xref: /linux/fs/namespace.c (revision 64b9f64f80a6f4b7ea51bf0510119cb15e801dc6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 
35 #include "pnode.h"
36 #include "internal.h"
37 
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40 
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45 
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 	if (!str)
50 		return 0;
51 	mhash_entries = simple_strtoul(str, &str, 0);
52 	return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	if (!str)
60 		return 0;
61 	mphash_entries = simple_strtoul(str, &str, 0);
62 	return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65 
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69 
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76 
77 struct mount_kattr {
78 	unsigned int attr_set;
79 	unsigned int attr_clr;
80 	unsigned int propagation;
81 	unsigned int lookup_flags;
82 	bool recurse;
83 	struct user_namespace *mnt_userns;
84 };
85 
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89 
90 /*
91  * vfsmount lock may be taken for read to prevent changes to the
92  * vfsmount hash, ie. during mountpoint lookups or walking back
93  * up the tree.
94  *
95  * It should be taken for write in all cases where the vfsmount
96  * tree or hash is modified or when a vfsmount structure is modified.
97  */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99 
100 static inline void lock_mount_hash(void)
101 {
102 	write_seqlock(&mount_lock);
103 }
104 
105 static inline void unlock_mount_hash(void)
106 {
107 	write_sequnlock(&mount_lock);
108 }
109 
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 	tmp = tmp + (tmp >> m_hash_shift);
115 	return &mount_hashtable[tmp & m_hash_mask];
116 }
117 
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 	tmp = tmp + (tmp >> mp_hash_shift);
122 	return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124 
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128 
129 	if (res < 0)
130 		return res;
131 	mnt->mnt_id = res;
132 	return 0;
133 }
134 
135 static void mnt_free_id(struct mount *mnt)
136 {
137 	ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139 
140 /*
141  * Allocate a new peer group ID
142  */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_group_id = res;
150 	return 0;
151 }
152 
153 /*
154  * Release a peer group ID
155  */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 	if (mnt) {
199 		int err;
200 
201 		err = mnt_alloc_id(mnt);
202 		if (err)
203 			goto out_free_cache;
204 
205 		if (name) {
206 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
207 			if (!mnt->mnt_devname)
208 				goto out_free_id;
209 		}
210 
211 #ifdef CONFIG_SMP
212 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
213 		if (!mnt->mnt_pcp)
214 			goto out_free_devname;
215 
216 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
217 #else
218 		mnt->mnt_count = 1;
219 		mnt->mnt_writers = 0;
220 #endif
221 
222 		INIT_HLIST_NODE(&mnt->mnt_hash);
223 		INIT_LIST_HEAD(&mnt->mnt_child);
224 		INIT_LIST_HEAD(&mnt->mnt_mounts);
225 		INIT_LIST_HEAD(&mnt->mnt_list);
226 		INIT_LIST_HEAD(&mnt->mnt_expire);
227 		INIT_LIST_HEAD(&mnt->mnt_share);
228 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
229 		INIT_LIST_HEAD(&mnt->mnt_slave);
230 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
231 		INIT_LIST_HEAD(&mnt->mnt_umounting);
232 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
233 		mnt->mnt.mnt_userns = &init_user_ns;
234 	}
235 	return mnt;
236 
237 #ifdef CONFIG_SMP
238 out_free_devname:
239 	kfree_const(mnt->mnt_devname);
240 #endif
241 out_free_id:
242 	mnt_free_id(mnt);
243 out_free_cache:
244 	kmem_cache_free(mnt_cache, mnt);
245 	return NULL;
246 }
247 
248 /*
249  * Most r/o checks on a fs are for operations that take
250  * discrete amounts of time, like a write() or unlink().
251  * We must keep track of when those operations start
252  * (for permission checks) and when they end, so that
253  * we can determine when writes are able to occur to
254  * a filesystem.
255  */
256 /*
257  * __mnt_is_readonly: check whether a mount is read-only
258  * @mnt: the mount to check for its write status
259  *
260  * This shouldn't be used directly ouside of the VFS.
261  * It does not guarantee that the filesystem will stay
262  * r/w, just that it is right *now*.  This can not and
263  * should not be used in place of IS_RDONLY(inode).
264  * mnt_want/drop_write() will _keep_ the filesystem
265  * r/w.
266  */
267 bool __mnt_is_readonly(struct vfsmount *mnt)
268 {
269 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272 
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 	mnt->mnt_writers++;
279 #endif
280 }
281 
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 	mnt->mnt_writers--;
288 #endif
289 }
290 
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 	unsigned int count = 0;
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 	}
300 
301 	return count;
302 #else
303 	return mnt->mnt_writers;
304 #endif
305 }
306 
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 	if (mnt->mnt_sb->s_readonly_remount)
310 		return 1;
311 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 	smp_rmb();
313 	return __mnt_is_readonly(mnt);
314 }
315 
316 /*
317  * Most r/o & frozen checks on a fs are for operations that take discrete
318  * amounts of time, like a write() or unlink().  We must keep track of when
319  * those operations start (for permission checks) and when they end, so that we
320  * can determine when writes are able to occur to a filesystem.
321  */
322 /**
323  * __mnt_want_write - get write access to a mount without freeze protection
324  * @m: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is about to be performed to
327  * it, and makes sure that writes are allowed (mnt it read-write) before
328  * returning success. This operation does not protect against filesystem being
329  * frozen. When the write operation is finished, __mnt_drop_write() must be
330  * called. This is effectively a refcount.
331  */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 	struct mount *mnt = real_mount(m);
335 	int ret = 0;
336 
337 	preempt_disable();
338 	mnt_inc_writers(mnt);
339 	/*
340 	 * The store to mnt_inc_writers must be visible before we pass
341 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 	 * incremented count after it has set MNT_WRITE_HOLD.
343 	 */
344 	smp_mb();
345 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 		cpu_relax();
347 	/*
348 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 	 * be set to match its requirements. So we must not load that until
350 	 * MNT_WRITE_HOLD is cleared.
351 	 */
352 	smp_rmb();
353 	if (mnt_is_readonly(m)) {
354 		mnt_dec_writers(mnt);
355 		ret = -EROFS;
356 	}
357 	preempt_enable();
358 
359 	return ret;
360 }
361 
362 /**
363  * mnt_want_write - get write access to a mount
364  * @m: the mount on which to take a write
365  *
366  * This tells the low-level filesystem that a write is about to be performed to
367  * it, and makes sure that writes are allowed (mount is read-write, filesystem
368  * is not frozen) before returning success.  When the write operation is
369  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
370  */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 	int ret;
374 
375 	sb_start_write(m->mnt_sb);
376 	ret = __mnt_want_write(m);
377 	if (ret)
378 		sb_end_write(m->mnt_sb);
379 	return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382 
383 /**
384  * __mnt_want_write_file - get write access to a file's mount
385  * @file: the file who's mount on which to take a write
386  *
387  * This is like __mnt_want_write, but if the file is already open for writing it
388  * skips incrementing mnt_writers (since the open file already has a reference)
389  * and instead only does the check for emergency r/o remounts.  This must be
390  * paired with __mnt_drop_write_file.
391  */
392 int __mnt_want_write_file(struct file *file)
393 {
394 	if (file->f_mode & FMODE_WRITER) {
395 		/*
396 		 * Superblock may have become readonly while there are still
397 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
398 		 */
399 		if (__mnt_is_readonly(file->f_path.mnt))
400 			return -EROFS;
401 		return 0;
402 	}
403 	return __mnt_want_write(file->f_path.mnt);
404 }
405 
406 /**
407  * mnt_want_write_file - get write access to a file's mount
408  * @file: the file who's mount on which to take a write
409  *
410  * This is like mnt_want_write, but if the file is already open for writing it
411  * skips incrementing mnt_writers (since the open file already has a reference)
412  * and instead only does the freeze protection and the check for emergency r/o
413  * remounts.  This must be paired with mnt_drop_write_file.
414  */
415 int mnt_want_write_file(struct file *file)
416 {
417 	int ret;
418 
419 	sb_start_write(file_inode(file)->i_sb);
420 	ret = __mnt_want_write_file(file);
421 	if (ret)
422 		sb_end_write(file_inode(file)->i_sb);
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(mnt_want_write_file);
426 
427 /**
428  * __mnt_drop_write - give up write access to a mount
429  * @mnt: the mount on which to give up write access
430  *
431  * Tells the low-level filesystem that we are done
432  * performing writes to it.  Must be matched with
433  * __mnt_want_write() call above.
434  */
435 void __mnt_drop_write(struct vfsmount *mnt)
436 {
437 	preempt_disable();
438 	mnt_dec_writers(real_mount(mnt));
439 	preempt_enable();
440 }
441 
442 /**
443  * mnt_drop_write - give up write access to a mount
444  * @mnt: the mount on which to give up write access
445  *
446  * Tells the low-level filesystem that we are done performing writes to it and
447  * also allows filesystem to be frozen again.  Must be matched with
448  * mnt_want_write() call above.
449  */
450 void mnt_drop_write(struct vfsmount *mnt)
451 {
452 	__mnt_drop_write(mnt);
453 	sb_end_write(mnt->mnt_sb);
454 }
455 EXPORT_SYMBOL_GPL(mnt_drop_write);
456 
457 void __mnt_drop_write_file(struct file *file)
458 {
459 	if (!(file->f_mode & FMODE_WRITER))
460 		__mnt_drop_write(file->f_path.mnt);
461 }
462 
463 void mnt_drop_write_file(struct file *file)
464 {
465 	__mnt_drop_write_file(file);
466 	sb_end_write(file_inode(file)->i_sb);
467 }
468 EXPORT_SYMBOL(mnt_drop_write_file);
469 
470 static inline int mnt_hold_writers(struct mount *mnt)
471 {
472 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473 	/*
474 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 	 * should be visible before we do.
476 	 */
477 	smp_mb();
478 
479 	/*
480 	 * With writers on hold, if this value is zero, then there are
481 	 * definitely no active writers (although held writers may subsequently
482 	 * increment the count, they'll have to wait, and decrement it after
483 	 * seeing MNT_READONLY).
484 	 *
485 	 * It is OK to have counter incremented on one CPU and decremented on
486 	 * another: the sum will add up correctly. The danger would be when we
487 	 * sum up each counter, if we read a counter before it is incremented,
488 	 * but then read another CPU's count which it has been subsequently
489 	 * decremented from -- we would see more decrements than we should.
490 	 * MNT_WRITE_HOLD protects against this scenario, because
491 	 * mnt_want_write first increments count, then smp_mb, then spins on
492 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 	 * we're counting up here.
494 	 */
495 	if (mnt_get_writers(mnt) > 0)
496 		return -EBUSY;
497 
498 	return 0;
499 }
500 
501 static inline void mnt_unhold_writers(struct mount *mnt)
502 {
503 	/*
504 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
505 	 * that become unheld will see MNT_READONLY.
506 	 */
507 	smp_wmb();
508 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
509 }
510 
511 static int mnt_make_readonly(struct mount *mnt)
512 {
513 	int ret;
514 
515 	ret = mnt_hold_writers(mnt);
516 	if (!ret)
517 		mnt->mnt.mnt_flags |= MNT_READONLY;
518 	mnt_unhold_writers(mnt);
519 	return ret;
520 }
521 
522 int sb_prepare_remount_readonly(struct super_block *sb)
523 {
524 	struct mount *mnt;
525 	int err = 0;
526 
527 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
528 	if (atomic_long_read(&sb->s_remove_count))
529 		return -EBUSY;
530 
531 	lock_mount_hash();
532 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
534 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
535 			smp_mb();
536 			if (mnt_get_writers(mnt) > 0) {
537 				err = -EBUSY;
538 				break;
539 			}
540 		}
541 	}
542 	if (!err && atomic_long_read(&sb->s_remove_count))
543 		err = -EBUSY;
544 
545 	if (!err) {
546 		sb->s_readonly_remount = 1;
547 		smp_wmb();
548 	}
549 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
550 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
551 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
552 	}
553 	unlock_mount_hash();
554 
555 	return err;
556 }
557 
558 static void free_vfsmnt(struct mount *mnt)
559 {
560 	struct user_namespace *mnt_userns;
561 
562 	mnt_userns = mnt_user_ns(&mnt->mnt);
563 	if (mnt_userns != &init_user_ns)
564 		put_user_ns(mnt_userns);
565 	kfree_const(mnt->mnt_devname);
566 #ifdef CONFIG_SMP
567 	free_percpu(mnt->mnt_pcp);
568 #endif
569 	kmem_cache_free(mnt_cache, mnt);
570 }
571 
572 static void delayed_free_vfsmnt(struct rcu_head *head)
573 {
574 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
575 }
576 
577 /* call under rcu_read_lock */
578 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
579 {
580 	struct mount *mnt;
581 	if (read_seqretry(&mount_lock, seq))
582 		return 1;
583 	if (bastard == NULL)
584 		return 0;
585 	mnt = real_mount(bastard);
586 	mnt_add_count(mnt, 1);
587 	smp_mb();			// see mntput_no_expire()
588 	if (likely(!read_seqretry(&mount_lock, seq)))
589 		return 0;
590 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
591 		mnt_add_count(mnt, -1);
592 		return 1;
593 	}
594 	lock_mount_hash();
595 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
596 		mnt_add_count(mnt, -1);
597 		unlock_mount_hash();
598 		return 1;
599 	}
600 	unlock_mount_hash();
601 	/* caller will mntput() */
602 	return -1;
603 }
604 
605 /* call under rcu_read_lock */
606 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
607 {
608 	int res = __legitimize_mnt(bastard, seq);
609 	if (likely(!res))
610 		return true;
611 	if (unlikely(res < 0)) {
612 		rcu_read_unlock();
613 		mntput(bastard);
614 		rcu_read_lock();
615 	}
616 	return false;
617 }
618 
619 /*
620  * find the first mount at @dentry on vfsmount @mnt.
621  * call under rcu_read_lock()
622  */
623 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
624 {
625 	struct hlist_head *head = m_hash(mnt, dentry);
626 	struct mount *p;
627 
628 	hlist_for_each_entry_rcu(p, head, mnt_hash)
629 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
630 			return p;
631 	return NULL;
632 }
633 
634 /*
635  * lookup_mnt - Return the first child mount mounted at path
636  *
637  * "First" means first mounted chronologically.  If you create the
638  * following mounts:
639  *
640  * mount /dev/sda1 /mnt
641  * mount /dev/sda2 /mnt
642  * mount /dev/sda3 /mnt
643  *
644  * Then lookup_mnt() on the base /mnt dentry in the root mount will
645  * return successively the root dentry and vfsmount of /dev/sda1, then
646  * /dev/sda2, then /dev/sda3, then NULL.
647  *
648  * lookup_mnt takes a reference to the found vfsmount.
649  */
650 struct vfsmount *lookup_mnt(const struct path *path)
651 {
652 	struct mount *child_mnt;
653 	struct vfsmount *m;
654 	unsigned seq;
655 
656 	rcu_read_lock();
657 	do {
658 		seq = read_seqbegin(&mount_lock);
659 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
660 		m = child_mnt ? &child_mnt->mnt : NULL;
661 	} while (!legitimize_mnt(m, seq));
662 	rcu_read_unlock();
663 	return m;
664 }
665 
666 static inline void lock_ns_list(struct mnt_namespace *ns)
667 {
668 	spin_lock(&ns->ns_lock);
669 }
670 
671 static inline void unlock_ns_list(struct mnt_namespace *ns)
672 {
673 	spin_unlock(&ns->ns_lock);
674 }
675 
676 static inline bool mnt_is_cursor(struct mount *mnt)
677 {
678 	return mnt->mnt.mnt_flags & MNT_CURSOR;
679 }
680 
681 /*
682  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
683  *                         current mount namespace.
684  *
685  * The common case is dentries are not mountpoints at all and that
686  * test is handled inline.  For the slow case when we are actually
687  * dealing with a mountpoint of some kind, walk through all of the
688  * mounts in the current mount namespace and test to see if the dentry
689  * is a mountpoint.
690  *
691  * The mount_hashtable is not usable in the context because we
692  * need to identify all mounts that may be in the current mount
693  * namespace not just a mount that happens to have some specified
694  * parent mount.
695  */
696 bool __is_local_mountpoint(struct dentry *dentry)
697 {
698 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
699 	struct mount *mnt;
700 	bool is_covered = false;
701 
702 	down_read(&namespace_sem);
703 	lock_ns_list(ns);
704 	list_for_each_entry(mnt, &ns->list, mnt_list) {
705 		if (mnt_is_cursor(mnt))
706 			continue;
707 		is_covered = (mnt->mnt_mountpoint == dentry);
708 		if (is_covered)
709 			break;
710 	}
711 	unlock_ns_list(ns);
712 	up_read(&namespace_sem);
713 
714 	return is_covered;
715 }
716 
717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
718 {
719 	struct hlist_head *chain = mp_hash(dentry);
720 	struct mountpoint *mp;
721 
722 	hlist_for_each_entry(mp, chain, m_hash) {
723 		if (mp->m_dentry == dentry) {
724 			mp->m_count++;
725 			return mp;
726 		}
727 	}
728 	return NULL;
729 }
730 
731 static struct mountpoint *get_mountpoint(struct dentry *dentry)
732 {
733 	struct mountpoint *mp, *new = NULL;
734 	int ret;
735 
736 	if (d_mountpoint(dentry)) {
737 		/* might be worth a WARN_ON() */
738 		if (d_unlinked(dentry))
739 			return ERR_PTR(-ENOENT);
740 mountpoint:
741 		read_seqlock_excl(&mount_lock);
742 		mp = lookup_mountpoint(dentry);
743 		read_sequnlock_excl(&mount_lock);
744 		if (mp)
745 			goto done;
746 	}
747 
748 	if (!new)
749 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
750 	if (!new)
751 		return ERR_PTR(-ENOMEM);
752 
753 
754 	/* Exactly one processes may set d_mounted */
755 	ret = d_set_mounted(dentry);
756 
757 	/* Someone else set d_mounted? */
758 	if (ret == -EBUSY)
759 		goto mountpoint;
760 
761 	/* The dentry is not available as a mountpoint? */
762 	mp = ERR_PTR(ret);
763 	if (ret)
764 		goto done;
765 
766 	/* Add the new mountpoint to the hash table */
767 	read_seqlock_excl(&mount_lock);
768 	new->m_dentry = dget(dentry);
769 	new->m_count = 1;
770 	hlist_add_head(&new->m_hash, mp_hash(dentry));
771 	INIT_HLIST_HEAD(&new->m_list);
772 	read_sequnlock_excl(&mount_lock);
773 
774 	mp = new;
775 	new = NULL;
776 done:
777 	kfree(new);
778 	return mp;
779 }
780 
781 /*
782  * vfsmount lock must be held.  Additionally, the caller is responsible
783  * for serializing calls for given disposal list.
784  */
785 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
786 {
787 	if (!--mp->m_count) {
788 		struct dentry *dentry = mp->m_dentry;
789 		BUG_ON(!hlist_empty(&mp->m_list));
790 		spin_lock(&dentry->d_lock);
791 		dentry->d_flags &= ~DCACHE_MOUNTED;
792 		spin_unlock(&dentry->d_lock);
793 		dput_to_list(dentry, list);
794 		hlist_del(&mp->m_hash);
795 		kfree(mp);
796 	}
797 }
798 
799 /* called with namespace_lock and vfsmount lock */
800 static void put_mountpoint(struct mountpoint *mp)
801 {
802 	__put_mountpoint(mp, &ex_mountpoints);
803 }
804 
805 static inline int check_mnt(struct mount *mnt)
806 {
807 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
808 }
809 
810 /*
811  * vfsmount lock must be held for write
812  */
813 static void touch_mnt_namespace(struct mnt_namespace *ns)
814 {
815 	if (ns) {
816 		ns->event = ++event;
817 		wake_up_interruptible(&ns->poll);
818 	}
819 }
820 
821 /*
822  * vfsmount lock must be held for write
823  */
824 static void __touch_mnt_namespace(struct mnt_namespace *ns)
825 {
826 	if (ns && ns->event != event) {
827 		ns->event = event;
828 		wake_up_interruptible(&ns->poll);
829 	}
830 }
831 
832 /*
833  * vfsmount lock must be held for write
834  */
835 static struct mountpoint *unhash_mnt(struct mount *mnt)
836 {
837 	struct mountpoint *mp;
838 	mnt->mnt_parent = mnt;
839 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
840 	list_del_init(&mnt->mnt_child);
841 	hlist_del_init_rcu(&mnt->mnt_hash);
842 	hlist_del_init(&mnt->mnt_mp_list);
843 	mp = mnt->mnt_mp;
844 	mnt->mnt_mp = NULL;
845 	return mp;
846 }
847 
848 /*
849  * vfsmount lock must be held for write
850  */
851 static void umount_mnt(struct mount *mnt)
852 {
853 	put_mountpoint(unhash_mnt(mnt));
854 }
855 
856 /*
857  * vfsmount lock must be held for write
858  */
859 void mnt_set_mountpoint(struct mount *mnt,
860 			struct mountpoint *mp,
861 			struct mount *child_mnt)
862 {
863 	mp->m_count++;
864 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
865 	child_mnt->mnt_mountpoint = mp->m_dentry;
866 	child_mnt->mnt_parent = mnt;
867 	child_mnt->mnt_mp = mp;
868 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
869 }
870 
871 static void __attach_mnt(struct mount *mnt, struct mount *parent)
872 {
873 	hlist_add_head_rcu(&mnt->mnt_hash,
874 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
875 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
876 }
877 
878 /*
879  * vfsmount lock must be held for write
880  */
881 static void attach_mnt(struct mount *mnt,
882 			struct mount *parent,
883 			struct mountpoint *mp)
884 {
885 	mnt_set_mountpoint(parent, mp, mnt);
886 	__attach_mnt(mnt, parent);
887 }
888 
889 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
890 {
891 	struct mountpoint *old_mp = mnt->mnt_mp;
892 	struct mount *old_parent = mnt->mnt_parent;
893 
894 	list_del_init(&mnt->mnt_child);
895 	hlist_del_init(&mnt->mnt_mp_list);
896 	hlist_del_init_rcu(&mnt->mnt_hash);
897 
898 	attach_mnt(mnt, parent, mp);
899 
900 	put_mountpoint(old_mp);
901 	mnt_add_count(old_parent, -1);
902 }
903 
904 /*
905  * vfsmount lock must be held for write
906  */
907 static void commit_tree(struct mount *mnt)
908 {
909 	struct mount *parent = mnt->mnt_parent;
910 	struct mount *m;
911 	LIST_HEAD(head);
912 	struct mnt_namespace *n = parent->mnt_ns;
913 
914 	BUG_ON(parent == mnt);
915 
916 	list_add_tail(&head, &mnt->mnt_list);
917 	list_for_each_entry(m, &head, mnt_list)
918 		m->mnt_ns = n;
919 
920 	list_splice(&head, n->list.prev);
921 
922 	n->mounts += n->pending_mounts;
923 	n->pending_mounts = 0;
924 
925 	__attach_mnt(mnt, parent);
926 	touch_mnt_namespace(n);
927 }
928 
929 static struct mount *next_mnt(struct mount *p, struct mount *root)
930 {
931 	struct list_head *next = p->mnt_mounts.next;
932 	if (next == &p->mnt_mounts) {
933 		while (1) {
934 			if (p == root)
935 				return NULL;
936 			next = p->mnt_child.next;
937 			if (next != &p->mnt_parent->mnt_mounts)
938 				break;
939 			p = p->mnt_parent;
940 		}
941 	}
942 	return list_entry(next, struct mount, mnt_child);
943 }
944 
945 static struct mount *skip_mnt_tree(struct mount *p)
946 {
947 	struct list_head *prev = p->mnt_mounts.prev;
948 	while (prev != &p->mnt_mounts) {
949 		p = list_entry(prev, struct mount, mnt_child);
950 		prev = p->mnt_mounts.prev;
951 	}
952 	return p;
953 }
954 
955 /**
956  * vfs_create_mount - Create a mount for a configured superblock
957  * @fc: The configuration context with the superblock attached
958  *
959  * Create a mount to an already configured superblock.  If necessary, the
960  * caller should invoke vfs_get_tree() before calling this.
961  *
962  * Note that this does not attach the mount to anything.
963  */
964 struct vfsmount *vfs_create_mount(struct fs_context *fc)
965 {
966 	struct mount *mnt;
967 
968 	if (!fc->root)
969 		return ERR_PTR(-EINVAL);
970 
971 	mnt = alloc_vfsmnt(fc->source ?: "none");
972 	if (!mnt)
973 		return ERR_PTR(-ENOMEM);
974 
975 	if (fc->sb_flags & SB_KERNMOUNT)
976 		mnt->mnt.mnt_flags = MNT_INTERNAL;
977 
978 	atomic_inc(&fc->root->d_sb->s_active);
979 	mnt->mnt.mnt_sb		= fc->root->d_sb;
980 	mnt->mnt.mnt_root	= dget(fc->root);
981 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
982 	mnt->mnt_parent		= mnt;
983 
984 	lock_mount_hash();
985 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
986 	unlock_mount_hash();
987 	return &mnt->mnt;
988 }
989 EXPORT_SYMBOL(vfs_create_mount);
990 
991 struct vfsmount *fc_mount(struct fs_context *fc)
992 {
993 	int err = vfs_get_tree(fc);
994 	if (!err) {
995 		up_write(&fc->root->d_sb->s_umount);
996 		return vfs_create_mount(fc);
997 	}
998 	return ERR_PTR(err);
999 }
1000 EXPORT_SYMBOL(fc_mount);
1001 
1002 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1003 				int flags, const char *name,
1004 				void *data)
1005 {
1006 	struct fs_context *fc;
1007 	struct vfsmount *mnt;
1008 	int ret = 0;
1009 
1010 	if (!type)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	fc = fs_context_for_mount(type, flags);
1014 	if (IS_ERR(fc))
1015 		return ERR_CAST(fc);
1016 
1017 	if (name)
1018 		ret = vfs_parse_fs_string(fc, "source",
1019 					  name, strlen(name));
1020 	if (!ret)
1021 		ret = parse_monolithic_mount_data(fc, data);
1022 	if (!ret)
1023 		mnt = fc_mount(fc);
1024 	else
1025 		mnt = ERR_PTR(ret);
1026 
1027 	put_fs_context(fc);
1028 	return mnt;
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1031 
1032 struct vfsmount *
1033 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1034 	     const char *name, void *data)
1035 {
1036 	/* Until it is worked out how to pass the user namespace
1037 	 * through from the parent mount to the submount don't support
1038 	 * unprivileged mounts with submounts.
1039 	 */
1040 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1041 		return ERR_PTR(-EPERM);
1042 
1043 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1044 }
1045 EXPORT_SYMBOL_GPL(vfs_submount);
1046 
1047 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1048 					int flag)
1049 {
1050 	struct super_block *sb = old->mnt.mnt_sb;
1051 	struct mount *mnt;
1052 	int err;
1053 
1054 	mnt = alloc_vfsmnt(old->mnt_devname);
1055 	if (!mnt)
1056 		return ERR_PTR(-ENOMEM);
1057 
1058 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1059 		mnt->mnt_group_id = 0; /* not a peer of original */
1060 	else
1061 		mnt->mnt_group_id = old->mnt_group_id;
1062 
1063 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1064 		err = mnt_alloc_group_id(mnt);
1065 		if (err)
1066 			goto out_free;
1067 	}
1068 
1069 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1070 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1071 
1072 	atomic_inc(&sb->s_active);
1073 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1074 	if (mnt->mnt.mnt_userns != &init_user_ns)
1075 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1076 	mnt->mnt.mnt_sb = sb;
1077 	mnt->mnt.mnt_root = dget(root);
1078 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1079 	mnt->mnt_parent = mnt;
1080 	lock_mount_hash();
1081 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1082 	unlock_mount_hash();
1083 
1084 	if ((flag & CL_SLAVE) ||
1085 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1086 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1087 		mnt->mnt_master = old;
1088 		CLEAR_MNT_SHARED(mnt);
1089 	} else if (!(flag & CL_PRIVATE)) {
1090 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1091 			list_add(&mnt->mnt_share, &old->mnt_share);
1092 		if (IS_MNT_SLAVE(old))
1093 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1094 		mnt->mnt_master = old->mnt_master;
1095 	} else {
1096 		CLEAR_MNT_SHARED(mnt);
1097 	}
1098 	if (flag & CL_MAKE_SHARED)
1099 		set_mnt_shared(mnt);
1100 
1101 	/* stick the duplicate mount on the same expiry list
1102 	 * as the original if that was on one */
1103 	if (flag & CL_EXPIRE) {
1104 		if (!list_empty(&old->mnt_expire))
1105 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1106 	}
1107 
1108 	return mnt;
1109 
1110  out_free:
1111 	mnt_free_id(mnt);
1112 	free_vfsmnt(mnt);
1113 	return ERR_PTR(err);
1114 }
1115 
1116 static void cleanup_mnt(struct mount *mnt)
1117 {
1118 	struct hlist_node *p;
1119 	struct mount *m;
1120 	/*
1121 	 * The warning here probably indicates that somebody messed
1122 	 * up a mnt_want/drop_write() pair.  If this happens, the
1123 	 * filesystem was probably unable to make r/w->r/o transitions.
1124 	 * The locking used to deal with mnt_count decrement provides barriers,
1125 	 * so mnt_get_writers() below is safe.
1126 	 */
1127 	WARN_ON(mnt_get_writers(mnt));
1128 	if (unlikely(mnt->mnt_pins.first))
1129 		mnt_pin_kill(mnt);
1130 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1131 		hlist_del(&m->mnt_umount);
1132 		mntput(&m->mnt);
1133 	}
1134 	fsnotify_vfsmount_delete(&mnt->mnt);
1135 	dput(mnt->mnt.mnt_root);
1136 	deactivate_super(mnt->mnt.mnt_sb);
1137 	mnt_free_id(mnt);
1138 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1139 }
1140 
1141 static void __cleanup_mnt(struct rcu_head *head)
1142 {
1143 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1144 }
1145 
1146 static LLIST_HEAD(delayed_mntput_list);
1147 static void delayed_mntput(struct work_struct *unused)
1148 {
1149 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1150 	struct mount *m, *t;
1151 
1152 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1153 		cleanup_mnt(m);
1154 }
1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156 
1157 static void mntput_no_expire(struct mount *mnt)
1158 {
1159 	LIST_HEAD(list);
1160 	int count;
1161 
1162 	rcu_read_lock();
1163 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1164 		/*
1165 		 * Since we don't do lock_mount_hash() here,
1166 		 * ->mnt_ns can change under us.  However, if it's
1167 		 * non-NULL, then there's a reference that won't
1168 		 * be dropped until after an RCU delay done after
1169 		 * turning ->mnt_ns NULL.  So if we observe it
1170 		 * non-NULL under rcu_read_lock(), the reference
1171 		 * we are dropping is not the final one.
1172 		 */
1173 		mnt_add_count(mnt, -1);
1174 		rcu_read_unlock();
1175 		return;
1176 	}
1177 	lock_mount_hash();
1178 	/*
1179 	 * make sure that if __legitimize_mnt() has not seen us grab
1180 	 * mount_lock, we'll see their refcount increment here.
1181 	 */
1182 	smp_mb();
1183 	mnt_add_count(mnt, -1);
1184 	count = mnt_get_count(mnt);
1185 	if (count != 0) {
1186 		WARN_ON(count < 0);
1187 		rcu_read_unlock();
1188 		unlock_mount_hash();
1189 		return;
1190 	}
1191 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1192 		rcu_read_unlock();
1193 		unlock_mount_hash();
1194 		return;
1195 	}
1196 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1197 	rcu_read_unlock();
1198 
1199 	list_del(&mnt->mnt_instance);
1200 
1201 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1202 		struct mount *p, *tmp;
1203 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1204 			__put_mountpoint(unhash_mnt(p), &list);
1205 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1206 		}
1207 	}
1208 	unlock_mount_hash();
1209 	shrink_dentry_list(&list);
1210 
1211 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1212 		struct task_struct *task = current;
1213 		if (likely(!(task->flags & PF_KTHREAD))) {
1214 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1215 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1216 				return;
1217 		}
1218 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1219 			schedule_delayed_work(&delayed_mntput_work, 1);
1220 		return;
1221 	}
1222 	cleanup_mnt(mnt);
1223 }
1224 
1225 void mntput(struct vfsmount *mnt)
1226 {
1227 	if (mnt) {
1228 		struct mount *m = real_mount(mnt);
1229 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1230 		if (unlikely(m->mnt_expiry_mark))
1231 			m->mnt_expiry_mark = 0;
1232 		mntput_no_expire(m);
1233 	}
1234 }
1235 EXPORT_SYMBOL(mntput);
1236 
1237 struct vfsmount *mntget(struct vfsmount *mnt)
1238 {
1239 	if (mnt)
1240 		mnt_add_count(real_mount(mnt), 1);
1241 	return mnt;
1242 }
1243 EXPORT_SYMBOL(mntget);
1244 
1245 /* path_is_mountpoint() - Check if path is a mount in the current
1246  *                          namespace.
1247  *
1248  *  d_mountpoint() can only be used reliably to establish if a dentry is
1249  *  not mounted in any namespace and that common case is handled inline.
1250  *  d_mountpoint() isn't aware of the possibility there may be multiple
1251  *  mounts using a given dentry in a different namespace. This function
1252  *  checks if the passed in path is a mountpoint rather than the dentry
1253  *  alone.
1254  */
1255 bool path_is_mountpoint(const struct path *path)
1256 {
1257 	unsigned seq;
1258 	bool res;
1259 
1260 	if (!d_mountpoint(path->dentry))
1261 		return false;
1262 
1263 	rcu_read_lock();
1264 	do {
1265 		seq = read_seqbegin(&mount_lock);
1266 		res = __path_is_mountpoint(path);
1267 	} while (read_seqretry(&mount_lock, seq));
1268 	rcu_read_unlock();
1269 
1270 	return res;
1271 }
1272 EXPORT_SYMBOL(path_is_mountpoint);
1273 
1274 struct vfsmount *mnt_clone_internal(const struct path *path)
1275 {
1276 	struct mount *p;
1277 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1278 	if (IS_ERR(p))
1279 		return ERR_CAST(p);
1280 	p->mnt.mnt_flags |= MNT_INTERNAL;
1281 	return &p->mnt;
1282 }
1283 
1284 #ifdef CONFIG_PROC_FS
1285 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1286 				   struct list_head *p)
1287 {
1288 	struct mount *mnt, *ret = NULL;
1289 
1290 	lock_ns_list(ns);
1291 	list_for_each_continue(p, &ns->list) {
1292 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1293 		if (!mnt_is_cursor(mnt)) {
1294 			ret = mnt;
1295 			break;
1296 		}
1297 	}
1298 	unlock_ns_list(ns);
1299 
1300 	return ret;
1301 }
1302 
1303 /* iterator; we want it to have access to namespace_sem, thus here... */
1304 static void *m_start(struct seq_file *m, loff_t *pos)
1305 {
1306 	struct proc_mounts *p = m->private;
1307 	struct list_head *prev;
1308 
1309 	down_read(&namespace_sem);
1310 	if (!*pos) {
1311 		prev = &p->ns->list;
1312 	} else {
1313 		prev = &p->cursor.mnt_list;
1314 
1315 		/* Read after we'd reached the end? */
1316 		if (list_empty(prev))
1317 			return NULL;
1318 	}
1319 
1320 	return mnt_list_next(p->ns, prev);
1321 }
1322 
1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324 {
1325 	struct proc_mounts *p = m->private;
1326 	struct mount *mnt = v;
1327 
1328 	++*pos;
1329 	return mnt_list_next(p->ns, &mnt->mnt_list);
1330 }
1331 
1332 static void m_stop(struct seq_file *m, void *v)
1333 {
1334 	struct proc_mounts *p = m->private;
1335 	struct mount *mnt = v;
1336 
1337 	lock_ns_list(p->ns);
1338 	if (mnt)
1339 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1340 	else
1341 		list_del_init(&p->cursor.mnt_list);
1342 	unlock_ns_list(p->ns);
1343 	up_read(&namespace_sem);
1344 }
1345 
1346 static int m_show(struct seq_file *m, void *v)
1347 {
1348 	struct proc_mounts *p = m->private;
1349 	struct mount *r = v;
1350 	return p->show(m, &r->mnt);
1351 }
1352 
1353 const struct seq_operations mounts_op = {
1354 	.start	= m_start,
1355 	.next	= m_next,
1356 	.stop	= m_stop,
1357 	.show	= m_show,
1358 };
1359 
1360 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1361 {
1362 	down_read(&namespace_sem);
1363 	lock_ns_list(ns);
1364 	list_del(&cursor->mnt_list);
1365 	unlock_ns_list(ns);
1366 	up_read(&namespace_sem);
1367 }
1368 #endif  /* CONFIG_PROC_FS */
1369 
1370 /**
1371  * may_umount_tree - check if a mount tree is busy
1372  * @mnt: root of mount tree
1373  *
1374  * This is called to check if a tree of mounts has any
1375  * open files, pwds, chroots or sub mounts that are
1376  * busy.
1377  */
1378 int may_umount_tree(struct vfsmount *m)
1379 {
1380 	struct mount *mnt = real_mount(m);
1381 	int actual_refs = 0;
1382 	int minimum_refs = 0;
1383 	struct mount *p;
1384 	BUG_ON(!m);
1385 
1386 	/* write lock needed for mnt_get_count */
1387 	lock_mount_hash();
1388 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1389 		actual_refs += mnt_get_count(p);
1390 		minimum_refs += 2;
1391 	}
1392 	unlock_mount_hash();
1393 
1394 	if (actual_refs > minimum_refs)
1395 		return 0;
1396 
1397 	return 1;
1398 }
1399 
1400 EXPORT_SYMBOL(may_umount_tree);
1401 
1402 /**
1403  * may_umount - check if a mount point is busy
1404  * @mnt: root of mount
1405  *
1406  * This is called to check if a mount point has any
1407  * open files, pwds, chroots or sub mounts. If the
1408  * mount has sub mounts this will return busy
1409  * regardless of whether the sub mounts are busy.
1410  *
1411  * Doesn't take quota and stuff into account. IOW, in some cases it will
1412  * give false negatives. The main reason why it's here is that we need
1413  * a non-destructive way to look for easily umountable filesystems.
1414  */
1415 int may_umount(struct vfsmount *mnt)
1416 {
1417 	int ret = 1;
1418 	down_read(&namespace_sem);
1419 	lock_mount_hash();
1420 	if (propagate_mount_busy(real_mount(mnt), 2))
1421 		ret = 0;
1422 	unlock_mount_hash();
1423 	up_read(&namespace_sem);
1424 	return ret;
1425 }
1426 
1427 EXPORT_SYMBOL(may_umount);
1428 
1429 static void namespace_unlock(void)
1430 {
1431 	struct hlist_head head;
1432 	struct hlist_node *p;
1433 	struct mount *m;
1434 	LIST_HEAD(list);
1435 
1436 	hlist_move_list(&unmounted, &head);
1437 	list_splice_init(&ex_mountpoints, &list);
1438 
1439 	up_write(&namespace_sem);
1440 
1441 	shrink_dentry_list(&list);
1442 
1443 	if (likely(hlist_empty(&head)))
1444 		return;
1445 
1446 	synchronize_rcu_expedited();
1447 
1448 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1449 		hlist_del(&m->mnt_umount);
1450 		mntput(&m->mnt);
1451 	}
1452 }
1453 
1454 static inline void namespace_lock(void)
1455 {
1456 	down_write(&namespace_sem);
1457 }
1458 
1459 enum umount_tree_flags {
1460 	UMOUNT_SYNC = 1,
1461 	UMOUNT_PROPAGATE = 2,
1462 	UMOUNT_CONNECTED = 4,
1463 };
1464 
1465 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1466 {
1467 	/* Leaving mounts connected is only valid for lazy umounts */
1468 	if (how & UMOUNT_SYNC)
1469 		return true;
1470 
1471 	/* A mount without a parent has nothing to be connected to */
1472 	if (!mnt_has_parent(mnt))
1473 		return true;
1474 
1475 	/* Because the reference counting rules change when mounts are
1476 	 * unmounted and connected, umounted mounts may not be
1477 	 * connected to mounted mounts.
1478 	 */
1479 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1480 		return true;
1481 
1482 	/* Has it been requested that the mount remain connected? */
1483 	if (how & UMOUNT_CONNECTED)
1484 		return false;
1485 
1486 	/* Is the mount locked such that it needs to remain connected? */
1487 	if (IS_MNT_LOCKED(mnt))
1488 		return false;
1489 
1490 	/* By default disconnect the mount */
1491 	return true;
1492 }
1493 
1494 /*
1495  * mount_lock must be held
1496  * namespace_sem must be held for write
1497  */
1498 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1499 {
1500 	LIST_HEAD(tmp_list);
1501 	struct mount *p;
1502 
1503 	if (how & UMOUNT_PROPAGATE)
1504 		propagate_mount_unlock(mnt);
1505 
1506 	/* Gather the mounts to umount */
1507 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1508 		p->mnt.mnt_flags |= MNT_UMOUNT;
1509 		list_move(&p->mnt_list, &tmp_list);
1510 	}
1511 
1512 	/* Hide the mounts from mnt_mounts */
1513 	list_for_each_entry(p, &tmp_list, mnt_list) {
1514 		list_del_init(&p->mnt_child);
1515 	}
1516 
1517 	/* Add propogated mounts to the tmp_list */
1518 	if (how & UMOUNT_PROPAGATE)
1519 		propagate_umount(&tmp_list);
1520 
1521 	while (!list_empty(&tmp_list)) {
1522 		struct mnt_namespace *ns;
1523 		bool disconnect;
1524 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1525 		list_del_init(&p->mnt_expire);
1526 		list_del_init(&p->mnt_list);
1527 		ns = p->mnt_ns;
1528 		if (ns) {
1529 			ns->mounts--;
1530 			__touch_mnt_namespace(ns);
1531 		}
1532 		p->mnt_ns = NULL;
1533 		if (how & UMOUNT_SYNC)
1534 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1535 
1536 		disconnect = disconnect_mount(p, how);
1537 		if (mnt_has_parent(p)) {
1538 			mnt_add_count(p->mnt_parent, -1);
1539 			if (!disconnect) {
1540 				/* Don't forget about p */
1541 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1542 			} else {
1543 				umount_mnt(p);
1544 			}
1545 		}
1546 		change_mnt_propagation(p, MS_PRIVATE);
1547 		if (disconnect)
1548 			hlist_add_head(&p->mnt_umount, &unmounted);
1549 	}
1550 }
1551 
1552 static void shrink_submounts(struct mount *mnt);
1553 
1554 static int do_umount_root(struct super_block *sb)
1555 {
1556 	int ret = 0;
1557 
1558 	down_write(&sb->s_umount);
1559 	if (!sb_rdonly(sb)) {
1560 		struct fs_context *fc;
1561 
1562 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1563 						SB_RDONLY);
1564 		if (IS_ERR(fc)) {
1565 			ret = PTR_ERR(fc);
1566 		} else {
1567 			ret = parse_monolithic_mount_data(fc, NULL);
1568 			if (!ret)
1569 				ret = reconfigure_super(fc);
1570 			put_fs_context(fc);
1571 		}
1572 	}
1573 	up_write(&sb->s_umount);
1574 	return ret;
1575 }
1576 
1577 static int do_umount(struct mount *mnt, int flags)
1578 {
1579 	struct super_block *sb = mnt->mnt.mnt_sb;
1580 	int retval;
1581 
1582 	retval = security_sb_umount(&mnt->mnt, flags);
1583 	if (retval)
1584 		return retval;
1585 
1586 	/*
1587 	 * Allow userspace to request a mountpoint be expired rather than
1588 	 * unmounting unconditionally. Unmount only happens if:
1589 	 *  (1) the mark is already set (the mark is cleared by mntput())
1590 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1591 	 */
1592 	if (flags & MNT_EXPIRE) {
1593 		if (&mnt->mnt == current->fs->root.mnt ||
1594 		    flags & (MNT_FORCE | MNT_DETACH))
1595 			return -EINVAL;
1596 
1597 		/*
1598 		 * probably don't strictly need the lock here if we examined
1599 		 * all race cases, but it's a slowpath.
1600 		 */
1601 		lock_mount_hash();
1602 		if (mnt_get_count(mnt) != 2) {
1603 			unlock_mount_hash();
1604 			return -EBUSY;
1605 		}
1606 		unlock_mount_hash();
1607 
1608 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1609 			return -EAGAIN;
1610 	}
1611 
1612 	/*
1613 	 * If we may have to abort operations to get out of this
1614 	 * mount, and they will themselves hold resources we must
1615 	 * allow the fs to do things. In the Unix tradition of
1616 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1617 	 * might fail to complete on the first run through as other tasks
1618 	 * must return, and the like. Thats for the mount program to worry
1619 	 * about for the moment.
1620 	 */
1621 
1622 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1623 		sb->s_op->umount_begin(sb);
1624 	}
1625 
1626 	/*
1627 	 * No sense to grab the lock for this test, but test itself looks
1628 	 * somewhat bogus. Suggestions for better replacement?
1629 	 * Ho-hum... In principle, we might treat that as umount + switch
1630 	 * to rootfs. GC would eventually take care of the old vfsmount.
1631 	 * Actually it makes sense, especially if rootfs would contain a
1632 	 * /reboot - static binary that would close all descriptors and
1633 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1634 	 */
1635 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1636 		/*
1637 		 * Special case for "unmounting" root ...
1638 		 * we just try to remount it readonly.
1639 		 */
1640 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1641 			return -EPERM;
1642 		return do_umount_root(sb);
1643 	}
1644 
1645 	namespace_lock();
1646 	lock_mount_hash();
1647 
1648 	/* Recheck MNT_LOCKED with the locks held */
1649 	retval = -EINVAL;
1650 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1651 		goto out;
1652 
1653 	event++;
1654 	if (flags & MNT_DETACH) {
1655 		if (!list_empty(&mnt->mnt_list))
1656 			umount_tree(mnt, UMOUNT_PROPAGATE);
1657 		retval = 0;
1658 	} else {
1659 		shrink_submounts(mnt);
1660 		retval = -EBUSY;
1661 		if (!propagate_mount_busy(mnt, 2)) {
1662 			if (!list_empty(&mnt->mnt_list))
1663 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1664 			retval = 0;
1665 		}
1666 	}
1667 out:
1668 	unlock_mount_hash();
1669 	namespace_unlock();
1670 	return retval;
1671 }
1672 
1673 /*
1674  * __detach_mounts - lazily unmount all mounts on the specified dentry
1675  *
1676  * During unlink, rmdir, and d_drop it is possible to loose the path
1677  * to an existing mountpoint, and wind up leaking the mount.
1678  * detach_mounts allows lazily unmounting those mounts instead of
1679  * leaking them.
1680  *
1681  * The caller may hold dentry->d_inode->i_mutex.
1682  */
1683 void __detach_mounts(struct dentry *dentry)
1684 {
1685 	struct mountpoint *mp;
1686 	struct mount *mnt;
1687 
1688 	namespace_lock();
1689 	lock_mount_hash();
1690 	mp = lookup_mountpoint(dentry);
1691 	if (!mp)
1692 		goto out_unlock;
1693 
1694 	event++;
1695 	while (!hlist_empty(&mp->m_list)) {
1696 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1697 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1698 			umount_mnt(mnt);
1699 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1700 		}
1701 		else umount_tree(mnt, UMOUNT_CONNECTED);
1702 	}
1703 	put_mountpoint(mp);
1704 out_unlock:
1705 	unlock_mount_hash();
1706 	namespace_unlock();
1707 }
1708 
1709 /*
1710  * Is the caller allowed to modify his namespace?
1711  */
1712 static inline bool may_mount(void)
1713 {
1714 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1715 }
1716 
1717 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
1718 static inline bool may_mandlock(void)
1719 {
1720 	return capable(CAP_SYS_ADMIN);
1721 }
1722 #else
1723 static inline bool may_mandlock(void)
1724 {
1725 	pr_warn("VFS: \"mand\" mount option not supported");
1726 	return false;
1727 }
1728 #endif
1729 
1730 static int can_umount(const struct path *path, int flags)
1731 {
1732 	struct mount *mnt = real_mount(path->mnt);
1733 
1734 	if (!may_mount())
1735 		return -EPERM;
1736 	if (path->dentry != path->mnt->mnt_root)
1737 		return -EINVAL;
1738 	if (!check_mnt(mnt))
1739 		return -EINVAL;
1740 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1741 		return -EINVAL;
1742 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1743 		return -EPERM;
1744 	return 0;
1745 }
1746 
1747 // caller is responsible for flags being sane
1748 int path_umount(struct path *path, int flags)
1749 {
1750 	struct mount *mnt = real_mount(path->mnt);
1751 	int ret;
1752 
1753 	ret = can_umount(path, flags);
1754 	if (!ret)
1755 		ret = do_umount(mnt, flags);
1756 
1757 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1758 	dput(path->dentry);
1759 	mntput_no_expire(mnt);
1760 	return ret;
1761 }
1762 
1763 static int ksys_umount(char __user *name, int flags)
1764 {
1765 	int lookup_flags = LOOKUP_MOUNTPOINT;
1766 	struct path path;
1767 	int ret;
1768 
1769 	// basic validity checks done first
1770 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1771 		return -EINVAL;
1772 
1773 	if (!(flags & UMOUNT_NOFOLLOW))
1774 		lookup_flags |= LOOKUP_FOLLOW;
1775 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1776 	if (ret)
1777 		return ret;
1778 	return path_umount(&path, flags);
1779 }
1780 
1781 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1782 {
1783 	return ksys_umount(name, flags);
1784 }
1785 
1786 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1787 
1788 /*
1789  *	The 2.0 compatible umount. No flags.
1790  */
1791 SYSCALL_DEFINE1(oldumount, char __user *, name)
1792 {
1793 	return ksys_umount(name, 0);
1794 }
1795 
1796 #endif
1797 
1798 static bool is_mnt_ns_file(struct dentry *dentry)
1799 {
1800 	/* Is this a proxy for a mount namespace? */
1801 	return dentry->d_op == &ns_dentry_operations &&
1802 	       dentry->d_fsdata == &mntns_operations;
1803 }
1804 
1805 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1806 {
1807 	return container_of(ns, struct mnt_namespace, ns);
1808 }
1809 
1810 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1811 {
1812 	return &mnt->ns;
1813 }
1814 
1815 static bool mnt_ns_loop(struct dentry *dentry)
1816 {
1817 	/* Could bind mounting the mount namespace inode cause a
1818 	 * mount namespace loop?
1819 	 */
1820 	struct mnt_namespace *mnt_ns;
1821 	if (!is_mnt_ns_file(dentry))
1822 		return false;
1823 
1824 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1825 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1826 }
1827 
1828 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1829 					int flag)
1830 {
1831 	struct mount *res, *p, *q, *r, *parent;
1832 
1833 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1834 		return ERR_PTR(-EINVAL);
1835 
1836 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1837 		return ERR_PTR(-EINVAL);
1838 
1839 	res = q = clone_mnt(mnt, dentry, flag);
1840 	if (IS_ERR(q))
1841 		return q;
1842 
1843 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1844 
1845 	p = mnt;
1846 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1847 		struct mount *s;
1848 		if (!is_subdir(r->mnt_mountpoint, dentry))
1849 			continue;
1850 
1851 		for (s = r; s; s = next_mnt(s, r)) {
1852 			if (!(flag & CL_COPY_UNBINDABLE) &&
1853 			    IS_MNT_UNBINDABLE(s)) {
1854 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1855 					/* Both unbindable and locked. */
1856 					q = ERR_PTR(-EPERM);
1857 					goto out;
1858 				} else {
1859 					s = skip_mnt_tree(s);
1860 					continue;
1861 				}
1862 			}
1863 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1864 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1865 				s = skip_mnt_tree(s);
1866 				continue;
1867 			}
1868 			while (p != s->mnt_parent) {
1869 				p = p->mnt_parent;
1870 				q = q->mnt_parent;
1871 			}
1872 			p = s;
1873 			parent = q;
1874 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1875 			if (IS_ERR(q))
1876 				goto out;
1877 			lock_mount_hash();
1878 			list_add_tail(&q->mnt_list, &res->mnt_list);
1879 			attach_mnt(q, parent, p->mnt_mp);
1880 			unlock_mount_hash();
1881 		}
1882 	}
1883 	return res;
1884 out:
1885 	if (res) {
1886 		lock_mount_hash();
1887 		umount_tree(res, UMOUNT_SYNC);
1888 		unlock_mount_hash();
1889 	}
1890 	return q;
1891 }
1892 
1893 /* Caller should check returned pointer for errors */
1894 
1895 struct vfsmount *collect_mounts(const struct path *path)
1896 {
1897 	struct mount *tree;
1898 	namespace_lock();
1899 	if (!check_mnt(real_mount(path->mnt)))
1900 		tree = ERR_PTR(-EINVAL);
1901 	else
1902 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1903 				 CL_COPY_ALL | CL_PRIVATE);
1904 	namespace_unlock();
1905 	if (IS_ERR(tree))
1906 		return ERR_CAST(tree);
1907 	return &tree->mnt;
1908 }
1909 
1910 static void free_mnt_ns(struct mnt_namespace *);
1911 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1912 
1913 void dissolve_on_fput(struct vfsmount *mnt)
1914 {
1915 	struct mnt_namespace *ns;
1916 	namespace_lock();
1917 	lock_mount_hash();
1918 	ns = real_mount(mnt)->mnt_ns;
1919 	if (ns) {
1920 		if (is_anon_ns(ns))
1921 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1922 		else
1923 			ns = NULL;
1924 	}
1925 	unlock_mount_hash();
1926 	namespace_unlock();
1927 	if (ns)
1928 		free_mnt_ns(ns);
1929 }
1930 
1931 void drop_collected_mounts(struct vfsmount *mnt)
1932 {
1933 	namespace_lock();
1934 	lock_mount_hash();
1935 	umount_tree(real_mount(mnt), 0);
1936 	unlock_mount_hash();
1937 	namespace_unlock();
1938 }
1939 
1940 /**
1941  * clone_private_mount - create a private clone of a path
1942  *
1943  * This creates a new vfsmount, which will be the clone of @path.  The new will
1944  * not be attached anywhere in the namespace and will be private (i.e. changes
1945  * to the originating mount won't be propagated into this).
1946  *
1947  * Release with mntput().
1948  */
1949 struct vfsmount *clone_private_mount(const struct path *path)
1950 {
1951 	struct mount *old_mnt = real_mount(path->mnt);
1952 	struct mount *new_mnt;
1953 
1954 	if (IS_MNT_UNBINDABLE(old_mnt))
1955 		return ERR_PTR(-EINVAL);
1956 
1957 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1958 	if (IS_ERR(new_mnt))
1959 		return ERR_CAST(new_mnt);
1960 
1961 	/* Longterm mount to be removed by kern_unmount*() */
1962 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1963 
1964 	return &new_mnt->mnt;
1965 }
1966 EXPORT_SYMBOL_GPL(clone_private_mount);
1967 
1968 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1969 		   struct vfsmount *root)
1970 {
1971 	struct mount *mnt;
1972 	int res = f(root, arg);
1973 	if (res)
1974 		return res;
1975 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1976 		res = f(&mnt->mnt, arg);
1977 		if (res)
1978 			return res;
1979 	}
1980 	return 0;
1981 }
1982 
1983 static void lock_mnt_tree(struct mount *mnt)
1984 {
1985 	struct mount *p;
1986 
1987 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1988 		int flags = p->mnt.mnt_flags;
1989 		/* Don't allow unprivileged users to change mount flags */
1990 		flags |= MNT_LOCK_ATIME;
1991 
1992 		if (flags & MNT_READONLY)
1993 			flags |= MNT_LOCK_READONLY;
1994 
1995 		if (flags & MNT_NODEV)
1996 			flags |= MNT_LOCK_NODEV;
1997 
1998 		if (flags & MNT_NOSUID)
1999 			flags |= MNT_LOCK_NOSUID;
2000 
2001 		if (flags & MNT_NOEXEC)
2002 			flags |= MNT_LOCK_NOEXEC;
2003 		/* Don't allow unprivileged users to reveal what is under a mount */
2004 		if (list_empty(&p->mnt_expire))
2005 			flags |= MNT_LOCKED;
2006 		p->mnt.mnt_flags = flags;
2007 	}
2008 }
2009 
2010 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2011 {
2012 	struct mount *p;
2013 
2014 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2015 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2016 			mnt_release_group_id(p);
2017 	}
2018 }
2019 
2020 static int invent_group_ids(struct mount *mnt, bool recurse)
2021 {
2022 	struct mount *p;
2023 
2024 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2025 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2026 			int err = mnt_alloc_group_id(p);
2027 			if (err) {
2028 				cleanup_group_ids(mnt, p);
2029 				return err;
2030 			}
2031 		}
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2038 {
2039 	unsigned int max = READ_ONCE(sysctl_mount_max);
2040 	unsigned int mounts = 0, old, pending, sum;
2041 	struct mount *p;
2042 
2043 	for (p = mnt; p; p = next_mnt(p, mnt))
2044 		mounts++;
2045 
2046 	old = ns->mounts;
2047 	pending = ns->pending_mounts;
2048 	sum = old + pending;
2049 	if ((old > sum) ||
2050 	    (pending > sum) ||
2051 	    (max < sum) ||
2052 	    (mounts > (max - sum)))
2053 		return -ENOSPC;
2054 
2055 	ns->pending_mounts = pending + mounts;
2056 	return 0;
2057 }
2058 
2059 /*
2060  *  @source_mnt : mount tree to be attached
2061  *  @nd         : place the mount tree @source_mnt is attached
2062  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2063  *  		   store the parent mount and mountpoint dentry.
2064  *  		   (done when source_mnt is moved)
2065  *
2066  *  NOTE: in the table below explains the semantics when a source mount
2067  *  of a given type is attached to a destination mount of a given type.
2068  * ---------------------------------------------------------------------------
2069  * |         BIND MOUNT OPERATION                                            |
2070  * |**************************************************************************
2071  * | source-->| shared        |       private  |       slave    | unbindable |
2072  * | dest     |               |                |                |            |
2073  * |   |      |               |                |                |            |
2074  * |   v      |               |                |                |            |
2075  * |**************************************************************************
2076  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2077  * |          |               |                |                |            |
2078  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2079  * ***************************************************************************
2080  * A bind operation clones the source mount and mounts the clone on the
2081  * destination mount.
2082  *
2083  * (++)  the cloned mount is propagated to all the mounts in the propagation
2084  * 	 tree of the destination mount and the cloned mount is added to
2085  * 	 the peer group of the source mount.
2086  * (+)   the cloned mount is created under the destination mount and is marked
2087  *       as shared. The cloned mount is added to the peer group of the source
2088  *       mount.
2089  * (+++) the mount is propagated to all the mounts in the propagation tree
2090  *       of the destination mount and the cloned mount is made slave
2091  *       of the same master as that of the source mount. The cloned mount
2092  *       is marked as 'shared and slave'.
2093  * (*)   the cloned mount is made a slave of the same master as that of the
2094  * 	 source mount.
2095  *
2096  * ---------------------------------------------------------------------------
2097  * |         		MOVE MOUNT OPERATION                                 |
2098  * |**************************************************************************
2099  * | source-->| shared        |       private  |       slave    | unbindable |
2100  * | dest     |               |                |                |            |
2101  * |   |      |               |                |                |            |
2102  * |   v      |               |                |                |            |
2103  * |**************************************************************************
2104  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2105  * |          |               |                |                |            |
2106  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2107  * ***************************************************************************
2108  *
2109  * (+)  the mount is moved to the destination. And is then propagated to
2110  * 	all the mounts in the propagation tree of the destination mount.
2111  * (+*)  the mount is moved to the destination.
2112  * (+++)  the mount is moved to the destination and is then propagated to
2113  * 	all the mounts belonging to the destination mount's propagation tree.
2114  * 	the mount is marked as 'shared and slave'.
2115  * (*)	the mount continues to be a slave at the new location.
2116  *
2117  * if the source mount is a tree, the operations explained above is
2118  * applied to each mount in the tree.
2119  * Must be called without spinlocks held, since this function can sleep
2120  * in allocations.
2121  */
2122 static int attach_recursive_mnt(struct mount *source_mnt,
2123 			struct mount *dest_mnt,
2124 			struct mountpoint *dest_mp,
2125 			bool moving)
2126 {
2127 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2128 	HLIST_HEAD(tree_list);
2129 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2130 	struct mountpoint *smp;
2131 	struct mount *child, *p;
2132 	struct hlist_node *n;
2133 	int err;
2134 
2135 	/* Preallocate a mountpoint in case the new mounts need
2136 	 * to be tucked under other mounts.
2137 	 */
2138 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2139 	if (IS_ERR(smp))
2140 		return PTR_ERR(smp);
2141 
2142 	/* Is there space to add these mounts to the mount namespace? */
2143 	if (!moving) {
2144 		err = count_mounts(ns, source_mnt);
2145 		if (err)
2146 			goto out;
2147 	}
2148 
2149 	if (IS_MNT_SHARED(dest_mnt)) {
2150 		err = invent_group_ids(source_mnt, true);
2151 		if (err)
2152 			goto out;
2153 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2154 		lock_mount_hash();
2155 		if (err)
2156 			goto out_cleanup_ids;
2157 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2158 			set_mnt_shared(p);
2159 	} else {
2160 		lock_mount_hash();
2161 	}
2162 	if (moving) {
2163 		unhash_mnt(source_mnt);
2164 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2165 		touch_mnt_namespace(source_mnt->mnt_ns);
2166 	} else {
2167 		if (source_mnt->mnt_ns) {
2168 			/* move from anon - the caller will destroy */
2169 			list_del_init(&source_mnt->mnt_ns->list);
2170 		}
2171 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2172 		commit_tree(source_mnt);
2173 	}
2174 
2175 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2176 		struct mount *q;
2177 		hlist_del_init(&child->mnt_hash);
2178 		q = __lookup_mnt(&child->mnt_parent->mnt,
2179 				 child->mnt_mountpoint);
2180 		if (q)
2181 			mnt_change_mountpoint(child, smp, q);
2182 		/* Notice when we are propagating across user namespaces */
2183 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2184 			lock_mnt_tree(child);
2185 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2186 		commit_tree(child);
2187 	}
2188 	put_mountpoint(smp);
2189 	unlock_mount_hash();
2190 
2191 	return 0;
2192 
2193  out_cleanup_ids:
2194 	while (!hlist_empty(&tree_list)) {
2195 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2196 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2197 		umount_tree(child, UMOUNT_SYNC);
2198 	}
2199 	unlock_mount_hash();
2200 	cleanup_group_ids(source_mnt, NULL);
2201  out:
2202 	ns->pending_mounts = 0;
2203 
2204 	read_seqlock_excl(&mount_lock);
2205 	put_mountpoint(smp);
2206 	read_sequnlock_excl(&mount_lock);
2207 
2208 	return err;
2209 }
2210 
2211 static struct mountpoint *lock_mount(struct path *path)
2212 {
2213 	struct vfsmount *mnt;
2214 	struct dentry *dentry = path->dentry;
2215 retry:
2216 	inode_lock(dentry->d_inode);
2217 	if (unlikely(cant_mount(dentry))) {
2218 		inode_unlock(dentry->d_inode);
2219 		return ERR_PTR(-ENOENT);
2220 	}
2221 	namespace_lock();
2222 	mnt = lookup_mnt(path);
2223 	if (likely(!mnt)) {
2224 		struct mountpoint *mp = get_mountpoint(dentry);
2225 		if (IS_ERR(mp)) {
2226 			namespace_unlock();
2227 			inode_unlock(dentry->d_inode);
2228 			return mp;
2229 		}
2230 		return mp;
2231 	}
2232 	namespace_unlock();
2233 	inode_unlock(path->dentry->d_inode);
2234 	path_put(path);
2235 	path->mnt = mnt;
2236 	dentry = path->dentry = dget(mnt->mnt_root);
2237 	goto retry;
2238 }
2239 
2240 static void unlock_mount(struct mountpoint *where)
2241 {
2242 	struct dentry *dentry = where->m_dentry;
2243 
2244 	read_seqlock_excl(&mount_lock);
2245 	put_mountpoint(where);
2246 	read_sequnlock_excl(&mount_lock);
2247 
2248 	namespace_unlock();
2249 	inode_unlock(dentry->d_inode);
2250 }
2251 
2252 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2253 {
2254 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2255 		return -EINVAL;
2256 
2257 	if (d_is_dir(mp->m_dentry) !=
2258 	      d_is_dir(mnt->mnt.mnt_root))
2259 		return -ENOTDIR;
2260 
2261 	return attach_recursive_mnt(mnt, p, mp, false);
2262 }
2263 
2264 /*
2265  * Sanity check the flags to change_mnt_propagation.
2266  */
2267 
2268 static int flags_to_propagation_type(int ms_flags)
2269 {
2270 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2271 
2272 	/* Fail if any non-propagation flags are set */
2273 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2274 		return 0;
2275 	/* Only one propagation flag should be set */
2276 	if (!is_power_of_2(type))
2277 		return 0;
2278 	return type;
2279 }
2280 
2281 /*
2282  * recursively change the type of the mountpoint.
2283  */
2284 static int do_change_type(struct path *path, int ms_flags)
2285 {
2286 	struct mount *m;
2287 	struct mount *mnt = real_mount(path->mnt);
2288 	int recurse = ms_flags & MS_REC;
2289 	int type;
2290 	int err = 0;
2291 
2292 	if (path->dentry != path->mnt->mnt_root)
2293 		return -EINVAL;
2294 
2295 	type = flags_to_propagation_type(ms_flags);
2296 	if (!type)
2297 		return -EINVAL;
2298 
2299 	namespace_lock();
2300 	if (type == MS_SHARED) {
2301 		err = invent_group_ids(mnt, recurse);
2302 		if (err)
2303 			goto out_unlock;
2304 	}
2305 
2306 	lock_mount_hash();
2307 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2308 		change_mnt_propagation(m, type);
2309 	unlock_mount_hash();
2310 
2311  out_unlock:
2312 	namespace_unlock();
2313 	return err;
2314 }
2315 
2316 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2317 {
2318 	struct mount *child;
2319 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2320 		if (!is_subdir(child->mnt_mountpoint, dentry))
2321 			continue;
2322 
2323 		if (child->mnt.mnt_flags & MNT_LOCKED)
2324 			return true;
2325 	}
2326 	return false;
2327 }
2328 
2329 static struct mount *__do_loopback(struct path *old_path, int recurse)
2330 {
2331 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2332 
2333 	if (IS_MNT_UNBINDABLE(old))
2334 		return mnt;
2335 
2336 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2337 		return mnt;
2338 
2339 	if (!recurse && has_locked_children(old, old_path->dentry))
2340 		return mnt;
2341 
2342 	if (recurse)
2343 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2344 	else
2345 		mnt = clone_mnt(old, old_path->dentry, 0);
2346 
2347 	if (!IS_ERR(mnt))
2348 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2349 
2350 	return mnt;
2351 }
2352 
2353 /*
2354  * do loopback mount.
2355  */
2356 static int do_loopback(struct path *path, const char *old_name,
2357 				int recurse)
2358 {
2359 	struct path old_path;
2360 	struct mount *mnt = NULL, *parent;
2361 	struct mountpoint *mp;
2362 	int err;
2363 	if (!old_name || !*old_name)
2364 		return -EINVAL;
2365 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2366 	if (err)
2367 		return err;
2368 
2369 	err = -EINVAL;
2370 	if (mnt_ns_loop(old_path.dentry))
2371 		goto out;
2372 
2373 	mp = lock_mount(path);
2374 	if (IS_ERR(mp)) {
2375 		err = PTR_ERR(mp);
2376 		goto out;
2377 	}
2378 
2379 	parent = real_mount(path->mnt);
2380 	if (!check_mnt(parent))
2381 		goto out2;
2382 
2383 	mnt = __do_loopback(&old_path, recurse);
2384 	if (IS_ERR(mnt)) {
2385 		err = PTR_ERR(mnt);
2386 		goto out2;
2387 	}
2388 
2389 	err = graft_tree(mnt, parent, mp);
2390 	if (err) {
2391 		lock_mount_hash();
2392 		umount_tree(mnt, UMOUNT_SYNC);
2393 		unlock_mount_hash();
2394 	}
2395 out2:
2396 	unlock_mount(mp);
2397 out:
2398 	path_put(&old_path);
2399 	return err;
2400 }
2401 
2402 static struct file *open_detached_copy(struct path *path, bool recursive)
2403 {
2404 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2405 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2406 	struct mount *mnt, *p;
2407 	struct file *file;
2408 
2409 	if (IS_ERR(ns))
2410 		return ERR_CAST(ns);
2411 
2412 	namespace_lock();
2413 	mnt = __do_loopback(path, recursive);
2414 	if (IS_ERR(mnt)) {
2415 		namespace_unlock();
2416 		free_mnt_ns(ns);
2417 		return ERR_CAST(mnt);
2418 	}
2419 
2420 	lock_mount_hash();
2421 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2422 		p->mnt_ns = ns;
2423 		ns->mounts++;
2424 	}
2425 	ns->root = mnt;
2426 	list_add_tail(&ns->list, &mnt->mnt_list);
2427 	mntget(&mnt->mnt);
2428 	unlock_mount_hash();
2429 	namespace_unlock();
2430 
2431 	mntput(path->mnt);
2432 	path->mnt = &mnt->mnt;
2433 	file = dentry_open(path, O_PATH, current_cred());
2434 	if (IS_ERR(file))
2435 		dissolve_on_fput(path->mnt);
2436 	else
2437 		file->f_mode |= FMODE_NEED_UNMOUNT;
2438 	return file;
2439 }
2440 
2441 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2442 {
2443 	struct file *file;
2444 	struct path path;
2445 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2446 	bool detached = flags & OPEN_TREE_CLONE;
2447 	int error;
2448 	int fd;
2449 
2450 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2451 
2452 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2453 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2454 		      OPEN_TREE_CLOEXEC))
2455 		return -EINVAL;
2456 
2457 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2458 		return -EINVAL;
2459 
2460 	if (flags & AT_NO_AUTOMOUNT)
2461 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2462 	if (flags & AT_SYMLINK_NOFOLLOW)
2463 		lookup_flags &= ~LOOKUP_FOLLOW;
2464 	if (flags & AT_EMPTY_PATH)
2465 		lookup_flags |= LOOKUP_EMPTY;
2466 
2467 	if (detached && !may_mount())
2468 		return -EPERM;
2469 
2470 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2471 	if (fd < 0)
2472 		return fd;
2473 
2474 	error = user_path_at(dfd, filename, lookup_flags, &path);
2475 	if (unlikely(error)) {
2476 		file = ERR_PTR(error);
2477 	} else {
2478 		if (detached)
2479 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2480 		else
2481 			file = dentry_open(&path, O_PATH, current_cred());
2482 		path_put(&path);
2483 	}
2484 	if (IS_ERR(file)) {
2485 		put_unused_fd(fd);
2486 		return PTR_ERR(file);
2487 	}
2488 	fd_install(fd, file);
2489 	return fd;
2490 }
2491 
2492 /*
2493  * Don't allow locked mount flags to be cleared.
2494  *
2495  * No locks need to be held here while testing the various MNT_LOCK
2496  * flags because those flags can never be cleared once they are set.
2497  */
2498 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2499 {
2500 	unsigned int fl = mnt->mnt.mnt_flags;
2501 
2502 	if ((fl & MNT_LOCK_READONLY) &&
2503 	    !(mnt_flags & MNT_READONLY))
2504 		return false;
2505 
2506 	if ((fl & MNT_LOCK_NODEV) &&
2507 	    !(mnt_flags & MNT_NODEV))
2508 		return false;
2509 
2510 	if ((fl & MNT_LOCK_NOSUID) &&
2511 	    !(mnt_flags & MNT_NOSUID))
2512 		return false;
2513 
2514 	if ((fl & MNT_LOCK_NOEXEC) &&
2515 	    !(mnt_flags & MNT_NOEXEC))
2516 		return false;
2517 
2518 	if ((fl & MNT_LOCK_ATIME) &&
2519 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2520 		return false;
2521 
2522 	return true;
2523 }
2524 
2525 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2526 {
2527 	bool readonly_request = (mnt_flags & MNT_READONLY);
2528 
2529 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2530 		return 0;
2531 
2532 	if (readonly_request)
2533 		return mnt_make_readonly(mnt);
2534 
2535 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2536 	return 0;
2537 }
2538 
2539 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2540 {
2541 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2542 	mnt->mnt.mnt_flags = mnt_flags;
2543 	touch_mnt_namespace(mnt->mnt_ns);
2544 }
2545 
2546 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2547 {
2548 	struct super_block *sb = mnt->mnt_sb;
2549 
2550 	if (!__mnt_is_readonly(mnt) &&
2551 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2552 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2553 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2554 		struct tm tm;
2555 
2556 		time64_to_tm(sb->s_time_max, 0, &tm);
2557 
2558 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2559 			sb->s_type->name,
2560 			is_mounted(mnt) ? "remounted" : "mounted",
2561 			mntpath,
2562 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2563 
2564 		free_page((unsigned long)buf);
2565 	}
2566 }
2567 
2568 /*
2569  * Handle reconfiguration of the mountpoint only without alteration of the
2570  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2571  * to mount(2).
2572  */
2573 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2574 {
2575 	struct super_block *sb = path->mnt->mnt_sb;
2576 	struct mount *mnt = real_mount(path->mnt);
2577 	int ret;
2578 
2579 	if (!check_mnt(mnt))
2580 		return -EINVAL;
2581 
2582 	if (path->dentry != mnt->mnt.mnt_root)
2583 		return -EINVAL;
2584 
2585 	if (!can_change_locked_flags(mnt, mnt_flags))
2586 		return -EPERM;
2587 
2588 	/*
2589 	 * We're only checking whether the superblock is read-only not
2590 	 * changing it, so only take down_read(&sb->s_umount).
2591 	 */
2592 	down_read(&sb->s_umount);
2593 	lock_mount_hash();
2594 	ret = change_mount_ro_state(mnt, mnt_flags);
2595 	if (ret == 0)
2596 		set_mount_attributes(mnt, mnt_flags);
2597 	unlock_mount_hash();
2598 	up_read(&sb->s_umount);
2599 
2600 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2601 
2602 	return ret;
2603 }
2604 
2605 /*
2606  * change filesystem flags. dir should be a physical root of filesystem.
2607  * If you've mounted a non-root directory somewhere and want to do remount
2608  * on it - tough luck.
2609  */
2610 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2611 		      int mnt_flags, void *data)
2612 {
2613 	int err;
2614 	struct super_block *sb = path->mnt->mnt_sb;
2615 	struct mount *mnt = real_mount(path->mnt);
2616 	struct fs_context *fc;
2617 
2618 	if (!check_mnt(mnt))
2619 		return -EINVAL;
2620 
2621 	if (path->dentry != path->mnt->mnt_root)
2622 		return -EINVAL;
2623 
2624 	if (!can_change_locked_flags(mnt, mnt_flags))
2625 		return -EPERM;
2626 
2627 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2628 	if (IS_ERR(fc))
2629 		return PTR_ERR(fc);
2630 
2631 	fc->oldapi = true;
2632 	err = parse_monolithic_mount_data(fc, data);
2633 	if (!err) {
2634 		down_write(&sb->s_umount);
2635 		err = -EPERM;
2636 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2637 			err = reconfigure_super(fc);
2638 			if (!err) {
2639 				lock_mount_hash();
2640 				set_mount_attributes(mnt, mnt_flags);
2641 				unlock_mount_hash();
2642 			}
2643 		}
2644 		up_write(&sb->s_umount);
2645 	}
2646 
2647 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2648 
2649 	put_fs_context(fc);
2650 	return err;
2651 }
2652 
2653 static inline int tree_contains_unbindable(struct mount *mnt)
2654 {
2655 	struct mount *p;
2656 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2657 		if (IS_MNT_UNBINDABLE(p))
2658 			return 1;
2659 	}
2660 	return 0;
2661 }
2662 
2663 /*
2664  * Check that there aren't references to earlier/same mount namespaces in the
2665  * specified subtree.  Such references can act as pins for mount namespaces
2666  * that aren't checked by the mount-cycle checking code, thereby allowing
2667  * cycles to be made.
2668  */
2669 static bool check_for_nsfs_mounts(struct mount *subtree)
2670 {
2671 	struct mount *p;
2672 	bool ret = false;
2673 
2674 	lock_mount_hash();
2675 	for (p = subtree; p; p = next_mnt(p, subtree))
2676 		if (mnt_ns_loop(p->mnt.mnt_root))
2677 			goto out;
2678 
2679 	ret = true;
2680 out:
2681 	unlock_mount_hash();
2682 	return ret;
2683 }
2684 
2685 static int do_move_mount(struct path *old_path, struct path *new_path)
2686 {
2687 	struct mnt_namespace *ns;
2688 	struct mount *p;
2689 	struct mount *old;
2690 	struct mount *parent;
2691 	struct mountpoint *mp, *old_mp;
2692 	int err;
2693 	bool attached;
2694 
2695 	mp = lock_mount(new_path);
2696 	if (IS_ERR(mp))
2697 		return PTR_ERR(mp);
2698 
2699 	old = real_mount(old_path->mnt);
2700 	p = real_mount(new_path->mnt);
2701 	parent = old->mnt_parent;
2702 	attached = mnt_has_parent(old);
2703 	old_mp = old->mnt_mp;
2704 	ns = old->mnt_ns;
2705 
2706 	err = -EINVAL;
2707 	/* The mountpoint must be in our namespace. */
2708 	if (!check_mnt(p))
2709 		goto out;
2710 
2711 	/* The thing moved must be mounted... */
2712 	if (!is_mounted(&old->mnt))
2713 		goto out;
2714 
2715 	/* ... and either ours or the root of anon namespace */
2716 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2717 		goto out;
2718 
2719 	if (old->mnt.mnt_flags & MNT_LOCKED)
2720 		goto out;
2721 
2722 	if (old_path->dentry != old_path->mnt->mnt_root)
2723 		goto out;
2724 
2725 	if (d_is_dir(new_path->dentry) !=
2726 	    d_is_dir(old_path->dentry))
2727 		goto out;
2728 	/*
2729 	 * Don't move a mount residing in a shared parent.
2730 	 */
2731 	if (attached && IS_MNT_SHARED(parent))
2732 		goto out;
2733 	/*
2734 	 * Don't move a mount tree containing unbindable mounts to a destination
2735 	 * mount which is shared.
2736 	 */
2737 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2738 		goto out;
2739 	err = -ELOOP;
2740 	if (!check_for_nsfs_mounts(old))
2741 		goto out;
2742 	for (; mnt_has_parent(p); p = p->mnt_parent)
2743 		if (p == old)
2744 			goto out;
2745 
2746 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2747 				   attached);
2748 	if (err)
2749 		goto out;
2750 
2751 	/* if the mount is moved, it should no longer be expire
2752 	 * automatically */
2753 	list_del_init(&old->mnt_expire);
2754 	if (attached)
2755 		put_mountpoint(old_mp);
2756 out:
2757 	unlock_mount(mp);
2758 	if (!err) {
2759 		if (attached)
2760 			mntput_no_expire(parent);
2761 		else
2762 			free_mnt_ns(ns);
2763 	}
2764 	return err;
2765 }
2766 
2767 static int do_move_mount_old(struct path *path, const char *old_name)
2768 {
2769 	struct path old_path;
2770 	int err;
2771 
2772 	if (!old_name || !*old_name)
2773 		return -EINVAL;
2774 
2775 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2776 	if (err)
2777 		return err;
2778 
2779 	err = do_move_mount(&old_path, path);
2780 	path_put(&old_path);
2781 	return err;
2782 }
2783 
2784 /*
2785  * add a mount into a namespace's mount tree
2786  */
2787 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2788 			struct path *path, int mnt_flags)
2789 {
2790 	struct mount *parent = real_mount(path->mnt);
2791 
2792 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2793 
2794 	if (unlikely(!check_mnt(parent))) {
2795 		/* that's acceptable only for automounts done in private ns */
2796 		if (!(mnt_flags & MNT_SHRINKABLE))
2797 			return -EINVAL;
2798 		/* ... and for those we'd better have mountpoint still alive */
2799 		if (!parent->mnt_ns)
2800 			return -EINVAL;
2801 	}
2802 
2803 	/* Refuse the same filesystem on the same mount point */
2804 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2805 	    path->mnt->mnt_root == path->dentry)
2806 		return -EBUSY;
2807 
2808 	if (d_is_symlink(newmnt->mnt.mnt_root))
2809 		return -EINVAL;
2810 
2811 	newmnt->mnt.mnt_flags = mnt_flags;
2812 	return graft_tree(newmnt, parent, mp);
2813 }
2814 
2815 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2816 
2817 /*
2818  * Create a new mount using a superblock configuration and request it
2819  * be added to the namespace tree.
2820  */
2821 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2822 			   unsigned int mnt_flags)
2823 {
2824 	struct vfsmount *mnt;
2825 	struct mountpoint *mp;
2826 	struct super_block *sb = fc->root->d_sb;
2827 	int error;
2828 
2829 	error = security_sb_kern_mount(sb);
2830 	if (!error && mount_too_revealing(sb, &mnt_flags))
2831 		error = -EPERM;
2832 
2833 	if (unlikely(error)) {
2834 		fc_drop_locked(fc);
2835 		return error;
2836 	}
2837 
2838 	up_write(&sb->s_umount);
2839 
2840 	mnt = vfs_create_mount(fc);
2841 	if (IS_ERR(mnt))
2842 		return PTR_ERR(mnt);
2843 
2844 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2845 
2846 	mp = lock_mount(mountpoint);
2847 	if (IS_ERR(mp)) {
2848 		mntput(mnt);
2849 		return PTR_ERR(mp);
2850 	}
2851 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2852 	unlock_mount(mp);
2853 	if (error < 0)
2854 		mntput(mnt);
2855 	return error;
2856 }
2857 
2858 /*
2859  * create a new mount for userspace and request it to be added into the
2860  * namespace's tree
2861  */
2862 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2863 			int mnt_flags, const char *name, void *data)
2864 {
2865 	struct file_system_type *type;
2866 	struct fs_context *fc;
2867 	const char *subtype = NULL;
2868 	int err = 0;
2869 
2870 	if (!fstype)
2871 		return -EINVAL;
2872 
2873 	type = get_fs_type(fstype);
2874 	if (!type)
2875 		return -ENODEV;
2876 
2877 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2878 		subtype = strchr(fstype, '.');
2879 		if (subtype) {
2880 			subtype++;
2881 			if (!*subtype) {
2882 				put_filesystem(type);
2883 				return -EINVAL;
2884 			}
2885 		}
2886 	}
2887 
2888 	fc = fs_context_for_mount(type, sb_flags);
2889 	put_filesystem(type);
2890 	if (IS_ERR(fc))
2891 		return PTR_ERR(fc);
2892 
2893 	if (subtype)
2894 		err = vfs_parse_fs_string(fc, "subtype",
2895 					  subtype, strlen(subtype));
2896 	if (!err && name)
2897 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2898 	if (!err)
2899 		err = parse_monolithic_mount_data(fc, data);
2900 	if (!err && !mount_capable(fc))
2901 		err = -EPERM;
2902 	if (!err)
2903 		err = vfs_get_tree(fc);
2904 	if (!err)
2905 		err = do_new_mount_fc(fc, path, mnt_flags);
2906 
2907 	put_fs_context(fc);
2908 	return err;
2909 }
2910 
2911 int finish_automount(struct vfsmount *m, struct path *path)
2912 {
2913 	struct dentry *dentry = path->dentry;
2914 	struct mountpoint *mp;
2915 	struct mount *mnt;
2916 	int err;
2917 
2918 	if (!m)
2919 		return 0;
2920 	if (IS_ERR(m))
2921 		return PTR_ERR(m);
2922 
2923 	mnt = real_mount(m);
2924 	/* The new mount record should have at least 2 refs to prevent it being
2925 	 * expired before we get a chance to add it
2926 	 */
2927 	BUG_ON(mnt_get_count(mnt) < 2);
2928 
2929 	if (m->mnt_sb == path->mnt->mnt_sb &&
2930 	    m->mnt_root == dentry) {
2931 		err = -ELOOP;
2932 		goto discard;
2933 	}
2934 
2935 	/*
2936 	 * we don't want to use lock_mount() - in this case finding something
2937 	 * that overmounts our mountpoint to be means "quitely drop what we've
2938 	 * got", not "try to mount it on top".
2939 	 */
2940 	inode_lock(dentry->d_inode);
2941 	namespace_lock();
2942 	if (unlikely(cant_mount(dentry))) {
2943 		err = -ENOENT;
2944 		goto discard_locked;
2945 	}
2946 	rcu_read_lock();
2947 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2948 		rcu_read_unlock();
2949 		err = 0;
2950 		goto discard_locked;
2951 	}
2952 	rcu_read_unlock();
2953 	mp = get_mountpoint(dentry);
2954 	if (IS_ERR(mp)) {
2955 		err = PTR_ERR(mp);
2956 		goto discard_locked;
2957 	}
2958 
2959 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2960 	unlock_mount(mp);
2961 	if (unlikely(err))
2962 		goto discard;
2963 	mntput(m);
2964 	return 0;
2965 
2966 discard_locked:
2967 	namespace_unlock();
2968 	inode_unlock(dentry->d_inode);
2969 discard:
2970 	/* remove m from any expiration list it may be on */
2971 	if (!list_empty(&mnt->mnt_expire)) {
2972 		namespace_lock();
2973 		list_del_init(&mnt->mnt_expire);
2974 		namespace_unlock();
2975 	}
2976 	mntput(m);
2977 	mntput(m);
2978 	return err;
2979 }
2980 
2981 /**
2982  * mnt_set_expiry - Put a mount on an expiration list
2983  * @mnt: The mount to list.
2984  * @expiry_list: The list to add the mount to.
2985  */
2986 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2987 {
2988 	namespace_lock();
2989 
2990 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2991 
2992 	namespace_unlock();
2993 }
2994 EXPORT_SYMBOL(mnt_set_expiry);
2995 
2996 /*
2997  * process a list of expirable mountpoints with the intent of discarding any
2998  * mountpoints that aren't in use and haven't been touched since last we came
2999  * here
3000  */
3001 void mark_mounts_for_expiry(struct list_head *mounts)
3002 {
3003 	struct mount *mnt, *next;
3004 	LIST_HEAD(graveyard);
3005 
3006 	if (list_empty(mounts))
3007 		return;
3008 
3009 	namespace_lock();
3010 	lock_mount_hash();
3011 
3012 	/* extract from the expiration list every vfsmount that matches the
3013 	 * following criteria:
3014 	 * - only referenced by its parent vfsmount
3015 	 * - still marked for expiry (marked on the last call here; marks are
3016 	 *   cleared by mntput())
3017 	 */
3018 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3019 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3020 			propagate_mount_busy(mnt, 1))
3021 			continue;
3022 		list_move(&mnt->mnt_expire, &graveyard);
3023 	}
3024 	while (!list_empty(&graveyard)) {
3025 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3026 		touch_mnt_namespace(mnt->mnt_ns);
3027 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3028 	}
3029 	unlock_mount_hash();
3030 	namespace_unlock();
3031 }
3032 
3033 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3034 
3035 /*
3036  * Ripoff of 'select_parent()'
3037  *
3038  * search the list of submounts for a given mountpoint, and move any
3039  * shrinkable submounts to the 'graveyard' list.
3040  */
3041 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3042 {
3043 	struct mount *this_parent = parent;
3044 	struct list_head *next;
3045 	int found = 0;
3046 
3047 repeat:
3048 	next = this_parent->mnt_mounts.next;
3049 resume:
3050 	while (next != &this_parent->mnt_mounts) {
3051 		struct list_head *tmp = next;
3052 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3053 
3054 		next = tmp->next;
3055 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3056 			continue;
3057 		/*
3058 		 * Descend a level if the d_mounts list is non-empty.
3059 		 */
3060 		if (!list_empty(&mnt->mnt_mounts)) {
3061 			this_parent = mnt;
3062 			goto repeat;
3063 		}
3064 
3065 		if (!propagate_mount_busy(mnt, 1)) {
3066 			list_move_tail(&mnt->mnt_expire, graveyard);
3067 			found++;
3068 		}
3069 	}
3070 	/*
3071 	 * All done at this level ... ascend and resume the search
3072 	 */
3073 	if (this_parent != parent) {
3074 		next = this_parent->mnt_child.next;
3075 		this_parent = this_parent->mnt_parent;
3076 		goto resume;
3077 	}
3078 	return found;
3079 }
3080 
3081 /*
3082  * process a list of expirable mountpoints with the intent of discarding any
3083  * submounts of a specific parent mountpoint
3084  *
3085  * mount_lock must be held for write
3086  */
3087 static void shrink_submounts(struct mount *mnt)
3088 {
3089 	LIST_HEAD(graveyard);
3090 	struct mount *m;
3091 
3092 	/* extract submounts of 'mountpoint' from the expiration list */
3093 	while (select_submounts(mnt, &graveyard)) {
3094 		while (!list_empty(&graveyard)) {
3095 			m = list_first_entry(&graveyard, struct mount,
3096 						mnt_expire);
3097 			touch_mnt_namespace(m->mnt_ns);
3098 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3099 		}
3100 	}
3101 }
3102 
3103 static void *copy_mount_options(const void __user * data)
3104 {
3105 	char *copy;
3106 	unsigned left, offset;
3107 
3108 	if (!data)
3109 		return NULL;
3110 
3111 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3112 	if (!copy)
3113 		return ERR_PTR(-ENOMEM);
3114 
3115 	left = copy_from_user(copy, data, PAGE_SIZE);
3116 
3117 	/*
3118 	 * Not all architectures have an exact copy_from_user(). Resort to
3119 	 * byte at a time.
3120 	 */
3121 	offset = PAGE_SIZE - left;
3122 	while (left) {
3123 		char c;
3124 		if (get_user(c, (const char __user *)data + offset))
3125 			break;
3126 		copy[offset] = c;
3127 		left--;
3128 		offset++;
3129 	}
3130 
3131 	if (left == PAGE_SIZE) {
3132 		kfree(copy);
3133 		return ERR_PTR(-EFAULT);
3134 	}
3135 
3136 	return copy;
3137 }
3138 
3139 static char *copy_mount_string(const void __user *data)
3140 {
3141 	return data ? strndup_user(data, PATH_MAX) : NULL;
3142 }
3143 
3144 /*
3145  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3146  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3147  *
3148  * data is a (void *) that can point to any structure up to
3149  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3150  * information (or be NULL).
3151  *
3152  * Pre-0.97 versions of mount() didn't have a flags word.
3153  * When the flags word was introduced its top half was required
3154  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3155  * Therefore, if this magic number is present, it carries no information
3156  * and must be discarded.
3157  */
3158 int path_mount(const char *dev_name, struct path *path,
3159 		const char *type_page, unsigned long flags, void *data_page)
3160 {
3161 	unsigned int mnt_flags = 0, sb_flags;
3162 	int ret;
3163 
3164 	/* Discard magic */
3165 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3166 		flags &= ~MS_MGC_MSK;
3167 
3168 	/* Basic sanity checks */
3169 	if (data_page)
3170 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3171 
3172 	if (flags & MS_NOUSER)
3173 		return -EINVAL;
3174 
3175 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3176 	if (ret)
3177 		return ret;
3178 	if (!may_mount())
3179 		return -EPERM;
3180 	if ((flags & SB_MANDLOCK) && !may_mandlock())
3181 		return -EPERM;
3182 
3183 	/* Default to relatime unless overriden */
3184 	if (!(flags & MS_NOATIME))
3185 		mnt_flags |= MNT_RELATIME;
3186 
3187 	/* Separate the per-mountpoint flags */
3188 	if (flags & MS_NOSUID)
3189 		mnt_flags |= MNT_NOSUID;
3190 	if (flags & MS_NODEV)
3191 		mnt_flags |= MNT_NODEV;
3192 	if (flags & MS_NOEXEC)
3193 		mnt_flags |= MNT_NOEXEC;
3194 	if (flags & MS_NOATIME)
3195 		mnt_flags |= MNT_NOATIME;
3196 	if (flags & MS_NODIRATIME)
3197 		mnt_flags |= MNT_NODIRATIME;
3198 	if (flags & MS_STRICTATIME)
3199 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3200 	if (flags & MS_RDONLY)
3201 		mnt_flags |= MNT_READONLY;
3202 	if (flags & MS_NOSYMFOLLOW)
3203 		mnt_flags |= MNT_NOSYMFOLLOW;
3204 
3205 	/* The default atime for remount is preservation */
3206 	if ((flags & MS_REMOUNT) &&
3207 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3208 		       MS_STRICTATIME)) == 0)) {
3209 		mnt_flags &= ~MNT_ATIME_MASK;
3210 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3211 	}
3212 
3213 	sb_flags = flags & (SB_RDONLY |
3214 			    SB_SYNCHRONOUS |
3215 			    SB_MANDLOCK |
3216 			    SB_DIRSYNC |
3217 			    SB_SILENT |
3218 			    SB_POSIXACL |
3219 			    SB_LAZYTIME |
3220 			    SB_I_VERSION);
3221 
3222 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3223 		return do_reconfigure_mnt(path, mnt_flags);
3224 	if (flags & MS_REMOUNT)
3225 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3226 	if (flags & MS_BIND)
3227 		return do_loopback(path, dev_name, flags & MS_REC);
3228 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3229 		return do_change_type(path, flags);
3230 	if (flags & MS_MOVE)
3231 		return do_move_mount_old(path, dev_name);
3232 
3233 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3234 			    data_page);
3235 }
3236 
3237 long do_mount(const char *dev_name, const char __user *dir_name,
3238 		const char *type_page, unsigned long flags, void *data_page)
3239 {
3240 	struct path path;
3241 	int ret;
3242 
3243 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3244 	if (ret)
3245 		return ret;
3246 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3247 	path_put(&path);
3248 	return ret;
3249 }
3250 
3251 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3252 {
3253 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3254 }
3255 
3256 static void dec_mnt_namespaces(struct ucounts *ucounts)
3257 {
3258 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3259 }
3260 
3261 static void free_mnt_ns(struct mnt_namespace *ns)
3262 {
3263 	if (!is_anon_ns(ns))
3264 		ns_free_inum(&ns->ns);
3265 	dec_mnt_namespaces(ns->ucounts);
3266 	put_user_ns(ns->user_ns);
3267 	kfree(ns);
3268 }
3269 
3270 /*
3271  * Assign a sequence number so we can detect when we attempt to bind
3272  * mount a reference to an older mount namespace into the current
3273  * mount namespace, preventing reference counting loops.  A 64bit
3274  * number incrementing at 10Ghz will take 12,427 years to wrap which
3275  * is effectively never, so we can ignore the possibility.
3276  */
3277 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3278 
3279 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3280 {
3281 	struct mnt_namespace *new_ns;
3282 	struct ucounts *ucounts;
3283 	int ret;
3284 
3285 	ucounts = inc_mnt_namespaces(user_ns);
3286 	if (!ucounts)
3287 		return ERR_PTR(-ENOSPC);
3288 
3289 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3290 	if (!new_ns) {
3291 		dec_mnt_namespaces(ucounts);
3292 		return ERR_PTR(-ENOMEM);
3293 	}
3294 	if (!anon) {
3295 		ret = ns_alloc_inum(&new_ns->ns);
3296 		if (ret) {
3297 			kfree(new_ns);
3298 			dec_mnt_namespaces(ucounts);
3299 			return ERR_PTR(ret);
3300 		}
3301 	}
3302 	new_ns->ns.ops = &mntns_operations;
3303 	if (!anon)
3304 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3305 	refcount_set(&new_ns->ns.count, 1);
3306 	INIT_LIST_HEAD(&new_ns->list);
3307 	init_waitqueue_head(&new_ns->poll);
3308 	spin_lock_init(&new_ns->ns_lock);
3309 	new_ns->user_ns = get_user_ns(user_ns);
3310 	new_ns->ucounts = ucounts;
3311 	return new_ns;
3312 }
3313 
3314 __latent_entropy
3315 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3316 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3317 {
3318 	struct mnt_namespace *new_ns;
3319 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3320 	struct mount *p, *q;
3321 	struct mount *old;
3322 	struct mount *new;
3323 	int copy_flags;
3324 
3325 	BUG_ON(!ns);
3326 
3327 	if (likely(!(flags & CLONE_NEWNS))) {
3328 		get_mnt_ns(ns);
3329 		return ns;
3330 	}
3331 
3332 	old = ns->root;
3333 
3334 	new_ns = alloc_mnt_ns(user_ns, false);
3335 	if (IS_ERR(new_ns))
3336 		return new_ns;
3337 
3338 	namespace_lock();
3339 	/* First pass: copy the tree topology */
3340 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3341 	if (user_ns != ns->user_ns)
3342 		copy_flags |= CL_SHARED_TO_SLAVE;
3343 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3344 	if (IS_ERR(new)) {
3345 		namespace_unlock();
3346 		free_mnt_ns(new_ns);
3347 		return ERR_CAST(new);
3348 	}
3349 	if (user_ns != ns->user_ns) {
3350 		lock_mount_hash();
3351 		lock_mnt_tree(new);
3352 		unlock_mount_hash();
3353 	}
3354 	new_ns->root = new;
3355 	list_add_tail(&new_ns->list, &new->mnt_list);
3356 
3357 	/*
3358 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3359 	 * as belonging to new namespace.  We have already acquired a private
3360 	 * fs_struct, so tsk->fs->lock is not needed.
3361 	 */
3362 	p = old;
3363 	q = new;
3364 	while (p) {
3365 		q->mnt_ns = new_ns;
3366 		new_ns->mounts++;
3367 		if (new_fs) {
3368 			if (&p->mnt == new_fs->root.mnt) {
3369 				new_fs->root.mnt = mntget(&q->mnt);
3370 				rootmnt = &p->mnt;
3371 			}
3372 			if (&p->mnt == new_fs->pwd.mnt) {
3373 				new_fs->pwd.mnt = mntget(&q->mnt);
3374 				pwdmnt = &p->mnt;
3375 			}
3376 		}
3377 		p = next_mnt(p, old);
3378 		q = next_mnt(q, new);
3379 		if (!q)
3380 			break;
3381 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3382 			p = next_mnt(p, old);
3383 	}
3384 	namespace_unlock();
3385 
3386 	if (rootmnt)
3387 		mntput(rootmnt);
3388 	if (pwdmnt)
3389 		mntput(pwdmnt);
3390 
3391 	return new_ns;
3392 }
3393 
3394 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3395 {
3396 	struct mount *mnt = real_mount(m);
3397 	struct mnt_namespace *ns;
3398 	struct super_block *s;
3399 	struct path path;
3400 	int err;
3401 
3402 	ns = alloc_mnt_ns(&init_user_ns, true);
3403 	if (IS_ERR(ns)) {
3404 		mntput(m);
3405 		return ERR_CAST(ns);
3406 	}
3407 	mnt->mnt_ns = ns;
3408 	ns->root = mnt;
3409 	ns->mounts++;
3410 	list_add(&mnt->mnt_list, &ns->list);
3411 
3412 	err = vfs_path_lookup(m->mnt_root, m,
3413 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3414 
3415 	put_mnt_ns(ns);
3416 
3417 	if (err)
3418 		return ERR_PTR(err);
3419 
3420 	/* trade a vfsmount reference for active sb one */
3421 	s = path.mnt->mnt_sb;
3422 	atomic_inc(&s->s_active);
3423 	mntput(path.mnt);
3424 	/* lock the sucker */
3425 	down_write(&s->s_umount);
3426 	/* ... and return the root of (sub)tree on it */
3427 	return path.dentry;
3428 }
3429 EXPORT_SYMBOL(mount_subtree);
3430 
3431 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3432 		char __user *, type, unsigned long, flags, void __user *, data)
3433 {
3434 	int ret;
3435 	char *kernel_type;
3436 	char *kernel_dev;
3437 	void *options;
3438 
3439 	kernel_type = copy_mount_string(type);
3440 	ret = PTR_ERR(kernel_type);
3441 	if (IS_ERR(kernel_type))
3442 		goto out_type;
3443 
3444 	kernel_dev = copy_mount_string(dev_name);
3445 	ret = PTR_ERR(kernel_dev);
3446 	if (IS_ERR(kernel_dev))
3447 		goto out_dev;
3448 
3449 	options = copy_mount_options(data);
3450 	ret = PTR_ERR(options);
3451 	if (IS_ERR(options))
3452 		goto out_data;
3453 
3454 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3455 
3456 	kfree(options);
3457 out_data:
3458 	kfree(kernel_dev);
3459 out_dev:
3460 	kfree(kernel_type);
3461 out_type:
3462 	return ret;
3463 }
3464 
3465 #define FSMOUNT_VALID_FLAGS \
3466 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3467 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)
3468 
3469 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3470 
3471 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3472 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3473 
3474 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3475 {
3476 	unsigned int mnt_flags = 0;
3477 
3478 	if (attr_flags & MOUNT_ATTR_RDONLY)
3479 		mnt_flags |= MNT_READONLY;
3480 	if (attr_flags & MOUNT_ATTR_NOSUID)
3481 		mnt_flags |= MNT_NOSUID;
3482 	if (attr_flags & MOUNT_ATTR_NODEV)
3483 		mnt_flags |= MNT_NODEV;
3484 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3485 		mnt_flags |= MNT_NOEXEC;
3486 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3487 		mnt_flags |= MNT_NODIRATIME;
3488 
3489 	return mnt_flags;
3490 }
3491 
3492 /*
3493  * Create a kernel mount representation for a new, prepared superblock
3494  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3495  */
3496 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3497 		unsigned int, attr_flags)
3498 {
3499 	struct mnt_namespace *ns;
3500 	struct fs_context *fc;
3501 	struct file *file;
3502 	struct path newmount;
3503 	struct mount *mnt;
3504 	struct fd f;
3505 	unsigned int mnt_flags = 0;
3506 	long ret;
3507 
3508 	if (!may_mount())
3509 		return -EPERM;
3510 
3511 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3512 		return -EINVAL;
3513 
3514 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3515 		return -EINVAL;
3516 
3517 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3518 
3519 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3520 	case MOUNT_ATTR_STRICTATIME:
3521 		break;
3522 	case MOUNT_ATTR_NOATIME:
3523 		mnt_flags |= MNT_NOATIME;
3524 		break;
3525 	case MOUNT_ATTR_RELATIME:
3526 		mnt_flags |= MNT_RELATIME;
3527 		break;
3528 	default:
3529 		return -EINVAL;
3530 	}
3531 
3532 	f = fdget(fs_fd);
3533 	if (!f.file)
3534 		return -EBADF;
3535 
3536 	ret = -EINVAL;
3537 	if (f.file->f_op != &fscontext_fops)
3538 		goto err_fsfd;
3539 
3540 	fc = f.file->private_data;
3541 
3542 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3543 	if (ret < 0)
3544 		goto err_fsfd;
3545 
3546 	/* There must be a valid superblock or we can't mount it */
3547 	ret = -EINVAL;
3548 	if (!fc->root)
3549 		goto err_unlock;
3550 
3551 	ret = -EPERM;
3552 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3553 		pr_warn("VFS: Mount too revealing\n");
3554 		goto err_unlock;
3555 	}
3556 
3557 	ret = -EBUSY;
3558 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3559 		goto err_unlock;
3560 
3561 	ret = -EPERM;
3562 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3563 		goto err_unlock;
3564 
3565 	newmount.mnt = vfs_create_mount(fc);
3566 	if (IS_ERR(newmount.mnt)) {
3567 		ret = PTR_ERR(newmount.mnt);
3568 		goto err_unlock;
3569 	}
3570 	newmount.dentry = dget(fc->root);
3571 	newmount.mnt->mnt_flags = mnt_flags;
3572 
3573 	/* We've done the mount bit - now move the file context into more or
3574 	 * less the same state as if we'd done an fspick().  We don't want to
3575 	 * do any memory allocation or anything like that at this point as we
3576 	 * don't want to have to handle any errors incurred.
3577 	 */
3578 	vfs_clean_context(fc);
3579 
3580 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3581 	if (IS_ERR(ns)) {
3582 		ret = PTR_ERR(ns);
3583 		goto err_path;
3584 	}
3585 	mnt = real_mount(newmount.mnt);
3586 	mnt->mnt_ns = ns;
3587 	ns->root = mnt;
3588 	ns->mounts = 1;
3589 	list_add(&mnt->mnt_list, &ns->list);
3590 	mntget(newmount.mnt);
3591 
3592 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3593 	 * it, not just simply put it.
3594 	 */
3595 	file = dentry_open(&newmount, O_PATH, fc->cred);
3596 	if (IS_ERR(file)) {
3597 		dissolve_on_fput(newmount.mnt);
3598 		ret = PTR_ERR(file);
3599 		goto err_path;
3600 	}
3601 	file->f_mode |= FMODE_NEED_UNMOUNT;
3602 
3603 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3604 	if (ret >= 0)
3605 		fd_install(ret, file);
3606 	else
3607 		fput(file);
3608 
3609 err_path:
3610 	path_put(&newmount);
3611 err_unlock:
3612 	mutex_unlock(&fc->uapi_mutex);
3613 err_fsfd:
3614 	fdput(f);
3615 	return ret;
3616 }
3617 
3618 /*
3619  * Move a mount from one place to another.  In combination with
3620  * fsopen()/fsmount() this is used to install a new mount and in combination
3621  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3622  * a mount subtree.
3623  *
3624  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3625  */
3626 SYSCALL_DEFINE5(move_mount,
3627 		int, from_dfd, const char __user *, from_pathname,
3628 		int, to_dfd, const char __user *, to_pathname,
3629 		unsigned int, flags)
3630 {
3631 	struct path from_path, to_path;
3632 	unsigned int lflags;
3633 	int ret = 0;
3634 
3635 	if (!may_mount())
3636 		return -EPERM;
3637 
3638 	if (flags & ~MOVE_MOUNT__MASK)
3639 		return -EINVAL;
3640 
3641 	/* If someone gives a pathname, they aren't permitted to move
3642 	 * from an fd that requires unmount as we can't get at the flag
3643 	 * to clear it afterwards.
3644 	 */
3645 	lflags = 0;
3646 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3647 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3648 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3649 
3650 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3651 	if (ret < 0)
3652 		return ret;
3653 
3654 	lflags = 0;
3655 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3656 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3657 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3658 
3659 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3660 	if (ret < 0)
3661 		goto out_from;
3662 
3663 	ret = security_move_mount(&from_path, &to_path);
3664 	if (ret < 0)
3665 		goto out_to;
3666 
3667 	ret = do_move_mount(&from_path, &to_path);
3668 
3669 out_to:
3670 	path_put(&to_path);
3671 out_from:
3672 	path_put(&from_path);
3673 	return ret;
3674 }
3675 
3676 /*
3677  * Return true if path is reachable from root
3678  *
3679  * namespace_sem or mount_lock is held
3680  */
3681 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3682 			 const struct path *root)
3683 {
3684 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3685 		dentry = mnt->mnt_mountpoint;
3686 		mnt = mnt->mnt_parent;
3687 	}
3688 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3689 }
3690 
3691 bool path_is_under(const struct path *path1, const struct path *path2)
3692 {
3693 	bool res;
3694 	read_seqlock_excl(&mount_lock);
3695 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3696 	read_sequnlock_excl(&mount_lock);
3697 	return res;
3698 }
3699 EXPORT_SYMBOL(path_is_under);
3700 
3701 /*
3702  * pivot_root Semantics:
3703  * Moves the root file system of the current process to the directory put_old,
3704  * makes new_root as the new root file system of the current process, and sets
3705  * root/cwd of all processes which had them on the current root to new_root.
3706  *
3707  * Restrictions:
3708  * The new_root and put_old must be directories, and  must not be on the
3709  * same file  system as the current process root. The put_old  must  be
3710  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3711  * pointed to by put_old must yield the same directory as new_root. No other
3712  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3713  *
3714  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3715  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3716  * in this situation.
3717  *
3718  * Notes:
3719  *  - we don't move root/cwd if they are not at the root (reason: if something
3720  *    cared enough to change them, it's probably wrong to force them elsewhere)
3721  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3722  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3723  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3724  *    first.
3725  */
3726 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3727 		const char __user *, put_old)
3728 {
3729 	struct path new, old, root;
3730 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3731 	struct mountpoint *old_mp, *root_mp;
3732 	int error;
3733 
3734 	if (!may_mount())
3735 		return -EPERM;
3736 
3737 	error = user_path_at(AT_FDCWD, new_root,
3738 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3739 	if (error)
3740 		goto out0;
3741 
3742 	error = user_path_at(AT_FDCWD, put_old,
3743 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3744 	if (error)
3745 		goto out1;
3746 
3747 	error = security_sb_pivotroot(&old, &new);
3748 	if (error)
3749 		goto out2;
3750 
3751 	get_fs_root(current->fs, &root);
3752 	old_mp = lock_mount(&old);
3753 	error = PTR_ERR(old_mp);
3754 	if (IS_ERR(old_mp))
3755 		goto out3;
3756 
3757 	error = -EINVAL;
3758 	new_mnt = real_mount(new.mnt);
3759 	root_mnt = real_mount(root.mnt);
3760 	old_mnt = real_mount(old.mnt);
3761 	ex_parent = new_mnt->mnt_parent;
3762 	root_parent = root_mnt->mnt_parent;
3763 	if (IS_MNT_SHARED(old_mnt) ||
3764 		IS_MNT_SHARED(ex_parent) ||
3765 		IS_MNT_SHARED(root_parent))
3766 		goto out4;
3767 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3768 		goto out4;
3769 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3770 		goto out4;
3771 	error = -ENOENT;
3772 	if (d_unlinked(new.dentry))
3773 		goto out4;
3774 	error = -EBUSY;
3775 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3776 		goto out4; /* loop, on the same file system  */
3777 	error = -EINVAL;
3778 	if (root.mnt->mnt_root != root.dentry)
3779 		goto out4; /* not a mountpoint */
3780 	if (!mnt_has_parent(root_mnt))
3781 		goto out4; /* not attached */
3782 	if (new.mnt->mnt_root != new.dentry)
3783 		goto out4; /* not a mountpoint */
3784 	if (!mnt_has_parent(new_mnt))
3785 		goto out4; /* not attached */
3786 	/* make sure we can reach put_old from new_root */
3787 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3788 		goto out4;
3789 	/* make certain new is below the root */
3790 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3791 		goto out4;
3792 	lock_mount_hash();
3793 	umount_mnt(new_mnt);
3794 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3795 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3796 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3797 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3798 	}
3799 	/* mount old root on put_old */
3800 	attach_mnt(root_mnt, old_mnt, old_mp);
3801 	/* mount new_root on / */
3802 	attach_mnt(new_mnt, root_parent, root_mp);
3803 	mnt_add_count(root_parent, -1);
3804 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3805 	/* A moved mount should not expire automatically */
3806 	list_del_init(&new_mnt->mnt_expire);
3807 	put_mountpoint(root_mp);
3808 	unlock_mount_hash();
3809 	chroot_fs_refs(&root, &new);
3810 	error = 0;
3811 out4:
3812 	unlock_mount(old_mp);
3813 	if (!error)
3814 		mntput_no_expire(ex_parent);
3815 out3:
3816 	path_put(&root);
3817 out2:
3818 	path_put(&old);
3819 out1:
3820 	path_put(&new);
3821 out0:
3822 	return error;
3823 }
3824 
3825 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3826 {
3827 	unsigned int flags = mnt->mnt.mnt_flags;
3828 
3829 	/*  flags to clear */
3830 	flags &= ~kattr->attr_clr;
3831 	/* flags to raise */
3832 	flags |= kattr->attr_set;
3833 
3834 	return flags;
3835 }
3836 
3837 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3838 {
3839 	struct vfsmount *m = &mnt->mnt;
3840 
3841 	if (!kattr->mnt_userns)
3842 		return 0;
3843 
3844 	/*
3845 	 * Once a mount has been idmapped we don't allow it to change its
3846 	 * mapping. It makes things simpler and callers can just create
3847 	 * another bind-mount they can idmap if they want to.
3848 	 */
3849 	if (mnt_user_ns(m) != &init_user_ns)
3850 		return -EPERM;
3851 
3852 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3853 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3854 		return -EINVAL;
3855 
3856 	/* We're not controlling the superblock. */
3857 	if (!ns_capable(m->mnt_sb->s_user_ns, CAP_SYS_ADMIN))
3858 		return -EPERM;
3859 
3860 	/* Mount has already been visible in the filesystem hierarchy. */
3861 	if (!is_anon_ns(mnt->mnt_ns))
3862 		return -EINVAL;
3863 
3864 	return 0;
3865 }
3866 
3867 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3868 					   struct mount *mnt, int *err)
3869 {
3870 	struct mount *m = mnt, *last = NULL;
3871 
3872 	if (!is_mounted(&m->mnt)) {
3873 		*err = -EINVAL;
3874 		goto out;
3875 	}
3876 
3877 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3878 		*err = -EINVAL;
3879 		goto out;
3880 	}
3881 
3882 	do {
3883 		unsigned int flags;
3884 
3885 		flags = recalc_flags(kattr, m);
3886 		if (!can_change_locked_flags(m, flags)) {
3887 			*err = -EPERM;
3888 			goto out;
3889 		}
3890 
3891 		*err = can_idmap_mount(kattr, m);
3892 		if (*err)
3893 			goto out;
3894 
3895 		last = m;
3896 
3897 		if ((kattr->attr_set & MNT_READONLY) &&
3898 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3899 			*err = mnt_hold_writers(m);
3900 			if (*err)
3901 				goto out;
3902 		}
3903 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3904 
3905 out:
3906 	return last;
3907 }
3908 
3909 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3910 {
3911 	struct user_namespace *mnt_userns;
3912 
3913 	if (!kattr->mnt_userns)
3914 		return;
3915 
3916 	mnt_userns = get_user_ns(kattr->mnt_userns);
3917 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
3918 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3919 }
3920 
3921 static void mount_setattr_commit(struct mount_kattr *kattr,
3922 				 struct mount *mnt, struct mount *last,
3923 				 int err)
3924 {
3925 	struct mount *m = mnt;
3926 
3927 	do {
3928 		if (!err) {
3929 			unsigned int flags;
3930 
3931 			do_idmap_mount(kattr, m);
3932 			flags = recalc_flags(kattr, m);
3933 			WRITE_ONCE(m->mnt.mnt_flags, flags);
3934 		}
3935 
3936 		/*
3937 		 * We either set MNT_READONLY above so make it visible
3938 		 * before ~MNT_WRITE_HOLD or we failed to recursively
3939 		 * apply mount options.
3940 		 */
3941 		if ((kattr->attr_set & MNT_READONLY) &&
3942 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3943 			mnt_unhold_writers(m);
3944 
3945 		if (!err && kattr->propagation)
3946 			change_mnt_propagation(m, kattr->propagation);
3947 
3948 		/*
3949 		 * On failure, only cleanup until we found the first mount
3950 		 * we failed to handle.
3951 		 */
3952 		if (err && m == last)
3953 			break;
3954 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3955 
3956 	if (!err)
3957 		touch_mnt_namespace(mnt->mnt_ns);
3958 }
3959 
3960 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3961 {
3962 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
3963 	int err = 0;
3964 
3965 	if (path->dentry != mnt->mnt.mnt_root)
3966 		return -EINVAL;
3967 
3968 	if (kattr->propagation) {
3969 		/*
3970 		 * Only take namespace_lock() if we're actually changing
3971 		 * propagation.
3972 		 */
3973 		namespace_lock();
3974 		if (kattr->propagation == MS_SHARED) {
3975 			err = invent_group_ids(mnt, kattr->recurse);
3976 			if (err) {
3977 				namespace_unlock();
3978 				return err;
3979 			}
3980 		}
3981 	}
3982 
3983 	lock_mount_hash();
3984 
3985 	/*
3986 	 * Get the mount tree in a shape where we can change mount
3987 	 * properties without failure.
3988 	 */
3989 	last = mount_setattr_prepare(kattr, mnt, &err);
3990 	if (last) /* Commit all changes or revert to the old state. */
3991 		mount_setattr_commit(kattr, mnt, last, err);
3992 
3993 	unlock_mount_hash();
3994 
3995 	if (kattr->propagation) {
3996 		namespace_unlock();
3997 		if (err)
3998 			cleanup_group_ids(mnt, NULL);
3999 	}
4000 
4001 	return err;
4002 }
4003 
4004 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4005 				struct mount_kattr *kattr, unsigned int flags)
4006 {
4007 	int err = 0;
4008 	struct ns_common *ns;
4009 	struct user_namespace *mnt_userns;
4010 	struct file *file;
4011 
4012 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4013 		return 0;
4014 
4015 	/*
4016 	 * We currently do not support clearing an idmapped mount. If this ever
4017 	 * is a use-case we can revisit this but for now let's keep it simple
4018 	 * and not allow it.
4019 	 */
4020 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4021 		return -EINVAL;
4022 
4023 	if (attr->userns_fd > INT_MAX)
4024 		return -EINVAL;
4025 
4026 	file = fget(attr->userns_fd);
4027 	if (!file)
4028 		return -EBADF;
4029 
4030 	if (!proc_ns_file(file)) {
4031 		err = -EINVAL;
4032 		goto out_fput;
4033 	}
4034 
4035 	ns = get_proc_ns(file_inode(file));
4036 	if (ns->ops->type != CLONE_NEWUSER) {
4037 		err = -EINVAL;
4038 		goto out_fput;
4039 	}
4040 
4041 	/*
4042 	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4043 	 * This is simpler than just having to treat NULL as unmapped. Users
4044 	 * wanting to idmap a mount to init_user_ns can just use a namespace
4045 	 * with an identity mapping.
4046 	 */
4047 	mnt_userns = container_of(ns, struct user_namespace, ns);
4048 	if (mnt_userns == &init_user_ns) {
4049 		err = -EPERM;
4050 		goto out_fput;
4051 	}
4052 	kattr->mnt_userns = get_user_ns(mnt_userns);
4053 
4054 out_fput:
4055 	fput(file);
4056 	return err;
4057 }
4058 
4059 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4060 			     struct mount_kattr *kattr, unsigned int flags)
4061 {
4062 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4063 
4064 	if (flags & AT_NO_AUTOMOUNT)
4065 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4066 	if (flags & AT_SYMLINK_NOFOLLOW)
4067 		lookup_flags &= ~LOOKUP_FOLLOW;
4068 	if (flags & AT_EMPTY_PATH)
4069 		lookup_flags |= LOOKUP_EMPTY;
4070 
4071 	*kattr = (struct mount_kattr) {
4072 		.lookup_flags	= lookup_flags,
4073 		.recurse	= !!(flags & AT_RECURSIVE),
4074 	};
4075 
4076 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4077 		return -EINVAL;
4078 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4079 		return -EINVAL;
4080 	kattr->propagation = attr->propagation;
4081 
4082 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4083 		return -EINVAL;
4084 
4085 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4086 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4087 
4088 	/*
4089 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4090 	 * users wanting to transition to a different atime setting cannot
4091 	 * simply specify the atime setting in @attr_set, but must also
4092 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4093 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4094 	 * @attr_clr and that @attr_set can't have any atime bits set if
4095 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4096 	 */
4097 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4098 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4099 			return -EINVAL;
4100 
4101 		/*
4102 		 * Clear all previous time settings as they are mutually
4103 		 * exclusive.
4104 		 */
4105 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4106 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4107 		case MOUNT_ATTR_RELATIME:
4108 			kattr->attr_set |= MNT_RELATIME;
4109 			break;
4110 		case MOUNT_ATTR_NOATIME:
4111 			kattr->attr_set |= MNT_NOATIME;
4112 			break;
4113 		case MOUNT_ATTR_STRICTATIME:
4114 			break;
4115 		default:
4116 			return -EINVAL;
4117 		}
4118 	} else {
4119 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4120 			return -EINVAL;
4121 	}
4122 
4123 	return build_mount_idmapped(attr, usize, kattr, flags);
4124 }
4125 
4126 static void finish_mount_kattr(struct mount_kattr *kattr)
4127 {
4128 	put_user_ns(kattr->mnt_userns);
4129 	kattr->mnt_userns = NULL;
4130 }
4131 
4132 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4133 		unsigned int, flags, struct mount_attr __user *, uattr,
4134 		size_t, usize)
4135 {
4136 	int err;
4137 	struct path target;
4138 	struct mount_attr attr;
4139 	struct mount_kattr kattr;
4140 
4141 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4142 
4143 	if (flags & ~(AT_EMPTY_PATH |
4144 		      AT_RECURSIVE |
4145 		      AT_SYMLINK_NOFOLLOW |
4146 		      AT_NO_AUTOMOUNT))
4147 		return -EINVAL;
4148 
4149 	if (unlikely(usize > PAGE_SIZE))
4150 		return -E2BIG;
4151 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4152 		return -EINVAL;
4153 
4154 	if (!may_mount())
4155 		return -EPERM;
4156 
4157 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4158 	if (err)
4159 		return err;
4160 
4161 	/* Don't bother walking through the mounts if this is a nop. */
4162 	if (attr.attr_set == 0 &&
4163 	    attr.attr_clr == 0 &&
4164 	    attr.propagation == 0)
4165 		return 0;
4166 
4167 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4168 	if (err)
4169 		return err;
4170 
4171 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4172 	if (err)
4173 		return err;
4174 
4175 	err = do_mount_setattr(&target, &kattr);
4176 	finish_mount_kattr(&kattr);
4177 	path_put(&target);
4178 	return err;
4179 }
4180 
4181 static void __init init_mount_tree(void)
4182 {
4183 	struct vfsmount *mnt;
4184 	struct mount *m;
4185 	struct mnt_namespace *ns;
4186 	struct path root;
4187 
4188 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4189 	if (IS_ERR(mnt))
4190 		panic("Can't create rootfs");
4191 
4192 	ns = alloc_mnt_ns(&init_user_ns, false);
4193 	if (IS_ERR(ns))
4194 		panic("Can't allocate initial namespace");
4195 	m = real_mount(mnt);
4196 	m->mnt_ns = ns;
4197 	ns->root = m;
4198 	ns->mounts = 1;
4199 	list_add(&m->mnt_list, &ns->list);
4200 	init_task.nsproxy->mnt_ns = ns;
4201 	get_mnt_ns(ns);
4202 
4203 	root.mnt = mnt;
4204 	root.dentry = mnt->mnt_root;
4205 	mnt->mnt_flags |= MNT_LOCKED;
4206 
4207 	set_fs_pwd(current->fs, &root);
4208 	set_fs_root(current->fs, &root);
4209 }
4210 
4211 void __init mnt_init(void)
4212 {
4213 	int err;
4214 
4215 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4216 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4217 
4218 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4219 				sizeof(struct hlist_head),
4220 				mhash_entries, 19,
4221 				HASH_ZERO,
4222 				&m_hash_shift, &m_hash_mask, 0, 0);
4223 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4224 				sizeof(struct hlist_head),
4225 				mphash_entries, 19,
4226 				HASH_ZERO,
4227 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4228 
4229 	if (!mount_hashtable || !mountpoint_hashtable)
4230 		panic("Failed to allocate mount hash table\n");
4231 
4232 	kernfs_init();
4233 
4234 	err = sysfs_init();
4235 	if (err)
4236 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4237 			__func__, err);
4238 	fs_kobj = kobject_create_and_add("fs", NULL);
4239 	if (!fs_kobj)
4240 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4241 	shmem_init();
4242 	init_rootfs();
4243 	init_mount_tree();
4244 }
4245 
4246 void put_mnt_ns(struct mnt_namespace *ns)
4247 {
4248 	if (!refcount_dec_and_test(&ns->ns.count))
4249 		return;
4250 	drop_collected_mounts(&ns->root->mnt);
4251 	free_mnt_ns(ns);
4252 }
4253 
4254 struct vfsmount *kern_mount(struct file_system_type *type)
4255 {
4256 	struct vfsmount *mnt;
4257 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4258 	if (!IS_ERR(mnt)) {
4259 		/*
4260 		 * it is a longterm mount, don't release mnt until
4261 		 * we unmount before file sys is unregistered
4262 		*/
4263 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4264 	}
4265 	return mnt;
4266 }
4267 EXPORT_SYMBOL_GPL(kern_mount);
4268 
4269 void kern_unmount(struct vfsmount *mnt)
4270 {
4271 	/* release long term mount so mount point can be released */
4272 	if (!IS_ERR_OR_NULL(mnt)) {
4273 		real_mount(mnt)->mnt_ns = NULL;
4274 		synchronize_rcu();	/* yecchhh... */
4275 		mntput(mnt);
4276 	}
4277 }
4278 EXPORT_SYMBOL(kern_unmount);
4279 
4280 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4281 {
4282 	unsigned int i;
4283 
4284 	for (i = 0; i < num; i++)
4285 		if (mnt[i])
4286 			real_mount(mnt[i])->mnt_ns = NULL;
4287 	synchronize_rcu_expedited();
4288 	for (i = 0; i < num; i++)
4289 		mntput(mnt[i]);
4290 }
4291 EXPORT_SYMBOL(kern_unmount_array);
4292 
4293 bool our_mnt(struct vfsmount *mnt)
4294 {
4295 	return check_mnt(real_mount(mnt));
4296 }
4297 
4298 bool current_chrooted(void)
4299 {
4300 	/* Does the current process have a non-standard root */
4301 	struct path ns_root;
4302 	struct path fs_root;
4303 	bool chrooted;
4304 
4305 	/* Find the namespace root */
4306 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4307 	ns_root.dentry = ns_root.mnt->mnt_root;
4308 	path_get(&ns_root);
4309 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4310 		;
4311 
4312 	get_fs_root(current->fs, &fs_root);
4313 
4314 	chrooted = !path_equal(&fs_root, &ns_root);
4315 
4316 	path_put(&fs_root);
4317 	path_put(&ns_root);
4318 
4319 	return chrooted;
4320 }
4321 
4322 static bool mnt_already_visible(struct mnt_namespace *ns,
4323 				const struct super_block *sb,
4324 				int *new_mnt_flags)
4325 {
4326 	int new_flags = *new_mnt_flags;
4327 	struct mount *mnt;
4328 	bool visible = false;
4329 
4330 	down_read(&namespace_sem);
4331 	lock_ns_list(ns);
4332 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4333 		struct mount *child;
4334 		int mnt_flags;
4335 
4336 		if (mnt_is_cursor(mnt))
4337 			continue;
4338 
4339 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4340 			continue;
4341 
4342 		/* This mount is not fully visible if it's root directory
4343 		 * is not the root directory of the filesystem.
4344 		 */
4345 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4346 			continue;
4347 
4348 		/* A local view of the mount flags */
4349 		mnt_flags = mnt->mnt.mnt_flags;
4350 
4351 		/* Don't miss readonly hidden in the superblock flags */
4352 		if (sb_rdonly(mnt->mnt.mnt_sb))
4353 			mnt_flags |= MNT_LOCK_READONLY;
4354 
4355 		/* Verify the mount flags are equal to or more permissive
4356 		 * than the proposed new mount.
4357 		 */
4358 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4359 		    !(new_flags & MNT_READONLY))
4360 			continue;
4361 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4362 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4363 			continue;
4364 
4365 		/* This mount is not fully visible if there are any
4366 		 * locked child mounts that cover anything except for
4367 		 * empty directories.
4368 		 */
4369 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4370 			struct inode *inode = child->mnt_mountpoint->d_inode;
4371 			/* Only worry about locked mounts */
4372 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4373 				continue;
4374 			/* Is the directory permanetly empty? */
4375 			if (!is_empty_dir_inode(inode))
4376 				goto next;
4377 		}
4378 		/* Preserve the locked attributes */
4379 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4380 					       MNT_LOCK_ATIME);
4381 		visible = true;
4382 		goto found;
4383 	next:	;
4384 	}
4385 found:
4386 	unlock_ns_list(ns);
4387 	up_read(&namespace_sem);
4388 	return visible;
4389 }
4390 
4391 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4392 {
4393 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4394 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4395 	unsigned long s_iflags;
4396 
4397 	if (ns->user_ns == &init_user_ns)
4398 		return false;
4399 
4400 	/* Can this filesystem be too revealing? */
4401 	s_iflags = sb->s_iflags;
4402 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4403 		return false;
4404 
4405 	if ((s_iflags & required_iflags) != required_iflags) {
4406 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4407 			  required_iflags);
4408 		return true;
4409 	}
4410 
4411 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4412 }
4413 
4414 bool mnt_may_suid(struct vfsmount *mnt)
4415 {
4416 	/*
4417 	 * Foreign mounts (accessed via fchdir or through /proc
4418 	 * symlinks) are always treated as if they are nosuid.  This
4419 	 * prevents namespaces from trusting potentially unsafe
4420 	 * suid/sgid bits, file caps, or security labels that originate
4421 	 * in other namespaces.
4422 	 */
4423 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4424 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4425 }
4426 
4427 static struct ns_common *mntns_get(struct task_struct *task)
4428 {
4429 	struct ns_common *ns = NULL;
4430 	struct nsproxy *nsproxy;
4431 
4432 	task_lock(task);
4433 	nsproxy = task->nsproxy;
4434 	if (nsproxy) {
4435 		ns = &nsproxy->mnt_ns->ns;
4436 		get_mnt_ns(to_mnt_ns(ns));
4437 	}
4438 	task_unlock(task);
4439 
4440 	return ns;
4441 }
4442 
4443 static void mntns_put(struct ns_common *ns)
4444 {
4445 	put_mnt_ns(to_mnt_ns(ns));
4446 }
4447 
4448 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4449 {
4450 	struct nsproxy *nsproxy = nsset->nsproxy;
4451 	struct fs_struct *fs = nsset->fs;
4452 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4453 	struct user_namespace *user_ns = nsset->cred->user_ns;
4454 	struct path root;
4455 	int err;
4456 
4457 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4458 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4459 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4460 		return -EPERM;
4461 
4462 	if (is_anon_ns(mnt_ns))
4463 		return -EINVAL;
4464 
4465 	if (fs->users != 1)
4466 		return -EINVAL;
4467 
4468 	get_mnt_ns(mnt_ns);
4469 	old_mnt_ns = nsproxy->mnt_ns;
4470 	nsproxy->mnt_ns = mnt_ns;
4471 
4472 	/* Find the root */
4473 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4474 				"/", LOOKUP_DOWN, &root);
4475 	if (err) {
4476 		/* revert to old namespace */
4477 		nsproxy->mnt_ns = old_mnt_ns;
4478 		put_mnt_ns(mnt_ns);
4479 		return err;
4480 	}
4481 
4482 	put_mnt_ns(old_mnt_ns);
4483 
4484 	/* Update the pwd and root */
4485 	set_fs_pwd(fs, &root);
4486 	set_fs_root(fs, &root);
4487 
4488 	path_put(&root);
4489 	return 0;
4490 }
4491 
4492 static struct user_namespace *mntns_owner(struct ns_common *ns)
4493 {
4494 	return to_mnt_ns(ns)->user_ns;
4495 }
4496 
4497 const struct proc_ns_operations mntns_operations = {
4498 	.name		= "mnt",
4499 	.type		= CLONE_NEWNS,
4500 	.get		= mntns_get,
4501 	.put		= mntns_put,
4502 	.install	= mntns_install,
4503 	.owner		= mntns_owner,
4504 };
4505