1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 35 #include "pnode.h" 36 #include "internal.h" 37 38 /* Maximum number of mounts in a mount namespace */ 39 unsigned int sysctl_mount_max __read_mostly = 100000; 40 41 static unsigned int m_hash_mask __read_mostly; 42 static unsigned int m_hash_shift __read_mostly; 43 static unsigned int mp_hash_mask __read_mostly; 44 static unsigned int mp_hash_shift __read_mostly; 45 46 static __initdata unsigned long mhash_entries; 47 static int __init set_mhash_entries(char *str) 48 { 49 if (!str) 50 return 0; 51 mhash_entries = simple_strtoul(str, &str, 0); 52 return 1; 53 } 54 __setup("mhash_entries=", set_mhash_entries); 55 56 static __initdata unsigned long mphash_entries; 57 static int __init set_mphash_entries(char *str) 58 { 59 if (!str) 60 return 0; 61 mphash_entries = simple_strtoul(str, &str, 0); 62 return 1; 63 } 64 __setup("mphash_entries=", set_mphash_entries); 65 66 static u64 event; 67 static DEFINE_IDA(mnt_id_ida); 68 static DEFINE_IDA(mnt_group_ida); 69 70 static struct hlist_head *mount_hashtable __read_mostly; 71 static struct hlist_head *mountpoint_hashtable __read_mostly; 72 static struct kmem_cache *mnt_cache __read_mostly; 73 static DECLARE_RWSEM(namespace_sem); 74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 76 77 struct mount_kattr { 78 unsigned int attr_set; 79 unsigned int attr_clr; 80 unsigned int propagation; 81 unsigned int lookup_flags; 82 bool recurse; 83 struct user_namespace *mnt_userns; 84 }; 85 86 /* /sys/fs */ 87 struct kobject *fs_kobj; 88 EXPORT_SYMBOL_GPL(fs_kobj); 89 90 /* 91 * vfsmount lock may be taken for read to prevent changes to the 92 * vfsmount hash, ie. during mountpoint lookups or walking back 93 * up the tree. 94 * 95 * It should be taken for write in all cases where the vfsmount 96 * tree or hash is modified or when a vfsmount structure is modified. 97 */ 98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 99 100 static inline void lock_mount_hash(void) 101 { 102 write_seqlock(&mount_lock); 103 } 104 105 static inline void unlock_mount_hash(void) 106 { 107 write_sequnlock(&mount_lock); 108 } 109 110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 111 { 112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 114 tmp = tmp + (tmp >> m_hash_shift); 115 return &mount_hashtable[tmp & m_hash_mask]; 116 } 117 118 static inline struct hlist_head *mp_hash(struct dentry *dentry) 119 { 120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 121 tmp = tmp + (tmp >> mp_hash_shift); 122 return &mountpoint_hashtable[tmp & mp_hash_mask]; 123 } 124 125 static int mnt_alloc_id(struct mount *mnt) 126 { 127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 128 129 if (res < 0) 130 return res; 131 mnt->mnt_id = res; 132 return 0; 133 } 134 135 static void mnt_free_id(struct mount *mnt) 136 { 137 ida_free(&mnt_id_ida, mnt->mnt_id); 138 } 139 140 /* 141 * Allocate a new peer group ID 142 */ 143 static int mnt_alloc_group_id(struct mount *mnt) 144 { 145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_group_id = res; 150 return 0; 151 } 152 153 /* 154 * Release a peer group ID 155 */ 156 void mnt_release_group_id(struct mount *mnt) 157 { 158 ida_free(&mnt_group_ida, mnt->mnt_group_id); 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static struct mount *alloc_vfsmnt(const char *name) 196 { 197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 198 if (mnt) { 199 int err; 200 201 err = mnt_alloc_id(mnt); 202 if (err) 203 goto out_free_cache; 204 205 if (name) { 206 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 207 if (!mnt->mnt_devname) 208 goto out_free_id; 209 } 210 211 #ifdef CONFIG_SMP 212 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 213 if (!mnt->mnt_pcp) 214 goto out_free_devname; 215 216 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 217 #else 218 mnt->mnt_count = 1; 219 mnt->mnt_writers = 0; 220 #endif 221 222 INIT_HLIST_NODE(&mnt->mnt_hash); 223 INIT_LIST_HEAD(&mnt->mnt_child); 224 INIT_LIST_HEAD(&mnt->mnt_mounts); 225 INIT_LIST_HEAD(&mnt->mnt_list); 226 INIT_LIST_HEAD(&mnt->mnt_expire); 227 INIT_LIST_HEAD(&mnt->mnt_share); 228 INIT_LIST_HEAD(&mnt->mnt_slave_list); 229 INIT_LIST_HEAD(&mnt->mnt_slave); 230 INIT_HLIST_NODE(&mnt->mnt_mp_list); 231 INIT_LIST_HEAD(&mnt->mnt_umounting); 232 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 233 mnt->mnt.mnt_userns = &init_user_ns; 234 } 235 return mnt; 236 237 #ifdef CONFIG_SMP 238 out_free_devname: 239 kfree_const(mnt->mnt_devname); 240 #endif 241 out_free_id: 242 mnt_free_id(mnt); 243 out_free_cache: 244 kmem_cache_free(mnt_cache, mnt); 245 return NULL; 246 } 247 248 /* 249 * Most r/o checks on a fs are for operations that take 250 * discrete amounts of time, like a write() or unlink(). 251 * We must keep track of when those operations start 252 * (for permission checks) and when they end, so that 253 * we can determine when writes are able to occur to 254 * a filesystem. 255 */ 256 /* 257 * __mnt_is_readonly: check whether a mount is read-only 258 * @mnt: the mount to check for its write status 259 * 260 * This shouldn't be used directly ouside of the VFS. 261 * It does not guarantee that the filesystem will stay 262 * r/w, just that it is right *now*. This can not and 263 * should not be used in place of IS_RDONLY(inode). 264 * mnt_want/drop_write() will _keep_ the filesystem 265 * r/w. 266 */ 267 bool __mnt_is_readonly(struct vfsmount *mnt) 268 { 269 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 270 } 271 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 272 273 static inline void mnt_inc_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 277 #else 278 mnt->mnt_writers++; 279 #endif 280 } 281 282 static inline void mnt_dec_writers(struct mount *mnt) 283 { 284 #ifdef CONFIG_SMP 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 286 #else 287 mnt->mnt_writers--; 288 #endif 289 } 290 291 static unsigned int mnt_get_writers(struct mount *mnt) 292 { 293 #ifdef CONFIG_SMP 294 unsigned int count = 0; 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 299 } 300 301 return count; 302 #else 303 return mnt->mnt_writers; 304 #endif 305 } 306 307 static int mnt_is_readonly(struct vfsmount *mnt) 308 { 309 if (mnt->mnt_sb->s_readonly_remount) 310 return 1; 311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 312 smp_rmb(); 313 return __mnt_is_readonly(mnt); 314 } 315 316 /* 317 * Most r/o & frozen checks on a fs are for operations that take discrete 318 * amounts of time, like a write() or unlink(). We must keep track of when 319 * those operations start (for permission checks) and when they end, so that we 320 * can determine when writes are able to occur to a filesystem. 321 */ 322 /** 323 * __mnt_want_write - get write access to a mount without freeze protection 324 * @m: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is about to be performed to 327 * it, and makes sure that writes are allowed (mnt it read-write) before 328 * returning success. This operation does not protect against filesystem being 329 * frozen. When the write operation is finished, __mnt_drop_write() must be 330 * called. This is effectively a refcount. 331 */ 332 int __mnt_want_write(struct vfsmount *m) 333 { 334 struct mount *mnt = real_mount(m); 335 int ret = 0; 336 337 preempt_disable(); 338 mnt_inc_writers(mnt); 339 /* 340 * The store to mnt_inc_writers must be visible before we pass 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 342 * incremented count after it has set MNT_WRITE_HOLD. 343 */ 344 smp_mb(); 345 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 346 cpu_relax(); 347 /* 348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 349 * be set to match its requirements. So we must not load that until 350 * MNT_WRITE_HOLD is cleared. 351 */ 352 smp_rmb(); 353 if (mnt_is_readonly(m)) { 354 mnt_dec_writers(mnt); 355 ret = -EROFS; 356 } 357 preempt_enable(); 358 359 return ret; 360 } 361 362 /** 363 * mnt_want_write - get write access to a mount 364 * @m: the mount on which to take a write 365 * 366 * This tells the low-level filesystem that a write is about to be performed to 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem 368 * is not frozen) before returning success. When the write operation is 369 * finished, mnt_drop_write() must be called. This is effectively a refcount. 370 */ 371 int mnt_want_write(struct vfsmount *m) 372 { 373 int ret; 374 375 sb_start_write(m->mnt_sb); 376 ret = __mnt_want_write(m); 377 if (ret) 378 sb_end_write(m->mnt_sb); 379 return ret; 380 } 381 EXPORT_SYMBOL_GPL(mnt_want_write); 382 383 /** 384 * __mnt_want_write_file - get write access to a file's mount 385 * @file: the file who's mount on which to take a write 386 * 387 * This is like __mnt_want_write, but if the file is already open for writing it 388 * skips incrementing mnt_writers (since the open file already has a reference) 389 * and instead only does the check for emergency r/o remounts. This must be 390 * paired with __mnt_drop_write_file. 391 */ 392 int __mnt_want_write_file(struct file *file) 393 { 394 if (file->f_mode & FMODE_WRITER) { 395 /* 396 * Superblock may have become readonly while there are still 397 * writable fd's, e.g. due to a fs error with errors=remount-ro 398 */ 399 if (__mnt_is_readonly(file->f_path.mnt)) 400 return -EROFS; 401 return 0; 402 } 403 return __mnt_want_write(file->f_path.mnt); 404 } 405 406 /** 407 * mnt_want_write_file - get write access to a file's mount 408 * @file: the file who's mount on which to take a write 409 * 410 * This is like mnt_want_write, but if the file is already open for writing it 411 * skips incrementing mnt_writers (since the open file already has a reference) 412 * and instead only does the freeze protection and the check for emergency r/o 413 * remounts. This must be paired with mnt_drop_write_file. 414 */ 415 int mnt_want_write_file(struct file *file) 416 { 417 int ret; 418 419 sb_start_write(file_inode(file)->i_sb); 420 ret = __mnt_want_write_file(file); 421 if (ret) 422 sb_end_write(file_inode(file)->i_sb); 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(mnt_want_write_file); 426 427 /** 428 * __mnt_drop_write - give up write access to a mount 429 * @mnt: the mount on which to give up write access 430 * 431 * Tells the low-level filesystem that we are done 432 * performing writes to it. Must be matched with 433 * __mnt_want_write() call above. 434 */ 435 void __mnt_drop_write(struct vfsmount *mnt) 436 { 437 preempt_disable(); 438 mnt_dec_writers(real_mount(mnt)); 439 preempt_enable(); 440 } 441 442 /** 443 * mnt_drop_write - give up write access to a mount 444 * @mnt: the mount on which to give up write access 445 * 446 * Tells the low-level filesystem that we are done performing writes to it and 447 * also allows filesystem to be frozen again. Must be matched with 448 * mnt_want_write() call above. 449 */ 450 void mnt_drop_write(struct vfsmount *mnt) 451 { 452 __mnt_drop_write(mnt); 453 sb_end_write(mnt->mnt_sb); 454 } 455 EXPORT_SYMBOL_GPL(mnt_drop_write); 456 457 void __mnt_drop_write_file(struct file *file) 458 { 459 if (!(file->f_mode & FMODE_WRITER)) 460 __mnt_drop_write(file->f_path.mnt); 461 } 462 463 void mnt_drop_write_file(struct file *file) 464 { 465 __mnt_drop_write_file(file); 466 sb_end_write(file_inode(file)->i_sb); 467 } 468 EXPORT_SYMBOL(mnt_drop_write_file); 469 470 static inline int mnt_hold_writers(struct mount *mnt) 471 { 472 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 473 /* 474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 475 * should be visible before we do. 476 */ 477 smp_mb(); 478 479 /* 480 * With writers on hold, if this value is zero, then there are 481 * definitely no active writers (although held writers may subsequently 482 * increment the count, they'll have to wait, and decrement it after 483 * seeing MNT_READONLY). 484 * 485 * It is OK to have counter incremented on one CPU and decremented on 486 * another: the sum will add up correctly. The danger would be when we 487 * sum up each counter, if we read a counter before it is incremented, 488 * but then read another CPU's count which it has been subsequently 489 * decremented from -- we would see more decrements than we should. 490 * MNT_WRITE_HOLD protects against this scenario, because 491 * mnt_want_write first increments count, then smp_mb, then spins on 492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 493 * we're counting up here. 494 */ 495 if (mnt_get_writers(mnt) > 0) 496 return -EBUSY; 497 498 return 0; 499 } 500 501 static inline void mnt_unhold_writers(struct mount *mnt) 502 { 503 /* 504 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 505 * that become unheld will see MNT_READONLY. 506 */ 507 smp_wmb(); 508 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 509 } 510 511 static int mnt_make_readonly(struct mount *mnt) 512 { 513 int ret; 514 515 ret = mnt_hold_writers(mnt); 516 if (!ret) 517 mnt->mnt.mnt_flags |= MNT_READONLY; 518 mnt_unhold_writers(mnt); 519 return ret; 520 } 521 522 int sb_prepare_remount_readonly(struct super_block *sb) 523 { 524 struct mount *mnt; 525 int err = 0; 526 527 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 528 if (atomic_long_read(&sb->s_remove_count)) 529 return -EBUSY; 530 531 lock_mount_hash(); 532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 533 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 534 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 535 smp_mb(); 536 if (mnt_get_writers(mnt) > 0) { 537 err = -EBUSY; 538 break; 539 } 540 } 541 } 542 if (!err && atomic_long_read(&sb->s_remove_count)) 543 err = -EBUSY; 544 545 if (!err) { 546 sb->s_readonly_remount = 1; 547 smp_wmb(); 548 } 549 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 550 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 551 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 552 } 553 unlock_mount_hash(); 554 555 return err; 556 } 557 558 static void free_vfsmnt(struct mount *mnt) 559 { 560 struct user_namespace *mnt_userns; 561 562 mnt_userns = mnt_user_ns(&mnt->mnt); 563 if (mnt_userns != &init_user_ns) 564 put_user_ns(mnt_userns); 565 kfree_const(mnt->mnt_devname); 566 #ifdef CONFIG_SMP 567 free_percpu(mnt->mnt_pcp); 568 #endif 569 kmem_cache_free(mnt_cache, mnt); 570 } 571 572 static void delayed_free_vfsmnt(struct rcu_head *head) 573 { 574 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 575 } 576 577 /* call under rcu_read_lock */ 578 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 579 { 580 struct mount *mnt; 581 if (read_seqretry(&mount_lock, seq)) 582 return 1; 583 if (bastard == NULL) 584 return 0; 585 mnt = real_mount(bastard); 586 mnt_add_count(mnt, 1); 587 smp_mb(); // see mntput_no_expire() 588 if (likely(!read_seqretry(&mount_lock, seq))) 589 return 0; 590 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 591 mnt_add_count(mnt, -1); 592 return 1; 593 } 594 lock_mount_hash(); 595 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 596 mnt_add_count(mnt, -1); 597 unlock_mount_hash(); 598 return 1; 599 } 600 unlock_mount_hash(); 601 /* caller will mntput() */ 602 return -1; 603 } 604 605 /* call under rcu_read_lock */ 606 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 607 { 608 int res = __legitimize_mnt(bastard, seq); 609 if (likely(!res)) 610 return true; 611 if (unlikely(res < 0)) { 612 rcu_read_unlock(); 613 mntput(bastard); 614 rcu_read_lock(); 615 } 616 return false; 617 } 618 619 /* 620 * find the first mount at @dentry on vfsmount @mnt. 621 * call under rcu_read_lock() 622 */ 623 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 624 { 625 struct hlist_head *head = m_hash(mnt, dentry); 626 struct mount *p; 627 628 hlist_for_each_entry_rcu(p, head, mnt_hash) 629 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 630 return p; 631 return NULL; 632 } 633 634 /* 635 * lookup_mnt - Return the first child mount mounted at path 636 * 637 * "First" means first mounted chronologically. If you create the 638 * following mounts: 639 * 640 * mount /dev/sda1 /mnt 641 * mount /dev/sda2 /mnt 642 * mount /dev/sda3 /mnt 643 * 644 * Then lookup_mnt() on the base /mnt dentry in the root mount will 645 * return successively the root dentry and vfsmount of /dev/sda1, then 646 * /dev/sda2, then /dev/sda3, then NULL. 647 * 648 * lookup_mnt takes a reference to the found vfsmount. 649 */ 650 struct vfsmount *lookup_mnt(const struct path *path) 651 { 652 struct mount *child_mnt; 653 struct vfsmount *m; 654 unsigned seq; 655 656 rcu_read_lock(); 657 do { 658 seq = read_seqbegin(&mount_lock); 659 child_mnt = __lookup_mnt(path->mnt, path->dentry); 660 m = child_mnt ? &child_mnt->mnt : NULL; 661 } while (!legitimize_mnt(m, seq)); 662 rcu_read_unlock(); 663 return m; 664 } 665 666 static inline void lock_ns_list(struct mnt_namespace *ns) 667 { 668 spin_lock(&ns->ns_lock); 669 } 670 671 static inline void unlock_ns_list(struct mnt_namespace *ns) 672 { 673 spin_unlock(&ns->ns_lock); 674 } 675 676 static inline bool mnt_is_cursor(struct mount *mnt) 677 { 678 return mnt->mnt.mnt_flags & MNT_CURSOR; 679 } 680 681 /* 682 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 683 * current mount namespace. 684 * 685 * The common case is dentries are not mountpoints at all and that 686 * test is handled inline. For the slow case when we are actually 687 * dealing with a mountpoint of some kind, walk through all of the 688 * mounts in the current mount namespace and test to see if the dentry 689 * is a mountpoint. 690 * 691 * The mount_hashtable is not usable in the context because we 692 * need to identify all mounts that may be in the current mount 693 * namespace not just a mount that happens to have some specified 694 * parent mount. 695 */ 696 bool __is_local_mountpoint(struct dentry *dentry) 697 { 698 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 699 struct mount *mnt; 700 bool is_covered = false; 701 702 down_read(&namespace_sem); 703 lock_ns_list(ns); 704 list_for_each_entry(mnt, &ns->list, mnt_list) { 705 if (mnt_is_cursor(mnt)) 706 continue; 707 is_covered = (mnt->mnt_mountpoint == dentry); 708 if (is_covered) 709 break; 710 } 711 unlock_ns_list(ns); 712 up_read(&namespace_sem); 713 714 return is_covered; 715 } 716 717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 718 { 719 struct hlist_head *chain = mp_hash(dentry); 720 struct mountpoint *mp; 721 722 hlist_for_each_entry(mp, chain, m_hash) { 723 if (mp->m_dentry == dentry) { 724 mp->m_count++; 725 return mp; 726 } 727 } 728 return NULL; 729 } 730 731 static struct mountpoint *get_mountpoint(struct dentry *dentry) 732 { 733 struct mountpoint *mp, *new = NULL; 734 int ret; 735 736 if (d_mountpoint(dentry)) { 737 /* might be worth a WARN_ON() */ 738 if (d_unlinked(dentry)) 739 return ERR_PTR(-ENOENT); 740 mountpoint: 741 read_seqlock_excl(&mount_lock); 742 mp = lookup_mountpoint(dentry); 743 read_sequnlock_excl(&mount_lock); 744 if (mp) 745 goto done; 746 } 747 748 if (!new) 749 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 750 if (!new) 751 return ERR_PTR(-ENOMEM); 752 753 754 /* Exactly one processes may set d_mounted */ 755 ret = d_set_mounted(dentry); 756 757 /* Someone else set d_mounted? */ 758 if (ret == -EBUSY) 759 goto mountpoint; 760 761 /* The dentry is not available as a mountpoint? */ 762 mp = ERR_PTR(ret); 763 if (ret) 764 goto done; 765 766 /* Add the new mountpoint to the hash table */ 767 read_seqlock_excl(&mount_lock); 768 new->m_dentry = dget(dentry); 769 new->m_count = 1; 770 hlist_add_head(&new->m_hash, mp_hash(dentry)); 771 INIT_HLIST_HEAD(&new->m_list); 772 read_sequnlock_excl(&mount_lock); 773 774 mp = new; 775 new = NULL; 776 done: 777 kfree(new); 778 return mp; 779 } 780 781 /* 782 * vfsmount lock must be held. Additionally, the caller is responsible 783 * for serializing calls for given disposal list. 784 */ 785 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 786 { 787 if (!--mp->m_count) { 788 struct dentry *dentry = mp->m_dentry; 789 BUG_ON(!hlist_empty(&mp->m_list)); 790 spin_lock(&dentry->d_lock); 791 dentry->d_flags &= ~DCACHE_MOUNTED; 792 spin_unlock(&dentry->d_lock); 793 dput_to_list(dentry, list); 794 hlist_del(&mp->m_hash); 795 kfree(mp); 796 } 797 } 798 799 /* called with namespace_lock and vfsmount lock */ 800 static void put_mountpoint(struct mountpoint *mp) 801 { 802 __put_mountpoint(mp, &ex_mountpoints); 803 } 804 805 static inline int check_mnt(struct mount *mnt) 806 { 807 return mnt->mnt_ns == current->nsproxy->mnt_ns; 808 } 809 810 /* 811 * vfsmount lock must be held for write 812 */ 813 static void touch_mnt_namespace(struct mnt_namespace *ns) 814 { 815 if (ns) { 816 ns->event = ++event; 817 wake_up_interruptible(&ns->poll); 818 } 819 } 820 821 /* 822 * vfsmount lock must be held for write 823 */ 824 static void __touch_mnt_namespace(struct mnt_namespace *ns) 825 { 826 if (ns && ns->event != event) { 827 ns->event = event; 828 wake_up_interruptible(&ns->poll); 829 } 830 } 831 832 /* 833 * vfsmount lock must be held for write 834 */ 835 static struct mountpoint *unhash_mnt(struct mount *mnt) 836 { 837 struct mountpoint *mp; 838 mnt->mnt_parent = mnt; 839 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 840 list_del_init(&mnt->mnt_child); 841 hlist_del_init_rcu(&mnt->mnt_hash); 842 hlist_del_init(&mnt->mnt_mp_list); 843 mp = mnt->mnt_mp; 844 mnt->mnt_mp = NULL; 845 return mp; 846 } 847 848 /* 849 * vfsmount lock must be held for write 850 */ 851 static void umount_mnt(struct mount *mnt) 852 { 853 put_mountpoint(unhash_mnt(mnt)); 854 } 855 856 /* 857 * vfsmount lock must be held for write 858 */ 859 void mnt_set_mountpoint(struct mount *mnt, 860 struct mountpoint *mp, 861 struct mount *child_mnt) 862 { 863 mp->m_count++; 864 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 865 child_mnt->mnt_mountpoint = mp->m_dentry; 866 child_mnt->mnt_parent = mnt; 867 child_mnt->mnt_mp = mp; 868 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 869 } 870 871 static void __attach_mnt(struct mount *mnt, struct mount *parent) 872 { 873 hlist_add_head_rcu(&mnt->mnt_hash, 874 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 875 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 876 } 877 878 /* 879 * vfsmount lock must be held for write 880 */ 881 static void attach_mnt(struct mount *mnt, 882 struct mount *parent, 883 struct mountpoint *mp) 884 { 885 mnt_set_mountpoint(parent, mp, mnt); 886 __attach_mnt(mnt, parent); 887 } 888 889 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 890 { 891 struct mountpoint *old_mp = mnt->mnt_mp; 892 struct mount *old_parent = mnt->mnt_parent; 893 894 list_del_init(&mnt->mnt_child); 895 hlist_del_init(&mnt->mnt_mp_list); 896 hlist_del_init_rcu(&mnt->mnt_hash); 897 898 attach_mnt(mnt, parent, mp); 899 900 put_mountpoint(old_mp); 901 mnt_add_count(old_parent, -1); 902 } 903 904 /* 905 * vfsmount lock must be held for write 906 */ 907 static void commit_tree(struct mount *mnt) 908 { 909 struct mount *parent = mnt->mnt_parent; 910 struct mount *m; 911 LIST_HEAD(head); 912 struct mnt_namespace *n = parent->mnt_ns; 913 914 BUG_ON(parent == mnt); 915 916 list_add_tail(&head, &mnt->mnt_list); 917 list_for_each_entry(m, &head, mnt_list) 918 m->mnt_ns = n; 919 920 list_splice(&head, n->list.prev); 921 922 n->mounts += n->pending_mounts; 923 n->pending_mounts = 0; 924 925 __attach_mnt(mnt, parent); 926 touch_mnt_namespace(n); 927 } 928 929 static struct mount *next_mnt(struct mount *p, struct mount *root) 930 { 931 struct list_head *next = p->mnt_mounts.next; 932 if (next == &p->mnt_mounts) { 933 while (1) { 934 if (p == root) 935 return NULL; 936 next = p->mnt_child.next; 937 if (next != &p->mnt_parent->mnt_mounts) 938 break; 939 p = p->mnt_parent; 940 } 941 } 942 return list_entry(next, struct mount, mnt_child); 943 } 944 945 static struct mount *skip_mnt_tree(struct mount *p) 946 { 947 struct list_head *prev = p->mnt_mounts.prev; 948 while (prev != &p->mnt_mounts) { 949 p = list_entry(prev, struct mount, mnt_child); 950 prev = p->mnt_mounts.prev; 951 } 952 return p; 953 } 954 955 /** 956 * vfs_create_mount - Create a mount for a configured superblock 957 * @fc: The configuration context with the superblock attached 958 * 959 * Create a mount to an already configured superblock. If necessary, the 960 * caller should invoke vfs_get_tree() before calling this. 961 * 962 * Note that this does not attach the mount to anything. 963 */ 964 struct vfsmount *vfs_create_mount(struct fs_context *fc) 965 { 966 struct mount *mnt; 967 968 if (!fc->root) 969 return ERR_PTR(-EINVAL); 970 971 mnt = alloc_vfsmnt(fc->source ?: "none"); 972 if (!mnt) 973 return ERR_PTR(-ENOMEM); 974 975 if (fc->sb_flags & SB_KERNMOUNT) 976 mnt->mnt.mnt_flags = MNT_INTERNAL; 977 978 atomic_inc(&fc->root->d_sb->s_active); 979 mnt->mnt.mnt_sb = fc->root->d_sb; 980 mnt->mnt.mnt_root = dget(fc->root); 981 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 982 mnt->mnt_parent = mnt; 983 984 lock_mount_hash(); 985 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 986 unlock_mount_hash(); 987 return &mnt->mnt; 988 } 989 EXPORT_SYMBOL(vfs_create_mount); 990 991 struct vfsmount *fc_mount(struct fs_context *fc) 992 { 993 int err = vfs_get_tree(fc); 994 if (!err) { 995 up_write(&fc->root->d_sb->s_umount); 996 return vfs_create_mount(fc); 997 } 998 return ERR_PTR(err); 999 } 1000 EXPORT_SYMBOL(fc_mount); 1001 1002 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1003 int flags, const char *name, 1004 void *data) 1005 { 1006 struct fs_context *fc; 1007 struct vfsmount *mnt; 1008 int ret = 0; 1009 1010 if (!type) 1011 return ERR_PTR(-EINVAL); 1012 1013 fc = fs_context_for_mount(type, flags); 1014 if (IS_ERR(fc)) 1015 return ERR_CAST(fc); 1016 1017 if (name) 1018 ret = vfs_parse_fs_string(fc, "source", 1019 name, strlen(name)); 1020 if (!ret) 1021 ret = parse_monolithic_mount_data(fc, data); 1022 if (!ret) 1023 mnt = fc_mount(fc); 1024 else 1025 mnt = ERR_PTR(ret); 1026 1027 put_fs_context(fc); 1028 return mnt; 1029 } 1030 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1031 1032 struct vfsmount * 1033 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1034 const char *name, void *data) 1035 { 1036 /* Until it is worked out how to pass the user namespace 1037 * through from the parent mount to the submount don't support 1038 * unprivileged mounts with submounts. 1039 */ 1040 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1041 return ERR_PTR(-EPERM); 1042 1043 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1044 } 1045 EXPORT_SYMBOL_GPL(vfs_submount); 1046 1047 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1048 int flag) 1049 { 1050 struct super_block *sb = old->mnt.mnt_sb; 1051 struct mount *mnt; 1052 int err; 1053 1054 mnt = alloc_vfsmnt(old->mnt_devname); 1055 if (!mnt) 1056 return ERR_PTR(-ENOMEM); 1057 1058 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1059 mnt->mnt_group_id = 0; /* not a peer of original */ 1060 else 1061 mnt->mnt_group_id = old->mnt_group_id; 1062 1063 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1064 err = mnt_alloc_group_id(mnt); 1065 if (err) 1066 goto out_free; 1067 } 1068 1069 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1070 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1071 1072 atomic_inc(&sb->s_active); 1073 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1074 if (mnt->mnt.mnt_userns != &init_user_ns) 1075 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1076 mnt->mnt.mnt_sb = sb; 1077 mnt->mnt.mnt_root = dget(root); 1078 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1079 mnt->mnt_parent = mnt; 1080 lock_mount_hash(); 1081 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1082 unlock_mount_hash(); 1083 1084 if ((flag & CL_SLAVE) || 1085 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1086 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1087 mnt->mnt_master = old; 1088 CLEAR_MNT_SHARED(mnt); 1089 } else if (!(flag & CL_PRIVATE)) { 1090 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1091 list_add(&mnt->mnt_share, &old->mnt_share); 1092 if (IS_MNT_SLAVE(old)) 1093 list_add(&mnt->mnt_slave, &old->mnt_slave); 1094 mnt->mnt_master = old->mnt_master; 1095 } else { 1096 CLEAR_MNT_SHARED(mnt); 1097 } 1098 if (flag & CL_MAKE_SHARED) 1099 set_mnt_shared(mnt); 1100 1101 /* stick the duplicate mount on the same expiry list 1102 * as the original if that was on one */ 1103 if (flag & CL_EXPIRE) { 1104 if (!list_empty(&old->mnt_expire)) 1105 list_add(&mnt->mnt_expire, &old->mnt_expire); 1106 } 1107 1108 return mnt; 1109 1110 out_free: 1111 mnt_free_id(mnt); 1112 free_vfsmnt(mnt); 1113 return ERR_PTR(err); 1114 } 1115 1116 static void cleanup_mnt(struct mount *mnt) 1117 { 1118 struct hlist_node *p; 1119 struct mount *m; 1120 /* 1121 * The warning here probably indicates that somebody messed 1122 * up a mnt_want/drop_write() pair. If this happens, the 1123 * filesystem was probably unable to make r/w->r/o transitions. 1124 * The locking used to deal with mnt_count decrement provides barriers, 1125 * so mnt_get_writers() below is safe. 1126 */ 1127 WARN_ON(mnt_get_writers(mnt)); 1128 if (unlikely(mnt->mnt_pins.first)) 1129 mnt_pin_kill(mnt); 1130 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1131 hlist_del(&m->mnt_umount); 1132 mntput(&m->mnt); 1133 } 1134 fsnotify_vfsmount_delete(&mnt->mnt); 1135 dput(mnt->mnt.mnt_root); 1136 deactivate_super(mnt->mnt.mnt_sb); 1137 mnt_free_id(mnt); 1138 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1139 } 1140 1141 static void __cleanup_mnt(struct rcu_head *head) 1142 { 1143 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1144 } 1145 1146 static LLIST_HEAD(delayed_mntput_list); 1147 static void delayed_mntput(struct work_struct *unused) 1148 { 1149 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1150 struct mount *m, *t; 1151 1152 llist_for_each_entry_safe(m, t, node, mnt_llist) 1153 cleanup_mnt(m); 1154 } 1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1156 1157 static void mntput_no_expire(struct mount *mnt) 1158 { 1159 LIST_HEAD(list); 1160 int count; 1161 1162 rcu_read_lock(); 1163 if (likely(READ_ONCE(mnt->mnt_ns))) { 1164 /* 1165 * Since we don't do lock_mount_hash() here, 1166 * ->mnt_ns can change under us. However, if it's 1167 * non-NULL, then there's a reference that won't 1168 * be dropped until after an RCU delay done after 1169 * turning ->mnt_ns NULL. So if we observe it 1170 * non-NULL under rcu_read_lock(), the reference 1171 * we are dropping is not the final one. 1172 */ 1173 mnt_add_count(mnt, -1); 1174 rcu_read_unlock(); 1175 return; 1176 } 1177 lock_mount_hash(); 1178 /* 1179 * make sure that if __legitimize_mnt() has not seen us grab 1180 * mount_lock, we'll see their refcount increment here. 1181 */ 1182 smp_mb(); 1183 mnt_add_count(mnt, -1); 1184 count = mnt_get_count(mnt); 1185 if (count != 0) { 1186 WARN_ON(count < 0); 1187 rcu_read_unlock(); 1188 unlock_mount_hash(); 1189 return; 1190 } 1191 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1192 rcu_read_unlock(); 1193 unlock_mount_hash(); 1194 return; 1195 } 1196 mnt->mnt.mnt_flags |= MNT_DOOMED; 1197 rcu_read_unlock(); 1198 1199 list_del(&mnt->mnt_instance); 1200 1201 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1202 struct mount *p, *tmp; 1203 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1204 __put_mountpoint(unhash_mnt(p), &list); 1205 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1206 } 1207 } 1208 unlock_mount_hash(); 1209 shrink_dentry_list(&list); 1210 1211 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1212 struct task_struct *task = current; 1213 if (likely(!(task->flags & PF_KTHREAD))) { 1214 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1215 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1216 return; 1217 } 1218 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1219 schedule_delayed_work(&delayed_mntput_work, 1); 1220 return; 1221 } 1222 cleanup_mnt(mnt); 1223 } 1224 1225 void mntput(struct vfsmount *mnt) 1226 { 1227 if (mnt) { 1228 struct mount *m = real_mount(mnt); 1229 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1230 if (unlikely(m->mnt_expiry_mark)) 1231 m->mnt_expiry_mark = 0; 1232 mntput_no_expire(m); 1233 } 1234 } 1235 EXPORT_SYMBOL(mntput); 1236 1237 struct vfsmount *mntget(struct vfsmount *mnt) 1238 { 1239 if (mnt) 1240 mnt_add_count(real_mount(mnt), 1); 1241 return mnt; 1242 } 1243 EXPORT_SYMBOL(mntget); 1244 1245 /* path_is_mountpoint() - Check if path is a mount in the current 1246 * namespace. 1247 * 1248 * d_mountpoint() can only be used reliably to establish if a dentry is 1249 * not mounted in any namespace and that common case is handled inline. 1250 * d_mountpoint() isn't aware of the possibility there may be multiple 1251 * mounts using a given dentry in a different namespace. This function 1252 * checks if the passed in path is a mountpoint rather than the dentry 1253 * alone. 1254 */ 1255 bool path_is_mountpoint(const struct path *path) 1256 { 1257 unsigned seq; 1258 bool res; 1259 1260 if (!d_mountpoint(path->dentry)) 1261 return false; 1262 1263 rcu_read_lock(); 1264 do { 1265 seq = read_seqbegin(&mount_lock); 1266 res = __path_is_mountpoint(path); 1267 } while (read_seqretry(&mount_lock, seq)); 1268 rcu_read_unlock(); 1269 1270 return res; 1271 } 1272 EXPORT_SYMBOL(path_is_mountpoint); 1273 1274 struct vfsmount *mnt_clone_internal(const struct path *path) 1275 { 1276 struct mount *p; 1277 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1278 if (IS_ERR(p)) 1279 return ERR_CAST(p); 1280 p->mnt.mnt_flags |= MNT_INTERNAL; 1281 return &p->mnt; 1282 } 1283 1284 #ifdef CONFIG_PROC_FS 1285 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1286 struct list_head *p) 1287 { 1288 struct mount *mnt, *ret = NULL; 1289 1290 lock_ns_list(ns); 1291 list_for_each_continue(p, &ns->list) { 1292 mnt = list_entry(p, typeof(*mnt), mnt_list); 1293 if (!mnt_is_cursor(mnt)) { 1294 ret = mnt; 1295 break; 1296 } 1297 } 1298 unlock_ns_list(ns); 1299 1300 return ret; 1301 } 1302 1303 /* iterator; we want it to have access to namespace_sem, thus here... */ 1304 static void *m_start(struct seq_file *m, loff_t *pos) 1305 { 1306 struct proc_mounts *p = m->private; 1307 struct list_head *prev; 1308 1309 down_read(&namespace_sem); 1310 if (!*pos) { 1311 prev = &p->ns->list; 1312 } else { 1313 prev = &p->cursor.mnt_list; 1314 1315 /* Read after we'd reached the end? */ 1316 if (list_empty(prev)) 1317 return NULL; 1318 } 1319 1320 return mnt_list_next(p->ns, prev); 1321 } 1322 1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1324 { 1325 struct proc_mounts *p = m->private; 1326 struct mount *mnt = v; 1327 1328 ++*pos; 1329 return mnt_list_next(p->ns, &mnt->mnt_list); 1330 } 1331 1332 static void m_stop(struct seq_file *m, void *v) 1333 { 1334 struct proc_mounts *p = m->private; 1335 struct mount *mnt = v; 1336 1337 lock_ns_list(p->ns); 1338 if (mnt) 1339 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1340 else 1341 list_del_init(&p->cursor.mnt_list); 1342 unlock_ns_list(p->ns); 1343 up_read(&namespace_sem); 1344 } 1345 1346 static int m_show(struct seq_file *m, void *v) 1347 { 1348 struct proc_mounts *p = m->private; 1349 struct mount *r = v; 1350 return p->show(m, &r->mnt); 1351 } 1352 1353 const struct seq_operations mounts_op = { 1354 .start = m_start, 1355 .next = m_next, 1356 .stop = m_stop, 1357 .show = m_show, 1358 }; 1359 1360 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1361 { 1362 down_read(&namespace_sem); 1363 lock_ns_list(ns); 1364 list_del(&cursor->mnt_list); 1365 unlock_ns_list(ns); 1366 up_read(&namespace_sem); 1367 } 1368 #endif /* CONFIG_PROC_FS */ 1369 1370 /** 1371 * may_umount_tree - check if a mount tree is busy 1372 * @mnt: root of mount tree 1373 * 1374 * This is called to check if a tree of mounts has any 1375 * open files, pwds, chroots or sub mounts that are 1376 * busy. 1377 */ 1378 int may_umount_tree(struct vfsmount *m) 1379 { 1380 struct mount *mnt = real_mount(m); 1381 int actual_refs = 0; 1382 int minimum_refs = 0; 1383 struct mount *p; 1384 BUG_ON(!m); 1385 1386 /* write lock needed for mnt_get_count */ 1387 lock_mount_hash(); 1388 for (p = mnt; p; p = next_mnt(p, mnt)) { 1389 actual_refs += mnt_get_count(p); 1390 minimum_refs += 2; 1391 } 1392 unlock_mount_hash(); 1393 1394 if (actual_refs > minimum_refs) 1395 return 0; 1396 1397 return 1; 1398 } 1399 1400 EXPORT_SYMBOL(may_umount_tree); 1401 1402 /** 1403 * may_umount - check if a mount point is busy 1404 * @mnt: root of mount 1405 * 1406 * This is called to check if a mount point has any 1407 * open files, pwds, chroots or sub mounts. If the 1408 * mount has sub mounts this will return busy 1409 * regardless of whether the sub mounts are busy. 1410 * 1411 * Doesn't take quota and stuff into account. IOW, in some cases it will 1412 * give false negatives. The main reason why it's here is that we need 1413 * a non-destructive way to look for easily umountable filesystems. 1414 */ 1415 int may_umount(struct vfsmount *mnt) 1416 { 1417 int ret = 1; 1418 down_read(&namespace_sem); 1419 lock_mount_hash(); 1420 if (propagate_mount_busy(real_mount(mnt), 2)) 1421 ret = 0; 1422 unlock_mount_hash(); 1423 up_read(&namespace_sem); 1424 return ret; 1425 } 1426 1427 EXPORT_SYMBOL(may_umount); 1428 1429 static void namespace_unlock(void) 1430 { 1431 struct hlist_head head; 1432 struct hlist_node *p; 1433 struct mount *m; 1434 LIST_HEAD(list); 1435 1436 hlist_move_list(&unmounted, &head); 1437 list_splice_init(&ex_mountpoints, &list); 1438 1439 up_write(&namespace_sem); 1440 1441 shrink_dentry_list(&list); 1442 1443 if (likely(hlist_empty(&head))) 1444 return; 1445 1446 synchronize_rcu_expedited(); 1447 1448 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1449 hlist_del(&m->mnt_umount); 1450 mntput(&m->mnt); 1451 } 1452 } 1453 1454 static inline void namespace_lock(void) 1455 { 1456 down_write(&namespace_sem); 1457 } 1458 1459 enum umount_tree_flags { 1460 UMOUNT_SYNC = 1, 1461 UMOUNT_PROPAGATE = 2, 1462 UMOUNT_CONNECTED = 4, 1463 }; 1464 1465 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1466 { 1467 /* Leaving mounts connected is only valid for lazy umounts */ 1468 if (how & UMOUNT_SYNC) 1469 return true; 1470 1471 /* A mount without a parent has nothing to be connected to */ 1472 if (!mnt_has_parent(mnt)) 1473 return true; 1474 1475 /* Because the reference counting rules change when mounts are 1476 * unmounted and connected, umounted mounts may not be 1477 * connected to mounted mounts. 1478 */ 1479 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1480 return true; 1481 1482 /* Has it been requested that the mount remain connected? */ 1483 if (how & UMOUNT_CONNECTED) 1484 return false; 1485 1486 /* Is the mount locked such that it needs to remain connected? */ 1487 if (IS_MNT_LOCKED(mnt)) 1488 return false; 1489 1490 /* By default disconnect the mount */ 1491 return true; 1492 } 1493 1494 /* 1495 * mount_lock must be held 1496 * namespace_sem must be held for write 1497 */ 1498 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1499 { 1500 LIST_HEAD(tmp_list); 1501 struct mount *p; 1502 1503 if (how & UMOUNT_PROPAGATE) 1504 propagate_mount_unlock(mnt); 1505 1506 /* Gather the mounts to umount */ 1507 for (p = mnt; p; p = next_mnt(p, mnt)) { 1508 p->mnt.mnt_flags |= MNT_UMOUNT; 1509 list_move(&p->mnt_list, &tmp_list); 1510 } 1511 1512 /* Hide the mounts from mnt_mounts */ 1513 list_for_each_entry(p, &tmp_list, mnt_list) { 1514 list_del_init(&p->mnt_child); 1515 } 1516 1517 /* Add propogated mounts to the tmp_list */ 1518 if (how & UMOUNT_PROPAGATE) 1519 propagate_umount(&tmp_list); 1520 1521 while (!list_empty(&tmp_list)) { 1522 struct mnt_namespace *ns; 1523 bool disconnect; 1524 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1525 list_del_init(&p->mnt_expire); 1526 list_del_init(&p->mnt_list); 1527 ns = p->mnt_ns; 1528 if (ns) { 1529 ns->mounts--; 1530 __touch_mnt_namespace(ns); 1531 } 1532 p->mnt_ns = NULL; 1533 if (how & UMOUNT_SYNC) 1534 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1535 1536 disconnect = disconnect_mount(p, how); 1537 if (mnt_has_parent(p)) { 1538 mnt_add_count(p->mnt_parent, -1); 1539 if (!disconnect) { 1540 /* Don't forget about p */ 1541 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1542 } else { 1543 umount_mnt(p); 1544 } 1545 } 1546 change_mnt_propagation(p, MS_PRIVATE); 1547 if (disconnect) 1548 hlist_add_head(&p->mnt_umount, &unmounted); 1549 } 1550 } 1551 1552 static void shrink_submounts(struct mount *mnt); 1553 1554 static int do_umount_root(struct super_block *sb) 1555 { 1556 int ret = 0; 1557 1558 down_write(&sb->s_umount); 1559 if (!sb_rdonly(sb)) { 1560 struct fs_context *fc; 1561 1562 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1563 SB_RDONLY); 1564 if (IS_ERR(fc)) { 1565 ret = PTR_ERR(fc); 1566 } else { 1567 ret = parse_monolithic_mount_data(fc, NULL); 1568 if (!ret) 1569 ret = reconfigure_super(fc); 1570 put_fs_context(fc); 1571 } 1572 } 1573 up_write(&sb->s_umount); 1574 return ret; 1575 } 1576 1577 static int do_umount(struct mount *mnt, int flags) 1578 { 1579 struct super_block *sb = mnt->mnt.mnt_sb; 1580 int retval; 1581 1582 retval = security_sb_umount(&mnt->mnt, flags); 1583 if (retval) 1584 return retval; 1585 1586 /* 1587 * Allow userspace to request a mountpoint be expired rather than 1588 * unmounting unconditionally. Unmount only happens if: 1589 * (1) the mark is already set (the mark is cleared by mntput()) 1590 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1591 */ 1592 if (flags & MNT_EXPIRE) { 1593 if (&mnt->mnt == current->fs->root.mnt || 1594 flags & (MNT_FORCE | MNT_DETACH)) 1595 return -EINVAL; 1596 1597 /* 1598 * probably don't strictly need the lock here if we examined 1599 * all race cases, but it's a slowpath. 1600 */ 1601 lock_mount_hash(); 1602 if (mnt_get_count(mnt) != 2) { 1603 unlock_mount_hash(); 1604 return -EBUSY; 1605 } 1606 unlock_mount_hash(); 1607 1608 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1609 return -EAGAIN; 1610 } 1611 1612 /* 1613 * If we may have to abort operations to get out of this 1614 * mount, and they will themselves hold resources we must 1615 * allow the fs to do things. In the Unix tradition of 1616 * 'Gee thats tricky lets do it in userspace' the umount_begin 1617 * might fail to complete on the first run through as other tasks 1618 * must return, and the like. Thats for the mount program to worry 1619 * about for the moment. 1620 */ 1621 1622 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1623 sb->s_op->umount_begin(sb); 1624 } 1625 1626 /* 1627 * No sense to grab the lock for this test, but test itself looks 1628 * somewhat bogus. Suggestions for better replacement? 1629 * Ho-hum... In principle, we might treat that as umount + switch 1630 * to rootfs. GC would eventually take care of the old vfsmount. 1631 * Actually it makes sense, especially if rootfs would contain a 1632 * /reboot - static binary that would close all descriptors and 1633 * call reboot(9). Then init(8) could umount root and exec /reboot. 1634 */ 1635 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1636 /* 1637 * Special case for "unmounting" root ... 1638 * we just try to remount it readonly. 1639 */ 1640 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1641 return -EPERM; 1642 return do_umount_root(sb); 1643 } 1644 1645 namespace_lock(); 1646 lock_mount_hash(); 1647 1648 /* Recheck MNT_LOCKED with the locks held */ 1649 retval = -EINVAL; 1650 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1651 goto out; 1652 1653 event++; 1654 if (flags & MNT_DETACH) { 1655 if (!list_empty(&mnt->mnt_list)) 1656 umount_tree(mnt, UMOUNT_PROPAGATE); 1657 retval = 0; 1658 } else { 1659 shrink_submounts(mnt); 1660 retval = -EBUSY; 1661 if (!propagate_mount_busy(mnt, 2)) { 1662 if (!list_empty(&mnt->mnt_list)) 1663 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1664 retval = 0; 1665 } 1666 } 1667 out: 1668 unlock_mount_hash(); 1669 namespace_unlock(); 1670 return retval; 1671 } 1672 1673 /* 1674 * __detach_mounts - lazily unmount all mounts on the specified dentry 1675 * 1676 * During unlink, rmdir, and d_drop it is possible to loose the path 1677 * to an existing mountpoint, and wind up leaking the mount. 1678 * detach_mounts allows lazily unmounting those mounts instead of 1679 * leaking them. 1680 * 1681 * The caller may hold dentry->d_inode->i_mutex. 1682 */ 1683 void __detach_mounts(struct dentry *dentry) 1684 { 1685 struct mountpoint *mp; 1686 struct mount *mnt; 1687 1688 namespace_lock(); 1689 lock_mount_hash(); 1690 mp = lookup_mountpoint(dentry); 1691 if (!mp) 1692 goto out_unlock; 1693 1694 event++; 1695 while (!hlist_empty(&mp->m_list)) { 1696 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1697 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1698 umount_mnt(mnt); 1699 hlist_add_head(&mnt->mnt_umount, &unmounted); 1700 } 1701 else umount_tree(mnt, UMOUNT_CONNECTED); 1702 } 1703 put_mountpoint(mp); 1704 out_unlock: 1705 unlock_mount_hash(); 1706 namespace_unlock(); 1707 } 1708 1709 /* 1710 * Is the caller allowed to modify his namespace? 1711 */ 1712 static inline bool may_mount(void) 1713 { 1714 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1715 } 1716 1717 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1718 static inline bool may_mandlock(void) 1719 { 1720 return capable(CAP_SYS_ADMIN); 1721 } 1722 #else 1723 static inline bool may_mandlock(void) 1724 { 1725 pr_warn("VFS: \"mand\" mount option not supported"); 1726 return false; 1727 } 1728 #endif 1729 1730 static int can_umount(const struct path *path, int flags) 1731 { 1732 struct mount *mnt = real_mount(path->mnt); 1733 1734 if (!may_mount()) 1735 return -EPERM; 1736 if (path->dentry != path->mnt->mnt_root) 1737 return -EINVAL; 1738 if (!check_mnt(mnt)) 1739 return -EINVAL; 1740 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1741 return -EINVAL; 1742 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1743 return -EPERM; 1744 return 0; 1745 } 1746 1747 // caller is responsible for flags being sane 1748 int path_umount(struct path *path, int flags) 1749 { 1750 struct mount *mnt = real_mount(path->mnt); 1751 int ret; 1752 1753 ret = can_umount(path, flags); 1754 if (!ret) 1755 ret = do_umount(mnt, flags); 1756 1757 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1758 dput(path->dentry); 1759 mntput_no_expire(mnt); 1760 return ret; 1761 } 1762 1763 static int ksys_umount(char __user *name, int flags) 1764 { 1765 int lookup_flags = LOOKUP_MOUNTPOINT; 1766 struct path path; 1767 int ret; 1768 1769 // basic validity checks done first 1770 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1771 return -EINVAL; 1772 1773 if (!(flags & UMOUNT_NOFOLLOW)) 1774 lookup_flags |= LOOKUP_FOLLOW; 1775 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1776 if (ret) 1777 return ret; 1778 return path_umount(&path, flags); 1779 } 1780 1781 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1782 { 1783 return ksys_umount(name, flags); 1784 } 1785 1786 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1787 1788 /* 1789 * The 2.0 compatible umount. No flags. 1790 */ 1791 SYSCALL_DEFINE1(oldumount, char __user *, name) 1792 { 1793 return ksys_umount(name, 0); 1794 } 1795 1796 #endif 1797 1798 static bool is_mnt_ns_file(struct dentry *dentry) 1799 { 1800 /* Is this a proxy for a mount namespace? */ 1801 return dentry->d_op == &ns_dentry_operations && 1802 dentry->d_fsdata == &mntns_operations; 1803 } 1804 1805 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1806 { 1807 return container_of(ns, struct mnt_namespace, ns); 1808 } 1809 1810 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1811 { 1812 return &mnt->ns; 1813 } 1814 1815 static bool mnt_ns_loop(struct dentry *dentry) 1816 { 1817 /* Could bind mounting the mount namespace inode cause a 1818 * mount namespace loop? 1819 */ 1820 struct mnt_namespace *mnt_ns; 1821 if (!is_mnt_ns_file(dentry)) 1822 return false; 1823 1824 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1825 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1826 } 1827 1828 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1829 int flag) 1830 { 1831 struct mount *res, *p, *q, *r, *parent; 1832 1833 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1834 return ERR_PTR(-EINVAL); 1835 1836 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1837 return ERR_PTR(-EINVAL); 1838 1839 res = q = clone_mnt(mnt, dentry, flag); 1840 if (IS_ERR(q)) 1841 return q; 1842 1843 q->mnt_mountpoint = mnt->mnt_mountpoint; 1844 1845 p = mnt; 1846 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1847 struct mount *s; 1848 if (!is_subdir(r->mnt_mountpoint, dentry)) 1849 continue; 1850 1851 for (s = r; s; s = next_mnt(s, r)) { 1852 if (!(flag & CL_COPY_UNBINDABLE) && 1853 IS_MNT_UNBINDABLE(s)) { 1854 if (s->mnt.mnt_flags & MNT_LOCKED) { 1855 /* Both unbindable and locked. */ 1856 q = ERR_PTR(-EPERM); 1857 goto out; 1858 } else { 1859 s = skip_mnt_tree(s); 1860 continue; 1861 } 1862 } 1863 if (!(flag & CL_COPY_MNT_NS_FILE) && 1864 is_mnt_ns_file(s->mnt.mnt_root)) { 1865 s = skip_mnt_tree(s); 1866 continue; 1867 } 1868 while (p != s->mnt_parent) { 1869 p = p->mnt_parent; 1870 q = q->mnt_parent; 1871 } 1872 p = s; 1873 parent = q; 1874 q = clone_mnt(p, p->mnt.mnt_root, flag); 1875 if (IS_ERR(q)) 1876 goto out; 1877 lock_mount_hash(); 1878 list_add_tail(&q->mnt_list, &res->mnt_list); 1879 attach_mnt(q, parent, p->mnt_mp); 1880 unlock_mount_hash(); 1881 } 1882 } 1883 return res; 1884 out: 1885 if (res) { 1886 lock_mount_hash(); 1887 umount_tree(res, UMOUNT_SYNC); 1888 unlock_mount_hash(); 1889 } 1890 return q; 1891 } 1892 1893 /* Caller should check returned pointer for errors */ 1894 1895 struct vfsmount *collect_mounts(const struct path *path) 1896 { 1897 struct mount *tree; 1898 namespace_lock(); 1899 if (!check_mnt(real_mount(path->mnt))) 1900 tree = ERR_PTR(-EINVAL); 1901 else 1902 tree = copy_tree(real_mount(path->mnt), path->dentry, 1903 CL_COPY_ALL | CL_PRIVATE); 1904 namespace_unlock(); 1905 if (IS_ERR(tree)) 1906 return ERR_CAST(tree); 1907 return &tree->mnt; 1908 } 1909 1910 static void free_mnt_ns(struct mnt_namespace *); 1911 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1912 1913 void dissolve_on_fput(struct vfsmount *mnt) 1914 { 1915 struct mnt_namespace *ns; 1916 namespace_lock(); 1917 lock_mount_hash(); 1918 ns = real_mount(mnt)->mnt_ns; 1919 if (ns) { 1920 if (is_anon_ns(ns)) 1921 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1922 else 1923 ns = NULL; 1924 } 1925 unlock_mount_hash(); 1926 namespace_unlock(); 1927 if (ns) 1928 free_mnt_ns(ns); 1929 } 1930 1931 void drop_collected_mounts(struct vfsmount *mnt) 1932 { 1933 namespace_lock(); 1934 lock_mount_hash(); 1935 umount_tree(real_mount(mnt), 0); 1936 unlock_mount_hash(); 1937 namespace_unlock(); 1938 } 1939 1940 /** 1941 * clone_private_mount - create a private clone of a path 1942 * 1943 * This creates a new vfsmount, which will be the clone of @path. The new will 1944 * not be attached anywhere in the namespace and will be private (i.e. changes 1945 * to the originating mount won't be propagated into this). 1946 * 1947 * Release with mntput(). 1948 */ 1949 struct vfsmount *clone_private_mount(const struct path *path) 1950 { 1951 struct mount *old_mnt = real_mount(path->mnt); 1952 struct mount *new_mnt; 1953 1954 if (IS_MNT_UNBINDABLE(old_mnt)) 1955 return ERR_PTR(-EINVAL); 1956 1957 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1958 if (IS_ERR(new_mnt)) 1959 return ERR_CAST(new_mnt); 1960 1961 /* Longterm mount to be removed by kern_unmount*() */ 1962 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1963 1964 return &new_mnt->mnt; 1965 } 1966 EXPORT_SYMBOL_GPL(clone_private_mount); 1967 1968 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1969 struct vfsmount *root) 1970 { 1971 struct mount *mnt; 1972 int res = f(root, arg); 1973 if (res) 1974 return res; 1975 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1976 res = f(&mnt->mnt, arg); 1977 if (res) 1978 return res; 1979 } 1980 return 0; 1981 } 1982 1983 static void lock_mnt_tree(struct mount *mnt) 1984 { 1985 struct mount *p; 1986 1987 for (p = mnt; p; p = next_mnt(p, mnt)) { 1988 int flags = p->mnt.mnt_flags; 1989 /* Don't allow unprivileged users to change mount flags */ 1990 flags |= MNT_LOCK_ATIME; 1991 1992 if (flags & MNT_READONLY) 1993 flags |= MNT_LOCK_READONLY; 1994 1995 if (flags & MNT_NODEV) 1996 flags |= MNT_LOCK_NODEV; 1997 1998 if (flags & MNT_NOSUID) 1999 flags |= MNT_LOCK_NOSUID; 2000 2001 if (flags & MNT_NOEXEC) 2002 flags |= MNT_LOCK_NOEXEC; 2003 /* Don't allow unprivileged users to reveal what is under a mount */ 2004 if (list_empty(&p->mnt_expire)) 2005 flags |= MNT_LOCKED; 2006 p->mnt.mnt_flags = flags; 2007 } 2008 } 2009 2010 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2011 { 2012 struct mount *p; 2013 2014 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2015 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2016 mnt_release_group_id(p); 2017 } 2018 } 2019 2020 static int invent_group_ids(struct mount *mnt, bool recurse) 2021 { 2022 struct mount *p; 2023 2024 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2025 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2026 int err = mnt_alloc_group_id(p); 2027 if (err) { 2028 cleanup_group_ids(mnt, p); 2029 return err; 2030 } 2031 } 2032 } 2033 2034 return 0; 2035 } 2036 2037 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2038 { 2039 unsigned int max = READ_ONCE(sysctl_mount_max); 2040 unsigned int mounts = 0, old, pending, sum; 2041 struct mount *p; 2042 2043 for (p = mnt; p; p = next_mnt(p, mnt)) 2044 mounts++; 2045 2046 old = ns->mounts; 2047 pending = ns->pending_mounts; 2048 sum = old + pending; 2049 if ((old > sum) || 2050 (pending > sum) || 2051 (max < sum) || 2052 (mounts > (max - sum))) 2053 return -ENOSPC; 2054 2055 ns->pending_mounts = pending + mounts; 2056 return 0; 2057 } 2058 2059 /* 2060 * @source_mnt : mount tree to be attached 2061 * @nd : place the mount tree @source_mnt is attached 2062 * @parent_nd : if non-null, detach the source_mnt from its parent and 2063 * store the parent mount and mountpoint dentry. 2064 * (done when source_mnt is moved) 2065 * 2066 * NOTE: in the table below explains the semantics when a source mount 2067 * of a given type is attached to a destination mount of a given type. 2068 * --------------------------------------------------------------------------- 2069 * | BIND MOUNT OPERATION | 2070 * |************************************************************************** 2071 * | source-->| shared | private | slave | unbindable | 2072 * | dest | | | | | 2073 * | | | | | | | 2074 * | v | | | | | 2075 * |************************************************************************** 2076 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2077 * | | | | | | 2078 * |non-shared| shared (+) | private | slave (*) | invalid | 2079 * *************************************************************************** 2080 * A bind operation clones the source mount and mounts the clone on the 2081 * destination mount. 2082 * 2083 * (++) the cloned mount is propagated to all the mounts in the propagation 2084 * tree of the destination mount and the cloned mount is added to 2085 * the peer group of the source mount. 2086 * (+) the cloned mount is created under the destination mount and is marked 2087 * as shared. The cloned mount is added to the peer group of the source 2088 * mount. 2089 * (+++) the mount is propagated to all the mounts in the propagation tree 2090 * of the destination mount and the cloned mount is made slave 2091 * of the same master as that of the source mount. The cloned mount 2092 * is marked as 'shared and slave'. 2093 * (*) the cloned mount is made a slave of the same master as that of the 2094 * source mount. 2095 * 2096 * --------------------------------------------------------------------------- 2097 * | MOVE MOUNT OPERATION | 2098 * |************************************************************************** 2099 * | source-->| shared | private | slave | unbindable | 2100 * | dest | | | | | 2101 * | | | | | | | 2102 * | v | | | | | 2103 * |************************************************************************** 2104 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2105 * | | | | | | 2106 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2107 * *************************************************************************** 2108 * 2109 * (+) the mount is moved to the destination. And is then propagated to 2110 * all the mounts in the propagation tree of the destination mount. 2111 * (+*) the mount is moved to the destination. 2112 * (+++) the mount is moved to the destination and is then propagated to 2113 * all the mounts belonging to the destination mount's propagation tree. 2114 * the mount is marked as 'shared and slave'. 2115 * (*) the mount continues to be a slave at the new location. 2116 * 2117 * if the source mount is a tree, the operations explained above is 2118 * applied to each mount in the tree. 2119 * Must be called without spinlocks held, since this function can sleep 2120 * in allocations. 2121 */ 2122 static int attach_recursive_mnt(struct mount *source_mnt, 2123 struct mount *dest_mnt, 2124 struct mountpoint *dest_mp, 2125 bool moving) 2126 { 2127 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2128 HLIST_HEAD(tree_list); 2129 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2130 struct mountpoint *smp; 2131 struct mount *child, *p; 2132 struct hlist_node *n; 2133 int err; 2134 2135 /* Preallocate a mountpoint in case the new mounts need 2136 * to be tucked under other mounts. 2137 */ 2138 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2139 if (IS_ERR(smp)) 2140 return PTR_ERR(smp); 2141 2142 /* Is there space to add these mounts to the mount namespace? */ 2143 if (!moving) { 2144 err = count_mounts(ns, source_mnt); 2145 if (err) 2146 goto out; 2147 } 2148 2149 if (IS_MNT_SHARED(dest_mnt)) { 2150 err = invent_group_ids(source_mnt, true); 2151 if (err) 2152 goto out; 2153 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2154 lock_mount_hash(); 2155 if (err) 2156 goto out_cleanup_ids; 2157 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2158 set_mnt_shared(p); 2159 } else { 2160 lock_mount_hash(); 2161 } 2162 if (moving) { 2163 unhash_mnt(source_mnt); 2164 attach_mnt(source_mnt, dest_mnt, dest_mp); 2165 touch_mnt_namespace(source_mnt->mnt_ns); 2166 } else { 2167 if (source_mnt->mnt_ns) { 2168 /* move from anon - the caller will destroy */ 2169 list_del_init(&source_mnt->mnt_ns->list); 2170 } 2171 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2172 commit_tree(source_mnt); 2173 } 2174 2175 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2176 struct mount *q; 2177 hlist_del_init(&child->mnt_hash); 2178 q = __lookup_mnt(&child->mnt_parent->mnt, 2179 child->mnt_mountpoint); 2180 if (q) 2181 mnt_change_mountpoint(child, smp, q); 2182 /* Notice when we are propagating across user namespaces */ 2183 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2184 lock_mnt_tree(child); 2185 child->mnt.mnt_flags &= ~MNT_LOCKED; 2186 commit_tree(child); 2187 } 2188 put_mountpoint(smp); 2189 unlock_mount_hash(); 2190 2191 return 0; 2192 2193 out_cleanup_ids: 2194 while (!hlist_empty(&tree_list)) { 2195 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2196 child->mnt_parent->mnt_ns->pending_mounts = 0; 2197 umount_tree(child, UMOUNT_SYNC); 2198 } 2199 unlock_mount_hash(); 2200 cleanup_group_ids(source_mnt, NULL); 2201 out: 2202 ns->pending_mounts = 0; 2203 2204 read_seqlock_excl(&mount_lock); 2205 put_mountpoint(smp); 2206 read_sequnlock_excl(&mount_lock); 2207 2208 return err; 2209 } 2210 2211 static struct mountpoint *lock_mount(struct path *path) 2212 { 2213 struct vfsmount *mnt; 2214 struct dentry *dentry = path->dentry; 2215 retry: 2216 inode_lock(dentry->d_inode); 2217 if (unlikely(cant_mount(dentry))) { 2218 inode_unlock(dentry->d_inode); 2219 return ERR_PTR(-ENOENT); 2220 } 2221 namespace_lock(); 2222 mnt = lookup_mnt(path); 2223 if (likely(!mnt)) { 2224 struct mountpoint *mp = get_mountpoint(dentry); 2225 if (IS_ERR(mp)) { 2226 namespace_unlock(); 2227 inode_unlock(dentry->d_inode); 2228 return mp; 2229 } 2230 return mp; 2231 } 2232 namespace_unlock(); 2233 inode_unlock(path->dentry->d_inode); 2234 path_put(path); 2235 path->mnt = mnt; 2236 dentry = path->dentry = dget(mnt->mnt_root); 2237 goto retry; 2238 } 2239 2240 static void unlock_mount(struct mountpoint *where) 2241 { 2242 struct dentry *dentry = where->m_dentry; 2243 2244 read_seqlock_excl(&mount_lock); 2245 put_mountpoint(where); 2246 read_sequnlock_excl(&mount_lock); 2247 2248 namespace_unlock(); 2249 inode_unlock(dentry->d_inode); 2250 } 2251 2252 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2253 { 2254 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2255 return -EINVAL; 2256 2257 if (d_is_dir(mp->m_dentry) != 2258 d_is_dir(mnt->mnt.mnt_root)) 2259 return -ENOTDIR; 2260 2261 return attach_recursive_mnt(mnt, p, mp, false); 2262 } 2263 2264 /* 2265 * Sanity check the flags to change_mnt_propagation. 2266 */ 2267 2268 static int flags_to_propagation_type(int ms_flags) 2269 { 2270 int type = ms_flags & ~(MS_REC | MS_SILENT); 2271 2272 /* Fail if any non-propagation flags are set */ 2273 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2274 return 0; 2275 /* Only one propagation flag should be set */ 2276 if (!is_power_of_2(type)) 2277 return 0; 2278 return type; 2279 } 2280 2281 /* 2282 * recursively change the type of the mountpoint. 2283 */ 2284 static int do_change_type(struct path *path, int ms_flags) 2285 { 2286 struct mount *m; 2287 struct mount *mnt = real_mount(path->mnt); 2288 int recurse = ms_flags & MS_REC; 2289 int type; 2290 int err = 0; 2291 2292 if (path->dentry != path->mnt->mnt_root) 2293 return -EINVAL; 2294 2295 type = flags_to_propagation_type(ms_flags); 2296 if (!type) 2297 return -EINVAL; 2298 2299 namespace_lock(); 2300 if (type == MS_SHARED) { 2301 err = invent_group_ids(mnt, recurse); 2302 if (err) 2303 goto out_unlock; 2304 } 2305 2306 lock_mount_hash(); 2307 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2308 change_mnt_propagation(m, type); 2309 unlock_mount_hash(); 2310 2311 out_unlock: 2312 namespace_unlock(); 2313 return err; 2314 } 2315 2316 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2317 { 2318 struct mount *child; 2319 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2320 if (!is_subdir(child->mnt_mountpoint, dentry)) 2321 continue; 2322 2323 if (child->mnt.mnt_flags & MNT_LOCKED) 2324 return true; 2325 } 2326 return false; 2327 } 2328 2329 static struct mount *__do_loopback(struct path *old_path, int recurse) 2330 { 2331 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2332 2333 if (IS_MNT_UNBINDABLE(old)) 2334 return mnt; 2335 2336 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2337 return mnt; 2338 2339 if (!recurse && has_locked_children(old, old_path->dentry)) 2340 return mnt; 2341 2342 if (recurse) 2343 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2344 else 2345 mnt = clone_mnt(old, old_path->dentry, 0); 2346 2347 if (!IS_ERR(mnt)) 2348 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2349 2350 return mnt; 2351 } 2352 2353 /* 2354 * do loopback mount. 2355 */ 2356 static int do_loopback(struct path *path, const char *old_name, 2357 int recurse) 2358 { 2359 struct path old_path; 2360 struct mount *mnt = NULL, *parent; 2361 struct mountpoint *mp; 2362 int err; 2363 if (!old_name || !*old_name) 2364 return -EINVAL; 2365 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2366 if (err) 2367 return err; 2368 2369 err = -EINVAL; 2370 if (mnt_ns_loop(old_path.dentry)) 2371 goto out; 2372 2373 mp = lock_mount(path); 2374 if (IS_ERR(mp)) { 2375 err = PTR_ERR(mp); 2376 goto out; 2377 } 2378 2379 parent = real_mount(path->mnt); 2380 if (!check_mnt(parent)) 2381 goto out2; 2382 2383 mnt = __do_loopback(&old_path, recurse); 2384 if (IS_ERR(mnt)) { 2385 err = PTR_ERR(mnt); 2386 goto out2; 2387 } 2388 2389 err = graft_tree(mnt, parent, mp); 2390 if (err) { 2391 lock_mount_hash(); 2392 umount_tree(mnt, UMOUNT_SYNC); 2393 unlock_mount_hash(); 2394 } 2395 out2: 2396 unlock_mount(mp); 2397 out: 2398 path_put(&old_path); 2399 return err; 2400 } 2401 2402 static struct file *open_detached_copy(struct path *path, bool recursive) 2403 { 2404 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2405 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2406 struct mount *mnt, *p; 2407 struct file *file; 2408 2409 if (IS_ERR(ns)) 2410 return ERR_CAST(ns); 2411 2412 namespace_lock(); 2413 mnt = __do_loopback(path, recursive); 2414 if (IS_ERR(mnt)) { 2415 namespace_unlock(); 2416 free_mnt_ns(ns); 2417 return ERR_CAST(mnt); 2418 } 2419 2420 lock_mount_hash(); 2421 for (p = mnt; p; p = next_mnt(p, mnt)) { 2422 p->mnt_ns = ns; 2423 ns->mounts++; 2424 } 2425 ns->root = mnt; 2426 list_add_tail(&ns->list, &mnt->mnt_list); 2427 mntget(&mnt->mnt); 2428 unlock_mount_hash(); 2429 namespace_unlock(); 2430 2431 mntput(path->mnt); 2432 path->mnt = &mnt->mnt; 2433 file = dentry_open(path, O_PATH, current_cred()); 2434 if (IS_ERR(file)) 2435 dissolve_on_fput(path->mnt); 2436 else 2437 file->f_mode |= FMODE_NEED_UNMOUNT; 2438 return file; 2439 } 2440 2441 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2442 { 2443 struct file *file; 2444 struct path path; 2445 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2446 bool detached = flags & OPEN_TREE_CLONE; 2447 int error; 2448 int fd; 2449 2450 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2451 2452 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2453 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2454 OPEN_TREE_CLOEXEC)) 2455 return -EINVAL; 2456 2457 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2458 return -EINVAL; 2459 2460 if (flags & AT_NO_AUTOMOUNT) 2461 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2462 if (flags & AT_SYMLINK_NOFOLLOW) 2463 lookup_flags &= ~LOOKUP_FOLLOW; 2464 if (flags & AT_EMPTY_PATH) 2465 lookup_flags |= LOOKUP_EMPTY; 2466 2467 if (detached && !may_mount()) 2468 return -EPERM; 2469 2470 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2471 if (fd < 0) 2472 return fd; 2473 2474 error = user_path_at(dfd, filename, lookup_flags, &path); 2475 if (unlikely(error)) { 2476 file = ERR_PTR(error); 2477 } else { 2478 if (detached) 2479 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2480 else 2481 file = dentry_open(&path, O_PATH, current_cred()); 2482 path_put(&path); 2483 } 2484 if (IS_ERR(file)) { 2485 put_unused_fd(fd); 2486 return PTR_ERR(file); 2487 } 2488 fd_install(fd, file); 2489 return fd; 2490 } 2491 2492 /* 2493 * Don't allow locked mount flags to be cleared. 2494 * 2495 * No locks need to be held here while testing the various MNT_LOCK 2496 * flags because those flags can never be cleared once they are set. 2497 */ 2498 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2499 { 2500 unsigned int fl = mnt->mnt.mnt_flags; 2501 2502 if ((fl & MNT_LOCK_READONLY) && 2503 !(mnt_flags & MNT_READONLY)) 2504 return false; 2505 2506 if ((fl & MNT_LOCK_NODEV) && 2507 !(mnt_flags & MNT_NODEV)) 2508 return false; 2509 2510 if ((fl & MNT_LOCK_NOSUID) && 2511 !(mnt_flags & MNT_NOSUID)) 2512 return false; 2513 2514 if ((fl & MNT_LOCK_NOEXEC) && 2515 !(mnt_flags & MNT_NOEXEC)) 2516 return false; 2517 2518 if ((fl & MNT_LOCK_ATIME) && 2519 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2520 return false; 2521 2522 return true; 2523 } 2524 2525 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2526 { 2527 bool readonly_request = (mnt_flags & MNT_READONLY); 2528 2529 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2530 return 0; 2531 2532 if (readonly_request) 2533 return mnt_make_readonly(mnt); 2534 2535 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2536 return 0; 2537 } 2538 2539 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2540 { 2541 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2542 mnt->mnt.mnt_flags = mnt_flags; 2543 touch_mnt_namespace(mnt->mnt_ns); 2544 } 2545 2546 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2547 { 2548 struct super_block *sb = mnt->mnt_sb; 2549 2550 if (!__mnt_is_readonly(mnt) && 2551 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2552 char *buf = (char *)__get_free_page(GFP_KERNEL); 2553 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2554 struct tm tm; 2555 2556 time64_to_tm(sb->s_time_max, 0, &tm); 2557 2558 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2559 sb->s_type->name, 2560 is_mounted(mnt) ? "remounted" : "mounted", 2561 mntpath, 2562 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2563 2564 free_page((unsigned long)buf); 2565 } 2566 } 2567 2568 /* 2569 * Handle reconfiguration of the mountpoint only without alteration of the 2570 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2571 * to mount(2). 2572 */ 2573 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2574 { 2575 struct super_block *sb = path->mnt->mnt_sb; 2576 struct mount *mnt = real_mount(path->mnt); 2577 int ret; 2578 2579 if (!check_mnt(mnt)) 2580 return -EINVAL; 2581 2582 if (path->dentry != mnt->mnt.mnt_root) 2583 return -EINVAL; 2584 2585 if (!can_change_locked_flags(mnt, mnt_flags)) 2586 return -EPERM; 2587 2588 /* 2589 * We're only checking whether the superblock is read-only not 2590 * changing it, so only take down_read(&sb->s_umount). 2591 */ 2592 down_read(&sb->s_umount); 2593 lock_mount_hash(); 2594 ret = change_mount_ro_state(mnt, mnt_flags); 2595 if (ret == 0) 2596 set_mount_attributes(mnt, mnt_flags); 2597 unlock_mount_hash(); 2598 up_read(&sb->s_umount); 2599 2600 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2601 2602 return ret; 2603 } 2604 2605 /* 2606 * change filesystem flags. dir should be a physical root of filesystem. 2607 * If you've mounted a non-root directory somewhere and want to do remount 2608 * on it - tough luck. 2609 */ 2610 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2611 int mnt_flags, void *data) 2612 { 2613 int err; 2614 struct super_block *sb = path->mnt->mnt_sb; 2615 struct mount *mnt = real_mount(path->mnt); 2616 struct fs_context *fc; 2617 2618 if (!check_mnt(mnt)) 2619 return -EINVAL; 2620 2621 if (path->dentry != path->mnt->mnt_root) 2622 return -EINVAL; 2623 2624 if (!can_change_locked_flags(mnt, mnt_flags)) 2625 return -EPERM; 2626 2627 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2628 if (IS_ERR(fc)) 2629 return PTR_ERR(fc); 2630 2631 fc->oldapi = true; 2632 err = parse_monolithic_mount_data(fc, data); 2633 if (!err) { 2634 down_write(&sb->s_umount); 2635 err = -EPERM; 2636 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2637 err = reconfigure_super(fc); 2638 if (!err) { 2639 lock_mount_hash(); 2640 set_mount_attributes(mnt, mnt_flags); 2641 unlock_mount_hash(); 2642 } 2643 } 2644 up_write(&sb->s_umount); 2645 } 2646 2647 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2648 2649 put_fs_context(fc); 2650 return err; 2651 } 2652 2653 static inline int tree_contains_unbindable(struct mount *mnt) 2654 { 2655 struct mount *p; 2656 for (p = mnt; p; p = next_mnt(p, mnt)) { 2657 if (IS_MNT_UNBINDABLE(p)) 2658 return 1; 2659 } 2660 return 0; 2661 } 2662 2663 /* 2664 * Check that there aren't references to earlier/same mount namespaces in the 2665 * specified subtree. Such references can act as pins for mount namespaces 2666 * that aren't checked by the mount-cycle checking code, thereby allowing 2667 * cycles to be made. 2668 */ 2669 static bool check_for_nsfs_mounts(struct mount *subtree) 2670 { 2671 struct mount *p; 2672 bool ret = false; 2673 2674 lock_mount_hash(); 2675 for (p = subtree; p; p = next_mnt(p, subtree)) 2676 if (mnt_ns_loop(p->mnt.mnt_root)) 2677 goto out; 2678 2679 ret = true; 2680 out: 2681 unlock_mount_hash(); 2682 return ret; 2683 } 2684 2685 static int do_move_mount(struct path *old_path, struct path *new_path) 2686 { 2687 struct mnt_namespace *ns; 2688 struct mount *p; 2689 struct mount *old; 2690 struct mount *parent; 2691 struct mountpoint *mp, *old_mp; 2692 int err; 2693 bool attached; 2694 2695 mp = lock_mount(new_path); 2696 if (IS_ERR(mp)) 2697 return PTR_ERR(mp); 2698 2699 old = real_mount(old_path->mnt); 2700 p = real_mount(new_path->mnt); 2701 parent = old->mnt_parent; 2702 attached = mnt_has_parent(old); 2703 old_mp = old->mnt_mp; 2704 ns = old->mnt_ns; 2705 2706 err = -EINVAL; 2707 /* The mountpoint must be in our namespace. */ 2708 if (!check_mnt(p)) 2709 goto out; 2710 2711 /* The thing moved must be mounted... */ 2712 if (!is_mounted(&old->mnt)) 2713 goto out; 2714 2715 /* ... and either ours or the root of anon namespace */ 2716 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2717 goto out; 2718 2719 if (old->mnt.mnt_flags & MNT_LOCKED) 2720 goto out; 2721 2722 if (old_path->dentry != old_path->mnt->mnt_root) 2723 goto out; 2724 2725 if (d_is_dir(new_path->dentry) != 2726 d_is_dir(old_path->dentry)) 2727 goto out; 2728 /* 2729 * Don't move a mount residing in a shared parent. 2730 */ 2731 if (attached && IS_MNT_SHARED(parent)) 2732 goto out; 2733 /* 2734 * Don't move a mount tree containing unbindable mounts to a destination 2735 * mount which is shared. 2736 */ 2737 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2738 goto out; 2739 err = -ELOOP; 2740 if (!check_for_nsfs_mounts(old)) 2741 goto out; 2742 for (; mnt_has_parent(p); p = p->mnt_parent) 2743 if (p == old) 2744 goto out; 2745 2746 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2747 attached); 2748 if (err) 2749 goto out; 2750 2751 /* if the mount is moved, it should no longer be expire 2752 * automatically */ 2753 list_del_init(&old->mnt_expire); 2754 if (attached) 2755 put_mountpoint(old_mp); 2756 out: 2757 unlock_mount(mp); 2758 if (!err) { 2759 if (attached) 2760 mntput_no_expire(parent); 2761 else 2762 free_mnt_ns(ns); 2763 } 2764 return err; 2765 } 2766 2767 static int do_move_mount_old(struct path *path, const char *old_name) 2768 { 2769 struct path old_path; 2770 int err; 2771 2772 if (!old_name || !*old_name) 2773 return -EINVAL; 2774 2775 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2776 if (err) 2777 return err; 2778 2779 err = do_move_mount(&old_path, path); 2780 path_put(&old_path); 2781 return err; 2782 } 2783 2784 /* 2785 * add a mount into a namespace's mount tree 2786 */ 2787 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2788 struct path *path, int mnt_flags) 2789 { 2790 struct mount *parent = real_mount(path->mnt); 2791 2792 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2793 2794 if (unlikely(!check_mnt(parent))) { 2795 /* that's acceptable only for automounts done in private ns */ 2796 if (!(mnt_flags & MNT_SHRINKABLE)) 2797 return -EINVAL; 2798 /* ... and for those we'd better have mountpoint still alive */ 2799 if (!parent->mnt_ns) 2800 return -EINVAL; 2801 } 2802 2803 /* Refuse the same filesystem on the same mount point */ 2804 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2805 path->mnt->mnt_root == path->dentry) 2806 return -EBUSY; 2807 2808 if (d_is_symlink(newmnt->mnt.mnt_root)) 2809 return -EINVAL; 2810 2811 newmnt->mnt.mnt_flags = mnt_flags; 2812 return graft_tree(newmnt, parent, mp); 2813 } 2814 2815 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2816 2817 /* 2818 * Create a new mount using a superblock configuration and request it 2819 * be added to the namespace tree. 2820 */ 2821 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2822 unsigned int mnt_flags) 2823 { 2824 struct vfsmount *mnt; 2825 struct mountpoint *mp; 2826 struct super_block *sb = fc->root->d_sb; 2827 int error; 2828 2829 error = security_sb_kern_mount(sb); 2830 if (!error && mount_too_revealing(sb, &mnt_flags)) 2831 error = -EPERM; 2832 2833 if (unlikely(error)) { 2834 fc_drop_locked(fc); 2835 return error; 2836 } 2837 2838 up_write(&sb->s_umount); 2839 2840 mnt = vfs_create_mount(fc); 2841 if (IS_ERR(mnt)) 2842 return PTR_ERR(mnt); 2843 2844 mnt_warn_timestamp_expiry(mountpoint, mnt); 2845 2846 mp = lock_mount(mountpoint); 2847 if (IS_ERR(mp)) { 2848 mntput(mnt); 2849 return PTR_ERR(mp); 2850 } 2851 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2852 unlock_mount(mp); 2853 if (error < 0) 2854 mntput(mnt); 2855 return error; 2856 } 2857 2858 /* 2859 * create a new mount for userspace and request it to be added into the 2860 * namespace's tree 2861 */ 2862 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2863 int mnt_flags, const char *name, void *data) 2864 { 2865 struct file_system_type *type; 2866 struct fs_context *fc; 2867 const char *subtype = NULL; 2868 int err = 0; 2869 2870 if (!fstype) 2871 return -EINVAL; 2872 2873 type = get_fs_type(fstype); 2874 if (!type) 2875 return -ENODEV; 2876 2877 if (type->fs_flags & FS_HAS_SUBTYPE) { 2878 subtype = strchr(fstype, '.'); 2879 if (subtype) { 2880 subtype++; 2881 if (!*subtype) { 2882 put_filesystem(type); 2883 return -EINVAL; 2884 } 2885 } 2886 } 2887 2888 fc = fs_context_for_mount(type, sb_flags); 2889 put_filesystem(type); 2890 if (IS_ERR(fc)) 2891 return PTR_ERR(fc); 2892 2893 if (subtype) 2894 err = vfs_parse_fs_string(fc, "subtype", 2895 subtype, strlen(subtype)); 2896 if (!err && name) 2897 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2898 if (!err) 2899 err = parse_monolithic_mount_data(fc, data); 2900 if (!err && !mount_capable(fc)) 2901 err = -EPERM; 2902 if (!err) 2903 err = vfs_get_tree(fc); 2904 if (!err) 2905 err = do_new_mount_fc(fc, path, mnt_flags); 2906 2907 put_fs_context(fc); 2908 return err; 2909 } 2910 2911 int finish_automount(struct vfsmount *m, struct path *path) 2912 { 2913 struct dentry *dentry = path->dentry; 2914 struct mountpoint *mp; 2915 struct mount *mnt; 2916 int err; 2917 2918 if (!m) 2919 return 0; 2920 if (IS_ERR(m)) 2921 return PTR_ERR(m); 2922 2923 mnt = real_mount(m); 2924 /* The new mount record should have at least 2 refs to prevent it being 2925 * expired before we get a chance to add it 2926 */ 2927 BUG_ON(mnt_get_count(mnt) < 2); 2928 2929 if (m->mnt_sb == path->mnt->mnt_sb && 2930 m->mnt_root == dentry) { 2931 err = -ELOOP; 2932 goto discard; 2933 } 2934 2935 /* 2936 * we don't want to use lock_mount() - in this case finding something 2937 * that overmounts our mountpoint to be means "quitely drop what we've 2938 * got", not "try to mount it on top". 2939 */ 2940 inode_lock(dentry->d_inode); 2941 namespace_lock(); 2942 if (unlikely(cant_mount(dentry))) { 2943 err = -ENOENT; 2944 goto discard_locked; 2945 } 2946 rcu_read_lock(); 2947 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 2948 rcu_read_unlock(); 2949 err = 0; 2950 goto discard_locked; 2951 } 2952 rcu_read_unlock(); 2953 mp = get_mountpoint(dentry); 2954 if (IS_ERR(mp)) { 2955 err = PTR_ERR(mp); 2956 goto discard_locked; 2957 } 2958 2959 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2960 unlock_mount(mp); 2961 if (unlikely(err)) 2962 goto discard; 2963 mntput(m); 2964 return 0; 2965 2966 discard_locked: 2967 namespace_unlock(); 2968 inode_unlock(dentry->d_inode); 2969 discard: 2970 /* remove m from any expiration list it may be on */ 2971 if (!list_empty(&mnt->mnt_expire)) { 2972 namespace_lock(); 2973 list_del_init(&mnt->mnt_expire); 2974 namespace_unlock(); 2975 } 2976 mntput(m); 2977 mntput(m); 2978 return err; 2979 } 2980 2981 /** 2982 * mnt_set_expiry - Put a mount on an expiration list 2983 * @mnt: The mount to list. 2984 * @expiry_list: The list to add the mount to. 2985 */ 2986 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2987 { 2988 namespace_lock(); 2989 2990 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2991 2992 namespace_unlock(); 2993 } 2994 EXPORT_SYMBOL(mnt_set_expiry); 2995 2996 /* 2997 * process a list of expirable mountpoints with the intent of discarding any 2998 * mountpoints that aren't in use and haven't been touched since last we came 2999 * here 3000 */ 3001 void mark_mounts_for_expiry(struct list_head *mounts) 3002 { 3003 struct mount *mnt, *next; 3004 LIST_HEAD(graveyard); 3005 3006 if (list_empty(mounts)) 3007 return; 3008 3009 namespace_lock(); 3010 lock_mount_hash(); 3011 3012 /* extract from the expiration list every vfsmount that matches the 3013 * following criteria: 3014 * - only referenced by its parent vfsmount 3015 * - still marked for expiry (marked on the last call here; marks are 3016 * cleared by mntput()) 3017 */ 3018 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3019 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3020 propagate_mount_busy(mnt, 1)) 3021 continue; 3022 list_move(&mnt->mnt_expire, &graveyard); 3023 } 3024 while (!list_empty(&graveyard)) { 3025 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3026 touch_mnt_namespace(mnt->mnt_ns); 3027 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3028 } 3029 unlock_mount_hash(); 3030 namespace_unlock(); 3031 } 3032 3033 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3034 3035 /* 3036 * Ripoff of 'select_parent()' 3037 * 3038 * search the list of submounts for a given mountpoint, and move any 3039 * shrinkable submounts to the 'graveyard' list. 3040 */ 3041 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3042 { 3043 struct mount *this_parent = parent; 3044 struct list_head *next; 3045 int found = 0; 3046 3047 repeat: 3048 next = this_parent->mnt_mounts.next; 3049 resume: 3050 while (next != &this_parent->mnt_mounts) { 3051 struct list_head *tmp = next; 3052 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3053 3054 next = tmp->next; 3055 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3056 continue; 3057 /* 3058 * Descend a level if the d_mounts list is non-empty. 3059 */ 3060 if (!list_empty(&mnt->mnt_mounts)) { 3061 this_parent = mnt; 3062 goto repeat; 3063 } 3064 3065 if (!propagate_mount_busy(mnt, 1)) { 3066 list_move_tail(&mnt->mnt_expire, graveyard); 3067 found++; 3068 } 3069 } 3070 /* 3071 * All done at this level ... ascend and resume the search 3072 */ 3073 if (this_parent != parent) { 3074 next = this_parent->mnt_child.next; 3075 this_parent = this_parent->mnt_parent; 3076 goto resume; 3077 } 3078 return found; 3079 } 3080 3081 /* 3082 * process a list of expirable mountpoints with the intent of discarding any 3083 * submounts of a specific parent mountpoint 3084 * 3085 * mount_lock must be held for write 3086 */ 3087 static void shrink_submounts(struct mount *mnt) 3088 { 3089 LIST_HEAD(graveyard); 3090 struct mount *m; 3091 3092 /* extract submounts of 'mountpoint' from the expiration list */ 3093 while (select_submounts(mnt, &graveyard)) { 3094 while (!list_empty(&graveyard)) { 3095 m = list_first_entry(&graveyard, struct mount, 3096 mnt_expire); 3097 touch_mnt_namespace(m->mnt_ns); 3098 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3099 } 3100 } 3101 } 3102 3103 static void *copy_mount_options(const void __user * data) 3104 { 3105 char *copy; 3106 unsigned left, offset; 3107 3108 if (!data) 3109 return NULL; 3110 3111 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3112 if (!copy) 3113 return ERR_PTR(-ENOMEM); 3114 3115 left = copy_from_user(copy, data, PAGE_SIZE); 3116 3117 /* 3118 * Not all architectures have an exact copy_from_user(). Resort to 3119 * byte at a time. 3120 */ 3121 offset = PAGE_SIZE - left; 3122 while (left) { 3123 char c; 3124 if (get_user(c, (const char __user *)data + offset)) 3125 break; 3126 copy[offset] = c; 3127 left--; 3128 offset++; 3129 } 3130 3131 if (left == PAGE_SIZE) { 3132 kfree(copy); 3133 return ERR_PTR(-EFAULT); 3134 } 3135 3136 return copy; 3137 } 3138 3139 static char *copy_mount_string(const void __user *data) 3140 { 3141 return data ? strndup_user(data, PATH_MAX) : NULL; 3142 } 3143 3144 /* 3145 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3146 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3147 * 3148 * data is a (void *) that can point to any structure up to 3149 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3150 * information (or be NULL). 3151 * 3152 * Pre-0.97 versions of mount() didn't have a flags word. 3153 * When the flags word was introduced its top half was required 3154 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3155 * Therefore, if this magic number is present, it carries no information 3156 * and must be discarded. 3157 */ 3158 int path_mount(const char *dev_name, struct path *path, 3159 const char *type_page, unsigned long flags, void *data_page) 3160 { 3161 unsigned int mnt_flags = 0, sb_flags; 3162 int ret; 3163 3164 /* Discard magic */ 3165 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3166 flags &= ~MS_MGC_MSK; 3167 3168 /* Basic sanity checks */ 3169 if (data_page) 3170 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3171 3172 if (flags & MS_NOUSER) 3173 return -EINVAL; 3174 3175 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3176 if (ret) 3177 return ret; 3178 if (!may_mount()) 3179 return -EPERM; 3180 if ((flags & SB_MANDLOCK) && !may_mandlock()) 3181 return -EPERM; 3182 3183 /* Default to relatime unless overriden */ 3184 if (!(flags & MS_NOATIME)) 3185 mnt_flags |= MNT_RELATIME; 3186 3187 /* Separate the per-mountpoint flags */ 3188 if (flags & MS_NOSUID) 3189 mnt_flags |= MNT_NOSUID; 3190 if (flags & MS_NODEV) 3191 mnt_flags |= MNT_NODEV; 3192 if (flags & MS_NOEXEC) 3193 mnt_flags |= MNT_NOEXEC; 3194 if (flags & MS_NOATIME) 3195 mnt_flags |= MNT_NOATIME; 3196 if (flags & MS_NODIRATIME) 3197 mnt_flags |= MNT_NODIRATIME; 3198 if (flags & MS_STRICTATIME) 3199 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3200 if (flags & MS_RDONLY) 3201 mnt_flags |= MNT_READONLY; 3202 if (flags & MS_NOSYMFOLLOW) 3203 mnt_flags |= MNT_NOSYMFOLLOW; 3204 3205 /* The default atime for remount is preservation */ 3206 if ((flags & MS_REMOUNT) && 3207 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3208 MS_STRICTATIME)) == 0)) { 3209 mnt_flags &= ~MNT_ATIME_MASK; 3210 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3211 } 3212 3213 sb_flags = flags & (SB_RDONLY | 3214 SB_SYNCHRONOUS | 3215 SB_MANDLOCK | 3216 SB_DIRSYNC | 3217 SB_SILENT | 3218 SB_POSIXACL | 3219 SB_LAZYTIME | 3220 SB_I_VERSION); 3221 3222 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3223 return do_reconfigure_mnt(path, mnt_flags); 3224 if (flags & MS_REMOUNT) 3225 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3226 if (flags & MS_BIND) 3227 return do_loopback(path, dev_name, flags & MS_REC); 3228 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3229 return do_change_type(path, flags); 3230 if (flags & MS_MOVE) 3231 return do_move_mount_old(path, dev_name); 3232 3233 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3234 data_page); 3235 } 3236 3237 long do_mount(const char *dev_name, const char __user *dir_name, 3238 const char *type_page, unsigned long flags, void *data_page) 3239 { 3240 struct path path; 3241 int ret; 3242 3243 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3244 if (ret) 3245 return ret; 3246 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3247 path_put(&path); 3248 return ret; 3249 } 3250 3251 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3252 { 3253 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3254 } 3255 3256 static void dec_mnt_namespaces(struct ucounts *ucounts) 3257 { 3258 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3259 } 3260 3261 static void free_mnt_ns(struct mnt_namespace *ns) 3262 { 3263 if (!is_anon_ns(ns)) 3264 ns_free_inum(&ns->ns); 3265 dec_mnt_namespaces(ns->ucounts); 3266 put_user_ns(ns->user_ns); 3267 kfree(ns); 3268 } 3269 3270 /* 3271 * Assign a sequence number so we can detect when we attempt to bind 3272 * mount a reference to an older mount namespace into the current 3273 * mount namespace, preventing reference counting loops. A 64bit 3274 * number incrementing at 10Ghz will take 12,427 years to wrap which 3275 * is effectively never, so we can ignore the possibility. 3276 */ 3277 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3278 3279 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3280 { 3281 struct mnt_namespace *new_ns; 3282 struct ucounts *ucounts; 3283 int ret; 3284 3285 ucounts = inc_mnt_namespaces(user_ns); 3286 if (!ucounts) 3287 return ERR_PTR(-ENOSPC); 3288 3289 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3290 if (!new_ns) { 3291 dec_mnt_namespaces(ucounts); 3292 return ERR_PTR(-ENOMEM); 3293 } 3294 if (!anon) { 3295 ret = ns_alloc_inum(&new_ns->ns); 3296 if (ret) { 3297 kfree(new_ns); 3298 dec_mnt_namespaces(ucounts); 3299 return ERR_PTR(ret); 3300 } 3301 } 3302 new_ns->ns.ops = &mntns_operations; 3303 if (!anon) 3304 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3305 refcount_set(&new_ns->ns.count, 1); 3306 INIT_LIST_HEAD(&new_ns->list); 3307 init_waitqueue_head(&new_ns->poll); 3308 spin_lock_init(&new_ns->ns_lock); 3309 new_ns->user_ns = get_user_ns(user_ns); 3310 new_ns->ucounts = ucounts; 3311 return new_ns; 3312 } 3313 3314 __latent_entropy 3315 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3316 struct user_namespace *user_ns, struct fs_struct *new_fs) 3317 { 3318 struct mnt_namespace *new_ns; 3319 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3320 struct mount *p, *q; 3321 struct mount *old; 3322 struct mount *new; 3323 int copy_flags; 3324 3325 BUG_ON(!ns); 3326 3327 if (likely(!(flags & CLONE_NEWNS))) { 3328 get_mnt_ns(ns); 3329 return ns; 3330 } 3331 3332 old = ns->root; 3333 3334 new_ns = alloc_mnt_ns(user_ns, false); 3335 if (IS_ERR(new_ns)) 3336 return new_ns; 3337 3338 namespace_lock(); 3339 /* First pass: copy the tree topology */ 3340 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3341 if (user_ns != ns->user_ns) 3342 copy_flags |= CL_SHARED_TO_SLAVE; 3343 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3344 if (IS_ERR(new)) { 3345 namespace_unlock(); 3346 free_mnt_ns(new_ns); 3347 return ERR_CAST(new); 3348 } 3349 if (user_ns != ns->user_ns) { 3350 lock_mount_hash(); 3351 lock_mnt_tree(new); 3352 unlock_mount_hash(); 3353 } 3354 new_ns->root = new; 3355 list_add_tail(&new_ns->list, &new->mnt_list); 3356 3357 /* 3358 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3359 * as belonging to new namespace. We have already acquired a private 3360 * fs_struct, so tsk->fs->lock is not needed. 3361 */ 3362 p = old; 3363 q = new; 3364 while (p) { 3365 q->mnt_ns = new_ns; 3366 new_ns->mounts++; 3367 if (new_fs) { 3368 if (&p->mnt == new_fs->root.mnt) { 3369 new_fs->root.mnt = mntget(&q->mnt); 3370 rootmnt = &p->mnt; 3371 } 3372 if (&p->mnt == new_fs->pwd.mnt) { 3373 new_fs->pwd.mnt = mntget(&q->mnt); 3374 pwdmnt = &p->mnt; 3375 } 3376 } 3377 p = next_mnt(p, old); 3378 q = next_mnt(q, new); 3379 if (!q) 3380 break; 3381 while (p->mnt.mnt_root != q->mnt.mnt_root) 3382 p = next_mnt(p, old); 3383 } 3384 namespace_unlock(); 3385 3386 if (rootmnt) 3387 mntput(rootmnt); 3388 if (pwdmnt) 3389 mntput(pwdmnt); 3390 3391 return new_ns; 3392 } 3393 3394 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3395 { 3396 struct mount *mnt = real_mount(m); 3397 struct mnt_namespace *ns; 3398 struct super_block *s; 3399 struct path path; 3400 int err; 3401 3402 ns = alloc_mnt_ns(&init_user_ns, true); 3403 if (IS_ERR(ns)) { 3404 mntput(m); 3405 return ERR_CAST(ns); 3406 } 3407 mnt->mnt_ns = ns; 3408 ns->root = mnt; 3409 ns->mounts++; 3410 list_add(&mnt->mnt_list, &ns->list); 3411 3412 err = vfs_path_lookup(m->mnt_root, m, 3413 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3414 3415 put_mnt_ns(ns); 3416 3417 if (err) 3418 return ERR_PTR(err); 3419 3420 /* trade a vfsmount reference for active sb one */ 3421 s = path.mnt->mnt_sb; 3422 atomic_inc(&s->s_active); 3423 mntput(path.mnt); 3424 /* lock the sucker */ 3425 down_write(&s->s_umount); 3426 /* ... and return the root of (sub)tree on it */ 3427 return path.dentry; 3428 } 3429 EXPORT_SYMBOL(mount_subtree); 3430 3431 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3432 char __user *, type, unsigned long, flags, void __user *, data) 3433 { 3434 int ret; 3435 char *kernel_type; 3436 char *kernel_dev; 3437 void *options; 3438 3439 kernel_type = copy_mount_string(type); 3440 ret = PTR_ERR(kernel_type); 3441 if (IS_ERR(kernel_type)) 3442 goto out_type; 3443 3444 kernel_dev = copy_mount_string(dev_name); 3445 ret = PTR_ERR(kernel_dev); 3446 if (IS_ERR(kernel_dev)) 3447 goto out_dev; 3448 3449 options = copy_mount_options(data); 3450 ret = PTR_ERR(options); 3451 if (IS_ERR(options)) 3452 goto out_data; 3453 3454 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3455 3456 kfree(options); 3457 out_data: 3458 kfree(kernel_dev); 3459 out_dev: 3460 kfree(kernel_type); 3461 out_type: 3462 return ret; 3463 } 3464 3465 #define FSMOUNT_VALID_FLAGS \ 3466 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3467 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME) 3468 3469 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3470 3471 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3472 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3473 3474 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3475 { 3476 unsigned int mnt_flags = 0; 3477 3478 if (attr_flags & MOUNT_ATTR_RDONLY) 3479 mnt_flags |= MNT_READONLY; 3480 if (attr_flags & MOUNT_ATTR_NOSUID) 3481 mnt_flags |= MNT_NOSUID; 3482 if (attr_flags & MOUNT_ATTR_NODEV) 3483 mnt_flags |= MNT_NODEV; 3484 if (attr_flags & MOUNT_ATTR_NOEXEC) 3485 mnt_flags |= MNT_NOEXEC; 3486 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3487 mnt_flags |= MNT_NODIRATIME; 3488 3489 return mnt_flags; 3490 } 3491 3492 /* 3493 * Create a kernel mount representation for a new, prepared superblock 3494 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3495 */ 3496 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3497 unsigned int, attr_flags) 3498 { 3499 struct mnt_namespace *ns; 3500 struct fs_context *fc; 3501 struct file *file; 3502 struct path newmount; 3503 struct mount *mnt; 3504 struct fd f; 3505 unsigned int mnt_flags = 0; 3506 long ret; 3507 3508 if (!may_mount()) 3509 return -EPERM; 3510 3511 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3512 return -EINVAL; 3513 3514 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3515 return -EINVAL; 3516 3517 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3518 3519 switch (attr_flags & MOUNT_ATTR__ATIME) { 3520 case MOUNT_ATTR_STRICTATIME: 3521 break; 3522 case MOUNT_ATTR_NOATIME: 3523 mnt_flags |= MNT_NOATIME; 3524 break; 3525 case MOUNT_ATTR_RELATIME: 3526 mnt_flags |= MNT_RELATIME; 3527 break; 3528 default: 3529 return -EINVAL; 3530 } 3531 3532 f = fdget(fs_fd); 3533 if (!f.file) 3534 return -EBADF; 3535 3536 ret = -EINVAL; 3537 if (f.file->f_op != &fscontext_fops) 3538 goto err_fsfd; 3539 3540 fc = f.file->private_data; 3541 3542 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3543 if (ret < 0) 3544 goto err_fsfd; 3545 3546 /* There must be a valid superblock or we can't mount it */ 3547 ret = -EINVAL; 3548 if (!fc->root) 3549 goto err_unlock; 3550 3551 ret = -EPERM; 3552 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3553 pr_warn("VFS: Mount too revealing\n"); 3554 goto err_unlock; 3555 } 3556 3557 ret = -EBUSY; 3558 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3559 goto err_unlock; 3560 3561 ret = -EPERM; 3562 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) 3563 goto err_unlock; 3564 3565 newmount.mnt = vfs_create_mount(fc); 3566 if (IS_ERR(newmount.mnt)) { 3567 ret = PTR_ERR(newmount.mnt); 3568 goto err_unlock; 3569 } 3570 newmount.dentry = dget(fc->root); 3571 newmount.mnt->mnt_flags = mnt_flags; 3572 3573 /* We've done the mount bit - now move the file context into more or 3574 * less the same state as if we'd done an fspick(). We don't want to 3575 * do any memory allocation or anything like that at this point as we 3576 * don't want to have to handle any errors incurred. 3577 */ 3578 vfs_clean_context(fc); 3579 3580 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3581 if (IS_ERR(ns)) { 3582 ret = PTR_ERR(ns); 3583 goto err_path; 3584 } 3585 mnt = real_mount(newmount.mnt); 3586 mnt->mnt_ns = ns; 3587 ns->root = mnt; 3588 ns->mounts = 1; 3589 list_add(&mnt->mnt_list, &ns->list); 3590 mntget(newmount.mnt); 3591 3592 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3593 * it, not just simply put it. 3594 */ 3595 file = dentry_open(&newmount, O_PATH, fc->cred); 3596 if (IS_ERR(file)) { 3597 dissolve_on_fput(newmount.mnt); 3598 ret = PTR_ERR(file); 3599 goto err_path; 3600 } 3601 file->f_mode |= FMODE_NEED_UNMOUNT; 3602 3603 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3604 if (ret >= 0) 3605 fd_install(ret, file); 3606 else 3607 fput(file); 3608 3609 err_path: 3610 path_put(&newmount); 3611 err_unlock: 3612 mutex_unlock(&fc->uapi_mutex); 3613 err_fsfd: 3614 fdput(f); 3615 return ret; 3616 } 3617 3618 /* 3619 * Move a mount from one place to another. In combination with 3620 * fsopen()/fsmount() this is used to install a new mount and in combination 3621 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3622 * a mount subtree. 3623 * 3624 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3625 */ 3626 SYSCALL_DEFINE5(move_mount, 3627 int, from_dfd, const char __user *, from_pathname, 3628 int, to_dfd, const char __user *, to_pathname, 3629 unsigned int, flags) 3630 { 3631 struct path from_path, to_path; 3632 unsigned int lflags; 3633 int ret = 0; 3634 3635 if (!may_mount()) 3636 return -EPERM; 3637 3638 if (flags & ~MOVE_MOUNT__MASK) 3639 return -EINVAL; 3640 3641 /* If someone gives a pathname, they aren't permitted to move 3642 * from an fd that requires unmount as we can't get at the flag 3643 * to clear it afterwards. 3644 */ 3645 lflags = 0; 3646 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3647 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3648 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3649 3650 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3651 if (ret < 0) 3652 return ret; 3653 3654 lflags = 0; 3655 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3656 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3657 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3658 3659 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3660 if (ret < 0) 3661 goto out_from; 3662 3663 ret = security_move_mount(&from_path, &to_path); 3664 if (ret < 0) 3665 goto out_to; 3666 3667 ret = do_move_mount(&from_path, &to_path); 3668 3669 out_to: 3670 path_put(&to_path); 3671 out_from: 3672 path_put(&from_path); 3673 return ret; 3674 } 3675 3676 /* 3677 * Return true if path is reachable from root 3678 * 3679 * namespace_sem or mount_lock is held 3680 */ 3681 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3682 const struct path *root) 3683 { 3684 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3685 dentry = mnt->mnt_mountpoint; 3686 mnt = mnt->mnt_parent; 3687 } 3688 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3689 } 3690 3691 bool path_is_under(const struct path *path1, const struct path *path2) 3692 { 3693 bool res; 3694 read_seqlock_excl(&mount_lock); 3695 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3696 read_sequnlock_excl(&mount_lock); 3697 return res; 3698 } 3699 EXPORT_SYMBOL(path_is_under); 3700 3701 /* 3702 * pivot_root Semantics: 3703 * Moves the root file system of the current process to the directory put_old, 3704 * makes new_root as the new root file system of the current process, and sets 3705 * root/cwd of all processes which had them on the current root to new_root. 3706 * 3707 * Restrictions: 3708 * The new_root and put_old must be directories, and must not be on the 3709 * same file system as the current process root. The put_old must be 3710 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3711 * pointed to by put_old must yield the same directory as new_root. No other 3712 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3713 * 3714 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3715 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3716 * in this situation. 3717 * 3718 * Notes: 3719 * - we don't move root/cwd if they are not at the root (reason: if something 3720 * cared enough to change them, it's probably wrong to force them elsewhere) 3721 * - it's okay to pick a root that isn't the root of a file system, e.g. 3722 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3723 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3724 * first. 3725 */ 3726 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3727 const char __user *, put_old) 3728 { 3729 struct path new, old, root; 3730 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3731 struct mountpoint *old_mp, *root_mp; 3732 int error; 3733 3734 if (!may_mount()) 3735 return -EPERM; 3736 3737 error = user_path_at(AT_FDCWD, new_root, 3738 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3739 if (error) 3740 goto out0; 3741 3742 error = user_path_at(AT_FDCWD, put_old, 3743 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3744 if (error) 3745 goto out1; 3746 3747 error = security_sb_pivotroot(&old, &new); 3748 if (error) 3749 goto out2; 3750 3751 get_fs_root(current->fs, &root); 3752 old_mp = lock_mount(&old); 3753 error = PTR_ERR(old_mp); 3754 if (IS_ERR(old_mp)) 3755 goto out3; 3756 3757 error = -EINVAL; 3758 new_mnt = real_mount(new.mnt); 3759 root_mnt = real_mount(root.mnt); 3760 old_mnt = real_mount(old.mnt); 3761 ex_parent = new_mnt->mnt_parent; 3762 root_parent = root_mnt->mnt_parent; 3763 if (IS_MNT_SHARED(old_mnt) || 3764 IS_MNT_SHARED(ex_parent) || 3765 IS_MNT_SHARED(root_parent)) 3766 goto out4; 3767 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3768 goto out4; 3769 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3770 goto out4; 3771 error = -ENOENT; 3772 if (d_unlinked(new.dentry)) 3773 goto out4; 3774 error = -EBUSY; 3775 if (new_mnt == root_mnt || old_mnt == root_mnt) 3776 goto out4; /* loop, on the same file system */ 3777 error = -EINVAL; 3778 if (root.mnt->mnt_root != root.dentry) 3779 goto out4; /* not a mountpoint */ 3780 if (!mnt_has_parent(root_mnt)) 3781 goto out4; /* not attached */ 3782 if (new.mnt->mnt_root != new.dentry) 3783 goto out4; /* not a mountpoint */ 3784 if (!mnt_has_parent(new_mnt)) 3785 goto out4; /* not attached */ 3786 /* make sure we can reach put_old from new_root */ 3787 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3788 goto out4; 3789 /* make certain new is below the root */ 3790 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3791 goto out4; 3792 lock_mount_hash(); 3793 umount_mnt(new_mnt); 3794 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3795 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3796 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3797 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3798 } 3799 /* mount old root on put_old */ 3800 attach_mnt(root_mnt, old_mnt, old_mp); 3801 /* mount new_root on / */ 3802 attach_mnt(new_mnt, root_parent, root_mp); 3803 mnt_add_count(root_parent, -1); 3804 touch_mnt_namespace(current->nsproxy->mnt_ns); 3805 /* A moved mount should not expire automatically */ 3806 list_del_init(&new_mnt->mnt_expire); 3807 put_mountpoint(root_mp); 3808 unlock_mount_hash(); 3809 chroot_fs_refs(&root, &new); 3810 error = 0; 3811 out4: 3812 unlock_mount(old_mp); 3813 if (!error) 3814 mntput_no_expire(ex_parent); 3815 out3: 3816 path_put(&root); 3817 out2: 3818 path_put(&old); 3819 out1: 3820 path_put(&new); 3821 out0: 3822 return error; 3823 } 3824 3825 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3826 { 3827 unsigned int flags = mnt->mnt.mnt_flags; 3828 3829 /* flags to clear */ 3830 flags &= ~kattr->attr_clr; 3831 /* flags to raise */ 3832 flags |= kattr->attr_set; 3833 3834 return flags; 3835 } 3836 3837 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3838 { 3839 struct vfsmount *m = &mnt->mnt; 3840 3841 if (!kattr->mnt_userns) 3842 return 0; 3843 3844 /* 3845 * Once a mount has been idmapped we don't allow it to change its 3846 * mapping. It makes things simpler and callers can just create 3847 * another bind-mount they can idmap if they want to. 3848 */ 3849 if (mnt_user_ns(m) != &init_user_ns) 3850 return -EPERM; 3851 3852 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3853 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3854 return -EINVAL; 3855 3856 /* We're not controlling the superblock. */ 3857 if (!ns_capable(m->mnt_sb->s_user_ns, CAP_SYS_ADMIN)) 3858 return -EPERM; 3859 3860 /* Mount has already been visible in the filesystem hierarchy. */ 3861 if (!is_anon_ns(mnt->mnt_ns)) 3862 return -EINVAL; 3863 3864 return 0; 3865 } 3866 3867 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3868 struct mount *mnt, int *err) 3869 { 3870 struct mount *m = mnt, *last = NULL; 3871 3872 if (!is_mounted(&m->mnt)) { 3873 *err = -EINVAL; 3874 goto out; 3875 } 3876 3877 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3878 *err = -EINVAL; 3879 goto out; 3880 } 3881 3882 do { 3883 unsigned int flags; 3884 3885 flags = recalc_flags(kattr, m); 3886 if (!can_change_locked_flags(m, flags)) { 3887 *err = -EPERM; 3888 goto out; 3889 } 3890 3891 *err = can_idmap_mount(kattr, m); 3892 if (*err) 3893 goto out; 3894 3895 last = m; 3896 3897 if ((kattr->attr_set & MNT_READONLY) && 3898 !(m->mnt.mnt_flags & MNT_READONLY)) { 3899 *err = mnt_hold_writers(m); 3900 if (*err) 3901 goto out; 3902 } 3903 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3904 3905 out: 3906 return last; 3907 } 3908 3909 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3910 { 3911 struct user_namespace *mnt_userns; 3912 3913 if (!kattr->mnt_userns) 3914 return; 3915 3916 mnt_userns = get_user_ns(kattr->mnt_userns); 3917 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 3918 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 3919 } 3920 3921 static void mount_setattr_commit(struct mount_kattr *kattr, 3922 struct mount *mnt, struct mount *last, 3923 int err) 3924 { 3925 struct mount *m = mnt; 3926 3927 do { 3928 if (!err) { 3929 unsigned int flags; 3930 3931 do_idmap_mount(kattr, m); 3932 flags = recalc_flags(kattr, m); 3933 WRITE_ONCE(m->mnt.mnt_flags, flags); 3934 } 3935 3936 /* 3937 * We either set MNT_READONLY above so make it visible 3938 * before ~MNT_WRITE_HOLD or we failed to recursively 3939 * apply mount options. 3940 */ 3941 if ((kattr->attr_set & MNT_READONLY) && 3942 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 3943 mnt_unhold_writers(m); 3944 3945 if (!err && kattr->propagation) 3946 change_mnt_propagation(m, kattr->propagation); 3947 3948 /* 3949 * On failure, only cleanup until we found the first mount 3950 * we failed to handle. 3951 */ 3952 if (err && m == last) 3953 break; 3954 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3955 3956 if (!err) 3957 touch_mnt_namespace(mnt->mnt_ns); 3958 } 3959 3960 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 3961 { 3962 struct mount *mnt = real_mount(path->mnt), *last = NULL; 3963 int err = 0; 3964 3965 if (path->dentry != mnt->mnt.mnt_root) 3966 return -EINVAL; 3967 3968 if (kattr->propagation) { 3969 /* 3970 * Only take namespace_lock() if we're actually changing 3971 * propagation. 3972 */ 3973 namespace_lock(); 3974 if (kattr->propagation == MS_SHARED) { 3975 err = invent_group_ids(mnt, kattr->recurse); 3976 if (err) { 3977 namespace_unlock(); 3978 return err; 3979 } 3980 } 3981 } 3982 3983 lock_mount_hash(); 3984 3985 /* 3986 * Get the mount tree in a shape where we can change mount 3987 * properties without failure. 3988 */ 3989 last = mount_setattr_prepare(kattr, mnt, &err); 3990 if (last) /* Commit all changes or revert to the old state. */ 3991 mount_setattr_commit(kattr, mnt, last, err); 3992 3993 unlock_mount_hash(); 3994 3995 if (kattr->propagation) { 3996 namespace_unlock(); 3997 if (err) 3998 cleanup_group_ids(mnt, NULL); 3999 } 4000 4001 return err; 4002 } 4003 4004 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4005 struct mount_kattr *kattr, unsigned int flags) 4006 { 4007 int err = 0; 4008 struct ns_common *ns; 4009 struct user_namespace *mnt_userns; 4010 struct file *file; 4011 4012 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4013 return 0; 4014 4015 /* 4016 * We currently do not support clearing an idmapped mount. If this ever 4017 * is a use-case we can revisit this but for now let's keep it simple 4018 * and not allow it. 4019 */ 4020 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4021 return -EINVAL; 4022 4023 if (attr->userns_fd > INT_MAX) 4024 return -EINVAL; 4025 4026 file = fget(attr->userns_fd); 4027 if (!file) 4028 return -EBADF; 4029 4030 if (!proc_ns_file(file)) { 4031 err = -EINVAL; 4032 goto out_fput; 4033 } 4034 4035 ns = get_proc_ns(file_inode(file)); 4036 if (ns->ops->type != CLONE_NEWUSER) { 4037 err = -EINVAL; 4038 goto out_fput; 4039 } 4040 4041 /* 4042 * The init_user_ns is used to indicate that a vfsmount is not idmapped. 4043 * This is simpler than just having to treat NULL as unmapped. Users 4044 * wanting to idmap a mount to init_user_ns can just use a namespace 4045 * with an identity mapping. 4046 */ 4047 mnt_userns = container_of(ns, struct user_namespace, ns); 4048 if (mnt_userns == &init_user_ns) { 4049 err = -EPERM; 4050 goto out_fput; 4051 } 4052 kattr->mnt_userns = get_user_ns(mnt_userns); 4053 4054 out_fput: 4055 fput(file); 4056 return err; 4057 } 4058 4059 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4060 struct mount_kattr *kattr, unsigned int flags) 4061 { 4062 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4063 4064 if (flags & AT_NO_AUTOMOUNT) 4065 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4066 if (flags & AT_SYMLINK_NOFOLLOW) 4067 lookup_flags &= ~LOOKUP_FOLLOW; 4068 if (flags & AT_EMPTY_PATH) 4069 lookup_flags |= LOOKUP_EMPTY; 4070 4071 *kattr = (struct mount_kattr) { 4072 .lookup_flags = lookup_flags, 4073 .recurse = !!(flags & AT_RECURSIVE), 4074 }; 4075 4076 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4077 return -EINVAL; 4078 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4079 return -EINVAL; 4080 kattr->propagation = attr->propagation; 4081 4082 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4083 return -EINVAL; 4084 4085 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4086 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4087 4088 /* 4089 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4090 * users wanting to transition to a different atime setting cannot 4091 * simply specify the atime setting in @attr_set, but must also 4092 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4093 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4094 * @attr_clr and that @attr_set can't have any atime bits set if 4095 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4096 */ 4097 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4098 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4099 return -EINVAL; 4100 4101 /* 4102 * Clear all previous time settings as they are mutually 4103 * exclusive. 4104 */ 4105 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4106 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4107 case MOUNT_ATTR_RELATIME: 4108 kattr->attr_set |= MNT_RELATIME; 4109 break; 4110 case MOUNT_ATTR_NOATIME: 4111 kattr->attr_set |= MNT_NOATIME; 4112 break; 4113 case MOUNT_ATTR_STRICTATIME: 4114 break; 4115 default: 4116 return -EINVAL; 4117 } 4118 } else { 4119 if (attr->attr_set & MOUNT_ATTR__ATIME) 4120 return -EINVAL; 4121 } 4122 4123 return build_mount_idmapped(attr, usize, kattr, flags); 4124 } 4125 4126 static void finish_mount_kattr(struct mount_kattr *kattr) 4127 { 4128 put_user_ns(kattr->mnt_userns); 4129 kattr->mnt_userns = NULL; 4130 } 4131 4132 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4133 unsigned int, flags, struct mount_attr __user *, uattr, 4134 size_t, usize) 4135 { 4136 int err; 4137 struct path target; 4138 struct mount_attr attr; 4139 struct mount_kattr kattr; 4140 4141 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4142 4143 if (flags & ~(AT_EMPTY_PATH | 4144 AT_RECURSIVE | 4145 AT_SYMLINK_NOFOLLOW | 4146 AT_NO_AUTOMOUNT)) 4147 return -EINVAL; 4148 4149 if (unlikely(usize > PAGE_SIZE)) 4150 return -E2BIG; 4151 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4152 return -EINVAL; 4153 4154 if (!may_mount()) 4155 return -EPERM; 4156 4157 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4158 if (err) 4159 return err; 4160 4161 /* Don't bother walking through the mounts if this is a nop. */ 4162 if (attr.attr_set == 0 && 4163 attr.attr_clr == 0 && 4164 attr.propagation == 0) 4165 return 0; 4166 4167 err = build_mount_kattr(&attr, usize, &kattr, flags); 4168 if (err) 4169 return err; 4170 4171 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4172 if (err) 4173 return err; 4174 4175 err = do_mount_setattr(&target, &kattr); 4176 finish_mount_kattr(&kattr); 4177 path_put(&target); 4178 return err; 4179 } 4180 4181 static void __init init_mount_tree(void) 4182 { 4183 struct vfsmount *mnt; 4184 struct mount *m; 4185 struct mnt_namespace *ns; 4186 struct path root; 4187 4188 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4189 if (IS_ERR(mnt)) 4190 panic("Can't create rootfs"); 4191 4192 ns = alloc_mnt_ns(&init_user_ns, false); 4193 if (IS_ERR(ns)) 4194 panic("Can't allocate initial namespace"); 4195 m = real_mount(mnt); 4196 m->mnt_ns = ns; 4197 ns->root = m; 4198 ns->mounts = 1; 4199 list_add(&m->mnt_list, &ns->list); 4200 init_task.nsproxy->mnt_ns = ns; 4201 get_mnt_ns(ns); 4202 4203 root.mnt = mnt; 4204 root.dentry = mnt->mnt_root; 4205 mnt->mnt_flags |= MNT_LOCKED; 4206 4207 set_fs_pwd(current->fs, &root); 4208 set_fs_root(current->fs, &root); 4209 } 4210 4211 void __init mnt_init(void) 4212 { 4213 int err; 4214 4215 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4216 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 4217 4218 mount_hashtable = alloc_large_system_hash("Mount-cache", 4219 sizeof(struct hlist_head), 4220 mhash_entries, 19, 4221 HASH_ZERO, 4222 &m_hash_shift, &m_hash_mask, 0, 0); 4223 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4224 sizeof(struct hlist_head), 4225 mphash_entries, 19, 4226 HASH_ZERO, 4227 &mp_hash_shift, &mp_hash_mask, 0, 0); 4228 4229 if (!mount_hashtable || !mountpoint_hashtable) 4230 panic("Failed to allocate mount hash table\n"); 4231 4232 kernfs_init(); 4233 4234 err = sysfs_init(); 4235 if (err) 4236 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4237 __func__, err); 4238 fs_kobj = kobject_create_and_add("fs", NULL); 4239 if (!fs_kobj) 4240 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4241 shmem_init(); 4242 init_rootfs(); 4243 init_mount_tree(); 4244 } 4245 4246 void put_mnt_ns(struct mnt_namespace *ns) 4247 { 4248 if (!refcount_dec_and_test(&ns->ns.count)) 4249 return; 4250 drop_collected_mounts(&ns->root->mnt); 4251 free_mnt_ns(ns); 4252 } 4253 4254 struct vfsmount *kern_mount(struct file_system_type *type) 4255 { 4256 struct vfsmount *mnt; 4257 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4258 if (!IS_ERR(mnt)) { 4259 /* 4260 * it is a longterm mount, don't release mnt until 4261 * we unmount before file sys is unregistered 4262 */ 4263 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4264 } 4265 return mnt; 4266 } 4267 EXPORT_SYMBOL_GPL(kern_mount); 4268 4269 void kern_unmount(struct vfsmount *mnt) 4270 { 4271 /* release long term mount so mount point can be released */ 4272 if (!IS_ERR_OR_NULL(mnt)) { 4273 real_mount(mnt)->mnt_ns = NULL; 4274 synchronize_rcu(); /* yecchhh... */ 4275 mntput(mnt); 4276 } 4277 } 4278 EXPORT_SYMBOL(kern_unmount); 4279 4280 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4281 { 4282 unsigned int i; 4283 4284 for (i = 0; i < num; i++) 4285 if (mnt[i]) 4286 real_mount(mnt[i])->mnt_ns = NULL; 4287 synchronize_rcu_expedited(); 4288 for (i = 0; i < num; i++) 4289 mntput(mnt[i]); 4290 } 4291 EXPORT_SYMBOL(kern_unmount_array); 4292 4293 bool our_mnt(struct vfsmount *mnt) 4294 { 4295 return check_mnt(real_mount(mnt)); 4296 } 4297 4298 bool current_chrooted(void) 4299 { 4300 /* Does the current process have a non-standard root */ 4301 struct path ns_root; 4302 struct path fs_root; 4303 bool chrooted; 4304 4305 /* Find the namespace root */ 4306 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4307 ns_root.dentry = ns_root.mnt->mnt_root; 4308 path_get(&ns_root); 4309 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4310 ; 4311 4312 get_fs_root(current->fs, &fs_root); 4313 4314 chrooted = !path_equal(&fs_root, &ns_root); 4315 4316 path_put(&fs_root); 4317 path_put(&ns_root); 4318 4319 return chrooted; 4320 } 4321 4322 static bool mnt_already_visible(struct mnt_namespace *ns, 4323 const struct super_block *sb, 4324 int *new_mnt_flags) 4325 { 4326 int new_flags = *new_mnt_flags; 4327 struct mount *mnt; 4328 bool visible = false; 4329 4330 down_read(&namespace_sem); 4331 lock_ns_list(ns); 4332 list_for_each_entry(mnt, &ns->list, mnt_list) { 4333 struct mount *child; 4334 int mnt_flags; 4335 4336 if (mnt_is_cursor(mnt)) 4337 continue; 4338 4339 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4340 continue; 4341 4342 /* This mount is not fully visible if it's root directory 4343 * is not the root directory of the filesystem. 4344 */ 4345 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4346 continue; 4347 4348 /* A local view of the mount flags */ 4349 mnt_flags = mnt->mnt.mnt_flags; 4350 4351 /* Don't miss readonly hidden in the superblock flags */ 4352 if (sb_rdonly(mnt->mnt.mnt_sb)) 4353 mnt_flags |= MNT_LOCK_READONLY; 4354 4355 /* Verify the mount flags are equal to or more permissive 4356 * than the proposed new mount. 4357 */ 4358 if ((mnt_flags & MNT_LOCK_READONLY) && 4359 !(new_flags & MNT_READONLY)) 4360 continue; 4361 if ((mnt_flags & MNT_LOCK_ATIME) && 4362 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4363 continue; 4364 4365 /* This mount is not fully visible if there are any 4366 * locked child mounts that cover anything except for 4367 * empty directories. 4368 */ 4369 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4370 struct inode *inode = child->mnt_mountpoint->d_inode; 4371 /* Only worry about locked mounts */ 4372 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4373 continue; 4374 /* Is the directory permanetly empty? */ 4375 if (!is_empty_dir_inode(inode)) 4376 goto next; 4377 } 4378 /* Preserve the locked attributes */ 4379 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4380 MNT_LOCK_ATIME); 4381 visible = true; 4382 goto found; 4383 next: ; 4384 } 4385 found: 4386 unlock_ns_list(ns); 4387 up_read(&namespace_sem); 4388 return visible; 4389 } 4390 4391 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4392 { 4393 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4394 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4395 unsigned long s_iflags; 4396 4397 if (ns->user_ns == &init_user_ns) 4398 return false; 4399 4400 /* Can this filesystem be too revealing? */ 4401 s_iflags = sb->s_iflags; 4402 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4403 return false; 4404 4405 if ((s_iflags & required_iflags) != required_iflags) { 4406 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4407 required_iflags); 4408 return true; 4409 } 4410 4411 return !mnt_already_visible(ns, sb, new_mnt_flags); 4412 } 4413 4414 bool mnt_may_suid(struct vfsmount *mnt) 4415 { 4416 /* 4417 * Foreign mounts (accessed via fchdir or through /proc 4418 * symlinks) are always treated as if they are nosuid. This 4419 * prevents namespaces from trusting potentially unsafe 4420 * suid/sgid bits, file caps, or security labels that originate 4421 * in other namespaces. 4422 */ 4423 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4424 current_in_userns(mnt->mnt_sb->s_user_ns); 4425 } 4426 4427 static struct ns_common *mntns_get(struct task_struct *task) 4428 { 4429 struct ns_common *ns = NULL; 4430 struct nsproxy *nsproxy; 4431 4432 task_lock(task); 4433 nsproxy = task->nsproxy; 4434 if (nsproxy) { 4435 ns = &nsproxy->mnt_ns->ns; 4436 get_mnt_ns(to_mnt_ns(ns)); 4437 } 4438 task_unlock(task); 4439 4440 return ns; 4441 } 4442 4443 static void mntns_put(struct ns_common *ns) 4444 { 4445 put_mnt_ns(to_mnt_ns(ns)); 4446 } 4447 4448 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4449 { 4450 struct nsproxy *nsproxy = nsset->nsproxy; 4451 struct fs_struct *fs = nsset->fs; 4452 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4453 struct user_namespace *user_ns = nsset->cred->user_ns; 4454 struct path root; 4455 int err; 4456 4457 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4458 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4459 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4460 return -EPERM; 4461 4462 if (is_anon_ns(mnt_ns)) 4463 return -EINVAL; 4464 4465 if (fs->users != 1) 4466 return -EINVAL; 4467 4468 get_mnt_ns(mnt_ns); 4469 old_mnt_ns = nsproxy->mnt_ns; 4470 nsproxy->mnt_ns = mnt_ns; 4471 4472 /* Find the root */ 4473 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4474 "/", LOOKUP_DOWN, &root); 4475 if (err) { 4476 /* revert to old namespace */ 4477 nsproxy->mnt_ns = old_mnt_ns; 4478 put_mnt_ns(mnt_ns); 4479 return err; 4480 } 4481 4482 put_mnt_ns(old_mnt_ns); 4483 4484 /* Update the pwd and root */ 4485 set_fs_pwd(fs, &root); 4486 set_fs_root(fs, &root); 4487 4488 path_put(&root); 4489 return 0; 4490 } 4491 4492 static struct user_namespace *mntns_owner(struct ns_common *ns) 4493 { 4494 return to_mnt_ns(ns)->user_ns; 4495 } 4496 4497 const struct proc_ns_operations mntns_operations = { 4498 .name = "mnt", 4499 .type = CLONE_NEWNS, 4500 .get = mntns_get, 4501 .put = mntns_put, 4502 .install = mntns_install, 4503 .owner = mntns_owner, 4504 }; 4505