1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/acct.h> /* acct_auto_close_mnt */ 20 #include <linux/ramfs.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_fs.h> 25 #include "pnode.h" 26 #include "internal.h" 27 28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 29 #define HASH_SIZE (1UL << HASH_SHIFT) 30 31 static int event; 32 static DEFINE_IDA(mnt_id_ida); 33 static DEFINE_IDA(mnt_group_ida); 34 static DEFINE_SPINLOCK(mnt_id_lock); 35 static int mnt_id_start = 0; 36 static int mnt_group_start = 1; 37 38 static struct list_head *mount_hashtable __read_mostly; 39 static struct list_head *mountpoint_hashtable __read_mostly; 40 static struct kmem_cache *mnt_cache __read_mostly; 41 static struct rw_semaphore namespace_sem; 42 43 /* /sys/fs */ 44 struct kobject *fs_kobj; 45 EXPORT_SYMBOL_GPL(fs_kobj); 46 47 /* 48 * vfsmount lock may be taken for read to prevent changes to the 49 * vfsmount hash, ie. during mountpoint lookups or walking back 50 * up the tree. 51 * 52 * It should be taken for write in all cases where the vfsmount 53 * tree or hash is modified or when a vfsmount structure is modified. 54 */ 55 DEFINE_BRLOCK(vfsmount_lock); 56 57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 58 { 59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 61 tmp = tmp + (tmp >> HASH_SHIFT); 62 return tmp & (HASH_SIZE - 1); 63 } 64 65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 66 67 /* 68 * allocation is serialized by namespace_sem, but we need the spinlock to 69 * serialize with freeing. 70 */ 71 static int mnt_alloc_id(struct mount *mnt) 72 { 73 int res; 74 75 retry: 76 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 77 spin_lock(&mnt_id_lock); 78 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 79 if (!res) 80 mnt_id_start = mnt->mnt_id + 1; 81 spin_unlock(&mnt_id_lock); 82 if (res == -EAGAIN) 83 goto retry; 84 85 return res; 86 } 87 88 static void mnt_free_id(struct mount *mnt) 89 { 90 int id = mnt->mnt_id; 91 spin_lock(&mnt_id_lock); 92 ida_remove(&mnt_id_ida, id); 93 if (mnt_id_start > id) 94 mnt_id_start = id; 95 spin_unlock(&mnt_id_lock); 96 } 97 98 /* 99 * Allocate a new peer group ID 100 * 101 * mnt_group_ida is protected by namespace_sem 102 */ 103 static int mnt_alloc_group_id(struct mount *mnt) 104 { 105 int res; 106 107 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 108 return -ENOMEM; 109 110 res = ida_get_new_above(&mnt_group_ida, 111 mnt_group_start, 112 &mnt->mnt_group_id); 113 if (!res) 114 mnt_group_start = mnt->mnt_group_id + 1; 115 116 return res; 117 } 118 119 /* 120 * Release a peer group ID 121 */ 122 void mnt_release_group_id(struct mount *mnt) 123 { 124 int id = mnt->mnt_group_id; 125 ida_remove(&mnt_group_ida, id); 126 if (mnt_group_start > id) 127 mnt_group_start = id; 128 mnt->mnt_group_id = 0; 129 } 130 131 /* 132 * vfsmount lock must be held for read 133 */ 134 static inline void mnt_add_count(struct mount *mnt, int n) 135 { 136 #ifdef CONFIG_SMP 137 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 138 #else 139 preempt_disable(); 140 mnt->mnt_count += n; 141 preempt_enable(); 142 #endif 143 } 144 145 /* 146 * vfsmount lock must be held for write 147 */ 148 unsigned int mnt_get_count(struct mount *mnt) 149 { 150 #ifdef CONFIG_SMP 151 unsigned int count = 0; 152 int cpu; 153 154 for_each_possible_cpu(cpu) { 155 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 156 } 157 158 return count; 159 #else 160 return mnt->mnt_count; 161 #endif 162 } 163 164 static struct mount *alloc_vfsmnt(const char *name) 165 { 166 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 167 if (mnt) { 168 int err; 169 170 err = mnt_alloc_id(mnt); 171 if (err) 172 goto out_free_cache; 173 174 if (name) { 175 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 176 if (!mnt->mnt_devname) 177 goto out_free_id; 178 } 179 180 #ifdef CONFIG_SMP 181 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 182 if (!mnt->mnt_pcp) 183 goto out_free_devname; 184 185 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 186 #else 187 mnt->mnt_count = 1; 188 mnt->mnt_writers = 0; 189 #endif 190 191 INIT_LIST_HEAD(&mnt->mnt_hash); 192 INIT_LIST_HEAD(&mnt->mnt_child); 193 INIT_LIST_HEAD(&mnt->mnt_mounts); 194 INIT_LIST_HEAD(&mnt->mnt_list); 195 INIT_LIST_HEAD(&mnt->mnt_expire); 196 INIT_LIST_HEAD(&mnt->mnt_share); 197 INIT_LIST_HEAD(&mnt->mnt_slave_list); 198 INIT_LIST_HEAD(&mnt->mnt_slave); 199 #ifdef CONFIG_FSNOTIFY 200 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 201 #endif 202 } 203 return mnt; 204 205 #ifdef CONFIG_SMP 206 out_free_devname: 207 kfree(mnt->mnt_devname); 208 #endif 209 out_free_id: 210 mnt_free_id(mnt); 211 out_free_cache: 212 kmem_cache_free(mnt_cache, mnt); 213 return NULL; 214 } 215 216 /* 217 * Most r/o checks on a fs are for operations that take 218 * discrete amounts of time, like a write() or unlink(). 219 * We must keep track of when those operations start 220 * (for permission checks) and when they end, so that 221 * we can determine when writes are able to occur to 222 * a filesystem. 223 */ 224 /* 225 * __mnt_is_readonly: check whether a mount is read-only 226 * @mnt: the mount to check for its write status 227 * 228 * This shouldn't be used directly ouside of the VFS. 229 * It does not guarantee that the filesystem will stay 230 * r/w, just that it is right *now*. This can not and 231 * should not be used in place of IS_RDONLY(inode). 232 * mnt_want/drop_write() will _keep_ the filesystem 233 * r/w. 234 */ 235 int __mnt_is_readonly(struct vfsmount *mnt) 236 { 237 if (mnt->mnt_flags & MNT_READONLY) 238 return 1; 239 if (mnt->mnt_sb->s_flags & MS_RDONLY) 240 return 1; 241 return 0; 242 } 243 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 244 245 static inline void mnt_inc_writers(struct mount *mnt) 246 { 247 #ifdef CONFIG_SMP 248 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 249 #else 250 mnt->mnt_writers++; 251 #endif 252 } 253 254 static inline void mnt_dec_writers(struct mount *mnt) 255 { 256 #ifdef CONFIG_SMP 257 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 258 #else 259 mnt->mnt_writers--; 260 #endif 261 } 262 263 static unsigned int mnt_get_writers(struct mount *mnt) 264 { 265 #ifdef CONFIG_SMP 266 unsigned int count = 0; 267 int cpu; 268 269 for_each_possible_cpu(cpu) { 270 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 271 } 272 273 return count; 274 #else 275 return mnt->mnt_writers; 276 #endif 277 } 278 279 static int mnt_is_readonly(struct vfsmount *mnt) 280 { 281 if (mnt->mnt_sb->s_readonly_remount) 282 return 1; 283 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 284 smp_rmb(); 285 return __mnt_is_readonly(mnt); 286 } 287 288 /* 289 * Most r/o & frozen checks on a fs are for operations that take discrete 290 * amounts of time, like a write() or unlink(). We must keep track of when 291 * those operations start (for permission checks) and when they end, so that we 292 * can determine when writes are able to occur to a filesystem. 293 */ 294 /** 295 * __mnt_want_write - get write access to a mount without freeze protection 296 * @m: the mount on which to take a write 297 * 298 * This tells the low-level filesystem that a write is about to be performed to 299 * it, and makes sure that writes are allowed (mnt it read-write) before 300 * returning success. This operation does not protect against filesystem being 301 * frozen. When the write operation is finished, __mnt_drop_write() must be 302 * called. This is effectively a refcount. 303 */ 304 int __mnt_want_write(struct vfsmount *m) 305 { 306 struct mount *mnt = real_mount(m); 307 int ret = 0; 308 309 preempt_disable(); 310 mnt_inc_writers(mnt); 311 /* 312 * The store to mnt_inc_writers must be visible before we pass 313 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 314 * incremented count after it has set MNT_WRITE_HOLD. 315 */ 316 smp_mb(); 317 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 318 cpu_relax(); 319 /* 320 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 321 * be set to match its requirements. So we must not load that until 322 * MNT_WRITE_HOLD is cleared. 323 */ 324 smp_rmb(); 325 if (mnt_is_readonly(m)) { 326 mnt_dec_writers(mnt); 327 ret = -EROFS; 328 } 329 preempt_enable(); 330 331 return ret; 332 } 333 334 /** 335 * mnt_want_write - get write access to a mount 336 * @m: the mount on which to take a write 337 * 338 * This tells the low-level filesystem that a write is about to be performed to 339 * it, and makes sure that writes are allowed (mount is read-write, filesystem 340 * is not frozen) before returning success. When the write operation is 341 * finished, mnt_drop_write() must be called. This is effectively a refcount. 342 */ 343 int mnt_want_write(struct vfsmount *m) 344 { 345 int ret; 346 347 sb_start_write(m->mnt_sb); 348 ret = __mnt_want_write(m); 349 if (ret) 350 sb_end_write(m->mnt_sb); 351 return ret; 352 } 353 EXPORT_SYMBOL_GPL(mnt_want_write); 354 355 /** 356 * mnt_clone_write - get write access to a mount 357 * @mnt: the mount on which to take a write 358 * 359 * This is effectively like mnt_want_write, except 360 * it must only be used to take an extra write reference 361 * on a mountpoint that we already know has a write reference 362 * on it. This allows some optimisation. 363 * 364 * After finished, mnt_drop_write must be called as usual to 365 * drop the reference. 366 */ 367 int mnt_clone_write(struct vfsmount *mnt) 368 { 369 /* superblock may be r/o */ 370 if (__mnt_is_readonly(mnt)) 371 return -EROFS; 372 preempt_disable(); 373 mnt_inc_writers(real_mount(mnt)); 374 preempt_enable(); 375 return 0; 376 } 377 EXPORT_SYMBOL_GPL(mnt_clone_write); 378 379 /** 380 * __mnt_want_write_file - get write access to a file's mount 381 * @file: the file who's mount on which to take a write 382 * 383 * This is like __mnt_want_write, but it takes a file and can 384 * do some optimisations if the file is open for write already 385 */ 386 int __mnt_want_write_file(struct file *file) 387 { 388 struct inode *inode = file_inode(file); 389 390 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 391 return __mnt_want_write(file->f_path.mnt); 392 else 393 return mnt_clone_write(file->f_path.mnt); 394 } 395 396 /** 397 * mnt_want_write_file - get write access to a file's mount 398 * @file: the file who's mount on which to take a write 399 * 400 * This is like mnt_want_write, but it takes a file and can 401 * do some optimisations if the file is open for write already 402 */ 403 int mnt_want_write_file(struct file *file) 404 { 405 int ret; 406 407 sb_start_write(file->f_path.mnt->mnt_sb); 408 ret = __mnt_want_write_file(file); 409 if (ret) 410 sb_end_write(file->f_path.mnt->mnt_sb); 411 return ret; 412 } 413 EXPORT_SYMBOL_GPL(mnt_want_write_file); 414 415 /** 416 * __mnt_drop_write - give up write access to a mount 417 * @mnt: the mount on which to give up write access 418 * 419 * Tells the low-level filesystem that we are done 420 * performing writes to it. Must be matched with 421 * __mnt_want_write() call above. 422 */ 423 void __mnt_drop_write(struct vfsmount *mnt) 424 { 425 preempt_disable(); 426 mnt_dec_writers(real_mount(mnt)); 427 preempt_enable(); 428 } 429 430 /** 431 * mnt_drop_write - give up write access to a mount 432 * @mnt: the mount on which to give up write access 433 * 434 * Tells the low-level filesystem that we are done performing writes to it and 435 * also allows filesystem to be frozen again. Must be matched with 436 * mnt_want_write() call above. 437 */ 438 void mnt_drop_write(struct vfsmount *mnt) 439 { 440 __mnt_drop_write(mnt); 441 sb_end_write(mnt->mnt_sb); 442 } 443 EXPORT_SYMBOL_GPL(mnt_drop_write); 444 445 void __mnt_drop_write_file(struct file *file) 446 { 447 __mnt_drop_write(file->f_path.mnt); 448 } 449 450 void mnt_drop_write_file(struct file *file) 451 { 452 mnt_drop_write(file->f_path.mnt); 453 } 454 EXPORT_SYMBOL(mnt_drop_write_file); 455 456 static int mnt_make_readonly(struct mount *mnt) 457 { 458 int ret = 0; 459 460 br_write_lock(&vfsmount_lock); 461 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 462 /* 463 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 464 * should be visible before we do. 465 */ 466 smp_mb(); 467 468 /* 469 * With writers on hold, if this value is zero, then there are 470 * definitely no active writers (although held writers may subsequently 471 * increment the count, they'll have to wait, and decrement it after 472 * seeing MNT_READONLY). 473 * 474 * It is OK to have counter incremented on one CPU and decremented on 475 * another: the sum will add up correctly. The danger would be when we 476 * sum up each counter, if we read a counter before it is incremented, 477 * but then read another CPU's count which it has been subsequently 478 * decremented from -- we would see more decrements than we should. 479 * MNT_WRITE_HOLD protects against this scenario, because 480 * mnt_want_write first increments count, then smp_mb, then spins on 481 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 482 * we're counting up here. 483 */ 484 if (mnt_get_writers(mnt) > 0) 485 ret = -EBUSY; 486 else 487 mnt->mnt.mnt_flags |= MNT_READONLY; 488 /* 489 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 490 * that become unheld will see MNT_READONLY. 491 */ 492 smp_wmb(); 493 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 494 br_write_unlock(&vfsmount_lock); 495 return ret; 496 } 497 498 static void __mnt_unmake_readonly(struct mount *mnt) 499 { 500 br_write_lock(&vfsmount_lock); 501 mnt->mnt.mnt_flags &= ~MNT_READONLY; 502 br_write_unlock(&vfsmount_lock); 503 } 504 505 int sb_prepare_remount_readonly(struct super_block *sb) 506 { 507 struct mount *mnt; 508 int err = 0; 509 510 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 511 if (atomic_long_read(&sb->s_remove_count)) 512 return -EBUSY; 513 514 br_write_lock(&vfsmount_lock); 515 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 516 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 517 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 518 smp_mb(); 519 if (mnt_get_writers(mnt) > 0) { 520 err = -EBUSY; 521 break; 522 } 523 } 524 } 525 if (!err && atomic_long_read(&sb->s_remove_count)) 526 err = -EBUSY; 527 528 if (!err) { 529 sb->s_readonly_remount = 1; 530 smp_wmb(); 531 } 532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 533 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 535 } 536 br_write_unlock(&vfsmount_lock); 537 538 return err; 539 } 540 541 static void free_vfsmnt(struct mount *mnt) 542 { 543 kfree(mnt->mnt_devname); 544 mnt_free_id(mnt); 545 #ifdef CONFIG_SMP 546 free_percpu(mnt->mnt_pcp); 547 #endif 548 kmem_cache_free(mnt_cache, mnt); 549 } 550 551 /* 552 * find the first or last mount at @dentry on vfsmount @mnt depending on 553 * @dir. If @dir is set return the first mount else return the last mount. 554 * vfsmount_lock must be held for read or write. 555 */ 556 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 557 int dir) 558 { 559 struct list_head *head = mount_hashtable + hash(mnt, dentry); 560 struct list_head *tmp = head; 561 struct mount *p, *found = NULL; 562 563 for (;;) { 564 tmp = dir ? tmp->next : tmp->prev; 565 p = NULL; 566 if (tmp == head) 567 break; 568 p = list_entry(tmp, struct mount, mnt_hash); 569 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 570 found = p; 571 break; 572 } 573 } 574 return found; 575 } 576 577 /* 578 * lookup_mnt - Return the first child mount mounted at path 579 * 580 * "First" means first mounted chronologically. If you create the 581 * following mounts: 582 * 583 * mount /dev/sda1 /mnt 584 * mount /dev/sda2 /mnt 585 * mount /dev/sda3 /mnt 586 * 587 * Then lookup_mnt() on the base /mnt dentry in the root mount will 588 * return successively the root dentry and vfsmount of /dev/sda1, then 589 * /dev/sda2, then /dev/sda3, then NULL. 590 * 591 * lookup_mnt takes a reference to the found vfsmount. 592 */ 593 struct vfsmount *lookup_mnt(struct path *path) 594 { 595 struct mount *child_mnt; 596 597 br_read_lock(&vfsmount_lock); 598 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 599 if (child_mnt) { 600 mnt_add_count(child_mnt, 1); 601 br_read_unlock(&vfsmount_lock); 602 return &child_mnt->mnt; 603 } else { 604 br_read_unlock(&vfsmount_lock); 605 return NULL; 606 } 607 } 608 609 static struct mountpoint *new_mountpoint(struct dentry *dentry) 610 { 611 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry); 612 struct mountpoint *mp; 613 614 list_for_each_entry(mp, chain, m_hash) { 615 if (mp->m_dentry == dentry) { 616 /* might be worth a WARN_ON() */ 617 if (d_unlinked(dentry)) 618 return ERR_PTR(-ENOENT); 619 mp->m_count++; 620 return mp; 621 } 622 } 623 624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 625 if (!mp) 626 return ERR_PTR(-ENOMEM); 627 628 spin_lock(&dentry->d_lock); 629 if (d_unlinked(dentry)) { 630 spin_unlock(&dentry->d_lock); 631 kfree(mp); 632 return ERR_PTR(-ENOENT); 633 } 634 dentry->d_flags |= DCACHE_MOUNTED; 635 spin_unlock(&dentry->d_lock); 636 mp->m_dentry = dentry; 637 mp->m_count = 1; 638 list_add(&mp->m_hash, chain); 639 return mp; 640 } 641 642 static void put_mountpoint(struct mountpoint *mp) 643 { 644 if (!--mp->m_count) { 645 struct dentry *dentry = mp->m_dentry; 646 spin_lock(&dentry->d_lock); 647 dentry->d_flags &= ~DCACHE_MOUNTED; 648 spin_unlock(&dentry->d_lock); 649 list_del(&mp->m_hash); 650 kfree(mp); 651 } 652 } 653 654 static inline int check_mnt(struct mount *mnt) 655 { 656 return mnt->mnt_ns == current->nsproxy->mnt_ns; 657 } 658 659 /* 660 * vfsmount lock must be held for write 661 */ 662 static void touch_mnt_namespace(struct mnt_namespace *ns) 663 { 664 if (ns) { 665 ns->event = ++event; 666 wake_up_interruptible(&ns->poll); 667 } 668 } 669 670 /* 671 * vfsmount lock must be held for write 672 */ 673 static void __touch_mnt_namespace(struct mnt_namespace *ns) 674 { 675 if (ns && ns->event != event) { 676 ns->event = event; 677 wake_up_interruptible(&ns->poll); 678 } 679 } 680 681 /* 682 * vfsmount lock must be held for write 683 */ 684 static void detach_mnt(struct mount *mnt, struct path *old_path) 685 { 686 old_path->dentry = mnt->mnt_mountpoint; 687 old_path->mnt = &mnt->mnt_parent->mnt; 688 mnt->mnt_parent = mnt; 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 690 list_del_init(&mnt->mnt_child); 691 list_del_init(&mnt->mnt_hash); 692 put_mountpoint(mnt->mnt_mp); 693 mnt->mnt_mp = NULL; 694 } 695 696 /* 697 * vfsmount lock must be held for write 698 */ 699 void mnt_set_mountpoint(struct mount *mnt, 700 struct mountpoint *mp, 701 struct mount *child_mnt) 702 { 703 mp->m_count++; 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 706 child_mnt->mnt_parent = mnt; 707 child_mnt->mnt_mp = mp; 708 } 709 710 /* 711 * vfsmount lock must be held for write 712 */ 713 static void attach_mnt(struct mount *mnt, 714 struct mount *parent, 715 struct mountpoint *mp) 716 { 717 mnt_set_mountpoint(parent, mp, mnt); 718 list_add_tail(&mnt->mnt_hash, mount_hashtable + 719 hash(&parent->mnt, mp->m_dentry)); 720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 721 } 722 723 /* 724 * vfsmount lock must be held for write 725 */ 726 static void commit_tree(struct mount *mnt) 727 { 728 struct mount *parent = mnt->mnt_parent; 729 struct mount *m; 730 LIST_HEAD(head); 731 struct mnt_namespace *n = parent->mnt_ns; 732 733 BUG_ON(parent == mnt); 734 735 list_add_tail(&head, &mnt->mnt_list); 736 list_for_each_entry(m, &head, mnt_list) 737 m->mnt_ns = n; 738 739 list_splice(&head, n->list.prev); 740 741 list_add_tail(&mnt->mnt_hash, mount_hashtable + 742 hash(&parent->mnt, mnt->mnt_mountpoint)); 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 744 touch_mnt_namespace(n); 745 } 746 747 static struct mount *next_mnt(struct mount *p, struct mount *root) 748 { 749 struct list_head *next = p->mnt_mounts.next; 750 if (next == &p->mnt_mounts) { 751 while (1) { 752 if (p == root) 753 return NULL; 754 next = p->mnt_child.next; 755 if (next != &p->mnt_parent->mnt_mounts) 756 break; 757 p = p->mnt_parent; 758 } 759 } 760 return list_entry(next, struct mount, mnt_child); 761 } 762 763 static struct mount *skip_mnt_tree(struct mount *p) 764 { 765 struct list_head *prev = p->mnt_mounts.prev; 766 while (prev != &p->mnt_mounts) { 767 p = list_entry(prev, struct mount, mnt_child); 768 prev = p->mnt_mounts.prev; 769 } 770 return p; 771 } 772 773 struct vfsmount * 774 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 775 { 776 struct mount *mnt; 777 struct dentry *root; 778 779 if (!type) 780 return ERR_PTR(-ENODEV); 781 782 mnt = alloc_vfsmnt(name); 783 if (!mnt) 784 return ERR_PTR(-ENOMEM); 785 786 if (flags & MS_KERNMOUNT) 787 mnt->mnt.mnt_flags = MNT_INTERNAL; 788 789 root = mount_fs(type, flags, name, data); 790 if (IS_ERR(root)) { 791 free_vfsmnt(mnt); 792 return ERR_CAST(root); 793 } 794 795 mnt->mnt.mnt_root = root; 796 mnt->mnt.mnt_sb = root->d_sb; 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 798 mnt->mnt_parent = mnt; 799 br_write_lock(&vfsmount_lock); 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 801 br_write_unlock(&vfsmount_lock); 802 return &mnt->mnt; 803 } 804 EXPORT_SYMBOL_GPL(vfs_kern_mount); 805 806 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 807 int flag) 808 { 809 struct super_block *sb = old->mnt.mnt_sb; 810 struct mount *mnt; 811 int err; 812 813 mnt = alloc_vfsmnt(old->mnt_devname); 814 if (!mnt) 815 return ERR_PTR(-ENOMEM); 816 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 818 mnt->mnt_group_id = 0; /* not a peer of original */ 819 else 820 mnt->mnt_group_id = old->mnt_group_id; 821 822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 823 err = mnt_alloc_group_id(mnt); 824 if (err) 825 goto out_free; 826 } 827 828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 829 atomic_inc(&sb->s_active); 830 mnt->mnt.mnt_sb = sb; 831 mnt->mnt.mnt_root = dget(root); 832 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 833 mnt->mnt_parent = mnt; 834 br_write_lock(&vfsmount_lock); 835 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 836 br_write_unlock(&vfsmount_lock); 837 838 if ((flag & CL_SLAVE) || 839 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 840 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 841 mnt->mnt_master = old; 842 CLEAR_MNT_SHARED(mnt); 843 } else if (!(flag & CL_PRIVATE)) { 844 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 845 list_add(&mnt->mnt_share, &old->mnt_share); 846 if (IS_MNT_SLAVE(old)) 847 list_add(&mnt->mnt_slave, &old->mnt_slave); 848 mnt->mnt_master = old->mnt_master; 849 } 850 if (flag & CL_MAKE_SHARED) 851 set_mnt_shared(mnt); 852 853 /* stick the duplicate mount on the same expiry list 854 * as the original if that was on one */ 855 if (flag & CL_EXPIRE) { 856 if (!list_empty(&old->mnt_expire)) 857 list_add(&mnt->mnt_expire, &old->mnt_expire); 858 } 859 860 return mnt; 861 862 out_free: 863 free_vfsmnt(mnt); 864 return ERR_PTR(err); 865 } 866 867 static inline void mntfree(struct mount *mnt) 868 { 869 struct vfsmount *m = &mnt->mnt; 870 struct super_block *sb = m->mnt_sb; 871 872 /* 873 * This probably indicates that somebody messed 874 * up a mnt_want/drop_write() pair. If this 875 * happens, the filesystem was probably unable 876 * to make r/w->r/o transitions. 877 */ 878 /* 879 * The locking used to deal with mnt_count decrement provides barriers, 880 * so mnt_get_writers() below is safe. 881 */ 882 WARN_ON(mnt_get_writers(mnt)); 883 fsnotify_vfsmount_delete(m); 884 dput(m->mnt_root); 885 free_vfsmnt(mnt); 886 deactivate_super(sb); 887 } 888 889 static void mntput_no_expire(struct mount *mnt) 890 { 891 put_again: 892 #ifdef CONFIG_SMP 893 br_read_lock(&vfsmount_lock); 894 if (likely(mnt->mnt_ns)) { 895 /* shouldn't be the last one */ 896 mnt_add_count(mnt, -1); 897 br_read_unlock(&vfsmount_lock); 898 return; 899 } 900 br_read_unlock(&vfsmount_lock); 901 902 br_write_lock(&vfsmount_lock); 903 mnt_add_count(mnt, -1); 904 if (mnt_get_count(mnt)) { 905 br_write_unlock(&vfsmount_lock); 906 return; 907 } 908 #else 909 mnt_add_count(mnt, -1); 910 if (likely(mnt_get_count(mnt))) 911 return; 912 br_write_lock(&vfsmount_lock); 913 #endif 914 if (unlikely(mnt->mnt_pinned)) { 915 mnt_add_count(mnt, mnt->mnt_pinned + 1); 916 mnt->mnt_pinned = 0; 917 br_write_unlock(&vfsmount_lock); 918 acct_auto_close_mnt(&mnt->mnt); 919 goto put_again; 920 } 921 922 list_del(&mnt->mnt_instance); 923 br_write_unlock(&vfsmount_lock); 924 mntfree(mnt); 925 } 926 927 void mntput(struct vfsmount *mnt) 928 { 929 if (mnt) { 930 struct mount *m = real_mount(mnt); 931 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 932 if (unlikely(m->mnt_expiry_mark)) 933 m->mnt_expiry_mark = 0; 934 mntput_no_expire(m); 935 } 936 } 937 EXPORT_SYMBOL(mntput); 938 939 struct vfsmount *mntget(struct vfsmount *mnt) 940 { 941 if (mnt) 942 mnt_add_count(real_mount(mnt), 1); 943 return mnt; 944 } 945 EXPORT_SYMBOL(mntget); 946 947 void mnt_pin(struct vfsmount *mnt) 948 { 949 br_write_lock(&vfsmount_lock); 950 real_mount(mnt)->mnt_pinned++; 951 br_write_unlock(&vfsmount_lock); 952 } 953 EXPORT_SYMBOL(mnt_pin); 954 955 void mnt_unpin(struct vfsmount *m) 956 { 957 struct mount *mnt = real_mount(m); 958 br_write_lock(&vfsmount_lock); 959 if (mnt->mnt_pinned) { 960 mnt_add_count(mnt, 1); 961 mnt->mnt_pinned--; 962 } 963 br_write_unlock(&vfsmount_lock); 964 } 965 EXPORT_SYMBOL(mnt_unpin); 966 967 static inline void mangle(struct seq_file *m, const char *s) 968 { 969 seq_escape(m, s, " \t\n\\"); 970 } 971 972 /* 973 * Simple .show_options callback for filesystems which don't want to 974 * implement more complex mount option showing. 975 * 976 * See also save_mount_options(). 977 */ 978 int generic_show_options(struct seq_file *m, struct dentry *root) 979 { 980 const char *options; 981 982 rcu_read_lock(); 983 options = rcu_dereference(root->d_sb->s_options); 984 985 if (options != NULL && options[0]) { 986 seq_putc(m, ','); 987 mangle(m, options); 988 } 989 rcu_read_unlock(); 990 991 return 0; 992 } 993 EXPORT_SYMBOL(generic_show_options); 994 995 /* 996 * If filesystem uses generic_show_options(), this function should be 997 * called from the fill_super() callback. 998 * 999 * The .remount_fs callback usually needs to be handled in a special 1000 * way, to make sure, that previous options are not overwritten if the 1001 * remount fails. 1002 * 1003 * Also note, that if the filesystem's .remount_fs function doesn't 1004 * reset all options to their default value, but changes only newly 1005 * given options, then the displayed options will not reflect reality 1006 * any more. 1007 */ 1008 void save_mount_options(struct super_block *sb, char *options) 1009 { 1010 BUG_ON(sb->s_options); 1011 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1012 } 1013 EXPORT_SYMBOL(save_mount_options); 1014 1015 void replace_mount_options(struct super_block *sb, char *options) 1016 { 1017 char *old = sb->s_options; 1018 rcu_assign_pointer(sb->s_options, options); 1019 if (old) { 1020 synchronize_rcu(); 1021 kfree(old); 1022 } 1023 } 1024 EXPORT_SYMBOL(replace_mount_options); 1025 1026 #ifdef CONFIG_PROC_FS 1027 /* iterator; we want it to have access to namespace_sem, thus here... */ 1028 static void *m_start(struct seq_file *m, loff_t *pos) 1029 { 1030 struct proc_mounts *p = proc_mounts(m); 1031 1032 down_read(&namespace_sem); 1033 return seq_list_start(&p->ns->list, *pos); 1034 } 1035 1036 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1037 { 1038 struct proc_mounts *p = proc_mounts(m); 1039 1040 return seq_list_next(v, &p->ns->list, pos); 1041 } 1042 1043 static void m_stop(struct seq_file *m, void *v) 1044 { 1045 up_read(&namespace_sem); 1046 } 1047 1048 static int m_show(struct seq_file *m, void *v) 1049 { 1050 struct proc_mounts *p = proc_mounts(m); 1051 struct mount *r = list_entry(v, struct mount, mnt_list); 1052 return p->show(m, &r->mnt); 1053 } 1054 1055 const struct seq_operations mounts_op = { 1056 .start = m_start, 1057 .next = m_next, 1058 .stop = m_stop, 1059 .show = m_show, 1060 }; 1061 #endif /* CONFIG_PROC_FS */ 1062 1063 /** 1064 * may_umount_tree - check if a mount tree is busy 1065 * @mnt: root of mount tree 1066 * 1067 * This is called to check if a tree of mounts has any 1068 * open files, pwds, chroots or sub mounts that are 1069 * busy. 1070 */ 1071 int may_umount_tree(struct vfsmount *m) 1072 { 1073 struct mount *mnt = real_mount(m); 1074 int actual_refs = 0; 1075 int minimum_refs = 0; 1076 struct mount *p; 1077 BUG_ON(!m); 1078 1079 /* write lock needed for mnt_get_count */ 1080 br_write_lock(&vfsmount_lock); 1081 for (p = mnt; p; p = next_mnt(p, mnt)) { 1082 actual_refs += mnt_get_count(p); 1083 minimum_refs += 2; 1084 } 1085 br_write_unlock(&vfsmount_lock); 1086 1087 if (actual_refs > minimum_refs) 1088 return 0; 1089 1090 return 1; 1091 } 1092 1093 EXPORT_SYMBOL(may_umount_tree); 1094 1095 /** 1096 * may_umount - check if a mount point is busy 1097 * @mnt: root of mount 1098 * 1099 * This is called to check if a mount point has any 1100 * open files, pwds, chroots or sub mounts. If the 1101 * mount has sub mounts this will return busy 1102 * regardless of whether the sub mounts are busy. 1103 * 1104 * Doesn't take quota and stuff into account. IOW, in some cases it will 1105 * give false negatives. The main reason why it's here is that we need 1106 * a non-destructive way to look for easily umountable filesystems. 1107 */ 1108 int may_umount(struct vfsmount *mnt) 1109 { 1110 int ret = 1; 1111 down_read(&namespace_sem); 1112 br_write_lock(&vfsmount_lock); 1113 if (propagate_mount_busy(real_mount(mnt), 2)) 1114 ret = 0; 1115 br_write_unlock(&vfsmount_lock); 1116 up_read(&namespace_sem); 1117 return ret; 1118 } 1119 1120 EXPORT_SYMBOL(may_umount); 1121 1122 static LIST_HEAD(unmounted); /* protected by namespace_sem */ 1123 1124 static void namespace_unlock(void) 1125 { 1126 struct mount *mnt; 1127 LIST_HEAD(head); 1128 1129 if (likely(list_empty(&unmounted))) { 1130 up_write(&namespace_sem); 1131 return; 1132 } 1133 1134 list_splice_init(&unmounted, &head); 1135 up_write(&namespace_sem); 1136 1137 while (!list_empty(&head)) { 1138 mnt = list_first_entry(&head, struct mount, mnt_hash); 1139 list_del_init(&mnt->mnt_hash); 1140 if (mnt_has_parent(mnt)) { 1141 struct dentry *dentry; 1142 struct mount *m; 1143 1144 br_write_lock(&vfsmount_lock); 1145 dentry = mnt->mnt_mountpoint; 1146 m = mnt->mnt_parent; 1147 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1148 mnt->mnt_parent = mnt; 1149 m->mnt_ghosts--; 1150 br_write_unlock(&vfsmount_lock); 1151 dput(dentry); 1152 mntput(&m->mnt); 1153 } 1154 mntput(&mnt->mnt); 1155 } 1156 } 1157 1158 static inline void namespace_lock(void) 1159 { 1160 down_write(&namespace_sem); 1161 } 1162 1163 /* 1164 * vfsmount lock must be held for write 1165 * namespace_sem must be held for write 1166 */ 1167 void umount_tree(struct mount *mnt, int propagate) 1168 { 1169 LIST_HEAD(tmp_list); 1170 struct mount *p; 1171 1172 for (p = mnt; p; p = next_mnt(p, mnt)) 1173 list_move(&p->mnt_hash, &tmp_list); 1174 1175 if (propagate) 1176 propagate_umount(&tmp_list); 1177 1178 list_for_each_entry(p, &tmp_list, mnt_hash) { 1179 list_del_init(&p->mnt_expire); 1180 list_del_init(&p->mnt_list); 1181 __touch_mnt_namespace(p->mnt_ns); 1182 p->mnt_ns = NULL; 1183 list_del_init(&p->mnt_child); 1184 if (mnt_has_parent(p)) { 1185 p->mnt_parent->mnt_ghosts++; 1186 put_mountpoint(p->mnt_mp); 1187 p->mnt_mp = NULL; 1188 } 1189 change_mnt_propagation(p, MS_PRIVATE); 1190 } 1191 list_splice(&tmp_list, &unmounted); 1192 } 1193 1194 static void shrink_submounts(struct mount *mnt); 1195 1196 static int do_umount(struct mount *mnt, int flags) 1197 { 1198 struct super_block *sb = mnt->mnt.mnt_sb; 1199 int retval; 1200 1201 retval = security_sb_umount(&mnt->mnt, flags); 1202 if (retval) 1203 return retval; 1204 1205 /* 1206 * Allow userspace to request a mountpoint be expired rather than 1207 * unmounting unconditionally. Unmount only happens if: 1208 * (1) the mark is already set (the mark is cleared by mntput()) 1209 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1210 */ 1211 if (flags & MNT_EXPIRE) { 1212 if (&mnt->mnt == current->fs->root.mnt || 1213 flags & (MNT_FORCE | MNT_DETACH)) 1214 return -EINVAL; 1215 1216 /* 1217 * probably don't strictly need the lock here if we examined 1218 * all race cases, but it's a slowpath. 1219 */ 1220 br_write_lock(&vfsmount_lock); 1221 if (mnt_get_count(mnt) != 2) { 1222 br_write_unlock(&vfsmount_lock); 1223 return -EBUSY; 1224 } 1225 br_write_unlock(&vfsmount_lock); 1226 1227 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1228 return -EAGAIN; 1229 } 1230 1231 /* 1232 * If we may have to abort operations to get out of this 1233 * mount, and they will themselves hold resources we must 1234 * allow the fs to do things. In the Unix tradition of 1235 * 'Gee thats tricky lets do it in userspace' the umount_begin 1236 * might fail to complete on the first run through as other tasks 1237 * must return, and the like. Thats for the mount program to worry 1238 * about for the moment. 1239 */ 1240 1241 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1242 sb->s_op->umount_begin(sb); 1243 } 1244 1245 /* 1246 * No sense to grab the lock for this test, but test itself looks 1247 * somewhat bogus. Suggestions for better replacement? 1248 * Ho-hum... In principle, we might treat that as umount + switch 1249 * to rootfs. GC would eventually take care of the old vfsmount. 1250 * Actually it makes sense, especially if rootfs would contain a 1251 * /reboot - static binary that would close all descriptors and 1252 * call reboot(9). Then init(8) could umount root and exec /reboot. 1253 */ 1254 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1255 /* 1256 * Special case for "unmounting" root ... 1257 * we just try to remount it readonly. 1258 */ 1259 down_write(&sb->s_umount); 1260 if (!(sb->s_flags & MS_RDONLY)) 1261 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1262 up_write(&sb->s_umount); 1263 return retval; 1264 } 1265 1266 namespace_lock(); 1267 br_write_lock(&vfsmount_lock); 1268 event++; 1269 1270 if (!(flags & MNT_DETACH)) 1271 shrink_submounts(mnt); 1272 1273 retval = -EBUSY; 1274 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1275 if (!list_empty(&mnt->mnt_list)) 1276 umount_tree(mnt, 1); 1277 retval = 0; 1278 } 1279 br_write_unlock(&vfsmount_lock); 1280 namespace_unlock(); 1281 return retval; 1282 } 1283 1284 /* 1285 * Is the caller allowed to modify his namespace? 1286 */ 1287 static inline bool may_mount(void) 1288 { 1289 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1290 } 1291 1292 /* 1293 * Now umount can handle mount points as well as block devices. 1294 * This is important for filesystems which use unnamed block devices. 1295 * 1296 * We now support a flag for forced unmount like the other 'big iron' 1297 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1298 */ 1299 1300 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1301 { 1302 struct path path; 1303 struct mount *mnt; 1304 int retval; 1305 int lookup_flags = 0; 1306 1307 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1308 return -EINVAL; 1309 1310 if (!may_mount()) 1311 return -EPERM; 1312 1313 if (!(flags & UMOUNT_NOFOLLOW)) 1314 lookup_flags |= LOOKUP_FOLLOW; 1315 1316 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1317 if (retval) 1318 goto out; 1319 mnt = real_mount(path.mnt); 1320 retval = -EINVAL; 1321 if (path.dentry != path.mnt->mnt_root) 1322 goto dput_and_out; 1323 if (!check_mnt(mnt)) 1324 goto dput_and_out; 1325 1326 retval = do_umount(mnt, flags); 1327 dput_and_out: 1328 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1329 dput(path.dentry); 1330 mntput_no_expire(mnt); 1331 out: 1332 return retval; 1333 } 1334 1335 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1336 1337 /* 1338 * The 2.0 compatible umount. No flags. 1339 */ 1340 SYSCALL_DEFINE1(oldumount, char __user *, name) 1341 { 1342 return sys_umount(name, 0); 1343 } 1344 1345 #endif 1346 1347 static bool mnt_ns_loop(struct path *path) 1348 { 1349 /* Could bind mounting the mount namespace inode cause a 1350 * mount namespace loop? 1351 */ 1352 struct inode *inode = path->dentry->d_inode; 1353 struct proc_inode *ei; 1354 struct mnt_namespace *mnt_ns; 1355 1356 if (!proc_ns_inode(inode)) 1357 return false; 1358 1359 ei = PROC_I(inode); 1360 if (ei->ns_ops != &mntns_operations) 1361 return false; 1362 1363 mnt_ns = ei->ns; 1364 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1365 } 1366 1367 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1368 int flag) 1369 { 1370 struct mount *res, *p, *q, *r, *parent; 1371 1372 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1373 return ERR_PTR(-EINVAL); 1374 1375 res = q = clone_mnt(mnt, dentry, flag); 1376 if (IS_ERR(q)) 1377 return q; 1378 1379 q->mnt_mountpoint = mnt->mnt_mountpoint; 1380 1381 p = mnt; 1382 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1383 struct mount *s; 1384 if (!is_subdir(r->mnt_mountpoint, dentry)) 1385 continue; 1386 1387 for (s = r; s; s = next_mnt(s, r)) { 1388 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1389 s = skip_mnt_tree(s); 1390 continue; 1391 } 1392 while (p != s->mnt_parent) { 1393 p = p->mnt_parent; 1394 q = q->mnt_parent; 1395 } 1396 p = s; 1397 parent = q; 1398 q = clone_mnt(p, p->mnt.mnt_root, flag); 1399 if (IS_ERR(q)) 1400 goto out; 1401 br_write_lock(&vfsmount_lock); 1402 list_add_tail(&q->mnt_list, &res->mnt_list); 1403 attach_mnt(q, parent, p->mnt_mp); 1404 br_write_unlock(&vfsmount_lock); 1405 } 1406 } 1407 return res; 1408 out: 1409 if (res) { 1410 br_write_lock(&vfsmount_lock); 1411 umount_tree(res, 0); 1412 br_write_unlock(&vfsmount_lock); 1413 } 1414 return q; 1415 } 1416 1417 /* Caller should check returned pointer for errors */ 1418 1419 struct vfsmount *collect_mounts(struct path *path) 1420 { 1421 struct mount *tree; 1422 namespace_lock(); 1423 tree = copy_tree(real_mount(path->mnt), path->dentry, 1424 CL_COPY_ALL | CL_PRIVATE); 1425 namespace_unlock(); 1426 if (IS_ERR(tree)) 1427 return NULL; 1428 return &tree->mnt; 1429 } 1430 1431 void drop_collected_mounts(struct vfsmount *mnt) 1432 { 1433 namespace_lock(); 1434 br_write_lock(&vfsmount_lock); 1435 umount_tree(real_mount(mnt), 0); 1436 br_write_unlock(&vfsmount_lock); 1437 namespace_unlock(); 1438 } 1439 1440 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1441 struct vfsmount *root) 1442 { 1443 struct mount *mnt; 1444 int res = f(root, arg); 1445 if (res) 1446 return res; 1447 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1448 res = f(&mnt->mnt, arg); 1449 if (res) 1450 return res; 1451 } 1452 return 0; 1453 } 1454 1455 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1456 { 1457 struct mount *p; 1458 1459 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1460 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1461 mnt_release_group_id(p); 1462 } 1463 } 1464 1465 static int invent_group_ids(struct mount *mnt, bool recurse) 1466 { 1467 struct mount *p; 1468 1469 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1470 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1471 int err = mnt_alloc_group_id(p); 1472 if (err) { 1473 cleanup_group_ids(mnt, p); 1474 return err; 1475 } 1476 } 1477 } 1478 1479 return 0; 1480 } 1481 1482 /* 1483 * @source_mnt : mount tree to be attached 1484 * @nd : place the mount tree @source_mnt is attached 1485 * @parent_nd : if non-null, detach the source_mnt from its parent and 1486 * store the parent mount and mountpoint dentry. 1487 * (done when source_mnt is moved) 1488 * 1489 * NOTE: in the table below explains the semantics when a source mount 1490 * of a given type is attached to a destination mount of a given type. 1491 * --------------------------------------------------------------------------- 1492 * | BIND MOUNT OPERATION | 1493 * |************************************************************************** 1494 * | source-->| shared | private | slave | unbindable | 1495 * | dest | | | | | 1496 * | | | | | | | 1497 * | v | | | | | 1498 * |************************************************************************** 1499 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1500 * | | | | | | 1501 * |non-shared| shared (+) | private | slave (*) | invalid | 1502 * *************************************************************************** 1503 * A bind operation clones the source mount and mounts the clone on the 1504 * destination mount. 1505 * 1506 * (++) the cloned mount is propagated to all the mounts in the propagation 1507 * tree of the destination mount and the cloned mount is added to 1508 * the peer group of the source mount. 1509 * (+) the cloned mount is created under the destination mount and is marked 1510 * as shared. The cloned mount is added to the peer group of the source 1511 * mount. 1512 * (+++) the mount is propagated to all the mounts in the propagation tree 1513 * of the destination mount and the cloned mount is made slave 1514 * of the same master as that of the source mount. The cloned mount 1515 * is marked as 'shared and slave'. 1516 * (*) the cloned mount is made a slave of the same master as that of the 1517 * source mount. 1518 * 1519 * --------------------------------------------------------------------------- 1520 * | MOVE MOUNT OPERATION | 1521 * |************************************************************************** 1522 * | source-->| shared | private | slave | unbindable | 1523 * | dest | | | | | 1524 * | | | | | | | 1525 * | v | | | | | 1526 * |************************************************************************** 1527 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1528 * | | | | | | 1529 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1530 * *************************************************************************** 1531 * 1532 * (+) the mount is moved to the destination. And is then propagated to 1533 * all the mounts in the propagation tree of the destination mount. 1534 * (+*) the mount is moved to the destination. 1535 * (+++) the mount is moved to the destination and is then propagated to 1536 * all the mounts belonging to the destination mount's propagation tree. 1537 * the mount is marked as 'shared and slave'. 1538 * (*) the mount continues to be a slave at the new location. 1539 * 1540 * if the source mount is a tree, the operations explained above is 1541 * applied to each mount in the tree. 1542 * Must be called without spinlocks held, since this function can sleep 1543 * in allocations. 1544 */ 1545 static int attach_recursive_mnt(struct mount *source_mnt, 1546 struct mount *dest_mnt, 1547 struct mountpoint *dest_mp, 1548 struct path *parent_path) 1549 { 1550 LIST_HEAD(tree_list); 1551 struct mount *child, *p; 1552 int err; 1553 1554 if (IS_MNT_SHARED(dest_mnt)) { 1555 err = invent_group_ids(source_mnt, true); 1556 if (err) 1557 goto out; 1558 } 1559 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1560 if (err) 1561 goto out_cleanup_ids; 1562 1563 br_write_lock(&vfsmount_lock); 1564 1565 if (IS_MNT_SHARED(dest_mnt)) { 1566 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1567 set_mnt_shared(p); 1568 } 1569 if (parent_path) { 1570 detach_mnt(source_mnt, parent_path); 1571 attach_mnt(source_mnt, dest_mnt, dest_mp); 1572 touch_mnt_namespace(source_mnt->mnt_ns); 1573 } else { 1574 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1575 commit_tree(source_mnt); 1576 } 1577 1578 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1579 list_del_init(&child->mnt_hash); 1580 commit_tree(child); 1581 } 1582 br_write_unlock(&vfsmount_lock); 1583 1584 return 0; 1585 1586 out_cleanup_ids: 1587 if (IS_MNT_SHARED(dest_mnt)) 1588 cleanup_group_ids(source_mnt, NULL); 1589 out: 1590 return err; 1591 } 1592 1593 static struct mountpoint *lock_mount(struct path *path) 1594 { 1595 struct vfsmount *mnt; 1596 struct dentry *dentry = path->dentry; 1597 retry: 1598 mutex_lock(&dentry->d_inode->i_mutex); 1599 if (unlikely(cant_mount(dentry))) { 1600 mutex_unlock(&dentry->d_inode->i_mutex); 1601 return ERR_PTR(-ENOENT); 1602 } 1603 namespace_lock(); 1604 mnt = lookup_mnt(path); 1605 if (likely(!mnt)) { 1606 struct mountpoint *mp = new_mountpoint(dentry); 1607 if (IS_ERR(mp)) { 1608 namespace_unlock(); 1609 mutex_unlock(&dentry->d_inode->i_mutex); 1610 return mp; 1611 } 1612 return mp; 1613 } 1614 namespace_unlock(); 1615 mutex_unlock(&path->dentry->d_inode->i_mutex); 1616 path_put(path); 1617 path->mnt = mnt; 1618 dentry = path->dentry = dget(mnt->mnt_root); 1619 goto retry; 1620 } 1621 1622 static void unlock_mount(struct mountpoint *where) 1623 { 1624 struct dentry *dentry = where->m_dentry; 1625 put_mountpoint(where); 1626 namespace_unlock(); 1627 mutex_unlock(&dentry->d_inode->i_mutex); 1628 } 1629 1630 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1631 { 1632 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1633 return -EINVAL; 1634 1635 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1636 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1637 return -ENOTDIR; 1638 1639 return attach_recursive_mnt(mnt, p, mp, NULL); 1640 } 1641 1642 /* 1643 * Sanity check the flags to change_mnt_propagation. 1644 */ 1645 1646 static int flags_to_propagation_type(int flags) 1647 { 1648 int type = flags & ~(MS_REC | MS_SILENT); 1649 1650 /* Fail if any non-propagation flags are set */ 1651 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1652 return 0; 1653 /* Only one propagation flag should be set */ 1654 if (!is_power_of_2(type)) 1655 return 0; 1656 return type; 1657 } 1658 1659 /* 1660 * recursively change the type of the mountpoint. 1661 */ 1662 static int do_change_type(struct path *path, int flag) 1663 { 1664 struct mount *m; 1665 struct mount *mnt = real_mount(path->mnt); 1666 int recurse = flag & MS_REC; 1667 int type; 1668 int err = 0; 1669 1670 if (path->dentry != path->mnt->mnt_root) 1671 return -EINVAL; 1672 1673 type = flags_to_propagation_type(flag); 1674 if (!type) 1675 return -EINVAL; 1676 1677 namespace_lock(); 1678 if (type == MS_SHARED) { 1679 err = invent_group_ids(mnt, recurse); 1680 if (err) 1681 goto out_unlock; 1682 } 1683 1684 br_write_lock(&vfsmount_lock); 1685 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1686 change_mnt_propagation(m, type); 1687 br_write_unlock(&vfsmount_lock); 1688 1689 out_unlock: 1690 namespace_unlock(); 1691 return err; 1692 } 1693 1694 /* 1695 * do loopback mount. 1696 */ 1697 static int do_loopback(struct path *path, const char *old_name, 1698 int recurse) 1699 { 1700 struct path old_path; 1701 struct mount *mnt = NULL, *old, *parent; 1702 struct mountpoint *mp; 1703 int err; 1704 if (!old_name || !*old_name) 1705 return -EINVAL; 1706 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1707 if (err) 1708 return err; 1709 1710 err = -EINVAL; 1711 if (mnt_ns_loop(&old_path)) 1712 goto out; 1713 1714 mp = lock_mount(path); 1715 err = PTR_ERR(mp); 1716 if (IS_ERR(mp)) 1717 goto out; 1718 1719 old = real_mount(old_path.mnt); 1720 parent = real_mount(path->mnt); 1721 1722 err = -EINVAL; 1723 if (IS_MNT_UNBINDABLE(old)) 1724 goto out2; 1725 1726 if (!check_mnt(parent) || !check_mnt(old)) 1727 goto out2; 1728 1729 if (recurse) 1730 mnt = copy_tree(old, old_path.dentry, 0); 1731 else 1732 mnt = clone_mnt(old, old_path.dentry, 0); 1733 1734 if (IS_ERR(mnt)) { 1735 err = PTR_ERR(mnt); 1736 goto out2; 1737 } 1738 1739 err = graft_tree(mnt, parent, mp); 1740 if (err) { 1741 br_write_lock(&vfsmount_lock); 1742 umount_tree(mnt, 0); 1743 br_write_unlock(&vfsmount_lock); 1744 } 1745 out2: 1746 unlock_mount(mp); 1747 out: 1748 path_put(&old_path); 1749 return err; 1750 } 1751 1752 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1753 { 1754 int error = 0; 1755 int readonly_request = 0; 1756 1757 if (ms_flags & MS_RDONLY) 1758 readonly_request = 1; 1759 if (readonly_request == __mnt_is_readonly(mnt)) 1760 return 0; 1761 1762 if (readonly_request) 1763 error = mnt_make_readonly(real_mount(mnt)); 1764 else 1765 __mnt_unmake_readonly(real_mount(mnt)); 1766 return error; 1767 } 1768 1769 /* 1770 * change filesystem flags. dir should be a physical root of filesystem. 1771 * If you've mounted a non-root directory somewhere and want to do remount 1772 * on it - tough luck. 1773 */ 1774 static int do_remount(struct path *path, int flags, int mnt_flags, 1775 void *data) 1776 { 1777 int err; 1778 struct super_block *sb = path->mnt->mnt_sb; 1779 struct mount *mnt = real_mount(path->mnt); 1780 1781 if (!check_mnt(mnt)) 1782 return -EINVAL; 1783 1784 if (path->dentry != path->mnt->mnt_root) 1785 return -EINVAL; 1786 1787 err = security_sb_remount(sb, data); 1788 if (err) 1789 return err; 1790 1791 down_write(&sb->s_umount); 1792 if (flags & MS_BIND) 1793 err = change_mount_flags(path->mnt, flags); 1794 else if (!capable(CAP_SYS_ADMIN)) 1795 err = -EPERM; 1796 else 1797 err = do_remount_sb(sb, flags, data, 0); 1798 if (!err) { 1799 br_write_lock(&vfsmount_lock); 1800 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1801 mnt->mnt.mnt_flags = mnt_flags; 1802 br_write_unlock(&vfsmount_lock); 1803 } 1804 up_write(&sb->s_umount); 1805 if (!err) { 1806 br_write_lock(&vfsmount_lock); 1807 touch_mnt_namespace(mnt->mnt_ns); 1808 br_write_unlock(&vfsmount_lock); 1809 } 1810 return err; 1811 } 1812 1813 static inline int tree_contains_unbindable(struct mount *mnt) 1814 { 1815 struct mount *p; 1816 for (p = mnt; p; p = next_mnt(p, mnt)) { 1817 if (IS_MNT_UNBINDABLE(p)) 1818 return 1; 1819 } 1820 return 0; 1821 } 1822 1823 static int do_move_mount(struct path *path, const char *old_name) 1824 { 1825 struct path old_path, parent_path; 1826 struct mount *p; 1827 struct mount *old; 1828 struct mountpoint *mp; 1829 int err; 1830 if (!old_name || !*old_name) 1831 return -EINVAL; 1832 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1833 if (err) 1834 return err; 1835 1836 mp = lock_mount(path); 1837 err = PTR_ERR(mp); 1838 if (IS_ERR(mp)) 1839 goto out; 1840 1841 old = real_mount(old_path.mnt); 1842 p = real_mount(path->mnt); 1843 1844 err = -EINVAL; 1845 if (!check_mnt(p) || !check_mnt(old)) 1846 goto out1; 1847 1848 err = -EINVAL; 1849 if (old_path.dentry != old_path.mnt->mnt_root) 1850 goto out1; 1851 1852 if (!mnt_has_parent(old)) 1853 goto out1; 1854 1855 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1856 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1857 goto out1; 1858 /* 1859 * Don't move a mount residing in a shared parent. 1860 */ 1861 if (IS_MNT_SHARED(old->mnt_parent)) 1862 goto out1; 1863 /* 1864 * Don't move a mount tree containing unbindable mounts to a destination 1865 * mount which is shared. 1866 */ 1867 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1868 goto out1; 1869 err = -ELOOP; 1870 for (; mnt_has_parent(p); p = p->mnt_parent) 1871 if (p == old) 1872 goto out1; 1873 1874 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 1875 if (err) 1876 goto out1; 1877 1878 /* if the mount is moved, it should no longer be expire 1879 * automatically */ 1880 list_del_init(&old->mnt_expire); 1881 out1: 1882 unlock_mount(mp); 1883 out: 1884 if (!err) 1885 path_put(&parent_path); 1886 path_put(&old_path); 1887 return err; 1888 } 1889 1890 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1891 { 1892 int err; 1893 const char *subtype = strchr(fstype, '.'); 1894 if (subtype) { 1895 subtype++; 1896 err = -EINVAL; 1897 if (!subtype[0]) 1898 goto err; 1899 } else 1900 subtype = ""; 1901 1902 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1903 err = -ENOMEM; 1904 if (!mnt->mnt_sb->s_subtype) 1905 goto err; 1906 return mnt; 1907 1908 err: 1909 mntput(mnt); 1910 return ERR_PTR(err); 1911 } 1912 1913 /* 1914 * add a mount into a namespace's mount tree 1915 */ 1916 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1917 { 1918 struct mountpoint *mp; 1919 struct mount *parent; 1920 int err; 1921 1922 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1923 1924 mp = lock_mount(path); 1925 if (IS_ERR(mp)) 1926 return PTR_ERR(mp); 1927 1928 parent = real_mount(path->mnt); 1929 err = -EINVAL; 1930 if (unlikely(!check_mnt(parent))) { 1931 /* that's acceptable only for automounts done in private ns */ 1932 if (!(mnt_flags & MNT_SHRINKABLE)) 1933 goto unlock; 1934 /* ... and for those we'd better have mountpoint still alive */ 1935 if (!parent->mnt_ns) 1936 goto unlock; 1937 } 1938 1939 /* Refuse the same filesystem on the same mount point */ 1940 err = -EBUSY; 1941 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1942 path->mnt->mnt_root == path->dentry) 1943 goto unlock; 1944 1945 err = -EINVAL; 1946 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1947 goto unlock; 1948 1949 newmnt->mnt.mnt_flags = mnt_flags; 1950 err = graft_tree(newmnt, parent, mp); 1951 1952 unlock: 1953 unlock_mount(mp); 1954 return err; 1955 } 1956 1957 /* 1958 * create a new mount for userspace and request it to be added into the 1959 * namespace's tree 1960 */ 1961 static int do_new_mount(struct path *path, const char *fstype, int flags, 1962 int mnt_flags, const char *name, void *data) 1963 { 1964 struct file_system_type *type; 1965 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 1966 struct vfsmount *mnt; 1967 int err; 1968 1969 if (!fstype) 1970 return -EINVAL; 1971 1972 type = get_fs_type(fstype); 1973 if (!type) 1974 return -ENODEV; 1975 1976 if (user_ns != &init_user_ns) { 1977 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 1978 put_filesystem(type); 1979 return -EPERM; 1980 } 1981 /* Only in special cases allow devices from mounts 1982 * created outside the initial user namespace. 1983 */ 1984 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 1985 flags |= MS_NODEV; 1986 mnt_flags |= MNT_NODEV; 1987 } 1988 } 1989 1990 mnt = vfs_kern_mount(type, flags, name, data); 1991 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1992 !mnt->mnt_sb->s_subtype) 1993 mnt = fs_set_subtype(mnt, fstype); 1994 1995 put_filesystem(type); 1996 if (IS_ERR(mnt)) 1997 return PTR_ERR(mnt); 1998 1999 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2000 if (err) 2001 mntput(mnt); 2002 return err; 2003 } 2004 2005 int finish_automount(struct vfsmount *m, struct path *path) 2006 { 2007 struct mount *mnt = real_mount(m); 2008 int err; 2009 /* The new mount record should have at least 2 refs to prevent it being 2010 * expired before we get a chance to add it 2011 */ 2012 BUG_ON(mnt_get_count(mnt) < 2); 2013 2014 if (m->mnt_sb == path->mnt->mnt_sb && 2015 m->mnt_root == path->dentry) { 2016 err = -ELOOP; 2017 goto fail; 2018 } 2019 2020 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2021 if (!err) 2022 return 0; 2023 fail: 2024 /* remove m from any expiration list it may be on */ 2025 if (!list_empty(&mnt->mnt_expire)) { 2026 namespace_lock(); 2027 br_write_lock(&vfsmount_lock); 2028 list_del_init(&mnt->mnt_expire); 2029 br_write_unlock(&vfsmount_lock); 2030 namespace_unlock(); 2031 } 2032 mntput(m); 2033 mntput(m); 2034 return err; 2035 } 2036 2037 /** 2038 * mnt_set_expiry - Put a mount on an expiration list 2039 * @mnt: The mount to list. 2040 * @expiry_list: The list to add the mount to. 2041 */ 2042 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2043 { 2044 namespace_lock(); 2045 br_write_lock(&vfsmount_lock); 2046 2047 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2048 2049 br_write_unlock(&vfsmount_lock); 2050 namespace_unlock(); 2051 } 2052 EXPORT_SYMBOL(mnt_set_expiry); 2053 2054 /* 2055 * process a list of expirable mountpoints with the intent of discarding any 2056 * mountpoints that aren't in use and haven't been touched since last we came 2057 * here 2058 */ 2059 void mark_mounts_for_expiry(struct list_head *mounts) 2060 { 2061 struct mount *mnt, *next; 2062 LIST_HEAD(graveyard); 2063 2064 if (list_empty(mounts)) 2065 return; 2066 2067 namespace_lock(); 2068 br_write_lock(&vfsmount_lock); 2069 2070 /* extract from the expiration list every vfsmount that matches the 2071 * following criteria: 2072 * - only referenced by its parent vfsmount 2073 * - still marked for expiry (marked on the last call here; marks are 2074 * cleared by mntput()) 2075 */ 2076 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2077 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2078 propagate_mount_busy(mnt, 1)) 2079 continue; 2080 list_move(&mnt->mnt_expire, &graveyard); 2081 } 2082 while (!list_empty(&graveyard)) { 2083 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2084 touch_mnt_namespace(mnt->mnt_ns); 2085 umount_tree(mnt, 1); 2086 } 2087 br_write_unlock(&vfsmount_lock); 2088 namespace_unlock(); 2089 } 2090 2091 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2092 2093 /* 2094 * Ripoff of 'select_parent()' 2095 * 2096 * search the list of submounts for a given mountpoint, and move any 2097 * shrinkable submounts to the 'graveyard' list. 2098 */ 2099 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2100 { 2101 struct mount *this_parent = parent; 2102 struct list_head *next; 2103 int found = 0; 2104 2105 repeat: 2106 next = this_parent->mnt_mounts.next; 2107 resume: 2108 while (next != &this_parent->mnt_mounts) { 2109 struct list_head *tmp = next; 2110 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2111 2112 next = tmp->next; 2113 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2114 continue; 2115 /* 2116 * Descend a level if the d_mounts list is non-empty. 2117 */ 2118 if (!list_empty(&mnt->mnt_mounts)) { 2119 this_parent = mnt; 2120 goto repeat; 2121 } 2122 2123 if (!propagate_mount_busy(mnt, 1)) { 2124 list_move_tail(&mnt->mnt_expire, graveyard); 2125 found++; 2126 } 2127 } 2128 /* 2129 * All done at this level ... ascend and resume the search 2130 */ 2131 if (this_parent != parent) { 2132 next = this_parent->mnt_child.next; 2133 this_parent = this_parent->mnt_parent; 2134 goto resume; 2135 } 2136 return found; 2137 } 2138 2139 /* 2140 * process a list of expirable mountpoints with the intent of discarding any 2141 * submounts of a specific parent mountpoint 2142 * 2143 * vfsmount_lock must be held for write 2144 */ 2145 static void shrink_submounts(struct mount *mnt) 2146 { 2147 LIST_HEAD(graveyard); 2148 struct mount *m; 2149 2150 /* extract submounts of 'mountpoint' from the expiration list */ 2151 while (select_submounts(mnt, &graveyard)) { 2152 while (!list_empty(&graveyard)) { 2153 m = list_first_entry(&graveyard, struct mount, 2154 mnt_expire); 2155 touch_mnt_namespace(m->mnt_ns); 2156 umount_tree(m, 1); 2157 } 2158 } 2159 } 2160 2161 /* 2162 * Some copy_from_user() implementations do not return the exact number of 2163 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2164 * Note that this function differs from copy_from_user() in that it will oops 2165 * on bad values of `to', rather than returning a short copy. 2166 */ 2167 static long exact_copy_from_user(void *to, const void __user * from, 2168 unsigned long n) 2169 { 2170 char *t = to; 2171 const char __user *f = from; 2172 char c; 2173 2174 if (!access_ok(VERIFY_READ, from, n)) 2175 return n; 2176 2177 while (n) { 2178 if (__get_user(c, f)) { 2179 memset(t, 0, n); 2180 break; 2181 } 2182 *t++ = c; 2183 f++; 2184 n--; 2185 } 2186 return n; 2187 } 2188 2189 int copy_mount_options(const void __user * data, unsigned long *where) 2190 { 2191 int i; 2192 unsigned long page; 2193 unsigned long size; 2194 2195 *where = 0; 2196 if (!data) 2197 return 0; 2198 2199 if (!(page = __get_free_page(GFP_KERNEL))) 2200 return -ENOMEM; 2201 2202 /* We only care that *some* data at the address the user 2203 * gave us is valid. Just in case, we'll zero 2204 * the remainder of the page. 2205 */ 2206 /* copy_from_user cannot cross TASK_SIZE ! */ 2207 size = TASK_SIZE - (unsigned long)data; 2208 if (size > PAGE_SIZE) 2209 size = PAGE_SIZE; 2210 2211 i = size - exact_copy_from_user((void *)page, data, size); 2212 if (!i) { 2213 free_page(page); 2214 return -EFAULT; 2215 } 2216 if (i != PAGE_SIZE) 2217 memset((char *)page + i, 0, PAGE_SIZE - i); 2218 *where = page; 2219 return 0; 2220 } 2221 2222 int copy_mount_string(const void __user *data, char **where) 2223 { 2224 char *tmp; 2225 2226 if (!data) { 2227 *where = NULL; 2228 return 0; 2229 } 2230 2231 tmp = strndup_user(data, PAGE_SIZE); 2232 if (IS_ERR(tmp)) 2233 return PTR_ERR(tmp); 2234 2235 *where = tmp; 2236 return 0; 2237 } 2238 2239 /* 2240 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2241 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2242 * 2243 * data is a (void *) that can point to any structure up to 2244 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2245 * information (or be NULL). 2246 * 2247 * Pre-0.97 versions of mount() didn't have a flags word. 2248 * When the flags word was introduced its top half was required 2249 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2250 * Therefore, if this magic number is present, it carries no information 2251 * and must be discarded. 2252 */ 2253 long do_mount(const char *dev_name, const char *dir_name, 2254 const char *type_page, unsigned long flags, void *data_page) 2255 { 2256 struct path path; 2257 int retval = 0; 2258 int mnt_flags = 0; 2259 2260 /* Discard magic */ 2261 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2262 flags &= ~MS_MGC_MSK; 2263 2264 /* Basic sanity checks */ 2265 2266 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2267 return -EINVAL; 2268 2269 if (data_page) 2270 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2271 2272 /* ... and get the mountpoint */ 2273 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2274 if (retval) 2275 return retval; 2276 2277 retval = security_sb_mount(dev_name, &path, 2278 type_page, flags, data_page); 2279 if (retval) 2280 goto dput_out; 2281 2282 if (!may_mount()) 2283 return -EPERM; 2284 2285 /* Default to relatime unless overriden */ 2286 if (!(flags & MS_NOATIME)) 2287 mnt_flags |= MNT_RELATIME; 2288 2289 /* Separate the per-mountpoint flags */ 2290 if (flags & MS_NOSUID) 2291 mnt_flags |= MNT_NOSUID; 2292 if (flags & MS_NODEV) 2293 mnt_flags |= MNT_NODEV; 2294 if (flags & MS_NOEXEC) 2295 mnt_flags |= MNT_NOEXEC; 2296 if (flags & MS_NOATIME) 2297 mnt_flags |= MNT_NOATIME; 2298 if (flags & MS_NODIRATIME) 2299 mnt_flags |= MNT_NODIRATIME; 2300 if (flags & MS_STRICTATIME) 2301 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2302 if (flags & MS_RDONLY) 2303 mnt_flags |= MNT_READONLY; 2304 2305 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2306 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2307 MS_STRICTATIME); 2308 2309 if (flags & MS_REMOUNT) 2310 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2311 data_page); 2312 else if (flags & MS_BIND) 2313 retval = do_loopback(&path, dev_name, flags & MS_REC); 2314 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2315 retval = do_change_type(&path, flags); 2316 else if (flags & MS_MOVE) 2317 retval = do_move_mount(&path, dev_name); 2318 else 2319 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2320 dev_name, data_page); 2321 dput_out: 2322 path_put(&path); 2323 return retval; 2324 } 2325 2326 static void free_mnt_ns(struct mnt_namespace *ns) 2327 { 2328 proc_free_inum(ns->proc_inum); 2329 put_user_ns(ns->user_ns); 2330 kfree(ns); 2331 } 2332 2333 /* 2334 * Assign a sequence number so we can detect when we attempt to bind 2335 * mount a reference to an older mount namespace into the current 2336 * mount namespace, preventing reference counting loops. A 64bit 2337 * number incrementing at 10Ghz will take 12,427 years to wrap which 2338 * is effectively never, so we can ignore the possibility. 2339 */ 2340 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2341 2342 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2343 { 2344 struct mnt_namespace *new_ns; 2345 int ret; 2346 2347 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2348 if (!new_ns) 2349 return ERR_PTR(-ENOMEM); 2350 ret = proc_alloc_inum(&new_ns->proc_inum); 2351 if (ret) { 2352 kfree(new_ns); 2353 return ERR_PTR(ret); 2354 } 2355 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2356 atomic_set(&new_ns->count, 1); 2357 new_ns->root = NULL; 2358 INIT_LIST_HEAD(&new_ns->list); 2359 init_waitqueue_head(&new_ns->poll); 2360 new_ns->event = 0; 2361 new_ns->user_ns = get_user_ns(user_ns); 2362 return new_ns; 2363 } 2364 2365 /* 2366 * Allocate a new namespace structure and populate it with contents 2367 * copied from the namespace of the passed in task structure. 2368 */ 2369 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2370 struct user_namespace *user_ns, struct fs_struct *fs) 2371 { 2372 struct mnt_namespace *new_ns; 2373 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2374 struct mount *p, *q; 2375 struct mount *old = mnt_ns->root; 2376 struct mount *new; 2377 int copy_flags; 2378 2379 new_ns = alloc_mnt_ns(user_ns); 2380 if (IS_ERR(new_ns)) 2381 return new_ns; 2382 2383 namespace_lock(); 2384 /* First pass: copy the tree topology */ 2385 copy_flags = CL_COPY_ALL | CL_EXPIRE; 2386 if (user_ns != mnt_ns->user_ns) 2387 copy_flags |= CL_SHARED_TO_SLAVE; 2388 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2389 if (IS_ERR(new)) { 2390 namespace_unlock(); 2391 free_mnt_ns(new_ns); 2392 return ERR_CAST(new); 2393 } 2394 new_ns->root = new; 2395 br_write_lock(&vfsmount_lock); 2396 list_add_tail(&new_ns->list, &new->mnt_list); 2397 br_write_unlock(&vfsmount_lock); 2398 2399 /* 2400 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2401 * as belonging to new namespace. We have already acquired a private 2402 * fs_struct, so tsk->fs->lock is not needed. 2403 */ 2404 p = old; 2405 q = new; 2406 while (p) { 2407 q->mnt_ns = new_ns; 2408 if (fs) { 2409 if (&p->mnt == fs->root.mnt) { 2410 fs->root.mnt = mntget(&q->mnt); 2411 rootmnt = &p->mnt; 2412 } 2413 if (&p->mnt == fs->pwd.mnt) { 2414 fs->pwd.mnt = mntget(&q->mnt); 2415 pwdmnt = &p->mnt; 2416 } 2417 } 2418 p = next_mnt(p, old); 2419 q = next_mnt(q, new); 2420 } 2421 namespace_unlock(); 2422 2423 if (rootmnt) 2424 mntput(rootmnt); 2425 if (pwdmnt) 2426 mntput(pwdmnt); 2427 2428 return new_ns; 2429 } 2430 2431 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2432 struct user_namespace *user_ns, struct fs_struct *new_fs) 2433 { 2434 struct mnt_namespace *new_ns; 2435 2436 BUG_ON(!ns); 2437 get_mnt_ns(ns); 2438 2439 if (!(flags & CLONE_NEWNS)) 2440 return ns; 2441 2442 new_ns = dup_mnt_ns(ns, user_ns, new_fs); 2443 2444 put_mnt_ns(ns); 2445 return new_ns; 2446 } 2447 2448 /** 2449 * create_mnt_ns - creates a private namespace and adds a root filesystem 2450 * @mnt: pointer to the new root filesystem mountpoint 2451 */ 2452 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2453 { 2454 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2455 if (!IS_ERR(new_ns)) { 2456 struct mount *mnt = real_mount(m); 2457 mnt->mnt_ns = new_ns; 2458 new_ns->root = mnt; 2459 list_add(&new_ns->list, &mnt->mnt_list); 2460 } else { 2461 mntput(m); 2462 } 2463 return new_ns; 2464 } 2465 2466 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2467 { 2468 struct mnt_namespace *ns; 2469 struct super_block *s; 2470 struct path path; 2471 int err; 2472 2473 ns = create_mnt_ns(mnt); 2474 if (IS_ERR(ns)) 2475 return ERR_CAST(ns); 2476 2477 err = vfs_path_lookup(mnt->mnt_root, mnt, 2478 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2479 2480 put_mnt_ns(ns); 2481 2482 if (err) 2483 return ERR_PTR(err); 2484 2485 /* trade a vfsmount reference for active sb one */ 2486 s = path.mnt->mnt_sb; 2487 atomic_inc(&s->s_active); 2488 mntput(path.mnt); 2489 /* lock the sucker */ 2490 down_write(&s->s_umount); 2491 /* ... and return the root of (sub)tree on it */ 2492 return path.dentry; 2493 } 2494 EXPORT_SYMBOL(mount_subtree); 2495 2496 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2497 char __user *, type, unsigned long, flags, void __user *, data) 2498 { 2499 int ret; 2500 char *kernel_type; 2501 struct filename *kernel_dir; 2502 char *kernel_dev; 2503 unsigned long data_page; 2504 2505 ret = copy_mount_string(type, &kernel_type); 2506 if (ret < 0) 2507 goto out_type; 2508 2509 kernel_dir = getname(dir_name); 2510 if (IS_ERR(kernel_dir)) { 2511 ret = PTR_ERR(kernel_dir); 2512 goto out_dir; 2513 } 2514 2515 ret = copy_mount_string(dev_name, &kernel_dev); 2516 if (ret < 0) 2517 goto out_dev; 2518 2519 ret = copy_mount_options(data, &data_page); 2520 if (ret < 0) 2521 goto out_data; 2522 2523 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2524 (void *) data_page); 2525 2526 free_page(data_page); 2527 out_data: 2528 kfree(kernel_dev); 2529 out_dev: 2530 putname(kernel_dir); 2531 out_dir: 2532 kfree(kernel_type); 2533 out_type: 2534 return ret; 2535 } 2536 2537 /* 2538 * Return true if path is reachable from root 2539 * 2540 * namespace_sem or vfsmount_lock is held 2541 */ 2542 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2543 const struct path *root) 2544 { 2545 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2546 dentry = mnt->mnt_mountpoint; 2547 mnt = mnt->mnt_parent; 2548 } 2549 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2550 } 2551 2552 int path_is_under(struct path *path1, struct path *path2) 2553 { 2554 int res; 2555 br_read_lock(&vfsmount_lock); 2556 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2557 br_read_unlock(&vfsmount_lock); 2558 return res; 2559 } 2560 EXPORT_SYMBOL(path_is_under); 2561 2562 /* 2563 * pivot_root Semantics: 2564 * Moves the root file system of the current process to the directory put_old, 2565 * makes new_root as the new root file system of the current process, and sets 2566 * root/cwd of all processes which had them on the current root to new_root. 2567 * 2568 * Restrictions: 2569 * The new_root and put_old must be directories, and must not be on the 2570 * same file system as the current process root. The put_old must be 2571 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2572 * pointed to by put_old must yield the same directory as new_root. No other 2573 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2574 * 2575 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2576 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2577 * in this situation. 2578 * 2579 * Notes: 2580 * - we don't move root/cwd if they are not at the root (reason: if something 2581 * cared enough to change them, it's probably wrong to force them elsewhere) 2582 * - it's okay to pick a root that isn't the root of a file system, e.g. 2583 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2584 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2585 * first. 2586 */ 2587 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2588 const char __user *, put_old) 2589 { 2590 struct path new, old, parent_path, root_parent, root; 2591 struct mount *new_mnt, *root_mnt, *old_mnt; 2592 struct mountpoint *old_mp, *root_mp; 2593 int error; 2594 2595 if (!may_mount()) 2596 return -EPERM; 2597 2598 error = user_path_dir(new_root, &new); 2599 if (error) 2600 goto out0; 2601 2602 error = user_path_dir(put_old, &old); 2603 if (error) 2604 goto out1; 2605 2606 error = security_sb_pivotroot(&old, &new); 2607 if (error) 2608 goto out2; 2609 2610 get_fs_root(current->fs, &root); 2611 old_mp = lock_mount(&old); 2612 error = PTR_ERR(old_mp); 2613 if (IS_ERR(old_mp)) 2614 goto out3; 2615 2616 error = -EINVAL; 2617 new_mnt = real_mount(new.mnt); 2618 root_mnt = real_mount(root.mnt); 2619 old_mnt = real_mount(old.mnt); 2620 if (IS_MNT_SHARED(old_mnt) || 2621 IS_MNT_SHARED(new_mnt->mnt_parent) || 2622 IS_MNT_SHARED(root_mnt->mnt_parent)) 2623 goto out4; 2624 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2625 goto out4; 2626 error = -ENOENT; 2627 if (d_unlinked(new.dentry)) 2628 goto out4; 2629 error = -EBUSY; 2630 if (new_mnt == root_mnt || old_mnt == root_mnt) 2631 goto out4; /* loop, on the same file system */ 2632 error = -EINVAL; 2633 if (root.mnt->mnt_root != root.dentry) 2634 goto out4; /* not a mountpoint */ 2635 if (!mnt_has_parent(root_mnt)) 2636 goto out4; /* not attached */ 2637 root_mp = root_mnt->mnt_mp; 2638 if (new.mnt->mnt_root != new.dentry) 2639 goto out4; /* not a mountpoint */ 2640 if (!mnt_has_parent(new_mnt)) 2641 goto out4; /* not attached */ 2642 /* make sure we can reach put_old from new_root */ 2643 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2644 goto out4; 2645 root_mp->m_count++; /* pin it so it won't go away */ 2646 br_write_lock(&vfsmount_lock); 2647 detach_mnt(new_mnt, &parent_path); 2648 detach_mnt(root_mnt, &root_parent); 2649 /* mount old root on put_old */ 2650 attach_mnt(root_mnt, old_mnt, old_mp); 2651 /* mount new_root on / */ 2652 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2653 touch_mnt_namespace(current->nsproxy->mnt_ns); 2654 br_write_unlock(&vfsmount_lock); 2655 chroot_fs_refs(&root, &new); 2656 put_mountpoint(root_mp); 2657 error = 0; 2658 out4: 2659 unlock_mount(old_mp); 2660 if (!error) { 2661 path_put(&root_parent); 2662 path_put(&parent_path); 2663 } 2664 out3: 2665 path_put(&root); 2666 out2: 2667 path_put(&old); 2668 out1: 2669 path_put(&new); 2670 out0: 2671 return error; 2672 } 2673 2674 static void __init init_mount_tree(void) 2675 { 2676 struct vfsmount *mnt; 2677 struct mnt_namespace *ns; 2678 struct path root; 2679 struct file_system_type *type; 2680 2681 type = get_fs_type("rootfs"); 2682 if (!type) 2683 panic("Can't find rootfs type"); 2684 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2685 put_filesystem(type); 2686 if (IS_ERR(mnt)) 2687 panic("Can't create rootfs"); 2688 2689 ns = create_mnt_ns(mnt); 2690 if (IS_ERR(ns)) 2691 panic("Can't allocate initial namespace"); 2692 2693 init_task.nsproxy->mnt_ns = ns; 2694 get_mnt_ns(ns); 2695 2696 root.mnt = mnt; 2697 root.dentry = mnt->mnt_root; 2698 2699 set_fs_pwd(current->fs, &root); 2700 set_fs_root(current->fs, &root); 2701 } 2702 2703 void __init mnt_init(void) 2704 { 2705 unsigned u; 2706 int err; 2707 2708 init_rwsem(&namespace_sem); 2709 2710 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2711 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2712 2713 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2714 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2715 2716 if (!mount_hashtable || !mountpoint_hashtable) 2717 panic("Failed to allocate mount hash table\n"); 2718 2719 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2720 2721 for (u = 0; u < HASH_SIZE; u++) 2722 INIT_LIST_HEAD(&mount_hashtable[u]); 2723 for (u = 0; u < HASH_SIZE; u++) 2724 INIT_LIST_HEAD(&mountpoint_hashtable[u]); 2725 2726 br_lock_init(&vfsmount_lock); 2727 2728 err = sysfs_init(); 2729 if (err) 2730 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2731 __func__, err); 2732 fs_kobj = kobject_create_and_add("fs", NULL); 2733 if (!fs_kobj) 2734 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2735 init_rootfs(); 2736 init_mount_tree(); 2737 } 2738 2739 void put_mnt_ns(struct mnt_namespace *ns) 2740 { 2741 if (!atomic_dec_and_test(&ns->count)) 2742 return; 2743 namespace_lock(); 2744 br_write_lock(&vfsmount_lock); 2745 umount_tree(ns->root, 0); 2746 br_write_unlock(&vfsmount_lock); 2747 namespace_unlock(); 2748 free_mnt_ns(ns); 2749 } 2750 2751 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2752 { 2753 struct vfsmount *mnt; 2754 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2755 if (!IS_ERR(mnt)) { 2756 /* 2757 * it is a longterm mount, don't release mnt until 2758 * we unmount before file sys is unregistered 2759 */ 2760 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2761 } 2762 return mnt; 2763 } 2764 EXPORT_SYMBOL_GPL(kern_mount_data); 2765 2766 void kern_unmount(struct vfsmount *mnt) 2767 { 2768 /* release long term mount so mount point can be released */ 2769 if (!IS_ERR_OR_NULL(mnt)) { 2770 br_write_lock(&vfsmount_lock); 2771 real_mount(mnt)->mnt_ns = NULL; 2772 br_write_unlock(&vfsmount_lock); 2773 mntput(mnt); 2774 } 2775 } 2776 EXPORT_SYMBOL(kern_unmount); 2777 2778 bool our_mnt(struct vfsmount *mnt) 2779 { 2780 return check_mnt(real_mount(mnt)); 2781 } 2782 2783 static void *mntns_get(struct task_struct *task) 2784 { 2785 struct mnt_namespace *ns = NULL; 2786 struct nsproxy *nsproxy; 2787 2788 rcu_read_lock(); 2789 nsproxy = task_nsproxy(task); 2790 if (nsproxy) { 2791 ns = nsproxy->mnt_ns; 2792 get_mnt_ns(ns); 2793 } 2794 rcu_read_unlock(); 2795 2796 return ns; 2797 } 2798 2799 static void mntns_put(void *ns) 2800 { 2801 put_mnt_ns(ns); 2802 } 2803 2804 static int mntns_install(struct nsproxy *nsproxy, void *ns) 2805 { 2806 struct fs_struct *fs = current->fs; 2807 struct mnt_namespace *mnt_ns = ns; 2808 struct path root; 2809 2810 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 2811 !nsown_capable(CAP_SYS_CHROOT) || 2812 !nsown_capable(CAP_SYS_ADMIN)) 2813 return -EPERM; 2814 2815 if (fs->users != 1) 2816 return -EINVAL; 2817 2818 get_mnt_ns(mnt_ns); 2819 put_mnt_ns(nsproxy->mnt_ns); 2820 nsproxy->mnt_ns = mnt_ns; 2821 2822 /* Find the root */ 2823 root.mnt = &mnt_ns->root->mnt; 2824 root.dentry = mnt_ns->root->mnt.mnt_root; 2825 path_get(&root); 2826 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 2827 ; 2828 2829 /* Update the pwd and root */ 2830 set_fs_pwd(fs, &root); 2831 set_fs_root(fs, &root); 2832 2833 path_put(&root); 2834 return 0; 2835 } 2836 2837 static unsigned int mntns_inum(void *ns) 2838 { 2839 struct mnt_namespace *mnt_ns = ns; 2840 return mnt_ns->proc_inum; 2841 } 2842 2843 const struct proc_ns_operations mntns_operations = { 2844 .name = "mnt", 2845 .type = CLONE_NEWNS, 2846 .get = mntns_get, 2847 .put = mntns_put, 2848 .install = mntns_install, 2849 .inum = mntns_inum, 2850 }; 2851