xref: /linux/fs/namespace.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_RWLOCK(mnt_ns_tree_lock);
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
84 
85 struct mount_kattr {
86 	unsigned int attr_set;
87 	unsigned int attr_clr;
88 	unsigned int propagation;
89 	unsigned int lookup_flags;
90 	bool recurse;
91 	struct user_namespace *mnt_userns;
92 	struct mnt_idmap *mnt_idmap;
93 };
94 
95 /* /sys/fs */
96 struct kobject *fs_kobj __ro_after_init;
97 EXPORT_SYMBOL_GPL(fs_kobj);
98 
99 /*
100  * vfsmount lock may be taken for read to prevent changes to the
101  * vfsmount hash, ie. during mountpoint lookups or walking back
102  * up the tree.
103  *
104  * It should be taken for write in all cases where the vfsmount
105  * tree or hash is modified or when a vfsmount structure is modified.
106  */
107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
108 
109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
110 {
111 	u64 seq_b = ns->seq;
112 
113 	if (seq < seq_b)
114 		return -1;
115 	if (seq > seq_b)
116 		return 1;
117 	return 0;
118 }
119 
120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 	if (!node)
123 		return NULL;
124 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126 
127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
128 {
129 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 	u64 seq_a = ns_a->seq;
132 
133 	return mnt_ns_cmp(seq_a, ns_b) < 0;
134 }
135 
136 static void mnt_ns_tree_add(struct mnt_namespace *ns)
137 {
138 	guard(write_lock)(&mnt_ns_tree_lock);
139 	rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
140 }
141 
142 static void mnt_ns_release(struct mnt_namespace *ns)
143 {
144 	lockdep_assert_not_held(&mnt_ns_tree_lock);
145 
146 	/* keep alive for {list,stat}mount() */
147 	if (refcount_dec_and_test(&ns->passive)) {
148 		put_user_ns(ns->user_ns);
149 		kfree(ns);
150 	}
151 }
152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
153 
154 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
155 {
156 	/* remove from global mount namespace list */
157 	if (!is_anon_ns(ns)) {
158 		guard(write_lock)(&mnt_ns_tree_lock);
159 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
160 	}
161 
162 	mnt_ns_release(ns);
163 }
164 
165 /*
166  * Returns the mount namespace which either has the specified id, or has the
167  * next smallest id afer the specified one.
168  */
169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
170 {
171 	struct rb_node *node = mnt_ns_tree.rb_node;
172 	struct mnt_namespace *ret = NULL;
173 
174 	lockdep_assert_held(&mnt_ns_tree_lock);
175 
176 	while (node) {
177 		struct mnt_namespace *n = node_to_mnt_ns(node);
178 
179 		if (mnt_ns_id <= n->seq) {
180 			ret = node_to_mnt_ns(node);
181 			if (mnt_ns_id == n->seq)
182 				break;
183 			node = node->rb_left;
184 		} else {
185 			node = node->rb_right;
186 		}
187 	}
188 	return ret;
189 }
190 
191 /*
192  * Lookup a mount namespace by id and take a passive reference count. Taking a
193  * passive reference means the mount namespace can be emptied if e.g., the last
194  * task holding an active reference exits. To access the mounts of the
195  * namespace the @namespace_sem must first be acquired. If the namespace has
196  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
197  * see that the mount rbtree of the namespace is empty.
198  */
199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
200 {
201        struct mnt_namespace *ns;
202 
203        guard(read_lock)(&mnt_ns_tree_lock);
204        ns = mnt_ns_find_id_at(mnt_ns_id);
205        if (!ns || ns->seq != mnt_ns_id)
206                return NULL;
207 
208        refcount_inc(&ns->passive);
209        return ns;
210 }
211 
212 static inline void lock_mount_hash(void)
213 {
214 	write_seqlock(&mount_lock);
215 }
216 
217 static inline void unlock_mount_hash(void)
218 {
219 	write_sequnlock(&mount_lock);
220 }
221 
222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
223 {
224 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
225 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
226 	tmp = tmp + (tmp >> m_hash_shift);
227 	return &mount_hashtable[tmp & m_hash_mask];
228 }
229 
230 static inline struct hlist_head *mp_hash(struct dentry *dentry)
231 {
232 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
233 	tmp = tmp + (tmp >> mp_hash_shift);
234 	return &mountpoint_hashtable[tmp & mp_hash_mask];
235 }
236 
237 static int mnt_alloc_id(struct mount *mnt)
238 {
239 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
240 
241 	if (res < 0)
242 		return res;
243 	mnt->mnt_id = res;
244 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
245 	return 0;
246 }
247 
248 static void mnt_free_id(struct mount *mnt)
249 {
250 	ida_free(&mnt_id_ida, mnt->mnt_id);
251 }
252 
253 /*
254  * Allocate a new peer group ID
255  */
256 static int mnt_alloc_group_id(struct mount *mnt)
257 {
258 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
259 
260 	if (res < 0)
261 		return res;
262 	mnt->mnt_group_id = res;
263 	return 0;
264 }
265 
266 /*
267  * Release a peer group ID
268  */
269 void mnt_release_group_id(struct mount *mnt)
270 {
271 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
272 	mnt->mnt_group_id = 0;
273 }
274 
275 /*
276  * vfsmount lock must be held for read
277  */
278 static inline void mnt_add_count(struct mount *mnt, int n)
279 {
280 #ifdef CONFIG_SMP
281 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
282 #else
283 	preempt_disable();
284 	mnt->mnt_count += n;
285 	preempt_enable();
286 #endif
287 }
288 
289 /*
290  * vfsmount lock must be held for write
291  */
292 int mnt_get_count(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_count;
305 #endif
306 }
307 
308 static struct mount *alloc_vfsmnt(const char *name)
309 {
310 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
311 	if (mnt) {
312 		int err;
313 
314 		err = mnt_alloc_id(mnt);
315 		if (err)
316 			goto out_free_cache;
317 
318 		if (name) {
319 			mnt->mnt_devname = kstrdup_const(name,
320 							 GFP_KERNEL_ACCOUNT);
321 			if (!mnt->mnt_devname)
322 				goto out_free_id;
323 		}
324 
325 #ifdef CONFIG_SMP
326 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
327 		if (!mnt->mnt_pcp)
328 			goto out_free_devname;
329 
330 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
331 #else
332 		mnt->mnt_count = 1;
333 		mnt->mnt_writers = 0;
334 #endif
335 
336 		INIT_HLIST_NODE(&mnt->mnt_hash);
337 		INIT_LIST_HEAD(&mnt->mnt_child);
338 		INIT_LIST_HEAD(&mnt->mnt_mounts);
339 		INIT_LIST_HEAD(&mnt->mnt_list);
340 		INIT_LIST_HEAD(&mnt->mnt_expire);
341 		INIT_LIST_HEAD(&mnt->mnt_share);
342 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
343 		INIT_LIST_HEAD(&mnt->mnt_slave);
344 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
345 		INIT_LIST_HEAD(&mnt->mnt_umounting);
346 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
347 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
348 	}
349 	return mnt;
350 
351 #ifdef CONFIG_SMP
352 out_free_devname:
353 	kfree_const(mnt->mnt_devname);
354 #endif
355 out_free_id:
356 	mnt_free_id(mnt);
357 out_free_cache:
358 	kmem_cache_free(mnt_cache, mnt);
359 	return NULL;
360 }
361 
362 /*
363  * Most r/o checks on a fs are for operations that take
364  * discrete amounts of time, like a write() or unlink().
365  * We must keep track of when those operations start
366  * (for permission checks) and when they end, so that
367  * we can determine when writes are able to occur to
368  * a filesystem.
369  */
370 /*
371  * __mnt_is_readonly: check whether a mount is read-only
372  * @mnt: the mount to check for its write status
373  *
374  * This shouldn't be used directly ouside of the VFS.
375  * It does not guarantee that the filesystem will stay
376  * r/w, just that it is right *now*.  This can not and
377  * should not be used in place of IS_RDONLY(inode).
378  * mnt_want/drop_write() will _keep_ the filesystem
379  * r/w.
380  */
381 bool __mnt_is_readonly(struct vfsmount *mnt)
382 {
383 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
384 }
385 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
386 
387 static inline void mnt_inc_writers(struct mount *mnt)
388 {
389 #ifdef CONFIG_SMP
390 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
391 #else
392 	mnt->mnt_writers++;
393 #endif
394 }
395 
396 static inline void mnt_dec_writers(struct mount *mnt)
397 {
398 #ifdef CONFIG_SMP
399 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
400 #else
401 	mnt->mnt_writers--;
402 #endif
403 }
404 
405 static unsigned int mnt_get_writers(struct mount *mnt)
406 {
407 #ifdef CONFIG_SMP
408 	unsigned int count = 0;
409 	int cpu;
410 
411 	for_each_possible_cpu(cpu) {
412 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
413 	}
414 
415 	return count;
416 #else
417 	return mnt->mnt_writers;
418 #endif
419 }
420 
421 static int mnt_is_readonly(struct vfsmount *mnt)
422 {
423 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
424 		return 1;
425 	/*
426 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
427 	 * making sure if we don't see s_readonly_remount set yet, we also will
428 	 * not see any superblock / mount flag changes done by remount.
429 	 * It also pairs with the barrier in sb_end_ro_state_change()
430 	 * assuring that if we see s_readonly_remount already cleared, we will
431 	 * see the values of superblock / mount flags updated by remount.
432 	 */
433 	smp_rmb();
434 	return __mnt_is_readonly(mnt);
435 }
436 
437 /*
438  * Most r/o & frozen checks on a fs are for operations that take discrete
439  * amounts of time, like a write() or unlink().  We must keep track of when
440  * those operations start (for permission checks) and when they end, so that we
441  * can determine when writes are able to occur to a filesystem.
442  */
443 /**
444  * mnt_get_write_access - get write access to a mount without freeze protection
445  * @m: the mount on which to take a write
446  *
447  * This tells the low-level filesystem that a write is about to be performed to
448  * it, and makes sure that writes are allowed (mnt it read-write) before
449  * returning success. This operation does not protect against filesystem being
450  * frozen. When the write operation is finished, mnt_put_write_access() must be
451  * called. This is effectively a refcount.
452  */
453 int mnt_get_write_access(struct vfsmount *m)
454 {
455 	struct mount *mnt = real_mount(m);
456 	int ret = 0;
457 
458 	preempt_disable();
459 	mnt_inc_writers(mnt);
460 	/*
461 	 * The store to mnt_inc_writers must be visible before we pass
462 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
463 	 * incremented count after it has set MNT_WRITE_HOLD.
464 	 */
465 	smp_mb();
466 	might_lock(&mount_lock.lock);
467 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
468 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
469 			cpu_relax();
470 		} else {
471 			/*
472 			 * This prevents priority inversion, if the task
473 			 * setting MNT_WRITE_HOLD got preempted on a remote
474 			 * CPU, and it prevents life lock if the task setting
475 			 * MNT_WRITE_HOLD has a lower priority and is bound to
476 			 * the same CPU as the task that is spinning here.
477 			 */
478 			preempt_enable();
479 			lock_mount_hash();
480 			unlock_mount_hash();
481 			preempt_disable();
482 		}
483 	}
484 	/*
485 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
486 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
487 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
488 	 * mnt_is_readonly() and bail in case we are racing with remount
489 	 * read-only.
490 	 */
491 	smp_rmb();
492 	if (mnt_is_readonly(m)) {
493 		mnt_dec_writers(mnt);
494 		ret = -EROFS;
495 	}
496 	preempt_enable();
497 
498 	return ret;
499 }
500 EXPORT_SYMBOL_GPL(mnt_get_write_access);
501 
502 /**
503  * mnt_want_write - get write access to a mount
504  * @m: the mount on which to take a write
505  *
506  * This tells the low-level filesystem that a write is about to be performed to
507  * it, and makes sure that writes are allowed (mount is read-write, filesystem
508  * is not frozen) before returning success.  When the write operation is
509  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
510  */
511 int mnt_want_write(struct vfsmount *m)
512 {
513 	int ret;
514 
515 	sb_start_write(m->mnt_sb);
516 	ret = mnt_get_write_access(m);
517 	if (ret)
518 		sb_end_write(m->mnt_sb);
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(mnt_want_write);
522 
523 /**
524  * mnt_get_write_access_file - get write access to a file's mount
525  * @file: the file who's mount on which to take a write
526  *
527  * This is like mnt_get_write_access, but if @file is already open for write it
528  * skips incrementing mnt_writers (since the open file already has a reference)
529  * and instead only does the check for emergency r/o remounts.  This must be
530  * paired with mnt_put_write_access_file.
531  */
532 int mnt_get_write_access_file(struct file *file)
533 {
534 	if (file->f_mode & FMODE_WRITER) {
535 		/*
536 		 * Superblock may have become readonly while there are still
537 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
538 		 */
539 		if (__mnt_is_readonly(file->f_path.mnt))
540 			return -EROFS;
541 		return 0;
542 	}
543 	return mnt_get_write_access(file->f_path.mnt);
544 }
545 
546 /**
547  * mnt_want_write_file - get write access to a file's mount
548  * @file: the file who's mount on which to take a write
549  *
550  * This is like mnt_want_write, but if the file is already open for writing it
551  * skips incrementing mnt_writers (since the open file already has a reference)
552  * and instead only does the freeze protection and the check for emergency r/o
553  * remounts.  This must be paired with mnt_drop_write_file.
554  */
555 int mnt_want_write_file(struct file *file)
556 {
557 	int ret;
558 
559 	sb_start_write(file_inode(file)->i_sb);
560 	ret = mnt_get_write_access_file(file);
561 	if (ret)
562 		sb_end_write(file_inode(file)->i_sb);
563 	return ret;
564 }
565 EXPORT_SYMBOL_GPL(mnt_want_write_file);
566 
567 /**
568  * mnt_put_write_access - give up write access to a mount
569  * @mnt: the mount on which to give up write access
570  *
571  * Tells the low-level filesystem that we are done
572  * performing writes to it.  Must be matched with
573  * mnt_get_write_access() call above.
574  */
575 void mnt_put_write_access(struct vfsmount *mnt)
576 {
577 	preempt_disable();
578 	mnt_dec_writers(real_mount(mnt));
579 	preempt_enable();
580 }
581 EXPORT_SYMBOL_GPL(mnt_put_write_access);
582 
583 /**
584  * mnt_drop_write - give up write access to a mount
585  * @mnt: the mount on which to give up write access
586  *
587  * Tells the low-level filesystem that we are done performing writes to it and
588  * also allows filesystem to be frozen again.  Must be matched with
589  * mnt_want_write() call above.
590  */
591 void mnt_drop_write(struct vfsmount *mnt)
592 {
593 	mnt_put_write_access(mnt);
594 	sb_end_write(mnt->mnt_sb);
595 }
596 EXPORT_SYMBOL_GPL(mnt_drop_write);
597 
598 void mnt_put_write_access_file(struct file *file)
599 {
600 	if (!(file->f_mode & FMODE_WRITER))
601 		mnt_put_write_access(file->f_path.mnt);
602 }
603 
604 void mnt_drop_write_file(struct file *file)
605 {
606 	mnt_put_write_access_file(file);
607 	sb_end_write(file_inode(file)->i_sb);
608 }
609 EXPORT_SYMBOL(mnt_drop_write_file);
610 
611 /**
612  * mnt_hold_writers - prevent write access to the given mount
613  * @mnt: mnt to prevent write access to
614  *
615  * Prevents write access to @mnt if there are no active writers for @mnt.
616  * This function needs to be called and return successfully before changing
617  * properties of @mnt that need to remain stable for callers with write access
618  * to @mnt.
619  *
620  * After this functions has been called successfully callers must pair it with
621  * a call to mnt_unhold_writers() in order to stop preventing write access to
622  * @mnt.
623  *
624  * Context: This function expects lock_mount_hash() to be held serializing
625  *          setting MNT_WRITE_HOLD.
626  * Return: On success 0 is returned.
627  *	   On error, -EBUSY is returned.
628  */
629 static inline int mnt_hold_writers(struct mount *mnt)
630 {
631 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
632 	/*
633 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
634 	 * should be visible before we do.
635 	 */
636 	smp_mb();
637 
638 	/*
639 	 * With writers on hold, if this value is zero, then there are
640 	 * definitely no active writers (although held writers may subsequently
641 	 * increment the count, they'll have to wait, and decrement it after
642 	 * seeing MNT_READONLY).
643 	 *
644 	 * It is OK to have counter incremented on one CPU and decremented on
645 	 * another: the sum will add up correctly. The danger would be when we
646 	 * sum up each counter, if we read a counter before it is incremented,
647 	 * but then read another CPU's count which it has been subsequently
648 	 * decremented from -- we would see more decrements than we should.
649 	 * MNT_WRITE_HOLD protects against this scenario, because
650 	 * mnt_want_write first increments count, then smp_mb, then spins on
651 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
652 	 * we're counting up here.
653 	 */
654 	if (mnt_get_writers(mnt) > 0)
655 		return -EBUSY;
656 
657 	return 0;
658 }
659 
660 /**
661  * mnt_unhold_writers - stop preventing write access to the given mount
662  * @mnt: mnt to stop preventing write access to
663  *
664  * Stop preventing write access to @mnt allowing callers to gain write access
665  * to @mnt again.
666  *
667  * This function can only be called after a successful call to
668  * mnt_hold_writers().
669  *
670  * Context: This function expects lock_mount_hash() to be held.
671  */
672 static inline void mnt_unhold_writers(struct mount *mnt)
673 {
674 	/*
675 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
676 	 * that become unheld will see MNT_READONLY.
677 	 */
678 	smp_wmb();
679 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
680 }
681 
682 static int mnt_make_readonly(struct mount *mnt)
683 {
684 	int ret;
685 
686 	ret = mnt_hold_writers(mnt);
687 	if (!ret)
688 		mnt->mnt.mnt_flags |= MNT_READONLY;
689 	mnt_unhold_writers(mnt);
690 	return ret;
691 }
692 
693 int sb_prepare_remount_readonly(struct super_block *sb)
694 {
695 	struct mount *mnt;
696 	int err = 0;
697 
698 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
699 	if (atomic_long_read(&sb->s_remove_count))
700 		return -EBUSY;
701 
702 	lock_mount_hash();
703 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
704 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
705 			err = mnt_hold_writers(mnt);
706 			if (err)
707 				break;
708 		}
709 	}
710 	if (!err && atomic_long_read(&sb->s_remove_count))
711 		err = -EBUSY;
712 
713 	if (!err)
714 		sb_start_ro_state_change(sb);
715 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
716 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
717 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
718 	}
719 	unlock_mount_hash();
720 
721 	return err;
722 }
723 
724 static void free_vfsmnt(struct mount *mnt)
725 {
726 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
727 	kfree_const(mnt->mnt_devname);
728 #ifdef CONFIG_SMP
729 	free_percpu(mnt->mnt_pcp);
730 #endif
731 	kmem_cache_free(mnt_cache, mnt);
732 }
733 
734 static void delayed_free_vfsmnt(struct rcu_head *head)
735 {
736 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
737 }
738 
739 /* call under rcu_read_lock */
740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
741 {
742 	struct mount *mnt;
743 	if (read_seqretry(&mount_lock, seq))
744 		return 1;
745 	if (bastard == NULL)
746 		return 0;
747 	mnt = real_mount(bastard);
748 	mnt_add_count(mnt, 1);
749 	smp_mb();			// see mntput_no_expire()
750 	if (likely(!read_seqretry(&mount_lock, seq)))
751 		return 0;
752 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
753 		mnt_add_count(mnt, -1);
754 		return 1;
755 	}
756 	lock_mount_hash();
757 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
758 		mnt_add_count(mnt, -1);
759 		unlock_mount_hash();
760 		return 1;
761 	}
762 	unlock_mount_hash();
763 	/* caller will mntput() */
764 	return -1;
765 }
766 
767 /* call under rcu_read_lock */
768 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
769 {
770 	int res = __legitimize_mnt(bastard, seq);
771 	if (likely(!res))
772 		return true;
773 	if (unlikely(res < 0)) {
774 		rcu_read_unlock();
775 		mntput(bastard);
776 		rcu_read_lock();
777 	}
778 	return false;
779 }
780 
781 /**
782  * __lookup_mnt - find first child mount
783  * @mnt:	parent mount
784  * @dentry:	mountpoint
785  *
786  * If @mnt has a child mount @c mounted @dentry find and return it.
787  *
788  * Note that the child mount @c need not be unique. There are cases
789  * where shadow mounts are created. For example, during mount
790  * propagation when a source mount @mnt whose root got overmounted by a
791  * mount @o after path lookup but before @namespace_sem could be
792  * acquired gets copied and propagated. So @mnt gets copied including
793  * @o. When @mnt is propagated to a destination mount @d that already
794  * has another mount @n mounted at the same mountpoint then the source
795  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
796  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
797  * on @dentry.
798  *
799  * Return: The first child of @mnt mounted @dentry or NULL.
800  */
801 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
802 {
803 	struct hlist_head *head = m_hash(mnt, dentry);
804 	struct mount *p;
805 
806 	hlist_for_each_entry_rcu(p, head, mnt_hash)
807 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
808 			return p;
809 	return NULL;
810 }
811 
812 /*
813  * lookup_mnt - Return the first child mount mounted at path
814  *
815  * "First" means first mounted chronologically.  If you create the
816  * following mounts:
817  *
818  * mount /dev/sda1 /mnt
819  * mount /dev/sda2 /mnt
820  * mount /dev/sda3 /mnt
821  *
822  * Then lookup_mnt() on the base /mnt dentry in the root mount will
823  * return successively the root dentry and vfsmount of /dev/sda1, then
824  * /dev/sda2, then /dev/sda3, then NULL.
825  *
826  * lookup_mnt takes a reference to the found vfsmount.
827  */
828 struct vfsmount *lookup_mnt(const struct path *path)
829 {
830 	struct mount *child_mnt;
831 	struct vfsmount *m;
832 	unsigned seq;
833 
834 	rcu_read_lock();
835 	do {
836 		seq = read_seqbegin(&mount_lock);
837 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
838 		m = child_mnt ? &child_mnt->mnt : NULL;
839 	} while (!legitimize_mnt(m, seq));
840 	rcu_read_unlock();
841 	return m;
842 }
843 
844 /*
845  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
846  *                         current mount namespace.
847  *
848  * The common case is dentries are not mountpoints at all and that
849  * test is handled inline.  For the slow case when we are actually
850  * dealing with a mountpoint of some kind, walk through all of the
851  * mounts in the current mount namespace and test to see if the dentry
852  * is a mountpoint.
853  *
854  * The mount_hashtable is not usable in the context because we
855  * need to identify all mounts that may be in the current mount
856  * namespace not just a mount that happens to have some specified
857  * parent mount.
858  */
859 bool __is_local_mountpoint(struct dentry *dentry)
860 {
861 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
862 	struct mount *mnt, *n;
863 	bool is_covered = false;
864 
865 	down_read(&namespace_sem);
866 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
867 		is_covered = (mnt->mnt_mountpoint == dentry);
868 		if (is_covered)
869 			break;
870 	}
871 	up_read(&namespace_sem);
872 
873 	return is_covered;
874 }
875 
876 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
877 {
878 	struct hlist_head *chain = mp_hash(dentry);
879 	struct mountpoint *mp;
880 
881 	hlist_for_each_entry(mp, chain, m_hash) {
882 		if (mp->m_dentry == dentry) {
883 			mp->m_count++;
884 			return mp;
885 		}
886 	}
887 	return NULL;
888 }
889 
890 static struct mountpoint *get_mountpoint(struct dentry *dentry)
891 {
892 	struct mountpoint *mp, *new = NULL;
893 	int ret;
894 
895 	if (d_mountpoint(dentry)) {
896 		/* might be worth a WARN_ON() */
897 		if (d_unlinked(dentry))
898 			return ERR_PTR(-ENOENT);
899 mountpoint:
900 		read_seqlock_excl(&mount_lock);
901 		mp = lookup_mountpoint(dentry);
902 		read_sequnlock_excl(&mount_lock);
903 		if (mp)
904 			goto done;
905 	}
906 
907 	if (!new)
908 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
909 	if (!new)
910 		return ERR_PTR(-ENOMEM);
911 
912 
913 	/* Exactly one processes may set d_mounted */
914 	ret = d_set_mounted(dentry);
915 
916 	/* Someone else set d_mounted? */
917 	if (ret == -EBUSY)
918 		goto mountpoint;
919 
920 	/* The dentry is not available as a mountpoint? */
921 	mp = ERR_PTR(ret);
922 	if (ret)
923 		goto done;
924 
925 	/* Add the new mountpoint to the hash table */
926 	read_seqlock_excl(&mount_lock);
927 	new->m_dentry = dget(dentry);
928 	new->m_count = 1;
929 	hlist_add_head(&new->m_hash, mp_hash(dentry));
930 	INIT_HLIST_HEAD(&new->m_list);
931 	read_sequnlock_excl(&mount_lock);
932 
933 	mp = new;
934 	new = NULL;
935 done:
936 	kfree(new);
937 	return mp;
938 }
939 
940 /*
941  * vfsmount lock must be held.  Additionally, the caller is responsible
942  * for serializing calls for given disposal list.
943  */
944 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
945 {
946 	if (!--mp->m_count) {
947 		struct dentry *dentry = mp->m_dentry;
948 		BUG_ON(!hlist_empty(&mp->m_list));
949 		spin_lock(&dentry->d_lock);
950 		dentry->d_flags &= ~DCACHE_MOUNTED;
951 		spin_unlock(&dentry->d_lock);
952 		dput_to_list(dentry, list);
953 		hlist_del(&mp->m_hash);
954 		kfree(mp);
955 	}
956 }
957 
958 /* called with namespace_lock and vfsmount lock */
959 static void put_mountpoint(struct mountpoint *mp)
960 {
961 	__put_mountpoint(mp, &ex_mountpoints);
962 }
963 
964 static inline int check_mnt(struct mount *mnt)
965 {
966 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
967 }
968 
969 /*
970  * vfsmount lock must be held for write
971  */
972 static void touch_mnt_namespace(struct mnt_namespace *ns)
973 {
974 	if (ns) {
975 		ns->event = ++event;
976 		wake_up_interruptible(&ns->poll);
977 	}
978 }
979 
980 /*
981  * vfsmount lock must be held for write
982  */
983 static void __touch_mnt_namespace(struct mnt_namespace *ns)
984 {
985 	if (ns && ns->event != event) {
986 		ns->event = event;
987 		wake_up_interruptible(&ns->poll);
988 	}
989 }
990 
991 /*
992  * vfsmount lock must be held for write
993  */
994 static struct mountpoint *unhash_mnt(struct mount *mnt)
995 {
996 	struct mountpoint *mp;
997 	mnt->mnt_parent = mnt;
998 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
999 	list_del_init(&mnt->mnt_child);
1000 	hlist_del_init_rcu(&mnt->mnt_hash);
1001 	hlist_del_init(&mnt->mnt_mp_list);
1002 	mp = mnt->mnt_mp;
1003 	mnt->mnt_mp = NULL;
1004 	return mp;
1005 }
1006 
1007 /*
1008  * vfsmount lock must be held for write
1009  */
1010 static void umount_mnt(struct mount *mnt)
1011 {
1012 	put_mountpoint(unhash_mnt(mnt));
1013 }
1014 
1015 /*
1016  * vfsmount lock must be held for write
1017  */
1018 void mnt_set_mountpoint(struct mount *mnt,
1019 			struct mountpoint *mp,
1020 			struct mount *child_mnt)
1021 {
1022 	mp->m_count++;
1023 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1024 	child_mnt->mnt_mountpoint = mp->m_dentry;
1025 	child_mnt->mnt_parent = mnt;
1026 	child_mnt->mnt_mp = mp;
1027 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029 
1030 /**
1031  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1032  *
1033  * @new_parent: the source mount
1034  * @top_mnt:    the mount beneath which @new_parent is mounted
1035  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1036  *
1037  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1038  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1039  * @new_mp. And mount @new_parent on the old parent and old
1040  * mountpoint of @top_mnt.
1041  *
1042  * Context: This function expects namespace_lock() and lock_mount_hash()
1043  *          to have been acquired in that order.
1044  */
1045 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1046 				       struct mount *top_mnt,
1047 				       struct mountpoint *new_mp)
1048 {
1049 	struct mount *old_top_parent = top_mnt->mnt_parent;
1050 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1051 
1052 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1053 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1054 }
1055 
1056 
1057 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1058 {
1059 	hlist_add_head_rcu(&mnt->mnt_hash,
1060 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1061 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1062 }
1063 
1064 /**
1065  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1066  *              list of child mounts
1067  * @parent:  the parent
1068  * @mnt:     the new mount
1069  * @mp:      the new mountpoint
1070  * @beneath: whether to mount @mnt beneath or on top of @parent
1071  *
1072  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1073  * to @parent's child mount list and to @mount_hashtable.
1074  *
1075  * If @beneath is true, remove @mnt from its current parent and
1076  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1077  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1078  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1079  *
1080  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1081  * to the correct parent.
1082  *
1083  * Context: This function expects namespace_lock() and lock_mount_hash()
1084  *          to have been acquired in that order.
1085  */
1086 static void attach_mnt(struct mount *mnt, struct mount *parent,
1087 		       struct mountpoint *mp, bool beneath)
1088 {
1089 	if (beneath)
1090 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1091 	else
1092 		mnt_set_mountpoint(parent, mp, mnt);
1093 	/*
1094 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1095 	 * beneath @parent then @mnt will need to be attached to
1096 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1097 	 * isn't the same mount as @parent.
1098 	 */
1099 	__attach_mnt(mnt, mnt->mnt_parent);
1100 }
1101 
1102 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1103 {
1104 	struct mountpoint *old_mp = mnt->mnt_mp;
1105 	struct mount *old_parent = mnt->mnt_parent;
1106 
1107 	list_del_init(&mnt->mnt_child);
1108 	hlist_del_init(&mnt->mnt_mp_list);
1109 	hlist_del_init_rcu(&mnt->mnt_hash);
1110 
1111 	attach_mnt(mnt, parent, mp, false);
1112 
1113 	put_mountpoint(old_mp);
1114 	mnt_add_count(old_parent, -1);
1115 }
1116 
1117 static inline struct mount *node_to_mount(struct rb_node *node)
1118 {
1119 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1120 }
1121 
1122 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1123 {
1124 	struct rb_node **link = &ns->mounts.rb_node;
1125 	struct rb_node *parent = NULL;
1126 
1127 	WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1128 	mnt->mnt_ns = ns;
1129 	while (*link) {
1130 		parent = *link;
1131 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1132 			link = &parent->rb_left;
1133 		else
1134 			link = &parent->rb_right;
1135 	}
1136 	rb_link_node(&mnt->mnt_node, parent, link);
1137 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1138 	mnt->mnt.mnt_flags |= MNT_ONRB;
1139 }
1140 
1141 /*
1142  * vfsmount lock must be held for write
1143  */
1144 static void commit_tree(struct mount *mnt)
1145 {
1146 	struct mount *parent = mnt->mnt_parent;
1147 	struct mount *m;
1148 	LIST_HEAD(head);
1149 	struct mnt_namespace *n = parent->mnt_ns;
1150 
1151 	BUG_ON(parent == mnt);
1152 
1153 	list_add_tail(&head, &mnt->mnt_list);
1154 	while (!list_empty(&head)) {
1155 		m = list_first_entry(&head, typeof(*m), mnt_list);
1156 		list_del(&m->mnt_list);
1157 
1158 		mnt_add_to_ns(n, m);
1159 	}
1160 	n->nr_mounts += n->pending_mounts;
1161 	n->pending_mounts = 0;
1162 
1163 	__attach_mnt(mnt, parent);
1164 	touch_mnt_namespace(n);
1165 }
1166 
1167 static struct mount *next_mnt(struct mount *p, struct mount *root)
1168 {
1169 	struct list_head *next = p->mnt_mounts.next;
1170 	if (next == &p->mnt_mounts) {
1171 		while (1) {
1172 			if (p == root)
1173 				return NULL;
1174 			next = p->mnt_child.next;
1175 			if (next != &p->mnt_parent->mnt_mounts)
1176 				break;
1177 			p = p->mnt_parent;
1178 		}
1179 	}
1180 	return list_entry(next, struct mount, mnt_child);
1181 }
1182 
1183 static struct mount *skip_mnt_tree(struct mount *p)
1184 {
1185 	struct list_head *prev = p->mnt_mounts.prev;
1186 	while (prev != &p->mnt_mounts) {
1187 		p = list_entry(prev, struct mount, mnt_child);
1188 		prev = p->mnt_mounts.prev;
1189 	}
1190 	return p;
1191 }
1192 
1193 /**
1194  * vfs_create_mount - Create a mount for a configured superblock
1195  * @fc: The configuration context with the superblock attached
1196  *
1197  * Create a mount to an already configured superblock.  If necessary, the
1198  * caller should invoke vfs_get_tree() before calling this.
1199  *
1200  * Note that this does not attach the mount to anything.
1201  */
1202 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1203 {
1204 	struct mount *mnt;
1205 
1206 	if (!fc->root)
1207 		return ERR_PTR(-EINVAL);
1208 
1209 	mnt = alloc_vfsmnt(fc->source ?: "none");
1210 	if (!mnt)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	if (fc->sb_flags & SB_KERNMOUNT)
1214 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1215 
1216 	atomic_inc(&fc->root->d_sb->s_active);
1217 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1218 	mnt->mnt.mnt_root	= dget(fc->root);
1219 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1220 	mnt->mnt_parent		= mnt;
1221 
1222 	lock_mount_hash();
1223 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1224 	unlock_mount_hash();
1225 	return &mnt->mnt;
1226 }
1227 EXPORT_SYMBOL(vfs_create_mount);
1228 
1229 struct vfsmount *fc_mount(struct fs_context *fc)
1230 {
1231 	int err = vfs_get_tree(fc);
1232 	if (!err) {
1233 		up_write(&fc->root->d_sb->s_umount);
1234 		return vfs_create_mount(fc);
1235 	}
1236 	return ERR_PTR(err);
1237 }
1238 EXPORT_SYMBOL(fc_mount);
1239 
1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1241 				int flags, const char *name,
1242 				void *data)
1243 {
1244 	struct fs_context *fc;
1245 	struct vfsmount *mnt;
1246 	int ret = 0;
1247 
1248 	if (!type)
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	fc = fs_context_for_mount(type, flags);
1252 	if (IS_ERR(fc))
1253 		return ERR_CAST(fc);
1254 
1255 	if (name)
1256 		ret = vfs_parse_fs_string(fc, "source",
1257 					  name, strlen(name));
1258 	if (!ret)
1259 		ret = parse_monolithic_mount_data(fc, data);
1260 	if (!ret)
1261 		mnt = fc_mount(fc);
1262 	else
1263 		mnt = ERR_PTR(ret);
1264 
1265 	put_fs_context(fc);
1266 	return mnt;
1267 }
1268 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1269 
1270 struct vfsmount *
1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1272 	     const char *name, void *data)
1273 {
1274 	/* Until it is worked out how to pass the user namespace
1275 	 * through from the parent mount to the submount don't support
1276 	 * unprivileged mounts with submounts.
1277 	 */
1278 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1279 		return ERR_PTR(-EPERM);
1280 
1281 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1282 }
1283 EXPORT_SYMBOL_GPL(vfs_submount);
1284 
1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1286 					int flag)
1287 {
1288 	struct super_block *sb = old->mnt.mnt_sb;
1289 	struct mount *mnt;
1290 	int err;
1291 
1292 	mnt = alloc_vfsmnt(old->mnt_devname);
1293 	if (!mnt)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1297 		mnt->mnt_group_id = 0; /* not a peer of original */
1298 	else
1299 		mnt->mnt_group_id = old->mnt_group_id;
1300 
1301 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1302 		err = mnt_alloc_group_id(mnt);
1303 		if (err)
1304 			goto out_free;
1305 	}
1306 
1307 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1308 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1309 
1310 	atomic_inc(&sb->s_active);
1311 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1312 
1313 	mnt->mnt.mnt_sb = sb;
1314 	mnt->mnt.mnt_root = dget(root);
1315 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1316 	mnt->mnt_parent = mnt;
1317 	lock_mount_hash();
1318 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1319 	unlock_mount_hash();
1320 
1321 	if ((flag & CL_SLAVE) ||
1322 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1323 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1324 		mnt->mnt_master = old;
1325 		CLEAR_MNT_SHARED(mnt);
1326 	} else if (!(flag & CL_PRIVATE)) {
1327 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1328 			list_add(&mnt->mnt_share, &old->mnt_share);
1329 		if (IS_MNT_SLAVE(old))
1330 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1331 		mnt->mnt_master = old->mnt_master;
1332 	} else {
1333 		CLEAR_MNT_SHARED(mnt);
1334 	}
1335 	if (flag & CL_MAKE_SHARED)
1336 		set_mnt_shared(mnt);
1337 
1338 	/* stick the duplicate mount on the same expiry list
1339 	 * as the original if that was on one */
1340 	if (flag & CL_EXPIRE) {
1341 		if (!list_empty(&old->mnt_expire))
1342 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1343 	}
1344 
1345 	return mnt;
1346 
1347  out_free:
1348 	mnt_free_id(mnt);
1349 	free_vfsmnt(mnt);
1350 	return ERR_PTR(err);
1351 }
1352 
1353 static void cleanup_mnt(struct mount *mnt)
1354 {
1355 	struct hlist_node *p;
1356 	struct mount *m;
1357 	/*
1358 	 * The warning here probably indicates that somebody messed
1359 	 * up a mnt_want/drop_write() pair.  If this happens, the
1360 	 * filesystem was probably unable to make r/w->r/o transitions.
1361 	 * The locking used to deal with mnt_count decrement provides barriers,
1362 	 * so mnt_get_writers() below is safe.
1363 	 */
1364 	WARN_ON(mnt_get_writers(mnt));
1365 	if (unlikely(mnt->mnt_pins.first))
1366 		mnt_pin_kill(mnt);
1367 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1368 		hlist_del(&m->mnt_umount);
1369 		mntput(&m->mnt);
1370 	}
1371 	fsnotify_vfsmount_delete(&mnt->mnt);
1372 	dput(mnt->mnt.mnt_root);
1373 	deactivate_super(mnt->mnt.mnt_sb);
1374 	mnt_free_id(mnt);
1375 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1376 }
1377 
1378 static void __cleanup_mnt(struct rcu_head *head)
1379 {
1380 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1381 }
1382 
1383 static LLIST_HEAD(delayed_mntput_list);
1384 static void delayed_mntput(struct work_struct *unused)
1385 {
1386 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1387 	struct mount *m, *t;
1388 
1389 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1390 		cleanup_mnt(m);
1391 }
1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1393 
1394 static void mntput_no_expire(struct mount *mnt)
1395 {
1396 	LIST_HEAD(list);
1397 	int count;
1398 
1399 	rcu_read_lock();
1400 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1401 		/*
1402 		 * Since we don't do lock_mount_hash() here,
1403 		 * ->mnt_ns can change under us.  However, if it's
1404 		 * non-NULL, then there's a reference that won't
1405 		 * be dropped until after an RCU delay done after
1406 		 * turning ->mnt_ns NULL.  So if we observe it
1407 		 * non-NULL under rcu_read_lock(), the reference
1408 		 * we are dropping is not the final one.
1409 		 */
1410 		mnt_add_count(mnt, -1);
1411 		rcu_read_unlock();
1412 		return;
1413 	}
1414 	lock_mount_hash();
1415 	/*
1416 	 * make sure that if __legitimize_mnt() has not seen us grab
1417 	 * mount_lock, we'll see their refcount increment here.
1418 	 */
1419 	smp_mb();
1420 	mnt_add_count(mnt, -1);
1421 	count = mnt_get_count(mnt);
1422 	if (count != 0) {
1423 		WARN_ON(count < 0);
1424 		rcu_read_unlock();
1425 		unlock_mount_hash();
1426 		return;
1427 	}
1428 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1429 		rcu_read_unlock();
1430 		unlock_mount_hash();
1431 		return;
1432 	}
1433 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1434 	rcu_read_unlock();
1435 
1436 	list_del(&mnt->mnt_instance);
1437 
1438 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1439 		struct mount *p, *tmp;
1440 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1441 			__put_mountpoint(unhash_mnt(p), &list);
1442 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1443 		}
1444 	}
1445 	unlock_mount_hash();
1446 	shrink_dentry_list(&list);
1447 
1448 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1449 		struct task_struct *task = current;
1450 		if (likely(!(task->flags & PF_KTHREAD))) {
1451 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1452 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1453 				return;
1454 		}
1455 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1456 			schedule_delayed_work(&delayed_mntput_work, 1);
1457 		return;
1458 	}
1459 	cleanup_mnt(mnt);
1460 }
1461 
1462 void mntput(struct vfsmount *mnt)
1463 {
1464 	if (mnt) {
1465 		struct mount *m = real_mount(mnt);
1466 		/* avoid cacheline pingpong */
1467 		if (unlikely(m->mnt_expiry_mark))
1468 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1469 		mntput_no_expire(m);
1470 	}
1471 }
1472 EXPORT_SYMBOL(mntput);
1473 
1474 struct vfsmount *mntget(struct vfsmount *mnt)
1475 {
1476 	if (mnt)
1477 		mnt_add_count(real_mount(mnt), 1);
1478 	return mnt;
1479 }
1480 EXPORT_SYMBOL(mntget);
1481 
1482 /*
1483  * Make a mount point inaccessible to new lookups.
1484  * Because there may still be current users, the caller MUST WAIT
1485  * for an RCU grace period before destroying the mount point.
1486  */
1487 void mnt_make_shortterm(struct vfsmount *mnt)
1488 {
1489 	if (mnt)
1490 		real_mount(mnt)->mnt_ns = NULL;
1491 }
1492 
1493 /**
1494  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1495  * @path: path to check
1496  *
1497  *  d_mountpoint() can only be used reliably to establish if a dentry is
1498  *  not mounted in any namespace and that common case is handled inline.
1499  *  d_mountpoint() isn't aware of the possibility there may be multiple
1500  *  mounts using a given dentry in a different namespace. This function
1501  *  checks if the passed in path is a mountpoint rather than the dentry
1502  *  alone.
1503  */
1504 bool path_is_mountpoint(const struct path *path)
1505 {
1506 	unsigned seq;
1507 	bool res;
1508 
1509 	if (!d_mountpoint(path->dentry))
1510 		return false;
1511 
1512 	rcu_read_lock();
1513 	do {
1514 		seq = read_seqbegin(&mount_lock);
1515 		res = __path_is_mountpoint(path);
1516 	} while (read_seqretry(&mount_lock, seq));
1517 	rcu_read_unlock();
1518 
1519 	return res;
1520 }
1521 EXPORT_SYMBOL(path_is_mountpoint);
1522 
1523 struct vfsmount *mnt_clone_internal(const struct path *path)
1524 {
1525 	struct mount *p;
1526 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1527 	if (IS_ERR(p))
1528 		return ERR_CAST(p);
1529 	p->mnt.mnt_flags |= MNT_INTERNAL;
1530 	return &p->mnt;
1531 }
1532 
1533 /*
1534  * Returns the mount which either has the specified mnt_id, or has the next
1535  * smallest id afer the specified one.
1536  */
1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1538 {
1539 	struct rb_node *node = ns->mounts.rb_node;
1540 	struct mount *ret = NULL;
1541 
1542 	while (node) {
1543 		struct mount *m = node_to_mount(node);
1544 
1545 		if (mnt_id <= m->mnt_id_unique) {
1546 			ret = node_to_mount(node);
1547 			if (mnt_id == m->mnt_id_unique)
1548 				break;
1549 			node = node->rb_left;
1550 		} else {
1551 			node = node->rb_right;
1552 		}
1553 	}
1554 	return ret;
1555 }
1556 
1557 /*
1558  * Returns the mount which either has the specified mnt_id, or has the next
1559  * greater id before the specified one.
1560  */
1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1562 {
1563 	struct rb_node *node = ns->mounts.rb_node;
1564 	struct mount *ret = NULL;
1565 
1566 	while (node) {
1567 		struct mount *m = node_to_mount(node);
1568 
1569 		if (mnt_id >= m->mnt_id_unique) {
1570 			ret = node_to_mount(node);
1571 			if (mnt_id == m->mnt_id_unique)
1572 				break;
1573 			node = node->rb_right;
1574 		} else {
1575 			node = node->rb_left;
1576 		}
1577 	}
1578 	return ret;
1579 }
1580 
1581 #ifdef CONFIG_PROC_FS
1582 
1583 /* iterator; we want it to have access to namespace_sem, thus here... */
1584 static void *m_start(struct seq_file *m, loff_t *pos)
1585 {
1586 	struct proc_mounts *p = m->private;
1587 
1588 	down_read(&namespace_sem);
1589 
1590 	return mnt_find_id_at(p->ns, *pos);
1591 }
1592 
1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1594 {
1595 	struct mount *next = NULL, *mnt = v;
1596 	struct rb_node *node = rb_next(&mnt->mnt_node);
1597 
1598 	++*pos;
1599 	if (node) {
1600 		next = node_to_mount(node);
1601 		*pos = next->mnt_id_unique;
1602 	}
1603 	return next;
1604 }
1605 
1606 static void m_stop(struct seq_file *m, void *v)
1607 {
1608 	up_read(&namespace_sem);
1609 }
1610 
1611 static int m_show(struct seq_file *m, void *v)
1612 {
1613 	struct proc_mounts *p = m->private;
1614 	struct mount *r = v;
1615 	return p->show(m, &r->mnt);
1616 }
1617 
1618 const struct seq_operations mounts_op = {
1619 	.start	= m_start,
1620 	.next	= m_next,
1621 	.stop	= m_stop,
1622 	.show	= m_show,
1623 };
1624 
1625 #endif  /* CONFIG_PROC_FS */
1626 
1627 /**
1628  * may_umount_tree - check if a mount tree is busy
1629  * @m: root of mount tree
1630  *
1631  * This is called to check if a tree of mounts has any
1632  * open files, pwds, chroots or sub mounts that are
1633  * busy.
1634  */
1635 int may_umount_tree(struct vfsmount *m)
1636 {
1637 	struct mount *mnt = real_mount(m);
1638 	int actual_refs = 0;
1639 	int minimum_refs = 0;
1640 	struct mount *p;
1641 	BUG_ON(!m);
1642 
1643 	/* write lock needed for mnt_get_count */
1644 	lock_mount_hash();
1645 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1646 		actual_refs += mnt_get_count(p);
1647 		minimum_refs += 2;
1648 	}
1649 	unlock_mount_hash();
1650 
1651 	if (actual_refs > minimum_refs)
1652 		return 0;
1653 
1654 	return 1;
1655 }
1656 
1657 EXPORT_SYMBOL(may_umount_tree);
1658 
1659 /**
1660  * may_umount - check if a mount point is busy
1661  * @mnt: root of mount
1662  *
1663  * This is called to check if a mount point has any
1664  * open files, pwds, chroots or sub mounts. If the
1665  * mount has sub mounts this will return busy
1666  * regardless of whether the sub mounts are busy.
1667  *
1668  * Doesn't take quota and stuff into account. IOW, in some cases it will
1669  * give false negatives. The main reason why it's here is that we need
1670  * a non-destructive way to look for easily umountable filesystems.
1671  */
1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 	int ret = 1;
1675 	down_read(&namespace_sem);
1676 	lock_mount_hash();
1677 	if (propagate_mount_busy(real_mount(mnt), 2))
1678 		ret = 0;
1679 	unlock_mount_hash();
1680 	up_read(&namespace_sem);
1681 	return ret;
1682 }
1683 
1684 EXPORT_SYMBOL(may_umount);
1685 
1686 static void namespace_unlock(void)
1687 {
1688 	struct hlist_head head;
1689 	struct hlist_node *p;
1690 	struct mount *m;
1691 	LIST_HEAD(list);
1692 
1693 	hlist_move_list(&unmounted, &head);
1694 	list_splice_init(&ex_mountpoints, &list);
1695 
1696 	up_write(&namespace_sem);
1697 
1698 	shrink_dentry_list(&list);
1699 
1700 	if (likely(hlist_empty(&head)))
1701 		return;
1702 
1703 	synchronize_rcu_expedited();
1704 
1705 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1706 		hlist_del(&m->mnt_umount);
1707 		mntput(&m->mnt);
1708 	}
1709 }
1710 
1711 static inline void namespace_lock(void)
1712 {
1713 	down_write(&namespace_sem);
1714 }
1715 
1716 enum umount_tree_flags {
1717 	UMOUNT_SYNC = 1,
1718 	UMOUNT_PROPAGATE = 2,
1719 	UMOUNT_CONNECTED = 4,
1720 };
1721 
1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1723 {
1724 	/* Leaving mounts connected is only valid for lazy umounts */
1725 	if (how & UMOUNT_SYNC)
1726 		return true;
1727 
1728 	/* A mount without a parent has nothing to be connected to */
1729 	if (!mnt_has_parent(mnt))
1730 		return true;
1731 
1732 	/* Because the reference counting rules change when mounts are
1733 	 * unmounted and connected, umounted mounts may not be
1734 	 * connected to mounted mounts.
1735 	 */
1736 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1737 		return true;
1738 
1739 	/* Has it been requested that the mount remain connected? */
1740 	if (how & UMOUNT_CONNECTED)
1741 		return false;
1742 
1743 	/* Is the mount locked such that it needs to remain connected? */
1744 	if (IS_MNT_LOCKED(mnt))
1745 		return false;
1746 
1747 	/* By default disconnect the mount */
1748 	return true;
1749 }
1750 
1751 /*
1752  * mount_lock must be held
1753  * namespace_sem must be held for write
1754  */
1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1756 {
1757 	LIST_HEAD(tmp_list);
1758 	struct mount *p;
1759 
1760 	if (how & UMOUNT_PROPAGATE)
1761 		propagate_mount_unlock(mnt);
1762 
1763 	/* Gather the mounts to umount */
1764 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1765 		p->mnt.mnt_flags |= MNT_UMOUNT;
1766 		if (p->mnt.mnt_flags & MNT_ONRB)
1767 			move_from_ns(p, &tmp_list);
1768 		else
1769 			list_move(&p->mnt_list, &tmp_list);
1770 	}
1771 
1772 	/* Hide the mounts from mnt_mounts */
1773 	list_for_each_entry(p, &tmp_list, mnt_list) {
1774 		list_del_init(&p->mnt_child);
1775 	}
1776 
1777 	/* Add propagated mounts to the tmp_list */
1778 	if (how & UMOUNT_PROPAGATE)
1779 		propagate_umount(&tmp_list);
1780 
1781 	while (!list_empty(&tmp_list)) {
1782 		struct mnt_namespace *ns;
1783 		bool disconnect;
1784 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1785 		list_del_init(&p->mnt_expire);
1786 		list_del_init(&p->mnt_list);
1787 		ns = p->mnt_ns;
1788 		if (ns) {
1789 			ns->nr_mounts--;
1790 			__touch_mnt_namespace(ns);
1791 		}
1792 		p->mnt_ns = NULL;
1793 		if (how & UMOUNT_SYNC)
1794 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1795 
1796 		disconnect = disconnect_mount(p, how);
1797 		if (mnt_has_parent(p)) {
1798 			mnt_add_count(p->mnt_parent, -1);
1799 			if (!disconnect) {
1800 				/* Don't forget about p */
1801 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1802 			} else {
1803 				umount_mnt(p);
1804 			}
1805 		}
1806 		change_mnt_propagation(p, MS_PRIVATE);
1807 		if (disconnect)
1808 			hlist_add_head(&p->mnt_umount, &unmounted);
1809 	}
1810 }
1811 
1812 static void shrink_submounts(struct mount *mnt);
1813 
1814 static int do_umount_root(struct super_block *sb)
1815 {
1816 	int ret = 0;
1817 
1818 	down_write(&sb->s_umount);
1819 	if (!sb_rdonly(sb)) {
1820 		struct fs_context *fc;
1821 
1822 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1823 						SB_RDONLY);
1824 		if (IS_ERR(fc)) {
1825 			ret = PTR_ERR(fc);
1826 		} else {
1827 			ret = parse_monolithic_mount_data(fc, NULL);
1828 			if (!ret)
1829 				ret = reconfigure_super(fc);
1830 			put_fs_context(fc);
1831 		}
1832 	}
1833 	up_write(&sb->s_umount);
1834 	return ret;
1835 }
1836 
1837 static int do_umount(struct mount *mnt, int flags)
1838 {
1839 	struct super_block *sb = mnt->mnt.mnt_sb;
1840 	int retval;
1841 
1842 	retval = security_sb_umount(&mnt->mnt, flags);
1843 	if (retval)
1844 		return retval;
1845 
1846 	/*
1847 	 * Allow userspace to request a mountpoint be expired rather than
1848 	 * unmounting unconditionally. Unmount only happens if:
1849 	 *  (1) the mark is already set (the mark is cleared by mntput())
1850 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1851 	 */
1852 	if (flags & MNT_EXPIRE) {
1853 		if (&mnt->mnt == current->fs->root.mnt ||
1854 		    flags & (MNT_FORCE | MNT_DETACH))
1855 			return -EINVAL;
1856 
1857 		/*
1858 		 * probably don't strictly need the lock here if we examined
1859 		 * all race cases, but it's a slowpath.
1860 		 */
1861 		lock_mount_hash();
1862 		if (mnt_get_count(mnt) != 2) {
1863 			unlock_mount_hash();
1864 			return -EBUSY;
1865 		}
1866 		unlock_mount_hash();
1867 
1868 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1869 			return -EAGAIN;
1870 	}
1871 
1872 	/*
1873 	 * If we may have to abort operations to get out of this
1874 	 * mount, and they will themselves hold resources we must
1875 	 * allow the fs to do things. In the Unix tradition of
1876 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1877 	 * might fail to complete on the first run through as other tasks
1878 	 * must return, and the like. Thats for the mount program to worry
1879 	 * about for the moment.
1880 	 */
1881 
1882 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1883 		sb->s_op->umount_begin(sb);
1884 	}
1885 
1886 	/*
1887 	 * No sense to grab the lock for this test, but test itself looks
1888 	 * somewhat bogus. Suggestions for better replacement?
1889 	 * Ho-hum... In principle, we might treat that as umount + switch
1890 	 * to rootfs. GC would eventually take care of the old vfsmount.
1891 	 * Actually it makes sense, especially if rootfs would contain a
1892 	 * /reboot - static binary that would close all descriptors and
1893 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1894 	 */
1895 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1896 		/*
1897 		 * Special case for "unmounting" root ...
1898 		 * we just try to remount it readonly.
1899 		 */
1900 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1901 			return -EPERM;
1902 		return do_umount_root(sb);
1903 	}
1904 
1905 	namespace_lock();
1906 	lock_mount_hash();
1907 
1908 	/* Recheck MNT_LOCKED with the locks held */
1909 	retval = -EINVAL;
1910 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1911 		goto out;
1912 
1913 	event++;
1914 	if (flags & MNT_DETACH) {
1915 		if (mnt->mnt.mnt_flags & MNT_ONRB ||
1916 		    !list_empty(&mnt->mnt_list))
1917 			umount_tree(mnt, UMOUNT_PROPAGATE);
1918 		retval = 0;
1919 	} else {
1920 		shrink_submounts(mnt);
1921 		retval = -EBUSY;
1922 		if (!propagate_mount_busy(mnt, 2)) {
1923 			if (mnt->mnt.mnt_flags & MNT_ONRB ||
1924 			    !list_empty(&mnt->mnt_list))
1925 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1926 			retval = 0;
1927 		}
1928 	}
1929 out:
1930 	unlock_mount_hash();
1931 	namespace_unlock();
1932 	return retval;
1933 }
1934 
1935 /*
1936  * __detach_mounts - lazily unmount all mounts on the specified dentry
1937  *
1938  * During unlink, rmdir, and d_drop it is possible to loose the path
1939  * to an existing mountpoint, and wind up leaking the mount.
1940  * detach_mounts allows lazily unmounting those mounts instead of
1941  * leaking them.
1942  *
1943  * The caller may hold dentry->d_inode->i_mutex.
1944  */
1945 void __detach_mounts(struct dentry *dentry)
1946 {
1947 	struct mountpoint *mp;
1948 	struct mount *mnt;
1949 
1950 	namespace_lock();
1951 	lock_mount_hash();
1952 	mp = lookup_mountpoint(dentry);
1953 	if (!mp)
1954 		goto out_unlock;
1955 
1956 	event++;
1957 	while (!hlist_empty(&mp->m_list)) {
1958 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1959 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1960 			umount_mnt(mnt);
1961 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1962 		}
1963 		else umount_tree(mnt, UMOUNT_CONNECTED);
1964 	}
1965 	put_mountpoint(mp);
1966 out_unlock:
1967 	unlock_mount_hash();
1968 	namespace_unlock();
1969 }
1970 
1971 /*
1972  * Is the caller allowed to modify his namespace?
1973  */
1974 bool may_mount(void)
1975 {
1976 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1977 }
1978 
1979 static void warn_mandlock(void)
1980 {
1981 	pr_warn_once("=======================================================\n"
1982 		     "WARNING: The mand mount option has been deprecated and\n"
1983 		     "         and is ignored by this kernel. Remove the mand\n"
1984 		     "         option from the mount to silence this warning.\n"
1985 		     "=======================================================\n");
1986 }
1987 
1988 static int can_umount(const struct path *path, int flags)
1989 {
1990 	struct mount *mnt = real_mount(path->mnt);
1991 
1992 	if (!may_mount())
1993 		return -EPERM;
1994 	if (!path_mounted(path))
1995 		return -EINVAL;
1996 	if (!check_mnt(mnt))
1997 		return -EINVAL;
1998 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1999 		return -EINVAL;
2000 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
2001 		return -EPERM;
2002 	return 0;
2003 }
2004 
2005 // caller is responsible for flags being sane
2006 int path_umount(struct path *path, int flags)
2007 {
2008 	struct mount *mnt = real_mount(path->mnt);
2009 	int ret;
2010 
2011 	ret = can_umount(path, flags);
2012 	if (!ret)
2013 		ret = do_umount(mnt, flags);
2014 
2015 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2016 	dput(path->dentry);
2017 	mntput_no_expire(mnt);
2018 	return ret;
2019 }
2020 
2021 static int ksys_umount(char __user *name, int flags)
2022 {
2023 	int lookup_flags = LOOKUP_MOUNTPOINT;
2024 	struct path path;
2025 	int ret;
2026 
2027 	// basic validity checks done first
2028 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2029 		return -EINVAL;
2030 
2031 	if (!(flags & UMOUNT_NOFOLLOW))
2032 		lookup_flags |= LOOKUP_FOLLOW;
2033 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2034 	if (ret)
2035 		return ret;
2036 	return path_umount(&path, flags);
2037 }
2038 
2039 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2040 {
2041 	return ksys_umount(name, flags);
2042 }
2043 
2044 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2045 
2046 /*
2047  *	The 2.0 compatible umount. No flags.
2048  */
2049 SYSCALL_DEFINE1(oldumount, char __user *, name)
2050 {
2051 	return ksys_umount(name, 0);
2052 }
2053 
2054 #endif
2055 
2056 static bool is_mnt_ns_file(struct dentry *dentry)
2057 {
2058 	struct ns_common *ns;
2059 
2060 	/* Is this a proxy for a mount namespace? */
2061 	if (dentry->d_op != &ns_dentry_operations)
2062 		return false;
2063 
2064 	ns = d_inode(dentry)->i_private;
2065 
2066 	return ns->ops == &mntns_operations;
2067 }
2068 
2069 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2070 {
2071 	return &mnt->ns;
2072 }
2073 
2074 struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous)
2075 {
2076 	guard(read_lock)(&mnt_ns_tree_lock);
2077 	for (;;) {
2078 		struct rb_node *node;
2079 
2080 		if (previous)
2081 			node = rb_prev(&mntns->mnt_ns_tree_node);
2082 		else
2083 			node = rb_next(&mntns->mnt_ns_tree_node);
2084 		if (!node)
2085 			return ERR_PTR(-ENOENT);
2086 
2087 		mntns = node_to_mnt_ns(node);
2088 		node = &mntns->mnt_ns_tree_node;
2089 
2090 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2091 			continue;
2092 
2093 		/*
2094 		 * Holding mnt_ns_tree_lock prevents the mount namespace from
2095 		 * being freed but it may well be on it's deathbed. We want an
2096 		 * active reference, not just a passive one here as we're
2097 		 * persisting the mount namespace.
2098 		 */
2099 		if (!refcount_inc_not_zero(&mntns->ns.count))
2100 			continue;
2101 
2102 		return mntns;
2103 	}
2104 }
2105 
2106 static bool mnt_ns_loop(struct dentry *dentry)
2107 {
2108 	/* Could bind mounting the mount namespace inode cause a
2109 	 * mount namespace loop?
2110 	 */
2111 	struct mnt_namespace *mnt_ns;
2112 	if (!is_mnt_ns_file(dentry))
2113 		return false;
2114 
2115 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2116 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2117 }
2118 
2119 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2120 					int flag)
2121 {
2122 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2123 		*dst_parent, *dst_mnt;
2124 
2125 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2126 		return ERR_PTR(-EINVAL);
2127 
2128 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2129 		return ERR_PTR(-EINVAL);
2130 
2131 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2132 	if (IS_ERR(dst_mnt))
2133 		return dst_mnt;
2134 
2135 	src_parent = src_root;
2136 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2137 
2138 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2139 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2140 			continue;
2141 
2142 		for (src_mnt = src_root_child; src_mnt;
2143 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2144 			if (!(flag & CL_COPY_UNBINDABLE) &&
2145 			    IS_MNT_UNBINDABLE(src_mnt)) {
2146 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2147 					/* Both unbindable and locked. */
2148 					dst_mnt = ERR_PTR(-EPERM);
2149 					goto out;
2150 				} else {
2151 					src_mnt = skip_mnt_tree(src_mnt);
2152 					continue;
2153 				}
2154 			}
2155 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2156 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2157 				src_mnt = skip_mnt_tree(src_mnt);
2158 				continue;
2159 			}
2160 			while (src_parent != src_mnt->mnt_parent) {
2161 				src_parent = src_parent->mnt_parent;
2162 				dst_mnt = dst_mnt->mnt_parent;
2163 			}
2164 
2165 			src_parent = src_mnt;
2166 			dst_parent = dst_mnt;
2167 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2168 			if (IS_ERR(dst_mnt))
2169 				goto out;
2170 			lock_mount_hash();
2171 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2172 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2173 			unlock_mount_hash();
2174 		}
2175 	}
2176 	return res;
2177 
2178 out:
2179 	if (res) {
2180 		lock_mount_hash();
2181 		umount_tree(res, UMOUNT_SYNC);
2182 		unlock_mount_hash();
2183 	}
2184 	return dst_mnt;
2185 }
2186 
2187 /* Caller should check returned pointer for errors */
2188 
2189 struct vfsmount *collect_mounts(const struct path *path)
2190 {
2191 	struct mount *tree;
2192 	namespace_lock();
2193 	if (!check_mnt(real_mount(path->mnt)))
2194 		tree = ERR_PTR(-EINVAL);
2195 	else
2196 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2197 				 CL_COPY_ALL | CL_PRIVATE);
2198 	namespace_unlock();
2199 	if (IS_ERR(tree))
2200 		return ERR_CAST(tree);
2201 	return &tree->mnt;
2202 }
2203 
2204 static void free_mnt_ns(struct mnt_namespace *);
2205 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2206 
2207 void dissolve_on_fput(struct vfsmount *mnt)
2208 {
2209 	struct mnt_namespace *ns;
2210 	namespace_lock();
2211 	lock_mount_hash();
2212 	ns = real_mount(mnt)->mnt_ns;
2213 	if (ns) {
2214 		if (is_anon_ns(ns))
2215 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2216 		else
2217 			ns = NULL;
2218 	}
2219 	unlock_mount_hash();
2220 	namespace_unlock();
2221 	if (ns)
2222 		free_mnt_ns(ns);
2223 }
2224 
2225 void drop_collected_mounts(struct vfsmount *mnt)
2226 {
2227 	namespace_lock();
2228 	lock_mount_hash();
2229 	umount_tree(real_mount(mnt), 0);
2230 	unlock_mount_hash();
2231 	namespace_unlock();
2232 }
2233 
2234 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2235 {
2236 	struct mount *child;
2237 
2238 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2239 		if (!is_subdir(child->mnt_mountpoint, dentry))
2240 			continue;
2241 
2242 		if (child->mnt.mnt_flags & MNT_LOCKED)
2243 			return true;
2244 	}
2245 	return false;
2246 }
2247 
2248 /**
2249  * clone_private_mount - create a private clone of a path
2250  * @path: path to clone
2251  *
2252  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2253  * will not be attached anywhere in the namespace and will be private (i.e.
2254  * changes to the originating mount won't be propagated into this).
2255  *
2256  * Release with mntput().
2257  */
2258 struct vfsmount *clone_private_mount(const struct path *path)
2259 {
2260 	struct mount *old_mnt = real_mount(path->mnt);
2261 	struct mount *new_mnt;
2262 
2263 	down_read(&namespace_sem);
2264 	if (IS_MNT_UNBINDABLE(old_mnt))
2265 		goto invalid;
2266 
2267 	if (!check_mnt(old_mnt))
2268 		goto invalid;
2269 
2270 	if (has_locked_children(old_mnt, path->dentry))
2271 		goto invalid;
2272 
2273 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2274 	up_read(&namespace_sem);
2275 
2276 	if (IS_ERR(new_mnt))
2277 		return ERR_CAST(new_mnt);
2278 
2279 	/* Longterm mount to be removed by kern_unmount*() */
2280 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2281 
2282 	return &new_mnt->mnt;
2283 
2284 invalid:
2285 	up_read(&namespace_sem);
2286 	return ERR_PTR(-EINVAL);
2287 }
2288 EXPORT_SYMBOL_GPL(clone_private_mount);
2289 
2290 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2291 		   struct vfsmount *root)
2292 {
2293 	struct mount *mnt;
2294 	int res = f(root, arg);
2295 	if (res)
2296 		return res;
2297 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2298 		res = f(&mnt->mnt, arg);
2299 		if (res)
2300 			return res;
2301 	}
2302 	return 0;
2303 }
2304 
2305 static void lock_mnt_tree(struct mount *mnt)
2306 {
2307 	struct mount *p;
2308 
2309 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2310 		int flags = p->mnt.mnt_flags;
2311 		/* Don't allow unprivileged users to change mount flags */
2312 		flags |= MNT_LOCK_ATIME;
2313 
2314 		if (flags & MNT_READONLY)
2315 			flags |= MNT_LOCK_READONLY;
2316 
2317 		if (flags & MNT_NODEV)
2318 			flags |= MNT_LOCK_NODEV;
2319 
2320 		if (flags & MNT_NOSUID)
2321 			flags |= MNT_LOCK_NOSUID;
2322 
2323 		if (flags & MNT_NOEXEC)
2324 			flags |= MNT_LOCK_NOEXEC;
2325 		/* Don't allow unprivileged users to reveal what is under a mount */
2326 		if (list_empty(&p->mnt_expire))
2327 			flags |= MNT_LOCKED;
2328 		p->mnt.mnt_flags = flags;
2329 	}
2330 }
2331 
2332 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2333 {
2334 	struct mount *p;
2335 
2336 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2337 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2338 			mnt_release_group_id(p);
2339 	}
2340 }
2341 
2342 static int invent_group_ids(struct mount *mnt, bool recurse)
2343 {
2344 	struct mount *p;
2345 
2346 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2347 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2348 			int err = mnt_alloc_group_id(p);
2349 			if (err) {
2350 				cleanup_group_ids(mnt, p);
2351 				return err;
2352 			}
2353 		}
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2360 {
2361 	unsigned int max = READ_ONCE(sysctl_mount_max);
2362 	unsigned int mounts = 0;
2363 	struct mount *p;
2364 
2365 	if (ns->nr_mounts >= max)
2366 		return -ENOSPC;
2367 	max -= ns->nr_mounts;
2368 	if (ns->pending_mounts >= max)
2369 		return -ENOSPC;
2370 	max -= ns->pending_mounts;
2371 
2372 	for (p = mnt; p; p = next_mnt(p, mnt))
2373 		mounts++;
2374 
2375 	if (mounts > max)
2376 		return -ENOSPC;
2377 
2378 	ns->pending_mounts += mounts;
2379 	return 0;
2380 }
2381 
2382 enum mnt_tree_flags_t {
2383 	MNT_TREE_MOVE = BIT(0),
2384 	MNT_TREE_BENEATH = BIT(1),
2385 };
2386 
2387 /**
2388  * attach_recursive_mnt - attach a source mount tree
2389  * @source_mnt: mount tree to be attached
2390  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2391  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2392  * @flags:      modify how @source_mnt is supposed to be attached
2393  *
2394  *  NOTE: in the table below explains the semantics when a source mount
2395  *  of a given type is attached to a destination mount of a given type.
2396  * ---------------------------------------------------------------------------
2397  * |         BIND MOUNT OPERATION                                            |
2398  * |**************************************************************************
2399  * | source-->| shared        |       private  |       slave    | unbindable |
2400  * | dest     |               |                |                |            |
2401  * |   |      |               |                |                |            |
2402  * |   v      |               |                |                |            |
2403  * |**************************************************************************
2404  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2405  * |          |               |                |                |            |
2406  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2407  * ***************************************************************************
2408  * A bind operation clones the source mount and mounts the clone on the
2409  * destination mount.
2410  *
2411  * (++)  the cloned mount is propagated to all the mounts in the propagation
2412  * 	 tree of the destination mount and the cloned mount is added to
2413  * 	 the peer group of the source mount.
2414  * (+)   the cloned mount is created under the destination mount and is marked
2415  *       as shared. The cloned mount is added to the peer group of the source
2416  *       mount.
2417  * (+++) the mount is propagated to all the mounts in the propagation tree
2418  *       of the destination mount and the cloned mount is made slave
2419  *       of the same master as that of the source mount. The cloned mount
2420  *       is marked as 'shared and slave'.
2421  * (*)   the cloned mount is made a slave of the same master as that of the
2422  * 	 source mount.
2423  *
2424  * ---------------------------------------------------------------------------
2425  * |         		MOVE MOUNT OPERATION                                 |
2426  * |**************************************************************************
2427  * | source-->| shared        |       private  |       slave    | unbindable |
2428  * | dest     |               |                |                |            |
2429  * |   |      |               |                |                |            |
2430  * |   v      |               |                |                |            |
2431  * |**************************************************************************
2432  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2433  * |          |               |                |                |            |
2434  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2435  * ***************************************************************************
2436  *
2437  * (+)  the mount is moved to the destination. And is then propagated to
2438  * 	all the mounts in the propagation tree of the destination mount.
2439  * (+*)  the mount is moved to the destination.
2440  * (+++)  the mount is moved to the destination and is then propagated to
2441  * 	all the mounts belonging to the destination mount's propagation tree.
2442  * 	the mount is marked as 'shared and slave'.
2443  * (*)	the mount continues to be a slave at the new location.
2444  *
2445  * if the source mount is a tree, the operations explained above is
2446  * applied to each mount in the tree.
2447  * Must be called without spinlocks held, since this function can sleep
2448  * in allocations.
2449  *
2450  * Context: The function expects namespace_lock() to be held.
2451  * Return: If @source_mnt was successfully attached 0 is returned.
2452  *         Otherwise a negative error code is returned.
2453  */
2454 static int attach_recursive_mnt(struct mount *source_mnt,
2455 				struct mount *top_mnt,
2456 				struct mountpoint *dest_mp,
2457 				enum mnt_tree_flags_t flags)
2458 {
2459 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2460 	HLIST_HEAD(tree_list);
2461 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2462 	struct mountpoint *smp;
2463 	struct mount *child, *dest_mnt, *p;
2464 	struct hlist_node *n;
2465 	int err = 0;
2466 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2467 
2468 	/*
2469 	 * Preallocate a mountpoint in case the new mounts need to be
2470 	 * mounted beneath mounts on the same mountpoint.
2471 	 */
2472 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2473 	if (IS_ERR(smp))
2474 		return PTR_ERR(smp);
2475 
2476 	/* Is there space to add these mounts to the mount namespace? */
2477 	if (!moving) {
2478 		err = count_mounts(ns, source_mnt);
2479 		if (err)
2480 			goto out;
2481 	}
2482 
2483 	if (beneath)
2484 		dest_mnt = top_mnt->mnt_parent;
2485 	else
2486 		dest_mnt = top_mnt;
2487 
2488 	if (IS_MNT_SHARED(dest_mnt)) {
2489 		err = invent_group_ids(source_mnt, true);
2490 		if (err)
2491 			goto out;
2492 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2493 	}
2494 	lock_mount_hash();
2495 	if (err)
2496 		goto out_cleanup_ids;
2497 
2498 	if (IS_MNT_SHARED(dest_mnt)) {
2499 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2500 			set_mnt_shared(p);
2501 	}
2502 
2503 	if (moving) {
2504 		if (beneath)
2505 			dest_mp = smp;
2506 		unhash_mnt(source_mnt);
2507 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2508 		touch_mnt_namespace(source_mnt->mnt_ns);
2509 	} else {
2510 		if (source_mnt->mnt_ns) {
2511 			LIST_HEAD(head);
2512 
2513 			/* move from anon - the caller will destroy */
2514 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2515 				move_from_ns(p, &head);
2516 			list_del_init(&head);
2517 		}
2518 		if (beneath)
2519 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2520 		else
2521 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2522 		commit_tree(source_mnt);
2523 	}
2524 
2525 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2526 		struct mount *q;
2527 		hlist_del_init(&child->mnt_hash);
2528 		q = __lookup_mnt(&child->mnt_parent->mnt,
2529 				 child->mnt_mountpoint);
2530 		if (q)
2531 			mnt_change_mountpoint(child, smp, q);
2532 		/* Notice when we are propagating across user namespaces */
2533 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2534 			lock_mnt_tree(child);
2535 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2536 		commit_tree(child);
2537 	}
2538 	put_mountpoint(smp);
2539 	unlock_mount_hash();
2540 
2541 	return 0;
2542 
2543  out_cleanup_ids:
2544 	while (!hlist_empty(&tree_list)) {
2545 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2546 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2547 		umount_tree(child, UMOUNT_SYNC);
2548 	}
2549 	unlock_mount_hash();
2550 	cleanup_group_ids(source_mnt, NULL);
2551  out:
2552 	ns->pending_mounts = 0;
2553 
2554 	read_seqlock_excl(&mount_lock);
2555 	put_mountpoint(smp);
2556 	read_sequnlock_excl(&mount_lock);
2557 
2558 	return err;
2559 }
2560 
2561 /**
2562  * do_lock_mount - lock mount and mountpoint
2563  * @path:    target path
2564  * @beneath: whether the intention is to mount beneath @path
2565  *
2566  * Follow the mount stack on @path until the top mount @mnt is found. If
2567  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2568  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2569  * until nothing is stacked on top of it anymore.
2570  *
2571  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2572  * against concurrent removal of the new mountpoint from another mount
2573  * namespace.
2574  *
2575  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2576  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2577  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2578  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2579  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2580  * on top of it for @beneath.
2581  *
2582  * In addition, @beneath needs to make sure that @mnt hasn't been
2583  * unmounted or moved from its current mountpoint in between dropping
2584  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2585  * being unmounted would be detected later by e.g., calling
2586  * check_mnt(mnt) in the function it's called from. For the @beneath
2587  * case however, it's useful to detect it directly in do_lock_mount().
2588  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2589  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2590  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2591  *
2592  * Return: Either the target mountpoint on the top mount or the top
2593  *         mount's mountpoint.
2594  */
2595 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2596 {
2597 	struct vfsmount *mnt = path->mnt;
2598 	struct dentry *dentry;
2599 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2600 
2601 	for (;;) {
2602 		struct mount *m;
2603 
2604 		if (beneath) {
2605 			m = real_mount(mnt);
2606 			read_seqlock_excl(&mount_lock);
2607 			dentry = dget(m->mnt_mountpoint);
2608 			read_sequnlock_excl(&mount_lock);
2609 		} else {
2610 			dentry = path->dentry;
2611 		}
2612 
2613 		inode_lock(dentry->d_inode);
2614 		if (unlikely(cant_mount(dentry))) {
2615 			inode_unlock(dentry->d_inode);
2616 			goto out;
2617 		}
2618 
2619 		namespace_lock();
2620 
2621 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2622 			namespace_unlock();
2623 			inode_unlock(dentry->d_inode);
2624 			goto out;
2625 		}
2626 
2627 		mnt = lookup_mnt(path);
2628 		if (likely(!mnt))
2629 			break;
2630 
2631 		namespace_unlock();
2632 		inode_unlock(dentry->d_inode);
2633 		if (beneath)
2634 			dput(dentry);
2635 		path_put(path);
2636 		path->mnt = mnt;
2637 		path->dentry = dget(mnt->mnt_root);
2638 	}
2639 
2640 	mp = get_mountpoint(dentry);
2641 	if (IS_ERR(mp)) {
2642 		namespace_unlock();
2643 		inode_unlock(dentry->d_inode);
2644 	}
2645 
2646 out:
2647 	if (beneath)
2648 		dput(dentry);
2649 
2650 	return mp;
2651 }
2652 
2653 static inline struct mountpoint *lock_mount(struct path *path)
2654 {
2655 	return do_lock_mount(path, false);
2656 }
2657 
2658 static void unlock_mount(struct mountpoint *where)
2659 {
2660 	struct dentry *dentry = where->m_dentry;
2661 
2662 	read_seqlock_excl(&mount_lock);
2663 	put_mountpoint(where);
2664 	read_sequnlock_excl(&mount_lock);
2665 
2666 	namespace_unlock();
2667 	inode_unlock(dentry->d_inode);
2668 }
2669 
2670 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2671 {
2672 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2673 		return -EINVAL;
2674 
2675 	if (d_is_dir(mp->m_dentry) !=
2676 	      d_is_dir(mnt->mnt.mnt_root))
2677 		return -ENOTDIR;
2678 
2679 	return attach_recursive_mnt(mnt, p, mp, 0);
2680 }
2681 
2682 /*
2683  * Sanity check the flags to change_mnt_propagation.
2684  */
2685 
2686 static int flags_to_propagation_type(int ms_flags)
2687 {
2688 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2689 
2690 	/* Fail if any non-propagation flags are set */
2691 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2692 		return 0;
2693 	/* Only one propagation flag should be set */
2694 	if (!is_power_of_2(type))
2695 		return 0;
2696 	return type;
2697 }
2698 
2699 /*
2700  * recursively change the type of the mountpoint.
2701  */
2702 static int do_change_type(struct path *path, int ms_flags)
2703 {
2704 	struct mount *m;
2705 	struct mount *mnt = real_mount(path->mnt);
2706 	int recurse = ms_flags & MS_REC;
2707 	int type;
2708 	int err = 0;
2709 
2710 	if (!path_mounted(path))
2711 		return -EINVAL;
2712 
2713 	type = flags_to_propagation_type(ms_flags);
2714 	if (!type)
2715 		return -EINVAL;
2716 
2717 	namespace_lock();
2718 	if (type == MS_SHARED) {
2719 		err = invent_group_ids(mnt, recurse);
2720 		if (err)
2721 			goto out_unlock;
2722 	}
2723 
2724 	lock_mount_hash();
2725 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2726 		change_mnt_propagation(m, type);
2727 	unlock_mount_hash();
2728 
2729  out_unlock:
2730 	namespace_unlock();
2731 	return err;
2732 }
2733 
2734 static struct mount *__do_loopback(struct path *old_path, int recurse)
2735 {
2736 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2737 
2738 	if (IS_MNT_UNBINDABLE(old))
2739 		return mnt;
2740 
2741 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2742 		return mnt;
2743 
2744 	if (!recurse && has_locked_children(old, old_path->dentry))
2745 		return mnt;
2746 
2747 	if (recurse)
2748 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2749 	else
2750 		mnt = clone_mnt(old, old_path->dentry, 0);
2751 
2752 	if (!IS_ERR(mnt))
2753 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2754 
2755 	return mnt;
2756 }
2757 
2758 /*
2759  * do loopback mount.
2760  */
2761 static int do_loopback(struct path *path, const char *old_name,
2762 				int recurse)
2763 {
2764 	struct path old_path;
2765 	struct mount *mnt = NULL, *parent;
2766 	struct mountpoint *mp;
2767 	int err;
2768 	if (!old_name || !*old_name)
2769 		return -EINVAL;
2770 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2771 	if (err)
2772 		return err;
2773 
2774 	err = -EINVAL;
2775 	if (mnt_ns_loop(old_path.dentry))
2776 		goto out;
2777 
2778 	mp = lock_mount(path);
2779 	if (IS_ERR(mp)) {
2780 		err = PTR_ERR(mp);
2781 		goto out;
2782 	}
2783 
2784 	parent = real_mount(path->mnt);
2785 	if (!check_mnt(parent))
2786 		goto out2;
2787 
2788 	mnt = __do_loopback(&old_path, recurse);
2789 	if (IS_ERR(mnt)) {
2790 		err = PTR_ERR(mnt);
2791 		goto out2;
2792 	}
2793 
2794 	err = graft_tree(mnt, parent, mp);
2795 	if (err) {
2796 		lock_mount_hash();
2797 		umount_tree(mnt, UMOUNT_SYNC);
2798 		unlock_mount_hash();
2799 	}
2800 out2:
2801 	unlock_mount(mp);
2802 out:
2803 	path_put(&old_path);
2804 	return err;
2805 }
2806 
2807 static struct file *open_detached_copy(struct path *path, bool recursive)
2808 {
2809 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2810 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2811 	struct mount *mnt, *p;
2812 	struct file *file;
2813 
2814 	if (IS_ERR(ns))
2815 		return ERR_CAST(ns);
2816 
2817 	namespace_lock();
2818 	mnt = __do_loopback(path, recursive);
2819 	if (IS_ERR(mnt)) {
2820 		namespace_unlock();
2821 		free_mnt_ns(ns);
2822 		return ERR_CAST(mnt);
2823 	}
2824 
2825 	lock_mount_hash();
2826 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2827 		mnt_add_to_ns(ns, p);
2828 		ns->nr_mounts++;
2829 	}
2830 	ns->root = mnt;
2831 	mntget(&mnt->mnt);
2832 	unlock_mount_hash();
2833 	namespace_unlock();
2834 
2835 	mntput(path->mnt);
2836 	path->mnt = &mnt->mnt;
2837 	file = dentry_open(path, O_PATH, current_cred());
2838 	if (IS_ERR(file))
2839 		dissolve_on_fput(path->mnt);
2840 	else
2841 		file->f_mode |= FMODE_NEED_UNMOUNT;
2842 	return file;
2843 }
2844 
2845 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2846 {
2847 	struct file *file;
2848 	struct path path;
2849 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2850 	bool detached = flags & OPEN_TREE_CLONE;
2851 	int error;
2852 	int fd;
2853 
2854 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2855 
2856 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2857 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2858 		      OPEN_TREE_CLOEXEC))
2859 		return -EINVAL;
2860 
2861 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2862 		return -EINVAL;
2863 
2864 	if (flags & AT_NO_AUTOMOUNT)
2865 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2866 	if (flags & AT_SYMLINK_NOFOLLOW)
2867 		lookup_flags &= ~LOOKUP_FOLLOW;
2868 	if (flags & AT_EMPTY_PATH)
2869 		lookup_flags |= LOOKUP_EMPTY;
2870 
2871 	if (detached && !may_mount())
2872 		return -EPERM;
2873 
2874 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2875 	if (fd < 0)
2876 		return fd;
2877 
2878 	error = user_path_at(dfd, filename, lookup_flags, &path);
2879 	if (unlikely(error)) {
2880 		file = ERR_PTR(error);
2881 	} else {
2882 		if (detached)
2883 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2884 		else
2885 			file = dentry_open(&path, O_PATH, current_cred());
2886 		path_put(&path);
2887 	}
2888 	if (IS_ERR(file)) {
2889 		put_unused_fd(fd);
2890 		return PTR_ERR(file);
2891 	}
2892 	fd_install(fd, file);
2893 	return fd;
2894 }
2895 
2896 /*
2897  * Don't allow locked mount flags to be cleared.
2898  *
2899  * No locks need to be held here while testing the various MNT_LOCK
2900  * flags because those flags can never be cleared once they are set.
2901  */
2902 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2903 {
2904 	unsigned int fl = mnt->mnt.mnt_flags;
2905 
2906 	if ((fl & MNT_LOCK_READONLY) &&
2907 	    !(mnt_flags & MNT_READONLY))
2908 		return false;
2909 
2910 	if ((fl & MNT_LOCK_NODEV) &&
2911 	    !(mnt_flags & MNT_NODEV))
2912 		return false;
2913 
2914 	if ((fl & MNT_LOCK_NOSUID) &&
2915 	    !(mnt_flags & MNT_NOSUID))
2916 		return false;
2917 
2918 	if ((fl & MNT_LOCK_NOEXEC) &&
2919 	    !(mnt_flags & MNT_NOEXEC))
2920 		return false;
2921 
2922 	if ((fl & MNT_LOCK_ATIME) &&
2923 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2924 		return false;
2925 
2926 	return true;
2927 }
2928 
2929 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2930 {
2931 	bool readonly_request = (mnt_flags & MNT_READONLY);
2932 
2933 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2934 		return 0;
2935 
2936 	if (readonly_request)
2937 		return mnt_make_readonly(mnt);
2938 
2939 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2940 	return 0;
2941 }
2942 
2943 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2944 {
2945 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2946 	mnt->mnt.mnt_flags = mnt_flags;
2947 	touch_mnt_namespace(mnt->mnt_ns);
2948 }
2949 
2950 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2951 {
2952 	struct super_block *sb = mnt->mnt_sb;
2953 
2954 	if (!__mnt_is_readonly(mnt) &&
2955 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2956 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2957 		char *buf, *mntpath;
2958 
2959 		buf = (char *)__get_free_page(GFP_KERNEL);
2960 		if (buf)
2961 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2962 		else
2963 			mntpath = ERR_PTR(-ENOMEM);
2964 		if (IS_ERR(mntpath))
2965 			mntpath = "(unknown)";
2966 
2967 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2968 			sb->s_type->name,
2969 			is_mounted(mnt) ? "remounted" : "mounted",
2970 			mntpath, &sb->s_time_max,
2971 			(unsigned long long)sb->s_time_max);
2972 
2973 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2974 		if (buf)
2975 			free_page((unsigned long)buf);
2976 	}
2977 }
2978 
2979 /*
2980  * Handle reconfiguration of the mountpoint only without alteration of the
2981  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2982  * to mount(2).
2983  */
2984 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2985 {
2986 	struct super_block *sb = path->mnt->mnt_sb;
2987 	struct mount *mnt = real_mount(path->mnt);
2988 	int ret;
2989 
2990 	if (!check_mnt(mnt))
2991 		return -EINVAL;
2992 
2993 	if (!path_mounted(path))
2994 		return -EINVAL;
2995 
2996 	if (!can_change_locked_flags(mnt, mnt_flags))
2997 		return -EPERM;
2998 
2999 	/*
3000 	 * We're only checking whether the superblock is read-only not
3001 	 * changing it, so only take down_read(&sb->s_umount).
3002 	 */
3003 	down_read(&sb->s_umount);
3004 	lock_mount_hash();
3005 	ret = change_mount_ro_state(mnt, mnt_flags);
3006 	if (ret == 0)
3007 		set_mount_attributes(mnt, mnt_flags);
3008 	unlock_mount_hash();
3009 	up_read(&sb->s_umount);
3010 
3011 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3012 
3013 	return ret;
3014 }
3015 
3016 /*
3017  * change filesystem flags. dir should be a physical root of filesystem.
3018  * If you've mounted a non-root directory somewhere and want to do remount
3019  * on it - tough luck.
3020  */
3021 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3022 		      int mnt_flags, void *data)
3023 {
3024 	int err;
3025 	struct super_block *sb = path->mnt->mnt_sb;
3026 	struct mount *mnt = real_mount(path->mnt);
3027 	struct fs_context *fc;
3028 
3029 	if (!check_mnt(mnt))
3030 		return -EINVAL;
3031 
3032 	if (!path_mounted(path))
3033 		return -EINVAL;
3034 
3035 	if (!can_change_locked_flags(mnt, mnt_flags))
3036 		return -EPERM;
3037 
3038 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3039 	if (IS_ERR(fc))
3040 		return PTR_ERR(fc);
3041 
3042 	/*
3043 	 * Indicate to the filesystem that the remount request is coming
3044 	 * from the legacy mount system call.
3045 	 */
3046 	fc->oldapi = true;
3047 
3048 	err = parse_monolithic_mount_data(fc, data);
3049 	if (!err) {
3050 		down_write(&sb->s_umount);
3051 		err = -EPERM;
3052 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3053 			err = reconfigure_super(fc);
3054 			if (!err) {
3055 				lock_mount_hash();
3056 				set_mount_attributes(mnt, mnt_flags);
3057 				unlock_mount_hash();
3058 			}
3059 		}
3060 		up_write(&sb->s_umount);
3061 	}
3062 
3063 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3064 
3065 	put_fs_context(fc);
3066 	return err;
3067 }
3068 
3069 static inline int tree_contains_unbindable(struct mount *mnt)
3070 {
3071 	struct mount *p;
3072 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3073 		if (IS_MNT_UNBINDABLE(p))
3074 			return 1;
3075 	}
3076 	return 0;
3077 }
3078 
3079 /*
3080  * Check that there aren't references to earlier/same mount namespaces in the
3081  * specified subtree.  Such references can act as pins for mount namespaces
3082  * that aren't checked by the mount-cycle checking code, thereby allowing
3083  * cycles to be made.
3084  */
3085 static bool check_for_nsfs_mounts(struct mount *subtree)
3086 {
3087 	struct mount *p;
3088 	bool ret = false;
3089 
3090 	lock_mount_hash();
3091 	for (p = subtree; p; p = next_mnt(p, subtree))
3092 		if (mnt_ns_loop(p->mnt.mnt_root))
3093 			goto out;
3094 
3095 	ret = true;
3096 out:
3097 	unlock_mount_hash();
3098 	return ret;
3099 }
3100 
3101 static int do_set_group(struct path *from_path, struct path *to_path)
3102 {
3103 	struct mount *from, *to;
3104 	int err;
3105 
3106 	from = real_mount(from_path->mnt);
3107 	to = real_mount(to_path->mnt);
3108 
3109 	namespace_lock();
3110 
3111 	err = -EINVAL;
3112 	/* To and From must be mounted */
3113 	if (!is_mounted(&from->mnt))
3114 		goto out;
3115 	if (!is_mounted(&to->mnt))
3116 		goto out;
3117 
3118 	err = -EPERM;
3119 	/* We should be allowed to modify mount namespaces of both mounts */
3120 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3121 		goto out;
3122 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3123 		goto out;
3124 
3125 	err = -EINVAL;
3126 	/* To and From paths should be mount roots */
3127 	if (!path_mounted(from_path))
3128 		goto out;
3129 	if (!path_mounted(to_path))
3130 		goto out;
3131 
3132 	/* Setting sharing groups is only allowed across same superblock */
3133 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3134 		goto out;
3135 
3136 	/* From mount root should be wider than To mount root */
3137 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3138 		goto out;
3139 
3140 	/* From mount should not have locked children in place of To's root */
3141 	if (has_locked_children(from, to->mnt.mnt_root))
3142 		goto out;
3143 
3144 	/* Setting sharing groups is only allowed on private mounts */
3145 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3146 		goto out;
3147 
3148 	/* From should not be private */
3149 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3150 		goto out;
3151 
3152 	if (IS_MNT_SLAVE(from)) {
3153 		struct mount *m = from->mnt_master;
3154 
3155 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3156 		to->mnt_master = m;
3157 	}
3158 
3159 	if (IS_MNT_SHARED(from)) {
3160 		to->mnt_group_id = from->mnt_group_id;
3161 		list_add(&to->mnt_share, &from->mnt_share);
3162 		lock_mount_hash();
3163 		set_mnt_shared(to);
3164 		unlock_mount_hash();
3165 	}
3166 
3167 	err = 0;
3168 out:
3169 	namespace_unlock();
3170 	return err;
3171 }
3172 
3173 /**
3174  * path_overmounted - check if path is overmounted
3175  * @path: path to check
3176  *
3177  * Check if path is overmounted, i.e., if there's a mount on top of
3178  * @path->mnt with @path->dentry as mountpoint.
3179  *
3180  * Context: This function expects namespace_lock() to be held.
3181  * Return: If path is overmounted true is returned, false if not.
3182  */
3183 static inline bool path_overmounted(const struct path *path)
3184 {
3185 	rcu_read_lock();
3186 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3187 		rcu_read_unlock();
3188 		return true;
3189 	}
3190 	rcu_read_unlock();
3191 	return false;
3192 }
3193 
3194 /**
3195  * can_move_mount_beneath - check that we can mount beneath the top mount
3196  * @from: mount to mount beneath
3197  * @to:   mount under which to mount
3198  * @mp:   mountpoint of @to
3199  *
3200  * - Make sure that @to->dentry is actually the root of a mount under
3201  *   which we can mount another mount.
3202  * - Make sure that nothing can be mounted beneath the caller's current
3203  *   root or the rootfs of the namespace.
3204  * - Make sure that the caller can unmount the topmost mount ensuring
3205  *   that the caller could reveal the underlying mountpoint.
3206  * - Ensure that nothing has been mounted on top of @from before we
3207  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3208  * - Prevent mounting beneath a mount if the propagation relationship
3209  *   between the source mount, parent mount, and top mount would lead to
3210  *   nonsensical mount trees.
3211  *
3212  * Context: This function expects namespace_lock() to be held.
3213  * Return: On success 0, and on error a negative error code is returned.
3214  */
3215 static int can_move_mount_beneath(const struct path *from,
3216 				  const struct path *to,
3217 				  const struct mountpoint *mp)
3218 {
3219 	struct mount *mnt_from = real_mount(from->mnt),
3220 		     *mnt_to = real_mount(to->mnt),
3221 		     *parent_mnt_to = mnt_to->mnt_parent;
3222 
3223 	if (!mnt_has_parent(mnt_to))
3224 		return -EINVAL;
3225 
3226 	if (!path_mounted(to))
3227 		return -EINVAL;
3228 
3229 	if (IS_MNT_LOCKED(mnt_to))
3230 		return -EINVAL;
3231 
3232 	/* Avoid creating shadow mounts during mount propagation. */
3233 	if (path_overmounted(from))
3234 		return -EINVAL;
3235 
3236 	/*
3237 	 * Mounting beneath the rootfs only makes sense when the
3238 	 * semantics of pivot_root(".", ".") are used.
3239 	 */
3240 	if (&mnt_to->mnt == current->fs->root.mnt)
3241 		return -EINVAL;
3242 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3243 		return -EINVAL;
3244 
3245 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3246 		if (p == mnt_to)
3247 			return -EINVAL;
3248 
3249 	/*
3250 	 * If the parent mount propagates to the child mount this would
3251 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3252 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3253 	 * defeats the whole purpose of mounting beneath another mount.
3254 	 */
3255 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3256 		return -EINVAL;
3257 
3258 	/*
3259 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3260 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3261 	 * Afterwards @mnt_from would be mounted on top of
3262 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3263 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3264 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3265 	 * remounted on top of @c. Afterwards, @mnt_from would be
3266 	 * covered by a copy @c of @mnt_from and @c would be covered by
3267 	 * @mnt_from itself. This defeats the whole purpose of mounting
3268 	 * @mnt_from beneath @mnt_to.
3269 	 */
3270 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3271 		return -EINVAL;
3272 
3273 	return 0;
3274 }
3275 
3276 static int do_move_mount(struct path *old_path, struct path *new_path,
3277 			 bool beneath)
3278 {
3279 	struct mnt_namespace *ns;
3280 	struct mount *p;
3281 	struct mount *old;
3282 	struct mount *parent;
3283 	struct mountpoint *mp, *old_mp;
3284 	int err;
3285 	bool attached;
3286 	enum mnt_tree_flags_t flags = 0;
3287 
3288 	mp = do_lock_mount(new_path, beneath);
3289 	if (IS_ERR(mp))
3290 		return PTR_ERR(mp);
3291 
3292 	old = real_mount(old_path->mnt);
3293 	p = real_mount(new_path->mnt);
3294 	parent = old->mnt_parent;
3295 	attached = mnt_has_parent(old);
3296 	if (attached)
3297 		flags |= MNT_TREE_MOVE;
3298 	old_mp = old->mnt_mp;
3299 	ns = old->mnt_ns;
3300 
3301 	err = -EINVAL;
3302 	/* The mountpoint must be in our namespace. */
3303 	if (!check_mnt(p))
3304 		goto out;
3305 
3306 	/* The thing moved must be mounted... */
3307 	if (!is_mounted(&old->mnt))
3308 		goto out;
3309 
3310 	/* ... and either ours or the root of anon namespace */
3311 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3312 		goto out;
3313 
3314 	if (old->mnt.mnt_flags & MNT_LOCKED)
3315 		goto out;
3316 
3317 	if (!path_mounted(old_path))
3318 		goto out;
3319 
3320 	if (d_is_dir(new_path->dentry) !=
3321 	    d_is_dir(old_path->dentry))
3322 		goto out;
3323 	/*
3324 	 * Don't move a mount residing in a shared parent.
3325 	 */
3326 	if (attached && IS_MNT_SHARED(parent))
3327 		goto out;
3328 
3329 	if (beneath) {
3330 		err = can_move_mount_beneath(old_path, new_path, mp);
3331 		if (err)
3332 			goto out;
3333 
3334 		err = -EINVAL;
3335 		p = p->mnt_parent;
3336 		flags |= MNT_TREE_BENEATH;
3337 	}
3338 
3339 	/*
3340 	 * Don't move a mount tree containing unbindable mounts to a destination
3341 	 * mount which is shared.
3342 	 */
3343 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3344 		goto out;
3345 	err = -ELOOP;
3346 	if (!check_for_nsfs_mounts(old))
3347 		goto out;
3348 	for (; mnt_has_parent(p); p = p->mnt_parent)
3349 		if (p == old)
3350 			goto out;
3351 
3352 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3353 	if (err)
3354 		goto out;
3355 
3356 	/* if the mount is moved, it should no longer be expire
3357 	 * automatically */
3358 	list_del_init(&old->mnt_expire);
3359 	if (attached)
3360 		put_mountpoint(old_mp);
3361 out:
3362 	unlock_mount(mp);
3363 	if (!err) {
3364 		if (attached)
3365 			mntput_no_expire(parent);
3366 		else
3367 			free_mnt_ns(ns);
3368 	}
3369 	return err;
3370 }
3371 
3372 static int do_move_mount_old(struct path *path, const char *old_name)
3373 {
3374 	struct path old_path;
3375 	int err;
3376 
3377 	if (!old_name || !*old_name)
3378 		return -EINVAL;
3379 
3380 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3381 	if (err)
3382 		return err;
3383 
3384 	err = do_move_mount(&old_path, path, false);
3385 	path_put(&old_path);
3386 	return err;
3387 }
3388 
3389 /*
3390  * add a mount into a namespace's mount tree
3391  */
3392 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3393 			const struct path *path, int mnt_flags)
3394 {
3395 	struct mount *parent = real_mount(path->mnt);
3396 
3397 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3398 
3399 	if (unlikely(!check_mnt(parent))) {
3400 		/* that's acceptable only for automounts done in private ns */
3401 		if (!(mnt_flags & MNT_SHRINKABLE))
3402 			return -EINVAL;
3403 		/* ... and for those we'd better have mountpoint still alive */
3404 		if (!parent->mnt_ns)
3405 			return -EINVAL;
3406 	}
3407 
3408 	/* Refuse the same filesystem on the same mount point */
3409 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3410 		return -EBUSY;
3411 
3412 	if (d_is_symlink(newmnt->mnt.mnt_root))
3413 		return -EINVAL;
3414 
3415 	newmnt->mnt.mnt_flags = mnt_flags;
3416 	return graft_tree(newmnt, parent, mp);
3417 }
3418 
3419 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3420 
3421 /*
3422  * Create a new mount using a superblock configuration and request it
3423  * be added to the namespace tree.
3424  */
3425 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3426 			   unsigned int mnt_flags)
3427 {
3428 	struct vfsmount *mnt;
3429 	struct mountpoint *mp;
3430 	struct super_block *sb = fc->root->d_sb;
3431 	int error;
3432 
3433 	error = security_sb_kern_mount(sb);
3434 	if (!error && mount_too_revealing(sb, &mnt_flags))
3435 		error = -EPERM;
3436 
3437 	if (unlikely(error)) {
3438 		fc_drop_locked(fc);
3439 		return error;
3440 	}
3441 
3442 	up_write(&sb->s_umount);
3443 
3444 	mnt = vfs_create_mount(fc);
3445 	if (IS_ERR(mnt))
3446 		return PTR_ERR(mnt);
3447 
3448 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3449 
3450 	mp = lock_mount(mountpoint);
3451 	if (IS_ERR(mp)) {
3452 		mntput(mnt);
3453 		return PTR_ERR(mp);
3454 	}
3455 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3456 	unlock_mount(mp);
3457 	if (error < 0)
3458 		mntput(mnt);
3459 	return error;
3460 }
3461 
3462 /*
3463  * create a new mount for userspace and request it to be added into the
3464  * namespace's tree
3465  */
3466 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3467 			int mnt_flags, const char *name, void *data)
3468 {
3469 	struct file_system_type *type;
3470 	struct fs_context *fc;
3471 	const char *subtype = NULL;
3472 	int err = 0;
3473 
3474 	if (!fstype)
3475 		return -EINVAL;
3476 
3477 	type = get_fs_type(fstype);
3478 	if (!type)
3479 		return -ENODEV;
3480 
3481 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3482 		subtype = strchr(fstype, '.');
3483 		if (subtype) {
3484 			subtype++;
3485 			if (!*subtype) {
3486 				put_filesystem(type);
3487 				return -EINVAL;
3488 			}
3489 		}
3490 	}
3491 
3492 	fc = fs_context_for_mount(type, sb_flags);
3493 	put_filesystem(type);
3494 	if (IS_ERR(fc))
3495 		return PTR_ERR(fc);
3496 
3497 	/*
3498 	 * Indicate to the filesystem that the mount request is coming
3499 	 * from the legacy mount system call.
3500 	 */
3501 	fc->oldapi = true;
3502 
3503 	if (subtype)
3504 		err = vfs_parse_fs_string(fc, "subtype",
3505 					  subtype, strlen(subtype));
3506 	if (!err && name)
3507 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3508 	if (!err)
3509 		err = parse_monolithic_mount_data(fc, data);
3510 	if (!err && !mount_capable(fc))
3511 		err = -EPERM;
3512 	if (!err)
3513 		err = vfs_get_tree(fc);
3514 	if (!err)
3515 		err = do_new_mount_fc(fc, path, mnt_flags);
3516 
3517 	put_fs_context(fc);
3518 	return err;
3519 }
3520 
3521 int finish_automount(struct vfsmount *m, const struct path *path)
3522 {
3523 	struct dentry *dentry = path->dentry;
3524 	struct mountpoint *mp;
3525 	struct mount *mnt;
3526 	int err;
3527 
3528 	if (!m)
3529 		return 0;
3530 	if (IS_ERR(m))
3531 		return PTR_ERR(m);
3532 
3533 	mnt = real_mount(m);
3534 	/* The new mount record should have at least 2 refs to prevent it being
3535 	 * expired before we get a chance to add it
3536 	 */
3537 	BUG_ON(mnt_get_count(mnt) < 2);
3538 
3539 	if (m->mnt_sb == path->mnt->mnt_sb &&
3540 	    m->mnt_root == dentry) {
3541 		err = -ELOOP;
3542 		goto discard;
3543 	}
3544 
3545 	/*
3546 	 * we don't want to use lock_mount() - in this case finding something
3547 	 * that overmounts our mountpoint to be means "quitely drop what we've
3548 	 * got", not "try to mount it on top".
3549 	 */
3550 	inode_lock(dentry->d_inode);
3551 	namespace_lock();
3552 	if (unlikely(cant_mount(dentry))) {
3553 		err = -ENOENT;
3554 		goto discard_locked;
3555 	}
3556 	if (path_overmounted(path)) {
3557 		err = 0;
3558 		goto discard_locked;
3559 	}
3560 	mp = get_mountpoint(dentry);
3561 	if (IS_ERR(mp)) {
3562 		err = PTR_ERR(mp);
3563 		goto discard_locked;
3564 	}
3565 
3566 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3567 	unlock_mount(mp);
3568 	if (unlikely(err))
3569 		goto discard;
3570 	mntput(m);
3571 	return 0;
3572 
3573 discard_locked:
3574 	namespace_unlock();
3575 	inode_unlock(dentry->d_inode);
3576 discard:
3577 	/* remove m from any expiration list it may be on */
3578 	if (!list_empty(&mnt->mnt_expire)) {
3579 		namespace_lock();
3580 		list_del_init(&mnt->mnt_expire);
3581 		namespace_unlock();
3582 	}
3583 	mntput(m);
3584 	mntput(m);
3585 	return err;
3586 }
3587 
3588 /**
3589  * mnt_set_expiry - Put a mount on an expiration list
3590  * @mnt: The mount to list.
3591  * @expiry_list: The list to add the mount to.
3592  */
3593 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3594 {
3595 	namespace_lock();
3596 
3597 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3598 
3599 	namespace_unlock();
3600 }
3601 EXPORT_SYMBOL(mnt_set_expiry);
3602 
3603 /*
3604  * process a list of expirable mountpoints with the intent of discarding any
3605  * mountpoints that aren't in use and haven't been touched since last we came
3606  * here
3607  */
3608 void mark_mounts_for_expiry(struct list_head *mounts)
3609 {
3610 	struct mount *mnt, *next;
3611 	LIST_HEAD(graveyard);
3612 
3613 	if (list_empty(mounts))
3614 		return;
3615 
3616 	namespace_lock();
3617 	lock_mount_hash();
3618 
3619 	/* extract from the expiration list every vfsmount that matches the
3620 	 * following criteria:
3621 	 * - only referenced by its parent vfsmount
3622 	 * - still marked for expiry (marked on the last call here; marks are
3623 	 *   cleared by mntput())
3624 	 */
3625 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3626 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3627 			propagate_mount_busy(mnt, 1))
3628 			continue;
3629 		list_move(&mnt->mnt_expire, &graveyard);
3630 	}
3631 	while (!list_empty(&graveyard)) {
3632 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3633 		touch_mnt_namespace(mnt->mnt_ns);
3634 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3635 	}
3636 	unlock_mount_hash();
3637 	namespace_unlock();
3638 }
3639 
3640 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3641 
3642 /*
3643  * Ripoff of 'select_parent()'
3644  *
3645  * search the list of submounts for a given mountpoint, and move any
3646  * shrinkable submounts to the 'graveyard' list.
3647  */
3648 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3649 {
3650 	struct mount *this_parent = parent;
3651 	struct list_head *next;
3652 	int found = 0;
3653 
3654 repeat:
3655 	next = this_parent->mnt_mounts.next;
3656 resume:
3657 	while (next != &this_parent->mnt_mounts) {
3658 		struct list_head *tmp = next;
3659 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3660 
3661 		next = tmp->next;
3662 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3663 			continue;
3664 		/*
3665 		 * Descend a level if the d_mounts list is non-empty.
3666 		 */
3667 		if (!list_empty(&mnt->mnt_mounts)) {
3668 			this_parent = mnt;
3669 			goto repeat;
3670 		}
3671 
3672 		if (!propagate_mount_busy(mnt, 1)) {
3673 			list_move_tail(&mnt->mnt_expire, graveyard);
3674 			found++;
3675 		}
3676 	}
3677 	/*
3678 	 * All done at this level ... ascend and resume the search
3679 	 */
3680 	if (this_parent != parent) {
3681 		next = this_parent->mnt_child.next;
3682 		this_parent = this_parent->mnt_parent;
3683 		goto resume;
3684 	}
3685 	return found;
3686 }
3687 
3688 /*
3689  * process a list of expirable mountpoints with the intent of discarding any
3690  * submounts of a specific parent mountpoint
3691  *
3692  * mount_lock must be held for write
3693  */
3694 static void shrink_submounts(struct mount *mnt)
3695 {
3696 	LIST_HEAD(graveyard);
3697 	struct mount *m;
3698 
3699 	/* extract submounts of 'mountpoint' from the expiration list */
3700 	while (select_submounts(mnt, &graveyard)) {
3701 		while (!list_empty(&graveyard)) {
3702 			m = list_first_entry(&graveyard, struct mount,
3703 						mnt_expire);
3704 			touch_mnt_namespace(m->mnt_ns);
3705 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3706 		}
3707 	}
3708 }
3709 
3710 static void *copy_mount_options(const void __user * data)
3711 {
3712 	char *copy;
3713 	unsigned left, offset;
3714 
3715 	if (!data)
3716 		return NULL;
3717 
3718 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3719 	if (!copy)
3720 		return ERR_PTR(-ENOMEM);
3721 
3722 	left = copy_from_user(copy, data, PAGE_SIZE);
3723 
3724 	/*
3725 	 * Not all architectures have an exact copy_from_user(). Resort to
3726 	 * byte at a time.
3727 	 */
3728 	offset = PAGE_SIZE - left;
3729 	while (left) {
3730 		char c;
3731 		if (get_user(c, (const char __user *)data + offset))
3732 			break;
3733 		copy[offset] = c;
3734 		left--;
3735 		offset++;
3736 	}
3737 
3738 	if (left == PAGE_SIZE) {
3739 		kfree(copy);
3740 		return ERR_PTR(-EFAULT);
3741 	}
3742 
3743 	return copy;
3744 }
3745 
3746 static char *copy_mount_string(const void __user *data)
3747 {
3748 	return data ? strndup_user(data, PATH_MAX) : NULL;
3749 }
3750 
3751 /*
3752  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3753  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3754  *
3755  * data is a (void *) that can point to any structure up to
3756  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3757  * information (or be NULL).
3758  *
3759  * Pre-0.97 versions of mount() didn't have a flags word.
3760  * When the flags word was introduced its top half was required
3761  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3762  * Therefore, if this magic number is present, it carries no information
3763  * and must be discarded.
3764  */
3765 int path_mount(const char *dev_name, struct path *path,
3766 		const char *type_page, unsigned long flags, void *data_page)
3767 {
3768 	unsigned int mnt_flags = 0, sb_flags;
3769 	int ret;
3770 
3771 	/* Discard magic */
3772 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3773 		flags &= ~MS_MGC_MSK;
3774 
3775 	/* Basic sanity checks */
3776 	if (data_page)
3777 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3778 
3779 	if (flags & MS_NOUSER)
3780 		return -EINVAL;
3781 
3782 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3783 	if (ret)
3784 		return ret;
3785 	if (!may_mount())
3786 		return -EPERM;
3787 	if (flags & SB_MANDLOCK)
3788 		warn_mandlock();
3789 
3790 	/* Default to relatime unless overriden */
3791 	if (!(flags & MS_NOATIME))
3792 		mnt_flags |= MNT_RELATIME;
3793 
3794 	/* Separate the per-mountpoint flags */
3795 	if (flags & MS_NOSUID)
3796 		mnt_flags |= MNT_NOSUID;
3797 	if (flags & MS_NODEV)
3798 		mnt_flags |= MNT_NODEV;
3799 	if (flags & MS_NOEXEC)
3800 		mnt_flags |= MNT_NOEXEC;
3801 	if (flags & MS_NOATIME)
3802 		mnt_flags |= MNT_NOATIME;
3803 	if (flags & MS_NODIRATIME)
3804 		mnt_flags |= MNT_NODIRATIME;
3805 	if (flags & MS_STRICTATIME)
3806 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3807 	if (flags & MS_RDONLY)
3808 		mnt_flags |= MNT_READONLY;
3809 	if (flags & MS_NOSYMFOLLOW)
3810 		mnt_flags |= MNT_NOSYMFOLLOW;
3811 
3812 	/* The default atime for remount is preservation */
3813 	if ((flags & MS_REMOUNT) &&
3814 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3815 		       MS_STRICTATIME)) == 0)) {
3816 		mnt_flags &= ~MNT_ATIME_MASK;
3817 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3818 	}
3819 
3820 	sb_flags = flags & (SB_RDONLY |
3821 			    SB_SYNCHRONOUS |
3822 			    SB_MANDLOCK |
3823 			    SB_DIRSYNC |
3824 			    SB_SILENT |
3825 			    SB_POSIXACL |
3826 			    SB_LAZYTIME |
3827 			    SB_I_VERSION);
3828 
3829 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3830 		return do_reconfigure_mnt(path, mnt_flags);
3831 	if (flags & MS_REMOUNT)
3832 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3833 	if (flags & MS_BIND)
3834 		return do_loopback(path, dev_name, flags & MS_REC);
3835 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3836 		return do_change_type(path, flags);
3837 	if (flags & MS_MOVE)
3838 		return do_move_mount_old(path, dev_name);
3839 
3840 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3841 			    data_page);
3842 }
3843 
3844 long do_mount(const char *dev_name, const char __user *dir_name,
3845 		const char *type_page, unsigned long flags, void *data_page)
3846 {
3847 	struct path path;
3848 	int ret;
3849 
3850 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3851 	if (ret)
3852 		return ret;
3853 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3854 	path_put(&path);
3855 	return ret;
3856 }
3857 
3858 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3859 {
3860 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3861 }
3862 
3863 static void dec_mnt_namespaces(struct ucounts *ucounts)
3864 {
3865 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3866 }
3867 
3868 static void free_mnt_ns(struct mnt_namespace *ns)
3869 {
3870 	if (!is_anon_ns(ns))
3871 		ns_free_inum(&ns->ns);
3872 	dec_mnt_namespaces(ns->ucounts);
3873 	mnt_ns_tree_remove(ns);
3874 }
3875 
3876 /*
3877  * Assign a sequence number so we can detect when we attempt to bind
3878  * mount a reference to an older mount namespace into the current
3879  * mount namespace, preventing reference counting loops.  A 64bit
3880  * number incrementing at 10Ghz will take 12,427 years to wrap which
3881  * is effectively never, so we can ignore the possibility.
3882  */
3883 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3884 
3885 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3886 {
3887 	struct mnt_namespace *new_ns;
3888 	struct ucounts *ucounts;
3889 	int ret;
3890 
3891 	ucounts = inc_mnt_namespaces(user_ns);
3892 	if (!ucounts)
3893 		return ERR_PTR(-ENOSPC);
3894 
3895 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3896 	if (!new_ns) {
3897 		dec_mnt_namespaces(ucounts);
3898 		return ERR_PTR(-ENOMEM);
3899 	}
3900 	if (!anon) {
3901 		ret = ns_alloc_inum(&new_ns->ns);
3902 		if (ret) {
3903 			kfree(new_ns);
3904 			dec_mnt_namespaces(ucounts);
3905 			return ERR_PTR(ret);
3906 		}
3907 	}
3908 	new_ns->ns.ops = &mntns_operations;
3909 	if (!anon)
3910 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
3911 	refcount_set(&new_ns->ns.count, 1);
3912 	refcount_set(&new_ns->passive, 1);
3913 	new_ns->mounts = RB_ROOT;
3914 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3915 	init_waitqueue_head(&new_ns->poll);
3916 	new_ns->user_ns = get_user_ns(user_ns);
3917 	new_ns->ucounts = ucounts;
3918 	return new_ns;
3919 }
3920 
3921 __latent_entropy
3922 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3923 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3924 {
3925 	struct mnt_namespace *new_ns;
3926 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3927 	struct mount *p, *q;
3928 	struct mount *old;
3929 	struct mount *new;
3930 	int copy_flags;
3931 
3932 	BUG_ON(!ns);
3933 
3934 	if (likely(!(flags & CLONE_NEWNS))) {
3935 		get_mnt_ns(ns);
3936 		return ns;
3937 	}
3938 
3939 	old = ns->root;
3940 
3941 	new_ns = alloc_mnt_ns(user_ns, false);
3942 	if (IS_ERR(new_ns))
3943 		return new_ns;
3944 
3945 	namespace_lock();
3946 	/* First pass: copy the tree topology */
3947 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3948 	if (user_ns != ns->user_ns)
3949 		copy_flags |= CL_SHARED_TO_SLAVE;
3950 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3951 	if (IS_ERR(new)) {
3952 		namespace_unlock();
3953 		ns_free_inum(&new_ns->ns);
3954 		dec_mnt_namespaces(new_ns->ucounts);
3955 		mnt_ns_release(new_ns);
3956 		return ERR_CAST(new);
3957 	}
3958 	if (user_ns != ns->user_ns) {
3959 		lock_mount_hash();
3960 		lock_mnt_tree(new);
3961 		unlock_mount_hash();
3962 	}
3963 	new_ns->root = new;
3964 
3965 	/*
3966 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3967 	 * as belonging to new namespace.  We have already acquired a private
3968 	 * fs_struct, so tsk->fs->lock is not needed.
3969 	 */
3970 	p = old;
3971 	q = new;
3972 	while (p) {
3973 		mnt_add_to_ns(new_ns, q);
3974 		new_ns->nr_mounts++;
3975 		if (new_fs) {
3976 			if (&p->mnt == new_fs->root.mnt) {
3977 				new_fs->root.mnt = mntget(&q->mnt);
3978 				rootmnt = &p->mnt;
3979 			}
3980 			if (&p->mnt == new_fs->pwd.mnt) {
3981 				new_fs->pwd.mnt = mntget(&q->mnt);
3982 				pwdmnt = &p->mnt;
3983 			}
3984 		}
3985 		p = next_mnt(p, old);
3986 		q = next_mnt(q, new);
3987 		if (!q)
3988 			break;
3989 		// an mntns binding we'd skipped?
3990 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3991 			p = next_mnt(skip_mnt_tree(p), old);
3992 	}
3993 	mnt_ns_tree_add(new_ns);
3994 	namespace_unlock();
3995 
3996 	if (rootmnt)
3997 		mntput(rootmnt);
3998 	if (pwdmnt)
3999 		mntput(pwdmnt);
4000 
4001 	return new_ns;
4002 }
4003 
4004 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4005 {
4006 	struct mount *mnt = real_mount(m);
4007 	struct mnt_namespace *ns;
4008 	struct super_block *s;
4009 	struct path path;
4010 	int err;
4011 
4012 	ns = alloc_mnt_ns(&init_user_ns, true);
4013 	if (IS_ERR(ns)) {
4014 		mntput(m);
4015 		return ERR_CAST(ns);
4016 	}
4017 	ns->root = mnt;
4018 	ns->nr_mounts++;
4019 	mnt_add_to_ns(ns, mnt);
4020 
4021 	err = vfs_path_lookup(m->mnt_root, m,
4022 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4023 
4024 	put_mnt_ns(ns);
4025 
4026 	if (err)
4027 		return ERR_PTR(err);
4028 
4029 	/* trade a vfsmount reference for active sb one */
4030 	s = path.mnt->mnt_sb;
4031 	atomic_inc(&s->s_active);
4032 	mntput(path.mnt);
4033 	/* lock the sucker */
4034 	down_write(&s->s_umount);
4035 	/* ... and return the root of (sub)tree on it */
4036 	return path.dentry;
4037 }
4038 EXPORT_SYMBOL(mount_subtree);
4039 
4040 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4041 		char __user *, type, unsigned long, flags, void __user *, data)
4042 {
4043 	int ret;
4044 	char *kernel_type;
4045 	char *kernel_dev;
4046 	void *options;
4047 
4048 	kernel_type = copy_mount_string(type);
4049 	ret = PTR_ERR(kernel_type);
4050 	if (IS_ERR(kernel_type))
4051 		goto out_type;
4052 
4053 	kernel_dev = copy_mount_string(dev_name);
4054 	ret = PTR_ERR(kernel_dev);
4055 	if (IS_ERR(kernel_dev))
4056 		goto out_dev;
4057 
4058 	options = copy_mount_options(data);
4059 	ret = PTR_ERR(options);
4060 	if (IS_ERR(options))
4061 		goto out_data;
4062 
4063 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4064 
4065 	kfree(options);
4066 out_data:
4067 	kfree(kernel_dev);
4068 out_dev:
4069 	kfree(kernel_type);
4070 out_type:
4071 	return ret;
4072 }
4073 
4074 #define FSMOUNT_VALID_FLAGS                                                    \
4075 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4076 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4077 	 MOUNT_ATTR_NOSYMFOLLOW)
4078 
4079 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4080 
4081 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4082 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4083 
4084 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4085 {
4086 	unsigned int mnt_flags = 0;
4087 
4088 	if (attr_flags & MOUNT_ATTR_RDONLY)
4089 		mnt_flags |= MNT_READONLY;
4090 	if (attr_flags & MOUNT_ATTR_NOSUID)
4091 		mnt_flags |= MNT_NOSUID;
4092 	if (attr_flags & MOUNT_ATTR_NODEV)
4093 		mnt_flags |= MNT_NODEV;
4094 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4095 		mnt_flags |= MNT_NOEXEC;
4096 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4097 		mnt_flags |= MNT_NODIRATIME;
4098 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4099 		mnt_flags |= MNT_NOSYMFOLLOW;
4100 
4101 	return mnt_flags;
4102 }
4103 
4104 /*
4105  * Create a kernel mount representation for a new, prepared superblock
4106  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4107  */
4108 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4109 		unsigned int, attr_flags)
4110 {
4111 	struct mnt_namespace *ns;
4112 	struct fs_context *fc;
4113 	struct file *file;
4114 	struct path newmount;
4115 	struct mount *mnt;
4116 	unsigned int mnt_flags = 0;
4117 	long ret;
4118 
4119 	if (!may_mount())
4120 		return -EPERM;
4121 
4122 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4123 		return -EINVAL;
4124 
4125 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4126 		return -EINVAL;
4127 
4128 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4129 
4130 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4131 	case MOUNT_ATTR_STRICTATIME:
4132 		break;
4133 	case MOUNT_ATTR_NOATIME:
4134 		mnt_flags |= MNT_NOATIME;
4135 		break;
4136 	case MOUNT_ATTR_RELATIME:
4137 		mnt_flags |= MNT_RELATIME;
4138 		break;
4139 	default:
4140 		return -EINVAL;
4141 	}
4142 
4143 	CLASS(fd, f)(fs_fd);
4144 	if (fd_empty(f))
4145 		return -EBADF;
4146 
4147 	if (fd_file(f)->f_op != &fscontext_fops)
4148 		return -EINVAL;
4149 
4150 	fc = fd_file(f)->private_data;
4151 
4152 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4153 	if (ret < 0)
4154 		return ret;
4155 
4156 	/* There must be a valid superblock or we can't mount it */
4157 	ret = -EINVAL;
4158 	if (!fc->root)
4159 		goto err_unlock;
4160 
4161 	ret = -EPERM;
4162 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4163 		pr_warn("VFS: Mount too revealing\n");
4164 		goto err_unlock;
4165 	}
4166 
4167 	ret = -EBUSY;
4168 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4169 		goto err_unlock;
4170 
4171 	if (fc->sb_flags & SB_MANDLOCK)
4172 		warn_mandlock();
4173 
4174 	newmount.mnt = vfs_create_mount(fc);
4175 	if (IS_ERR(newmount.mnt)) {
4176 		ret = PTR_ERR(newmount.mnt);
4177 		goto err_unlock;
4178 	}
4179 	newmount.dentry = dget(fc->root);
4180 	newmount.mnt->mnt_flags = mnt_flags;
4181 
4182 	/* We've done the mount bit - now move the file context into more or
4183 	 * less the same state as if we'd done an fspick().  We don't want to
4184 	 * do any memory allocation or anything like that at this point as we
4185 	 * don't want to have to handle any errors incurred.
4186 	 */
4187 	vfs_clean_context(fc);
4188 
4189 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4190 	if (IS_ERR(ns)) {
4191 		ret = PTR_ERR(ns);
4192 		goto err_path;
4193 	}
4194 	mnt = real_mount(newmount.mnt);
4195 	ns->root = mnt;
4196 	ns->nr_mounts = 1;
4197 	mnt_add_to_ns(ns, mnt);
4198 	mntget(newmount.mnt);
4199 
4200 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4201 	 * it, not just simply put it.
4202 	 */
4203 	file = dentry_open(&newmount, O_PATH, fc->cred);
4204 	if (IS_ERR(file)) {
4205 		dissolve_on_fput(newmount.mnt);
4206 		ret = PTR_ERR(file);
4207 		goto err_path;
4208 	}
4209 	file->f_mode |= FMODE_NEED_UNMOUNT;
4210 
4211 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4212 	if (ret >= 0)
4213 		fd_install(ret, file);
4214 	else
4215 		fput(file);
4216 
4217 err_path:
4218 	path_put(&newmount);
4219 err_unlock:
4220 	mutex_unlock(&fc->uapi_mutex);
4221 	return ret;
4222 }
4223 
4224 /*
4225  * Move a mount from one place to another.  In combination with
4226  * fsopen()/fsmount() this is used to install a new mount and in combination
4227  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4228  * a mount subtree.
4229  *
4230  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4231  */
4232 SYSCALL_DEFINE5(move_mount,
4233 		int, from_dfd, const char __user *, from_pathname,
4234 		int, to_dfd, const char __user *, to_pathname,
4235 		unsigned int, flags)
4236 {
4237 	struct path from_path, to_path;
4238 	unsigned int lflags;
4239 	int ret = 0;
4240 
4241 	if (!may_mount())
4242 		return -EPERM;
4243 
4244 	if (flags & ~MOVE_MOUNT__MASK)
4245 		return -EINVAL;
4246 
4247 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4248 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4249 		return -EINVAL;
4250 
4251 	/* If someone gives a pathname, they aren't permitted to move
4252 	 * from an fd that requires unmount as we can't get at the flag
4253 	 * to clear it afterwards.
4254 	 */
4255 	lflags = 0;
4256 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4257 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4258 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4259 
4260 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4261 	if (ret < 0)
4262 		return ret;
4263 
4264 	lflags = 0;
4265 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4266 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4267 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4268 
4269 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4270 	if (ret < 0)
4271 		goto out_from;
4272 
4273 	ret = security_move_mount(&from_path, &to_path);
4274 	if (ret < 0)
4275 		goto out_to;
4276 
4277 	if (flags & MOVE_MOUNT_SET_GROUP)
4278 		ret = do_set_group(&from_path, &to_path);
4279 	else
4280 		ret = do_move_mount(&from_path, &to_path,
4281 				    (flags & MOVE_MOUNT_BENEATH));
4282 
4283 out_to:
4284 	path_put(&to_path);
4285 out_from:
4286 	path_put(&from_path);
4287 	return ret;
4288 }
4289 
4290 /*
4291  * Return true if path is reachable from root
4292  *
4293  * namespace_sem or mount_lock is held
4294  */
4295 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4296 			 const struct path *root)
4297 {
4298 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4299 		dentry = mnt->mnt_mountpoint;
4300 		mnt = mnt->mnt_parent;
4301 	}
4302 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4303 }
4304 
4305 bool path_is_under(const struct path *path1, const struct path *path2)
4306 {
4307 	bool res;
4308 	read_seqlock_excl(&mount_lock);
4309 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4310 	read_sequnlock_excl(&mount_lock);
4311 	return res;
4312 }
4313 EXPORT_SYMBOL(path_is_under);
4314 
4315 /*
4316  * pivot_root Semantics:
4317  * Moves the root file system of the current process to the directory put_old,
4318  * makes new_root as the new root file system of the current process, and sets
4319  * root/cwd of all processes which had them on the current root to new_root.
4320  *
4321  * Restrictions:
4322  * The new_root and put_old must be directories, and  must not be on the
4323  * same file  system as the current process root. The put_old  must  be
4324  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4325  * pointed to by put_old must yield the same directory as new_root. No other
4326  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4327  *
4328  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4329  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4330  * in this situation.
4331  *
4332  * Notes:
4333  *  - we don't move root/cwd if they are not at the root (reason: if something
4334  *    cared enough to change them, it's probably wrong to force them elsewhere)
4335  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4336  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4337  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4338  *    first.
4339  */
4340 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4341 		const char __user *, put_old)
4342 {
4343 	struct path new, old, root;
4344 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4345 	struct mountpoint *old_mp, *root_mp;
4346 	int error;
4347 
4348 	if (!may_mount())
4349 		return -EPERM;
4350 
4351 	error = user_path_at(AT_FDCWD, new_root,
4352 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4353 	if (error)
4354 		goto out0;
4355 
4356 	error = user_path_at(AT_FDCWD, put_old,
4357 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4358 	if (error)
4359 		goto out1;
4360 
4361 	error = security_sb_pivotroot(&old, &new);
4362 	if (error)
4363 		goto out2;
4364 
4365 	get_fs_root(current->fs, &root);
4366 	old_mp = lock_mount(&old);
4367 	error = PTR_ERR(old_mp);
4368 	if (IS_ERR(old_mp))
4369 		goto out3;
4370 
4371 	error = -EINVAL;
4372 	new_mnt = real_mount(new.mnt);
4373 	root_mnt = real_mount(root.mnt);
4374 	old_mnt = real_mount(old.mnt);
4375 	ex_parent = new_mnt->mnt_parent;
4376 	root_parent = root_mnt->mnt_parent;
4377 	if (IS_MNT_SHARED(old_mnt) ||
4378 		IS_MNT_SHARED(ex_parent) ||
4379 		IS_MNT_SHARED(root_parent))
4380 		goto out4;
4381 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4382 		goto out4;
4383 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4384 		goto out4;
4385 	error = -ENOENT;
4386 	if (d_unlinked(new.dentry))
4387 		goto out4;
4388 	error = -EBUSY;
4389 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4390 		goto out4; /* loop, on the same file system  */
4391 	error = -EINVAL;
4392 	if (!path_mounted(&root))
4393 		goto out4; /* not a mountpoint */
4394 	if (!mnt_has_parent(root_mnt))
4395 		goto out4; /* not attached */
4396 	if (!path_mounted(&new))
4397 		goto out4; /* not a mountpoint */
4398 	if (!mnt_has_parent(new_mnt))
4399 		goto out4; /* not attached */
4400 	/* make sure we can reach put_old from new_root */
4401 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4402 		goto out4;
4403 	/* make certain new is below the root */
4404 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4405 		goto out4;
4406 	lock_mount_hash();
4407 	umount_mnt(new_mnt);
4408 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4409 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4410 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4411 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4412 	}
4413 	/* mount old root on put_old */
4414 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4415 	/* mount new_root on / */
4416 	attach_mnt(new_mnt, root_parent, root_mp, false);
4417 	mnt_add_count(root_parent, -1);
4418 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4419 	/* A moved mount should not expire automatically */
4420 	list_del_init(&new_mnt->mnt_expire);
4421 	put_mountpoint(root_mp);
4422 	unlock_mount_hash();
4423 	chroot_fs_refs(&root, &new);
4424 	error = 0;
4425 out4:
4426 	unlock_mount(old_mp);
4427 	if (!error)
4428 		mntput_no_expire(ex_parent);
4429 out3:
4430 	path_put(&root);
4431 out2:
4432 	path_put(&old);
4433 out1:
4434 	path_put(&new);
4435 out0:
4436 	return error;
4437 }
4438 
4439 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4440 {
4441 	unsigned int flags = mnt->mnt.mnt_flags;
4442 
4443 	/*  flags to clear */
4444 	flags &= ~kattr->attr_clr;
4445 	/* flags to raise */
4446 	flags |= kattr->attr_set;
4447 
4448 	return flags;
4449 }
4450 
4451 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4452 {
4453 	struct vfsmount *m = &mnt->mnt;
4454 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4455 
4456 	if (!kattr->mnt_idmap)
4457 		return 0;
4458 
4459 	/*
4460 	 * Creating an idmapped mount with the filesystem wide idmapping
4461 	 * doesn't make sense so block that. We don't allow mushy semantics.
4462 	 */
4463 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4464 		return -EINVAL;
4465 
4466 	/*
4467 	 * Once a mount has been idmapped we don't allow it to change its
4468 	 * mapping. It makes things simpler and callers can just create
4469 	 * another bind-mount they can idmap if they want to.
4470 	 */
4471 	if (is_idmapped_mnt(m))
4472 		return -EPERM;
4473 
4474 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4475 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4476 		return -EINVAL;
4477 
4478 	/* The filesystem has turned off idmapped mounts. */
4479 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4480 		return -EINVAL;
4481 
4482 	/* We're not controlling the superblock. */
4483 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4484 		return -EPERM;
4485 
4486 	/* Mount has already been visible in the filesystem hierarchy. */
4487 	if (!is_anon_ns(mnt->mnt_ns))
4488 		return -EINVAL;
4489 
4490 	return 0;
4491 }
4492 
4493 /**
4494  * mnt_allow_writers() - check whether the attribute change allows writers
4495  * @kattr: the new mount attributes
4496  * @mnt: the mount to which @kattr will be applied
4497  *
4498  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4499  *
4500  * Return: true if writers need to be held, false if not
4501  */
4502 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4503 				     const struct mount *mnt)
4504 {
4505 	return (!(kattr->attr_set & MNT_READONLY) ||
4506 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4507 	       !kattr->mnt_idmap;
4508 }
4509 
4510 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4511 {
4512 	struct mount *m;
4513 	int err;
4514 
4515 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4516 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4517 			err = -EPERM;
4518 			break;
4519 		}
4520 
4521 		err = can_idmap_mount(kattr, m);
4522 		if (err)
4523 			break;
4524 
4525 		if (!mnt_allow_writers(kattr, m)) {
4526 			err = mnt_hold_writers(m);
4527 			if (err)
4528 				break;
4529 		}
4530 
4531 		if (!kattr->recurse)
4532 			return 0;
4533 	}
4534 
4535 	if (err) {
4536 		struct mount *p;
4537 
4538 		/*
4539 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4540 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4541 		 * mounts and needs to take care to include the first mount.
4542 		 */
4543 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4544 			/* If we had to hold writers unblock them. */
4545 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4546 				mnt_unhold_writers(p);
4547 
4548 			/*
4549 			 * We're done once the first mount we changed got
4550 			 * MNT_WRITE_HOLD unset.
4551 			 */
4552 			if (p == m)
4553 				break;
4554 		}
4555 	}
4556 	return err;
4557 }
4558 
4559 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4560 {
4561 	if (!kattr->mnt_idmap)
4562 		return;
4563 
4564 	/*
4565 	 * Pairs with smp_load_acquire() in mnt_idmap().
4566 	 *
4567 	 * Since we only allow a mount to change the idmapping once and
4568 	 * verified this in can_idmap_mount() we know that the mount has
4569 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4570 	 * references.
4571 	 */
4572 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4573 }
4574 
4575 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4576 {
4577 	struct mount *m;
4578 
4579 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4580 		unsigned int flags;
4581 
4582 		do_idmap_mount(kattr, m);
4583 		flags = recalc_flags(kattr, m);
4584 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4585 
4586 		/* If we had to hold writers unblock them. */
4587 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4588 			mnt_unhold_writers(m);
4589 
4590 		if (kattr->propagation)
4591 			change_mnt_propagation(m, kattr->propagation);
4592 		if (!kattr->recurse)
4593 			break;
4594 	}
4595 	touch_mnt_namespace(mnt->mnt_ns);
4596 }
4597 
4598 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4599 {
4600 	struct mount *mnt = real_mount(path->mnt);
4601 	int err = 0;
4602 
4603 	if (!path_mounted(path))
4604 		return -EINVAL;
4605 
4606 	if (kattr->mnt_userns) {
4607 		struct mnt_idmap *mnt_idmap;
4608 
4609 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4610 		if (IS_ERR(mnt_idmap))
4611 			return PTR_ERR(mnt_idmap);
4612 		kattr->mnt_idmap = mnt_idmap;
4613 	}
4614 
4615 	if (kattr->propagation) {
4616 		/*
4617 		 * Only take namespace_lock() if we're actually changing
4618 		 * propagation.
4619 		 */
4620 		namespace_lock();
4621 		if (kattr->propagation == MS_SHARED) {
4622 			err = invent_group_ids(mnt, kattr->recurse);
4623 			if (err) {
4624 				namespace_unlock();
4625 				return err;
4626 			}
4627 		}
4628 	}
4629 
4630 	err = -EINVAL;
4631 	lock_mount_hash();
4632 
4633 	/* Ensure that this isn't anything purely vfs internal. */
4634 	if (!is_mounted(&mnt->mnt))
4635 		goto out;
4636 
4637 	/*
4638 	 * If this is an attached mount make sure it's located in the callers
4639 	 * mount namespace. If it's not don't let the caller interact with it.
4640 	 *
4641 	 * If this mount doesn't have a parent it's most often simply a
4642 	 * detached mount with an anonymous mount namespace. IOW, something
4643 	 * that's simply not attached yet. But there are apparently also users
4644 	 * that do change mount properties on the rootfs itself. That obviously
4645 	 * neither has a parent nor is it a detached mount so we cannot
4646 	 * unconditionally check for detached mounts.
4647 	 */
4648 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4649 		goto out;
4650 
4651 	/*
4652 	 * First, we get the mount tree in a shape where we can change mount
4653 	 * properties without failure. If we succeeded to do so we commit all
4654 	 * changes and if we failed we clean up.
4655 	 */
4656 	err = mount_setattr_prepare(kattr, mnt);
4657 	if (!err)
4658 		mount_setattr_commit(kattr, mnt);
4659 
4660 out:
4661 	unlock_mount_hash();
4662 
4663 	if (kattr->propagation) {
4664 		if (err)
4665 			cleanup_group_ids(mnt, NULL);
4666 		namespace_unlock();
4667 	}
4668 
4669 	return err;
4670 }
4671 
4672 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4673 				struct mount_kattr *kattr, unsigned int flags)
4674 {
4675 	struct ns_common *ns;
4676 	struct user_namespace *mnt_userns;
4677 
4678 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4679 		return 0;
4680 
4681 	/*
4682 	 * We currently do not support clearing an idmapped mount. If this ever
4683 	 * is a use-case we can revisit this but for now let's keep it simple
4684 	 * and not allow it.
4685 	 */
4686 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4687 		return -EINVAL;
4688 
4689 	if (attr->userns_fd > INT_MAX)
4690 		return -EINVAL;
4691 
4692 	CLASS(fd, f)(attr->userns_fd);
4693 	if (fd_empty(f))
4694 		return -EBADF;
4695 
4696 	if (!proc_ns_file(fd_file(f)))
4697 		return -EINVAL;
4698 
4699 	ns = get_proc_ns(file_inode(fd_file(f)));
4700 	if (ns->ops->type != CLONE_NEWUSER)
4701 		return -EINVAL;
4702 
4703 	/*
4704 	 * The initial idmapping cannot be used to create an idmapped
4705 	 * mount. We use the initial idmapping as an indicator of a mount
4706 	 * that is not idmapped. It can simply be passed into helpers that
4707 	 * are aware of idmapped mounts as a convenient shortcut. A user
4708 	 * can just create a dedicated identity mapping to achieve the same
4709 	 * result.
4710 	 */
4711 	mnt_userns = container_of(ns, struct user_namespace, ns);
4712 	if (mnt_userns == &init_user_ns)
4713 		return -EPERM;
4714 
4715 	/* We're not controlling the target namespace. */
4716 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4717 		return -EPERM;
4718 
4719 	kattr->mnt_userns = get_user_ns(mnt_userns);
4720 	return 0;
4721 }
4722 
4723 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4724 			     struct mount_kattr *kattr, unsigned int flags)
4725 {
4726 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4727 
4728 	if (flags & AT_NO_AUTOMOUNT)
4729 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4730 	if (flags & AT_SYMLINK_NOFOLLOW)
4731 		lookup_flags &= ~LOOKUP_FOLLOW;
4732 	if (flags & AT_EMPTY_PATH)
4733 		lookup_flags |= LOOKUP_EMPTY;
4734 
4735 	*kattr = (struct mount_kattr) {
4736 		.lookup_flags	= lookup_flags,
4737 		.recurse	= !!(flags & AT_RECURSIVE),
4738 	};
4739 
4740 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4741 		return -EINVAL;
4742 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4743 		return -EINVAL;
4744 	kattr->propagation = attr->propagation;
4745 
4746 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4747 		return -EINVAL;
4748 
4749 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4750 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4751 
4752 	/*
4753 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4754 	 * users wanting to transition to a different atime setting cannot
4755 	 * simply specify the atime setting in @attr_set, but must also
4756 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4757 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4758 	 * @attr_clr and that @attr_set can't have any atime bits set if
4759 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4760 	 */
4761 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4762 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4763 			return -EINVAL;
4764 
4765 		/*
4766 		 * Clear all previous time settings as they are mutually
4767 		 * exclusive.
4768 		 */
4769 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4770 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4771 		case MOUNT_ATTR_RELATIME:
4772 			kattr->attr_set |= MNT_RELATIME;
4773 			break;
4774 		case MOUNT_ATTR_NOATIME:
4775 			kattr->attr_set |= MNT_NOATIME;
4776 			break;
4777 		case MOUNT_ATTR_STRICTATIME:
4778 			break;
4779 		default:
4780 			return -EINVAL;
4781 		}
4782 	} else {
4783 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4784 			return -EINVAL;
4785 	}
4786 
4787 	return build_mount_idmapped(attr, usize, kattr, flags);
4788 }
4789 
4790 static void finish_mount_kattr(struct mount_kattr *kattr)
4791 {
4792 	put_user_ns(kattr->mnt_userns);
4793 	kattr->mnt_userns = NULL;
4794 
4795 	if (kattr->mnt_idmap)
4796 		mnt_idmap_put(kattr->mnt_idmap);
4797 }
4798 
4799 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4800 		unsigned int, flags, struct mount_attr __user *, uattr,
4801 		size_t, usize)
4802 {
4803 	int err;
4804 	struct path target;
4805 	struct mount_attr attr;
4806 	struct mount_kattr kattr;
4807 
4808 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4809 
4810 	if (flags & ~(AT_EMPTY_PATH |
4811 		      AT_RECURSIVE |
4812 		      AT_SYMLINK_NOFOLLOW |
4813 		      AT_NO_AUTOMOUNT))
4814 		return -EINVAL;
4815 
4816 	if (unlikely(usize > PAGE_SIZE))
4817 		return -E2BIG;
4818 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4819 		return -EINVAL;
4820 
4821 	if (!may_mount())
4822 		return -EPERM;
4823 
4824 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4825 	if (err)
4826 		return err;
4827 
4828 	/* Don't bother walking through the mounts if this is a nop. */
4829 	if (attr.attr_set == 0 &&
4830 	    attr.attr_clr == 0 &&
4831 	    attr.propagation == 0)
4832 		return 0;
4833 
4834 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4835 	if (err)
4836 		return err;
4837 
4838 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4839 	if (!err) {
4840 		err = do_mount_setattr(&target, &kattr);
4841 		path_put(&target);
4842 	}
4843 	finish_mount_kattr(&kattr);
4844 	return err;
4845 }
4846 
4847 int show_path(struct seq_file *m, struct dentry *root)
4848 {
4849 	if (root->d_sb->s_op->show_path)
4850 		return root->d_sb->s_op->show_path(m, root);
4851 
4852 	seq_dentry(m, root, " \t\n\\");
4853 	return 0;
4854 }
4855 
4856 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4857 {
4858 	struct mount *mnt = mnt_find_id_at(ns, id);
4859 
4860 	if (!mnt || mnt->mnt_id_unique != id)
4861 		return NULL;
4862 
4863 	return &mnt->mnt;
4864 }
4865 
4866 struct kstatmount {
4867 	struct statmount __user *buf;
4868 	size_t bufsize;
4869 	struct vfsmount *mnt;
4870 	u64 mask;
4871 	struct path root;
4872 	struct statmount sm;
4873 	struct seq_file seq;
4874 };
4875 
4876 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4877 {
4878 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4879 	u64 attr_flags = 0;
4880 
4881 	if (mnt_flags & MNT_READONLY)
4882 		attr_flags |= MOUNT_ATTR_RDONLY;
4883 	if (mnt_flags & MNT_NOSUID)
4884 		attr_flags |= MOUNT_ATTR_NOSUID;
4885 	if (mnt_flags & MNT_NODEV)
4886 		attr_flags |= MOUNT_ATTR_NODEV;
4887 	if (mnt_flags & MNT_NOEXEC)
4888 		attr_flags |= MOUNT_ATTR_NOEXEC;
4889 	if (mnt_flags & MNT_NODIRATIME)
4890 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4891 	if (mnt_flags & MNT_NOSYMFOLLOW)
4892 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4893 
4894 	if (mnt_flags & MNT_NOATIME)
4895 		attr_flags |= MOUNT_ATTR_NOATIME;
4896 	else if (mnt_flags & MNT_RELATIME)
4897 		attr_flags |= MOUNT_ATTR_RELATIME;
4898 	else
4899 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4900 
4901 	if (is_idmapped_mnt(mnt))
4902 		attr_flags |= MOUNT_ATTR_IDMAP;
4903 
4904 	return attr_flags;
4905 }
4906 
4907 static u64 mnt_to_propagation_flags(struct mount *m)
4908 {
4909 	u64 propagation = 0;
4910 
4911 	if (IS_MNT_SHARED(m))
4912 		propagation |= MS_SHARED;
4913 	if (IS_MNT_SLAVE(m))
4914 		propagation |= MS_SLAVE;
4915 	if (IS_MNT_UNBINDABLE(m))
4916 		propagation |= MS_UNBINDABLE;
4917 	if (!propagation)
4918 		propagation |= MS_PRIVATE;
4919 
4920 	return propagation;
4921 }
4922 
4923 static void statmount_sb_basic(struct kstatmount *s)
4924 {
4925 	struct super_block *sb = s->mnt->mnt_sb;
4926 
4927 	s->sm.mask |= STATMOUNT_SB_BASIC;
4928 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4929 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4930 	s->sm.sb_magic = sb->s_magic;
4931 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4932 }
4933 
4934 static void statmount_mnt_basic(struct kstatmount *s)
4935 {
4936 	struct mount *m = real_mount(s->mnt);
4937 
4938 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4939 	s->sm.mnt_id = m->mnt_id_unique;
4940 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4941 	s->sm.mnt_id_old = m->mnt_id;
4942 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4943 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4944 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4945 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4946 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4947 }
4948 
4949 static void statmount_propagate_from(struct kstatmount *s)
4950 {
4951 	struct mount *m = real_mount(s->mnt);
4952 
4953 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4954 	if (IS_MNT_SLAVE(m))
4955 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4956 }
4957 
4958 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4959 {
4960 	int ret;
4961 	size_t start = seq->count;
4962 
4963 	ret = show_path(seq, s->mnt->mnt_root);
4964 	if (ret)
4965 		return ret;
4966 
4967 	if (unlikely(seq_has_overflowed(seq)))
4968 		return -EAGAIN;
4969 
4970 	/*
4971          * Unescape the result. It would be better if supplied string was not
4972          * escaped in the first place, but that's a pretty invasive change.
4973          */
4974 	seq->buf[seq->count] = '\0';
4975 	seq->count = start;
4976 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4977 	return 0;
4978 }
4979 
4980 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4981 {
4982 	struct vfsmount *mnt = s->mnt;
4983 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4984 	int err;
4985 
4986 	err = seq_path_root(seq, &mnt_path, &s->root, "");
4987 	return err == SEQ_SKIP ? 0 : err;
4988 }
4989 
4990 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4991 {
4992 	struct super_block *sb = s->mnt->mnt_sb;
4993 
4994 	seq_puts(seq, sb->s_type->name);
4995 	return 0;
4996 }
4997 
4998 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
4999 {
5000 	struct super_block *sb = s->mnt->mnt_sb;
5001 
5002 	if (sb->s_subtype)
5003 		seq_puts(seq, sb->s_subtype);
5004 }
5005 
5006 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5007 {
5008 	struct super_block *sb = s->mnt->mnt_sb;
5009 	struct mount *r = real_mount(s->mnt);
5010 
5011 	if (sb->s_op->show_devname) {
5012 		size_t start = seq->count;
5013 		int ret;
5014 
5015 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5016 		if (ret)
5017 			return ret;
5018 
5019 		if (unlikely(seq_has_overflowed(seq)))
5020 			return -EAGAIN;
5021 
5022 		/* Unescape the result */
5023 		seq->buf[seq->count] = '\0';
5024 		seq->count = start;
5025 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5026 	} else if (r->mnt_devname) {
5027 		seq_puts(seq, r->mnt_devname);
5028 	}
5029 	return 0;
5030 }
5031 
5032 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5033 {
5034 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5035 	s->sm.mnt_ns_id = ns->seq;
5036 }
5037 
5038 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5039 {
5040 	struct vfsmount *mnt = s->mnt;
5041 	struct super_block *sb = mnt->mnt_sb;
5042 	int err;
5043 
5044 	if (sb->s_op->show_options) {
5045 		size_t start = seq->count;
5046 
5047 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5048 		if (err)
5049 			return err;
5050 
5051 		if (unlikely(seq_has_overflowed(seq)))
5052 			return -EAGAIN;
5053 
5054 		if (seq->count == start)
5055 			return 0;
5056 
5057 		/* skip leading comma */
5058 		memmove(seq->buf + start, seq->buf + start + 1,
5059 			seq->count - start - 1);
5060 		seq->count--;
5061 	}
5062 
5063 	return 0;
5064 }
5065 
5066 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5067 {
5068 	char *buf_end, *opt_end, *src, *dst;
5069 	int count = 0;
5070 
5071 	if (unlikely(seq_has_overflowed(seq)))
5072 		return -EAGAIN;
5073 
5074 	buf_end = seq->buf + seq->count;
5075 	dst = seq->buf + start;
5076 	src = dst + 1;	/* skip initial comma */
5077 
5078 	if (src >= buf_end) {
5079 		seq->count = start;
5080 		return 0;
5081 	}
5082 
5083 	*buf_end = '\0';
5084 	for (; src < buf_end; src = opt_end + 1) {
5085 		opt_end = strchrnul(src, ',');
5086 		*opt_end = '\0';
5087 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5088 		if (WARN_ON_ONCE(++count == INT_MAX))
5089 			return -EOVERFLOW;
5090 	}
5091 	seq->count = dst - 1 - seq->buf;
5092 	return count;
5093 }
5094 
5095 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5096 {
5097 	struct vfsmount *mnt = s->mnt;
5098 	struct super_block *sb = mnt->mnt_sb;
5099 	size_t start = seq->count;
5100 	int err;
5101 
5102 	if (!sb->s_op->show_options)
5103 		return 0;
5104 
5105 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5106 	if (err)
5107 		return err;
5108 
5109 	err = statmount_opt_process(seq, start);
5110 	if (err < 0)
5111 		return err;
5112 
5113 	s->sm.opt_num = err;
5114 	return 0;
5115 }
5116 
5117 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5118 {
5119 	struct vfsmount *mnt = s->mnt;
5120 	struct super_block *sb = mnt->mnt_sb;
5121 	size_t start = seq->count;
5122 	int err;
5123 
5124 	err = security_sb_show_options(seq, sb);
5125 	if (err)
5126 		return err;
5127 
5128 	err = statmount_opt_process(seq, start);
5129 	if (err < 0)
5130 		return err;
5131 
5132 	s->sm.opt_sec_num = err;
5133 	return 0;
5134 }
5135 
5136 static int statmount_string(struct kstatmount *s, u64 flag)
5137 {
5138 	int ret = 0;
5139 	size_t kbufsize;
5140 	struct seq_file *seq = &s->seq;
5141 	struct statmount *sm = &s->sm;
5142 	u32 start = seq->count;
5143 
5144 	switch (flag) {
5145 	case STATMOUNT_FS_TYPE:
5146 		sm->fs_type = start;
5147 		ret = statmount_fs_type(s, seq);
5148 		break;
5149 	case STATMOUNT_MNT_ROOT:
5150 		sm->mnt_root = start;
5151 		ret = statmount_mnt_root(s, seq);
5152 		break;
5153 	case STATMOUNT_MNT_POINT:
5154 		sm->mnt_point = start;
5155 		ret = statmount_mnt_point(s, seq);
5156 		break;
5157 	case STATMOUNT_MNT_OPTS:
5158 		sm->mnt_opts = start;
5159 		ret = statmount_mnt_opts(s, seq);
5160 		break;
5161 	case STATMOUNT_OPT_ARRAY:
5162 		sm->opt_array = start;
5163 		ret = statmount_opt_array(s, seq);
5164 		break;
5165 	case STATMOUNT_OPT_SEC_ARRAY:
5166 		sm->opt_sec_array = start;
5167 		ret = statmount_opt_sec_array(s, seq);
5168 		break;
5169 	case STATMOUNT_FS_SUBTYPE:
5170 		sm->fs_subtype = start;
5171 		statmount_fs_subtype(s, seq);
5172 		break;
5173 	case STATMOUNT_SB_SOURCE:
5174 		sm->sb_source = start;
5175 		ret = statmount_sb_source(s, seq);
5176 		break;
5177 	default:
5178 		WARN_ON_ONCE(true);
5179 		return -EINVAL;
5180 	}
5181 
5182 	/*
5183 	 * If nothing was emitted, return to avoid setting the flag
5184 	 * and terminating the buffer.
5185 	 */
5186 	if (seq->count == start)
5187 		return ret;
5188 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5189 		return -EOVERFLOW;
5190 	if (kbufsize >= s->bufsize)
5191 		return -EOVERFLOW;
5192 
5193 	/* signal a retry */
5194 	if (unlikely(seq_has_overflowed(seq)))
5195 		return -EAGAIN;
5196 
5197 	if (ret)
5198 		return ret;
5199 
5200 	seq->buf[seq->count++] = '\0';
5201 	sm->mask |= flag;
5202 	return 0;
5203 }
5204 
5205 static int copy_statmount_to_user(struct kstatmount *s)
5206 {
5207 	struct statmount *sm = &s->sm;
5208 	struct seq_file *seq = &s->seq;
5209 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5210 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5211 
5212 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5213 		return -EFAULT;
5214 
5215 	/* Return the number of bytes copied to the buffer */
5216 	sm->size = copysize + seq->count;
5217 	if (copy_to_user(s->buf, sm, copysize))
5218 		return -EFAULT;
5219 
5220 	return 0;
5221 }
5222 
5223 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5224 {
5225 	struct rb_node *node;
5226 
5227 	if (reverse)
5228 		node = rb_prev(&curr->mnt_node);
5229 	else
5230 		node = rb_next(&curr->mnt_node);
5231 
5232 	return node_to_mount(node);
5233 }
5234 
5235 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5236 {
5237 	struct mount *first, *child;
5238 
5239 	rwsem_assert_held(&namespace_sem);
5240 
5241 	/* We're looking at our own ns, just use get_fs_root. */
5242 	if (ns == current->nsproxy->mnt_ns) {
5243 		get_fs_root(current->fs, root);
5244 		return 0;
5245 	}
5246 
5247 	/*
5248 	 * We have to find the first mount in our ns and use that, however it
5249 	 * may not exist, so handle that properly.
5250 	 */
5251 	if (RB_EMPTY_ROOT(&ns->mounts))
5252 		return -ENOENT;
5253 
5254 	first = child = ns->root;
5255 	for (;;) {
5256 		child = listmnt_next(child, false);
5257 		if (!child)
5258 			return -ENOENT;
5259 		if (child->mnt_parent == first)
5260 			break;
5261 	}
5262 
5263 	root->mnt = mntget(&child->mnt);
5264 	root->dentry = dget(root->mnt->mnt_root);
5265 	return 0;
5266 }
5267 
5268 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5269 			struct mnt_namespace *ns)
5270 {
5271 	struct path root __free(path_put) = {};
5272 	struct mount *m;
5273 	int err;
5274 
5275 	/* Has the namespace already been emptied? */
5276 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5277 		return -ENOENT;
5278 
5279 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5280 	if (!s->mnt)
5281 		return -ENOENT;
5282 
5283 	err = grab_requested_root(ns, &root);
5284 	if (err)
5285 		return err;
5286 
5287 	/*
5288 	 * Don't trigger audit denials. We just want to determine what
5289 	 * mounts to show users.
5290 	 */
5291 	m = real_mount(s->mnt);
5292 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5293 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5294 		return -EPERM;
5295 
5296 	err = security_sb_statfs(s->mnt->mnt_root);
5297 	if (err)
5298 		return err;
5299 
5300 	s->root = root;
5301 	if (s->mask & STATMOUNT_SB_BASIC)
5302 		statmount_sb_basic(s);
5303 
5304 	if (s->mask & STATMOUNT_MNT_BASIC)
5305 		statmount_mnt_basic(s);
5306 
5307 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5308 		statmount_propagate_from(s);
5309 
5310 	if (s->mask & STATMOUNT_FS_TYPE)
5311 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5312 
5313 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5314 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5315 
5316 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5317 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5318 
5319 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5320 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5321 
5322 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5323 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5324 
5325 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5326 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5327 
5328 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5329 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5330 
5331 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5332 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5333 
5334 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5335 		statmount_mnt_ns_id(s, ns);
5336 
5337 	if (err)
5338 		return err;
5339 
5340 	return 0;
5341 }
5342 
5343 static inline bool retry_statmount(const long ret, size_t *seq_size)
5344 {
5345 	if (likely(ret != -EAGAIN))
5346 		return false;
5347 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5348 		return false;
5349 	if (unlikely(*seq_size > MAX_RW_COUNT))
5350 		return false;
5351 	return true;
5352 }
5353 
5354 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5355 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5356 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5357 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5358 
5359 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5360 			      struct statmount __user *buf, size_t bufsize,
5361 			      size_t seq_size)
5362 {
5363 	if (!access_ok(buf, bufsize))
5364 		return -EFAULT;
5365 
5366 	memset(ks, 0, sizeof(*ks));
5367 	ks->mask = kreq->param;
5368 	ks->buf = buf;
5369 	ks->bufsize = bufsize;
5370 
5371 	if (ks->mask & STATMOUNT_STRING_REQ) {
5372 		if (bufsize == sizeof(ks->sm))
5373 			return -EOVERFLOW;
5374 
5375 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5376 		if (!ks->seq.buf)
5377 			return -ENOMEM;
5378 
5379 		ks->seq.size = seq_size;
5380 	}
5381 
5382 	return 0;
5383 }
5384 
5385 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5386 			   struct mnt_id_req *kreq)
5387 {
5388 	int ret;
5389 	size_t usize;
5390 
5391 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5392 
5393 	ret = get_user(usize, &req->size);
5394 	if (ret)
5395 		return -EFAULT;
5396 	if (unlikely(usize > PAGE_SIZE))
5397 		return -E2BIG;
5398 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5399 		return -EINVAL;
5400 	memset(kreq, 0, sizeof(*kreq));
5401 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5402 	if (ret)
5403 		return ret;
5404 	if (kreq->spare != 0)
5405 		return -EINVAL;
5406 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5407 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5408 		return -EINVAL;
5409 	return 0;
5410 }
5411 
5412 /*
5413  * If the user requested a specific mount namespace id, look that up and return
5414  * that, or if not simply grab a passive reference on our mount namespace and
5415  * return that.
5416  */
5417 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5418 {
5419 	struct mnt_namespace *mnt_ns;
5420 
5421 	if (kreq->mnt_ns_id && kreq->spare)
5422 		return ERR_PTR(-EINVAL);
5423 
5424 	if (kreq->mnt_ns_id)
5425 		return lookup_mnt_ns(kreq->mnt_ns_id);
5426 
5427 	if (kreq->spare) {
5428 		struct ns_common *ns;
5429 
5430 		CLASS(fd, f)(kreq->spare);
5431 		if (fd_empty(f))
5432 			return ERR_PTR(-EBADF);
5433 
5434 		if (!proc_ns_file(fd_file(f)))
5435 			return ERR_PTR(-EINVAL);
5436 
5437 		ns = get_proc_ns(file_inode(fd_file(f)));
5438 		if (ns->ops->type != CLONE_NEWNS)
5439 			return ERR_PTR(-EINVAL);
5440 
5441 		mnt_ns = to_mnt_ns(ns);
5442 	} else {
5443 		mnt_ns = current->nsproxy->mnt_ns;
5444 	}
5445 
5446 	refcount_inc(&mnt_ns->passive);
5447 	return mnt_ns;
5448 }
5449 
5450 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5451 		struct statmount __user *, buf, size_t, bufsize,
5452 		unsigned int, flags)
5453 {
5454 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5455 	struct kstatmount *ks __free(kfree) = NULL;
5456 	struct mnt_id_req kreq;
5457 	/* We currently support retrieval of 3 strings. */
5458 	size_t seq_size = 3 * PATH_MAX;
5459 	int ret;
5460 
5461 	if (flags)
5462 		return -EINVAL;
5463 
5464 	ret = copy_mnt_id_req(req, &kreq);
5465 	if (ret)
5466 		return ret;
5467 
5468 	ns = grab_requested_mnt_ns(&kreq);
5469 	if (!ns)
5470 		return -ENOENT;
5471 
5472 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5473 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5474 		return -ENOENT;
5475 
5476 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5477 	if (!ks)
5478 		return -ENOMEM;
5479 
5480 retry:
5481 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5482 	if (ret)
5483 		return ret;
5484 
5485 	scoped_guard(rwsem_read, &namespace_sem)
5486 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5487 
5488 	if (!ret)
5489 		ret = copy_statmount_to_user(ks);
5490 	kvfree(ks->seq.buf);
5491 	if (retry_statmount(ret, &seq_size))
5492 		goto retry;
5493 	return ret;
5494 }
5495 
5496 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5497 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5498 			    bool reverse)
5499 {
5500 	struct path root __free(path_put) = {};
5501 	struct path orig;
5502 	struct mount *r, *first;
5503 	ssize_t ret;
5504 
5505 	rwsem_assert_held(&namespace_sem);
5506 
5507 	ret = grab_requested_root(ns, &root);
5508 	if (ret)
5509 		return ret;
5510 
5511 	if (mnt_parent_id == LSMT_ROOT) {
5512 		orig = root;
5513 	} else {
5514 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5515 		if (!orig.mnt)
5516 			return -ENOENT;
5517 		orig.dentry = orig.mnt->mnt_root;
5518 	}
5519 
5520 	/*
5521 	 * Don't trigger audit denials. We just want to determine what
5522 	 * mounts to show users.
5523 	 */
5524 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5525 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5526 		return -EPERM;
5527 
5528 	ret = security_sb_statfs(orig.dentry);
5529 	if (ret)
5530 		return ret;
5531 
5532 	if (!last_mnt_id) {
5533 		if (reverse)
5534 			first = node_to_mount(rb_last(&ns->mounts));
5535 		else
5536 			first = node_to_mount(rb_first(&ns->mounts));
5537 	} else {
5538 		if (reverse)
5539 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5540 		else
5541 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5542 	}
5543 
5544 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5545 		if (r->mnt_id_unique == mnt_parent_id)
5546 			continue;
5547 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5548 			continue;
5549 		*mnt_ids = r->mnt_id_unique;
5550 		mnt_ids++;
5551 		nr_mnt_ids--;
5552 		ret++;
5553 	}
5554 	return ret;
5555 }
5556 
5557 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5558 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5559 {
5560 	u64 *kmnt_ids __free(kvfree) = NULL;
5561 	const size_t maxcount = 1000000;
5562 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5563 	struct mnt_id_req kreq;
5564 	u64 last_mnt_id;
5565 	ssize_t ret;
5566 
5567 	if (flags & ~LISTMOUNT_REVERSE)
5568 		return -EINVAL;
5569 
5570 	/*
5571 	 * If the mount namespace really has more than 1 million mounts the
5572 	 * caller must iterate over the mount namespace (and reconsider their
5573 	 * system design...).
5574 	 */
5575 	if (unlikely(nr_mnt_ids > maxcount))
5576 		return -EOVERFLOW;
5577 
5578 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5579 		return -EFAULT;
5580 
5581 	ret = copy_mnt_id_req(req, &kreq);
5582 	if (ret)
5583 		return ret;
5584 
5585 	last_mnt_id = kreq.param;
5586 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5587 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5588 		return -EINVAL;
5589 
5590 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5591 				  GFP_KERNEL_ACCOUNT);
5592 	if (!kmnt_ids)
5593 		return -ENOMEM;
5594 
5595 	ns = grab_requested_mnt_ns(&kreq);
5596 	if (!ns)
5597 		return -ENOENT;
5598 
5599 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5600 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5601 		return -ENOENT;
5602 
5603 	scoped_guard(rwsem_read, &namespace_sem)
5604 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5605 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5606 	if (ret <= 0)
5607 		return ret;
5608 
5609 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5610 		return -EFAULT;
5611 
5612 	return ret;
5613 }
5614 
5615 static void __init init_mount_tree(void)
5616 {
5617 	struct vfsmount *mnt;
5618 	struct mount *m;
5619 	struct mnt_namespace *ns;
5620 	struct path root;
5621 
5622 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5623 	if (IS_ERR(mnt))
5624 		panic("Can't create rootfs");
5625 
5626 	ns = alloc_mnt_ns(&init_user_ns, false);
5627 	if (IS_ERR(ns))
5628 		panic("Can't allocate initial namespace");
5629 	m = real_mount(mnt);
5630 	ns->root = m;
5631 	ns->nr_mounts = 1;
5632 	mnt_add_to_ns(ns, m);
5633 	init_task.nsproxy->mnt_ns = ns;
5634 	get_mnt_ns(ns);
5635 
5636 	root.mnt = mnt;
5637 	root.dentry = mnt->mnt_root;
5638 	mnt->mnt_flags |= MNT_LOCKED;
5639 
5640 	set_fs_pwd(current->fs, &root);
5641 	set_fs_root(current->fs, &root);
5642 
5643 	mnt_ns_tree_add(ns);
5644 }
5645 
5646 void __init mnt_init(void)
5647 {
5648 	int err;
5649 
5650 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5651 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5652 
5653 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5654 				sizeof(struct hlist_head),
5655 				mhash_entries, 19,
5656 				HASH_ZERO,
5657 				&m_hash_shift, &m_hash_mask, 0, 0);
5658 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5659 				sizeof(struct hlist_head),
5660 				mphash_entries, 19,
5661 				HASH_ZERO,
5662 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5663 
5664 	if (!mount_hashtable || !mountpoint_hashtable)
5665 		panic("Failed to allocate mount hash table\n");
5666 
5667 	kernfs_init();
5668 
5669 	err = sysfs_init();
5670 	if (err)
5671 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5672 			__func__, err);
5673 	fs_kobj = kobject_create_and_add("fs", NULL);
5674 	if (!fs_kobj)
5675 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5676 	shmem_init();
5677 	init_rootfs();
5678 	init_mount_tree();
5679 }
5680 
5681 void put_mnt_ns(struct mnt_namespace *ns)
5682 {
5683 	if (!refcount_dec_and_test(&ns->ns.count))
5684 		return;
5685 	drop_collected_mounts(&ns->root->mnt);
5686 	free_mnt_ns(ns);
5687 }
5688 
5689 struct vfsmount *kern_mount(struct file_system_type *type)
5690 {
5691 	struct vfsmount *mnt;
5692 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5693 	if (!IS_ERR(mnt)) {
5694 		/*
5695 		 * it is a longterm mount, don't release mnt until
5696 		 * we unmount before file sys is unregistered
5697 		*/
5698 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5699 	}
5700 	return mnt;
5701 }
5702 EXPORT_SYMBOL_GPL(kern_mount);
5703 
5704 void kern_unmount(struct vfsmount *mnt)
5705 {
5706 	/* release long term mount so mount point can be released */
5707 	if (!IS_ERR(mnt)) {
5708 		mnt_make_shortterm(mnt);
5709 		synchronize_rcu();	/* yecchhh... */
5710 		mntput(mnt);
5711 	}
5712 }
5713 EXPORT_SYMBOL(kern_unmount);
5714 
5715 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5716 {
5717 	unsigned int i;
5718 
5719 	for (i = 0; i < num; i++)
5720 		mnt_make_shortterm(mnt[i]);
5721 	synchronize_rcu_expedited();
5722 	for (i = 0; i < num; i++)
5723 		mntput(mnt[i]);
5724 }
5725 EXPORT_SYMBOL(kern_unmount_array);
5726 
5727 bool our_mnt(struct vfsmount *mnt)
5728 {
5729 	return check_mnt(real_mount(mnt));
5730 }
5731 
5732 bool current_chrooted(void)
5733 {
5734 	/* Does the current process have a non-standard root */
5735 	struct path ns_root;
5736 	struct path fs_root;
5737 	bool chrooted;
5738 
5739 	/* Find the namespace root */
5740 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5741 	ns_root.dentry = ns_root.mnt->mnt_root;
5742 	path_get(&ns_root);
5743 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5744 		;
5745 
5746 	get_fs_root(current->fs, &fs_root);
5747 
5748 	chrooted = !path_equal(&fs_root, &ns_root);
5749 
5750 	path_put(&fs_root);
5751 	path_put(&ns_root);
5752 
5753 	return chrooted;
5754 }
5755 
5756 static bool mnt_already_visible(struct mnt_namespace *ns,
5757 				const struct super_block *sb,
5758 				int *new_mnt_flags)
5759 {
5760 	int new_flags = *new_mnt_flags;
5761 	struct mount *mnt, *n;
5762 	bool visible = false;
5763 
5764 	down_read(&namespace_sem);
5765 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5766 		struct mount *child;
5767 		int mnt_flags;
5768 
5769 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5770 			continue;
5771 
5772 		/* This mount is not fully visible if it's root directory
5773 		 * is not the root directory of the filesystem.
5774 		 */
5775 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5776 			continue;
5777 
5778 		/* A local view of the mount flags */
5779 		mnt_flags = mnt->mnt.mnt_flags;
5780 
5781 		/* Don't miss readonly hidden in the superblock flags */
5782 		if (sb_rdonly(mnt->mnt.mnt_sb))
5783 			mnt_flags |= MNT_LOCK_READONLY;
5784 
5785 		/* Verify the mount flags are equal to or more permissive
5786 		 * than the proposed new mount.
5787 		 */
5788 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5789 		    !(new_flags & MNT_READONLY))
5790 			continue;
5791 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5792 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5793 			continue;
5794 
5795 		/* This mount is not fully visible if there are any
5796 		 * locked child mounts that cover anything except for
5797 		 * empty directories.
5798 		 */
5799 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5800 			struct inode *inode = child->mnt_mountpoint->d_inode;
5801 			/* Only worry about locked mounts */
5802 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5803 				continue;
5804 			/* Is the directory permanently empty? */
5805 			if (!is_empty_dir_inode(inode))
5806 				goto next;
5807 		}
5808 		/* Preserve the locked attributes */
5809 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5810 					       MNT_LOCK_ATIME);
5811 		visible = true;
5812 		goto found;
5813 	next:	;
5814 	}
5815 found:
5816 	up_read(&namespace_sem);
5817 	return visible;
5818 }
5819 
5820 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5821 {
5822 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5823 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5824 	unsigned long s_iflags;
5825 
5826 	if (ns->user_ns == &init_user_ns)
5827 		return false;
5828 
5829 	/* Can this filesystem be too revealing? */
5830 	s_iflags = sb->s_iflags;
5831 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5832 		return false;
5833 
5834 	if ((s_iflags & required_iflags) != required_iflags) {
5835 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5836 			  required_iflags);
5837 		return true;
5838 	}
5839 
5840 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5841 }
5842 
5843 bool mnt_may_suid(struct vfsmount *mnt)
5844 {
5845 	/*
5846 	 * Foreign mounts (accessed via fchdir or through /proc
5847 	 * symlinks) are always treated as if they are nosuid.  This
5848 	 * prevents namespaces from trusting potentially unsafe
5849 	 * suid/sgid bits, file caps, or security labels that originate
5850 	 * in other namespaces.
5851 	 */
5852 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5853 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5854 }
5855 
5856 static struct ns_common *mntns_get(struct task_struct *task)
5857 {
5858 	struct ns_common *ns = NULL;
5859 	struct nsproxy *nsproxy;
5860 
5861 	task_lock(task);
5862 	nsproxy = task->nsproxy;
5863 	if (nsproxy) {
5864 		ns = &nsproxy->mnt_ns->ns;
5865 		get_mnt_ns(to_mnt_ns(ns));
5866 	}
5867 	task_unlock(task);
5868 
5869 	return ns;
5870 }
5871 
5872 static void mntns_put(struct ns_common *ns)
5873 {
5874 	put_mnt_ns(to_mnt_ns(ns));
5875 }
5876 
5877 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5878 {
5879 	struct nsproxy *nsproxy = nsset->nsproxy;
5880 	struct fs_struct *fs = nsset->fs;
5881 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5882 	struct user_namespace *user_ns = nsset->cred->user_ns;
5883 	struct path root;
5884 	int err;
5885 
5886 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5887 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5888 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5889 		return -EPERM;
5890 
5891 	if (is_anon_ns(mnt_ns))
5892 		return -EINVAL;
5893 
5894 	if (fs->users != 1)
5895 		return -EINVAL;
5896 
5897 	get_mnt_ns(mnt_ns);
5898 	old_mnt_ns = nsproxy->mnt_ns;
5899 	nsproxy->mnt_ns = mnt_ns;
5900 
5901 	/* Find the root */
5902 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5903 				"/", LOOKUP_DOWN, &root);
5904 	if (err) {
5905 		/* revert to old namespace */
5906 		nsproxy->mnt_ns = old_mnt_ns;
5907 		put_mnt_ns(mnt_ns);
5908 		return err;
5909 	}
5910 
5911 	put_mnt_ns(old_mnt_ns);
5912 
5913 	/* Update the pwd and root */
5914 	set_fs_pwd(fs, &root);
5915 	set_fs_root(fs, &root);
5916 
5917 	path_put(&root);
5918 	return 0;
5919 }
5920 
5921 static struct user_namespace *mntns_owner(struct ns_common *ns)
5922 {
5923 	return to_mnt_ns(ns)->user_ns;
5924 }
5925 
5926 const struct proc_ns_operations mntns_operations = {
5927 	.name		= "mnt",
5928 	.type		= CLONE_NEWNS,
5929 	.get		= mntns_get,
5930 	.put		= mntns_put,
5931 	.install	= mntns_install,
5932 	.owner		= mntns_owner,
5933 };
5934 
5935 #ifdef CONFIG_SYSCTL
5936 static struct ctl_table fs_namespace_sysctls[] = {
5937 	{
5938 		.procname	= "mount-max",
5939 		.data		= &sysctl_mount_max,
5940 		.maxlen		= sizeof(unsigned int),
5941 		.mode		= 0644,
5942 		.proc_handler	= proc_dointvec_minmax,
5943 		.extra1		= SYSCTL_ONE,
5944 	},
5945 };
5946 
5947 static int __init init_fs_namespace_sysctls(void)
5948 {
5949 	register_sysctl_init("fs", fs_namespace_sysctls);
5950 	return 0;
5951 }
5952 fs_initcall(init_fs_namespace_sysctls);
5953 
5954 #endif /* CONFIG_SYSCTL */
5955