct vfsmount *m = &mnt->mnt;
870 	struct super_block *sb = m->mnt_sb;
871 
872 	/*
873 	 * This probably indicates that somebody messed
874 	 * up a mnt_want/drop_write() pair.  If this
875 	 * happens, the filesystem was probably unable
876 	 * to make r/w->r/o transitions.
877 	 */
878 	/*
879 	 * The locking used to deal with mnt_count decrement provides barriers,
880 	 * so mnt_get_writers() below is safe.
881 	 */
882 	WARN_ON(mnt_get_writers(mnt));
883 	fsnotify_vfsmount_delete(m);
884 	dput(m->mnt_root);
885 	free_vfsmnt(mnt);
886 	deactivate_super(sb);
887 }
888 
889 static void mntput_no_expire(struct mount *mnt)
890 {
891 put_again:
892 #ifdef CONFIG_SMP
893 	br_read_lock(&vfsmount_lock);
894 	if (likely(mnt->mnt_ns)) {
895 		/* shouldn't be the last one */
896 		mnt_add_count(mnt, -1);
897 		br_read_unlock(&vfsmount_lock);
898 		return;
899 	}
900 	br_read_unlock(&vfsmount_lock);
901 
902 	br_write_lock(&vfsmount_lock);
903 	mnt_add_count(mnt, -1);
904 	if (mnt_get_count(mnt)) {
905 		br_write_unlock(&vfsmount_lock);
906 		return;
907 	}
908 #else
909 	mnt_add_count(mnt, -1);
910 	if (likely(mnt_get_count(mnt)))
911 		return;
912 	br_write_lock(&vfsmount_lock);
913 #endif
914 	if (unlikely(mnt->mnt_pinned)) {
915 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
916 		mnt->mnt_pinned = 0;
917 		br_write_unlock(&vfsmount_lock);
918 		acct_auto_close_mnt(&mnt->mnt);
919 		goto put_again;
920 	}
921 
922 	list_del(&mnt->mnt_instance);
923 	br_write_unlock(&vfsmount_lock);
924 	mntfree(mnt);
925 }
926 
927 void mntput(struct vfsmount *mnt)
928 {
929 	if (mnt) {
930 		struct mount *m = real_mount(mnt);
931 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
932 		if (unlikely(m->mnt_expiry_mark))
933 			m->mnt_expiry_mark = 0;
934 		mntput_no_expire(m);
935 	}
936 }
937 EXPORT_SYMBOL(mntput);
938 
939 struct vfsmount *mntget(struct vfsmount *mnt)
940 {
941 	if (mnt)
942 		mnt_add_count(real_mount(mnt), 1);
943 	return mnt;
944 }
945 EXPORT_SYMBOL(mntget);
946 
947 void mnt_pin(struct vfsmount *mnt)
948 {
949 	br_write_lock(&vfsmount_lock);
950 	real_mount(mnt)->mnt_pinned++;
951 	br_write_unlock(&vfsmount_lock);
952 }
953 EXPORT_SYMBOL(mnt_pin);
954 
955 void mnt_unpin(struct vfsmount *m)
956 {
957 	struct mount *mnt = real_mount(m);
958 	br_write_lock(&vfsmount_lock);
959 	if (mnt->mnt_pinned) {
960 		mnt_add_count(mnt, 1);
961 		mnt->mnt_pinned--;
962 	}
963 	br_write_unlock(&vfsmount_lock);
964 }
965 EXPORT_SYMBOL(mnt_unpin);
966 
967 static inline void mangle(struct seq_file *m, const char *s)
968 {
969 	seq_escape(m, s, " \t\n\\");
970 }
971 
972 /*
973  * Simple .show_options callback for filesystems which don't want to
974  * implement more complex mount option showing.
975  *
976  * See also save_mount_options().
977  */
978 int generic_show_options(struct seq_file *m, struct dentry *root)
979 {
980 	const char *options;
981 
982 	rcu_read_lock();
983 	options = rcu_dereference(root->d_sb->s_options);
984 
985 	if (options != NULL && options[0]) {
986 		seq_putc(m, ',');
987 		mangle(m, options);
988 	}
989 	rcu_read_unlock();
990 
991 	return 0;
992 }
993 EXPORT_SYMBOL(generic_show_options);
994 
995 /*
996  * If filesystem uses generic_show_options(), this function should be
997  * called from the fill_super() callback.
998  *
999  * The .remount_fs callback usually needs to be handled in a special
1000  * way, to make sure, that previous options are not overwritten if the
1001  * remount fails.
1002  *
1003  * Also note, that if the filesystem's .remount_fs function doesn't
1004  * reset all options to their default value, but changes only newly
1005  * given options, then the displayed options will not reflect reality
1006  * any more.
1007  */
1008 void save_mount_options(struct super_block *sb, char *options)
1009 {
1010 	BUG_ON(sb->s_options);
1011 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1012 }
1013 EXPORT_SYMBOL(save_mount_options);
1014 
1015 void replace_mount_options(struct super_block *sb, char *options)
1016 {
1017 	char *old = sb->s_options;
1018 	rcu_assign_pointer(sb->s_options, options);
1019 	if (old) {
1020 		synchronize_rcu();
1021 		kfree(old);
1022 	}
1023 }
1024 EXPORT_SYMBOL(replace_mount_options);
1025 
1026 #ifdef CONFIG_PROC_FS
1027 /* iterator; we want it to have access to namespace_sem, thus here... */
1028 static void *m_start(struct seq_file *m, loff_t *pos)
1029 {
1030 	struct proc_mounts *p = proc_mounts(m);
1031 
1032 	down_read(&namespace_sem);
1033 	return seq_list_start(&p->ns->list, *pos);
1034 }
1035 
1036 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1037 {
1038 	struct proc_mounts *p = proc_mounts(m);
1039 
1040 	return seq_list_next(v, &p->ns->list, pos);
1041 }
1042 
1043 static void m_stop(struct seq_file *m, void *v)
1044 {
1045 	up_read(&namespace_sem);
1046 }
1047 
1048 static int m_show(struct seq_file *m, void *v)
1049 {
1050 	struct proc_mounts *p = proc_mounts(m);
1051 	struct mount *r = list_entry(v, struct mount, mnt_list);
1052 	return p->show(m, &r->mnt);
1053 }
1054 
1055 const struct seq_operations mounts_op = {
1056 	.start	= m_start,
1057 	.next	= m_next,
1058 	.stop	= m_stop,
1059 	.show	= m_show,
1060 };
1061 #endif  /* CONFIG_PROC_FS */
1062 
1063 /**
1064  * may_umount_tree - check if a mount tree is busy
1065  * @mnt: root of mount tree
1066  *
1067  * This is called to check if a tree of mounts has any
1068  * open files, pwds, chroots or sub mounts that are
1069  * busy.
1070  */
1071 int may_umount_tree(struct vfsmount *m)
1072 {
1073 	struct mount *mnt = real_mount(m);
1074 	int actual_refs = 0;
1075 	int minimum_refs = 0;
1076 	struct mount *p;
1077 	BUG_ON(!m);
1078 
1079 	/* write lock needed for mnt_get_count */
1080 	br_write_lock(&vfsmount_lock);
1081 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1082 		actual_refs += mnt_get_count(p);
1083 		minimum_refs += 2;
1084 	}
1085 	br_write_unlock(&vfsmount_lock);
1086 
1087 	if (actual_refs > minimum_refs)
1088 		return 0;
1089 
1090 	return 1;
1091 }
1092 
1093 EXPORT_SYMBOL(may_umount_tree);
1094 
1095 /**
1096  * may_umount - check if a mount point is busy
1097  * @mnt: root of mount
1098  *
1099  * This is called to check if a mount point has any
1100  * open files, pwds, chroots or sub mounts. If the
1101  * mount has sub mounts this will return busy
1102  * regardless of whether the sub mounts are busy.
1103  *
1104  * Doesn't take quota and stuff into account. IOW, in some cases it will
1105  * give false negatives. The main reason why it's here is that we need
1106  * a non-destructive way to look for easily umountable filesystems.
1107  */
1108 int may_umount(struct vfsmount *mnt)
1109 {
1110 	int ret = 1;
1111 	down_read(&namespace_sem);
1112 	br_write_lock(&vfsmount_lock);
1113 	if (propagate_mount_busy(real_mount(mnt), 2))
1114 		ret = 0;
1115 	br_write_unlock(&vfsmount_lock);
1116 	up_read(&namespace_sem);
1117 	return ret;
1118 }
1119 
1120 EXPORT_SYMBOL(may_umount);
1121 
1122 static LIST_HEAD(unmounted);	/* protected by namespace_sem */
1123 
1124 static void namespace_unlock(void)
1125 {
1126 	struct mount *mnt;
1127 	LIST_HEAD(head);
1128 
1129 	if (likely(list_empty(&unmounted))) {
1130 		up_write(&namespace_sem);
1131 		return;
1132 	}
1133 
1134 	list_splice_init(&unmounted, &head);
1135 	up_write(&namespace_sem);
1136 
1137 	while (!list_empty(&head)) {
1138 		mnt = list_first_entry(&head, struct mount, mnt_hash);
1139 		list_del_init(&mnt->mnt_hash);
1140 		if (mnt_has_parent(mnt)) {
1141 			struct dentry *dentry;
1142 			struct mount *m;
1143 
1144 			br_write_lock(&vfsmount_lock);
1145 			dentry = mnt->mnt_mountpoint;
1146 			m = mnt->mnt_parent;
1147 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1148 			mnt->mnt_parent = mnt;
1149 			m->mnt_ghosts--;
1150 			br_write_unlock(&vfsmount_lock);
1151 			dput(dentry);
1152 			mntput(&m->mnt);
1153 		}
1154 		mntput(&mnt->mnt);
1155 	}
1156 }
1157 
1158 static inline void namespace_lock(void)
1159 {
1160 	down_write(&namespace_sem);
1161 }
1162 
1163 /*
1164  * vfsmount lock must be held for write
1165  * namespace_sem must be held for write
1166  */
1167 void umount_tree(struct mount *mnt, int propagate)
1168 {
1169 	LIST_HEAD(tmp_list);
1170 	struct mount *p;
1171 
1172 	for (p = mnt; p; p = next_mnt(p, mnt))
1173 		list_move(&p->mnt_hash, &tmp_list);
1174 
1175 	if (propagate)
1176 		propagate_umount(&tmp_list);
1177 
1178 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1179 		list_del_init(&p->mnt_expire);
1180 		list_del_init(&p->mnt_list);
1181 		__touch_mnt_namespace(p->mnt_ns);
1182 		p->mnt_ns = NULL;
1183 		list_del_init(&p->mnt_child);
1184 		if (mnt_has_parent(p)) {
1185 			p->mnt_parent->mnt_ghosts++;
1186 			put_mountpoint(p->mnt_mp);
1187 			p->mnt_mp = NULL;
1188 		}
1189 		change_mnt_propagation(p, MS_PRIVATE);
1190 	}
1191 	list_splice(&tmp_list, &unmounted);
1192 }
1193 
1194 static void shrink_submounts(struct mount *mnt);
1195 
1196 static int do_umount(struct mount *mnt, int flags)
1197 {
1198 	struct super_block *sb = mnt->mnt.mnt_sb;
1199 	int retval;
1200 
1201 	retval = security_sb_umount(&mnt->mnt, flags);
1202 	if (retval)
1203 		return retval;
1204 
1205 	/*
1206 	 * Allow userspace to request a mountpoint be expired rather than
1207 	 * unmounting unconditionally. Unmount only happens if:
1208 	 *  (1) the mark is already set (the mark is cleared by mntput())
1209 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1210 	 */
1211 	if (flags & MNT_EXPIRE) {
1212 		if (&mnt->mnt == current->fs->root.mnt ||
1213 		    flags & (MNT_FORCE | MNT_DETACH))
1214 			return -EINVAL;
1215 
1216 		/*
1217 		 * probably don't strictly need the lock here if we examined
1218 		 * all race cases, but it's a slowpath.
1219 		 */
1220 		br_write_lock(&vfsmount_lock);
1221 		if (mnt_get_count(mnt) != 2) {
1222 			br_write_unlock(&vfsmount_lock);
1223 			return -EBUSY;
1224 		}
1225 		br_write_unlock(&vfsmount_lock);
1226 
1227 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1228 			return -EAGAIN;
1229 	}
1230 
1231 	/*
1232 	 * If we may have to abort operations to get out of this
1233 	 * mount, and they will themselves hold resources we must
1234 	 * allow the fs to do things. In the Unix tradition of
1235 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1236 	 * might fail to complete on the first run through as other tasks
1237 	 * must return, and the like. Thats for the mount program to worry
1238 	 * about for the moment.
1239 	 */
1240 
1241 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1242 		sb->s_op->umount_begin(sb);
1243 	}
1244 
1245 	/*
1246 	 * No sense to grab the lock for this test, but test itself looks
1247 	 * somewhat bogus. Suggestions for better replacement?
1248 	 * Ho-hum... In principle, we might treat that as umount + switch
1249 	 * to rootfs. GC would eventually take care of the old vfsmount.
1250 	 * Actually it makes sense, especially if rootfs would contain a
1251 	 * /reboot - static binary that would close all descriptors and
1252 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1253 	 */
1254 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1255 		/*
1256 		 * Special case for "unmounting" root ...
1257 		 * we just try to remount it readonly.
1258 		 */
1259 		down_write(&sb->s_umount);
1260 		if (!(sb->s_flags & MS_RDONLY))
1261 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1262 		up_write(&sb->s_umount);
1263 		return retval;
1264 	}
1265 
1266 	namespace_lock();
1267 	br_write_lock(&vfsmount_lock);
1268 	event++;
1269 
1270 	if (!(flags & MNT_DETACH))
1271 		shrink_submounts(mnt);
1272 
1273 	retval = -EBUSY;
1274 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1275 		if (!list_empty(&mnt->mnt_list))
1276 			umount_tree(mnt, 1);
1277 		retval = 0;
1278 	}
1279 	br_write_unlock(&vfsmount_lock);
1280 	namespace_unlock();
1281 	return retval;
1282 }
1283 
1284 /*
1285  * Is the caller allowed to modify his namespace?
1286  */
1287 static inline bool may_mount(void)
1288 {
1289 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1290 }
1291 
1292 /*
1293  * Now umount can handle mount points as well as block devices.
1294  * This is important for filesystems which use unnamed block devices.
1295  *
1296  * We now support a flag for forced unmount like the other 'big iron'
1297  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1298  */
1299 
1300 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1301 {
1302 	struct path path;
1303 	struct mount *mnt;
1304 	int retval;
1305 	int lookup_flags = 0;
1306 
1307 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1308 		return -EINVAL;
1309 
1310 	if (!may_mount())
1311 		return -EPERM;
1312 
1313 	if (!(flags & UMOUNT_NOFOLLOW))
1314 		lookup_flags |= LOOKUP_FOLLOW;
1315 
1316 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1317 	if (retval)
1318 		goto out;
1319 	mnt = real_mount(path.mnt);
1320 	retval = -EINVAL;
1321 	if (path.dentry != path.mnt->mnt_root)
1322 		goto dput_and_out;
1323 	if (!check_mnt(mnt))
1324 		goto dput_and_out;
1325 
1326 	retval = do_umount(mnt, flags);
1327 dput_and_out:
1328 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1329 	dput(path.dentry);
1330 	mntput_no_expire(mnt);
1331 out:
1332 	return retval;
1333 }
1334 
1335 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1336 
1337 /*
1338  *	The 2.0 compatible umount. No flags.
1339  */
1340 SYSCALL_DEFINE1(oldumount, char __user *, name)
1341 {
1342 	return sys_umount(name, 0);
1343 }
1344 
1345 #endif
1346 
1347 static bool mnt_ns_loop(struct path *path)
1348 {
1349 	/* Could bind mounting the mount namespace inode cause a
1350 	 * mount namespace loop?
1351 	 */
1352 	struct inode *inode = path->dentry->d_inode;
1353 	struct proc_inode *ei;
1354 	struct mnt_namespace *mnt_ns;
1355 
1356 	if (!proc_ns_inode(inode))
1357 		return false;
1358 
1359 	ei = PROC_I(inode);
1360 	if (ei->ns_ops != &mntns_operations)
1361 		return false;
1362 
1363 	mnt_ns = ei->ns;
1364 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1365 }
1366 
1367 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1368 					int flag)
1369 {
1370 	struct mount *res, *p, *q, *r, *parent;
1371 
1372 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1373 		return ERR_PTR(-EINVAL);
1374 
1375 	res = q = clone_mnt(mnt, dentry, flag);
1376 	if (IS_ERR(q))
1377 		return q;
1378 
1379 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1380 
1381 	p = mnt;
1382 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1383 		struct mount *s;
1384 		if (!is_subdir(r->mnt_mountpoint, dentry))
1385 			continue;
1386 
1387 		for (s = r; s; s = next_mnt(s, r)) {
1388 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1389 				s = skip_mnt_tree(s);
1390 				continue;
1391 			}
1392 			while (p != s->mnt_parent) {
1393 				p = p->mnt_parent;
1394 				q = q->mnt_parent;
1395 			}
1396 			p = s;
1397 			parent = q;
1398 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1399 			if (IS_ERR(q))
1400 				goto out;
1401 			br_write_lock(&vfsmount_lock);
1402 			list_add_tail(&q->mnt_list, &res->mnt_list);
1403 			attach_mnt(q, parent, p->mnt_mp);
1404 			br_write_unlock(&vfsmount_lock);
1405 		}
1406 	}
1407 	return res;
1408 out:
1409 	if (res) {
1410 		br_write_lock(&vfsmount_lock);
1411 		umount_tree(res, 0);
1412 		br_write_unlock(&vfsmount_lock);
1413 	}
1414 	return q;
1415 }
1416 
1417 /* Caller should check returned pointer for errors */
1418 
1419 struct vfsmount *collect_mounts(struct path *path)
1420 {
1421 	struct mount *tree;
1422 	namespace_lock();
1423 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1424 			 CL_COPY_ALL | CL_PRIVATE);
1425 	namespace_unlock();
1426 	if (IS_ERR(tree))
1427 		return NULL;
1428 	return &tree->mnt;
1429 }
1430 
1431 void drop_collected_mounts(struct vfsmount *mnt)
1432 {
1433 	namespace_lock();
1434 	br_write_lock(&vfsmount_lock);
1435 	umount_tree(real_mount(mnt), 0);
1436 	br_write_unlock(&vfsmount_lock);
1437 	namespace_unlock();
1438 }
1439 
1440 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1441 		   struct vfsmount *root)
1442 {
1443 	struct mount *mnt;
1444 	int res = f(root, arg);
1445 	if (res)
1446 		return res;
1447 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1448 		res = f(&mnt->mnt, arg);
1449 		if (res)
1450 			return res;
1451 	}
1452 	return 0;
1453 }
1454 
1455 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1456 {
1457 	struct mount *p;
1458 
1459 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1460 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1461 			mnt_release_group_id(p);
1462 	}
1463 }
1464 
1465 static int invent_group_ids(struct mount *mnt, bool recurse)
1466 {
1467 	struct mount *p;
1468 
1469 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1470 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1471 			int err = mnt_alloc_group_id(p);
1472 			if (err) {
1473 				cleanup_group_ids(mnt, p);
1474 				return err;
1475 			}
1476 		}
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  *  @source_mnt : mount tree to be attached
1484  *  @nd         : place the mount tree @source_mnt is attached
1485  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1486  *  		   store the parent mount and mountpoint dentry.
1487  *  		   (done when source_mnt is moved)
1488  *
1489  *  NOTE: in the table below explains the semantics when a source mount
1490  *  of a given type is attached to a destination mount of a given type.
1491  * ---------------------------------------------------------------------------
1492  * |         BIND MOUNT OPERATION                                            |
1493  * |**************************************************************************
1494  * | source-->| shared        |       private  |       slave    | unbindable |
1495  * | dest     |               |                |                |            |
1496  * |   |      |               |                |                |            |
1497  * |   v      |               |                |                |            |
1498  * |**************************************************************************
1499  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1500  * |          |               |                |                |            |
1501  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1502  * ***************************************************************************
1503  * A bind operation clones the source mount and mounts the clone on the
1504  * destination mount.
1505  *
1506  * (++)  the cloned mount is propagated to all the mounts in the propagation
1507  * 	 tree of the destination mount and the cloned mount is added to
1508  * 	 the peer group of the source mount.
1509  * (+)   the cloned mount is created under the destination mount and is marked
1510  *       as shared. The cloned mount is added to the peer group of the source
1511  *       mount.
1512  * (+++) the mount is propagated to all the mounts in the propagation tree
1513  *       of the destination mount and the cloned mount is made slave
1514  *       of the same master as that of the source mount. The cloned mount
1515  *       is marked as 'shared and slave'.
1516  * (*)   the cloned mount is made a slave of the same master as that of the
1517  * 	 source mount.
1518  *
1519  * ---------------------------------------------------------------------------
1520  * |         		MOVE MOUNT OPERATION                                 |
1521  * |**************************************************************************
1522  * | source-->| shared        |       private  |       slave    | unbindable |
1523  * | dest     |               |                |                |            |
1524  * |   |      |               |                |                |            |
1525  * |   v      |               |                |                |            |
1526  * |**************************************************************************
1527  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1528  * |          |               |                |                |            |
1529  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1530  * ***************************************************************************
1531  *
1532  * (+)  the mount is moved to the destination. And is then propagated to
1533  * 	all the mounts in the propagation tree of the destination mount.
1534  * (+*)  the mount is moved to the destination.
1535  * (+++)  the mount is moved to the destination and is then propagated to
1536  * 	all the mounts belonging to the destination mount's propagation tree.
1537  * 	the mount is marked as 'shared and slave'.
1538  * (*)	the mount continues to be a slave at the new location.
1539  *
1540  * if the source mount is a tree, the operations explained above is
1541  * applied to each mount in the tree.
1542  * Must be called without spinlocks held, since this function can sleep
1543  * in allocations.
1544  */
1545 static int attach_recursive_mnt(struct mount *source_mnt,
1546 			struct mount *dest_mnt,
1547 			struct mountpoint *dest_mp,
1548 			struct path *parent_path)
1549 {
1550 	LIST_HEAD(tree_list);
1551 	struct mount *child, *p;
1552 	int err;
1553 
1554 	if (IS_MNT_SHARED(dest_mnt)) {
1555 		err = invent_group_ids(source_mnt, true);
1556 		if (err)
1557 			goto out;
1558 	}
1559 	err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1560 	if (err)
1561 		goto out_cleanup_ids;
1562 
1563 	br_write_lock(&vfsmount_lock);
1564 
1565 	if (IS_MNT_SHARED(dest_mnt)) {
1566 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1567 			set_mnt_shared(p);
1568 	}
1569 	if (parent_path) {
1570 		detach_mnt(source_mnt, parent_path);
1571 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1572 		touch_mnt_namespace(source_mnt->mnt_ns);
1573 	} else {
1574 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1575 		commit_tree(source_mnt);
1576 	}
1577 
1578 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1579 		list_del_init(&child->mnt_hash);
1580 		commit_tree(child);
1581 	}
1582 	br_write_unlock(&vfsmount_lock);
1583 
1584 	return 0;
1585 
1586  out_cleanup_ids:
1587 	if (IS_MNT_SHARED(dest_mnt))
1588 		cleanup_group_ids(source_mnt, NULL);
1589  out:
1590 	return err;
1591 }
1592 
1593 static struct mountpoint *lock_mount(struct path *path)
1594 {
1595 	struct vfsmount *mnt;
1596 	struct dentry *dentry = path->dentry;
1597 retry:
1598 	mutex_lock(&dentry->d_inode->i_mutex);
1599 	if (unlikely(cant_mount(dentry))) {
1600 		mutex_unlock(&dentry->d_inode->i_mutex);
1601 		return ERR_PTR(-ENOENT);
1602 	}
1603 	namespace_lock();
1604 	mnt = lookup_mnt(path);
1605 	if (likely(!mnt)) {
1606 		struct mountpoint *mp = new_mountpoint(dentry);
1607 		if (IS_ERR(mp)) {
1608 			namespace_unlock();
1609 			mutex_unlock(&dentry->d_inode->i_mutex);
1610 			return mp;
1611 		}
1612 		return mp;
1613 	}
1614 	namespace_unlock();
1615 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1616 	path_put(path);
1617 	path->mnt = mnt;
1618 	dentry = path->dentry = dget(mnt->mnt_root);
1619 	goto retry;
1620 }
1621 
1622 static void unlock_mount(struct mountpoint *where)
1623 {
1624 	struct dentry *dentry = where->m_dentry;
1625 	put_mountpoint(where);
1626 	namespace_unlock();
1627 	mutex_unlock(&dentry->d_inode->i_mutex);
1628 }
1629 
1630 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1631 {
1632 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1633 		return -EINVAL;
1634 
1635 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1636 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1637 		return -ENOTDIR;
1638 
1639 	return attach_recursive_mnt(mnt, p, mp, NULL);
1640 }
1641 
1642 /*
1643  * Sanity check the flags to change_mnt_propagation.
1644  */
1645 
1646 static int flags_to_propagation_type(int flags)
1647 {
1648 	int type = flags & ~(MS_REC | MS_SILENT);
1649 
1650 	/* Fail if any non-propagation flags are set */
1651 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1652 		return 0;
1653 	/* Only one propagation flag should be set */
1654 	if (!is_power_of_2(type))
1655 		return 0;
1656 	return type;
1657 }
1658 
1659 /*
1660  * recursively change the type of the mountpoint.
1661  */
1662 static int do_change_type(struct path *path, int flag)
1663 {
1664 	struct mount *m;
1665 	struct mount *mnt = real_mount(path->mnt);
1666 	int recurse = flag & MS_REC;
1667 	int type;
1668 	int err = 0;
1669 
1670 	if (path->dentry != path->mnt->mnt_root)
1671 		return -EINVAL;
1672 
1673 	type = flags_to_propagation_type(flag);
1674 	if (!type)
1675 		return -EINVAL;
1676 
1677 	namespace_lock();
1678 	if (type == MS_SHARED) {
1679 		err = invent_group_ids(mnt, recurse);
1680 		if (err)
1681 			goto out_unlock;
1682 	}
1683 
1684 	br_write_lock(&vfsmount_lock);
1685 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1686 		change_mnt_propagation(m, type);
1687 	br_write_unlock(&vfsmount_lock);
1688 
1689  out_unlock:
1690 	namespace_unlock();
1691 	return err;
1692 }
1693 
1694 /*
1695  * do loopback mount.
1696  */
1697 static int do_loopback(struct path *path, const char *old_name,
1698 				int recurse)
1699 {
1700 	struct path old_path;
1701 	struct mount *mnt = NULL, *old, *parent;
1702 	struct mountpoint *mp;
1703 	int err;
1704 	if (!old_name || !*old_name)
1705 		return -EINVAL;
1706 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1707 	if (err)
1708 		return err;
1709 
1710 	err = -EINVAL;
1711 	if (mnt_ns_loop(&old_path))
1712 		goto out;
1713 
1714 	mp = lock_mount(path);
1715 	err = PTR_ERR(mp);
1716 	if (IS_ERR(mp))
1717 		goto out;
1718 
1719 	old = real_mount(old_path.mnt);
1720 	parent = real_mount(path->mnt);
1721 
1722 	err = -EINVAL;
1723 	if (IS_MNT_UNBINDABLE(old))
1724 		goto out2;
1725 
1726 	if (!check_mnt(parent) || !check_mnt(old))
1727 		goto out2;
1728 
1729 	if (recurse)
1730 		mnt = copy_tree(old, old_path.dentry, 0);
1731 	else
1732 		mnt = clone_mnt(old, old_path.dentry, 0);
1733 
1734 	if (IS_ERR(mnt)) {
1735 		err = PTR_ERR(mnt);
1736 		goto out2;
1737 	}
1738 
1739 	err = graft_tree(mnt, parent, mp);
1740 	if (err) {
1741 		br_write_lock(&vfsmount_lock);
1742 		umount_tree(mnt, 0);
1743 		br_write_unlock(&vfsmount_lock);
1744 	}
1745 out2:
1746 	unlock_mount(mp);
1747 out:
1748 	path_put(&old_path);
1749 	return err;
1750 }
1751 
1752 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1753 {
1754 	int error = 0;
1755 	int readonly_request = 0;
1756 
1757 	if (ms_flags & MS_RDONLY)
1758 		readonly_request = 1;
1759 	if (readonly_request == __mnt_is_readonly(mnt))
1760 		return 0;
1761 
1762 	if (readonly_request)
1763 		error = mnt_make_readonly(real_mount(mnt));
1764 	else
1765 		__mnt_unmake_readonly(real_mount(mnt));
1766 	return error;
1767 }
1768 
1769 /*
1770  * change filesystem flags. dir should be a physical root of filesystem.
1771  * If you've mounted a non-root directory somewhere and want to do remount
1772  * on it - tough luck.
1773  */
1774 static int do_remount(struct path *path, int flags, int mnt_flags,
1775 		      void *data)
1776 {
1777 	int err;
1778 	struct super_block *sb = path->mnt->mnt_sb;
1779 	struct mount *mnt = real_mount(path->mnt);
1780 
1781 	if (!check_mnt(mnt))
1782 		return -EINVAL;
1783 
1784 	if (path->dentry != path->mnt->mnt_root)
1785 		return -EINVAL;
1786 
1787 	err = security_sb_remount(sb, data);
1788 	if (err)
1789 		return err;
1790 
1791 	down_write(&sb->s_umount);
1792 	if (flags & MS_BIND)
1793 		err = change_mount_flags(path->mnt, flags);
1794 	else if (!capable(CAP_SYS_ADMIN))
1795 		err = -EPERM;
1796 	else
1797 		err = do_remount_sb(sb, flags, data, 0);
1798 	if (!err) {
1799 		br_write_lock(&vfsmount_lock);
1800 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1801 		mnt->mnt.mnt_flags = mnt_flags;
1802 		br_write_unlock(&vfsmount_lock);
1803 	}
1804 	up_write(&sb->s_umount);
1805 	if (!err) {
1806 		br_write_lock(&vfsmount_lock);
1807 		touch_mnt_namespace(mnt->mnt_ns);
1808 		br_write_unlock(&vfsmount_lock);
1809 	}
1810 	return err;
1811 }
1812 
1813 static inline int tree_contains_unbindable(struct mount *mnt)
1814 {
1815 	struct mount *p;
1816 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1817 		if (IS_MNT_UNBINDABLE(p))
1818 			return 1;
1819 	}
1820 	return 0;
1821 }
1822 
1823 static int do_move_mount(struct path *path, const char *old_name)
1824 {
1825 	struct path old_path, parent_path;
1826 	struct mount *p;
1827 	struct mount *old;
1828 	struct mountpoint *mp;
1829 	int err;
1830 	if (!old_name || !*old_name)
1831 		return -EINVAL;
1832 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1833 	if (err)
1834 		return err;
1835 
1836 	mp = lock_mount(path);
1837 	err = PTR_ERR(mp);
1838 	if (IS_ERR(mp))
1839 		goto out;
1840 
1841 	old = real_mount(old_path.mnt);
1842 	p = real_mount(path->mnt);
1843 
1844 	err = -EINVAL;
1845 	if (!check_mnt(p) || !check_mnt(old))
1846 		goto out1;
1847 
1848 	err = -EINVAL;
1849 	if (old_path.dentry != old_path.mnt->mnt_root)
1850 		goto out1;
1851 
1852 	if (!mnt_has_parent(old))
1853 		goto out1;
1854 
1855 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1856 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1857 		goto out1;
1858 	/*
1859 	 * Don't move a mount residing in a shared parent.
1860 	 */
1861 	if (IS_MNT_SHARED(old->mnt_parent))
1862 		goto out1;
1863 	/*
1864 	 * Don't move a mount tree containing unbindable mounts to a destination
1865 	 * mount which is shared.
1866 	 */
1867 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1868 		goto out1;
1869 	err = -ELOOP;
1870 	for (; mnt_has_parent(p); p = p->mnt_parent)
1871 		if (p == old)
1872 			goto out1;
1873 
1874 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1875 	if (err)
1876 		goto out1;
1877 
1878 	/* if the mount is moved, it should no longer be expire
1879 	 * automatically */
1880 	list_del_init(&old->mnt_expire);
1881 out1:
1882 	unlock_mount(mp);
1883 out:
1884 	if (!err)
1885 		path_put(&parent_path);
1886 	path_put(&old_path);
1887 	return err;
1888 }
1889 
1890 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1891 {
1892 	int err;
1893 	const char *subtype = strchr(fstype, '.');
1894 	if (subtype) {
1895 		subtype++;
1896 		err = -EINVAL;
1897 		if (!subtype[0])
1898 			goto err;
1899 	} else
1900 		subtype = "";
1901 
1902 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1903 	err = -ENOMEM;
1904 	if (!mnt->mnt_sb->s_subtype)
1905 		goto err;
1906 	return mnt;
1907 
1908  err:
1909 	mntput(mnt);
1910 	return ERR_PTR(err);
1911 }
1912 
1913 /*
1914  * add a mount into a namespace's mount tree
1915  */
1916 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1917 {
1918 	struct mountpoint *mp;
1919 	struct mount *parent;
1920 	int err;
1921 
1922 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1923 
1924 	mp = lock_mount(path);
1925 	if (IS_ERR(mp))
1926 		return PTR_ERR(mp);
1927 
1928 	parent = real_mount(path->mnt);
1929 	err = -EINVAL;
1930 	if (unlikely(!check_mnt(parent))) {
1931 		/* that's acceptable only for automounts done in private ns */
1932 		if (!(mnt_flags & MNT_SHRINKABLE))
1933 			goto unlock;
1934 		/* ... and for those we'd better have mountpoint still alive */
1935 		if (!parent->mnt_ns)
1936 			goto unlock;
1937 	}
1938 
1939 	/* Refuse the same filesystem on the same mount point */
1940 	err = -EBUSY;
1941 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1942 	    path->mnt->mnt_root == path->dentry)
1943 		goto unlock;
1944 
1945 	err = -EINVAL;
1946 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1947 		goto unlock;
1948 
1949 	newmnt->mnt.mnt_flags = mnt_flags;
1950 	err = graft_tree(newmnt, parent, mp);
1951 
1952 unlock:
1953 	unlock_mount(mp);
1954 	return err;
1955 }
1956 
1957 /*
1958  * create a new mount for userspace and request it to be added into the
1959  * namespace's tree
1960  */
1961 static int do_new_mount(struct path *path, const char *fstype, int flags,
1962 			int mnt_flags, const char *name, void *data)
1963 {
1964 	struct file_system_type *type;
1965 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1966 	struct vfsmount *mnt;
1967 	int err;
1968 
1969 	if (!fstype)
1970 		return -EINVAL;
1971 
1972 	type = get_fs_type(fstype);
1973 	if (!type)
1974 		return -ENODEV;
1975 
1976 	if (user_ns != &init_user_ns) {
1977 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1978 			put_filesystem(type);
1979 			return -EPERM;
1980 		}
1981 		/* Only in special cases allow devices from mounts
1982 		 * created outside the initial user namespace.
1983 		 */
1984 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1985 			flags |= MS_NODEV;
1986 			mnt_flags |= MNT_NODEV;
1987 		}
1988 	}
1989 
1990 	mnt = vfs_kern_mount(type, flags, name, data);
1991 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1992 	    !mnt->mnt_sb->s_subtype)
1993 		mnt = fs_set_subtype(mnt, fstype);
1994 
1995 	put_filesystem(type);
1996 	if (IS_ERR(mnt))
1997 		return PTR_ERR(mnt);
1998 
1999 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2000 	if (err)
2001 		mntput(mnt);
2002 	return err;
2003 }
2004 
2005 int finish_automount(struct vfsmount *m, struct path *path)
2006 {
2007 	struct mount *mnt = real_mount(m);
2008 	int err;
2009 	/* The new mount record should have at least 2 refs to prevent it being
2010 	 * expired before we get a chance to add it
2011 	 */
2012 	BUG_ON(mnt_get_count(mnt) < 2);
2013 
2014 	if (m->mnt_sb == path->mnt->mnt_sb &&
2015 	    m->mnt_root == path->dentry) {
2016 		err = -ELOOP;
2017 		goto fail;
2018 	}
2019 
2020 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2021 	if (!err)
2022 		return 0;
2023 fail:
2024 	/* remove m from any expiration list it may be on */
2025 	if (!list_empty(&mnt->mnt_expire)) {
2026 		namespace_lock();
2027 		br_write_lock(&vfsmount_lock);
2028 		list_del_init(&mnt->mnt_expire);
2029 		br_write_unlock(&vfsmount_lock);
2030 		namespace_unlock();
2031 	}
2032 	mntput(m);
2033 	mntput(m);
2034 	return err;
2035 }
2036 
2037 /**
2038  * mnt_set_expiry - Put a mount on an expiration list
2039  * @mnt: The mount to list.
2040  * @expiry_list: The list to add the mount to.
2041  */
2042 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2043 {
2044 	namespace_lock();
2045 	br_write_lock(&vfsmount_lock);
2046 
2047 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2048 
2049 	br_write_unlock(&vfsmount_lock);
2050 	namespace_unlock();
2051 }
2052 EXPORT_SYMBOL(mnt_set_expiry);
2053 
2054 /*
2055  * process a list of expirable mountpoints with the intent of discarding any
2056  * mountpoints that aren't in use and haven't been touched since last we came
2057  * here
2058  */
2059 void mark_mounts_for_expiry(struct list_head *mounts)
2060 {
2061 	struct mount *mnt, *next;
2062 	LIST_HEAD(graveyard);
2063 
2064 	if (list_empty(mounts))
2065 		return;
2066 
2067 	namespace_lock();
2068 	br_write_lock(&vfsmount_lock);
2069 
2070 	/* extract from the expiration list every vfsmount that matches the
2071 	 * following criteria:
2072 	 * - only referenced by its parent vfsmount
2073 	 * - still marked for expiry (marked on the last call here; marks are
2074 	 *   cleared by mntput())
2075 	 */
2076 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2077 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2078 			propagate_mount_busy(mnt, 1))
2079 			continue;
2080 		list_move(&mnt->mnt_expire, &graveyard);
2081 	}
2082 	while (!list_empty(&graveyard)) {
2083 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2084 		touch_mnt_namespace(mnt->mnt_ns);
2085 		umount_tree(mnt, 1);
2086 	}
2087 	br_write_unlock(&vfsmount_lock);
2088 	namespace_unlock();
2089 }
2090 
2091 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2092 
2093 /*
2094  * Ripoff of 'select_parent()'
2095  *
2096  * search the list of submounts for a given mountpoint, and move any
2097  * shrinkable submounts to the 'graveyard' list.
2098  */
2099 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2100 {
2101 	struct mount *this_parent = parent;
2102 	struct list_head *next;
2103 	int found = 0;
2104 
2105 repeat:
2106 	next = this_parent->mnt_mounts.next;
2107 resume:
2108 	while (next != &this_parent->mnt_mounts) {
2109 		struct list_head *tmp = next;
2110 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2111 
2112 		next = tmp->next;
2113 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2114 			continue;
2115 		/*
2116 		 * Descend a level if the d_mounts list is non-empty.
2117 		 */
2118 		if (!list_empty(&mnt->mnt_mounts)) {
2119 			this_parent = mnt;
2120 			goto repeat;
2121 		}
2122 
2123 		if (!propagate_mount_busy(mnt, 1)) {
2124 			list_move_tail(&mnt->mnt_expire, graveyard);
2125 			found++;
2126 		}
2127 	}
2128 	/*
2129 	 * All done at this level ... ascend and resume the search
2130 	 */
2131 	if (this_parent != parent) {
2132 		next = this_parent->mnt_child.next;
2133 		this_parent = this_parent->mnt_parent;
2134 		goto resume;
2135 	}
2136 	return found;
2137 }
2138 
2139 /*
2140  * process a list of expirable mountpoints with the intent of discarding any
2141  * submounts of a specific parent mountpoint
2142  *
2143  * vfsmount_lock must be held for write
2144  */
2145 static void shrink_submounts(struct mount *mnt)
2146 {
2147 	LIST_HEAD(graveyard);
2148 	struct mount *m;
2149 
2150 	/* extract submounts of 'mountpoint' from the expiration list */
2151 	while (select_submounts(mnt, &graveyard)) {
2152 		while (!list_empty(&graveyard)) {
2153 			m = list_first_entry(&graveyard, struct mount,
2154 						mnt_expire);
2155 			touch_mnt_namespace(m->mnt_ns);
2156 			umount_tree(m, 1);
2157 		}
2158 	}
2159 }
2160 
2161 /*
2162  * Some copy_from_user() implementations do not return the exact number of
2163  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2164  * Note that this function differs from copy_from_user() in that it will oops
2165  * on bad values of `to', rather than returning a short copy.
2166  */
2167 static long exact_copy_from_user(void *to, const void __user * from,
2168 				 unsigned long n)
2169 {
2170 	char *t = to;
2171 	const char __user *f = from;
2172 	char c;
2173 
2174 	if (!access_ok(VERIFY_READ, from, n))
2175 		return n;
2176 
2177 	while (n) {
2178 		if (__get_user(c, f)) {
2179 			memset(t, 0, n);
2180 			break;
2181 		}
2182 		*t++ = c;
2183 		f++;
2184 		n--;
2185 	}
2186 	return n;
2187 }
2188 
2189 int copy_mount_options(const void __user * data, unsigned long *where)
2190 {
2191 	int i;
2192 	unsigned long page;
2193 	unsigned long size;
2194 
2195 	*where = 0;
2196 	if (!data)
2197 		return 0;
2198 
2199 	if (!(page = __get_free_page(GFP_KERNEL)))
2200 		return -ENOMEM;
2201 
2202 	/* We only care that *some* data at the address the user
2203 	 * gave us is valid.  Just in case, we'll zero
2204 	 * the remainder of the page.
2205 	 */
2206 	/* copy_from_user cannot cross TASK_SIZE ! */
2207 	size = TASK_SIZE - (unsigned long)data;
2208 	if (size > PAGE_SIZE)
2209 		size = PAGE_SIZE;
2210 
2211 	i = size - exact_copy_from_user((void *)page, data, size);
2212 	if (!i) {
2213 		free_page(page);
2214 		return -EFAULT;
2215 	}
2216 	if (i != PAGE_SIZE)
2217 		memset((char *)page + i, 0, PAGE_SIZE - i);
2218 	*where = page;
2219 	return 0;
2220 }
2221 
2222 int copy_mount_string(const void __user *data, char **where)
2223 {
2224 	char *tmp;
2225 
2226 	if (!data) {
2227 		*where = NULL;
2228 		return 0;
2229 	}
2230 
2231 	tmp = strndup_user(data, PAGE_SIZE);
2232 	if (IS_ERR(tmp))
2233 		return PTR_ERR(tmp);
2234 
2235 	*where = tmp;
2236 	return 0;
2237 }
2238 
2239 /*
2240  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2241  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2242  *
2243  * data is a (void *) that can point to any structure up to
2244  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2245  * information (or be NULL).
2246  *
2247  * Pre-0.97 versions of mount() didn't have a flags word.
2248  * When the flags word was introduced its top half was required
2249  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2250  * Therefore, if this magic number is present, it carries no information
2251  * and must be discarded.
2252  */
2253 long do_mount(const char *dev_name, const char *dir_name,
2254 		const char *type_page, unsigned long flags, void *data_page)
2255 {
2256 	struct path path;
2257 	int retval = 0;
2258 	int mnt_flags = 0;
2259 
2260 	/* Discard magic */
2261 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2262 		flags &= ~MS_MGC_MSK;
2263 
2264 	/* Basic sanity checks */
2265 
2266 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2267 		return -EINVAL;
2268 
2269 	if (data_page)
2270 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2271 
2272 	/* ... and get the mountpoint */
2273 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2274 	if (retval)
2275 		return retval;
2276 
2277 	retval = security_sb_mount(dev_name, &path,
2278 				   type_page, flags, data_page);
2279 	if (retval)
2280 		goto dput_out;
2281 
2282 	if (!may_mount())
2283 		return -EPERM;
2284 
2285 	/* Default to relatime unless overriden */
2286 	if (!(flags & MS_NOATIME))
2287 		mnt_flags |= MNT_RELATIME;
2288 
2289 	/* Separate the per-mountpoint flags */
2290 	if (flags & MS_NOSUID)
2291 		mnt_flags |= MNT_NOSUID;
2292 	if (flags & MS_NODEV)
2293 		mnt_flags |= MNT_NODEV;
2294 	if (flags & MS_NOEXEC)
2295 		mnt_flags |= MNT_NOEXEC;
2296 	if (flags & MS_NOATIME)
2297 		mnt_flags |= MNT_NOATIME;
2298 	if (flags & MS_NODIRATIME)
2299 		mnt_flags |= MNT_NODIRATIME;
2300 	if (flags & MS_STRICTATIME)
2301 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2302 	if (flags & MS_RDONLY)
2303 		mnt_flags |= MNT_READONLY;
2304 
2305 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2306 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2307 		   MS_STRICTATIME);
2308 
2309 	if (flags & MS_REMOUNT)
2310 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2311 				    data_page);
2312 	else if (flags & MS_BIND)
2313 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2314 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2315 		retval = do_change_type(&path, flags);
2316 	else if (flags & MS_MOVE)
2317 		retval = do_move_mount(&path, dev_name);
2318 	else
2319 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2320 				      dev_name, data_page);
2321 dput_out:
2322 	path_put(&path);
2323 	return retval;
2324 }
2325 
2326 static void free_mnt_ns(struct mnt_namespace *ns)
2327 {
2328 	proc_free_inum(ns->proc_inum);
2329 	put_user_ns(ns->user_ns);
2330 	kfree(ns);
2331 }
2332 
2333 /*
2334  * Assign a sequence number so we can detect when we attempt to bind
2335  * mount a reference to an older mount namespace into the current
2336  * mount namespace, preventing reference counting loops.  A 64bit
2337  * number incrementing at 10Ghz will take 12,427 years to wrap which
2338  * is effectively never, so we can ignore the possibility.
2339  */
2340 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2341 
2342 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2343 {
2344 	struct mnt_namespace *new_ns;
2345 	int ret;
2346 
2347 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2348 	if (!new_ns)
2349 		return ERR_PTR(-ENOMEM);
2350 	ret = proc_alloc_inum(&new_ns->proc_inum);
2351 	if (ret) {
2352 		kfree(new_ns);
2353 		return ERR_PTR(ret);
2354 	}
2355 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2356 	atomic_set(&new_ns->count, 1);
2357 	new_ns->root = NULL;
2358 	INIT_LIST_HEAD(&new_ns->list);
2359 	init_waitqueue_head(&new_ns->poll);
2360 	new_ns->event = 0;
2361 	new_ns->user_ns = get_user_ns(user_ns);
2362 	return new_ns;
2363 }
2364 
2365 /*
2366  * Allocate a new namespace structure and populate it with contents
2367  * copied from the namespace of the passed in task structure.
2368  */
2369 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2370 		struct user_namespace *user_ns, struct fs_struct *fs)
2371 {
2372 	struct mnt_namespace *new_ns;
2373 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2374 	struct mount *p, *q;
2375 	struct mount *old = mnt_ns->root;
2376 	struct mount *new;
2377 	int copy_flags;
2378 
2379 	new_ns = alloc_mnt_ns(user_ns);
2380 	if (IS_ERR(new_ns))
2381 		return new_ns;
2382 
2383 	namespace_lock();
2384 	/* First pass: copy the tree topology */
2385 	copy_flags = CL_COPY_ALL | CL_EXPIRE;
2386 	if (user_ns != mnt_ns->user_ns)
2387 		copy_flags |= CL_SHARED_TO_SLAVE;
2388 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2389 	if (IS_ERR(new)) {
2390 		namespace_unlock();
2391 		free_mnt_ns(new_ns);
2392 		return ERR_CAST(new);
2393 	}
2394 	new_ns->root = new;
2395 	br_write_lock(&vfsmount_lock);
2396 	list_add_tail(&new_ns->list, &new->mnt_list);
2397 	br_write_unlock(&vfsmount_lock);
2398 
2399 	/*
2400 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2401 	 * as belonging to new namespace.  We have already acquired a private
2402 	 * fs_struct, so tsk->fs->lock is not needed.
2403 	 */
2404 	p = old;
2405 	q = new;
2406 	while (p) {
2407 		q->mnt_ns = new_ns;
2408 		if (fs) {
2409 			if (&p->mnt == fs->root.mnt) {
2410 				fs->root.mnt = mntget(&q->mnt);
2411 				rootmnt = &p->mnt;
2412 			}
2413 			if (&p->mnt == fs->pwd.mnt) {
2414 				fs->pwd.mnt = mntget(&q->mnt);
2415 				pwdmnt = &p->mnt;
2416 			}
2417 		}
2418 		p = next_mnt(p, old);
2419 		q = next_mnt(q, new);
2420 	}
2421 	namespace_unlock();
2422 
2423 	if (rootmnt)
2424 		mntput(rootmnt);
2425 	if (pwdmnt)
2426 		mntput(pwdmnt);
2427 
2428 	return new_ns;
2429 }
2430 
2431 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2432 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2433 {
2434 	struct mnt_namespace *new_ns;
2435 
2436 	BUG_ON(!ns);
2437 	get_mnt_ns(ns);
2438 
2439 	if (!(flags & CLONE_NEWNS))
2440 		return ns;
2441 
2442 	new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2443 
2444 	put_mnt_ns(ns);
2445 	return new_ns;
2446 }
2447 
2448 /**
2449  * create_mnt_ns - creates a private namespace and adds a root filesystem
2450  * @mnt: pointer to the new root filesystem mountpoint
2451  */
2452 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2453 {
2454 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2455 	if (!IS_ERR(new_ns)) {
2456 		struct mount *mnt = real_mount(m);
2457 		mnt->mnt_ns = new_ns;
2458 		new_ns->root = mnt;
2459 		list_add(&new_ns->list, &mnt->mnt_list);
2460 	} else {
2461 		mntput(m);
2462 	}
2463 	return new_ns;
2464 }
2465 
2466 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2467 {
2468 	struct mnt_namespace *ns;
2469 	struct super_block *s;
2470 	struct path path;
2471 	int err;
2472 
2473 	ns = create_mnt_ns(mnt);
2474 	if (IS_ERR(ns))
2475 		return ERR_CAST(ns);
2476 
2477 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2478 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2479 
2480 	put_mnt_ns(ns);
2481 
2482 	if (err)
2483 		return ERR_PTR(err);
2484 
2485 	/* trade a vfsmount reference for active sb one */
2486 	s = path.mnt->mnt_sb;
2487 	atomic_inc(&s->s_active);
2488 	mntput(path.mnt);
2489 	/* lock the sucker */
2490 	down_write(&s->s_umount);
2491 	/* ... and return the root of (sub)tree on it */
2492 	return path.dentry;
2493 }
2494 EXPORT_SYMBOL(mount_subtree);
2495 
2496 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2497 		char __user *, type, unsigned long, flags, void __user *, data)
2498 {
2499 	int ret;
2500 	char *kernel_type;
2501 	struct filename *kernel_dir;
2502 	char *kernel_dev;
2503 	unsigned long data_page;
2504 
2505 	ret = copy_mount_string(type, &kernel_type);
2506 	if (ret < 0)
2507 		goto out_type;
2508 
2509 	kernel_dir = getname(dir_name);
2510 	if (IS_ERR(kernel_dir)) {
2511 		ret = PTR_ERR(kernel_dir);
2512 		goto out_dir;
2513 	}
2514 
2515 	ret = copy_mount_string(dev_name, &kernel_dev);
2516 	if (ret < 0)
2517 		goto out_dev;
2518 
2519 	ret = copy_mount_options(data, &data_page);
2520 	if (ret < 0)
2521 		goto out_data;
2522 
2523 	ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2524 		(void *) data_page);
2525 
2526 	free_page(data_page);
2527 out_data:
2528 	kfree(kernel_dev);
2529 out_dev:
2530 	putname(kernel_dir);
2531 out_dir:
2532 	kfree(kernel_type);
2533 out_type:
2534 	return ret;
2535 }
2536 
2537 /*
2538  * Return true if path is reachable from root
2539  *
2540  * namespace_sem or vfsmount_lock is held
2541  */
2542 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2543 			 const struct path *root)
2544 {
2545 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2546 		dentry = mnt->mnt_mountpoint;
2547 		mnt = mnt->mnt_parent;
2548 	}
2549 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2550 }
2551 
2552 int path_is_under(struct path *path1, struct path *path2)
2553 {
2554 	int res;
2555 	br_read_lock(&vfsmount_lock);
2556 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2557 	br_read_unlock(&vfsmount_lock);
2558 	return res;
2559 }
2560 EXPORT_SYMBOL(path_is_under);
2561 
2562 /*
2563  * pivot_root Semantics:
2564  * Moves the root file system of the current process to the directory put_old,
2565  * makes new_root as the new root file system of the current process, and sets
2566  * root/cwd of all processes which had them on the current root to new_root.
2567  *
2568  * Restrictions:
2569  * The new_root and put_old must be directories, and  must not be on the
2570  * same file  system as the current process root. The put_old  must  be
2571  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2572  * pointed to by put_old must yield the same directory as new_root. No other
2573  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2574  *
2575  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2576  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2577  * in this situation.
2578  *
2579  * Notes:
2580  *  - we don't move root/cwd if they are not at the root (reason: if something
2581  *    cared enough to change them, it's probably wrong to force them elsewhere)
2582  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2583  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2584  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2585  *    first.
2586  */
2587 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2588 		const char __user *, put_old)
2589 {
2590 	struct path new, old, parent_path, root_parent, root;
2591 	struct mount *new_mnt, *root_mnt, *old_mnt;
2592 	struct mountpoint *old_mp, *root_mp;
2593 	int error;
2594 
2595 	if (!may_mount())
2596 		return -EPERM;
2597 
2598 	error = user_path_dir(new_root, &new);
2599 	if (error)
2600 		goto out0;
2601 
2602 	error = user_path_dir(put_old, &old);
2603 	if (error)
2604 		goto out1;
2605 
2606 	error = security_sb_pivotroot(&old, &new);
2607 	if (error)
2608 		goto out2;
2609 
2610 	get_fs_root(current->fs, &root);
2611 	old_mp = lock_mount(&old);
2612 	error = PTR_ERR(old_mp);
2613 	if (IS_ERR(old_mp))
2614 		goto out3;
2615 
2616 	error = -EINVAL;
2617 	new_mnt = real_mount(new.mnt);
2618 	root_mnt = real_mount(root.mnt);
2619 	old_mnt = real_mount(old.mnt);
2620 	if (IS_MNT_SHARED(old_mnt) ||
2621 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2622 		IS_MNT_SHARED(root_mnt->mnt_parent))
2623 		goto out4;
2624 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2625 		goto out4;
2626 	error = -ENOENT;
2627 	if (d_unlinked(new.dentry))
2628 		goto out4;
2629 	error = -EBUSY;
2630 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2631 		goto out4; /* loop, on the same file system  */
2632 	error = -EINVAL;
2633 	if (root.mnt->mnt_root != root.dentry)
2634 		goto out4; /* not a mountpoint */
2635 	if (!mnt_has_parent(root_mnt))
2636 		goto out4; /* not attached */
2637 	root_mp = root_mnt->mnt_mp;
2638 	if (new.mnt->mnt_root != new.dentry)
2639 		goto out4; /* not a mountpoint */
2640 	if (!mnt_has_parent(new_mnt))
2641 		goto out4; /* not attached */
2642 	/* make sure we can reach put_old from new_root */
2643 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2644 		goto out4;
2645 	root_mp->m_count++; /* pin it so it won't go away */
2646 	br_write_lock(&vfsmount_lock);
2647 	detach_mnt(new_mnt, &parent_path);
2648 	detach_mnt(root_mnt, &root_parent);
2649 	/* mount old root on put_old */
2650 	attach_mnt(root_mnt, old_mnt, old_mp);
2651 	/* mount new_root on / */
2652 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2653 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2654 	br_write_unlock(&vfsmount_lock);
2655 	chroot_fs_refs(&root, &new);
2656 	put_mountpoint(root_mp);
2657 	error = 0;
2658 out4:
2659 	unlock_mount(old_mp);
2660 	if (!error) {
2661 		path_put(&root_parent);
2662 		path_put(&parent_path);
2663 	}
2664 out3:
2665 	path_put(&root);
2666 out2:
2667 	path_put(&old);
2668 out1:
2669 	path_put(&new);
2670 out0:
2671 	return error;
2672 }
2673 
2674 static void __init init_mount_tree(void)
2675 {
2676 	struct vfsmount *mnt;
2677 	struct mnt_namespace *ns;
2678 	struct path root;
2679 	struct file_system_type *type;
2680 
2681 	type = get_fs_type("rootfs");
2682 	if (!type)
2683 		panic("Can't find rootfs type");
2684 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2685 	put_filesystem(type);
2686 	if (IS_ERR(mnt))
2687 		panic("Can't create rootfs");
2688 
2689 	ns = create_mnt_ns(mnt);
2690 	if (IS_ERR(ns))
2691 		panic("Can't allocate initial namespace");
2692 
2693 	init_task.nsproxy->mnt_ns = ns;
2694 	get_mnt_ns(ns);
2695 
2696 	root.mnt = mnt;
2697 	root.dentry = mnt->mnt_root;
2698 
2699 	set_fs_pwd(current->fs, &root);
2700 	set_fs_root(current->fs, &root);
2701 }
2702 
2703 void __init mnt_init(void)
2704 {
2705 	unsigned u;
2706 	int err;
2707 
2708 	init_rwsem(&namespace_sem);
2709 
2710 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2711 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2712 
2713 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2714 	mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2715 
2716 	if (!mount_hashtable || !mountpoint_hashtable)
2717 		panic("Failed to allocate mount hash table\n");
2718 
2719 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2720 
2721 	for (u = 0; u < HASH_SIZE; u++)
2722 		INIT_LIST_HEAD(&mount_hashtable[u]);
2723 	for (u = 0; u < HASH_SIZE; u++)
2724 		INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2725 
2726 	br_lock_init(&vfsmount_lock);
2727 
2728 	err = sysfs_init();
2729 	if (err)
2730 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2731 			__func__, err);
2732 	fs_kobj = kobject_create_and_add("fs", NULL);
2733 	if (!fs_kobj)
2734 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2735 	init_rootfs();
2736 	init_mount_tree();
2737 }
2738 
2739 void put_mnt_ns(struct mnt_namespace *ns)
2740 {
2741 	if (!atomic_dec_and_test(&ns->count))
2742 		return;
2743 	namespace_lock();
2744 	br_write_lock(&vfsmount_lock);
2745 	umount_tree(ns->root, 0);
2746 	br_write_unlock(&vfsmount_lock);
2747 	namespace_unlock();
2748 	free_mnt_ns(ns);
2749 }
2750 
2751 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2752 {
2753 	struct vfsmount *mnt;
2754 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2755 	if (!IS_ERR(mnt)) {
2756 		/*
2757 		 * it is a longterm mount, don't release mnt until
2758 		 * we unmount before file sys is unregistered
2759 		*/
2760 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2761 	}
2762 	return mnt;
2763 }
2764 EXPORT_SYMBOL_GPL(kern_mount_data);
2765 
2766 void kern_unmount(struct vfsmount *mnt)
2767 {
2768 	/* release long term mount so mount point can be released */
2769 	if (!IS_ERR_OR_NULL(mnt)) {
2770 		br_write_lock(&vfsmount_lock);
2771 		real_mount(mnt)->mnt_ns = NULL;
2772 		br_write_unlock(&vfsmount_lock);
2773 		mntput(mnt);
2774 	}
2775 }
2776 EXPORT_SYMBOL(kern_unmount);
2777 
2778 bool our_mnt(struct vfsmount *mnt)
2779 {
2780 	return check_mnt(real_mount(mnt));
2781 }
2782 
2783 static void *mntns_get(struct task_struct *task)
2784 {
2785 	struct mnt_namespace *ns = NULL;
2786 	struct nsproxy *nsproxy;
2787 
2788 	rcu_read_lock();
2789 	nsproxy = task_nsproxy(task);
2790 	if (nsproxy) {
2791 		ns = nsproxy->mnt_ns;
2792 		get_mnt_ns(ns);
2793 	}
2794 	rcu_read_unlock();
2795 
2796 	return ns;
2797 }
2798 
2799 static void mntns_put(void *ns)
2800 {
2801 	put_mnt_ns(ns);
2802 }
2803 
2804 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2805 {
2806 	struct fs_struct *fs = current->fs;
2807 	struct mnt_namespace *mnt_ns = ns;
2808 	struct path root;
2809 
2810 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2811 	    !nsown_capable(CAP_SYS_CHROOT) ||
2812 	    !nsown_capable(CAP_SYS_ADMIN))
2813 		return -EPERM;
2814 
2815 	if (fs->users != 1)
2816 		return -EINVAL;
2817 
2818 	get_mnt_ns(mnt_ns);
2819 	put_mnt_ns(nsproxy->mnt_ns);
2820 	nsproxy->mnt_ns = mnt_ns;
2821 
2822 	/* Find the root */
2823 	root.mnt    = &mnt_ns->root->mnt;
2824 	root.dentry = mnt_ns->root->mnt.mnt_root;
2825 	path_get(&root);
2826 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
2827 		;
2828 
2829 	/* Update the pwd and root */
2830 	set_fs_pwd(fs, &root);
2831 	set_fs_root(fs, &root);
2832 
2833 	path_put(&root);
2834 	return 0;
2835 }
2836 
2837 static unsigned int mntns_inum(void *ns)
2838 {
2839 	struct mnt_namespace *mnt_ns = ns;
2840 	return mnt_ns->proc_inum;
2841 }
2842 
2843 const struct proc_ns_operations mntns_operations = {
2844 	.name		= "mnt",
2845 	.type		= CLONE_NEWNS,
2846 	.get		= mntns_get,
2847 	.put		= mntns_put,
2848 	.install	= mntns_install,
2849 	.inum		= mntns_inum,
2850 };
2851