1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/quotaops.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/security.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <asm/uaccess.h> 29 #include <asm/unistd.h> 30 #include "pnode.h" 31 32 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 33 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 34 35 static int event; 36 37 static struct list_head *mount_hashtable __read_mostly; 38 static int hash_mask __read_mostly, hash_bits __read_mostly; 39 static struct kmem_cache *mnt_cache __read_mostly; 40 static struct rw_semaphore namespace_sem; 41 42 /* /sys/fs */ 43 decl_subsys(fs, NULL, NULL); 44 EXPORT_SYMBOL_GPL(fs_subsys); 45 46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 47 { 48 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 49 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 50 tmp = tmp + (tmp >> hash_bits); 51 return tmp & hash_mask; 52 } 53 54 struct vfsmount *alloc_vfsmnt(const char *name) 55 { 56 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL); 57 if (mnt) { 58 memset(mnt, 0, sizeof(struct vfsmount)); 59 atomic_set(&mnt->mnt_count, 1); 60 INIT_LIST_HEAD(&mnt->mnt_hash); 61 INIT_LIST_HEAD(&mnt->mnt_child); 62 INIT_LIST_HEAD(&mnt->mnt_mounts); 63 INIT_LIST_HEAD(&mnt->mnt_list); 64 INIT_LIST_HEAD(&mnt->mnt_expire); 65 INIT_LIST_HEAD(&mnt->mnt_share); 66 INIT_LIST_HEAD(&mnt->mnt_slave_list); 67 INIT_LIST_HEAD(&mnt->mnt_slave); 68 if (name) { 69 int size = strlen(name) + 1; 70 char *newname = kmalloc(size, GFP_KERNEL); 71 if (newname) { 72 memcpy(newname, name, size); 73 mnt->mnt_devname = newname; 74 } 75 } 76 } 77 return mnt; 78 } 79 80 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 81 { 82 mnt->mnt_sb = sb; 83 mnt->mnt_root = dget(sb->s_root); 84 return 0; 85 } 86 87 EXPORT_SYMBOL(simple_set_mnt); 88 89 void free_vfsmnt(struct vfsmount *mnt) 90 { 91 kfree(mnt->mnt_devname); 92 kmem_cache_free(mnt_cache, mnt); 93 } 94 95 /* 96 * find the first or last mount at @dentry on vfsmount @mnt depending on 97 * @dir. If @dir is set return the first mount else return the last mount. 98 */ 99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 100 int dir) 101 { 102 struct list_head *head = mount_hashtable + hash(mnt, dentry); 103 struct list_head *tmp = head; 104 struct vfsmount *p, *found = NULL; 105 106 for (;;) { 107 tmp = dir ? tmp->next : tmp->prev; 108 p = NULL; 109 if (tmp == head) 110 break; 111 p = list_entry(tmp, struct vfsmount, mnt_hash); 112 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 113 found = p; 114 break; 115 } 116 } 117 return found; 118 } 119 120 /* 121 * lookup_mnt increments the ref count before returning 122 * the vfsmount struct. 123 */ 124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 125 { 126 struct vfsmount *child_mnt; 127 spin_lock(&vfsmount_lock); 128 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 129 mntget(child_mnt); 130 spin_unlock(&vfsmount_lock); 131 return child_mnt; 132 } 133 134 static inline int check_mnt(struct vfsmount *mnt) 135 { 136 return mnt->mnt_ns == current->nsproxy->mnt_ns; 137 } 138 139 static void touch_mnt_namespace(struct mnt_namespace *ns) 140 { 141 if (ns) { 142 ns->event = ++event; 143 wake_up_interruptible(&ns->poll); 144 } 145 } 146 147 static void __touch_mnt_namespace(struct mnt_namespace *ns) 148 { 149 if (ns && ns->event != event) { 150 ns->event = event; 151 wake_up_interruptible(&ns->poll); 152 } 153 } 154 155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd) 156 { 157 old_nd->dentry = mnt->mnt_mountpoint; 158 old_nd->mnt = mnt->mnt_parent; 159 mnt->mnt_parent = mnt; 160 mnt->mnt_mountpoint = mnt->mnt_root; 161 list_del_init(&mnt->mnt_child); 162 list_del_init(&mnt->mnt_hash); 163 old_nd->dentry->d_mounted--; 164 } 165 166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 167 struct vfsmount *child_mnt) 168 { 169 child_mnt->mnt_parent = mntget(mnt); 170 child_mnt->mnt_mountpoint = dget(dentry); 171 dentry->d_mounted++; 172 } 173 174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd) 175 { 176 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt); 177 list_add_tail(&mnt->mnt_hash, mount_hashtable + 178 hash(nd->mnt, nd->dentry)); 179 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts); 180 } 181 182 /* 183 * the caller must hold vfsmount_lock 184 */ 185 static void commit_tree(struct vfsmount *mnt) 186 { 187 struct vfsmount *parent = mnt->mnt_parent; 188 struct vfsmount *m; 189 LIST_HEAD(head); 190 struct mnt_namespace *n = parent->mnt_ns; 191 192 BUG_ON(parent == mnt); 193 194 list_add_tail(&head, &mnt->mnt_list); 195 list_for_each_entry(m, &head, mnt_list) 196 m->mnt_ns = n; 197 list_splice(&head, n->list.prev); 198 199 list_add_tail(&mnt->mnt_hash, mount_hashtable + 200 hash(parent, mnt->mnt_mountpoint)); 201 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 202 touch_mnt_namespace(n); 203 } 204 205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 206 { 207 struct list_head *next = p->mnt_mounts.next; 208 if (next == &p->mnt_mounts) { 209 while (1) { 210 if (p == root) 211 return NULL; 212 next = p->mnt_child.next; 213 if (next != &p->mnt_parent->mnt_mounts) 214 break; 215 p = p->mnt_parent; 216 } 217 } 218 return list_entry(next, struct vfsmount, mnt_child); 219 } 220 221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 222 { 223 struct list_head *prev = p->mnt_mounts.prev; 224 while (prev != &p->mnt_mounts) { 225 p = list_entry(prev, struct vfsmount, mnt_child); 226 prev = p->mnt_mounts.prev; 227 } 228 return p; 229 } 230 231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 232 int flag) 233 { 234 struct super_block *sb = old->mnt_sb; 235 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 236 237 if (mnt) { 238 mnt->mnt_flags = old->mnt_flags; 239 atomic_inc(&sb->s_active); 240 mnt->mnt_sb = sb; 241 mnt->mnt_root = dget(root); 242 mnt->mnt_mountpoint = mnt->mnt_root; 243 mnt->mnt_parent = mnt; 244 245 if (flag & CL_SLAVE) { 246 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 247 mnt->mnt_master = old; 248 CLEAR_MNT_SHARED(mnt); 249 } else { 250 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 251 list_add(&mnt->mnt_share, &old->mnt_share); 252 if (IS_MNT_SLAVE(old)) 253 list_add(&mnt->mnt_slave, &old->mnt_slave); 254 mnt->mnt_master = old->mnt_master; 255 } 256 if (flag & CL_MAKE_SHARED) 257 set_mnt_shared(mnt); 258 259 /* stick the duplicate mount on the same expiry list 260 * as the original if that was on one */ 261 if (flag & CL_EXPIRE) { 262 spin_lock(&vfsmount_lock); 263 if (!list_empty(&old->mnt_expire)) 264 list_add(&mnt->mnt_expire, &old->mnt_expire); 265 spin_unlock(&vfsmount_lock); 266 } 267 } 268 return mnt; 269 } 270 271 static inline void __mntput(struct vfsmount *mnt) 272 { 273 struct super_block *sb = mnt->mnt_sb; 274 dput(mnt->mnt_root); 275 free_vfsmnt(mnt); 276 deactivate_super(sb); 277 } 278 279 void mntput_no_expire(struct vfsmount *mnt) 280 { 281 repeat: 282 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 283 if (likely(!mnt->mnt_pinned)) { 284 spin_unlock(&vfsmount_lock); 285 __mntput(mnt); 286 return; 287 } 288 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 289 mnt->mnt_pinned = 0; 290 spin_unlock(&vfsmount_lock); 291 acct_auto_close_mnt(mnt); 292 security_sb_umount_close(mnt); 293 goto repeat; 294 } 295 } 296 297 EXPORT_SYMBOL(mntput_no_expire); 298 299 void mnt_pin(struct vfsmount *mnt) 300 { 301 spin_lock(&vfsmount_lock); 302 mnt->mnt_pinned++; 303 spin_unlock(&vfsmount_lock); 304 } 305 306 EXPORT_SYMBOL(mnt_pin); 307 308 void mnt_unpin(struct vfsmount *mnt) 309 { 310 spin_lock(&vfsmount_lock); 311 if (mnt->mnt_pinned) { 312 atomic_inc(&mnt->mnt_count); 313 mnt->mnt_pinned--; 314 } 315 spin_unlock(&vfsmount_lock); 316 } 317 318 EXPORT_SYMBOL(mnt_unpin); 319 320 /* iterator */ 321 static void *m_start(struct seq_file *m, loff_t *pos) 322 { 323 struct mnt_namespace *n = m->private; 324 struct list_head *p; 325 loff_t l = *pos; 326 327 down_read(&namespace_sem); 328 list_for_each(p, &n->list) 329 if (!l--) 330 return list_entry(p, struct vfsmount, mnt_list); 331 return NULL; 332 } 333 334 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 335 { 336 struct mnt_namespace *n = m->private; 337 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next; 338 (*pos)++; 339 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list); 340 } 341 342 static void m_stop(struct seq_file *m, void *v) 343 { 344 up_read(&namespace_sem); 345 } 346 347 static inline void mangle(struct seq_file *m, const char *s) 348 { 349 seq_escape(m, s, " \t\n\\"); 350 } 351 352 static int show_vfsmnt(struct seq_file *m, void *v) 353 { 354 struct vfsmount *mnt = v; 355 int err = 0; 356 static struct proc_fs_info { 357 int flag; 358 char *str; 359 } fs_info[] = { 360 { MS_SYNCHRONOUS, ",sync" }, 361 { MS_DIRSYNC, ",dirsync" }, 362 { MS_MANDLOCK, ",mand" }, 363 { 0, NULL } 364 }; 365 static struct proc_fs_info mnt_info[] = { 366 { MNT_NOSUID, ",nosuid" }, 367 { MNT_NODEV, ",nodev" }, 368 { MNT_NOEXEC, ",noexec" }, 369 { MNT_NOATIME, ",noatime" }, 370 { MNT_NODIRATIME, ",nodiratime" }, 371 { 0, NULL } 372 }; 373 struct proc_fs_info *fs_infop; 374 375 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 376 seq_putc(m, ' '); 377 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 378 seq_putc(m, ' '); 379 mangle(m, mnt->mnt_sb->s_type->name); 380 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw"); 381 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 382 if (mnt->mnt_sb->s_flags & fs_infop->flag) 383 seq_puts(m, fs_infop->str); 384 } 385 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 386 if (mnt->mnt_flags & fs_infop->flag) 387 seq_puts(m, fs_infop->str); 388 } 389 if (mnt->mnt_sb->s_op->show_options) 390 err = mnt->mnt_sb->s_op->show_options(m, mnt); 391 seq_puts(m, " 0 0\n"); 392 return err; 393 } 394 395 struct seq_operations mounts_op = { 396 .start = m_start, 397 .next = m_next, 398 .stop = m_stop, 399 .show = show_vfsmnt 400 }; 401 402 static int show_vfsstat(struct seq_file *m, void *v) 403 { 404 struct vfsmount *mnt = v; 405 int err = 0; 406 407 /* device */ 408 if (mnt->mnt_devname) { 409 seq_puts(m, "device "); 410 mangle(m, mnt->mnt_devname); 411 } else 412 seq_puts(m, "no device"); 413 414 /* mount point */ 415 seq_puts(m, " mounted on "); 416 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 417 seq_putc(m, ' '); 418 419 /* file system type */ 420 seq_puts(m, "with fstype "); 421 mangle(m, mnt->mnt_sb->s_type->name); 422 423 /* optional statistics */ 424 if (mnt->mnt_sb->s_op->show_stats) { 425 seq_putc(m, ' '); 426 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 427 } 428 429 seq_putc(m, '\n'); 430 return err; 431 } 432 433 struct seq_operations mountstats_op = { 434 .start = m_start, 435 .next = m_next, 436 .stop = m_stop, 437 .show = show_vfsstat, 438 }; 439 440 /** 441 * may_umount_tree - check if a mount tree is busy 442 * @mnt: root of mount tree 443 * 444 * This is called to check if a tree of mounts has any 445 * open files, pwds, chroots or sub mounts that are 446 * busy. 447 */ 448 int may_umount_tree(struct vfsmount *mnt) 449 { 450 int actual_refs = 0; 451 int minimum_refs = 0; 452 struct vfsmount *p; 453 454 spin_lock(&vfsmount_lock); 455 for (p = mnt; p; p = next_mnt(p, mnt)) { 456 actual_refs += atomic_read(&p->mnt_count); 457 minimum_refs += 2; 458 } 459 spin_unlock(&vfsmount_lock); 460 461 if (actual_refs > minimum_refs) 462 return 0; 463 464 return 1; 465 } 466 467 EXPORT_SYMBOL(may_umount_tree); 468 469 /** 470 * may_umount - check if a mount point is busy 471 * @mnt: root of mount 472 * 473 * This is called to check if a mount point has any 474 * open files, pwds, chroots or sub mounts. If the 475 * mount has sub mounts this will return busy 476 * regardless of whether the sub mounts are busy. 477 * 478 * Doesn't take quota and stuff into account. IOW, in some cases it will 479 * give false negatives. The main reason why it's here is that we need 480 * a non-destructive way to look for easily umountable filesystems. 481 */ 482 int may_umount(struct vfsmount *mnt) 483 { 484 int ret = 1; 485 spin_lock(&vfsmount_lock); 486 if (propagate_mount_busy(mnt, 2)) 487 ret = 0; 488 spin_unlock(&vfsmount_lock); 489 return ret; 490 } 491 492 EXPORT_SYMBOL(may_umount); 493 494 void release_mounts(struct list_head *head) 495 { 496 struct vfsmount *mnt; 497 while (!list_empty(head)) { 498 mnt = list_entry(head->next, struct vfsmount, mnt_hash); 499 list_del_init(&mnt->mnt_hash); 500 if (mnt->mnt_parent != mnt) { 501 struct dentry *dentry; 502 struct vfsmount *m; 503 spin_lock(&vfsmount_lock); 504 dentry = mnt->mnt_mountpoint; 505 m = mnt->mnt_parent; 506 mnt->mnt_mountpoint = mnt->mnt_root; 507 mnt->mnt_parent = mnt; 508 spin_unlock(&vfsmount_lock); 509 dput(dentry); 510 mntput(m); 511 } 512 mntput(mnt); 513 } 514 } 515 516 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 517 { 518 struct vfsmount *p; 519 520 for (p = mnt; p; p = next_mnt(p, mnt)) 521 list_move(&p->mnt_hash, kill); 522 523 if (propagate) 524 propagate_umount(kill); 525 526 list_for_each_entry(p, kill, mnt_hash) { 527 list_del_init(&p->mnt_expire); 528 list_del_init(&p->mnt_list); 529 __touch_mnt_namespace(p->mnt_ns); 530 p->mnt_ns = NULL; 531 list_del_init(&p->mnt_child); 532 if (p->mnt_parent != p) 533 p->mnt_mountpoint->d_mounted--; 534 change_mnt_propagation(p, MS_PRIVATE); 535 } 536 } 537 538 static int do_umount(struct vfsmount *mnt, int flags) 539 { 540 struct super_block *sb = mnt->mnt_sb; 541 int retval; 542 LIST_HEAD(umount_list); 543 544 retval = security_sb_umount(mnt, flags); 545 if (retval) 546 return retval; 547 548 /* 549 * Allow userspace to request a mountpoint be expired rather than 550 * unmounting unconditionally. Unmount only happens if: 551 * (1) the mark is already set (the mark is cleared by mntput()) 552 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 553 */ 554 if (flags & MNT_EXPIRE) { 555 if (mnt == current->fs->rootmnt || 556 flags & (MNT_FORCE | MNT_DETACH)) 557 return -EINVAL; 558 559 if (atomic_read(&mnt->mnt_count) != 2) 560 return -EBUSY; 561 562 if (!xchg(&mnt->mnt_expiry_mark, 1)) 563 return -EAGAIN; 564 } 565 566 /* 567 * If we may have to abort operations to get out of this 568 * mount, and they will themselves hold resources we must 569 * allow the fs to do things. In the Unix tradition of 570 * 'Gee thats tricky lets do it in userspace' the umount_begin 571 * might fail to complete on the first run through as other tasks 572 * must return, and the like. Thats for the mount program to worry 573 * about for the moment. 574 */ 575 576 lock_kernel(); 577 if (sb->s_op->umount_begin) 578 sb->s_op->umount_begin(mnt, flags); 579 unlock_kernel(); 580 581 /* 582 * No sense to grab the lock for this test, but test itself looks 583 * somewhat bogus. Suggestions for better replacement? 584 * Ho-hum... In principle, we might treat that as umount + switch 585 * to rootfs. GC would eventually take care of the old vfsmount. 586 * Actually it makes sense, especially if rootfs would contain a 587 * /reboot - static binary that would close all descriptors and 588 * call reboot(9). Then init(8) could umount root and exec /reboot. 589 */ 590 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) { 591 /* 592 * Special case for "unmounting" root ... 593 * we just try to remount it readonly. 594 */ 595 down_write(&sb->s_umount); 596 if (!(sb->s_flags & MS_RDONLY)) { 597 lock_kernel(); 598 DQUOT_OFF(sb); 599 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 600 unlock_kernel(); 601 } 602 up_write(&sb->s_umount); 603 return retval; 604 } 605 606 down_write(&namespace_sem); 607 spin_lock(&vfsmount_lock); 608 event++; 609 610 retval = -EBUSY; 611 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 612 if (!list_empty(&mnt->mnt_list)) 613 umount_tree(mnt, 1, &umount_list); 614 retval = 0; 615 } 616 spin_unlock(&vfsmount_lock); 617 if (retval) 618 security_sb_umount_busy(mnt); 619 up_write(&namespace_sem); 620 release_mounts(&umount_list); 621 return retval; 622 } 623 624 /* 625 * Now umount can handle mount points as well as block devices. 626 * This is important for filesystems which use unnamed block devices. 627 * 628 * We now support a flag for forced unmount like the other 'big iron' 629 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 630 */ 631 632 asmlinkage long sys_umount(char __user * name, int flags) 633 { 634 struct nameidata nd; 635 int retval; 636 637 retval = __user_walk(name, LOOKUP_FOLLOW, &nd); 638 if (retval) 639 goto out; 640 retval = -EINVAL; 641 if (nd.dentry != nd.mnt->mnt_root) 642 goto dput_and_out; 643 if (!check_mnt(nd.mnt)) 644 goto dput_and_out; 645 646 retval = -EPERM; 647 if (!capable(CAP_SYS_ADMIN)) 648 goto dput_and_out; 649 650 retval = do_umount(nd.mnt, flags); 651 dput_and_out: 652 path_release_on_umount(&nd); 653 out: 654 return retval; 655 } 656 657 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 658 659 /* 660 * The 2.0 compatible umount. No flags. 661 */ 662 asmlinkage long sys_oldumount(char __user * name) 663 { 664 return sys_umount(name, 0); 665 } 666 667 #endif 668 669 static int mount_is_safe(struct nameidata *nd) 670 { 671 if (capable(CAP_SYS_ADMIN)) 672 return 0; 673 return -EPERM; 674 #ifdef notyet 675 if (S_ISLNK(nd->dentry->d_inode->i_mode)) 676 return -EPERM; 677 if (nd->dentry->d_inode->i_mode & S_ISVTX) { 678 if (current->uid != nd->dentry->d_inode->i_uid) 679 return -EPERM; 680 } 681 if (vfs_permission(nd, MAY_WRITE)) 682 return -EPERM; 683 return 0; 684 #endif 685 } 686 687 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry) 688 { 689 while (1) { 690 if (d == dentry) 691 return 1; 692 if (d == NULL || d == d->d_parent) 693 return 0; 694 d = d->d_parent; 695 } 696 } 697 698 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 699 int flag) 700 { 701 struct vfsmount *res, *p, *q, *r, *s; 702 struct nameidata nd; 703 704 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 705 return NULL; 706 707 res = q = clone_mnt(mnt, dentry, flag); 708 if (!q) 709 goto Enomem; 710 q->mnt_mountpoint = mnt->mnt_mountpoint; 711 712 p = mnt; 713 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 714 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry)) 715 continue; 716 717 for (s = r; s; s = next_mnt(s, r)) { 718 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 719 s = skip_mnt_tree(s); 720 continue; 721 } 722 while (p != s->mnt_parent) { 723 p = p->mnt_parent; 724 q = q->mnt_parent; 725 } 726 p = s; 727 nd.mnt = q; 728 nd.dentry = p->mnt_mountpoint; 729 q = clone_mnt(p, p->mnt_root, flag); 730 if (!q) 731 goto Enomem; 732 spin_lock(&vfsmount_lock); 733 list_add_tail(&q->mnt_list, &res->mnt_list); 734 attach_mnt(q, &nd); 735 spin_unlock(&vfsmount_lock); 736 } 737 } 738 return res; 739 Enomem: 740 if (res) { 741 LIST_HEAD(umount_list); 742 spin_lock(&vfsmount_lock); 743 umount_tree(res, 0, &umount_list); 744 spin_unlock(&vfsmount_lock); 745 release_mounts(&umount_list); 746 } 747 return NULL; 748 } 749 750 /* 751 * @source_mnt : mount tree to be attached 752 * @nd : place the mount tree @source_mnt is attached 753 * @parent_nd : if non-null, detach the source_mnt from its parent and 754 * store the parent mount and mountpoint dentry. 755 * (done when source_mnt is moved) 756 * 757 * NOTE: in the table below explains the semantics when a source mount 758 * of a given type is attached to a destination mount of a given type. 759 * --------------------------------------------------------------------------- 760 * | BIND MOUNT OPERATION | 761 * |************************************************************************** 762 * | source-->| shared | private | slave | unbindable | 763 * | dest | | | | | 764 * | | | | | | | 765 * | v | | | | | 766 * |************************************************************************** 767 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 768 * | | | | | | 769 * |non-shared| shared (+) | private | slave (*) | invalid | 770 * *************************************************************************** 771 * A bind operation clones the source mount and mounts the clone on the 772 * destination mount. 773 * 774 * (++) the cloned mount is propagated to all the mounts in the propagation 775 * tree of the destination mount and the cloned mount is added to 776 * the peer group of the source mount. 777 * (+) the cloned mount is created under the destination mount and is marked 778 * as shared. The cloned mount is added to the peer group of the source 779 * mount. 780 * (+++) the mount is propagated to all the mounts in the propagation tree 781 * of the destination mount and the cloned mount is made slave 782 * of the same master as that of the source mount. The cloned mount 783 * is marked as 'shared and slave'. 784 * (*) the cloned mount is made a slave of the same master as that of the 785 * source mount. 786 * 787 * --------------------------------------------------------------------------- 788 * | MOVE MOUNT OPERATION | 789 * |************************************************************************** 790 * | source-->| shared | private | slave | unbindable | 791 * | dest | | | | | 792 * | | | | | | | 793 * | v | | | | | 794 * |************************************************************************** 795 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 796 * | | | | | | 797 * |non-shared| shared (+*) | private | slave (*) | unbindable | 798 * *************************************************************************** 799 * 800 * (+) the mount is moved to the destination. And is then propagated to 801 * all the mounts in the propagation tree of the destination mount. 802 * (+*) the mount is moved to the destination. 803 * (+++) the mount is moved to the destination and is then propagated to 804 * all the mounts belonging to the destination mount's propagation tree. 805 * the mount is marked as 'shared and slave'. 806 * (*) the mount continues to be a slave at the new location. 807 * 808 * if the source mount is a tree, the operations explained above is 809 * applied to each mount in the tree. 810 * Must be called without spinlocks held, since this function can sleep 811 * in allocations. 812 */ 813 static int attach_recursive_mnt(struct vfsmount *source_mnt, 814 struct nameidata *nd, struct nameidata *parent_nd) 815 { 816 LIST_HEAD(tree_list); 817 struct vfsmount *dest_mnt = nd->mnt; 818 struct dentry *dest_dentry = nd->dentry; 819 struct vfsmount *child, *p; 820 821 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list)) 822 return -EINVAL; 823 824 if (IS_MNT_SHARED(dest_mnt)) { 825 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 826 set_mnt_shared(p); 827 } 828 829 spin_lock(&vfsmount_lock); 830 if (parent_nd) { 831 detach_mnt(source_mnt, parent_nd); 832 attach_mnt(source_mnt, nd); 833 touch_mnt_namespace(current->nsproxy->mnt_ns); 834 } else { 835 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 836 commit_tree(source_mnt); 837 } 838 839 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 840 list_del_init(&child->mnt_hash); 841 commit_tree(child); 842 } 843 spin_unlock(&vfsmount_lock); 844 return 0; 845 } 846 847 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) 848 { 849 int err; 850 if (mnt->mnt_sb->s_flags & MS_NOUSER) 851 return -EINVAL; 852 853 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 854 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 855 return -ENOTDIR; 856 857 err = -ENOENT; 858 mutex_lock(&nd->dentry->d_inode->i_mutex); 859 if (IS_DEADDIR(nd->dentry->d_inode)) 860 goto out_unlock; 861 862 err = security_sb_check_sb(mnt, nd); 863 if (err) 864 goto out_unlock; 865 866 err = -ENOENT; 867 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) 868 err = attach_recursive_mnt(mnt, nd, NULL); 869 out_unlock: 870 mutex_unlock(&nd->dentry->d_inode->i_mutex); 871 if (!err) 872 security_sb_post_addmount(mnt, nd); 873 return err; 874 } 875 876 /* 877 * recursively change the type of the mountpoint. 878 */ 879 static int do_change_type(struct nameidata *nd, int flag) 880 { 881 struct vfsmount *m, *mnt = nd->mnt; 882 int recurse = flag & MS_REC; 883 int type = flag & ~MS_REC; 884 885 if (nd->dentry != nd->mnt->mnt_root) 886 return -EINVAL; 887 888 down_write(&namespace_sem); 889 spin_lock(&vfsmount_lock); 890 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 891 change_mnt_propagation(m, type); 892 spin_unlock(&vfsmount_lock); 893 up_write(&namespace_sem); 894 return 0; 895 } 896 897 /* 898 * do loopback mount. 899 */ 900 static int do_loopback(struct nameidata *nd, char *old_name, int recurse) 901 { 902 struct nameidata old_nd; 903 struct vfsmount *mnt = NULL; 904 int err = mount_is_safe(nd); 905 if (err) 906 return err; 907 if (!old_name || !*old_name) 908 return -EINVAL; 909 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 910 if (err) 911 return err; 912 913 down_write(&namespace_sem); 914 err = -EINVAL; 915 if (IS_MNT_UNBINDABLE(old_nd.mnt)) 916 goto out; 917 918 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 919 goto out; 920 921 err = -ENOMEM; 922 if (recurse) 923 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0); 924 else 925 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0); 926 927 if (!mnt) 928 goto out; 929 930 err = graft_tree(mnt, nd); 931 if (err) { 932 LIST_HEAD(umount_list); 933 spin_lock(&vfsmount_lock); 934 umount_tree(mnt, 0, &umount_list); 935 spin_unlock(&vfsmount_lock); 936 release_mounts(&umount_list); 937 } 938 939 out: 940 up_write(&namespace_sem); 941 path_release(&old_nd); 942 return err; 943 } 944 945 /* 946 * change filesystem flags. dir should be a physical root of filesystem. 947 * If you've mounted a non-root directory somewhere and want to do remount 948 * on it - tough luck. 949 */ 950 static int do_remount(struct nameidata *nd, int flags, int mnt_flags, 951 void *data) 952 { 953 int err; 954 struct super_block *sb = nd->mnt->mnt_sb; 955 956 if (!capable(CAP_SYS_ADMIN)) 957 return -EPERM; 958 959 if (!check_mnt(nd->mnt)) 960 return -EINVAL; 961 962 if (nd->dentry != nd->mnt->mnt_root) 963 return -EINVAL; 964 965 down_write(&sb->s_umount); 966 err = do_remount_sb(sb, flags, data, 0); 967 if (!err) 968 nd->mnt->mnt_flags = mnt_flags; 969 up_write(&sb->s_umount); 970 if (!err) 971 security_sb_post_remount(nd->mnt, flags, data); 972 return err; 973 } 974 975 static inline int tree_contains_unbindable(struct vfsmount *mnt) 976 { 977 struct vfsmount *p; 978 for (p = mnt; p; p = next_mnt(p, mnt)) { 979 if (IS_MNT_UNBINDABLE(p)) 980 return 1; 981 } 982 return 0; 983 } 984 985 static int do_move_mount(struct nameidata *nd, char *old_name) 986 { 987 struct nameidata old_nd, parent_nd; 988 struct vfsmount *p; 989 int err = 0; 990 if (!capable(CAP_SYS_ADMIN)) 991 return -EPERM; 992 if (!old_name || !*old_name) 993 return -EINVAL; 994 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 995 if (err) 996 return err; 997 998 down_write(&namespace_sem); 999 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1000 ; 1001 err = -EINVAL; 1002 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 1003 goto out; 1004 1005 err = -ENOENT; 1006 mutex_lock(&nd->dentry->d_inode->i_mutex); 1007 if (IS_DEADDIR(nd->dentry->d_inode)) 1008 goto out1; 1009 1010 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry)) 1011 goto out1; 1012 1013 err = -EINVAL; 1014 if (old_nd.dentry != old_nd.mnt->mnt_root) 1015 goto out1; 1016 1017 if (old_nd.mnt == old_nd.mnt->mnt_parent) 1018 goto out1; 1019 1020 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 1021 S_ISDIR(old_nd.dentry->d_inode->i_mode)) 1022 goto out1; 1023 /* 1024 * Don't move a mount residing in a shared parent. 1025 */ 1026 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent)) 1027 goto out1; 1028 /* 1029 * Don't move a mount tree containing unbindable mounts to a destination 1030 * mount which is shared. 1031 */ 1032 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt)) 1033 goto out1; 1034 err = -ELOOP; 1035 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent) 1036 if (p == old_nd.mnt) 1037 goto out1; 1038 1039 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd))) 1040 goto out1; 1041 1042 spin_lock(&vfsmount_lock); 1043 /* if the mount is moved, it should no longer be expire 1044 * automatically */ 1045 list_del_init(&old_nd.mnt->mnt_expire); 1046 spin_unlock(&vfsmount_lock); 1047 out1: 1048 mutex_unlock(&nd->dentry->d_inode->i_mutex); 1049 out: 1050 up_write(&namespace_sem); 1051 if (!err) 1052 path_release(&parent_nd); 1053 path_release(&old_nd); 1054 return err; 1055 } 1056 1057 /* 1058 * create a new mount for userspace and request it to be added into the 1059 * namespace's tree 1060 */ 1061 static int do_new_mount(struct nameidata *nd, char *type, int flags, 1062 int mnt_flags, char *name, void *data) 1063 { 1064 struct vfsmount *mnt; 1065 1066 if (!type || !memchr(type, 0, PAGE_SIZE)) 1067 return -EINVAL; 1068 1069 /* we need capabilities... */ 1070 if (!capable(CAP_SYS_ADMIN)) 1071 return -EPERM; 1072 1073 mnt = do_kern_mount(type, flags, name, data); 1074 if (IS_ERR(mnt)) 1075 return PTR_ERR(mnt); 1076 1077 return do_add_mount(mnt, nd, mnt_flags, NULL); 1078 } 1079 1080 /* 1081 * add a mount into a namespace's mount tree 1082 * - provide the option of adding the new mount to an expiration list 1083 */ 1084 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, 1085 int mnt_flags, struct list_head *fslist) 1086 { 1087 int err; 1088 1089 down_write(&namespace_sem); 1090 /* Something was mounted here while we slept */ 1091 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1092 ; 1093 err = -EINVAL; 1094 if (!check_mnt(nd->mnt)) 1095 goto unlock; 1096 1097 /* Refuse the same filesystem on the same mount point */ 1098 err = -EBUSY; 1099 if (nd->mnt->mnt_sb == newmnt->mnt_sb && 1100 nd->mnt->mnt_root == nd->dentry) 1101 goto unlock; 1102 1103 err = -EINVAL; 1104 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1105 goto unlock; 1106 1107 newmnt->mnt_flags = mnt_flags; 1108 if ((err = graft_tree(newmnt, nd))) 1109 goto unlock; 1110 1111 if (fslist) { 1112 /* add to the specified expiration list */ 1113 spin_lock(&vfsmount_lock); 1114 list_add_tail(&newmnt->mnt_expire, fslist); 1115 spin_unlock(&vfsmount_lock); 1116 } 1117 up_write(&namespace_sem); 1118 return 0; 1119 1120 unlock: 1121 up_write(&namespace_sem); 1122 mntput(newmnt); 1123 return err; 1124 } 1125 1126 EXPORT_SYMBOL_GPL(do_add_mount); 1127 1128 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts, 1129 struct list_head *umounts) 1130 { 1131 spin_lock(&vfsmount_lock); 1132 1133 /* 1134 * Check if mount is still attached, if not, let whoever holds it deal 1135 * with the sucker 1136 */ 1137 if (mnt->mnt_parent == mnt) { 1138 spin_unlock(&vfsmount_lock); 1139 return; 1140 } 1141 1142 /* 1143 * Check that it is still dead: the count should now be 2 - as 1144 * contributed by the vfsmount parent and the mntget above 1145 */ 1146 if (!propagate_mount_busy(mnt, 2)) { 1147 /* delete from the namespace */ 1148 touch_mnt_namespace(mnt->mnt_ns); 1149 list_del_init(&mnt->mnt_list); 1150 mnt->mnt_ns = NULL; 1151 umount_tree(mnt, 1, umounts); 1152 spin_unlock(&vfsmount_lock); 1153 } else { 1154 /* 1155 * Someone brought it back to life whilst we didn't have any 1156 * locks held so return it to the expiration list 1157 */ 1158 list_add_tail(&mnt->mnt_expire, mounts); 1159 spin_unlock(&vfsmount_lock); 1160 } 1161 } 1162 1163 /* 1164 * go through the vfsmounts we've just consigned to the graveyard to 1165 * - check that they're still dead 1166 * - delete the vfsmount from the appropriate namespace under lock 1167 * - dispose of the corpse 1168 */ 1169 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts) 1170 { 1171 struct mnt_namespace *ns; 1172 struct vfsmount *mnt; 1173 1174 while (!list_empty(graveyard)) { 1175 LIST_HEAD(umounts); 1176 mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire); 1177 list_del_init(&mnt->mnt_expire); 1178 1179 /* don't do anything if the namespace is dead - all the 1180 * vfsmounts from it are going away anyway */ 1181 ns = mnt->mnt_ns; 1182 if (!ns || !ns->root) 1183 continue; 1184 get_mnt_ns(ns); 1185 1186 spin_unlock(&vfsmount_lock); 1187 down_write(&namespace_sem); 1188 expire_mount(mnt, mounts, &umounts); 1189 up_write(&namespace_sem); 1190 release_mounts(&umounts); 1191 mntput(mnt); 1192 put_mnt_ns(ns); 1193 spin_lock(&vfsmount_lock); 1194 } 1195 } 1196 1197 /* 1198 * process a list of expirable mountpoints with the intent of discarding any 1199 * mountpoints that aren't in use and haven't been touched since last we came 1200 * here 1201 */ 1202 void mark_mounts_for_expiry(struct list_head *mounts) 1203 { 1204 struct vfsmount *mnt, *next; 1205 LIST_HEAD(graveyard); 1206 1207 if (list_empty(mounts)) 1208 return; 1209 1210 spin_lock(&vfsmount_lock); 1211 1212 /* extract from the expiration list every vfsmount that matches the 1213 * following criteria: 1214 * - only referenced by its parent vfsmount 1215 * - still marked for expiry (marked on the last call here; marks are 1216 * cleared by mntput()) 1217 */ 1218 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1219 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1220 atomic_read(&mnt->mnt_count) != 1) 1221 continue; 1222 1223 mntget(mnt); 1224 list_move(&mnt->mnt_expire, &graveyard); 1225 } 1226 1227 expire_mount_list(&graveyard, mounts); 1228 1229 spin_unlock(&vfsmount_lock); 1230 } 1231 1232 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1233 1234 /* 1235 * Ripoff of 'select_parent()' 1236 * 1237 * search the list of submounts for a given mountpoint, and move any 1238 * shrinkable submounts to the 'graveyard' list. 1239 */ 1240 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1241 { 1242 struct vfsmount *this_parent = parent; 1243 struct list_head *next; 1244 int found = 0; 1245 1246 repeat: 1247 next = this_parent->mnt_mounts.next; 1248 resume: 1249 while (next != &this_parent->mnt_mounts) { 1250 struct list_head *tmp = next; 1251 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1252 1253 next = tmp->next; 1254 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1255 continue; 1256 /* 1257 * Descend a level if the d_mounts list is non-empty. 1258 */ 1259 if (!list_empty(&mnt->mnt_mounts)) { 1260 this_parent = mnt; 1261 goto repeat; 1262 } 1263 1264 if (!propagate_mount_busy(mnt, 1)) { 1265 mntget(mnt); 1266 list_move_tail(&mnt->mnt_expire, graveyard); 1267 found++; 1268 } 1269 } 1270 /* 1271 * All done at this level ... ascend and resume the search 1272 */ 1273 if (this_parent != parent) { 1274 next = this_parent->mnt_child.next; 1275 this_parent = this_parent->mnt_parent; 1276 goto resume; 1277 } 1278 return found; 1279 } 1280 1281 /* 1282 * process a list of expirable mountpoints with the intent of discarding any 1283 * submounts of a specific parent mountpoint 1284 */ 1285 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts) 1286 { 1287 LIST_HEAD(graveyard); 1288 int found; 1289 1290 spin_lock(&vfsmount_lock); 1291 1292 /* extract submounts of 'mountpoint' from the expiration list */ 1293 while ((found = select_submounts(mountpoint, &graveyard)) != 0) 1294 expire_mount_list(&graveyard, mounts); 1295 1296 spin_unlock(&vfsmount_lock); 1297 } 1298 1299 EXPORT_SYMBOL_GPL(shrink_submounts); 1300 1301 /* 1302 * Some copy_from_user() implementations do not return the exact number of 1303 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1304 * Note that this function differs from copy_from_user() in that it will oops 1305 * on bad values of `to', rather than returning a short copy. 1306 */ 1307 static long exact_copy_from_user(void *to, const void __user * from, 1308 unsigned long n) 1309 { 1310 char *t = to; 1311 const char __user *f = from; 1312 char c; 1313 1314 if (!access_ok(VERIFY_READ, from, n)) 1315 return n; 1316 1317 while (n) { 1318 if (__get_user(c, f)) { 1319 memset(t, 0, n); 1320 break; 1321 } 1322 *t++ = c; 1323 f++; 1324 n--; 1325 } 1326 return n; 1327 } 1328 1329 int copy_mount_options(const void __user * data, unsigned long *where) 1330 { 1331 int i; 1332 unsigned long page; 1333 unsigned long size; 1334 1335 *where = 0; 1336 if (!data) 1337 return 0; 1338 1339 if (!(page = __get_free_page(GFP_KERNEL))) 1340 return -ENOMEM; 1341 1342 /* We only care that *some* data at the address the user 1343 * gave us is valid. Just in case, we'll zero 1344 * the remainder of the page. 1345 */ 1346 /* copy_from_user cannot cross TASK_SIZE ! */ 1347 size = TASK_SIZE - (unsigned long)data; 1348 if (size > PAGE_SIZE) 1349 size = PAGE_SIZE; 1350 1351 i = size - exact_copy_from_user((void *)page, data, size); 1352 if (!i) { 1353 free_page(page); 1354 return -EFAULT; 1355 } 1356 if (i != PAGE_SIZE) 1357 memset((char *)page + i, 0, PAGE_SIZE - i); 1358 *where = page; 1359 return 0; 1360 } 1361 1362 /* 1363 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1364 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1365 * 1366 * data is a (void *) that can point to any structure up to 1367 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1368 * information (or be NULL). 1369 * 1370 * Pre-0.97 versions of mount() didn't have a flags word. 1371 * When the flags word was introduced its top half was required 1372 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1373 * Therefore, if this magic number is present, it carries no information 1374 * and must be discarded. 1375 */ 1376 long do_mount(char *dev_name, char *dir_name, char *type_page, 1377 unsigned long flags, void *data_page) 1378 { 1379 struct nameidata nd; 1380 int retval = 0; 1381 int mnt_flags = 0; 1382 1383 /* Discard magic */ 1384 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1385 flags &= ~MS_MGC_MSK; 1386 1387 /* Basic sanity checks */ 1388 1389 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1390 return -EINVAL; 1391 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1392 return -EINVAL; 1393 1394 if (data_page) 1395 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1396 1397 /* Separate the per-mountpoint flags */ 1398 if (flags & MS_NOSUID) 1399 mnt_flags |= MNT_NOSUID; 1400 if (flags & MS_NODEV) 1401 mnt_flags |= MNT_NODEV; 1402 if (flags & MS_NOEXEC) 1403 mnt_flags |= MNT_NOEXEC; 1404 if (flags & MS_NOATIME) 1405 mnt_flags |= MNT_NOATIME; 1406 if (flags & MS_NODIRATIME) 1407 mnt_flags |= MNT_NODIRATIME; 1408 1409 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1410 MS_NOATIME | MS_NODIRATIME); 1411 1412 /* ... and get the mountpoint */ 1413 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); 1414 if (retval) 1415 return retval; 1416 1417 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); 1418 if (retval) 1419 goto dput_out; 1420 1421 if (flags & MS_REMOUNT) 1422 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, 1423 data_page); 1424 else if (flags & MS_BIND) 1425 retval = do_loopback(&nd, dev_name, flags & MS_REC); 1426 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1427 retval = do_change_type(&nd, flags); 1428 else if (flags & MS_MOVE) 1429 retval = do_move_mount(&nd, dev_name); 1430 else 1431 retval = do_new_mount(&nd, type_page, flags, mnt_flags, 1432 dev_name, data_page); 1433 dput_out: 1434 path_release(&nd); 1435 return retval; 1436 } 1437 1438 /* 1439 * Allocate a new namespace structure and populate it with contents 1440 * copied from the namespace of the passed in task structure. 1441 */ 1442 struct mnt_namespace *dup_mnt_ns(struct task_struct *tsk, 1443 struct fs_struct *fs) 1444 { 1445 struct mnt_namespace *mnt_ns = tsk->nsproxy->mnt_ns; 1446 struct mnt_namespace *new_ns; 1447 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; 1448 struct vfsmount *p, *q; 1449 1450 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1451 if (!new_ns) 1452 return NULL; 1453 1454 atomic_set(&new_ns->count, 1); 1455 INIT_LIST_HEAD(&new_ns->list); 1456 init_waitqueue_head(&new_ns->poll); 1457 new_ns->event = 0; 1458 1459 down_write(&namespace_sem); 1460 /* First pass: copy the tree topology */ 1461 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1462 CL_COPY_ALL | CL_EXPIRE); 1463 if (!new_ns->root) { 1464 up_write(&namespace_sem); 1465 kfree(new_ns); 1466 return NULL; 1467 } 1468 spin_lock(&vfsmount_lock); 1469 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 1470 spin_unlock(&vfsmount_lock); 1471 1472 /* 1473 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 1474 * as belonging to new namespace. We have already acquired a private 1475 * fs_struct, so tsk->fs->lock is not needed. 1476 */ 1477 p = mnt_ns->root; 1478 q = new_ns->root; 1479 while (p) { 1480 q->mnt_ns = new_ns; 1481 if (fs) { 1482 if (p == fs->rootmnt) { 1483 rootmnt = p; 1484 fs->rootmnt = mntget(q); 1485 } 1486 if (p == fs->pwdmnt) { 1487 pwdmnt = p; 1488 fs->pwdmnt = mntget(q); 1489 } 1490 if (p == fs->altrootmnt) { 1491 altrootmnt = p; 1492 fs->altrootmnt = mntget(q); 1493 } 1494 } 1495 p = next_mnt(p, mnt_ns->root); 1496 q = next_mnt(q, new_ns->root); 1497 } 1498 up_write(&namespace_sem); 1499 1500 if (rootmnt) 1501 mntput(rootmnt); 1502 if (pwdmnt) 1503 mntput(pwdmnt); 1504 if (altrootmnt) 1505 mntput(altrootmnt); 1506 1507 return new_ns; 1508 } 1509 1510 int copy_mnt_ns(int flags, struct task_struct *tsk) 1511 { 1512 struct mnt_namespace *ns = tsk->nsproxy->mnt_ns; 1513 struct mnt_namespace *new_ns; 1514 int err = 0; 1515 1516 if (!ns) 1517 return 0; 1518 1519 get_mnt_ns(ns); 1520 1521 if (!(flags & CLONE_NEWNS)) 1522 return 0; 1523 1524 if (!capable(CAP_SYS_ADMIN)) { 1525 err = -EPERM; 1526 goto out; 1527 } 1528 1529 new_ns = dup_mnt_ns(tsk, tsk->fs); 1530 if (!new_ns) { 1531 err = -ENOMEM; 1532 goto out; 1533 } 1534 1535 tsk->nsproxy->mnt_ns = new_ns; 1536 1537 out: 1538 put_mnt_ns(ns); 1539 return err; 1540 } 1541 1542 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, 1543 char __user * type, unsigned long flags, 1544 void __user * data) 1545 { 1546 int retval; 1547 unsigned long data_page; 1548 unsigned long type_page; 1549 unsigned long dev_page; 1550 char *dir_page; 1551 1552 retval = copy_mount_options(type, &type_page); 1553 if (retval < 0) 1554 return retval; 1555 1556 dir_page = getname(dir_name); 1557 retval = PTR_ERR(dir_page); 1558 if (IS_ERR(dir_page)) 1559 goto out1; 1560 1561 retval = copy_mount_options(dev_name, &dev_page); 1562 if (retval < 0) 1563 goto out2; 1564 1565 retval = copy_mount_options(data, &data_page); 1566 if (retval < 0) 1567 goto out3; 1568 1569 lock_kernel(); 1570 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 1571 flags, (void *)data_page); 1572 unlock_kernel(); 1573 free_page(data_page); 1574 1575 out3: 1576 free_page(dev_page); 1577 out2: 1578 putname(dir_page); 1579 out1: 1580 free_page(type_page); 1581 return retval; 1582 } 1583 1584 /* 1585 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 1586 * It can block. Requires the big lock held. 1587 */ 1588 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt, 1589 struct dentry *dentry) 1590 { 1591 struct dentry *old_root; 1592 struct vfsmount *old_rootmnt; 1593 write_lock(&fs->lock); 1594 old_root = fs->root; 1595 old_rootmnt = fs->rootmnt; 1596 fs->rootmnt = mntget(mnt); 1597 fs->root = dget(dentry); 1598 write_unlock(&fs->lock); 1599 if (old_root) { 1600 dput(old_root); 1601 mntput(old_rootmnt); 1602 } 1603 } 1604 1605 /* 1606 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 1607 * It can block. Requires the big lock held. 1608 */ 1609 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt, 1610 struct dentry *dentry) 1611 { 1612 struct dentry *old_pwd; 1613 struct vfsmount *old_pwdmnt; 1614 1615 write_lock(&fs->lock); 1616 old_pwd = fs->pwd; 1617 old_pwdmnt = fs->pwdmnt; 1618 fs->pwdmnt = mntget(mnt); 1619 fs->pwd = dget(dentry); 1620 write_unlock(&fs->lock); 1621 1622 if (old_pwd) { 1623 dput(old_pwd); 1624 mntput(old_pwdmnt); 1625 } 1626 } 1627 1628 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd) 1629 { 1630 struct task_struct *g, *p; 1631 struct fs_struct *fs; 1632 1633 read_lock(&tasklist_lock); 1634 do_each_thread(g, p) { 1635 task_lock(p); 1636 fs = p->fs; 1637 if (fs) { 1638 atomic_inc(&fs->count); 1639 task_unlock(p); 1640 if (fs->root == old_nd->dentry 1641 && fs->rootmnt == old_nd->mnt) 1642 set_fs_root(fs, new_nd->mnt, new_nd->dentry); 1643 if (fs->pwd == old_nd->dentry 1644 && fs->pwdmnt == old_nd->mnt) 1645 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry); 1646 put_fs_struct(fs); 1647 } else 1648 task_unlock(p); 1649 } while_each_thread(g, p); 1650 read_unlock(&tasklist_lock); 1651 } 1652 1653 /* 1654 * pivot_root Semantics: 1655 * Moves the root file system of the current process to the directory put_old, 1656 * makes new_root as the new root file system of the current process, and sets 1657 * root/cwd of all processes which had them on the current root to new_root. 1658 * 1659 * Restrictions: 1660 * The new_root and put_old must be directories, and must not be on the 1661 * same file system as the current process root. The put_old must be 1662 * underneath new_root, i.e. adding a non-zero number of /.. to the string 1663 * pointed to by put_old must yield the same directory as new_root. No other 1664 * file system may be mounted on put_old. After all, new_root is a mountpoint. 1665 * 1666 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 1667 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 1668 * in this situation. 1669 * 1670 * Notes: 1671 * - we don't move root/cwd if they are not at the root (reason: if something 1672 * cared enough to change them, it's probably wrong to force them elsewhere) 1673 * - it's okay to pick a root that isn't the root of a file system, e.g. 1674 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 1675 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 1676 * first. 1677 */ 1678 asmlinkage long sys_pivot_root(const char __user * new_root, 1679 const char __user * put_old) 1680 { 1681 struct vfsmount *tmp; 1682 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd; 1683 int error; 1684 1685 if (!capable(CAP_SYS_ADMIN)) 1686 return -EPERM; 1687 1688 lock_kernel(); 1689 1690 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, 1691 &new_nd); 1692 if (error) 1693 goto out0; 1694 error = -EINVAL; 1695 if (!check_mnt(new_nd.mnt)) 1696 goto out1; 1697 1698 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd); 1699 if (error) 1700 goto out1; 1701 1702 error = security_sb_pivotroot(&old_nd, &new_nd); 1703 if (error) { 1704 path_release(&old_nd); 1705 goto out1; 1706 } 1707 1708 read_lock(¤t->fs->lock); 1709 user_nd.mnt = mntget(current->fs->rootmnt); 1710 user_nd.dentry = dget(current->fs->root); 1711 read_unlock(¤t->fs->lock); 1712 down_write(&namespace_sem); 1713 mutex_lock(&old_nd.dentry->d_inode->i_mutex); 1714 error = -EINVAL; 1715 if (IS_MNT_SHARED(old_nd.mnt) || 1716 IS_MNT_SHARED(new_nd.mnt->mnt_parent) || 1717 IS_MNT_SHARED(user_nd.mnt->mnt_parent)) 1718 goto out2; 1719 if (!check_mnt(user_nd.mnt)) 1720 goto out2; 1721 error = -ENOENT; 1722 if (IS_DEADDIR(new_nd.dentry->d_inode)) 1723 goto out2; 1724 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry)) 1725 goto out2; 1726 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry)) 1727 goto out2; 1728 error = -EBUSY; 1729 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt) 1730 goto out2; /* loop, on the same file system */ 1731 error = -EINVAL; 1732 if (user_nd.mnt->mnt_root != user_nd.dentry) 1733 goto out2; /* not a mountpoint */ 1734 if (user_nd.mnt->mnt_parent == user_nd.mnt) 1735 goto out2; /* not attached */ 1736 if (new_nd.mnt->mnt_root != new_nd.dentry) 1737 goto out2; /* not a mountpoint */ 1738 if (new_nd.mnt->mnt_parent == new_nd.mnt) 1739 goto out2; /* not attached */ 1740 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */ 1741 spin_lock(&vfsmount_lock); 1742 if (tmp != new_nd.mnt) { 1743 for (;;) { 1744 if (tmp->mnt_parent == tmp) 1745 goto out3; /* already mounted on put_old */ 1746 if (tmp->mnt_parent == new_nd.mnt) 1747 break; 1748 tmp = tmp->mnt_parent; 1749 } 1750 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry)) 1751 goto out3; 1752 } else if (!is_subdir(old_nd.dentry, new_nd.dentry)) 1753 goto out3; 1754 detach_mnt(new_nd.mnt, &parent_nd); 1755 detach_mnt(user_nd.mnt, &root_parent); 1756 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */ 1757 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */ 1758 touch_mnt_namespace(current->nsproxy->mnt_ns); 1759 spin_unlock(&vfsmount_lock); 1760 chroot_fs_refs(&user_nd, &new_nd); 1761 security_sb_post_pivotroot(&user_nd, &new_nd); 1762 error = 0; 1763 path_release(&root_parent); 1764 path_release(&parent_nd); 1765 out2: 1766 mutex_unlock(&old_nd.dentry->d_inode->i_mutex); 1767 up_write(&namespace_sem); 1768 path_release(&user_nd); 1769 path_release(&old_nd); 1770 out1: 1771 path_release(&new_nd); 1772 out0: 1773 unlock_kernel(); 1774 return error; 1775 out3: 1776 spin_unlock(&vfsmount_lock); 1777 goto out2; 1778 } 1779 1780 static void __init init_mount_tree(void) 1781 { 1782 struct vfsmount *mnt; 1783 struct mnt_namespace *ns; 1784 1785 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 1786 if (IS_ERR(mnt)) 1787 panic("Can't create rootfs"); 1788 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 1789 if (!ns) 1790 panic("Can't allocate initial namespace"); 1791 atomic_set(&ns->count, 1); 1792 INIT_LIST_HEAD(&ns->list); 1793 init_waitqueue_head(&ns->poll); 1794 ns->event = 0; 1795 list_add(&mnt->mnt_list, &ns->list); 1796 ns->root = mnt; 1797 mnt->mnt_ns = ns; 1798 1799 init_task.nsproxy->mnt_ns = ns; 1800 get_mnt_ns(ns); 1801 1802 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root); 1803 set_fs_root(current->fs, ns->root, ns->root->mnt_root); 1804 } 1805 1806 void __init mnt_init(unsigned long mempages) 1807 { 1808 struct list_head *d; 1809 unsigned int nr_hash; 1810 int i; 1811 int err; 1812 1813 init_rwsem(&namespace_sem); 1814 1815 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 1816 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL); 1817 1818 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 1819 1820 if (!mount_hashtable) 1821 panic("Failed to allocate mount hash table\n"); 1822 1823 /* 1824 * Find the power-of-two list-heads that can fit into the allocation.. 1825 * We don't guarantee that "sizeof(struct list_head)" is necessarily 1826 * a power-of-two. 1827 */ 1828 nr_hash = PAGE_SIZE / sizeof(struct list_head); 1829 hash_bits = 0; 1830 do { 1831 hash_bits++; 1832 } while ((nr_hash >> hash_bits) != 0); 1833 hash_bits--; 1834 1835 /* 1836 * Re-calculate the actual number of entries and the mask 1837 * from the number of bits we can fit. 1838 */ 1839 nr_hash = 1UL << hash_bits; 1840 hash_mask = nr_hash - 1; 1841 1842 printk("Mount-cache hash table entries: %d\n", nr_hash); 1843 1844 /* And initialize the newly allocated array */ 1845 d = mount_hashtable; 1846 i = nr_hash; 1847 do { 1848 INIT_LIST_HEAD(d); 1849 d++; 1850 i--; 1851 } while (i); 1852 err = sysfs_init(); 1853 if (err) 1854 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 1855 __FUNCTION__, err); 1856 err = subsystem_register(&fs_subsys); 1857 if (err) 1858 printk(KERN_WARNING "%s: subsystem_register error: %d\n", 1859 __FUNCTION__, err); 1860 init_rootfs(); 1861 init_mount_tree(); 1862 } 1863 1864 void __put_mnt_ns(struct mnt_namespace *ns) 1865 { 1866 struct vfsmount *root = ns->root; 1867 LIST_HEAD(umount_list); 1868 ns->root = NULL; 1869 spin_unlock(&vfsmount_lock); 1870 down_write(&namespace_sem); 1871 spin_lock(&vfsmount_lock); 1872 umount_tree(root, 0, &umount_list); 1873 spin_unlock(&vfsmount_lock); 1874 up_write(&namespace_sem); 1875 release_mounts(&umount_list); 1876 kfree(ns); 1877 } 1878