1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __ro_after_init; 43 static unsigned int m_hash_shift __ro_after_init; 44 static unsigned int mp_hash_mask __ro_after_init; 45 static unsigned int mp_hash_shift __ro_after_init; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __ro_after_init; 72 static struct hlist_head *mountpoint_hashtable __ro_after_init; 73 static struct kmem_cache *mnt_cache __ro_after_init; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 struct mnt_idmap *mnt_idmap; 86 }; 87 88 /* /sys/fs */ 89 struct kobject *fs_kobj __ro_after_init; 90 EXPORT_SYMBOL_GPL(fs_kobj); 91 92 /* 93 * vfsmount lock may be taken for read to prevent changes to the 94 * vfsmount hash, ie. during mountpoint lookups or walking back 95 * up the tree. 96 * 97 * It should be taken for write in all cases where the vfsmount 98 * tree or hash is modified or when a vfsmount structure is modified. 99 */ 100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 101 102 static inline void lock_mount_hash(void) 103 { 104 write_seqlock(&mount_lock); 105 } 106 107 static inline void unlock_mount_hash(void) 108 { 109 write_sequnlock(&mount_lock); 110 } 111 112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 113 { 114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 116 tmp = tmp + (tmp >> m_hash_shift); 117 return &mount_hashtable[tmp & m_hash_mask]; 118 } 119 120 static inline struct hlist_head *mp_hash(struct dentry *dentry) 121 { 122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 123 tmp = tmp + (tmp >> mp_hash_shift); 124 return &mountpoint_hashtable[tmp & mp_hash_mask]; 125 } 126 127 static int mnt_alloc_id(struct mount *mnt) 128 { 129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 130 131 if (res < 0) 132 return res; 133 mnt->mnt_id = res; 134 return 0; 135 } 136 137 static void mnt_free_id(struct mount *mnt) 138 { 139 ida_free(&mnt_id_ida, mnt->mnt_id); 140 } 141 142 /* 143 * Allocate a new peer group ID 144 */ 145 static int mnt_alloc_group_id(struct mount *mnt) 146 { 147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 148 149 if (res < 0) 150 return res; 151 mnt->mnt_group_id = res; 152 return 0; 153 } 154 155 /* 156 * Release a peer group ID 157 */ 158 void mnt_release_group_id(struct mount *mnt) 159 { 160 ida_free(&mnt_group_ida, mnt->mnt_group_id); 161 mnt->mnt_group_id = 0; 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_add_count(struct mount *mnt, int n) 168 { 169 #ifdef CONFIG_SMP 170 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 171 #else 172 preempt_disable(); 173 mnt->mnt_count += n; 174 preempt_enable(); 175 #endif 176 } 177 178 /* 179 * vfsmount lock must be held for write 180 */ 181 int mnt_get_count(struct mount *mnt) 182 { 183 #ifdef CONFIG_SMP 184 int count = 0; 185 int cpu; 186 187 for_each_possible_cpu(cpu) { 188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 189 } 190 191 return count; 192 #else 193 return mnt->mnt_count; 194 #endif 195 } 196 197 static struct mount *alloc_vfsmnt(const char *name) 198 { 199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 200 if (mnt) { 201 int err; 202 203 err = mnt_alloc_id(mnt); 204 if (err) 205 goto out_free_cache; 206 207 if (name) { 208 mnt->mnt_devname = kstrdup_const(name, 209 GFP_KERNEL_ACCOUNT); 210 if (!mnt->mnt_devname) 211 goto out_free_id; 212 } 213 214 #ifdef CONFIG_SMP 215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 216 if (!mnt->mnt_pcp) 217 goto out_free_devname; 218 219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 220 #else 221 mnt->mnt_count = 1; 222 mnt->mnt_writers = 0; 223 #endif 224 225 INIT_HLIST_NODE(&mnt->mnt_hash); 226 INIT_LIST_HEAD(&mnt->mnt_child); 227 INIT_LIST_HEAD(&mnt->mnt_mounts); 228 INIT_LIST_HEAD(&mnt->mnt_list); 229 INIT_LIST_HEAD(&mnt->mnt_expire); 230 INIT_LIST_HEAD(&mnt->mnt_share); 231 INIT_LIST_HEAD(&mnt->mnt_slave_list); 232 INIT_LIST_HEAD(&mnt->mnt_slave); 233 INIT_HLIST_NODE(&mnt->mnt_mp_list); 234 INIT_LIST_HEAD(&mnt->mnt_umounting); 235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 236 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree_const(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 bool __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 273 } 274 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 275 276 static inline void mnt_inc_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 280 #else 281 mnt->mnt_writers++; 282 #endif 283 } 284 285 static inline void mnt_dec_writers(struct mount *mnt) 286 { 287 #ifdef CONFIG_SMP 288 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 289 #else 290 mnt->mnt_writers--; 291 #endif 292 } 293 294 static unsigned int mnt_get_writers(struct mount *mnt) 295 { 296 #ifdef CONFIG_SMP 297 unsigned int count = 0; 298 int cpu; 299 300 for_each_possible_cpu(cpu) { 301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 302 } 303 304 return count; 305 #else 306 return mnt->mnt_writers; 307 #endif 308 } 309 310 static int mnt_is_readonly(struct vfsmount *mnt) 311 { 312 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 313 return 1; 314 /* 315 * The barrier pairs with the barrier in sb_start_ro_state_change() 316 * making sure if we don't see s_readonly_remount set yet, we also will 317 * not see any superblock / mount flag changes done by remount. 318 * It also pairs with the barrier in sb_end_ro_state_change() 319 * assuring that if we see s_readonly_remount already cleared, we will 320 * see the values of superblock / mount flags updated by remount. 321 */ 322 smp_rmb(); 323 return __mnt_is_readonly(mnt); 324 } 325 326 /* 327 * Most r/o & frozen checks on a fs are for operations that take discrete 328 * amounts of time, like a write() or unlink(). We must keep track of when 329 * those operations start (for permission checks) and when they end, so that we 330 * can determine when writes are able to occur to a filesystem. 331 */ 332 /** 333 * mnt_get_write_access - get write access to a mount without freeze protection 334 * @m: the mount on which to take a write 335 * 336 * This tells the low-level filesystem that a write is about to be performed to 337 * it, and makes sure that writes are allowed (mnt it read-write) before 338 * returning success. This operation does not protect against filesystem being 339 * frozen. When the write operation is finished, mnt_put_write_access() must be 340 * called. This is effectively a refcount. 341 */ 342 int mnt_get_write_access(struct vfsmount *m) 343 { 344 struct mount *mnt = real_mount(m); 345 int ret = 0; 346 347 preempt_disable(); 348 mnt_inc_writers(mnt); 349 /* 350 * The store to mnt_inc_writers must be visible before we pass 351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 352 * incremented count after it has set MNT_WRITE_HOLD. 353 */ 354 smp_mb(); 355 might_lock(&mount_lock.lock); 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 357 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 358 cpu_relax(); 359 } else { 360 /* 361 * This prevents priority inversion, if the task 362 * setting MNT_WRITE_HOLD got preempted on a remote 363 * CPU, and it prevents life lock if the task setting 364 * MNT_WRITE_HOLD has a lower priority and is bound to 365 * the same CPU as the task that is spinning here. 366 */ 367 preempt_enable(); 368 lock_mount_hash(); 369 unlock_mount_hash(); 370 preempt_disable(); 371 } 372 } 373 /* 374 * The barrier pairs with the barrier sb_start_ro_state_change() making 375 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 376 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 377 * mnt_is_readonly() and bail in case we are racing with remount 378 * read-only. 379 */ 380 smp_rmb(); 381 if (mnt_is_readonly(m)) { 382 mnt_dec_writers(mnt); 383 ret = -EROFS; 384 } 385 preempt_enable(); 386 387 return ret; 388 } 389 EXPORT_SYMBOL_GPL(mnt_get_write_access); 390 391 /** 392 * mnt_want_write - get write access to a mount 393 * @m: the mount on which to take a write 394 * 395 * This tells the low-level filesystem that a write is about to be performed to 396 * it, and makes sure that writes are allowed (mount is read-write, filesystem 397 * is not frozen) before returning success. When the write operation is 398 * finished, mnt_drop_write() must be called. This is effectively a refcount. 399 */ 400 int mnt_want_write(struct vfsmount *m) 401 { 402 int ret; 403 404 sb_start_write(m->mnt_sb); 405 ret = mnt_get_write_access(m); 406 if (ret) 407 sb_end_write(m->mnt_sb); 408 return ret; 409 } 410 EXPORT_SYMBOL_GPL(mnt_want_write); 411 412 /** 413 * mnt_get_write_access_file - get write access to a file's mount 414 * @file: the file who's mount on which to take a write 415 * 416 * This is like mnt_get_write_access, but if @file is already open for write it 417 * skips incrementing mnt_writers (since the open file already has a reference) 418 * and instead only does the check for emergency r/o remounts. This must be 419 * paired with mnt_put_write_access_file. 420 */ 421 int mnt_get_write_access_file(struct file *file) 422 { 423 if (file->f_mode & FMODE_WRITER) { 424 /* 425 * Superblock may have become readonly while there are still 426 * writable fd's, e.g. due to a fs error with errors=remount-ro 427 */ 428 if (__mnt_is_readonly(file->f_path.mnt)) 429 return -EROFS; 430 return 0; 431 } 432 return mnt_get_write_access(file->f_path.mnt); 433 } 434 435 /** 436 * mnt_want_write_file - get write access to a file's mount 437 * @file: the file who's mount on which to take a write 438 * 439 * This is like mnt_want_write, but if the file is already open for writing it 440 * skips incrementing mnt_writers (since the open file already has a reference) 441 * and instead only does the freeze protection and the check for emergency r/o 442 * remounts. This must be paired with mnt_drop_write_file. 443 */ 444 int mnt_want_write_file(struct file *file) 445 { 446 int ret; 447 448 sb_start_write(file_inode(file)->i_sb); 449 ret = mnt_get_write_access_file(file); 450 if (ret) 451 sb_end_write(file_inode(file)->i_sb); 452 return ret; 453 } 454 EXPORT_SYMBOL_GPL(mnt_want_write_file); 455 456 /** 457 * mnt_put_write_access - give up write access to a mount 458 * @mnt: the mount on which to give up write access 459 * 460 * Tells the low-level filesystem that we are done 461 * performing writes to it. Must be matched with 462 * mnt_get_write_access() call above. 463 */ 464 void mnt_put_write_access(struct vfsmount *mnt) 465 { 466 preempt_disable(); 467 mnt_dec_writers(real_mount(mnt)); 468 preempt_enable(); 469 } 470 EXPORT_SYMBOL_GPL(mnt_put_write_access); 471 472 /** 473 * mnt_drop_write - give up write access to a mount 474 * @mnt: the mount on which to give up write access 475 * 476 * Tells the low-level filesystem that we are done performing writes to it and 477 * also allows filesystem to be frozen again. Must be matched with 478 * mnt_want_write() call above. 479 */ 480 void mnt_drop_write(struct vfsmount *mnt) 481 { 482 mnt_put_write_access(mnt); 483 sb_end_write(mnt->mnt_sb); 484 } 485 EXPORT_SYMBOL_GPL(mnt_drop_write); 486 487 void mnt_put_write_access_file(struct file *file) 488 { 489 if (!(file->f_mode & FMODE_WRITER)) 490 mnt_put_write_access(file->f_path.mnt); 491 } 492 493 void mnt_drop_write_file(struct file *file) 494 { 495 mnt_put_write_access_file(file); 496 sb_end_write(file_inode(file)->i_sb); 497 } 498 EXPORT_SYMBOL(mnt_drop_write_file); 499 500 /** 501 * mnt_hold_writers - prevent write access to the given mount 502 * @mnt: mnt to prevent write access to 503 * 504 * Prevents write access to @mnt if there are no active writers for @mnt. 505 * This function needs to be called and return successfully before changing 506 * properties of @mnt that need to remain stable for callers with write access 507 * to @mnt. 508 * 509 * After this functions has been called successfully callers must pair it with 510 * a call to mnt_unhold_writers() in order to stop preventing write access to 511 * @mnt. 512 * 513 * Context: This function expects lock_mount_hash() to be held serializing 514 * setting MNT_WRITE_HOLD. 515 * Return: On success 0 is returned. 516 * On error, -EBUSY is returned. 517 */ 518 static inline int mnt_hold_writers(struct mount *mnt) 519 { 520 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 521 /* 522 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 523 * should be visible before we do. 524 */ 525 smp_mb(); 526 527 /* 528 * With writers on hold, if this value is zero, then there are 529 * definitely no active writers (although held writers may subsequently 530 * increment the count, they'll have to wait, and decrement it after 531 * seeing MNT_READONLY). 532 * 533 * It is OK to have counter incremented on one CPU and decremented on 534 * another: the sum will add up correctly. The danger would be when we 535 * sum up each counter, if we read a counter before it is incremented, 536 * but then read another CPU's count which it has been subsequently 537 * decremented from -- we would see more decrements than we should. 538 * MNT_WRITE_HOLD protects against this scenario, because 539 * mnt_want_write first increments count, then smp_mb, then spins on 540 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 541 * we're counting up here. 542 */ 543 if (mnt_get_writers(mnt) > 0) 544 return -EBUSY; 545 546 return 0; 547 } 548 549 /** 550 * mnt_unhold_writers - stop preventing write access to the given mount 551 * @mnt: mnt to stop preventing write access to 552 * 553 * Stop preventing write access to @mnt allowing callers to gain write access 554 * to @mnt again. 555 * 556 * This function can only be called after a successful call to 557 * mnt_hold_writers(). 558 * 559 * Context: This function expects lock_mount_hash() to be held. 560 */ 561 static inline void mnt_unhold_writers(struct mount *mnt) 562 { 563 /* 564 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 565 * that become unheld will see MNT_READONLY. 566 */ 567 smp_wmb(); 568 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 569 } 570 571 static int mnt_make_readonly(struct mount *mnt) 572 { 573 int ret; 574 575 ret = mnt_hold_writers(mnt); 576 if (!ret) 577 mnt->mnt.mnt_flags |= MNT_READONLY; 578 mnt_unhold_writers(mnt); 579 return ret; 580 } 581 582 int sb_prepare_remount_readonly(struct super_block *sb) 583 { 584 struct mount *mnt; 585 int err = 0; 586 587 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 588 if (atomic_long_read(&sb->s_remove_count)) 589 return -EBUSY; 590 591 lock_mount_hash(); 592 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 593 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 594 err = mnt_hold_writers(mnt); 595 if (err) 596 break; 597 } 598 } 599 if (!err && atomic_long_read(&sb->s_remove_count)) 600 err = -EBUSY; 601 602 if (!err) 603 sb_start_ro_state_change(sb); 604 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 605 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 606 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 607 } 608 unlock_mount_hash(); 609 610 return err; 611 } 612 613 static void free_vfsmnt(struct mount *mnt) 614 { 615 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 616 kfree_const(mnt->mnt_devname); 617 #ifdef CONFIG_SMP 618 free_percpu(mnt->mnt_pcp); 619 #endif 620 kmem_cache_free(mnt_cache, mnt); 621 } 622 623 static void delayed_free_vfsmnt(struct rcu_head *head) 624 { 625 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 626 } 627 628 /* call under rcu_read_lock */ 629 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 630 { 631 struct mount *mnt; 632 if (read_seqretry(&mount_lock, seq)) 633 return 1; 634 if (bastard == NULL) 635 return 0; 636 mnt = real_mount(bastard); 637 mnt_add_count(mnt, 1); 638 smp_mb(); // see mntput_no_expire() 639 if (likely(!read_seqretry(&mount_lock, seq))) 640 return 0; 641 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 642 mnt_add_count(mnt, -1); 643 return 1; 644 } 645 lock_mount_hash(); 646 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 647 mnt_add_count(mnt, -1); 648 unlock_mount_hash(); 649 return 1; 650 } 651 unlock_mount_hash(); 652 /* caller will mntput() */ 653 return -1; 654 } 655 656 /* call under rcu_read_lock */ 657 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 658 { 659 int res = __legitimize_mnt(bastard, seq); 660 if (likely(!res)) 661 return true; 662 if (unlikely(res < 0)) { 663 rcu_read_unlock(); 664 mntput(bastard); 665 rcu_read_lock(); 666 } 667 return false; 668 } 669 670 /** 671 * __lookup_mnt - find first child mount 672 * @mnt: parent mount 673 * @dentry: mountpoint 674 * 675 * If @mnt has a child mount @c mounted @dentry find and return it. 676 * 677 * Note that the child mount @c need not be unique. There are cases 678 * where shadow mounts are created. For example, during mount 679 * propagation when a source mount @mnt whose root got overmounted by a 680 * mount @o after path lookup but before @namespace_sem could be 681 * acquired gets copied and propagated. So @mnt gets copied including 682 * @o. When @mnt is propagated to a destination mount @d that already 683 * has another mount @n mounted at the same mountpoint then the source 684 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 685 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 686 * on @dentry. 687 * 688 * Return: The first child of @mnt mounted @dentry or NULL. 689 */ 690 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 691 { 692 struct hlist_head *head = m_hash(mnt, dentry); 693 struct mount *p; 694 695 hlist_for_each_entry_rcu(p, head, mnt_hash) 696 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 697 return p; 698 return NULL; 699 } 700 701 /* 702 * lookup_mnt - Return the first child mount mounted at path 703 * 704 * "First" means first mounted chronologically. If you create the 705 * following mounts: 706 * 707 * mount /dev/sda1 /mnt 708 * mount /dev/sda2 /mnt 709 * mount /dev/sda3 /mnt 710 * 711 * Then lookup_mnt() on the base /mnt dentry in the root mount will 712 * return successively the root dentry and vfsmount of /dev/sda1, then 713 * /dev/sda2, then /dev/sda3, then NULL. 714 * 715 * lookup_mnt takes a reference to the found vfsmount. 716 */ 717 struct vfsmount *lookup_mnt(const struct path *path) 718 { 719 struct mount *child_mnt; 720 struct vfsmount *m; 721 unsigned seq; 722 723 rcu_read_lock(); 724 do { 725 seq = read_seqbegin(&mount_lock); 726 child_mnt = __lookup_mnt(path->mnt, path->dentry); 727 m = child_mnt ? &child_mnt->mnt : NULL; 728 } while (!legitimize_mnt(m, seq)); 729 rcu_read_unlock(); 730 return m; 731 } 732 733 static inline void lock_ns_list(struct mnt_namespace *ns) 734 { 735 spin_lock(&ns->ns_lock); 736 } 737 738 static inline void unlock_ns_list(struct mnt_namespace *ns) 739 { 740 spin_unlock(&ns->ns_lock); 741 } 742 743 static inline bool mnt_is_cursor(struct mount *mnt) 744 { 745 return mnt->mnt.mnt_flags & MNT_CURSOR; 746 } 747 748 /* 749 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 750 * current mount namespace. 751 * 752 * The common case is dentries are not mountpoints at all and that 753 * test is handled inline. For the slow case when we are actually 754 * dealing with a mountpoint of some kind, walk through all of the 755 * mounts in the current mount namespace and test to see if the dentry 756 * is a mountpoint. 757 * 758 * The mount_hashtable is not usable in the context because we 759 * need to identify all mounts that may be in the current mount 760 * namespace not just a mount that happens to have some specified 761 * parent mount. 762 */ 763 bool __is_local_mountpoint(struct dentry *dentry) 764 { 765 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 766 struct mount *mnt; 767 bool is_covered = false; 768 769 down_read(&namespace_sem); 770 lock_ns_list(ns); 771 list_for_each_entry(mnt, &ns->list, mnt_list) { 772 if (mnt_is_cursor(mnt)) 773 continue; 774 is_covered = (mnt->mnt_mountpoint == dentry); 775 if (is_covered) 776 break; 777 } 778 unlock_ns_list(ns); 779 up_read(&namespace_sem); 780 781 return is_covered; 782 } 783 784 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 785 { 786 struct hlist_head *chain = mp_hash(dentry); 787 struct mountpoint *mp; 788 789 hlist_for_each_entry(mp, chain, m_hash) { 790 if (mp->m_dentry == dentry) { 791 mp->m_count++; 792 return mp; 793 } 794 } 795 return NULL; 796 } 797 798 static struct mountpoint *get_mountpoint(struct dentry *dentry) 799 { 800 struct mountpoint *mp, *new = NULL; 801 int ret; 802 803 if (d_mountpoint(dentry)) { 804 /* might be worth a WARN_ON() */ 805 if (d_unlinked(dentry)) 806 return ERR_PTR(-ENOENT); 807 mountpoint: 808 read_seqlock_excl(&mount_lock); 809 mp = lookup_mountpoint(dentry); 810 read_sequnlock_excl(&mount_lock); 811 if (mp) 812 goto done; 813 } 814 815 if (!new) 816 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 817 if (!new) 818 return ERR_PTR(-ENOMEM); 819 820 821 /* Exactly one processes may set d_mounted */ 822 ret = d_set_mounted(dentry); 823 824 /* Someone else set d_mounted? */ 825 if (ret == -EBUSY) 826 goto mountpoint; 827 828 /* The dentry is not available as a mountpoint? */ 829 mp = ERR_PTR(ret); 830 if (ret) 831 goto done; 832 833 /* Add the new mountpoint to the hash table */ 834 read_seqlock_excl(&mount_lock); 835 new->m_dentry = dget(dentry); 836 new->m_count = 1; 837 hlist_add_head(&new->m_hash, mp_hash(dentry)); 838 INIT_HLIST_HEAD(&new->m_list); 839 read_sequnlock_excl(&mount_lock); 840 841 mp = new; 842 new = NULL; 843 done: 844 kfree(new); 845 return mp; 846 } 847 848 /* 849 * vfsmount lock must be held. Additionally, the caller is responsible 850 * for serializing calls for given disposal list. 851 */ 852 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 853 { 854 if (!--mp->m_count) { 855 struct dentry *dentry = mp->m_dentry; 856 BUG_ON(!hlist_empty(&mp->m_list)); 857 spin_lock(&dentry->d_lock); 858 dentry->d_flags &= ~DCACHE_MOUNTED; 859 spin_unlock(&dentry->d_lock); 860 dput_to_list(dentry, list); 861 hlist_del(&mp->m_hash); 862 kfree(mp); 863 } 864 } 865 866 /* called with namespace_lock and vfsmount lock */ 867 static void put_mountpoint(struct mountpoint *mp) 868 { 869 __put_mountpoint(mp, &ex_mountpoints); 870 } 871 872 static inline int check_mnt(struct mount *mnt) 873 { 874 return mnt->mnt_ns == current->nsproxy->mnt_ns; 875 } 876 877 /* 878 * vfsmount lock must be held for write 879 */ 880 static void touch_mnt_namespace(struct mnt_namespace *ns) 881 { 882 if (ns) { 883 ns->event = ++event; 884 wake_up_interruptible(&ns->poll); 885 } 886 } 887 888 /* 889 * vfsmount lock must be held for write 890 */ 891 static void __touch_mnt_namespace(struct mnt_namespace *ns) 892 { 893 if (ns && ns->event != event) { 894 ns->event = event; 895 wake_up_interruptible(&ns->poll); 896 } 897 } 898 899 /* 900 * vfsmount lock must be held for write 901 */ 902 static struct mountpoint *unhash_mnt(struct mount *mnt) 903 { 904 struct mountpoint *mp; 905 mnt->mnt_parent = mnt; 906 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 907 list_del_init(&mnt->mnt_child); 908 hlist_del_init_rcu(&mnt->mnt_hash); 909 hlist_del_init(&mnt->mnt_mp_list); 910 mp = mnt->mnt_mp; 911 mnt->mnt_mp = NULL; 912 return mp; 913 } 914 915 /* 916 * vfsmount lock must be held for write 917 */ 918 static void umount_mnt(struct mount *mnt) 919 { 920 put_mountpoint(unhash_mnt(mnt)); 921 } 922 923 /* 924 * vfsmount lock must be held for write 925 */ 926 void mnt_set_mountpoint(struct mount *mnt, 927 struct mountpoint *mp, 928 struct mount *child_mnt) 929 { 930 mp->m_count++; 931 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 932 child_mnt->mnt_mountpoint = mp->m_dentry; 933 child_mnt->mnt_parent = mnt; 934 child_mnt->mnt_mp = mp; 935 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 936 } 937 938 /** 939 * mnt_set_mountpoint_beneath - mount a mount beneath another one 940 * 941 * @new_parent: the source mount 942 * @top_mnt: the mount beneath which @new_parent is mounted 943 * @new_mp: the new mountpoint of @top_mnt on @new_parent 944 * 945 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 946 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 947 * @new_mp. And mount @new_parent on the old parent and old 948 * mountpoint of @top_mnt. 949 * 950 * Context: This function expects namespace_lock() and lock_mount_hash() 951 * to have been acquired in that order. 952 */ 953 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 954 struct mount *top_mnt, 955 struct mountpoint *new_mp) 956 { 957 struct mount *old_top_parent = top_mnt->mnt_parent; 958 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 959 960 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 961 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 962 } 963 964 965 static void __attach_mnt(struct mount *mnt, struct mount *parent) 966 { 967 hlist_add_head_rcu(&mnt->mnt_hash, 968 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 969 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 970 } 971 972 /** 973 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 974 * list of child mounts 975 * @parent: the parent 976 * @mnt: the new mount 977 * @mp: the new mountpoint 978 * @beneath: whether to mount @mnt beneath or on top of @parent 979 * 980 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 981 * to @parent's child mount list and to @mount_hashtable. 982 * 983 * If @beneath is true, remove @mnt from its current parent and 984 * mountpoint and mount it on @mp on @parent, and mount @parent on the 985 * old parent and old mountpoint of @mnt. Finally, attach @parent to 986 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 987 * 988 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 989 * to the correct parent. 990 * 991 * Context: This function expects namespace_lock() and lock_mount_hash() 992 * to have been acquired in that order. 993 */ 994 static void attach_mnt(struct mount *mnt, struct mount *parent, 995 struct mountpoint *mp, bool beneath) 996 { 997 if (beneath) 998 mnt_set_mountpoint_beneath(mnt, parent, mp); 999 else 1000 mnt_set_mountpoint(parent, mp, mnt); 1001 /* 1002 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1003 * beneath @parent then @mnt will need to be attached to 1004 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1005 * isn't the same mount as @parent. 1006 */ 1007 __attach_mnt(mnt, mnt->mnt_parent); 1008 } 1009 1010 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1011 { 1012 struct mountpoint *old_mp = mnt->mnt_mp; 1013 struct mount *old_parent = mnt->mnt_parent; 1014 1015 list_del_init(&mnt->mnt_child); 1016 hlist_del_init(&mnt->mnt_mp_list); 1017 hlist_del_init_rcu(&mnt->mnt_hash); 1018 1019 attach_mnt(mnt, parent, mp, false); 1020 1021 put_mountpoint(old_mp); 1022 mnt_add_count(old_parent, -1); 1023 } 1024 1025 /* 1026 * vfsmount lock must be held for write 1027 */ 1028 static void commit_tree(struct mount *mnt) 1029 { 1030 struct mount *parent = mnt->mnt_parent; 1031 struct mount *m; 1032 LIST_HEAD(head); 1033 struct mnt_namespace *n = parent->mnt_ns; 1034 1035 BUG_ON(parent == mnt); 1036 1037 list_add_tail(&head, &mnt->mnt_list); 1038 list_for_each_entry(m, &head, mnt_list) 1039 m->mnt_ns = n; 1040 1041 list_splice(&head, n->list.prev); 1042 1043 n->mounts += n->pending_mounts; 1044 n->pending_mounts = 0; 1045 1046 __attach_mnt(mnt, parent); 1047 touch_mnt_namespace(n); 1048 } 1049 1050 static struct mount *next_mnt(struct mount *p, struct mount *root) 1051 { 1052 struct list_head *next = p->mnt_mounts.next; 1053 if (next == &p->mnt_mounts) { 1054 while (1) { 1055 if (p == root) 1056 return NULL; 1057 next = p->mnt_child.next; 1058 if (next != &p->mnt_parent->mnt_mounts) 1059 break; 1060 p = p->mnt_parent; 1061 } 1062 } 1063 return list_entry(next, struct mount, mnt_child); 1064 } 1065 1066 static struct mount *skip_mnt_tree(struct mount *p) 1067 { 1068 struct list_head *prev = p->mnt_mounts.prev; 1069 while (prev != &p->mnt_mounts) { 1070 p = list_entry(prev, struct mount, mnt_child); 1071 prev = p->mnt_mounts.prev; 1072 } 1073 return p; 1074 } 1075 1076 /** 1077 * vfs_create_mount - Create a mount for a configured superblock 1078 * @fc: The configuration context with the superblock attached 1079 * 1080 * Create a mount to an already configured superblock. If necessary, the 1081 * caller should invoke vfs_get_tree() before calling this. 1082 * 1083 * Note that this does not attach the mount to anything. 1084 */ 1085 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1086 { 1087 struct mount *mnt; 1088 1089 if (!fc->root) 1090 return ERR_PTR(-EINVAL); 1091 1092 mnt = alloc_vfsmnt(fc->source ?: "none"); 1093 if (!mnt) 1094 return ERR_PTR(-ENOMEM); 1095 1096 if (fc->sb_flags & SB_KERNMOUNT) 1097 mnt->mnt.mnt_flags = MNT_INTERNAL; 1098 1099 atomic_inc(&fc->root->d_sb->s_active); 1100 mnt->mnt.mnt_sb = fc->root->d_sb; 1101 mnt->mnt.mnt_root = dget(fc->root); 1102 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1103 mnt->mnt_parent = mnt; 1104 1105 lock_mount_hash(); 1106 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1107 unlock_mount_hash(); 1108 return &mnt->mnt; 1109 } 1110 EXPORT_SYMBOL(vfs_create_mount); 1111 1112 struct vfsmount *fc_mount(struct fs_context *fc) 1113 { 1114 int err = vfs_get_tree(fc); 1115 if (!err) { 1116 up_write(&fc->root->d_sb->s_umount); 1117 return vfs_create_mount(fc); 1118 } 1119 return ERR_PTR(err); 1120 } 1121 EXPORT_SYMBOL(fc_mount); 1122 1123 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1124 int flags, const char *name, 1125 void *data) 1126 { 1127 struct fs_context *fc; 1128 struct vfsmount *mnt; 1129 int ret = 0; 1130 1131 if (!type) 1132 return ERR_PTR(-EINVAL); 1133 1134 fc = fs_context_for_mount(type, flags); 1135 if (IS_ERR(fc)) 1136 return ERR_CAST(fc); 1137 1138 if (name) 1139 ret = vfs_parse_fs_string(fc, "source", 1140 name, strlen(name)); 1141 if (!ret) 1142 ret = parse_monolithic_mount_data(fc, data); 1143 if (!ret) 1144 mnt = fc_mount(fc); 1145 else 1146 mnt = ERR_PTR(ret); 1147 1148 put_fs_context(fc); 1149 return mnt; 1150 } 1151 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1152 1153 struct vfsmount * 1154 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1155 const char *name, void *data) 1156 { 1157 /* Until it is worked out how to pass the user namespace 1158 * through from the parent mount to the submount don't support 1159 * unprivileged mounts with submounts. 1160 */ 1161 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1162 return ERR_PTR(-EPERM); 1163 1164 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1165 } 1166 EXPORT_SYMBOL_GPL(vfs_submount); 1167 1168 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1169 int flag) 1170 { 1171 struct super_block *sb = old->mnt.mnt_sb; 1172 struct mount *mnt; 1173 int err; 1174 1175 mnt = alloc_vfsmnt(old->mnt_devname); 1176 if (!mnt) 1177 return ERR_PTR(-ENOMEM); 1178 1179 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1180 mnt->mnt_group_id = 0; /* not a peer of original */ 1181 else 1182 mnt->mnt_group_id = old->mnt_group_id; 1183 1184 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1185 err = mnt_alloc_group_id(mnt); 1186 if (err) 1187 goto out_free; 1188 } 1189 1190 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1191 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1192 1193 atomic_inc(&sb->s_active); 1194 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1195 1196 mnt->mnt.mnt_sb = sb; 1197 mnt->mnt.mnt_root = dget(root); 1198 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1199 mnt->mnt_parent = mnt; 1200 lock_mount_hash(); 1201 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1202 unlock_mount_hash(); 1203 1204 if ((flag & CL_SLAVE) || 1205 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1206 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1207 mnt->mnt_master = old; 1208 CLEAR_MNT_SHARED(mnt); 1209 } else if (!(flag & CL_PRIVATE)) { 1210 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1211 list_add(&mnt->mnt_share, &old->mnt_share); 1212 if (IS_MNT_SLAVE(old)) 1213 list_add(&mnt->mnt_slave, &old->mnt_slave); 1214 mnt->mnt_master = old->mnt_master; 1215 } else { 1216 CLEAR_MNT_SHARED(mnt); 1217 } 1218 if (flag & CL_MAKE_SHARED) 1219 set_mnt_shared(mnt); 1220 1221 /* stick the duplicate mount on the same expiry list 1222 * as the original if that was on one */ 1223 if (flag & CL_EXPIRE) { 1224 if (!list_empty(&old->mnt_expire)) 1225 list_add(&mnt->mnt_expire, &old->mnt_expire); 1226 } 1227 1228 return mnt; 1229 1230 out_free: 1231 mnt_free_id(mnt); 1232 free_vfsmnt(mnt); 1233 return ERR_PTR(err); 1234 } 1235 1236 static void cleanup_mnt(struct mount *mnt) 1237 { 1238 struct hlist_node *p; 1239 struct mount *m; 1240 /* 1241 * The warning here probably indicates that somebody messed 1242 * up a mnt_want/drop_write() pair. If this happens, the 1243 * filesystem was probably unable to make r/w->r/o transitions. 1244 * The locking used to deal with mnt_count decrement provides barriers, 1245 * so mnt_get_writers() below is safe. 1246 */ 1247 WARN_ON(mnt_get_writers(mnt)); 1248 if (unlikely(mnt->mnt_pins.first)) 1249 mnt_pin_kill(mnt); 1250 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1251 hlist_del(&m->mnt_umount); 1252 mntput(&m->mnt); 1253 } 1254 fsnotify_vfsmount_delete(&mnt->mnt); 1255 dput(mnt->mnt.mnt_root); 1256 deactivate_super(mnt->mnt.mnt_sb); 1257 mnt_free_id(mnt); 1258 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1259 } 1260 1261 static void __cleanup_mnt(struct rcu_head *head) 1262 { 1263 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1264 } 1265 1266 static LLIST_HEAD(delayed_mntput_list); 1267 static void delayed_mntput(struct work_struct *unused) 1268 { 1269 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1270 struct mount *m, *t; 1271 1272 llist_for_each_entry_safe(m, t, node, mnt_llist) 1273 cleanup_mnt(m); 1274 } 1275 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1276 1277 static void mntput_no_expire(struct mount *mnt) 1278 { 1279 LIST_HEAD(list); 1280 int count; 1281 1282 rcu_read_lock(); 1283 if (likely(READ_ONCE(mnt->mnt_ns))) { 1284 /* 1285 * Since we don't do lock_mount_hash() here, 1286 * ->mnt_ns can change under us. However, if it's 1287 * non-NULL, then there's a reference that won't 1288 * be dropped until after an RCU delay done after 1289 * turning ->mnt_ns NULL. So if we observe it 1290 * non-NULL under rcu_read_lock(), the reference 1291 * we are dropping is not the final one. 1292 */ 1293 mnt_add_count(mnt, -1); 1294 rcu_read_unlock(); 1295 return; 1296 } 1297 lock_mount_hash(); 1298 /* 1299 * make sure that if __legitimize_mnt() has not seen us grab 1300 * mount_lock, we'll see their refcount increment here. 1301 */ 1302 smp_mb(); 1303 mnt_add_count(mnt, -1); 1304 count = mnt_get_count(mnt); 1305 if (count != 0) { 1306 WARN_ON(count < 0); 1307 rcu_read_unlock(); 1308 unlock_mount_hash(); 1309 return; 1310 } 1311 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1312 rcu_read_unlock(); 1313 unlock_mount_hash(); 1314 return; 1315 } 1316 mnt->mnt.mnt_flags |= MNT_DOOMED; 1317 rcu_read_unlock(); 1318 1319 list_del(&mnt->mnt_instance); 1320 1321 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1322 struct mount *p, *tmp; 1323 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1324 __put_mountpoint(unhash_mnt(p), &list); 1325 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1326 } 1327 } 1328 unlock_mount_hash(); 1329 shrink_dentry_list(&list); 1330 1331 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1332 struct task_struct *task = current; 1333 if (likely(!(task->flags & PF_KTHREAD))) { 1334 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1335 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1336 return; 1337 } 1338 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1339 schedule_delayed_work(&delayed_mntput_work, 1); 1340 return; 1341 } 1342 cleanup_mnt(mnt); 1343 } 1344 1345 void mntput(struct vfsmount *mnt) 1346 { 1347 if (mnt) { 1348 struct mount *m = real_mount(mnt); 1349 /* avoid cacheline pingpong */ 1350 if (unlikely(m->mnt_expiry_mark)) 1351 WRITE_ONCE(m->mnt_expiry_mark, 0); 1352 mntput_no_expire(m); 1353 } 1354 } 1355 EXPORT_SYMBOL(mntput); 1356 1357 struct vfsmount *mntget(struct vfsmount *mnt) 1358 { 1359 if (mnt) 1360 mnt_add_count(real_mount(mnt), 1); 1361 return mnt; 1362 } 1363 EXPORT_SYMBOL(mntget); 1364 1365 /* 1366 * Make a mount point inaccessible to new lookups. 1367 * Because there may still be current users, the caller MUST WAIT 1368 * for an RCU grace period before destroying the mount point. 1369 */ 1370 void mnt_make_shortterm(struct vfsmount *mnt) 1371 { 1372 if (mnt) 1373 real_mount(mnt)->mnt_ns = NULL; 1374 } 1375 1376 /** 1377 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1378 * @path: path to check 1379 * 1380 * d_mountpoint() can only be used reliably to establish if a dentry is 1381 * not mounted in any namespace and that common case is handled inline. 1382 * d_mountpoint() isn't aware of the possibility there may be multiple 1383 * mounts using a given dentry in a different namespace. This function 1384 * checks if the passed in path is a mountpoint rather than the dentry 1385 * alone. 1386 */ 1387 bool path_is_mountpoint(const struct path *path) 1388 { 1389 unsigned seq; 1390 bool res; 1391 1392 if (!d_mountpoint(path->dentry)) 1393 return false; 1394 1395 rcu_read_lock(); 1396 do { 1397 seq = read_seqbegin(&mount_lock); 1398 res = __path_is_mountpoint(path); 1399 } while (read_seqretry(&mount_lock, seq)); 1400 rcu_read_unlock(); 1401 1402 return res; 1403 } 1404 EXPORT_SYMBOL(path_is_mountpoint); 1405 1406 struct vfsmount *mnt_clone_internal(const struct path *path) 1407 { 1408 struct mount *p; 1409 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1410 if (IS_ERR(p)) 1411 return ERR_CAST(p); 1412 p->mnt.mnt_flags |= MNT_INTERNAL; 1413 return &p->mnt; 1414 } 1415 1416 #ifdef CONFIG_PROC_FS 1417 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1418 struct list_head *p) 1419 { 1420 struct mount *mnt, *ret = NULL; 1421 1422 lock_ns_list(ns); 1423 list_for_each_continue(p, &ns->list) { 1424 mnt = list_entry(p, typeof(*mnt), mnt_list); 1425 if (!mnt_is_cursor(mnt)) { 1426 ret = mnt; 1427 break; 1428 } 1429 } 1430 unlock_ns_list(ns); 1431 1432 return ret; 1433 } 1434 1435 /* iterator; we want it to have access to namespace_sem, thus here... */ 1436 static void *m_start(struct seq_file *m, loff_t *pos) 1437 { 1438 struct proc_mounts *p = m->private; 1439 struct list_head *prev; 1440 1441 down_read(&namespace_sem); 1442 if (!*pos) { 1443 prev = &p->ns->list; 1444 } else { 1445 prev = &p->cursor.mnt_list; 1446 1447 /* Read after we'd reached the end? */ 1448 if (list_empty(prev)) 1449 return NULL; 1450 } 1451 1452 return mnt_list_next(p->ns, prev); 1453 } 1454 1455 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1456 { 1457 struct proc_mounts *p = m->private; 1458 struct mount *mnt = v; 1459 1460 ++*pos; 1461 return mnt_list_next(p->ns, &mnt->mnt_list); 1462 } 1463 1464 static void m_stop(struct seq_file *m, void *v) 1465 { 1466 struct proc_mounts *p = m->private; 1467 struct mount *mnt = v; 1468 1469 lock_ns_list(p->ns); 1470 if (mnt) 1471 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1472 else 1473 list_del_init(&p->cursor.mnt_list); 1474 unlock_ns_list(p->ns); 1475 up_read(&namespace_sem); 1476 } 1477 1478 static int m_show(struct seq_file *m, void *v) 1479 { 1480 struct proc_mounts *p = m->private; 1481 struct mount *r = v; 1482 return p->show(m, &r->mnt); 1483 } 1484 1485 const struct seq_operations mounts_op = { 1486 .start = m_start, 1487 .next = m_next, 1488 .stop = m_stop, 1489 .show = m_show, 1490 }; 1491 1492 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1493 { 1494 down_read(&namespace_sem); 1495 lock_ns_list(ns); 1496 list_del(&cursor->mnt_list); 1497 unlock_ns_list(ns); 1498 up_read(&namespace_sem); 1499 } 1500 #endif /* CONFIG_PROC_FS */ 1501 1502 /** 1503 * may_umount_tree - check if a mount tree is busy 1504 * @m: root of mount tree 1505 * 1506 * This is called to check if a tree of mounts has any 1507 * open files, pwds, chroots or sub mounts that are 1508 * busy. 1509 */ 1510 int may_umount_tree(struct vfsmount *m) 1511 { 1512 struct mount *mnt = real_mount(m); 1513 int actual_refs = 0; 1514 int minimum_refs = 0; 1515 struct mount *p; 1516 BUG_ON(!m); 1517 1518 /* write lock needed for mnt_get_count */ 1519 lock_mount_hash(); 1520 for (p = mnt; p; p = next_mnt(p, mnt)) { 1521 actual_refs += mnt_get_count(p); 1522 minimum_refs += 2; 1523 } 1524 unlock_mount_hash(); 1525 1526 if (actual_refs > minimum_refs) 1527 return 0; 1528 1529 return 1; 1530 } 1531 1532 EXPORT_SYMBOL(may_umount_tree); 1533 1534 /** 1535 * may_umount - check if a mount point is busy 1536 * @mnt: root of mount 1537 * 1538 * This is called to check if a mount point has any 1539 * open files, pwds, chroots or sub mounts. If the 1540 * mount has sub mounts this will return busy 1541 * regardless of whether the sub mounts are busy. 1542 * 1543 * Doesn't take quota and stuff into account. IOW, in some cases it will 1544 * give false negatives. The main reason why it's here is that we need 1545 * a non-destructive way to look for easily umountable filesystems. 1546 */ 1547 int may_umount(struct vfsmount *mnt) 1548 { 1549 int ret = 1; 1550 down_read(&namespace_sem); 1551 lock_mount_hash(); 1552 if (propagate_mount_busy(real_mount(mnt), 2)) 1553 ret = 0; 1554 unlock_mount_hash(); 1555 up_read(&namespace_sem); 1556 return ret; 1557 } 1558 1559 EXPORT_SYMBOL(may_umount); 1560 1561 static void namespace_unlock(void) 1562 { 1563 struct hlist_head head; 1564 struct hlist_node *p; 1565 struct mount *m; 1566 LIST_HEAD(list); 1567 1568 hlist_move_list(&unmounted, &head); 1569 list_splice_init(&ex_mountpoints, &list); 1570 1571 up_write(&namespace_sem); 1572 1573 shrink_dentry_list(&list); 1574 1575 if (likely(hlist_empty(&head))) 1576 return; 1577 1578 synchronize_rcu_expedited(); 1579 1580 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1581 hlist_del(&m->mnt_umount); 1582 mntput(&m->mnt); 1583 } 1584 } 1585 1586 static inline void namespace_lock(void) 1587 { 1588 down_write(&namespace_sem); 1589 } 1590 1591 enum umount_tree_flags { 1592 UMOUNT_SYNC = 1, 1593 UMOUNT_PROPAGATE = 2, 1594 UMOUNT_CONNECTED = 4, 1595 }; 1596 1597 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1598 { 1599 /* Leaving mounts connected is only valid for lazy umounts */ 1600 if (how & UMOUNT_SYNC) 1601 return true; 1602 1603 /* A mount without a parent has nothing to be connected to */ 1604 if (!mnt_has_parent(mnt)) 1605 return true; 1606 1607 /* Because the reference counting rules change when mounts are 1608 * unmounted and connected, umounted mounts may not be 1609 * connected to mounted mounts. 1610 */ 1611 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1612 return true; 1613 1614 /* Has it been requested that the mount remain connected? */ 1615 if (how & UMOUNT_CONNECTED) 1616 return false; 1617 1618 /* Is the mount locked such that it needs to remain connected? */ 1619 if (IS_MNT_LOCKED(mnt)) 1620 return false; 1621 1622 /* By default disconnect the mount */ 1623 return true; 1624 } 1625 1626 /* 1627 * mount_lock must be held 1628 * namespace_sem must be held for write 1629 */ 1630 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1631 { 1632 LIST_HEAD(tmp_list); 1633 struct mount *p; 1634 1635 if (how & UMOUNT_PROPAGATE) 1636 propagate_mount_unlock(mnt); 1637 1638 /* Gather the mounts to umount */ 1639 for (p = mnt; p; p = next_mnt(p, mnt)) { 1640 p->mnt.mnt_flags |= MNT_UMOUNT; 1641 list_move(&p->mnt_list, &tmp_list); 1642 } 1643 1644 /* Hide the mounts from mnt_mounts */ 1645 list_for_each_entry(p, &tmp_list, mnt_list) { 1646 list_del_init(&p->mnt_child); 1647 } 1648 1649 /* Add propogated mounts to the tmp_list */ 1650 if (how & UMOUNT_PROPAGATE) 1651 propagate_umount(&tmp_list); 1652 1653 while (!list_empty(&tmp_list)) { 1654 struct mnt_namespace *ns; 1655 bool disconnect; 1656 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1657 list_del_init(&p->mnt_expire); 1658 list_del_init(&p->mnt_list); 1659 ns = p->mnt_ns; 1660 if (ns) { 1661 ns->mounts--; 1662 __touch_mnt_namespace(ns); 1663 } 1664 p->mnt_ns = NULL; 1665 if (how & UMOUNT_SYNC) 1666 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1667 1668 disconnect = disconnect_mount(p, how); 1669 if (mnt_has_parent(p)) { 1670 mnt_add_count(p->mnt_parent, -1); 1671 if (!disconnect) { 1672 /* Don't forget about p */ 1673 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1674 } else { 1675 umount_mnt(p); 1676 } 1677 } 1678 change_mnt_propagation(p, MS_PRIVATE); 1679 if (disconnect) 1680 hlist_add_head(&p->mnt_umount, &unmounted); 1681 } 1682 } 1683 1684 static void shrink_submounts(struct mount *mnt); 1685 1686 static int do_umount_root(struct super_block *sb) 1687 { 1688 int ret = 0; 1689 1690 down_write(&sb->s_umount); 1691 if (!sb_rdonly(sb)) { 1692 struct fs_context *fc; 1693 1694 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1695 SB_RDONLY); 1696 if (IS_ERR(fc)) { 1697 ret = PTR_ERR(fc); 1698 } else { 1699 ret = parse_monolithic_mount_data(fc, NULL); 1700 if (!ret) 1701 ret = reconfigure_super(fc); 1702 put_fs_context(fc); 1703 } 1704 } 1705 up_write(&sb->s_umount); 1706 return ret; 1707 } 1708 1709 static int do_umount(struct mount *mnt, int flags) 1710 { 1711 struct super_block *sb = mnt->mnt.mnt_sb; 1712 int retval; 1713 1714 retval = security_sb_umount(&mnt->mnt, flags); 1715 if (retval) 1716 return retval; 1717 1718 /* 1719 * Allow userspace to request a mountpoint be expired rather than 1720 * unmounting unconditionally. Unmount only happens if: 1721 * (1) the mark is already set (the mark is cleared by mntput()) 1722 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1723 */ 1724 if (flags & MNT_EXPIRE) { 1725 if (&mnt->mnt == current->fs->root.mnt || 1726 flags & (MNT_FORCE | MNT_DETACH)) 1727 return -EINVAL; 1728 1729 /* 1730 * probably don't strictly need the lock here if we examined 1731 * all race cases, but it's a slowpath. 1732 */ 1733 lock_mount_hash(); 1734 if (mnt_get_count(mnt) != 2) { 1735 unlock_mount_hash(); 1736 return -EBUSY; 1737 } 1738 unlock_mount_hash(); 1739 1740 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1741 return -EAGAIN; 1742 } 1743 1744 /* 1745 * If we may have to abort operations to get out of this 1746 * mount, and they will themselves hold resources we must 1747 * allow the fs to do things. In the Unix tradition of 1748 * 'Gee thats tricky lets do it in userspace' the umount_begin 1749 * might fail to complete on the first run through as other tasks 1750 * must return, and the like. Thats for the mount program to worry 1751 * about for the moment. 1752 */ 1753 1754 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1755 sb->s_op->umount_begin(sb); 1756 } 1757 1758 /* 1759 * No sense to grab the lock for this test, but test itself looks 1760 * somewhat bogus. Suggestions for better replacement? 1761 * Ho-hum... In principle, we might treat that as umount + switch 1762 * to rootfs. GC would eventually take care of the old vfsmount. 1763 * Actually it makes sense, especially if rootfs would contain a 1764 * /reboot - static binary that would close all descriptors and 1765 * call reboot(9). Then init(8) could umount root and exec /reboot. 1766 */ 1767 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1768 /* 1769 * Special case for "unmounting" root ... 1770 * we just try to remount it readonly. 1771 */ 1772 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1773 return -EPERM; 1774 return do_umount_root(sb); 1775 } 1776 1777 namespace_lock(); 1778 lock_mount_hash(); 1779 1780 /* Recheck MNT_LOCKED with the locks held */ 1781 retval = -EINVAL; 1782 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1783 goto out; 1784 1785 event++; 1786 if (flags & MNT_DETACH) { 1787 if (!list_empty(&mnt->mnt_list)) 1788 umount_tree(mnt, UMOUNT_PROPAGATE); 1789 retval = 0; 1790 } else { 1791 shrink_submounts(mnt); 1792 retval = -EBUSY; 1793 if (!propagate_mount_busy(mnt, 2)) { 1794 if (!list_empty(&mnt->mnt_list)) 1795 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1796 retval = 0; 1797 } 1798 } 1799 out: 1800 unlock_mount_hash(); 1801 namespace_unlock(); 1802 return retval; 1803 } 1804 1805 /* 1806 * __detach_mounts - lazily unmount all mounts on the specified dentry 1807 * 1808 * During unlink, rmdir, and d_drop it is possible to loose the path 1809 * to an existing mountpoint, and wind up leaking the mount. 1810 * detach_mounts allows lazily unmounting those mounts instead of 1811 * leaking them. 1812 * 1813 * The caller may hold dentry->d_inode->i_mutex. 1814 */ 1815 void __detach_mounts(struct dentry *dentry) 1816 { 1817 struct mountpoint *mp; 1818 struct mount *mnt; 1819 1820 namespace_lock(); 1821 lock_mount_hash(); 1822 mp = lookup_mountpoint(dentry); 1823 if (!mp) 1824 goto out_unlock; 1825 1826 event++; 1827 while (!hlist_empty(&mp->m_list)) { 1828 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1829 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1830 umount_mnt(mnt); 1831 hlist_add_head(&mnt->mnt_umount, &unmounted); 1832 } 1833 else umount_tree(mnt, UMOUNT_CONNECTED); 1834 } 1835 put_mountpoint(mp); 1836 out_unlock: 1837 unlock_mount_hash(); 1838 namespace_unlock(); 1839 } 1840 1841 /* 1842 * Is the caller allowed to modify his namespace? 1843 */ 1844 bool may_mount(void) 1845 { 1846 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1847 } 1848 1849 /** 1850 * path_mounted - check whether path is mounted 1851 * @path: path to check 1852 * 1853 * Determine whether @path refers to the root of a mount. 1854 * 1855 * Return: true if @path is the root of a mount, false if not. 1856 */ 1857 static inline bool path_mounted(const struct path *path) 1858 { 1859 return path->mnt->mnt_root == path->dentry; 1860 } 1861 1862 static void warn_mandlock(void) 1863 { 1864 pr_warn_once("=======================================================\n" 1865 "WARNING: The mand mount option has been deprecated and\n" 1866 " and is ignored by this kernel. Remove the mand\n" 1867 " option from the mount to silence this warning.\n" 1868 "=======================================================\n"); 1869 } 1870 1871 static int can_umount(const struct path *path, int flags) 1872 { 1873 struct mount *mnt = real_mount(path->mnt); 1874 1875 if (!may_mount()) 1876 return -EPERM; 1877 if (!path_mounted(path)) 1878 return -EINVAL; 1879 if (!check_mnt(mnt)) 1880 return -EINVAL; 1881 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1882 return -EINVAL; 1883 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1884 return -EPERM; 1885 return 0; 1886 } 1887 1888 // caller is responsible for flags being sane 1889 int path_umount(struct path *path, int flags) 1890 { 1891 struct mount *mnt = real_mount(path->mnt); 1892 int ret; 1893 1894 ret = can_umount(path, flags); 1895 if (!ret) 1896 ret = do_umount(mnt, flags); 1897 1898 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1899 dput(path->dentry); 1900 mntput_no_expire(mnt); 1901 return ret; 1902 } 1903 1904 static int ksys_umount(char __user *name, int flags) 1905 { 1906 int lookup_flags = LOOKUP_MOUNTPOINT; 1907 struct path path; 1908 int ret; 1909 1910 // basic validity checks done first 1911 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1912 return -EINVAL; 1913 1914 if (!(flags & UMOUNT_NOFOLLOW)) 1915 lookup_flags |= LOOKUP_FOLLOW; 1916 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1917 if (ret) 1918 return ret; 1919 return path_umount(&path, flags); 1920 } 1921 1922 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1923 { 1924 return ksys_umount(name, flags); 1925 } 1926 1927 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1928 1929 /* 1930 * The 2.0 compatible umount. No flags. 1931 */ 1932 SYSCALL_DEFINE1(oldumount, char __user *, name) 1933 { 1934 return ksys_umount(name, 0); 1935 } 1936 1937 #endif 1938 1939 static bool is_mnt_ns_file(struct dentry *dentry) 1940 { 1941 /* Is this a proxy for a mount namespace? */ 1942 return dentry->d_op == &ns_dentry_operations && 1943 dentry->d_fsdata == &mntns_operations; 1944 } 1945 1946 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1947 { 1948 return container_of(ns, struct mnt_namespace, ns); 1949 } 1950 1951 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1952 { 1953 return &mnt->ns; 1954 } 1955 1956 static bool mnt_ns_loop(struct dentry *dentry) 1957 { 1958 /* Could bind mounting the mount namespace inode cause a 1959 * mount namespace loop? 1960 */ 1961 struct mnt_namespace *mnt_ns; 1962 if (!is_mnt_ns_file(dentry)) 1963 return false; 1964 1965 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1966 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1967 } 1968 1969 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1970 int flag) 1971 { 1972 struct mount *res, *p, *q, *r, *parent; 1973 1974 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1975 return ERR_PTR(-EINVAL); 1976 1977 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1978 return ERR_PTR(-EINVAL); 1979 1980 res = q = clone_mnt(mnt, dentry, flag); 1981 if (IS_ERR(q)) 1982 return q; 1983 1984 q->mnt_mountpoint = mnt->mnt_mountpoint; 1985 1986 p = mnt; 1987 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1988 struct mount *s; 1989 if (!is_subdir(r->mnt_mountpoint, dentry)) 1990 continue; 1991 1992 for (s = r; s; s = next_mnt(s, r)) { 1993 if (!(flag & CL_COPY_UNBINDABLE) && 1994 IS_MNT_UNBINDABLE(s)) { 1995 if (s->mnt.mnt_flags & MNT_LOCKED) { 1996 /* Both unbindable and locked. */ 1997 q = ERR_PTR(-EPERM); 1998 goto out; 1999 } else { 2000 s = skip_mnt_tree(s); 2001 continue; 2002 } 2003 } 2004 if (!(flag & CL_COPY_MNT_NS_FILE) && 2005 is_mnt_ns_file(s->mnt.mnt_root)) { 2006 s = skip_mnt_tree(s); 2007 continue; 2008 } 2009 while (p != s->mnt_parent) { 2010 p = p->mnt_parent; 2011 q = q->mnt_parent; 2012 } 2013 p = s; 2014 parent = q; 2015 q = clone_mnt(p, p->mnt.mnt_root, flag); 2016 if (IS_ERR(q)) 2017 goto out; 2018 lock_mount_hash(); 2019 list_add_tail(&q->mnt_list, &res->mnt_list); 2020 attach_mnt(q, parent, p->mnt_mp, false); 2021 unlock_mount_hash(); 2022 } 2023 } 2024 return res; 2025 out: 2026 if (res) { 2027 lock_mount_hash(); 2028 umount_tree(res, UMOUNT_SYNC); 2029 unlock_mount_hash(); 2030 } 2031 return q; 2032 } 2033 2034 /* Caller should check returned pointer for errors */ 2035 2036 struct vfsmount *collect_mounts(const struct path *path) 2037 { 2038 struct mount *tree; 2039 namespace_lock(); 2040 if (!check_mnt(real_mount(path->mnt))) 2041 tree = ERR_PTR(-EINVAL); 2042 else 2043 tree = copy_tree(real_mount(path->mnt), path->dentry, 2044 CL_COPY_ALL | CL_PRIVATE); 2045 namespace_unlock(); 2046 if (IS_ERR(tree)) 2047 return ERR_CAST(tree); 2048 return &tree->mnt; 2049 } 2050 2051 static void free_mnt_ns(struct mnt_namespace *); 2052 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2053 2054 void dissolve_on_fput(struct vfsmount *mnt) 2055 { 2056 struct mnt_namespace *ns; 2057 namespace_lock(); 2058 lock_mount_hash(); 2059 ns = real_mount(mnt)->mnt_ns; 2060 if (ns) { 2061 if (is_anon_ns(ns)) 2062 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2063 else 2064 ns = NULL; 2065 } 2066 unlock_mount_hash(); 2067 namespace_unlock(); 2068 if (ns) 2069 free_mnt_ns(ns); 2070 } 2071 2072 void drop_collected_mounts(struct vfsmount *mnt) 2073 { 2074 namespace_lock(); 2075 lock_mount_hash(); 2076 umount_tree(real_mount(mnt), 0); 2077 unlock_mount_hash(); 2078 namespace_unlock(); 2079 } 2080 2081 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2082 { 2083 struct mount *child; 2084 2085 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2086 if (!is_subdir(child->mnt_mountpoint, dentry)) 2087 continue; 2088 2089 if (child->mnt.mnt_flags & MNT_LOCKED) 2090 return true; 2091 } 2092 return false; 2093 } 2094 2095 /** 2096 * clone_private_mount - create a private clone of a path 2097 * @path: path to clone 2098 * 2099 * This creates a new vfsmount, which will be the clone of @path. The new mount 2100 * will not be attached anywhere in the namespace and will be private (i.e. 2101 * changes to the originating mount won't be propagated into this). 2102 * 2103 * Release with mntput(). 2104 */ 2105 struct vfsmount *clone_private_mount(const struct path *path) 2106 { 2107 struct mount *old_mnt = real_mount(path->mnt); 2108 struct mount *new_mnt; 2109 2110 down_read(&namespace_sem); 2111 if (IS_MNT_UNBINDABLE(old_mnt)) 2112 goto invalid; 2113 2114 if (!check_mnt(old_mnt)) 2115 goto invalid; 2116 2117 if (has_locked_children(old_mnt, path->dentry)) 2118 goto invalid; 2119 2120 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2121 up_read(&namespace_sem); 2122 2123 if (IS_ERR(new_mnt)) 2124 return ERR_CAST(new_mnt); 2125 2126 /* Longterm mount to be removed by kern_unmount*() */ 2127 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2128 2129 return &new_mnt->mnt; 2130 2131 invalid: 2132 up_read(&namespace_sem); 2133 return ERR_PTR(-EINVAL); 2134 } 2135 EXPORT_SYMBOL_GPL(clone_private_mount); 2136 2137 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2138 struct vfsmount *root) 2139 { 2140 struct mount *mnt; 2141 int res = f(root, arg); 2142 if (res) 2143 return res; 2144 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2145 res = f(&mnt->mnt, arg); 2146 if (res) 2147 return res; 2148 } 2149 return 0; 2150 } 2151 2152 static void lock_mnt_tree(struct mount *mnt) 2153 { 2154 struct mount *p; 2155 2156 for (p = mnt; p; p = next_mnt(p, mnt)) { 2157 int flags = p->mnt.mnt_flags; 2158 /* Don't allow unprivileged users to change mount flags */ 2159 flags |= MNT_LOCK_ATIME; 2160 2161 if (flags & MNT_READONLY) 2162 flags |= MNT_LOCK_READONLY; 2163 2164 if (flags & MNT_NODEV) 2165 flags |= MNT_LOCK_NODEV; 2166 2167 if (flags & MNT_NOSUID) 2168 flags |= MNT_LOCK_NOSUID; 2169 2170 if (flags & MNT_NOEXEC) 2171 flags |= MNT_LOCK_NOEXEC; 2172 /* Don't allow unprivileged users to reveal what is under a mount */ 2173 if (list_empty(&p->mnt_expire)) 2174 flags |= MNT_LOCKED; 2175 p->mnt.mnt_flags = flags; 2176 } 2177 } 2178 2179 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2180 { 2181 struct mount *p; 2182 2183 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2184 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2185 mnt_release_group_id(p); 2186 } 2187 } 2188 2189 static int invent_group_ids(struct mount *mnt, bool recurse) 2190 { 2191 struct mount *p; 2192 2193 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2194 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2195 int err = mnt_alloc_group_id(p); 2196 if (err) { 2197 cleanup_group_ids(mnt, p); 2198 return err; 2199 } 2200 } 2201 } 2202 2203 return 0; 2204 } 2205 2206 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2207 { 2208 unsigned int max = READ_ONCE(sysctl_mount_max); 2209 unsigned int mounts = 0; 2210 struct mount *p; 2211 2212 if (ns->mounts >= max) 2213 return -ENOSPC; 2214 max -= ns->mounts; 2215 if (ns->pending_mounts >= max) 2216 return -ENOSPC; 2217 max -= ns->pending_mounts; 2218 2219 for (p = mnt; p; p = next_mnt(p, mnt)) 2220 mounts++; 2221 2222 if (mounts > max) 2223 return -ENOSPC; 2224 2225 ns->pending_mounts += mounts; 2226 return 0; 2227 } 2228 2229 enum mnt_tree_flags_t { 2230 MNT_TREE_MOVE = BIT(0), 2231 MNT_TREE_BENEATH = BIT(1), 2232 }; 2233 2234 /** 2235 * attach_recursive_mnt - attach a source mount tree 2236 * @source_mnt: mount tree to be attached 2237 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2238 * @dest_mp: the mountpoint @source_mnt will be mounted at 2239 * @flags: modify how @source_mnt is supposed to be attached 2240 * 2241 * NOTE: in the table below explains the semantics when a source mount 2242 * of a given type is attached to a destination mount of a given type. 2243 * --------------------------------------------------------------------------- 2244 * | BIND MOUNT OPERATION | 2245 * |************************************************************************** 2246 * | source-->| shared | private | slave | unbindable | 2247 * | dest | | | | | 2248 * | | | | | | | 2249 * | v | | | | | 2250 * |************************************************************************** 2251 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2252 * | | | | | | 2253 * |non-shared| shared (+) | private | slave (*) | invalid | 2254 * *************************************************************************** 2255 * A bind operation clones the source mount and mounts the clone on the 2256 * destination mount. 2257 * 2258 * (++) the cloned mount is propagated to all the mounts in the propagation 2259 * tree of the destination mount and the cloned mount is added to 2260 * the peer group of the source mount. 2261 * (+) the cloned mount is created under the destination mount and is marked 2262 * as shared. The cloned mount is added to the peer group of the source 2263 * mount. 2264 * (+++) the mount is propagated to all the mounts in the propagation tree 2265 * of the destination mount and the cloned mount is made slave 2266 * of the same master as that of the source mount. The cloned mount 2267 * is marked as 'shared and slave'. 2268 * (*) the cloned mount is made a slave of the same master as that of the 2269 * source mount. 2270 * 2271 * --------------------------------------------------------------------------- 2272 * | MOVE MOUNT OPERATION | 2273 * |************************************************************************** 2274 * | source-->| shared | private | slave | unbindable | 2275 * | dest | | | | | 2276 * | | | | | | | 2277 * | v | | | | | 2278 * |************************************************************************** 2279 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2280 * | | | | | | 2281 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2282 * *************************************************************************** 2283 * 2284 * (+) the mount is moved to the destination. And is then propagated to 2285 * all the mounts in the propagation tree of the destination mount. 2286 * (+*) the mount is moved to the destination. 2287 * (+++) the mount is moved to the destination and is then propagated to 2288 * all the mounts belonging to the destination mount's propagation tree. 2289 * the mount is marked as 'shared and slave'. 2290 * (*) the mount continues to be a slave at the new location. 2291 * 2292 * if the source mount is a tree, the operations explained above is 2293 * applied to each mount in the tree. 2294 * Must be called without spinlocks held, since this function can sleep 2295 * in allocations. 2296 * 2297 * Context: The function expects namespace_lock() to be held. 2298 * Return: If @source_mnt was successfully attached 0 is returned. 2299 * Otherwise a negative error code is returned. 2300 */ 2301 static int attach_recursive_mnt(struct mount *source_mnt, 2302 struct mount *top_mnt, 2303 struct mountpoint *dest_mp, 2304 enum mnt_tree_flags_t flags) 2305 { 2306 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2307 HLIST_HEAD(tree_list); 2308 struct mnt_namespace *ns = top_mnt->mnt_ns; 2309 struct mountpoint *smp; 2310 struct mount *child, *dest_mnt, *p; 2311 struct hlist_node *n; 2312 int err = 0; 2313 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2314 2315 /* 2316 * Preallocate a mountpoint in case the new mounts need to be 2317 * mounted beneath mounts on the same mountpoint. 2318 */ 2319 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2320 if (IS_ERR(smp)) 2321 return PTR_ERR(smp); 2322 2323 /* Is there space to add these mounts to the mount namespace? */ 2324 if (!moving) { 2325 err = count_mounts(ns, source_mnt); 2326 if (err) 2327 goto out; 2328 } 2329 2330 if (beneath) 2331 dest_mnt = top_mnt->mnt_parent; 2332 else 2333 dest_mnt = top_mnt; 2334 2335 if (IS_MNT_SHARED(dest_mnt)) { 2336 err = invent_group_ids(source_mnt, true); 2337 if (err) 2338 goto out; 2339 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2340 } 2341 lock_mount_hash(); 2342 if (err) 2343 goto out_cleanup_ids; 2344 2345 if (IS_MNT_SHARED(dest_mnt)) { 2346 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2347 set_mnt_shared(p); 2348 } 2349 2350 if (moving) { 2351 if (beneath) 2352 dest_mp = smp; 2353 unhash_mnt(source_mnt); 2354 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2355 touch_mnt_namespace(source_mnt->mnt_ns); 2356 } else { 2357 if (source_mnt->mnt_ns) { 2358 /* move from anon - the caller will destroy */ 2359 list_del_init(&source_mnt->mnt_ns->list); 2360 } 2361 if (beneath) 2362 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2363 else 2364 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2365 commit_tree(source_mnt); 2366 } 2367 2368 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2369 struct mount *q; 2370 hlist_del_init(&child->mnt_hash); 2371 q = __lookup_mnt(&child->mnt_parent->mnt, 2372 child->mnt_mountpoint); 2373 if (q) 2374 mnt_change_mountpoint(child, smp, q); 2375 /* Notice when we are propagating across user namespaces */ 2376 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2377 lock_mnt_tree(child); 2378 child->mnt.mnt_flags &= ~MNT_LOCKED; 2379 commit_tree(child); 2380 } 2381 put_mountpoint(smp); 2382 unlock_mount_hash(); 2383 2384 return 0; 2385 2386 out_cleanup_ids: 2387 while (!hlist_empty(&tree_list)) { 2388 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2389 child->mnt_parent->mnt_ns->pending_mounts = 0; 2390 umount_tree(child, UMOUNT_SYNC); 2391 } 2392 unlock_mount_hash(); 2393 cleanup_group_ids(source_mnt, NULL); 2394 out: 2395 ns->pending_mounts = 0; 2396 2397 read_seqlock_excl(&mount_lock); 2398 put_mountpoint(smp); 2399 read_sequnlock_excl(&mount_lock); 2400 2401 return err; 2402 } 2403 2404 /** 2405 * do_lock_mount - lock mount and mountpoint 2406 * @path: target path 2407 * @beneath: whether the intention is to mount beneath @path 2408 * 2409 * Follow the mount stack on @path until the top mount @mnt is found. If 2410 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2411 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2412 * until nothing is stacked on top of it anymore. 2413 * 2414 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2415 * against concurrent removal of the new mountpoint from another mount 2416 * namespace. 2417 * 2418 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2419 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2420 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2421 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2422 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2423 * on top of it for @beneath. 2424 * 2425 * In addition, @beneath needs to make sure that @mnt hasn't been 2426 * unmounted or moved from its current mountpoint in between dropping 2427 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2428 * being unmounted would be detected later by e.g., calling 2429 * check_mnt(mnt) in the function it's called from. For the @beneath 2430 * case however, it's useful to detect it directly in do_lock_mount(). 2431 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2432 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2433 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2434 * 2435 * Return: Either the target mountpoint on the top mount or the top 2436 * mount's mountpoint. 2437 */ 2438 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2439 { 2440 struct vfsmount *mnt = path->mnt; 2441 struct dentry *dentry; 2442 struct mountpoint *mp = ERR_PTR(-ENOENT); 2443 2444 for (;;) { 2445 struct mount *m; 2446 2447 if (beneath) { 2448 m = real_mount(mnt); 2449 read_seqlock_excl(&mount_lock); 2450 dentry = dget(m->mnt_mountpoint); 2451 read_sequnlock_excl(&mount_lock); 2452 } else { 2453 dentry = path->dentry; 2454 } 2455 2456 inode_lock(dentry->d_inode); 2457 if (unlikely(cant_mount(dentry))) { 2458 inode_unlock(dentry->d_inode); 2459 goto out; 2460 } 2461 2462 namespace_lock(); 2463 2464 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2465 namespace_unlock(); 2466 inode_unlock(dentry->d_inode); 2467 goto out; 2468 } 2469 2470 mnt = lookup_mnt(path); 2471 if (likely(!mnt)) 2472 break; 2473 2474 namespace_unlock(); 2475 inode_unlock(dentry->d_inode); 2476 if (beneath) 2477 dput(dentry); 2478 path_put(path); 2479 path->mnt = mnt; 2480 path->dentry = dget(mnt->mnt_root); 2481 } 2482 2483 mp = get_mountpoint(dentry); 2484 if (IS_ERR(mp)) { 2485 namespace_unlock(); 2486 inode_unlock(dentry->d_inode); 2487 } 2488 2489 out: 2490 if (beneath) 2491 dput(dentry); 2492 2493 return mp; 2494 } 2495 2496 static inline struct mountpoint *lock_mount(struct path *path) 2497 { 2498 return do_lock_mount(path, false); 2499 } 2500 2501 static void unlock_mount(struct mountpoint *where) 2502 { 2503 struct dentry *dentry = where->m_dentry; 2504 2505 read_seqlock_excl(&mount_lock); 2506 put_mountpoint(where); 2507 read_sequnlock_excl(&mount_lock); 2508 2509 namespace_unlock(); 2510 inode_unlock(dentry->d_inode); 2511 } 2512 2513 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2514 { 2515 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2516 return -EINVAL; 2517 2518 if (d_is_dir(mp->m_dentry) != 2519 d_is_dir(mnt->mnt.mnt_root)) 2520 return -ENOTDIR; 2521 2522 return attach_recursive_mnt(mnt, p, mp, 0); 2523 } 2524 2525 /* 2526 * Sanity check the flags to change_mnt_propagation. 2527 */ 2528 2529 static int flags_to_propagation_type(int ms_flags) 2530 { 2531 int type = ms_flags & ~(MS_REC | MS_SILENT); 2532 2533 /* Fail if any non-propagation flags are set */ 2534 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2535 return 0; 2536 /* Only one propagation flag should be set */ 2537 if (!is_power_of_2(type)) 2538 return 0; 2539 return type; 2540 } 2541 2542 /* 2543 * recursively change the type of the mountpoint. 2544 */ 2545 static int do_change_type(struct path *path, int ms_flags) 2546 { 2547 struct mount *m; 2548 struct mount *mnt = real_mount(path->mnt); 2549 int recurse = ms_flags & MS_REC; 2550 int type; 2551 int err = 0; 2552 2553 if (!path_mounted(path)) 2554 return -EINVAL; 2555 2556 type = flags_to_propagation_type(ms_flags); 2557 if (!type) 2558 return -EINVAL; 2559 2560 namespace_lock(); 2561 if (type == MS_SHARED) { 2562 err = invent_group_ids(mnt, recurse); 2563 if (err) 2564 goto out_unlock; 2565 } 2566 2567 lock_mount_hash(); 2568 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2569 change_mnt_propagation(m, type); 2570 unlock_mount_hash(); 2571 2572 out_unlock: 2573 namespace_unlock(); 2574 return err; 2575 } 2576 2577 static struct mount *__do_loopback(struct path *old_path, int recurse) 2578 { 2579 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2580 2581 if (IS_MNT_UNBINDABLE(old)) 2582 return mnt; 2583 2584 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2585 return mnt; 2586 2587 if (!recurse && has_locked_children(old, old_path->dentry)) 2588 return mnt; 2589 2590 if (recurse) 2591 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2592 else 2593 mnt = clone_mnt(old, old_path->dentry, 0); 2594 2595 if (!IS_ERR(mnt)) 2596 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2597 2598 return mnt; 2599 } 2600 2601 /* 2602 * do loopback mount. 2603 */ 2604 static int do_loopback(struct path *path, const char *old_name, 2605 int recurse) 2606 { 2607 struct path old_path; 2608 struct mount *mnt = NULL, *parent; 2609 struct mountpoint *mp; 2610 int err; 2611 if (!old_name || !*old_name) 2612 return -EINVAL; 2613 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2614 if (err) 2615 return err; 2616 2617 err = -EINVAL; 2618 if (mnt_ns_loop(old_path.dentry)) 2619 goto out; 2620 2621 mp = lock_mount(path); 2622 if (IS_ERR(mp)) { 2623 err = PTR_ERR(mp); 2624 goto out; 2625 } 2626 2627 parent = real_mount(path->mnt); 2628 if (!check_mnt(parent)) 2629 goto out2; 2630 2631 mnt = __do_loopback(&old_path, recurse); 2632 if (IS_ERR(mnt)) { 2633 err = PTR_ERR(mnt); 2634 goto out2; 2635 } 2636 2637 err = graft_tree(mnt, parent, mp); 2638 if (err) { 2639 lock_mount_hash(); 2640 umount_tree(mnt, UMOUNT_SYNC); 2641 unlock_mount_hash(); 2642 } 2643 out2: 2644 unlock_mount(mp); 2645 out: 2646 path_put(&old_path); 2647 return err; 2648 } 2649 2650 static struct file *open_detached_copy(struct path *path, bool recursive) 2651 { 2652 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2653 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2654 struct mount *mnt, *p; 2655 struct file *file; 2656 2657 if (IS_ERR(ns)) 2658 return ERR_CAST(ns); 2659 2660 namespace_lock(); 2661 mnt = __do_loopback(path, recursive); 2662 if (IS_ERR(mnt)) { 2663 namespace_unlock(); 2664 free_mnt_ns(ns); 2665 return ERR_CAST(mnt); 2666 } 2667 2668 lock_mount_hash(); 2669 for (p = mnt; p; p = next_mnt(p, mnt)) { 2670 p->mnt_ns = ns; 2671 ns->mounts++; 2672 } 2673 ns->root = mnt; 2674 list_add_tail(&ns->list, &mnt->mnt_list); 2675 mntget(&mnt->mnt); 2676 unlock_mount_hash(); 2677 namespace_unlock(); 2678 2679 mntput(path->mnt); 2680 path->mnt = &mnt->mnt; 2681 file = dentry_open(path, O_PATH, current_cred()); 2682 if (IS_ERR(file)) 2683 dissolve_on_fput(path->mnt); 2684 else 2685 file->f_mode |= FMODE_NEED_UNMOUNT; 2686 return file; 2687 } 2688 2689 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2690 { 2691 struct file *file; 2692 struct path path; 2693 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2694 bool detached = flags & OPEN_TREE_CLONE; 2695 int error; 2696 int fd; 2697 2698 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2699 2700 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2701 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2702 OPEN_TREE_CLOEXEC)) 2703 return -EINVAL; 2704 2705 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2706 return -EINVAL; 2707 2708 if (flags & AT_NO_AUTOMOUNT) 2709 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2710 if (flags & AT_SYMLINK_NOFOLLOW) 2711 lookup_flags &= ~LOOKUP_FOLLOW; 2712 if (flags & AT_EMPTY_PATH) 2713 lookup_flags |= LOOKUP_EMPTY; 2714 2715 if (detached && !may_mount()) 2716 return -EPERM; 2717 2718 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2719 if (fd < 0) 2720 return fd; 2721 2722 error = user_path_at(dfd, filename, lookup_flags, &path); 2723 if (unlikely(error)) { 2724 file = ERR_PTR(error); 2725 } else { 2726 if (detached) 2727 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2728 else 2729 file = dentry_open(&path, O_PATH, current_cred()); 2730 path_put(&path); 2731 } 2732 if (IS_ERR(file)) { 2733 put_unused_fd(fd); 2734 return PTR_ERR(file); 2735 } 2736 fd_install(fd, file); 2737 return fd; 2738 } 2739 2740 /* 2741 * Don't allow locked mount flags to be cleared. 2742 * 2743 * No locks need to be held here while testing the various MNT_LOCK 2744 * flags because those flags can never be cleared once they are set. 2745 */ 2746 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2747 { 2748 unsigned int fl = mnt->mnt.mnt_flags; 2749 2750 if ((fl & MNT_LOCK_READONLY) && 2751 !(mnt_flags & MNT_READONLY)) 2752 return false; 2753 2754 if ((fl & MNT_LOCK_NODEV) && 2755 !(mnt_flags & MNT_NODEV)) 2756 return false; 2757 2758 if ((fl & MNT_LOCK_NOSUID) && 2759 !(mnt_flags & MNT_NOSUID)) 2760 return false; 2761 2762 if ((fl & MNT_LOCK_NOEXEC) && 2763 !(mnt_flags & MNT_NOEXEC)) 2764 return false; 2765 2766 if ((fl & MNT_LOCK_ATIME) && 2767 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2768 return false; 2769 2770 return true; 2771 } 2772 2773 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2774 { 2775 bool readonly_request = (mnt_flags & MNT_READONLY); 2776 2777 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2778 return 0; 2779 2780 if (readonly_request) 2781 return mnt_make_readonly(mnt); 2782 2783 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2784 return 0; 2785 } 2786 2787 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2788 { 2789 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2790 mnt->mnt.mnt_flags = mnt_flags; 2791 touch_mnt_namespace(mnt->mnt_ns); 2792 } 2793 2794 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2795 { 2796 struct super_block *sb = mnt->mnt_sb; 2797 2798 if (!__mnt_is_readonly(mnt) && 2799 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2800 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2801 char *buf = (char *)__get_free_page(GFP_KERNEL); 2802 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2803 2804 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2805 sb->s_type->name, 2806 is_mounted(mnt) ? "remounted" : "mounted", 2807 mntpath, &sb->s_time_max, 2808 (unsigned long long)sb->s_time_max); 2809 2810 free_page((unsigned long)buf); 2811 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2812 } 2813 } 2814 2815 /* 2816 * Handle reconfiguration of the mountpoint only without alteration of the 2817 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2818 * to mount(2). 2819 */ 2820 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2821 { 2822 struct super_block *sb = path->mnt->mnt_sb; 2823 struct mount *mnt = real_mount(path->mnt); 2824 int ret; 2825 2826 if (!check_mnt(mnt)) 2827 return -EINVAL; 2828 2829 if (!path_mounted(path)) 2830 return -EINVAL; 2831 2832 if (!can_change_locked_flags(mnt, mnt_flags)) 2833 return -EPERM; 2834 2835 /* 2836 * We're only checking whether the superblock is read-only not 2837 * changing it, so only take down_read(&sb->s_umount). 2838 */ 2839 down_read(&sb->s_umount); 2840 lock_mount_hash(); 2841 ret = change_mount_ro_state(mnt, mnt_flags); 2842 if (ret == 0) 2843 set_mount_attributes(mnt, mnt_flags); 2844 unlock_mount_hash(); 2845 up_read(&sb->s_umount); 2846 2847 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2848 2849 return ret; 2850 } 2851 2852 /* 2853 * change filesystem flags. dir should be a physical root of filesystem. 2854 * If you've mounted a non-root directory somewhere and want to do remount 2855 * on it - tough luck. 2856 */ 2857 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2858 int mnt_flags, void *data) 2859 { 2860 int err; 2861 struct super_block *sb = path->mnt->mnt_sb; 2862 struct mount *mnt = real_mount(path->mnt); 2863 struct fs_context *fc; 2864 2865 if (!check_mnt(mnt)) 2866 return -EINVAL; 2867 2868 if (!path_mounted(path)) 2869 return -EINVAL; 2870 2871 if (!can_change_locked_flags(mnt, mnt_flags)) 2872 return -EPERM; 2873 2874 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2875 if (IS_ERR(fc)) 2876 return PTR_ERR(fc); 2877 2878 fc->oldapi = true; 2879 err = parse_monolithic_mount_data(fc, data); 2880 if (!err) { 2881 down_write(&sb->s_umount); 2882 err = -EPERM; 2883 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2884 err = reconfigure_super(fc); 2885 if (!err) { 2886 lock_mount_hash(); 2887 set_mount_attributes(mnt, mnt_flags); 2888 unlock_mount_hash(); 2889 } 2890 } 2891 up_write(&sb->s_umount); 2892 } 2893 2894 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2895 2896 put_fs_context(fc); 2897 return err; 2898 } 2899 2900 static inline int tree_contains_unbindable(struct mount *mnt) 2901 { 2902 struct mount *p; 2903 for (p = mnt; p; p = next_mnt(p, mnt)) { 2904 if (IS_MNT_UNBINDABLE(p)) 2905 return 1; 2906 } 2907 return 0; 2908 } 2909 2910 /* 2911 * Check that there aren't references to earlier/same mount namespaces in the 2912 * specified subtree. Such references can act as pins for mount namespaces 2913 * that aren't checked by the mount-cycle checking code, thereby allowing 2914 * cycles to be made. 2915 */ 2916 static bool check_for_nsfs_mounts(struct mount *subtree) 2917 { 2918 struct mount *p; 2919 bool ret = false; 2920 2921 lock_mount_hash(); 2922 for (p = subtree; p; p = next_mnt(p, subtree)) 2923 if (mnt_ns_loop(p->mnt.mnt_root)) 2924 goto out; 2925 2926 ret = true; 2927 out: 2928 unlock_mount_hash(); 2929 return ret; 2930 } 2931 2932 static int do_set_group(struct path *from_path, struct path *to_path) 2933 { 2934 struct mount *from, *to; 2935 int err; 2936 2937 from = real_mount(from_path->mnt); 2938 to = real_mount(to_path->mnt); 2939 2940 namespace_lock(); 2941 2942 err = -EINVAL; 2943 /* To and From must be mounted */ 2944 if (!is_mounted(&from->mnt)) 2945 goto out; 2946 if (!is_mounted(&to->mnt)) 2947 goto out; 2948 2949 err = -EPERM; 2950 /* We should be allowed to modify mount namespaces of both mounts */ 2951 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2952 goto out; 2953 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2954 goto out; 2955 2956 err = -EINVAL; 2957 /* To and From paths should be mount roots */ 2958 if (!path_mounted(from_path)) 2959 goto out; 2960 if (!path_mounted(to_path)) 2961 goto out; 2962 2963 /* Setting sharing groups is only allowed across same superblock */ 2964 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2965 goto out; 2966 2967 /* From mount root should be wider than To mount root */ 2968 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2969 goto out; 2970 2971 /* From mount should not have locked children in place of To's root */ 2972 if (has_locked_children(from, to->mnt.mnt_root)) 2973 goto out; 2974 2975 /* Setting sharing groups is only allowed on private mounts */ 2976 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2977 goto out; 2978 2979 /* From should not be private */ 2980 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2981 goto out; 2982 2983 if (IS_MNT_SLAVE(from)) { 2984 struct mount *m = from->mnt_master; 2985 2986 list_add(&to->mnt_slave, &m->mnt_slave_list); 2987 to->mnt_master = m; 2988 } 2989 2990 if (IS_MNT_SHARED(from)) { 2991 to->mnt_group_id = from->mnt_group_id; 2992 list_add(&to->mnt_share, &from->mnt_share); 2993 lock_mount_hash(); 2994 set_mnt_shared(to); 2995 unlock_mount_hash(); 2996 } 2997 2998 err = 0; 2999 out: 3000 namespace_unlock(); 3001 return err; 3002 } 3003 3004 /** 3005 * path_overmounted - check if path is overmounted 3006 * @path: path to check 3007 * 3008 * Check if path is overmounted, i.e., if there's a mount on top of 3009 * @path->mnt with @path->dentry as mountpoint. 3010 * 3011 * Context: This function expects namespace_lock() to be held. 3012 * Return: If path is overmounted true is returned, false if not. 3013 */ 3014 static inline bool path_overmounted(const struct path *path) 3015 { 3016 rcu_read_lock(); 3017 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3018 rcu_read_unlock(); 3019 return true; 3020 } 3021 rcu_read_unlock(); 3022 return false; 3023 } 3024 3025 /** 3026 * can_move_mount_beneath - check that we can mount beneath the top mount 3027 * @from: mount to mount beneath 3028 * @to: mount under which to mount 3029 * 3030 * - Make sure that @to->dentry is actually the root of a mount under 3031 * which we can mount another mount. 3032 * - Make sure that nothing can be mounted beneath the caller's current 3033 * root or the rootfs of the namespace. 3034 * - Make sure that the caller can unmount the topmost mount ensuring 3035 * that the caller could reveal the underlying mountpoint. 3036 * - Ensure that nothing has been mounted on top of @from before we 3037 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3038 * - Prevent mounting beneath a mount if the propagation relationship 3039 * between the source mount, parent mount, and top mount would lead to 3040 * nonsensical mount trees. 3041 * 3042 * Context: This function expects namespace_lock() to be held. 3043 * Return: On success 0, and on error a negative error code is returned. 3044 */ 3045 static int can_move_mount_beneath(const struct path *from, 3046 const struct path *to, 3047 const struct mountpoint *mp) 3048 { 3049 struct mount *mnt_from = real_mount(from->mnt), 3050 *mnt_to = real_mount(to->mnt), 3051 *parent_mnt_to = mnt_to->mnt_parent; 3052 3053 if (!mnt_has_parent(mnt_to)) 3054 return -EINVAL; 3055 3056 if (!path_mounted(to)) 3057 return -EINVAL; 3058 3059 if (IS_MNT_LOCKED(mnt_to)) 3060 return -EINVAL; 3061 3062 /* Avoid creating shadow mounts during mount propagation. */ 3063 if (path_overmounted(from)) 3064 return -EINVAL; 3065 3066 /* 3067 * Mounting beneath the rootfs only makes sense when the 3068 * semantics of pivot_root(".", ".") are used. 3069 */ 3070 if (&mnt_to->mnt == current->fs->root.mnt) 3071 return -EINVAL; 3072 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3073 return -EINVAL; 3074 3075 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3076 if (p == mnt_to) 3077 return -EINVAL; 3078 3079 /* 3080 * If the parent mount propagates to the child mount this would 3081 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3082 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3083 * defeats the whole purpose of mounting beneath another mount. 3084 */ 3085 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3086 return -EINVAL; 3087 3088 /* 3089 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3090 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3091 * Afterwards @mnt_from would be mounted on top of 3092 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3093 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3094 * already mounted on @mnt_from, @mnt_to would ultimately be 3095 * remounted on top of @c. Afterwards, @mnt_from would be 3096 * covered by a copy @c of @mnt_from and @c would be covered by 3097 * @mnt_from itself. This defeats the whole purpose of mounting 3098 * @mnt_from beneath @mnt_to. 3099 */ 3100 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3101 return -EINVAL; 3102 3103 return 0; 3104 } 3105 3106 static int do_move_mount(struct path *old_path, struct path *new_path, 3107 bool beneath) 3108 { 3109 struct mnt_namespace *ns; 3110 struct mount *p; 3111 struct mount *old; 3112 struct mount *parent; 3113 struct mountpoint *mp, *old_mp; 3114 int err; 3115 bool attached; 3116 enum mnt_tree_flags_t flags = 0; 3117 3118 mp = do_lock_mount(new_path, beneath); 3119 if (IS_ERR(mp)) 3120 return PTR_ERR(mp); 3121 3122 old = real_mount(old_path->mnt); 3123 p = real_mount(new_path->mnt); 3124 parent = old->mnt_parent; 3125 attached = mnt_has_parent(old); 3126 if (attached) 3127 flags |= MNT_TREE_MOVE; 3128 old_mp = old->mnt_mp; 3129 ns = old->mnt_ns; 3130 3131 err = -EINVAL; 3132 /* The mountpoint must be in our namespace. */ 3133 if (!check_mnt(p)) 3134 goto out; 3135 3136 /* The thing moved must be mounted... */ 3137 if (!is_mounted(&old->mnt)) 3138 goto out; 3139 3140 /* ... and either ours or the root of anon namespace */ 3141 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3142 goto out; 3143 3144 if (old->mnt.mnt_flags & MNT_LOCKED) 3145 goto out; 3146 3147 if (!path_mounted(old_path)) 3148 goto out; 3149 3150 if (d_is_dir(new_path->dentry) != 3151 d_is_dir(old_path->dentry)) 3152 goto out; 3153 /* 3154 * Don't move a mount residing in a shared parent. 3155 */ 3156 if (attached && IS_MNT_SHARED(parent)) 3157 goto out; 3158 3159 if (beneath) { 3160 err = can_move_mount_beneath(old_path, new_path, mp); 3161 if (err) 3162 goto out; 3163 3164 err = -EINVAL; 3165 p = p->mnt_parent; 3166 flags |= MNT_TREE_BENEATH; 3167 } 3168 3169 /* 3170 * Don't move a mount tree containing unbindable mounts to a destination 3171 * mount which is shared. 3172 */ 3173 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3174 goto out; 3175 err = -ELOOP; 3176 if (!check_for_nsfs_mounts(old)) 3177 goto out; 3178 for (; mnt_has_parent(p); p = p->mnt_parent) 3179 if (p == old) 3180 goto out; 3181 3182 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3183 if (err) 3184 goto out; 3185 3186 /* if the mount is moved, it should no longer be expire 3187 * automatically */ 3188 list_del_init(&old->mnt_expire); 3189 if (attached) 3190 put_mountpoint(old_mp); 3191 out: 3192 unlock_mount(mp); 3193 if (!err) { 3194 if (attached) 3195 mntput_no_expire(parent); 3196 else 3197 free_mnt_ns(ns); 3198 } 3199 return err; 3200 } 3201 3202 static int do_move_mount_old(struct path *path, const char *old_name) 3203 { 3204 struct path old_path; 3205 int err; 3206 3207 if (!old_name || !*old_name) 3208 return -EINVAL; 3209 3210 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3211 if (err) 3212 return err; 3213 3214 err = do_move_mount(&old_path, path, false); 3215 path_put(&old_path); 3216 return err; 3217 } 3218 3219 /* 3220 * add a mount into a namespace's mount tree 3221 */ 3222 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3223 const struct path *path, int mnt_flags) 3224 { 3225 struct mount *parent = real_mount(path->mnt); 3226 3227 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3228 3229 if (unlikely(!check_mnt(parent))) { 3230 /* that's acceptable only for automounts done in private ns */ 3231 if (!(mnt_flags & MNT_SHRINKABLE)) 3232 return -EINVAL; 3233 /* ... and for those we'd better have mountpoint still alive */ 3234 if (!parent->mnt_ns) 3235 return -EINVAL; 3236 } 3237 3238 /* Refuse the same filesystem on the same mount point */ 3239 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3240 return -EBUSY; 3241 3242 if (d_is_symlink(newmnt->mnt.mnt_root)) 3243 return -EINVAL; 3244 3245 newmnt->mnt.mnt_flags = mnt_flags; 3246 return graft_tree(newmnt, parent, mp); 3247 } 3248 3249 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3250 3251 /* 3252 * Create a new mount using a superblock configuration and request it 3253 * be added to the namespace tree. 3254 */ 3255 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3256 unsigned int mnt_flags) 3257 { 3258 struct vfsmount *mnt; 3259 struct mountpoint *mp; 3260 struct super_block *sb = fc->root->d_sb; 3261 int error; 3262 3263 error = security_sb_kern_mount(sb); 3264 if (!error && mount_too_revealing(sb, &mnt_flags)) 3265 error = -EPERM; 3266 3267 if (unlikely(error)) { 3268 fc_drop_locked(fc); 3269 return error; 3270 } 3271 3272 up_write(&sb->s_umount); 3273 3274 mnt = vfs_create_mount(fc); 3275 if (IS_ERR(mnt)) 3276 return PTR_ERR(mnt); 3277 3278 mnt_warn_timestamp_expiry(mountpoint, mnt); 3279 3280 mp = lock_mount(mountpoint); 3281 if (IS_ERR(mp)) { 3282 mntput(mnt); 3283 return PTR_ERR(mp); 3284 } 3285 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3286 unlock_mount(mp); 3287 if (error < 0) 3288 mntput(mnt); 3289 return error; 3290 } 3291 3292 /* 3293 * create a new mount for userspace and request it to be added into the 3294 * namespace's tree 3295 */ 3296 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3297 int mnt_flags, const char *name, void *data) 3298 { 3299 struct file_system_type *type; 3300 struct fs_context *fc; 3301 const char *subtype = NULL; 3302 int err = 0; 3303 3304 if (!fstype) 3305 return -EINVAL; 3306 3307 type = get_fs_type(fstype); 3308 if (!type) 3309 return -ENODEV; 3310 3311 if (type->fs_flags & FS_HAS_SUBTYPE) { 3312 subtype = strchr(fstype, '.'); 3313 if (subtype) { 3314 subtype++; 3315 if (!*subtype) { 3316 put_filesystem(type); 3317 return -EINVAL; 3318 } 3319 } 3320 } 3321 3322 fc = fs_context_for_mount(type, sb_flags); 3323 put_filesystem(type); 3324 if (IS_ERR(fc)) 3325 return PTR_ERR(fc); 3326 3327 if (subtype) 3328 err = vfs_parse_fs_string(fc, "subtype", 3329 subtype, strlen(subtype)); 3330 if (!err && name) 3331 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3332 if (!err) 3333 err = parse_monolithic_mount_data(fc, data); 3334 if (!err && !mount_capable(fc)) 3335 err = -EPERM; 3336 if (!err) 3337 err = vfs_get_tree(fc); 3338 if (!err) 3339 err = do_new_mount_fc(fc, path, mnt_flags); 3340 3341 put_fs_context(fc); 3342 return err; 3343 } 3344 3345 int finish_automount(struct vfsmount *m, const struct path *path) 3346 { 3347 struct dentry *dentry = path->dentry; 3348 struct mountpoint *mp; 3349 struct mount *mnt; 3350 int err; 3351 3352 if (!m) 3353 return 0; 3354 if (IS_ERR(m)) 3355 return PTR_ERR(m); 3356 3357 mnt = real_mount(m); 3358 /* The new mount record should have at least 2 refs to prevent it being 3359 * expired before we get a chance to add it 3360 */ 3361 BUG_ON(mnt_get_count(mnt) < 2); 3362 3363 if (m->mnt_sb == path->mnt->mnt_sb && 3364 m->mnt_root == dentry) { 3365 err = -ELOOP; 3366 goto discard; 3367 } 3368 3369 /* 3370 * we don't want to use lock_mount() - in this case finding something 3371 * that overmounts our mountpoint to be means "quitely drop what we've 3372 * got", not "try to mount it on top". 3373 */ 3374 inode_lock(dentry->d_inode); 3375 namespace_lock(); 3376 if (unlikely(cant_mount(dentry))) { 3377 err = -ENOENT; 3378 goto discard_locked; 3379 } 3380 if (path_overmounted(path)) { 3381 err = 0; 3382 goto discard_locked; 3383 } 3384 mp = get_mountpoint(dentry); 3385 if (IS_ERR(mp)) { 3386 err = PTR_ERR(mp); 3387 goto discard_locked; 3388 } 3389 3390 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3391 unlock_mount(mp); 3392 if (unlikely(err)) 3393 goto discard; 3394 mntput(m); 3395 return 0; 3396 3397 discard_locked: 3398 namespace_unlock(); 3399 inode_unlock(dentry->d_inode); 3400 discard: 3401 /* remove m from any expiration list it may be on */ 3402 if (!list_empty(&mnt->mnt_expire)) { 3403 namespace_lock(); 3404 list_del_init(&mnt->mnt_expire); 3405 namespace_unlock(); 3406 } 3407 mntput(m); 3408 mntput(m); 3409 return err; 3410 } 3411 3412 /** 3413 * mnt_set_expiry - Put a mount on an expiration list 3414 * @mnt: The mount to list. 3415 * @expiry_list: The list to add the mount to. 3416 */ 3417 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3418 { 3419 namespace_lock(); 3420 3421 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3422 3423 namespace_unlock(); 3424 } 3425 EXPORT_SYMBOL(mnt_set_expiry); 3426 3427 /* 3428 * process a list of expirable mountpoints with the intent of discarding any 3429 * mountpoints that aren't in use and haven't been touched since last we came 3430 * here 3431 */ 3432 void mark_mounts_for_expiry(struct list_head *mounts) 3433 { 3434 struct mount *mnt, *next; 3435 LIST_HEAD(graveyard); 3436 3437 if (list_empty(mounts)) 3438 return; 3439 3440 namespace_lock(); 3441 lock_mount_hash(); 3442 3443 /* extract from the expiration list every vfsmount that matches the 3444 * following criteria: 3445 * - only referenced by its parent vfsmount 3446 * - still marked for expiry (marked on the last call here; marks are 3447 * cleared by mntput()) 3448 */ 3449 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3450 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3451 propagate_mount_busy(mnt, 1)) 3452 continue; 3453 list_move(&mnt->mnt_expire, &graveyard); 3454 } 3455 while (!list_empty(&graveyard)) { 3456 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3457 touch_mnt_namespace(mnt->mnt_ns); 3458 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3459 } 3460 unlock_mount_hash(); 3461 namespace_unlock(); 3462 } 3463 3464 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3465 3466 /* 3467 * Ripoff of 'select_parent()' 3468 * 3469 * search the list of submounts for a given mountpoint, and move any 3470 * shrinkable submounts to the 'graveyard' list. 3471 */ 3472 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3473 { 3474 struct mount *this_parent = parent; 3475 struct list_head *next; 3476 int found = 0; 3477 3478 repeat: 3479 next = this_parent->mnt_mounts.next; 3480 resume: 3481 while (next != &this_parent->mnt_mounts) { 3482 struct list_head *tmp = next; 3483 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3484 3485 next = tmp->next; 3486 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3487 continue; 3488 /* 3489 * Descend a level if the d_mounts list is non-empty. 3490 */ 3491 if (!list_empty(&mnt->mnt_mounts)) { 3492 this_parent = mnt; 3493 goto repeat; 3494 } 3495 3496 if (!propagate_mount_busy(mnt, 1)) { 3497 list_move_tail(&mnt->mnt_expire, graveyard); 3498 found++; 3499 } 3500 } 3501 /* 3502 * All done at this level ... ascend and resume the search 3503 */ 3504 if (this_parent != parent) { 3505 next = this_parent->mnt_child.next; 3506 this_parent = this_parent->mnt_parent; 3507 goto resume; 3508 } 3509 return found; 3510 } 3511 3512 /* 3513 * process a list of expirable mountpoints with the intent of discarding any 3514 * submounts of a specific parent mountpoint 3515 * 3516 * mount_lock must be held for write 3517 */ 3518 static void shrink_submounts(struct mount *mnt) 3519 { 3520 LIST_HEAD(graveyard); 3521 struct mount *m; 3522 3523 /* extract submounts of 'mountpoint' from the expiration list */ 3524 while (select_submounts(mnt, &graveyard)) { 3525 while (!list_empty(&graveyard)) { 3526 m = list_first_entry(&graveyard, struct mount, 3527 mnt_expire); 3528 touch_mnt_namespace(m->mnt_ns); 3529 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3530 } 3531 } 3532 } 3533 3534 static void *copy_mount_options(const void __user * data) 3535 { 3536 char *copy; 3537 unsigned left, offset; 3538 3539 if (!data) 3540 return NULL; 3541 3542 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3543 if (!copy) 3544 return ERR_PTR(-ENOMEM); 3545 3546 left = copy_from_user(copy, data, PAGE_SIZE); 3547 3548 /* 3549 * Not all architectures have an exact copy_from_user(). Resort to 3550 * byte at a time. 3551 */ 3552 offset = PAGE_SIZE - left; 3553 while (left) { 3554 char c; 3555 if (get_user(c, (const char __user *)data + offset)) 3556 break; 3557 copy[offset] = c; 3558 left--; 3559 offset++; 3560 } 3561 3562 if (left == PAGE_SIZE) { 3563 kfree(copy); 3564 return ERR_PTR(-EFAULT); 3565 } 3566 3567 return copy; 3568 } 3569 3570 static char *copy_mount_string(const void __user *data) 3571 { 3572 return data ? strndup_user(data, PATH_MAX) : NULL; 3573 } 3574 3575 /* 3576 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3577 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3578 * 3579 * data is a (void *) that can point to any structure up to 3580 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3581 * information (or be NULL). 3582 * 3583 * Pre-0.97 versions of mount() didn't have a flags word. 3584 * When the flags word was introduced its top half was required 3585 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3586 * Therefore, if this magic number is present, it carries no information 3587 * and must be discarded. 3588 */ 3589 int path_mount(const char *dev_name, struct path *path, 3590 const char *type_page, unsigned long flags, void *data_page) 3591 { 3592 unsigned int mnt_flags = 0, sb_flags; 3593 int ret; 3594 3595 /* Discard magic */ 3596 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3597 flags &= ~MS_MGC_MSK; 3598 3599 /* Basic sanity checks */ 3600 if (data_page) 3601 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3602 3603 if (flags & MS_NOUSER) 3604 return -EINVAL; 3605 3606 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3607 if (ret) 3608 return ret; 3609 if (!may_mount()) 3610 return -EPERM; 3611 if (flags & SB_MANDLOCK) 3612 warn_mandlock(); 3613 3614 /* Default to relatime unless overriden */ 3615 if (!(flags & MS_NOATIME)) 3616 mnt_flags |= MNT_RELATIME; 3617 3618 /* Separate the per-mountpoint flags */ 3619 if (flags & MS_NOSUID) 3620 mnt_flags |= MNT_NOSUID; 3621 if (flags & MS_NODEV) 3622 mnt_flags |= MNT_NODEV; 3623 if (flags & MS_NOEXEC) 3624 mnt_flags |= MNT_NOEXEC; 3625 if (flags & MS_NOATIME) 3626 mnt_flags |= MNT_NOATIME; 3627 if (flags & MS_NODIRATIME) 3628 mnt_flags |= MNT_NODIRATIME; 3629 if (flags & MS_STRICTATIME) 3630 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3631 if (flags & MS_RDONLY) 3632 mnt_flags |= MNT_READONLY; 3633 if (flags & MS_NOSYMFOLLOW) 3634 mnt_flags |= MNT_NOSYMFOLLOW; 3635 3636 /* The default atime for remount is preservation */ 3637 if ((flags & MS_REMOUNT) && 3638 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3639 MS_STRICTATIME)) == 0)) { 3640 mnt_flags &= ~MNT_ATIME_MASK; 3641 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3642 } 3643 3644 sb_flags = flags & (SB_RDONLY | 3645 SB_SYNCHRONOUS | 3646 SB_MANDLOCK | 3647 SB_DIRSYNC | 3648 SB_SILENT | 3649 SB_POSIXACL | 3650 SB_LAZYTIME | 3651 SB_I_VERSION); 3652 3653 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3654 return do_reconfigure_mnt(path, mnt_flags); 3655 if (flags & MS_REMOUNT) 3656 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3657 if (flags & MS_BIND) 3658 return do_loopback(path, dev_name, flags & MS_REC); 3659 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3660 return do_change_type(path, flags); 3661 if (flags & MS_MOVE) 3662 return do_move_mount_old(path, dev_name); 3663 3664 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3665 data_page); 3666 } 3667 3668 long do_mount(const char *dev_name, const char __user *dir_name, 3669 const char *type_page, unsigned long flags, void *data_page) 3670 { 3671 struct path path; 3672 int ret; 3673 3674 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3675 if (ret) 3676 return ret; 3677 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3678 path_put(&path); 3679 return ret; 3680 } 3681 3682 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3683 { 3684 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3685 } 3686 3687 static void dec_mnt_namespaces(struct ucounts *ucounts) 3688 { 3689 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3690 } 3691 3692 static void free_mnt_ns(struct mnt_namespace *ns) 3693 { 3694 if (!is_anon_ns(ns)) 3695 ns_free_inum(&ns->ns); 3696 dec_mnt_namespaces(ns->ucounts); 3697 put_user_ns(ns->user_ns); 3698 kfree(ns); 3699 } 3700 3701 /* 3702 * Assign a sequence number so we can detect when we attempt to bind 3703 * mount a reference to an older mount namespace into the current 3704 * mount namespace, preventing reference counting loops. A 64bit 3705 * number incrementing at 10Ghz will take 12,427 years to wrap which 3706 * is effectively never, so we can ignore the possibility. 3707 */ 3708 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3709 3710 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3711 { 3712 struct mnt_namespace *new_ns; 3713 struct ucounts *ucounts; 3714 int ret; 3715 3716 ucounts = inc_mnt_namespaces(user_ns); 3717 if (!ucounts) 3718 return ERR_PTR(-ENOSPC); 3719 3720 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3721 if (!new_ns) { 3722 dec_mnt_namespaces(ucounts); 3723 return ERR_PTR(-ENOMEM); 3724 } 3725 if (!anon) { 3726 ret = ns_alloc_inum(&new_ns->ns); 3727 if (ret) { 3728 kfree(new_ns); 3729 dec_mnt_namespaces(ucounts); 3730 return ERR_PTR(ret); 3731 } 3732 } 3733 new_ns->ns.ops = &mntns_operations; 3734 if (!anon) 3735 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3736 refcount_set(&new_ns->ns.count, 1); 3737 INIT_LIST_HEAD(&new_ns->list); 3738 init_waitqueue_head(&new_ns->poll); 3739 spin_lock_init(&new_ns->ns_lock); 3740 new_ns->user_ns = get_user_ns(user_ns); 3741 new_ns->ucounts = ucounts; 3742 return new_ns; 3743 } 3744 3745 __latent_entropy 3746 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3747 struct user_namespace *user_ns, struct fs_struct *new_fs) 3748 { 3749 struct mnt_namespace *new_ns; 3750 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3751 struct mount *p, *q; 3752 struct mount *old; 3753 struct mount *new; 3754 int copy_flags; 3755 3756 BUG_ON(!ns); 3757 3758 if (likely(!(flags & CLONE_NEWNS))) { 3759 get_mnt_ns(ns); 3760 return ns; 3761 } 3762 3763 old = ns->root; 3764 3765 new_ns = alloc_mnt_ns(user_ns, false); 3766 if (IS_ERR(new_ns)) 3767 return new_ns; 3768 3769 namespace_lock(); 3770 /* First pass: copy the tree topology */ 3771 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3772 if (user_ns != ns->user_ns) 3773 copy_flags |= CL_SHARED_TO_SLAVE; 3774 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3775 if (IS_ERR(new)) { 3776 namespace_unlock(); 3777 free_mnt_ns(new_ns); 3778 return ERR_CAST(new); 3779 } 3780 if (user_ns != ns->user_ns) { 3781 lock_mount_hash(); 3782 lock_mnt_tree(new); 3783 unlock_mount_hash(); 3784 } 3785 new_ns->root = new; 3786 list_add_tail(&new_ns->list, &new->mnt_list); 3787 3788 /* 3789 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3790 * as belonging to new namespace. We have already acquired a private 3791 * fs_struct, so tsk->fs->lock is not needed. 3792 */ 3793 p = old; 3794 q = new; 3795 while (p) { 3796 q->mnt_ns = new_ns; 3797 new_ns->mounts++; 3798 if (new_fs) { 3799 if (&p->mnt == new_fs->root.mnt) { 3800 new_fs->root.mnt = mntget(&q->mnt); 3801 rootmnt = &p->mnt; 3802 } 3803 if (&p->mnt == new_fs->pwd.mnt) { 3804 new_fs->pwd.mnt = mntget(&q->mnt); 3805 pwdmnt = &p->mnt; 3806 } 3807 } 3808 p = next_mnt(p, old); 3809 q = next_mnt(q, new); 3810 if (!q) 3811 break; 3812 // an mntns binding we'd skipped? 3813 while (p->mnt.mnt_root != q->mnt.mnt_root) 3814 p = next_mnt(skip_mnt_tree(p), old); 3815 } 3816 namespace_unlock(); 3817 3818 if (rootmnt) 3819 mntput(rootmnt); 3820 if (pwdmnt) 3821 mntput(pwdmnt); 3822 3823 return new_ns; 3824 } 3825 3826 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3827 { 3828 struct mount *mnt = real_mount(m); 3829 struct mnt_namespace *ns; 3830 struct super_block *s; 3831 struct path path; 3832 int err; 3833 3834 ns = alloc_mnt_ns(&init_user_ns, true); 3835 if (IS_ERR(ns)) { 3836 mntput(m); 3837 return ERR_CAST(ns); 3838 } 3839 mnt->mnt_ns = ns; 3840 ns->root = mnt; 3841 ns->mounts++; 3842 list_add(&mnt->mnt_list, &ns->list); 3843 3844 err = vfs_path_lookup(m->mnt_root, m, 3845 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3846 3847 put_mnt_ns(ns); 3848 3849 if (err) 3850 return ERR_PTR(err); 3851 3852 /* trade a vfsmount reference for active sb one */ 3853 s = path.mnt->mnt_sb; 3854 atomic_inc(&s->s_active); 3855 mntput(path.mnt); 3856 /* lock the sucker */ 3857 down_write(&s->s_umount); 3858 /* ... and return the root of (sub)tree on it */ 3859 return path.dentry; 3860 } 3861 EXPORT_SYMBOL(mount_subtree); 3862 3863 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3864 char __user *, type, unsigned long, flags, void __user *, data) 3865 { 3866 int ret; 3867 char *kernel_type; 3868 char *kernel_dev; 3869 void *options; 3870 3871 kernel_type = copy_mount_string(type); 3872 ret = PTR_ERR(kernel_type); 3873 if (IS_ERR(kernel_type)) 3874 goto out_type; 3875 3876 kernel_dev = copy_mount_string(dev_name); 3877 ret = PTR_ERR(kernel_dev); 3878 if (IS_ERR(kernel_dev)) 3879 goto out_dev; 3880 3881 options = copy_mount_options(data); 3882 ret = PTR_ERR(options); 3883 if (IS_ERR(options)) 3884 goto out_data; 3885 3886 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3887 3888 kfree(options); 3889 out_data: 3890 kfree(kernel_dev); 3891 out_dev: 3892 kfree(kernel_type); 3893 out_type: 3894 return ret; 3895 } 3896 3897 #define FSMOUNT_VALID_FLAGS \ 3898 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3899 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3900 MOUNT_ATTR_NOSYMFOLLOW) 3901 3902 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3903 3904 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3905 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3906 3907 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3908 { 3909 unsigned int mnt_flags = 0; 3910 3911 if (attr_flags & MOUNT_ATTR_RDONLY) 3912 mnt_flags |= MNT_READONLY; 3913 if (attr_flags & MOUNT_ATTR_NOSUID) 3914 mnt_flags |= MNT_NOSUID; 3915 if (attr_flags & MOUNT_ATTR_NODEV) 3916 mnt_flags |= MNT_NODEV; 3917 if (attr_flags & MOUNT_ATTR_NOEXEC) 3918 mnt_flags |= MNT_NOEXEC; 3919 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3920 mnt_flags |= MNT_NODIRATIME; 3921 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3922 mnt_flags |= MNT_NOSYMFOLLOW; 3923 3924 return mnt_flags; 3925 } 3926 3927 /* 3928 * Create a kernel mount representation for a new, prepared superblock 3929 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3930 */ 3931 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3932 unsigned int, attr_flags) 3933 { 3934 struct mnt_namespace *ns; 3935 struct fs_context *fc; 3936 struct file *file; 3937 struct path newmount; 3938 struct mount *mnt; 3939 struct fd f; 3940 unsigned int mnt_flags = 0; 3941 long ret; 3942 3943 if (!may_mount()) 3944 return -EPERM; 3945 3946 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3947 return -EINVAL; 3948 3949 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3950 return -EINVAL; 3951 3952 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3953 3954 switch (attr_flags & MOUNT_ATTR__ATIME) { 3955 case MOUNT_ATTR_STRICTATIME: 3956 break; 3957 case MOUNT_ATTR_NOATIME: 3958 mnt_flags |= MNT_NOATIME; 3959 break; 3960 case MOUNT_ATTR_RELATIME: 3961 mnt_flags |= MNT_RELATIME; 3962 break; 3963 default: 3964 return -EINVAL; 3965 } 3966 3967 f = fdget(fs_fd); 3968 if (!f.file) 3969 return -EBADF; 3970 3971 ret = -EINVAL; 3972 if (f.file->f_op != &fscontext_fops) 3973 goto err_fsfd; 3974 3975 fc = f.file->private_data; 3976 3977 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3978 if (ret < 0) 3979 goto err_fsfd; 3980 3981 /* There must be a valid superblock or we can't mount it */ 3982 ret = -EINVAL; 3983 if (!fc->root) 3984 goto err_unlock; 3985 3986 ret = -EPERM; 3987 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3988 pr_warn("VFS: Mount too revealing\n"); 3989 goto err_unlock; 3990 } 3991 3992 ret = -EBUSY; 3993 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3994 goto err_unlock; 3995 3996 if (fc->sb_flags & SB_MANDLOCK) 3997 warn_mandlock(); 3998 3999 newmount.mnt = vfs_create_mount(fc); 4000 if (IS_ERR(newmount.mnt)) { 4001 ret = PTR_ERR(newmount.mnt); 4002 goto err_unlock; 4003 } 4004 newmount.dentry = dget(fc->root); 4005 newmount.mnt->mnt_flags = mnt_flags; 4006 4007 /* We've done the mount bit - now move the file context into more or 4008 * less the same state as if we'd done an fspick(). We don't want to 4009 * do any memory allocation or anything like that at this point as we 4010 * don't want to have to handle any errors incurred. 4011 */ 4012 vfs_clean_context(fc); 4013 4014 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4015 if (IS_ERR(ns)) { 4016 ret = PTR_ERR(ns); 4017 goto err_path; 4018 } 4019 mnt = real_mount(newmount.mnt); 4020 mnt->mnt_ns = ns; 4021 ns->root = mnt; 4022 ns->mounts = 1; 4023 list_add(&mnt->mnt_list, &ns->list); 4024 mntget(newmount.mnt); 4025 4026 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4027 * it, not just simply put it. 4028 */ 4029 file = dentry_open(&newmount, O_PATH, fc->cred); 4030 if (IS_ERR(file)) { 4031 dissolve_on_fput(newmount.mnt); 4032 ret = PTR_ERR(file); 4033 goto err_path; 4034 } 4035 file->f_mode |= FMODE_NEED_UNMOUNT; 4036 4037 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4038 if (ret >= 0) 4039 fd_install(ret, file); 4040 else 4041 fput(file); 4042 4043 err_path: 4044 path_put(&newmount); 4045 err_unlock: 4046 mutex_unlock(&fc->uapi_mutex); 4047 err_fsfd: 4048 fdput(f); 4049 return ret; 4050 } 4051 4052 /* 4053 * Move a mount from one place to another. In combination with 4054 * fsopen()/fsmount() this is used to install a new mount and in combination 4055 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4056 * a mount subtree. 4057 * 4058 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4059 */ 4060 SYSCALL_DEFINE5(move_mount, 4061 int, from_dfd, const char __user *, from_pathname, 4062 int, to_dfd, const char __user *, to_pathname, 4063 unsigned int, flags) 4064 { 4065 struct path from_path, to_path; 4066 unsigned int lflags; 4067 int ret = 0; 4068 4069 if (!may_mount()) 4070 return -EPERM; 4071 4072 if (flags & ~MOVE_MOUNT__MASK) 4073 return -EINVAL; 4074 4075 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4076 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4077 return -EINVAL; 4078 4079 /* If someone gives a pathname, they aren't permitted to move 4080 * from an fd that requires unmount as we can't get at the flag 4081 * to clear it afterwards. 4082 */ 4083 lflags = 0; 4084 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4085 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4086 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4087 4088 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4089 if (ret < 0) 4090 return ret; 4091 4092 lflags = 0; 4093 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4094 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4095 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4096 4097 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4098 if (ret < 0) 4099 goto out_from; 4100 4101 ret = security_move_mount(&from_path, &to_path); 4102 if (ret < 0) 4103 goto out_to; 4104 4105 if (flags & MOVE_MOUNT_SET_GROUP) 4106 ret = do_set_group(&from_path, &to_path); 4107 else 4108 ret = do_move_mount(&from_path, &to_path, 4109 (flags & MOVE_MOUNT_BENEATH)); 4110 4111 out_to: 4112 path_put(&to_path); 4113 out_from: 4114 path_put(&from_path); 4115 return ret; 4116 } 4117 4118 /* 4119 * Return true if path is reachable from root 4120 * 4121 * namespace_sem or mount_lock is held 4122 */ 4123 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4124 const struct path *root) 4125 { 4126 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4127 dentry = mnt->mnt_mountpoint; 4128 mnt = mnt->mnt_parent; 4129 } 4130 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4131 } 4132 4133 bool path_is_under(const struct path *path1, const struct path *path2) 4134 { 4135 bool res; 4136 read_seqlock_excl(&mount_lock); 4137 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4138 read_sequnlock_excl(&mount_lock); 4139 return res; 4140 } 4141 EXPORT_SYMBOL(path_is_under); 4142 4143 /* 4144 * pivot_root Semantics: 4145 * Moves the root file system of the current process to the directory put_old, 4146 * makes new_root as the new root file system of the current process, and sets 4147 * root/cwd of all processes which had them on the current root to new_root. 4148 * 4149 * Restrictions: 4150 * The new_root and put_old must be directories, and must not be on the 4151 * same file system as the current process root. The put_old must be 4152 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4153 * pointed to by put_old must yield the same directory as new_root. No other 4154 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4155 * 4156 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4157 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4158 * in this situation. 4159 * 4160 * Notes: 4161 * - we don't move root/cwd if they are not at the root (reason: if something 4162 * cared enough to change them, it's probably wrong to force them elsewhere) 4163 * - it's okay to pick a root that isn't the root of a file system, e.g. 4164 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4165 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4166 * first. 4167 */ 4168 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4169 const char __user *, put_old) 4170 { 4171 struct path new, old, root; 4172 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4173 struct mountpoint *old_mp, *root_mp; 4174 int error; 4175 4176 if (!may_mount()) 4177 return -EPERM; 4178 4179 error = user_path_at(AT_FDCWD, new_root, 4180 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4181 if (error) 4182 goto out0; 4183 4184 error = user_path_at(AT_FDCWD, put_old, 4185 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4186 if (error) 4187 goto out1; 4188 4189 error = security_sb_pivotroot(&old, &new); 4190 if (error) 4191 goto out2; 4192 4193 get_fs_root(current->fs, &root); 4194 old_mp = lock_mount(&old); 4195 error = PTR_ERR(old_mp); 4196 if (IS_ERR(old_mp)) 4197 goto out3; 4198 4199 error = -EINVAL; 4200 new_mnt = real_mount(new.mnt); 4201 root_mnt = real_mount(root.mnt); 4202 old_mnt = real_mount(old.mnt); 4203 ex_parent = new_mnt->mnt_parent; 4204 root_parent = root_mnt->mnt_parent; 4205 if (IS_MNT_SHARED(old_mnt) || 4206 IS_MNT_SHARED(ex_parent) || 4207 IS_MNT_SHARED(root_parent)) 4208 goto out4; 4209 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4210 goto out4; 4211 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4212 goto out4; 4213 error = -ENOENT; 4214 if (d_unlinked(new.dentry)) 4215 goto out4; 4216 error = -EBUSY; 4217 if (new_mnt == root_mnt || old_mnt == root_mnt) 4218 goto out4; /* loop, on the same file system */ 4219 error = -EINVAL; 4220 if (!path_mounted(&root)) 4221 goto out4; /* not a mountpoint */ 4222 if (!mnt_has_parent(root_mnt)) 4223 goto out4; /* not attached */ 4224 if (!path_mounted(&new)) 4225 goto out4; /* not a mountpoint */ 4226 if (!mnt_has_parent(new_mnt)) 4227 goto out4; /* not attached */ 4228 /* make sure we can reach put_old from new_root */ 4229 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4230 goto out4; 4231 /* make certain new is below the root */ 4232 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4233 goto out4; 4234 lock_mount_hash(); 4235 umount_mnt(new_mnt); 4236 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4237 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4238 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4239 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4240 } 4241 /* mount old root on put_old */ 4242 attach_mnt(root_mnt, old_mnt, old_mp, false); 4243 /* mount new_root on / */ 4244 attach_mnt(new_mnt, root_parent, root_mp, false); 4245 mnt_add_count(root_parent, -1); 4246 touch_mnt_namespace(current->nsproxy->mnt_ns); 4247 /* A moved mount should not expire automatically */ 4248 list_del_init(&new_mnt->mnt_expire); 4249 put_mountpoint(root_mp); 4250 unlock_mount_hash(); 4251 chroot_fs_refs(&root, &new); 4252 error = 0; 4253 out4: 4254 unlock_mount(old_mp); 4255 if (!error) 4256 mntput_no_expire(ex_parent); 4257 out3: 4258 path_put(&root); 4259 out2: 4260 path_put(&old); 4261 out1: 4262 path_put(&new); 4263 out0: 4264 return error; 4265 } 4266 4267 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4268 { 4269 unsigned int flags = mnt->mnt.mnt_flags; 4270 4271 /* flags to clear */ 4272 flags &= ~kattr->attr_clr; 4273 /* flags to raise */ 4274 flags |= kattr->attr_set; 4275 4276 return flags; 4277 } 4278 4279 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4280 { 4281 struct vfsmount *m = &mnt->mnt; 4282 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4283 4284 if (!kattr->mnt_idmap) 4285 return 0; 4286 4287 /* 4288 * Creating an idmapped mount with the filesystem wide idmapping 4289 * doesn't make sense so block that. We don't allow mushy semantics. 4290 */ 4291 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb)) 4292 return -EINVAL; 4293 4294 /* 4295 * Once a mount has been idmapped we don't allow it to change its 4296 * mapping. It makes things simpler and callers can just create 4297 * another bind-mount they can idmap if they want to. 4298 */ 4299 if (is_idmapped_mnt(m)) 4300 return -EPERM; 4301 4302 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4303 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4304 return -EINVAL; 4305 4306 /* We're not controlling the superblock. */ 4307 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4308 return -EPERM; 4309 4310 /* Mount has already been visible in the filesystem hierarchy. */ 4311 if (!is_anon_ns(mnt->mnt_ns)) 4312 return -EINVAL; 4313 4314 return 0; 4315 } 4316 4317 /** 4318 * mnt_allow_writers() - check whether the attribute change allows writers 4319 * @kattr: the new mount attributes 4320 * @mnt: the mount to which @kattr will be applied 4321 * 4322 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4323 * 4324 * Return: true if writers need to be held, false if not 4325 */ 4326 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4327 const struct mount *mnt) 4328 { 4329 return (!(kattr->attr_set & MNT_READONLY) || 4330 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4331 !kattr->mnt_idmap; 4332 } 4333 4334 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4335 { 4336 struct mount *m; 4337 int err; 4338 4339 for (m = mnt; m; m = next_mnt(m, mnt)) { 4340 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4341 err = -EPERM; 4342 break; 4343 } 4344 4345 err = can_idmap_mount(kattr, m); 4346 if (err) 4347 break; 4348 4349 if (!mnt_allow_writers(kattr, m)) { 4350 err = mnt_hold_writers(m); 4351 if (err) 4352 break; 4353 } 4354 4355 if (!kattr->recurse) 4356 return 0; 4357 } 4358 4359 if (err) { 4360 struct mount *p; 4361 4362 /* 4363 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4364 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4365 * mounts and needs to take care to include the first mount. 4366 */ 4367 for (p = mnt; p; p = next_mnt(p, mnt)) { 4368 /* If we had to hold writers unblock them. */ 4369 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4370 mnt_unhold_writers(p); 4371 4372 /* 4373 * We're done once the first mount we changed got 4374 * MNT_WRITE_HOLD unset. 4375 */ 4376 if (p == m) 4377 break; 4378 } 4379 } 4380 return err; 4381 } 4382 4383 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4384 { 4385 if (!kattr->mnt_idmap) 4386 return; 4387 4388 /* 4389 * Pairs with smp_load_acquire() in mnt_idmap(). 4390 * 4391 * Since we only allow a mount to change the idmapping once and 4392 * verified this in can_idmap_mount() we know that the mount has 4393 * @nop_mnt_idmap attached to it. So there's no need to drop any 4394 * references. 4395 */ 4396 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4397 } 4398 4399 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4400 { 4401 struct mount *m; 4402 4403 for (m = mnt; m; m = next_mnt(m, mnt)) { 4404 unsigned int flags; 4405 4406 do_idmap_mount(kattr, m); 4407 flags = recalc_flags(kattr, m); 4408 WRITE_ONCE(m->mnt.mnt_flags, flags); 4409 4410 /* If we had to hold writers unblock them. */ 4411 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4412 mnt_unhold_writers(m); 4413 4414 if (kattr->propagation) 4415 change_mnt_propagation(m, kattr->propagation); 4416 if (!kattr->recurse) 4417 break; 4418 } 4419 touch_mnt_namespace(mnt->mnt_ns); 4420 } 4421 4422 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4423 { 4424 struct mount *mnt = real_mount(path->mnt); 4425 int err = 0; 4426 4427 if (!path_mounted(path)) 4428 return -EINVAL; 4429 4430 if (kattr->mnt_userns) { 4431 struct mnt_idmap *mnt_idmap; 4432 4433 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4434 if (IS_ERR(mnt_idmap)) 4435 return PTR_ERR(mnt_idmap); 4436 kattr->mnt_idmap = mnt_idmap; 4437 } 4438 4439 if (kattr->propagation) { 4440 /* 4441 * Only take namespace_lock() if we're actually changing 4442 * propagation. 4443 */ 4444 namespace_lock(); 4445 if (kattr->propagation == MS_SHARED) { 4446 err = invent_group_ids(mnt, kattr->recurse); 4447 if (err) { 4448 namespace_unlock(); 4449 return err; 4450 } 4451 } 4452 } 4453 4454 err = -EINVAL; 4455 lock_mount_hash(); 4456 4457 /* Ensure that this isn't anything purely vfs internal. */ 4458 if (!is_mounted(&mnt->mnt)) 4459 goto out; 4460 4461 /* 4462 * If this is an attached mount make sure it's located in the callers 4463 * mount namespace. If it's not don't let the caller interact with it. 4464 * If this is a detached mount make sure it has an anonymous mount 4465 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE. 4466 */ 4467 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns))) 4468 goto out; 4469 4470 /* 4471 * First, we get the mount tree in a shape where we can change mount 4472 * properties without failure. If we succeeded to do so we commit all 4473 * changes and if we failed we clean up. 4474 */ 4475 err = mount_setattr_prepare(kattr, mnt); 4476 if (!err) 4477 mount_setattr_commit(kattr, mnt); 4478 4479 out: 4480 unlock_mount_hash(); 4481 4482 if (kattr->propagation) { 4483 if (err) 4484 cleanup_group_ids(mnt, NULL); 4485 namespace_unlock(); 4486 } 4487 4488 return err; 4489 } 4490 4491 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4492 struct mount_kattr *kattr, unsigned int flags) 4493 { 4494 int err = 0; 4495 struct ns_common *ns; 4496 struct user_namespace *mnt_userns; 4497 struct fd f; 4498 4499 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4500 return 0; 4501 4502 /* 4503 * We currently do not support clearing an idmapped mount. If this ever 4504 * is a use-case we can revisit this but for now let's keep it simple 4505 * and not allow it. 4506 */ 4507 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4508 return -EINVAL; 4509 4510 if (attr->userns_fd > INT_MAX) 4511 return -EINVAL; 4512 4513 f = fdget(attr->userns_fd); 4514 if (!f.file) 4515 return -EBADF; 4516 4517 if (!proc_ns_file(f.file)) { 4518 err = -EINVAL; 4519 goto out_fput; 4520 } 4521 4522 ns = get_proc_ns(file_inode(f.file)); 4523 if (ns->ops->type != CLONE_NEWUSER) { 4524 err = -EINVAL; 4525 goto out_fput; 4526 } 4527 4528 /* 4529 * The initial idmapping cannot be used to create an idmapped 4530 * mount. We use the initial idmapping as an indicator of a mount 4531 * that is not idmapped. It can simply be passed into helpers that 4532 * are aware of idmapped mounts as a convenient shortcut. A user 4533 * can just create a dedicated identity mapping to achieve the same 4534 * result. 4535 */ 4536 mnt_userns = container_of(ns, struct user_namespace, ns); 4537 if (mnt_userns == &init_user_ns) { 4538 err = -EPERM; 4539 goto out_fput; 4540 } 4541 4542 /* We're not controlling the target namespace. */ 4543 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4544 err = -EPERM; 4545 goto out_fput; 4546 } 4547 4548 kattr->mnt_userns = get_user_ns(mnt_userns); 4549 4550 out_fput: 4551 fdput(f); 4552 return err; 4553 } 4554 4555 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4556 struct mount_kattr *kattr, unsigned int flags) 4557 { 4558 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4559 4560 if (flags & AT_NO_AUTOMOUNT) 4561 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4562 if (flags & AT_SYMLINK_NOFOLLOW) 4563 lookup_flags &= ~LOOKUP_FOLLOW; 4564 if (flags & AT_EMPTY_PATH) 4565 lookup_flags |= LOOKUP_EMPTY; 4566 4567 *kattr = (struct mount_kattr) { 4568 .lookup_flags = lookup_flags, 4569 .recurse = !!(flags & AT_RECURSIVE), 4570 }; 4571 4572 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4573 return -EINVAL; 4574 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4575 return -EINVAL; 4576 kattr->propagation = attr->propagation; 4577 4578 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4579 return -EINVAL; 4580 4581 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4582 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4583 4584 /* 4585 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4586 * users wanting to transition to a different atime setting cannot 4587 * simply specify the atime setting in @attr_set, but must also 4588 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4589 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4590 * @attr_clr and that @attr_set can't have any atime bits set if 4591 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4592 */ 4593 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4594 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4595 return -EINVAL; 4596 4597 /* 4598 * Clear all previous time settings as they are mutually 4599 * exclusive. 4600 */ 4601 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4602 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4603 case MOUNT_ATTR_RELATIME: 4604 kattr->attr_set |= MNT_RELATIME; 4605 break; 4606 case MOUNT_ATTR_NOATIME: 4607 kattr->attr_set |= MNT_NOATIME; 4608 break; 4609 case MOUNT_ATTR_STRICTATIME: 4610 break; 4611 default: 4612 return -EINVAL; 4613 } 4614 } else { 4615 if (attr->attr_set & MOUNT_ATTR__ATIME) 4616 return -EINVAL; 4617 } 4618 4619 return build_mount_idmapped(attr, usize, kattr, flags); 4620 } 4621 4622 static void finish_mount_kattr(struct mount_kattr *kattr) 4623 { 4624 put_user_ns(kattr->mnt_userns); 4625 kattr->mnt_userns = NULL; 4626 4627 if (kattr->mnt_idmap) 4628 mnt_idmap_put(kattr->mnt_idmap); 4629 } 4630 4631 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4632 unsigned int, flags, struct mount_attr __user *, uattr, 4633 size_t, usize) 4634 { 4635 int err; 4636 struct path target; 4637 struct mount_attr attr; 4638 struct mount_kattr kattr; 4639 4640 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4641 4642 if (flags & ~(AT_EMPTY_PATH | 4643 AT_RECURSIVE | 4644 AT_SYMLINK_NOFOLLOW | 4645 AT_NO_AUTOMOUNT)) 4646 return -EINVAL; 4647 4648 if (unlikely(usize > PAGE_SIZE)) 4649 return -E2BIG; 4650 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4651 return -EINVAL; 4652 4653 if (!may_mount()) 4654 return -EPERM; 4655 4656 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4657 if (err) 4658 return err; 4659 4660 /* Don't bother walking through the mounts if this is a nop. */ 4661 if (attr.attr_set == 0 && 4662 attr.attr_clr == 0 && 4663 attr.propagation == 0) 4664 return 0; 4665 4666 err = build_mount_kattr(&attr, usize, &kattr, flags); 4667 if (err) 4668 return err; 4669 4670 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4671 if (!err) { 4672 err = do_mount_setattr(&target, &kattr); 4673 path_put(&target); 4674 } 4675 finish_mount_kattr(&kattr); 4676 return err; 4677 } 4678 4679 static void __init init_mount_tree(void) 4680 { 4681 struct vfsmount *mnt; 4682 struct mount *m; 4683 struct mnt_namespace *ns; 4684 struct path root; 4685 4686 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4687 if (IS_ERR(mnt)) 4688 panic("Can't create rootfs"); 4689 4690 ns = alloc_mnt_ns(&init_user_ns, false); 4691 if (IS_ERR(ns)) 4692 panic("Can't allocate initial namespace"); 4693 m = real_mount(mnt); 4694 m->mnt_ns = ns; 4695 ns->root = m; 4696 ns->mounts = 1; 4697 list_add(&m->mnt_list, &ns->list); 4698 init_task.nsproxy->mnt_ns = ns; 4699 get_mnt_ns(ns); 4700 4701 root.mnt = mnt; 4702 root.dentry = mnt->mnt_root; 4703 mnt->mnt_flags |= MNT_LOCKED; 4704 4705 set_fs_pwd(current->fs, &root); 4706 set_fs_root(current->fs, &root); 4707 } 4708 4709 void __init mnt_init(void) 4710 { 4711 int err; 4712 4713 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4714 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4715 4716 mount_hashtable = alloc_large_system_hash("Mount-cache", 4717 sizeof(struct hlist_head), 4718 mhash_entries, 19, 4719 HASH_ZERO, 4720 &m_hash_shift, &m_hash_mask, 0, 0); 4721 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4722 sizeof(struct hlist_head), 4723 mphash_entries, 19, 4724 HASH_ZERO, 4725 &mp_hash_shift, &mp_hash_mask, 0, 0); 4726 4727 if (!mount_hashtable || !mountpoint_hashtable) 4728 panic("Failed to allocate mount hash table\n"); 4729 4730 kernfs_init(); 4731 4732 err = sysfs_init(); 4733 if (err) 4734 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4735 __func__, err); 4736 fs_kobj = kobject_create_and_add("fs", NULL); 4737 if (!fs_kobj) 4738 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4739 shmem_init(); 4740 init_rootfs(); 4741 init_mount_tree(); 4742 } 4743 4744 void put_mnt_ns(struct mnt_namespace *ns) 4745 { 4746 if (!refcount_dec_and_test(&ns->ns.count)) 4747 return; 4748 drop_collected_mounts(&ns->root->mnt); 4749 free_mnt_ns(ns); 4750 } 4751 4752 struct vfsmount *kern_mount(struct file_system_type *type) 4753 { 4754 struct vfsmount *mnt; 4755 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4756 if (!IS_ERR(mnt)) { 4757 /* 4758 * it is a longterm mount, don't release mnt until 4759 * we unmount before file sys is unregistered 4760 */ 4761 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4762 } 4763 return mnt; 4764 } 4765 EXPORT_SYMBOL_GPL(kern_mount); 4766 4767 void kern_unmount(struct vfsmount *mnt) 4768 { 4769 /* release long term mount so mount point can be released */ 4770 if (!IS_ERR(mnt)) { 4771 mnt_make_shortterm(mnt); 4772 synchronize_rcu(); /* yecchhh... */ 4773 mntput(mnt); 4774 } 4775 } 4776 EXPORT_SYMBOL(kern_unmount); 4777 4778 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4779 { 4780 unsigned int i; 4781 4782 for (i = 0; i < num; i++) 4783 mnt_make_shortterm(mnt[i]); 4784 synchronize_rcu_expedited(); 4785 for (i = 0; i < num; i++) 4786 mntput(mnt[i]); 4787 } 4788 EXPORT_SYMBOL(kern_unmount_array); 4789 4790 bool our_mnt(struct vfsmount *mnt) 4791 { 4792 return check_mnt(real_mount(mnt)); 4793 } 4794 4795 bool current_chrooted(void) 4796 { 4797 /* Does the current process have a non-standard root */ 4798 struct path ns_root; 4799 struct path fs_root; 4800 bool chrooted; 4801 4802 /* Find the namespace root */ 4803 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4804 ns_root.dentry = ns_root.mnt->mnt_root; 4805 path_get(&ns_root); 4806 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4807 ; 4808 4809 get_fs_root(current->fs, &fs_root); 4810 4811 chrooted = !path_equal(&fs_root, &ns_root); 4812 4813 path_put(&fs_root); 4814 path_put(&ns_root); 4815 4816 return chrooted; 4817 } 4818 4819 static bool mnt_already_visible(struct mnt_namespace *ns, 4820 const struct super_block *sb, 4821 int *new_mnt_flags) 4822 { 4823 int new_flags = *new_mnt_flags; 4824 struct mount *mnt; 4825 bool visible = false; 4826 4827 down_read(&namespace_sem); 4828 lock_ns_list(ns); 4829 list_for_each_entry(mnt, &ns->list, mnt_list) { 4830 struct mount *child; 4831 int mnt_flags; 4832 4833 if (mnt_is_cursor(mnt)) 4834 continue; 4835 4836 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4837 continue; 4838 4839 /* This mount is not fully visible if it's root directory 4840 * is not the root directory of the filesystem. 4841 */ 4842 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4843 continue; 4844 4845 /* A local view of the mount flags */ 4846 mnt_flags = mnt->mnt.mnt_flags; 4847 4848 /* Don't miss readonly hidden in the superblock flags */ 4849 if (sb_rdonly(mnt->mnt.mnt_sb)) 4850 mnt_flags |= MNT_LOCK_READONLY; 4851 4852 /* Verify the mount flags are equal to or more permissive 4853 * than the proposed new mount. 4854 */ 4855 if ((mnt_flags & MNT_LOCK_READONLY) && 4856 !(new_flags & MNT_READONLY)) 4857 continue; 4858 if ((mnt_flags & MNT_LOCK_ATIME) && 4859 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4860 continue; 4861 4862 /* This mount is not fully visible if there are any 4863 * locked child mounts that cover anything except for 4864 * empty directories. 4865 */ 4866 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4867 struct inode *inode = child->mnt_mountpoint->d_inode; 4868 /* Only worry about locked mounts */ 4869 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4870 continue; 4871 /* Is the directory permanetly empty? */ 4872 if (!is_empty_dir_inode(inode)) 4873 goto next; 4874 } 4875 /* Preserve the locked attributes */ 4876 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4877 MNT_LOCK_ATIME); 4878 visible = true; 4879 goto found; 4880 next: ; 4881 } 4882 found: 4883 unlock_ns_list(ns); 4884 up_read(&namespace_sem); 4885 return visible; 4886 } 4887 4888 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4889 { 4890 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4891 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4892 unsigned long s_iflags; 4893 4894 if (ns->user_ns == &init_user_ns) 4895 return false; 4896 4897 /* Can this filesystem be too revealing? */ 4898 s_iflags = sb->s_iflags; 4899 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4900 return false; 4901 4902 if ((s_iflags & required_iflags) != required_iflags) { 4903 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4904 required_iflags); 4905 return true; 4906 } 4907 4908 return !mnt_already_visible(ns, sb, new_mnt_flags); 4909 } 4910 4911 bool mnt_may_suid(struct vfsmount *mnt) 4912 { 4913 /* 4914 * Foreign mounts (accessed via fchdir or through /proc 4915 * symlinks) are always treated as if they are nosuid. This 4916 * prevents namespaces from trusting potentially unsafe 4917 * suid/sgid bits, file caps, or security labels that originate 4918 * in other namespaces. 4919 */ 4920 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4921 current_in_userns(mnt->mnt_sb->s_user_ns); 4922 } 4923 4924 static struct ns_common *mntns_get(struct task_struct *task) 4925 { 4926 struct ns_common *ns = NULL; 4927 struct nsproxy *nsproxy; 4928 4929 task_lock(task); 4930 nsproxy = task->nsproxy; 4931 if (nsproxy) { 4932 ns = &nsproxy->mnt_ns->ns; 4933 get_mnt_ns(to_mnt_ns(ns)); 4934 } 4935 task_unlock(task); 4936 4937 return ns; 4938 } 4939 4940 static void mntns_put(struct ns_common *ns) 4941 { 4942 put_mnt_ns(to_mnt_ns(ns)); 4943 } 4944 4945 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4946 { 4947 struct nsproxy *nsproxy = nsset->nsproxy; 4948 struct fs_struct *fs = nsset->fs; 4949 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4950 struct user_namespace *user_ns = nsset->cred->user_ns; 4951 struct path root; 4952 int err; 4953 4954 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4955 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4956 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4957 return -EPERM; 4958 4959 if (is_anon_ns(mnt_ns)) 4960 return -EINVAL; 4961 4962 if (fs->users != 1) 4963 return -EINVAL; 4964 4965 get_mnt_ns(mnt_ns); 4966 old_mnt_ns = nsproxy->mnt_ns; 4967 nsproxy->mnt_ns = mnt_ns; 4968 4969 /* Find the root */ 4970 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4971 "/", LOOKUP_DOWN, &root); 4972 if (err) { 4973 /* revert to old namespace */ 4974 nsproxy->mnt_ns = old_mnt_ns; 4975 put_mnt_ns(mnt_ns); 4976 return err; 4977 } 4978 4979 put_mnt_ns(old_mnt_ns); 4980 4981 /* Update the pwd and root */ 4982 set_fs_pwd(fs, &root); 4983 set_fs_root(fs, &root); 4984 4985 path_put(&root); 4986 return 0; 4987 } 4988 4989 static struct user_namespace *mntns_owner(struct ns_common *ns) 4990 { 4991 return to_mnt_ns(ns)->user_ns; 4992 } 4993 4994 const struct proc_ns_operations mntns_operations = { 4995 .name = "mnt", 4996 .type = CLONE_NEWNS, 4997 .get = mntns_get, 4998 .put = mntns_put, 4999 .install = mntns_install, 5000 .owner = mntns_owner, 5001 }; 5002 5003 #ifdef CONFIG_SYSCTL 5004 static struct ctl_table fs_namespace_sysctls[] = { 5005 { 5006 .procname = "mount-max", 5007 .data = &sysctl_mount_max, 5008 .maxlen = sizeof(unsigned int), 5009 .mode = 0644, 5010 .proc_handler = proc_dointvec_minmax, 5011 .extra1 = SYSCTL_ONE, 5012 }, 5013 { } 5014 }; 5015 5016 static int __init init_fs_namespace_sysctls(void) 5017 { 5018 register_sysctl_init("fs", fs_namespace_sysctls); 5019 return 0; 5020 } 5021 fs_initcall(init_fs_namespace_sysctls); 5022 5023 #endif /* CONFIG_SYSCTL */ 5024