xref: /linux/fs/namespace.c (revision 5ab1de932e2923f490645ad017a689c5b58dc433)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 
30 #include "pnode.h"
31 #include "internal.h"
32 
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35 
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40 
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 	if (!str)
45 		return 0;
46 	mhash_entries = simple_strtoul(str, &str, 0);
47 	return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50 
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 	if (!str)
55 		return 0;
56 	mphash_entries = simple_strtoul(str, &str, 0);
57 	return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60 
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67 
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76 
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86 
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 	tmp = tmp + (tmp >> m_hash_shift);
92 	return &mount_hashtable[tmp & m_hash_mask];
93 }
94 
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 	tmp = tmp + (tmp >> mp_hash_shift);
99 	return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101 
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 	int res;
105 
106 retry:
107 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 	spin_lock(&mnt_id_lock);
109 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 	if (!res)
111 		mnt_id_start = mnt->mnt_id + 1;
112 	spin_unlock(&mnt_id_lock);
113 	if (res == -EAGAIN)
114 		goto retry;
115 
116 	return res;
117 }
118 
119 static void mnt_free_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_id;
122 	spin_lock(&mnt_id_lock);
123 	ida_remove(&mnt_id_ida, id);
124 	if (mnt_id_start > id)
125 		mnt_id_start = id;
126 	spin_unlock(&mnt_id_lock);
127 }
128 
129 /*
130  * Allocate a new peer group ID
131  *
132  * mnt_group_ida is protected by namespace_sem
133  */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 	int res;
137 
138 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 		return -ENOMEM;
140 
141 	res = ida_get_new_above(&mnt_group_ida,
142 				mnt_group_start,
143 				&mnt->mnt_group_id);
144 	if (!res)
145 		mnt_group_start = mnt->mnt_group_id + 1;
146 
147 	return res;
148 }
149 
150 /*
151  * Release a peer group ID
152  */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 	int id = mnt->mnt_group_id;
156 	ida_remove(&mnt_group_ida, id);
157 	if (mnt_group_start > id)
158 		mnt_group_start = id;
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	unsigned int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 	struct mount *m = container_of(p, struct mount, mnt_umount);
198 	dput(m->mnt_ex_mountpoint);
199 	pin_remove(p);
200 	mntput(&m->mnt);
201 }
202 
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 	if (mnt) {
207 		int err;
208 
209 		err = mnt_alloc_id(mnt);
210 		if (err)
211 			goto out_free_cache;
212 
213 		if (name) {
214 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 			if (!mnt->mnt_devname)
216 				goto out_free_id;
217 		}
218 
219 #ifdef CONFIG_SMP
220 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 		if (!mnt->mnt_pcp)
222 			goto out_free_devname;
223 
224 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 		mnt->mnt_count = 1;
227 		mnt->mnt_writers = 0;
228 #endif
229 
230 		INIT_HLIST_NODE(&mnt->mnt_hash);
231 		INIT_LIST_HEAD(&mnt->mnt_child);
232 		INIT_LIST_HEAD(&mnt->mnt_mounts);
233 		INIT_LIST_HEAD(&mnt->mnt_list);
234 		INIT_LIST_HEAD(&mnt->mnt_expire);
235 		INIT_LIST_HEAD(&mnt->mnt_share);
236 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 		INIT_LIST_HEAD(&mnt->mnt_slave);
238 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 		INIT_LIST_HEAD(&mnt->mnt_umounting);
240 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 	}
242 	return mnt;
243 
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 	kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 	mnt_free_id(mnt);
250 out_free_cache:
251 	kmem_cache_free(mnt_cache, mnt);
252 	return NULL;
253 }
254 
255 /*
256  * Most r/o checks on a fs are for operations that take
257  * discrete amounts of time, like a write() or unlink().
258  * We must keep track of when those operations start
259  * (for permission checks) and when they end, so that
260  * we can determine when writes are able to occur to
261  * a filesystem.
262  */
263 /*
264  * __mnt_is_readonly: check whether a mount is read-only
265  * @mnt: the mount to check for its write status
266  *
267  * This shouldn't be used directly ouside of the VFS.
268  * It does not guarantee that the filesystem will stay
269  * r/w, just that it is right *now*.  This can not and
270  * should not be used in place of IS_RDONLY(inode).
271  * mnt_want/drop_write() will _keep_ the filesystem
272  * r/w.
273  */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 	if (mnt->mnt_flags & MNT_READONLY)
277 		return 1;
278 	if (sb_rdonly(mnt->mnt_sb))
279 		return 1;
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283 
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers++;
290 #endif
291 }
292 
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 	mnt->mnt_writers--;
299 #endif
300 }
301 
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 	unsigned int count = 0;
306 	int cpu;
307 
308 	for_each_possible_cpu(cpu) {
309 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 	}
311 
312 	return count;
313 #else
314 	return mnt->mnt_writers;
315 #endif
316 }
317 
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 	if (mnt->mnt_sb->s_readonly_remount)
321 		return 1;
322 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 	smp_rmb();
324 	return __mnt_is_readonly(mnt);
325 }
326 
327 /*
328  * Most r/o & frozen checks on a fs are for operations that take discrete
329  * amounts of time, like a write() or unlink().  We must keep track of when
330  * those operations start (for permission checks) and when they end, so that we
331  * can determine when writes are able to occur to a filesystem.
332  */
333 /**
334  * __mnt_want_write - get write access to a mount without freeze protection
335  * @m: the mount on which to take a write
336  *
337  * This tells the low-level filesystem that a write is about to be performed to
338  * it, and makes sure that writes are allowed (mnt it read-write) before
339  * returning success. This operation does not protect against filesystem being
340  * frozen. When the write operation is finished, __mnt_drop_write() must be
341  * called. This is effectively a refcount.
342  */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 	struct mount *mnt = real_mount(m);
346 	int ret = 0;
347 
348 	preempt_disable();
349 	mnt_inc_writers(mnt);
350 	/*
351 	 * The store to mnt_inc_writers must be visible before we pass
352 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 	 * incremented count after it has set MNT_WRITE_HOLD.
354 	 */
355 	smp_mb();
356 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 		cpu_relax();
358 	/*
359 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 	 * be set to match its requirements. So we must not load that until
361 	 * MNT_WRITE_HOLD is cleared.
362 	 */
363 	smp_rmb();
364 	if (mnt_is_readonly(m)) {
365 		mnt_dec_writers(mnt);
366 		ret = -EROFS;
367 	}
368 	preempt_enable();
369 
370 	return ret;
371 }
372 
373 /**
374  * mnt_want_write - get write access to a mount
375  * @m: the mount on which to take a write
376  *
377  * This tells the low-level filesystem that a write is about to be performed to
378  * it, and makes sure that writes are allowed (mount is read-write, filesystem
379  * is not frozen) before returning success.  When the write operation is
380  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381  */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 	int ret;
385 
386 	sb_start_write(m->mnt_sb);
387 	ret = __mnt_want_write(m);
388 	if (ret)
389 		sb_end_write(m->mnt_sb);
390 	return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393 
394 /**
395  * mnt_clone_write - get write access to a mount
396  * @mnt: the mount on which to take a write
397  *
398  * This is effectively like mnt_want_write, except
399  * it must only be used to take an extra write reference
400  * on a mountpoint that we already know has a write reference
401  * on it. This allows some optimisation.
402  *
403  * After finished, mnt_drop_write must be called as usual to
404  * drop the reference.
405  */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 	/* superblock may be r/o */
409 	if (__mnt_is_readonly(mnt))
410 		return -EROFS;
411 	preempt_disable();
412 	mnt_inc_writers(real_mount(mnt));
413 	preempt_enable();
414 	return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417 
418 /**
419  * __mnt_want_write_file - get write access to a file's mount
420  * @file: the file who's mount on which to take a write
421  *
422  * This is like __mnt_want_write, but it takes a file and can
423  * do some optimisations if the file is open for write already
424  */
425 int __mnt_want_write_file(struct file *file)
426 {
427 	if (!(file->f_mode & FMODE_WRITER))
428 		return __mnt_want_write(file->f_path.mnt);
429 	else
430 		return mnt_clone_write(file->f_path.mnt);
431 }
432 
433 /**
434  * mnt_want_write_file_path - get write access to a file's mount
435  * @file: the file who's mount on which to take a write
436  *
437  * This is like mnt_want_write, but it takes a file and can
438  * do some optimisations if the file is open for write already
439  *
440  * Called by the vfs for cases when we have an open file at hand, but will do an
441  * inode operation on it (important distinction for files opened on overlayfs,
442  * since the file operations will come from the real underlying file, while
443  * inode operations come from the overlay).
444  */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 	int ret;
448 
449 	sb_start_write(file->f_path.mnt->mnt_sb);
450 	ret = __mnt_want_write_file(file);
451 	if (ret)
452 		sb_end_write(file->f_path.mnt->mnt_sb);
453 	return ret;
454 }
455 
456 static inline int may_write_real(struct file *file)
457 {
458 	struct dentry *dentry = file->f_path.dentry;
459 	struct dentry *upperdentry;
460 
461 	/* Writable file? */
462 	if (file->f_mode & FMODE_WRITER)
463 		return 0;
464 
465 	/* Not overlayfs? */
466 	if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 		return 0;
468 
469 	/* File refers to upper, writable layer? */
470 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 	if (upperdentry &&
472 	    (file_inode(file) == d_inode(upperdentry) ||
473 	     file_inode(file) == d_inode(dentry)))
474 		return 0;
475 
476 	/* Lower layer: can't write to real file, sorry... */
477 	return -EPERM;
478 }
479 
480 /**
481  * mnt_want_write_file - get write access to a file's mount
482  * @file: the file who's mount on which to take a write
483  *
484  * This is like mnt_want_write, but it takes a file and can
485  * do some optimisations if the file is open for write already
486  *
487  * Mostly called by filesystems from their ioctl operation before performing
488  * modification.  On overlayfs this needs to check if the file is on a read-only
489  * lower layer and deny access in that case.
490  */
491 int mnt_want_write_file(struct file *file)
492 {
493 	int ret;
494 
495 	ret = may_write_real(file);
496 	if (!ret) {
497 		sb_start_write(file_inode(file)->i_sb);
498 		ret = __mnt_want_write_file(file);
499 		if (ret)
500 			sb_end_write(file_inode(file)->i_sb);
501 	}
502 	return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505 
506 /**
507  * __mnt_drop_write - give up write access to a mount
508  * @mnt: the mount on which to give up write access
509  *
510  * Tells the low-level filesystem that we are done
511  * performing writes to it.  Must be matched with
512  * __mnt_want_write() call above.
513  */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 	preempt_disable();
517 	mnt_dec_writers(real_mount(mnt));
518 	preempt_enable();
519 }
520 
521 /**
522  * mnt_drop_write - give up write access to a mount
523  * @mnt: the mount on which to give up write access
524  *
525  * Tells the low-level filesystem that we are done performing writes to it and
526  * also allows filesystem to be frozen again.  Must be matched with
527  * mnt_want_write() call above.
528  */
529 void mnt_drop_write(struct vfsmount *mnt)
530 {
531 	__mnt_drop_write(mnt);
532 	sb_end_write(mnt->mnt_sb);
533 }
534 EXPORT_SYMBOL_GPL(mnt_drop_write);
535 
536 void __mnt_drop_write_file(struct file *file)
537 {
538 	__mnt_drop_write(file->f_path.mnt);
539 }
540 
541 void mnt_drop_write_file_path(struct file *file)
542 {
543 	mnt_drop_write(file->f_path.mnt);
544 }
545 
546 void mnt_drop_write_file(struct file *file)
547 {
548 	__mnt_drop_write(file->f_path.mnt);
549 	sb_end_write(file_inode(file)->i_sb);
550 }
551 EXPORT_SYMBOL(mnt_drop_write_file);
552 
553 static int mnt_make_readonly(struct mount *mnt)
554 {
555 	int ret = 0;
556 
557 	lock_mount_hash();
558 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 	/*
560 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 	 * should be visible before we do.
562 	 */
563 	smp_mb();
564 
565 	/*
566 	 * With writers on hold, if this value is zero, then there are
567 	 * definitely no active writers (although held writers may subsequently
568 	 * increment the count, they'll have to wait, and decrement it after
569 	 * seeing MNT_READONLY).
570 	 *
571 	 * It is OK to have counter incremented on one CPU and decremented on
572 	 * another: the sum will add up correctly. The danger would be when we
573 	 * sum up each counter, if we read a counter before it is incremented,
574 	 * but then read another CPU's count which it has been subsequently
575 	 * decremented from -- we would see more decrements than we should.
576 	 * MNT_WRITE_HOLD protects against this scenario, because
577 	 * mnt_want_write first increments count, then smp_mb, then spins on
578 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 	 * we're counting up here.
580 	 */
581 	if (mnt_get_writers(mnt) > 0)
582 		ret = -EBUSY;
583 	else
584 		mnt->mnt.mnt_flags |= MNT_READONLY;
585 	/*
586 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 	 * that become unheld will see MNT_READONLY.
588 	 */
589 	smp_wmb();
590 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
591 	unlock_mount_hash();
592 	return ret;
593 }
594 
595 static void __mnt_unmake_readonly(struct mount *mnt)
596 {
597 	lock_mount_hash();
598 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
599 	unlock_mount_hash();
600 }
601 
602 int sb_prepare_remount_readonly(struct super_block *sb)
603 {
604 	struct mount *mnt;
605 	int err = 0;
606 
607 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
608 	if (atomic_long_read(&sb->s_remove_count))
609 		return -EBUSY;
610 
611 	lock_mount_hash();
612 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 			smp_mb();
616 			if (mnt_get_writers(mnt) > 0) {
617 				err = -EBUSY;
618 				break;
619 			}
620 		}
621 	}
622 	if (!err && atomic_long_read(&sb->s_remove_count))
623 		err = -EBUSY;
624 
625 	if (!err) {
626 		sb->s_readonly_remount = 1;
627 		smp_wmb();
628 	}
629 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 	}
633 	unlock_mount_hash();
634 
635 	return err;
636 }
637 
638 static void free_vfsmnt(struct mount *mnt)
639 {
640 	kfree_const(mnt->mnt_devname);
641 #ifdef CONFIG_SMP
642 	free_percpu(mnt->mnt_pcp);
643 #endif
644 	kmem_cache_free(mnt_cache, mnt);
645 }
646 
647 static void delayed_free_vfsmnt(struct rcu_head *head)
648 {
649 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650 }
651 
652 /* call under rcu_read_lock */
653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
654 {
655 	struct mount *mnt;
656 	if (read_seqretry(&mount_lock, seq))
657 		return 1;
658 	if (bastard == NULL)
659 		return 0;
660 	mnt = real_mount(bastard);
661 	mnt_add_count(mnt, 1);
662 	smp_mb();			// see mntput_no_expire()
663 	if (likely(!read_seqretry(&mount_lock, seq)))
664 		return 0;
665 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 		mnt_add_count(mnt, -1);
667 		return 1;
668 	}
669 	lock_mount_hash();
670 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
671 		mnt_add_count(mnt, -1);
672 		unlock_mount_hash();
673 		return 1;
674 	}
675 	unlock_mount_hash();
676 	/* caller will mntput() */
677 	return -1;
678 }
679 
680 /* call under rcu_read_lock */
681 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
682 {
683 	int res = __legitimize_mnt(bastard, seq);
684 	if (likely(!res))
685 		return true;
686 	if (unlikely(res < 0)) {
687 		rcu_read_unlock();
688 		mntput(bastard);
689 		rcu_read_lock();
690 	}
691 	return false;
692 }
693 
694 /*
695  * find the first mount at @dentry on vfsmount @mnt.
696  * call under rcu_read_lock()
697  */
698 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
699 {
700 	struct hlist_head *head = m_hash(mnt, dentry);
701 	struct mount *p;
702 
703 	hlist_for_each_entry_rcu(p, head, mnt_hash)
704 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
705 			return p;
706 	return NULL;
707 }
708 
709 /*
710  * lookup_mnt - Return the first child mount mounted at path
711  *
712  * "First" means first mounted chronologically.  If you create the
713  * following mounts:
714  *
715  * mount /dev/sda1 /mnt
716  * mount /dev/sda2 /mnt
717  * mount /dev/sda3 /mnt
718  *
719  * Then lookup_mnt() on the base /mnt dentry in the root mount will
720  * return successively the root dentry and vfsmount of /dev/sda1, then
721  * /dev/sda2, then /dev/sda3, then NULL.
722  *
723  * lookup_mnt takes a reference to the found vfsmount.
724  */
725 struct vfsmount *lookup_mnt(const struct path *path)
726 {
727 	struct mount *child_mnt;
728 	struct vfsmount *m;
729 	unsigned seq;
730 
731 	rcu_read_lock();
732 	do {
733 		seq = read_seqbegin(&mount_lock);
734 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
735 		m = child_mnt ? &child_mnt->mnt : NULL;
736 	} while (!legitimize_mnt(m, seq));
737 	rcu_read_unlock();
738 	return m;
739 }
740 
741 /*
742  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
743  *                         current mount namespace.
744  *
745  * The common case is dentries are not mountpoints at all and that
746  * test is handled inline.  For the slow case when we are actually
747  * dealing with a mountpoint of some kind, walk through all of the
748  * mounts in the current mount namespace and test to see if the dentry
749  * is a mountpoint.
750  *
751  * The mount_hashtable is not usable in the context because we
752  * need to identify all mounts that may be in the current mount
753  * namespace not just a mount that happens to have some specified
754  * parent mount.
755  */
756 bool __is_local_mountpoint(struct dentry *dentry)
757 {
758 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
759 	struct mount *mnt;
760 	bool is_covered = false;
761 
762 	if (!d_mountpoint(dentry))
763 		goto out;
764 
765 	down_read(&namespace_sem);
766 	list_for_each_entry(mnt, &ns->list, mnt_list) {
767 		is_covered = (mnt->mnt_mountpoint == dentry);
768 		if (is_covered)
769 			break;
770 	}
771 	up_read(&namespace_sem);
772 out:
773 	return is_covered;
774 }
775 
776 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
777 {
778 	struct hlist_head *chain = mp_hash(dentry);
779 	struct mountpoint *mp;
780 
781 	hlist_for_each_entry(mp, chain, m_hash) {
782 		if (mp->m_dentry == dentry) {
783 			/* might be worth a WARN_ON() */
784 			if (d_unlinked(dentry))
785 				return ERR_PTR(-ENOENT);
786 			mp->m_count++;
787 			return mp;
788 		}
789 	}
790 	return NULL;
791 }
792 
793 static struct mountpoint *get_mountpoint(struct dentry *dentry)
794 {
795 	struct mountpoint *mp, *new = NULL;
796 	int ret;
797 
798 	if (d_mountpoint(dentry)) {
799 mountpoint:
800 		read_seqlock_excl(&mount_lock);
801 		mp = lookup_mountpoint(dentry);
802 		read_sequnlock_excl(&mount_lock);
803 		if (mp)
804 			goto done;
805 	}
806 
807 	if (!new)
808 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
809 	if (!new)
810 		return ERR_PTR(-ENOMEM);
811 
812 
813 	/* Exactly one processes may set d_mounted */
814 	ret = d_set_mounted(dentry);
815 
816 	/* Someone else set d_mounted? */
817 	if (ret == -EBUSY)
818 		goto mountpoint;
819 
820 	/* The dentry is not available as a mountpoint? */
821 	mp = ERR_PTR(ret);
822 	if (ret)
823 		goto done;
824 
825 	/* Add the new mountpoint to the hash table */
826 	read_seqlock_excl(&mount_lock);
827 	new->m_dentry = dentry;
828 	new->m_count = 1;
829 	hlist_add_head(&new->m_hash, mp_hash(dentry));
830 	INIT_HLIST_HEAD(&new->m_list);
831 	read_sequnlock_excl(&mount_lock);
832 
833 	mp = new;
834 	new = NULL;
835 done:
836 	kfree(new);
837 	return mp;
838 }
839 
840 static void put_mountpoint(struct mountpoint *mp)
841 {
842 	if (!--mp->m_count) {
843 		struct dentry *dentry = mp->m_dentry;
844 		BUG_ON(!hlist_empty(&mp->m_list));
845 		spin_lock(&dentry->d_lock);
846 		dentry->d_flags &= ~DCACHE_MOUNTED;
847 		spin_unlock(&dentry->d_lock);
848 		hlist_del(&mp->m_hash);
849 		kfree(mp);
850 	}
851 }
852 
853 static inline int check_mnt(struct mount *mnt)
854 {
855 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
856 }
857 
858 /*
859  * vfsmount lock must be held for write
860  */
861 static void touch_mnt_namespace(struct mnt_namespace *ns)
862 {
863 	if (ns) {
864 		ns->event = ++event;
865 		wake_up_interruptible(&ns->poll);
866 	}
867 }
868 
869 /*
870  * vfsmount lock must be held for write
871  */
872 static void __touch_mnt_namespace(struct mnt_namespace *ns)
873 {
874 	if (ns && ns->event != event) {
875 		ns->event = event;
876 		wake_up_interruptible(&ns->poll);
877 	}
878 }
879 
880 /*
881  * vfsmount lock must be held for write
882  */
883 static void unhash_mnt(struct mount *mnt)
884 {
885 	mnt->mnt_parent = mnt;
886 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
887 	list_del_init(&mnt->mnt_child);
888 	hlist_del_init_rcu(&mnt->mnt_hash);
889 	hlist_del_init(&mnt->mnt_mp_list);
890 	put_mountpoint(mnt->mnt_mp);
891 	mnt->mnt_mp = NULL;
892 }
893 
894 /*
895  * vfsmount lock must be held for write
896  */
897 static void detach_mnt(struct mount *mnt, struct path *old_path)
898 {
899 	old_path->dentry = mnt->mnt_mountpoint;
900 	old_path->mnt = &mnt->mnt_parent->mnt;
901 	unhash_mnt(mnt);
902 }
903 
904 /*
905  * vfsmount lock must be held for write
906  */
907 static void umount_mnt(struct mount *mnt)
908 {
909 	/* old mountpoint will be dropped when we can do that */
910 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
911 	unhash_mnt(mnt);
912 }
913 
914 /*
915  * vfsmount lock must be held for write
916  */
917 void mnt_set_mountpoint(struct mount *mnt,
918 			struct mountpoint *mp,
919 			struct mount *child_mnt)
920 {
921 	mp->m_count++;
922 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
923 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
924 	child_mnt->mnt_parent = mnt;
925 	child_mnt->mnt_mp = mp;
926 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
927 }
928 
929 static void __attach_mnt(struct mount *mnt, struct mount *parent)
930 {
931 	hlist_add_head_rcu(&mnt->mnt_hash,
932 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
933 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
934 }
935 
936 /*
937  * vfsmount lock must be held for write
938  */
939 static void attach_mnt(struct mount *mnt,
940 			struct mount *parent,
941 			struct mountpoint *mp)
942 {
943 	mnt_set_mountpoint(parent, mp, mnt);
944 	__attach_mnt(mnt, parent);
945 }
946 
947 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
948 {
949 	struct mountpoint *old_mp = mnt->mnt_mp;
950 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
951 	struct mount *old_parent = mnt->mnt_parent;
952 
953 	list_del_init(&mnt->mnt_child);
954 	hlist_del_init(&mnt->mnt_mp_list);
955 	hlist_del_init_rcu(&mnt->mnt_hash);
956 
957 	attach_mnt(mnt, parent, mp);
958 
959 	put_mountpoint(old_mp);
960 
961 	/*
962 	 * Safely avoid even the suggestion this code might sleep or
963 	 * lock the mount hash by taking advantage of the knowledge that
964 	 * mnt_change_mountpoint will not release the final reference
965 	 * to a mountpoint.
966 	 *
967 	 * During mounting, the mount passed in as the parent mount will
968 	 * continue to use the old mountpoint and during unmounting, the
969 	 * old mountpoint will continue to exist until namespace_unlock,
970 	 * which happens well after mnt_change_mountpoint.
971 	 */
972 	spin_lock(&old_mountpoint->d_lock);
973 	old_mountpoint->d_lockref.count--;
974 	spin_unlock(&old_mountpoint->d_lock);
975 
976 	mnt_add_count(old_parent, -1);
977 }
978 
979 /*
980  * vfsmount lock must be held for write
981  */
982 static void commit_tree(struct mount *mnt)
983 {
984 	struct mount *parent = mnt->mnt_parent;
985 	struct mount *m;
986 	LIST_HEAD(head);
987 	struct mnt_namespace *n = parent->mnt_ns;
988 
989 	BUG_ON(parent == mnt);
990 
991 	list_add_tail(&head, &mnt->mnt_list);
992 	list_for_each_entry(m, &head, mnt_list)
993 		m->mnt_ns = n;
994 
995 	list_splice(&head, n->list.prev);
996 
997 	n->mounts += n->pending_mounts;
998 	n->pending_mounts = 0;
999 
1000 	__attach_mnt(mnt, parent);
1001 	touch_mnt_namespace(n);
1002 }
1003 
1004 static struct mount *next_mnt(struct mount *p, struct mount *root)
1005 {
1006 	struct list_head *next = p->mnt_mounts.next;
1007 	if (next == &p->mnt_mounts) {
1008 		while (1) {
1009 			if (p == root)
1010 				return NULL;
1011 			next = p->mnt_child.next;
1012 			if (next != &p->mnt_parent->mnt_mounts)
1013 				break;
1014 			p = p->mnt_parent;
1015 		}
1016 	}
1017 	return list_entry(next, struct mount, mnt_child);
1018 }
1019 
1020 static struct mount *skip_mnt_tree(struct mount *p)
1021 {
1022 	struct list_head *prev = p->mnt_mounts.prev;
1023 	while (prev != &p->mnt_mounts) {
1024 		p = list_entry(prev, struct mount, mnt_child);
1025 		prev = p->mnt_mounts.prev;
1026 	}
1027 	return p;
1028 }
1029 
1030 struct vfsmount *
1031 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1032 {
1033 	struct mount *mnt;
1034 	struct dentry *root;
1035 
1036 	if (!type)
1037 		return ERR_PTR(-ENODEV);
1038 
1039 	mnt = alloc_vfsmnt(name);
1040 	if (!mnt)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	if (flags & SB_KERNMOUNT)
1044 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1045 
1046 	root = mount_fs(type, flags, name, data);
1047 	if (IS_ERR(root)) {
1048 		mnt_free_id(mnt);
1049 		free_vfsmnt(mnt);
1050 		return ERR_CAST(root);
1051 	}
1052 
1053 	mnt->mnt.mnt_root = root;
1054 	mnt->mnt.mnt_sb = root->d_sb;
1055 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056 	mnt->mnt_parent = mnt;
1057 	lock_mount_hash();
1058 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1059 	unlock_mount_hash();
1060 	return &mnt->mnt;
1061 }
1062 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1063 
1064 struct vfsmount *
1065 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1066 	     const char *name, void *data)
1067 {
1068 	/* Until it is worked out how to pass the user namespace
1069 	 * through from the parent mount to the submount don't support
1070 	 * unprivileged mounts with submounts.
1071 	 */
1072 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1073 		return ERR_PTR(-EPERM);
1074 
1075 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1076 }
1077 EXPORT_SYMBOL_GPL(vfs_submount);
1078 
1079 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1080 					int flag)
1081 {
1082 	struct super_block *sb = old->mnt.mnt_sb;
1083 	struct mount *mnt;
1084 	int err;
1085 
1086 	mnt = alloc_vfsmnt(old->mnt_devname);
1087 	if (!mnt)
1088 		return ERR_PTR(-ENOMEM);
1089 
1090 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1091 		mnt->mnt_group_id = 0; /* not a peer of original */
1092 	else
1093 		mnt->mnt_group_id = old->mnt_group_id;
1094 
1095 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1096 		err = mnt_alloc_group_id(mnt);
1097 		if (err)
1098 			goto out_free;
1099 	}
1100 
1101 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1102 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1103 	/* Don't allow unprivileged users to change mount flags */
1104 	if (flag & CL_UNPRIVILEGED) {
1105 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1106 
1107 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1108 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1109 
1110 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1111 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1112 
1113 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1114 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1115 
1116 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1117 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1118 	}
1119 
1120 	/* Don't allow unprivileged users to reveal what is under a mount */
1121 	if ((flag & CL_UNPRIVILEGED) &&
1122 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1123 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1124 
1125 	atomic_inc(&sb->s_active);
1126 	mnt->mnt.mnt_sb = sb;
1127 	mnt->mnt.mnt_root = dget(root);
1128 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129 	mnt->mnt_parent = mnt;
1130 	lock_mount_hash();
1131 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132 	unlock_mount_hash();
1133 
1134 	if ((flag & CL_SLAVE) ||
1135 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137 		mnt->mnt_master = old;
1138 		CLEAR_MNT_SHARED(mnt);
1139 	} else if (!(flag & CL_PRIVATE)) {
1140 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141 			list_add(&mnt->mnt_share, &old->mnt_share);
1142 		if (IS_MNT_SLAVE(old))
1143 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1144 		mnt->mnt_master = old->mnt_master;
1145 	} else {
1146 		CLEAR_MNT_SHARED(mnt);
1147 	}
1148 	if (flag & CL_MAKE_SHARED)
1149 		set_mnt_shared(mnt);
1150 
1151 	/* stick the duplicate mount on the same expiry list
1152 	 * as the original if that was on one */
1153 	if (flag & CL_EXPIRE) {
1154 		if (!list_empty(&old->mnt_expire))
1155 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1156 	}
1157 
1158 	return mnt;
1159 
1160  out_free:
1161 	mnt_free_id(mnt);
1162 	free_vfsmnt(mnt);
1163 	return ERR_PTR(err);
1164 }
1165 
1166 static void cleanup_mnt(struct mount *mnt)
1167 {
1168 	/*
1169 	 * This probably indicates that somebody messed
1170 	 * up a mnt_want/drop_write() pair.  If this
1171 	 * happens, the filesystem was probably unable
1172 	 * to make r/w->r/o transitions.
1173 	 */
1174 	/*
1175 	 * The locking used to deal with mnt_count decrement provides barriers,
1176 	 * so mnt_get_writers() below is safe.
1177 	 */
1178 	WARN_ON(mnt_get_writers(mnt));
1179 	if (unlikely(mnt->mnt_pins.first))
1180 		mnt_pin_kill(mnt);
1181 	fsnotify_vfsmount_delete(&mnt->mnt);
1182 	dput(mnt->mnt.mnt_root);
1183 	deactivate_super(mnt->mnt.mnt_sb);
1184 	mnt_free_id(mnt);
1185 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1186 }
1187 
1188 static void __cleanup_mnt(struct rcu_head *head)
1189 {
1190 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1191 }
1192 
1193 static LLIST_HEAD(delayed_mntput_list);
1194 static void delayed_mntput(struct work_struct *unused)
1195 {
1196 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1197 	struct mount *m, *t;
1198 
1199 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1200 		cleanup_mnt(m);
1201 }
1202 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1203 
1204 static void mntput_no_expire(struct mount *mnt)
1205 {
1206 	rcu_read_lock();
1207 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1208 		/*
1209 		 * Since we don't do lock_mount_hash() here,
1210 		 * ->mnt_ns can change under us.  However, if it's
1211 		 * non-NULL, then there's a reference that won't
1212 		 * be dropped until after an RCU delay done after
1213 		 * turning ->mnt_ns NULL.  So if we observe it
1214 		 * non-NULL under rcu_read_lock(), the reference
1215 		 * we are dropping is not the final one.
1216 		 */
1217 		mnt_add_count(mnt, -1);
1218 		rcu_read_unlock();
1219 		return;
1220 	}
1221 	lock_mount_hash();
1222 	/*
1223 	 * make sure that if __legitimize_mnt() has not seen us grab
1224 	 * mount_lock, we'll see their refcount increment here.
1225 	 */
1226 	smp_mb();
1227 	mnt_add_count(mnt, -1);
1228 	if (mnt_get_count(mnt)) {
1229 		rcu_read_unlock();
1230 		unlock_mount_hash();
1231 		return;
1232 	}
1233 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1234 		rcu_read_unlock();
1235 		unlock_mount_hash();
1236 		return;
1237 	}
1238 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1239 	rcu_read_unlock();
1240 
1241 	list_del(&mnt->mnt_instance);
1242 
1243 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1244 		struct mount *p, *tmp;
1245 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1246 			umount_mnt(p);
1247 		}
1248 	}
1249 	unlock_mount_hash();
1250 
1251 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1252 		struct task_struct *task = current;
1253 		if (likely(!(task->flags & PF_KTHREAD))) {
1254 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1255 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1256 				return;
1257 		}
1258 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1259 			schedule_delayed_work(&delayed_mntput_work, 1);
1260 		return;
1261 	}
1262 	cleanup_mnt(mnt);
1263 }
1264 
1265 void mntput(struct vfsmount *mnt)
1266 {
1267 	if (mnt) {
1268 		struct mount *m = real_mount(mnt);
1269 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1270 		if (unlikely(m->mnt_expiry_mark))
1271 			m->mnt_expiry_mark = 0;
1272 		mntput_no_expire(m);
1273 	}
1274 }
1275 EXPORT_SYMBOL(mntput);
1276 
1277 struct vfsmount *mntget(struct vfsmount *mnt)
1278 {
1279 	if (mnt)
1280 		mnt_add_count(real_mount(mnt), 1);
1281 	return mnt;
1282 }
1283 EXPORT_SYMBOL(mntget);
1284 
1285 /* path_is_mountpoint() - Check if path is a mount in the current
1286  *                          namespace.
1287  *
1288  *  d_mountpoint() can only be used reliably to establish if a dentry is
1289  *  not mounted in any namespace and that common case is handled inline.
1290  *  d_mountpoint() isn't aware of the possibility there may be multiple
1291  *  mounts using a given dentry in a different namespace. This function
1292  *  checks if the passed in path is a mountpoint rather than the dentry
1293  *  alone.
1294  */
1295 bool path_is_mountpoint(const struct path *path)
1296 {
1297 	unsigned seq;
1298 	bool res;
1299 
1300 	if (!d_mountpoint(path->dentry))
1301 		return false;
1302 
1303 	rcu_read_lock();
1304 	do {
1305 		seq = read_seqbegin(&mount_lock);
1306 		res = __path_is_mountpoint(path);
1307 	} while (read_seqretry(&mount_lock, seq));
1308 	rcu_read_unlock();
1309 
1310 	return res;
1311 }
1312 EXPORT_SYMBOL(path_is_mountpoint);
1313 
1314 struct vfsmount *mnt_clone_internal(const struct path *path)
1315 {
1316 	struct mount *p;
1317 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1318 	if (IS_ERR(p))
1319 		return ERR_CAST(p);
1320 	p->mnt.mnt_flags |= MNT_INTERNAL;
1321 	return &p->mnt;
1322 }
1323 
1324 #ifdef CONFIG_PROC_FS
1325 /* iterator; we want it to have access to namespace_sem, thus here... */
1326 static void *m_start(struct seq_file *m, loff_t *pos)
1327 {
1328 	struct proc_mounts *p = m->private;
1329 
1330 	down_read(&namespace_sem);
1331 	if (p->cached_event == p->ns->event) {
1332 		void *v = p->cached_mount;
1333 		if (*pos == p->cached_index)
1334 			return v;
1335 		if (*pos == p->cached_index + 1) {
1336 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1337 			return p->cached_mount = v;
1338 		}
1339 	}
1340 
1341 	p->cached_event = p->ns->event;
1342 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1343 	p->cached_index = *pos;
1344 	return p->cached_mount;
1345 }
1346 
1347 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1348 {
1349 	struct proc_mounts *p = m->private;
1350 
1351 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1352 	p->cached_index = *pos;
1353 	return p->cached_mount;
1354 }
1355 
1356 static void m_stop(struct seq_file *m, void *v)
1357 {
1358 	up_read(&namespace_sem);
1359 }
1360 
1361 static int m_show(struct seq_file *m, void *v)
1362 {
1363 	struct proc_mounts *p = m->private;
1364 	struct mount *r = list_entry(v, struct mount, mnt_list);
1365 	return p->show(m, &r->mnt);
1366 }
1367 
1368 const struct seq_operations mounts_op = {
1369 	.start	= m_start,
1370 	.next	= m_next,
1371 	.stop	= m_stop,
1372 	.show	= m_show,
1373 };
1374 #endif  /* CONFIG_PROC_FS */
1375 
1376 /**
1377  * may_umount_tree - check if a mount tree is busy
1378  * @mnt: root of mount tree
1379  *
1380  * This is called to check if a tree of mounts has any
1381  * open files, pwds, chroots or sub mounts that are
1382  * busy.
1383  */
1384 int may_umount_tree(struct vfsmount *m)
1385 {
1386 	struct mount *mnt = real_mount(m);
1387 	int actual_refs = 0;
1388 	int minimum_refs = 0;
1389 	struct mount *p;
1390 	BUG_ON(!m);
1391 
1392 	/* write lock needed for mnt_get_count */
1393 	lock_mount_hash();
1394 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1395 		actual_refs += mnt_get_count(p);
1396 		minimum_refs += 2;
1397 	}
1398 	unlock_mount_hash();
1399 
1400 	if (actual_refs > minimum_refs)
1401 		return 0;
1402 
1403 	return 1;
1404 }
1405 
1406 EXPORT_SYMBOL(may_umount_tree);
1407 
1408 /**
1409  * may_umount - check if a mount point is busy
1410  * @mnt: root of mount
1411  *
1412  * This is called to check if a mount point has any
1413  * open files, pwds, chroots or sub mounts. If the
1414  * mount has sub mounts this will return busy
1415  * regardless of whether the sub mounts are busy.
1416  *
1417  * Doesn't take quota and stuff into account. IOW, in some cases it will
1418  * give false negatives. The main reason why it's here is that we need
1419  * a non-destructive way to look for easily umountable filesystems.
1420  */
1421 int may_umount(struct vfsmount *mnt)
1422 {
1423 	int ret = 1;
1424 	down_read(&namespace_sem);
1425 	lock_mount_hash();
1426 	if (propagate_mount_busy(real_mount(mnt), 2))
1427 		ret = 0;
1428 	unlock_mount_hash();
1429 	up_read(&namespace_sem);
1430 	return ret;
1431 }
1432 
1433 EXPORT_SYMBOL(may_umount);
1434 
1435 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1436 
1437 static void namespace_unlock(void)
1438 {
1439 	struct hlist_head head;
1440 
1441 	hlist_move_list(&unmounted, &head);
1442 
1443 	up_write(&namespace_sem);
1444 
1445 	if (likely(hlist_empty(&head)))
1446 		return;
1447 
1448 	synchronize_rcu();
1449 
1450 	group_pin_kill(&head);
1451 }
1452 
1453 static inline void namespace_lock(void)
1454 {
1455 	down_write(&namespace_sem);
1456 }
1457 
1458 enum umount_tree_flags {
1459 	UMOUNT_SYNC = 1,
1460 	UMOUNT_PROPAGATE = 2,
1461 	UMOUNT_CONNECTED = 4,
1462 };
1463 
1464 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1465 {
1466 	/* Leaving mounts connected is only valid for lazy umounts */
1467 	if (how & UMOUNT_SYNC)
1468 		return true;
1469 
1470 	/* A mount without a parent has nothing to be connected to */
1471 	if (!mnt_has_parent(mnt))
1472 		return true;
1473 
1474 	/* Because the reference counting rules change when mounts are
1475 	 * unmounted and connected, umounted mounts may not be
1476 	 * connected to mounted mounts.
1477 	 */
1478 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1479 		return true;
1480 
1481 	/* Has it been requested that the mount remain connected? */
1482 	if (how & UMOUNT_CONNECTED)
1483 		return false;
1484 
1485 	/* Is the mount locked such that it needs to remain connected? */
1486 	if (IS_MNT_LOCKED(mnt))
1487 		return false;
1488 
1489 	/* By default disconnect the mount */
1490 	return true;
1491 }
1492 
1493 /*
1494  * mount_lock must be held
1495  * namespace_sem must be held for write
1496  */
1497 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1498 {
1499 	LIST_HEAD(tmp_list);
1500 	struct mount *p;
1501 
1502 	if (how & UMOUNT_PROPAGATE)
1503 		propagate_mount_unlock(mnt);
1504 
1505 	/* Gather the mounts to umount */
1506 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1507 		p->mnt.mnt_flags |= MNT_UMOUNT;
1508 		list_move(&p->mnt_list, &tmp_list);
1509 	}
1510 
1511 	/* Hide the mounts from mnt_mounts */
1512 	list_for_each_entry(p, &tmp_list, mnt_list) {
1513 		list_del_init(&p->mnt_child);
1514 	}
1515 
1516 	/* Add propogated mounts to the tmp_list */
1517 	if (how & UMOUNT_PROPAGATE)
1518 		propagate_umount(&tmp_list);
1519 
1520 	while (!list_empty(&tmp_list)) {
1521 		struct mnt_namespace *ns;
1522 		bool disconnect;
1523 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1524 		list_del_init(&p->mnt_expire);
1525 		list_del_init(&p->mnt_list);
1526 		ns = p->mnt_ns;
1527 		if (ns) {
1528 			ns->mounts--;
1529 			__touch_mnt_namespace(ns);
1530 		}
1531 		p->mnt_ns = NULL;
1532 		if (how & UMOUNT_SYNC)
1533 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1534 
1535 		disconnect = disconnect_mount(p, how);
1536 
1537 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1538 				 disconnect ? &unmounted : NULL);
1539 		if (mnt_has_parent(p)) {
1540 			mnt_add_count(p->mnt_parent, -1);
1541 			if (!disconnect) {
1542 				/* Don't forget about p */
1543 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544 			} else {
1545 				umount_mnt(p);
1546 			}
1547 		}
1548 		change_mnt_propagation(p, MS_PRIVATE);
1549 	}
1550 }
1551 
1552 static void shrink_submounts(struct mount *mnt);
1553 
1554 static int do_umount(struct mount *mnt, int flags)
1555 {
1556 	struct super_block *sb = mnt->mnt.mnt_sb;
1557 	int retval;
1558 
1559 	retval = security_sb_umount(&mnt->mnt, flags);
1560 	if (retval)
1561 		return retval;
1562 
1563 	/*
1564 	 * Allow userspace to request a mountpoint be expired rather than
1565 	 * unmounting unconditionally. Unmount only happens if:
1566 	 *  (1) the mark is already set (the mark is cleared by mntput())
1567 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1568 	 */
1569 	if (flags & MNT_EXPIRE) {
1570 		if (&mnt->mnt == current->fs->root.mnt ||
1571 		    flags & (MNT_FORCE | MNT_DETACH))
1572 			return -EINVAL;
1573 
1574 		/*
1575 		 * probably don't strictly need the lock here if we examined
1576 		 * all race cases, but it's a slowpath.
1577 		 */
1578 		lock_mount_hash();
1579 		if (mnt_get_count(mnt) != 2) {
1580 			unlock_mount_hash();
1581 			return -EBUSY;
1582 		}
1583 		unlock_mount_hash();
1584 
1585 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1586 			return -EAGAIN;
1587 	}
1588 
1589 	/*
1590 	 * If we may have to abort operations to get out of this
1591 	 * mount, and they will themselves hold resources we must
1592 	 * allow the fs to do things. In the Unix tradition of
1593 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1594 	 * might fail to complete on the first run through as other tasks
1595 	 * must return, and the like. Thats for the mount program to worry
1596 	 * about for the moment.
1597 	 */
1598 
1599 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1600 		sb->s_op->umount_begin(sb);
1601 	}
1602 
1603 	/*
1604 	 * No sense to grab the lock for this test, but test itself looks
1605 	 * somewhat bogus. Suggestions for better replacement?
1606 	 * Ho-hum... In principle, we might treat that as umount + switch
1607 	 * to rootfs. GC would eventually take care of the old vfsmount.
1608 	 * Actually it makes sense, especially if rootfs would contain a
1609 	 * /reboot - static binary that would close all descriptors and
1610 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1611 	 */
1612 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1613 		/*
1614 		 * Special case for "unmounting" root ...
1615 		 * we just try to remount it readonly.
1616 		 */
1617 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1618 			return -EPERM;
1619 		down_write(&sb->s_umount);
1620 		if (!sb_rdonly(sb))
1621 			retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1622 		up_write(&sb->s_umount);
1623 		return retval;
1624 	}
1625 
1626 	namespace_lock();
1627 	lock_mount_hash();
1628 	event++;
1629 
1630 	if (flags & MNT_DETACH) {
1631 		if (!list_empty(&mnt->mnt_list))
1632 			umount_tree(mnt, UMOUNT_PROPAGATE);
1633 		retval = 0;
1634 	} else {
1635 		shrink_submounts(mnt);
1636 		retval = -EBUSY;
1637 		if (!propagate_mount_busy(mnt, 2)) {
1638 			if (!list_empty(&mnt->mnt_list))
1639 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1640 			retval = 0;
1641 		}
1642 	}
1643 	unlock_mount_hash();
1644 	namespace_unlock();
1645 	return retval;
1646 }
1647 
1648 /*
1649  * __detach_mounts - lazily unmount all mounts on the specified dentry
1650  *
1651  * During unlink, rmdir, and d_drop it is possible to loose the path
1652  * to an existing mountpoint, and wind up leaking the mount.
1653  * detach_mounts allows lazily unmounting those mounts instead of
1654  * leaking them.
1655  *
1656  * The caller may hold dentry->d_inode->i_mutex.
1657  */
1658 void __detach_mounts(struct dentry *dentry)
1659 {
1660 	struct mountpoint *mp;
1661 	struct mount *mnt;
1662 
1663 	namespace_lock();
1664 	lock_mount_hash();
1665 	mp = lookup_mountpoint(dentry);
1666 	if (IS_ERR_OR_NULL(mp))
1667 		goto out_unlock;
1668 
1669 	event++;
1670 	while (!hlist_empty(&mp->m_list)) {
1671 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1672 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1673 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1674 			umount_mnt(mnt);
1675 		}
1676 		else umount_tree(mnt, UMOUNT_CONNECTED);
1677 	}
1678 	put_mountpoint(mp);
1679 out_unlock:
1680 	unlock_mount_hash();
1681 	namespace_unlock();
1682 }
1683 
1684 /*
1685  * Is the caller allowed to modify his namespace?
1686  */
1687 static inline bool may_mount(void)
1688 {
1689 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1690 }
1691 
1692 static inline bool may_mandlock(void)
1693 {
1694 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1695 	return false;
1696 #endif
1697 	return capable(CAP_SYS_ADMIN);
1698 }
1699 
1700 /*
1701  * Now umount can handle mount points as well as block devices.
1702  * This is important for filesystems which use unnamed block devices.
1703  *
1704  * We now support a flag for forced unmount like the other 'big iron'
1705  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1706  */
1707 
1708 int ksys_umount(char __user *name, int flags)
1709 {
1710 	struct path path;
1711 	struct mount *mnt;
1712 	int retval;
1713 	int lookup_flags = 0;
1714 
1715 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1716 		return -EINVAL;
1717 
1718 	if (!may_mount())
1719 		return -EPERM;
1720 
1721 	if (!(flags & UMOUNT_NOFOLLOW))
1722 		lookup_flags |= LOOKUP_FOLLOW;
1723 
1724 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1725 	if (retval)
1726 		goto out;
1727 	mnt = real_mount(path.mnt);
1728 	retval = -EINVAL;
1729 	if (path.dentry != path.mnt->mnt_root)
1730 		goto dput_and_out;
1731 	if (!check_mnt(mnt))
1732 		goto dput_and_out;
1733 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1734 		goto dput_and_out;
1735 	retval = -EPERM;
1736 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1737 		goto dput_and_out;
1738 
1739 	retval = do_umount(mnt, flags);
1740 dput_and_out:
1741 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1742 	dput(path.dentry);
1743 	mntput_no_expire(mnt);
1744 out:
1745 	return retval;
1746 }
1747 
1748 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1749 {
1750 	return ksys_umount(name, flags);
1751 }
1752 
1753 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1754 
1755 /*
1756  *	The 2.0 compatible umount. No flags.
1757  */
1758 SYSCALL_DEFINE1(oldumount, char __user *, name)
1759 {
1760 	return ksys_umount(name, 0);
1761 }
1762 
1763 #endif
1764 
1765 static bool is_mnt_ns_file(struct dentry *dentry)
1766 {
1767 	/* Is this a proxy for a mount namespace? */
1768 	return dentry->d_op == &ns_dentry_operations &&
1769 	       dentry->d_fsdata == &mntns_operations;
1770 }
1771 
1772 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1773 {
1774 	return container_of(ns, struct mnt_namespace, ns);
1775 }
1776 
1777 static bool mnt_ns_loop(struct dentry *dentry)
1778 {
1779 	/* Could bind mounting the mount namespace inode cause a
1780 	 * mount namespace loop?
1781 	 */
1782 	struct mnt_namespace *mnt_ns;
1783 	if (!is_mnt_ns_file(dentry))
1784 		return false;
1785 
1786 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1787 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1788 }
1789 
1790 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1791 					int flag)
1792 {
1793 	struct mount *res, *p, *q, *r, *parent;
1794 
1795 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1796 		return ERR_PTR(-EINVAL);
1797 
1798 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1799 		return ERR_PTR(-EINVAL);
1800 
1801 	res = q = clone_mnt(mnt, dentry, flag);
1802 	if (IS_ERR(q))
1803 		return q;
1804 
1805 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1806 
1807 	p = mnt;
1808 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1809 		struct mount *s;
1810 		if (!is_subdir(r->mnt_mountpoint, dentry))
1811 			continue;
1812 
1813 		for (s = r; s; s = next_mnt(s, r)) {
1814 			if (!(flag & CL_COPY_UNBINDABLE) &&
1815 			    IS_MNT_UNBINDABLE(s)) {
1816 				s = skip_mnt_tree(s);
1817 				continue;
1818 			}
1819 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1820 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1821 				s = skip_mnt_tree(s);
1822 				continue;
1823 			}
1824 			while (p != s->mnt_parent) {
1825 				p = p->mnt_parent;
1826 				q = q->mnt_parent;
1827 			}
1828 			p = s;
1829 			parent = q;
1830 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1831 			if (IS_ERR(q))
1832 				goto out;
1833 			lock_mount_hash();
1834 			list_add_tail(&q->mnt_list, &res->mnt_list);
1835 			attach_mnt(q, parent, p->mnt_mp);
1836 			unlock_mount_hash();
1837 		}
1838 	}
1839 	return res;
1840 out:
1841 	if (res) {
1842 		lock_mount_hash();
1843 		umount_tree(res, UMOUNT_SYNC);
1844 		unlock_mount_hash();
1845 	}
1846 	return q;
1847 }
1848 
1849 /* Caller should check returned pointer for errors */
1850 
1851 struct vfsmount *collect_mounts(const struct path *path)
1852 {
1853 	struct mount *tree;
1854 	namespace_lock();
1855 	if (!check_mnt(real_mount(path->mnt)))
1856 		tree = ERR_PTR(-EINVAL);
1857 	else
1858 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1859 				 CL_COPY_ALL | CL_PRIVATE);
1860 	namespace_unlock();
1861 	if (IS_ERR(tree))
1862 		return ERR_CAST(tree);
1863 	return &tree->mnt;
1864 }
1865 
1866 void drop_collected_mounts(struct vfsmount *mnt)
1867 {
1868 	namespace_lock();
1869 	lock_mount_hash();
1870 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1871 	unlock_mount_hash();
1872 	namespace_unlock();
1873 }
1874 
1875 /**
1876  * clone_private_mount - create a private clone of a path
1877  *
1878  * This creates a new vfsmount, which will be the clone of @path.  The new will
1879  * not be attached anywhere in the namespace and will be private (i.e. changes
1880  * to the originating mount won't be propagated into this).
1881  *
1882  * Release with mntput().
1883  */
1884 struct vfsmount *clone_private_mount(const struct path *path)
1885 {
1886 	struct mount *old_mnt = real_mount(path->mnt);
1887 	struct mount *new_mnt;
1888 
1889 	if (IS_MNT_UNBINDABLE(old_mnt))
1890 		return ERR_PTR(-EINVAL);
1891 
1892 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1893 	if (IS_ERR(new_mnt))
1894 		return ERR_CAST(new_mnt);
1895 
1896 	return &new_mnt->mnt;
1897 }
1898 EXPORT_SYMBOL_GPL(clone_private_mount);
1899 
1900 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1901 		   struct vfsmount *root)
1902 {
1903 	struct mount *mnt;
1904 	int res = f(root, arg);
1905 	if (res)
1906 		return res;
1907 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1908 		res = f(&mnt->mnt, arg);
1909 		if (res)
1910 			return res;
1911 	}
1912 	return 0;
1913 }
1914 
1915 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1916 {
1917 	struct mount *p;
1918 
1919 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1920 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1921 			mnt_release_group_id(p);
1922 	}
1923 }
1924 
1925 static int invent_group_ids(struct mount *mnt, bool recurse)
1926 {
1927 	struct mount *p;
1928 
1929 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1930 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1931 			int err = mnt_alloc_group_id(p);
1932 			if (err) {
1933 				cleanup_group_ids(mnt, p);
1934 				return err;
1935 			}
1936 		}
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1943 {
1944 	unsigned int max = READ_ONCE(sysctl_mount_max);
1945 	unsigned int mounts = 0, old, pending, sum;
1946 	struct mount *p;
1947 
1948 	for (p = mnt; p; p = next_mnt(p, mnt))
1949 		mounts++;
1950 
1951 	old = ns->mounts;
1952 	pending = ns->pending_mounts;
1953 	sum = old + pending;
1954 	if ((old > sum) ||
1955 	    (pending > sum) ||
1956 	    (max < sum) ||
1957 	    (mounts > (max - sum)))
1958 		return -ENOSPC;
1959 
1960 	ns->pending_mounts = pending + mounts;
1961 	return 0;
1962 }
1963 
1964 /*
1965  *  @source_mnt : mount tree to be attached
1966  *  @nd         : place the mount tree @source_mnt is attached
1967  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1968  *  		   store the parent mount and mountpoint dentry.
1969  *  		   (done when source_mnt is moved)
1970  *
1971  *  NOTE: in the table below explains the semantics when a source mount
1972  *  of a given type is attached to a destination mount of a given type.
1973  * ---------------------------------------------------------------------------
1974  * |         BIND MOUNT OPERATION                                            |
1975  * |**************************************************************************
1976  * | source-->| shared        |       private  |       slave    | unbindable |
1977  * | dest     |               |                |                |            |
1978  * |   |      |               |                |                |            |
1979  * |   v      |               |                |                |            |
1980  * |**************************************************************************
1981  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1982  * |          |               |                |                |            |
1983  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1984  * ***************************************************************************
1985  * A bind operation clones the source mount and mounts the clone on the
1986  * destination mount.
1987  *
1988  * (++)  the cloned mount is propagated to all the mounts in the propagation
1989  * 	 tree of the destination mount and the cloned mount is added to
1990  * 	 the peer group of the source mount.
1991  * (+)   the cloned mount is created under the destination mount and is marked
1992  *       as shared. The cloned mount is added to the peer group of the source
1993  *       mount.
1994  * (+++) the mount is propagated to all the mounts in the propagation tree
1995  *       of the destination mount and the cloned mount is made slave
1996  *       of the same master as that of the source mount. The cloned mount
1997  *       is marked as 'shared and slave'.
1998  * (*)   the cloned mount is made a slave of the same master as that of the
1999  * 	 source mount.
2000  *
2001  * ---------------------------------------------------------------------------
2002  * |         		MOVE MOUNT OPERATION                                 |
2003  * |**************************************************************************
2004  * | source-->| shared        |       private  |       slave    | unbindable |
2005  * | dest     |               |                |                |            |
2006  * |   |      |               |                |                |            |
2007  * |   v      |               |                |                |            |
2008  * |**************************************************************************
2009  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2010  * |          |               |                |                |            |
2011  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2012  * ***************************************************************************
2013  *
2014  * (+)  the mount is moved to the destination. And is then propagated to
2015  * 	all the mounts in the propagation tree of the destination mount.
2016  * (+*)  the mount is moved to the destination.
2017  * (+++)  the mount is moved to the destination and is then propagated to
2018  * 	all the mounts belonging to the destination mount's propagation tree.
2019  * 	the mount is marked as 'shared and slave'.
2020  * (*)	the mount continues to be a slave at the new location.
2021  *
2022  * if the source mount is a tree, the operations explained above is
2023  * applied to each mount in the tree.
2024  * Must be called without spinlocks held, since this function can sleep
2025  * in allocations.
2026  */
2027 static int attach_recursive_mnt(struct mount *source_mnt,
2028 			struct mount *dest_mnt,
2029 			struct mountpoint *dest_mp,
2030 			struct path *parent_path)
2031 {
2032 	HLIST_HEAD(tree_list);
2033 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2034 	struct mountpoint *smp;
2035 	struct mount *child, *p;
2036 	struct hlist_node *n;
2037 	int err;
2038 
2039 	/* Preallocate a mountpoint in case the new mounts need
2040 	 * to be tucked under other mounts.
2041 	 */
2042 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2043 	if (IS_ERR(smp))
2044 		return PTR_ERR(smp);
2045 
2046 	/* Is there space to add these mounts to the mount namespace? */
2047 	if (!parent_path) {
2048 		err = count_mounts(ns, source_mnt);
2049 		if (err)
2050 			goto out;
2051 	}
2052 
2053 	if (IS_MNT_SHARED(dest_mnt)) {
2054 		err = invent_group_ids(source_mnt, true);
2055 		if (err)
2056 			goto out;
2057 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2058 		lock_mount_hash();
2059 		if (err)
2060 			goto out_cleanup_ids;
2061 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2062 			set_mnt_shared(p);
2063 	} else {
2064 		lock_mount_hash();
2065 	}
2066 	if (parent_path) {
2067 		detach_mnt(source_mnt, parent_path);
2068 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2069 		touch_mnt_namespace(source_mnt->mnt_ns);
2070 	} else {
2071 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2072 		commit_tree(source_mnt);
2073 	}
2074 
2075 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2076 		struct mount *q;
2077 		hlist_del_init(&child->mnt_hash);
2078 		q = __lookup_mnt(&child->mnt_parent->mnt,
2079 				 child->mnt_mountpoint);
2080 		if (q)
2081 			mnt_change_mountpoint(child, smp, q);
2082 		commit_tree(child);
2083 	}
2084 	put_mountpoint(smp);
2085 	unlock_mount_hash();
2086 
2087 	return 0;
2088 
2089  out_cleanup_ids:
2090 	while (!hlist_empty(&tree_list)) {
2091 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2092 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2093 		umount_tree(child, UMOUNT_SYNC);
2094 	}
2095 	unlock_mount_hash();
2096 	cleanup_group_ids(source_mnt, NULL);
2097  out:
2098 	ns->pending_mounts = 0;
2099 
2100 	read_seqlock_excl(&mount_lock);
2101 	put_mountpoint(smp);
2102 	read_sequnlock_excl(&mount_lock);
2103 
2104 	return err;
2105 }
2106 
2107 static struct mountpoint *lock_mount(struct path *path)
2108 {
2109 	struct vfsmount *mnt;
2110 	struct dentry *dentry = path->dentry;
2111 retry:
2112 	inode_lock(dentry->d_inode);
2113 	if (unlikely(cant_mount(dentry))) {
2114 		inode_unlock(dentry->d_inode);
2115 		return ERR_PTR(-ENOENT);
2116 	}
2117 	namespace_lock();
2118 	mnt = lookup_mnt(path);
2119 	if (likely(!mnt)) {
2120 		struct mountpoint *mp = get_mountpoint(dentry);
2121 		if (IS_ERR(mp)) {
2122 			namespace_unlock();
2123 			inode_unlock(dentry->d_inode);
2124 			return mp;
2125 		}
2126 		return mp;
2127 	}
2128 	namespace_unlock();
2129 	inode_unlock(path->dentry->d_inode);
2130 	path_put(path);
2131 	path->mnt = mnt;
2132 	dentry = path->dentry = dget(mnt->mnt_root);
2133 	goto retry;
2134 }
2135 
2136 static void unlock_mount(struct mountpoint *where)
2137 {
2138 	struct dentry *dentry = where->m_dentry;
2139 
2140 	read_seqlock_excl(&mount_lock);
2141 	put_mountpoint(where);
2142 	read_sequnlock_excl(&mount_lock);
2143 
2144 	namespace_unlock();
2145 	inode_unlock(dentry->d_inode);
2146 }
2147 
2148 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2149 {
2150 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2151 		return -EINVAL;
2152 
2153 	if (d_is_dir(mp->m_dentry) !=
2154 	      d_is_dir(mnt->mnt.mnt_root))
2155 		return -ENOTDIR;
2156 
2157 	return attach_recursive_mnt(mnt, p, mp, NULL);
2158 }
2159 
2160 /*
2161  * Sanity check the flags to change_mnt_propagation.
2162  */
2163 
2164 static int flags_to_propagation_type(int ms_flags)
2165 {
2166 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2167 
2168 	/* Fail if any non-propagation flags are set */
2169 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2170 		return 0;
2171 	/* Only one propagation flag should be set */
2172 	if (!is_power_of_2(type))
2173 		return 0;
2174 	return type;
2175 }
2176 
2177 /*
2178  * recursively change the type of the mountpoint.
2179  */
2180 static int do_change_type(struct path *path, int ms_flags)
2181 {
2182 	struct mount *m;
2183 	struct mount *mnt = real_mount(path->mnt);
2184 	int recurse = ms_flags & MS_REC;
2185 	int type;
2186 	int err = 0;
2187 
2188 	if (path->dentry != path->mnt->mnt_root)
2189 		return -EINVAL;
2190 
2191 	type = flags_to_propagation_type(ms_flags);
2192 	if (!type)
2193 		return -EINVAL;
2194 
2195 	namespace_lock();
2196 	if (type == MS_SHARED) {
2197 		err = invent_group_ids(mnt, recurse);
2198 		if (err)
2199 			goto out_unlock;
2200 	}
2201 
2202 	lock_mount_hash();
2203 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2204 		change_mnt_propagation(m, type);
2205 	unlock_mount_hash();
2206 
2207  out_unlock:
2208 	namespace_unlock();
2209 	return err;
2210 }
2211 
2212 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2213 {
2214 	struct mount *child;
2215 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2216 		if (!is_subdir(child->mnt_mountpoint, dentry))
2217 			continue;
2218 
2219 		if (child->mnt.mnt_flags & MNT_LOCKED)
2220 			return true;
2221 	}
2222 	return false;
2223 }
2224 
2225 /*
2226  * do loopback mount.
2227  */
2228 static int do_loopback(struct path *path, const char *old_name,
2229 				int recurse)
2230 {
2231 	struct path old_path;
2232 	struct mount *mnt = NULL, *old, *parent;
2233 	struct mountpoint *mp;
2234 	int err;
2235 	if (!old_name || !*old_name)
2236 		return -EINVAL;
2237 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2238 	if (err)
2239 		return err;
2240 
2241 	err = -EINVAL;
2242 	if (mnt_ns_loop(old_path.dentry))
2243 		goto out;
2244 
2245 	mp = lock_mount(path);
2246 	err = PTR_ERR(mp);
2247 	if (IS_ERR(mp))
2248 		goto out;
2249 
2250 	old = real_mount(old_path.mnt);
2251 	parent = real_mount(path->mnt);
2252 
2253 	err = -EINVAL;
2254 	if (IS_MNT_UNBINDABLE(old))
2255 		goto out2;
2256 
2257 	if (!check_mnt(parent))
2258 		goto out2;
2259 
2260 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2261 		goto out2;
2262 
2263 	if (!recurse && has_locked_children(old, old_path.dentry))
2264 		goto out2;
2265 
2266 	if (recurse)
2267 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2268 	else
2269 		mnt = clone_mnt(old, old_path.dentry, 0);
2270 
2271 	if (IS_ERR(mnt)) {
2272 		err = PTR_ERR(mnt);
2273 		goto out2;
2274 	}
2275 
2276 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2277 
2278 	err = graft_tree(mnt, parent, mp);
2279 	if (err) {
2280 		lock_mount_hash();
2281 		umount_tree(mnt, UMOUNT_SYNC);
2282 		unlock_mount_hash();
2283 	}
2284 out2:
2285 	unlock_mount(mp);
2286 out:
2287 	path_put(&old_path);
2288 	return err;
2289 }
2290 
2291 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2292 {
2293 	int error = 0;
2294 	int readonly_request = 0;
2295 
2296 	if (ms_flags & MS_RDONLY)
2297 		readonly_request = 1;
2298 	if (readonly_request == __mnt_is_readonly(mnt))
2299 		return 0;
2300 
2301 	if (readonly_request)
2302 		error = mnt_make_readonly(real_mount(mnt));
2303 	else
2304 		__mnt_unmake_readonly(real_mount(mnt));
2305 	return error;
2306 }
2307 
2308 /*
2309  * change filesystem flags. dir should be a physical root of filesystem.
2310  * If you've mounted a non-root directory somewhere and want to do remount
2311  * on it - tough luck.
2312  */
2313 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2314 		      int mnt_flags, void *data)
2315 {
2316 	int err;
2317 	struct super_block *sb = path->mnt->mnt_sb;
2318 	struct mount *mnt = real_mount(path->mnt);
2319 
2320 	if (!check_mnt(mnt))
2321 		return -EINVAL;
2322 
2323 	if (path->dentry != path->mnt->mnt_root)
2324 		return -EINVAL;
2325 
2326 	/* Don't allow changing of locked mnt flags.
2327 	 *
2328 	 * No locks need to be held here while testing the various
2329 	 * MNT_LOCK flags because those flags can never be cleared
2330 	 * once they are set.
2331 	 */
2332 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2333 	    !(mnt_flags & MNT_READONLY)) {
2334 		return -EPERM;
2335 	}
2336 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2337 	    !(mnt_flags & MNT_NODEV)) {
2338 		return -EPERM;
2339 	}
2340 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2341 	    !(mnt_flags & MNT_NOSUID)) {
2342 		return -EPERM;
2343 	}
2344 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2345 	    !(mnt_flags & MNT_NOEXEC)) {
2346 		return -EPERM;
2347 	}
2348 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2349 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2350 		return -EPERM;
2351 	}
2352 
2353 	err = security_sb_remount(sb, data);
2354 	if (err)
2355 		return err;
2356 
2357 	down_write(&sb->s_umount);
2358 	if (ms_flags & MS_BIND)
2359 		err = change_mount_flags(path->mnt, ms_flags);
2360 	else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2361 		err = -EPERM;
2362 	else
2363 		err = do_remount_sb(sb, sb_flags, data, 0);
2364 	if (!err) {
2365 		lock_mount_hash();
2366 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2367 		mnt->mnt.mnt_flags = mnt_flags;
2368 		touch_mnt_namespace(mnt->mnt_ns);
2369 		unlock_mount_hash();
2370 	}
2371 	up_write(&sb->s_umount);
2372 	return err;
2373 }
2374 
2375 static inline int tree_contains_unbindable(struct mount *mnt)
2376 {
2377 	struct mount *p;
2378 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2379 		if (IS_MNT_UNBINDABLE(p))
2380 			return 1;
2381 	}
2382 	return 0;
2383 }
2384 
2385 static int do_move_mount(struct path *path, const char *old_name)
2386 {
2387 	struct path old_path, parent_path;
2388 	struct mount *p;
2389 	struct mount *old;
2390 	struct mountpoint *mp;
2391 	int err;
2392 	if (!old_name || !*old_name)
2393 		return -EINVAL;
2394 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2395 	if (err)
2396 		return err;
2397 
2398 	mp = lock_mount(path);
2399 	err = PTR_ERR(mp);
2400 	if (IS_ERR(mp))
2401 		goto out;
2402 
2403 	old = real_mount(old_path.mnt);
2404 	p = real_mount(path->mnt);
2405 
2406 	err = -EINVAL;
2407 	if (!check_mnt(p) || !check_mnt(old))
2408 		goto out1;
2409 
2410 	if (old->mnt.mnt_flags & MNT_LOCKED)
2411 		goto out1;
2412 
2413 	err = -EINVAL;
2414 	if (old_path.dentry != old_path.mnt->mnt_root)
2415 		goto out1;
2416 
2417 	if (!mnt_has_parent(old))
2418 		goto out1;
2419 
2420 	if (d_is_dir(path->dentry) !=
2421 	      d_is_dir(old_path.dentry))
2422 		goto out1;
2423 	/*
2424 	 * Don't move a mount residing in a shared parent.
2425 	 */
2426 	if (IS_MNT_SHARED(old->mnt_parent))
2427 		goto out1;
2428 	/*
2429 	 * Don't move a mount tree containing unbindable mounts to a destination
2430 	 * mount which is shared.
2431 	 */
2432 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2433 		goto out1;
2434 	err = -ELOOP;
2435 	for (; mnt_has_parent(p); p = p->mnt_parent)
2436 		if (p == old)
2437 			goto out1;
2438 
2439 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2440 	if (err)
2441 		goto out1;
2442 
2443 	/* if the mount is moved, it should no longer be expire
2444 	 * automatically */
2445 	list_del_init(&old->mnt_expire);
2446 out1:
2447 	unlock_mount(mp);
2448 out:
2449 	if (!err)
2450 		path_put(&parent_path);
2451 	path_put(&old_path);
2452 	return err;
2453 }
2454 
2455 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2456 {
2457 	int err;
2458 	const char *subtype = strchr(fstype, '.');
2459 	if (subtype) {
2460 		subtype++;
2461 		err = -EINVAL;
2462 		if (!subtype[0])
2463 			goto err;
2464 	} else
2465 		subtype = "";
2466 
2467 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2468 	err = -ENOMEM;
2469 	if (!mnt->mnt_sb->s_subtype)
2470 		goto err;
2471 	return mnt;
2472 
2473  err:
2474 	mntput(mnt);
2475 	return ERR_PTR(err);
2476 }
2477 
2478 /*
2479  * add a mount into a namespace's mount tree
2480  */
2481 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2482 {
2483 	struct mountpoint *mp;
2484 	struct mount *parent;
2485 	int err;
2486 
2487 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2488 
2489 	mp = lock_mount(path);
2490 	if (IS_ERR(mp))
2491 		return PTR_ERR(mp);
2492 
2493 	parent = real_mount(path->mnt);
2494 	err = -EINVAL;
2495 	if (unlikely(!check_mnt(parent))) {
2496 		/* that's acceptable only for automounts done in private ns */
2497 		if (!(mnt_flags & MNT_SHRINKABLE))
2498 			goto unlock;
2499 		/* ... and for those we'd better have mountpoint still alive */
2500 		if (!parent->mnt_ns)
2501 			goto unlock;
2502 	}
2503 
2504 	/* Refuse the same filesystem on the same mount point */
2505 	err = -EBUSY;
2506 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2507 	    path->mnt->mnt_root == path->dentry)
2508 		goto unlock;
2509 
2510 	err = -EINVAL;
2511 	if (d_is_symlink(newmnt->mnt.mnt_root))
2512 		goto unlock;
2513 
2514 	newmnt->mnt.mnt_flags = mnt_flags;
2515 	err = graft_tree(newmnt, parent, mp);
2516 
2517 unlock:
2518 	unlock_mount(mp);
2519 	return err;
2520 }
2521 
2522 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2523 
2524 /*
2525  * create a new mount for userspace and request it to be added into the
2526  * namespace's tree
2527  */
2528 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2529 			int mnt_flags, const char *name, void *data)
2530 {
2531 	struct file_system_type *type;
2532 	struct vfsmount *mnt;
2533 	int err;
2534 
2535 	if (!fstype)
2536 		return -EINVAL;
2537 
2538 	type = get_fs_type(fstype);
2539 	if (!type)
2540 		return -ENODEV;
2541 
2542 	mnt = vfs_kern_mount(type, sb_flags, name, data);
2543 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2544 	    !mnt->mnt_sb->s_subtype)
2545 		mnt = fs_set_subtype(mnt, fstype);
2546 
2547 	put_filesystem(type);
2548 	if (IS_ERR(mnt))
2549 		return PTR_ERR(mnt);
2550 
2551 	if (mount_too_revealing(mnt, &mnt_flags)) {
2552 		mntput(mnt);
2553 		return -EPERM;
2554 	}
2555 
2556 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2557 	if (err)
2558 		mntput(mnt);
2559 	return err;
2560 }
2561 
2562 int finish_automount(struct vfsmount *m, struct path *path)
2563 {
2564 	struct mount *mnt = real_mount(m);
2565 	int err;
2566 	/* The new mount record should have at least 2 refs to prevent it being
2567 	 * expired before we get a chance to add it
2568 	 */
2569 	BUG_ON(mnt_get_count(mnt) < 2);
2570 
2571 	if (m->mnt_sb == path->mnt->mnt_sb &&
2572 	    m->mnt_root == path->dentry) {
2573 		err = -ELOOP;
2574 		goto fail;
2575 	}
2576 
2577 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2578 	if (!err)
2579 		return 0;
2580 fail:
2581 	/* remove m from any expiration list it may be on */
2582 	if (!list_empty(&mnt->mnt_expire)) {
2583 		namespace_lock();
2584 		list_del_init(&mnt->mnt_expire);
2585 		namespace_unlock();
2586 	}
2587 	mntput(m);
2588 	mntput(m);
2589 	return err;
2590 }
2591 
2592 /**
2593  * mnt_set_expiry - Put a mount on an expiration list
2594  * @mnt: The mount to list.
2595  * @expiry_list: The list to add the mount to.
2596  */
2597 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2598 {
2599 	namespace_lock();
2600 
2601 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2602 
2603 	namespace_unlock();
2604 }
2605 EXPORT_SYMBOL(mnt_set_expiry);
2606 
2607 /*
2608  * process a list of expirable mountpoints with the intent of discarding any
2609  * mountpoints that aren't in use and haven't been touched since last we came
2610  * here
2611  */
2612 void mark_mounts_for_expiry(struct list_head *mounts)
2613 {
2614 	struct mount *mnt, *next;
2615 	LIST_HEAD(graveyard);
2616 
2617 	if (list_empty(mounts))
2618 		return;
2619 
2620 	namespace_lock();
2621 	lock_mount_hash();
2622 
2623 	/* extract from the expiration list every vfsmount that matches the
2624 	 * following criteria:
2625 	 * - only referenced by its parent vfsmount
2626 	 * - still marked for expiry (marked on the last call here; marks are
2627 	 *   cleared by mntput())
2628 	 */
2629 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2630 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2631 			propagate_mount_busy(mnt, 1))
2632 			continue;
2633 		list_move(&mnt->mnt_expire, &graveyard);
2634 	}
2635 	while (!list_empty(&graveyard)) {
2636 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2637 		touch_mnt_namespace(mnt->mnt_ns);
2638 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2639 	}
2640 	unlock_mount_hash();
2641 	namespace_unlock();
2642 }
2643 
2644 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2645 
2646 /*
2647  * Ripoff of 'select_parent()'
2648  *
2649  * search the list of submounts for a given mountpoint, and move any
2650  * shrinkable submounts to the 'graveyard' list.
2651  */
2652 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2653 {
2654 	struct mount *this_parent = parent;
2655 	struct list_head *next;
2656 	int found = 0;
2657 
2658 repeat:
2659 	next = this_parent->mnt_mounts.next;
2660 resume:
2661 	while (next != &this_parent->mnt_mounts) {
2662 		struct list_head *tmp = next;
2663 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2664 
2665 		next = tmp->next;
2666 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2667 			continue;
2668 		/*
2669 		 * Descend a level if the d_mounts list is non-empty.
2670 		 */
2671 		if (!list_empty(&mnt->mnt_mounts)) {
2672 			this_parent = mnt;
2673 			goto repeat;
2674 		}
2675 
2676 		if (!propagate_mount_busy(mnt, 1)) {
2677 			list_move_tail(&mnt->mnt_expire, graveyard);
2678 			found++;
2679 		}
2680 	}
2681 	/*
2682 	 * All done at this level ... ascend and resume the search
2683 	 */
2684 	if (this_parent != parent) {
2685 		next = this_parent->mnt_child.next;
2686 		this_parent = this_parent->mnt_parent;
2687 		goto resume;
2688 	}
2689 	return found;
2690 }
2691 
2692 /*
2693  * process a list of expirable mountpoints with the intent of discarding any
2694  * submounts of a specific parent mountpoint
2695  *
2696  * mount_lock must be held for write
2697  */
2698 static void shrink_submounts(struct mount *mnt)
2699 {
2700 	LIST_HEAD(graveyard);
2701 	struct mount *m;
2702 
2703 	/* extract submounts of 'mountpoint' from the expiration list */
2704 	while (select_submounts(mnt, &graveyard)) {
2705 		while (!list_empty(&graveyard)) {
2706 			m = list_first_entry(&graveyard, struct mount,
2707 						mnt_expire);
2708 			touch_mnt_namespace(m->mnt_ns);
2709 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2710 		}
2711 	}
2712 }
2713 
2714 /*
2715  * Some copy_from_user() implementations do not return the exact number of
2716  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2717  * Note that this function differs from copy_from_user() in that it will oops
2718  * on bad values of `to', rather than returning a short copy.
2719  */
2720 static long exact_copy_from_user(void *to, const void __user * from,
2721 				 unsigned long n)
2722 {
2723 	char *t = to;
2724 	const char __user *f = from;
2725 	char c;
2726 
2727 	if (!access_ok(VERIFY_READ, from, n))
2728 		return n;
2729 
2730 	while (n) {
2731 		if (__get_user(c, f)) {
2732 			memset(t, 0, n);
2733 			break;
2734 		}
2735 		*t++ = c;
2736 		f++;
2737 		n--;
2738 	}
2739 	return n;
2740 }
2741 
2742 void *copy_mount_options(const void __user * data)
2743 {
2744 	int i;
2745 	unsigned long size;
2746 	char *copy;
2747 
2748 	if (!data)
2749 		return NULL;
2750 
2751 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2752 	if (!copy)
2753 		return ERR_PTR(-ENOMEM);
2754 
2755 	/* We only care that *some* data at the address the user
2756 	 * gave us is valid.  Just in case, we'll zero
2757 	 * the remainder of the page.
2758 	 */
2759 	/* copy_from_user cannot cross TASK_SIZE ! */
2760 	size = TASK_SIZE - (unsigned long)data;
2761 	if (size > PAGE_SIZE)
2762 		size = PAGE_SIZE;
2763 
2764 	i = size - exact_copy_from_user(copy, data, size);
2765 	if (!i) {
2766 		kfree(copy);
2767 		return ERR_PTR(-EFAULT);
2768 	}
2769 	if (i != PAGE_SIZE)
2770 		memset(copy + i, 0, PAGE_SIZE - i);
2771 	return copy;
2772 }
2773 
2774 char *copy_mount_string(const void __user *data)
2775 {
2776 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2777 }
2778 
2779 /*
2780  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2781  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2782  *
2783  * data is a (void *) that can point to any structure up to
2784  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2785  * information (or be NULL).
2786  *
2787  * Pre-0.97 versions of mount() didn't have a flags word.
2788  * When the flags word was introduced its top half was required
2789  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2790  * Therefore, if this magic number is present, it carries no information
2791  * and must be discarded.
2792  */
2793 long do_mount(const char *dev_name, const char __user *dir_name,
2794 		const char *type_page, unsigned long flags, void *data_page)
2795 {
2796 	struct path path;
2797 	unsigned int mnt_flags = 0, sb_flags;
2798 	int retval = 0;
2799 
2800 	/* Discard magic */
2801 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2802 		flags &= ~MS_MGC_MSK;
2803 
2804 	/* Basic sanity checks */
2805 	if (data_page)
2806 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2807 
2808 	if (flags & MS_NOUSER)
2809 		return -EINVAL;
2810 
2811 	/* ... and get the mountpoint */
2812 	retval = user_path(dir_name, &path);
2813 	if (retval)
2814 		return retval;
2815 
2816 	retval = security_sb_mount(dev_name, &path,
2817 				   type_page, flags, data_page);
2818 	if (!retval && !may_mount())
2819 		retval = -EPERM;
2820 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2821 		retval = -EPERM;
2822 	if (retval)
2823 		goto dput_out;
2824 
2825 	/* Default to relatime unless overriden */
2826 	if (!(flags & MS_NOATIME))
2827 		mnt_flags |= MNT_RELATIME;
2828 
2829 	/* Separate the per-mountpoint flags */
2830 	if (flags & MS_NOSUID)
2831 		mnt_flags |= MNT_NOSUID;
2832 	if (flags & MS_NODEV)
2833 		mnt_flags |= MNT_NODEV;
2834 	if (flags & MS_NOEXEC)
2835 		mnt_flags |= MNT_NOEXEC;
2836 	if (flags & MS_NOATIME)
2837 		mnt_flags |= MNT_NOATIME;
2838 	if (flags & MS_NODIRATIME)
2839 		mnt_flags |= MNT_NODIRATIME;
2840 	if (flags & MS_STRICTATIME)
2841 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2842 	if (flags & MS_RDONLY)
2843 		mnt_flags |= MNT_READONLY;
2844 
2845 	/* The default atime for remount is preservation */
2846 	if ((flags & MS_REMOUNT) &&
2847 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2848 		       MS_STRICTATIME)) == 0)) {
2849 		mnt_flags &= ~MNT_ATIME_MASK;
2850 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2851 	}
2852 
2853 	sb_flags = flags & (SB_RDONLY |
2854 			    SB_SYNCHRONOUS |
2855 			    SB_MANDLOCK |
2856 			    SB_DIRSYNC |
2857 			    SB_SILENT |
2858 			    SB_POSIXACL |
2859 			    SB_LAZYTIME |
2860 			    SB_I_VERSION);
2861 
2862 	if (flags & MS_REMOUNT)
2863 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2864 				    data_page);
2865 	else if (flags & MS_BIND)
2866 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2867 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2868 		retval = do_change_type(&path, flags);
2869 	else if (flags & MS_MOVE)
2870 		retval = do_move_mount(&path, dev_name);
2871 	else
2872 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2873 				      dev_name, data_page);
2874 dput_out:
2875 	path_put(&path);
2876 	return retval;
2877 }
2878 
2879 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2880 {
2881 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2882 }
2883 
2884 static void dec_mnt_namespaces(struct ucounts *ucounts)
2885 {
2886 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2887 }
2888 
2889 static void free_mnt_ns(struct mnt_namespace *ns)
2890 {
2891 	ns_free_inum(&ns->ns);
2892 	dec_mnt_namespaces(ns->ucounts);
2893 	put_user_ns(ns->user_ns);
2894 	kfree(ns);
2895 }
2896 
2897 /*
2898  * Assign a sequence number so we can detect when we attempt to bind
2899  * mount a reference to an older mount namespace into the current
2900  * mount namespace, preventing reference counting loops.  A 64bit
2901  * number incrementing at 10Ghz will take 12,427 years to wrap which
2902  * is effectively never, so we can ignore the possibility.
2903  */
2904 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2905 
2906 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2907 {
2908 	struct mnt_namespace *new_ns;
2909 	struct ucounts *ucounts;
2910 	int ret;
2911 
2912 	ucounts = inc_mnt_namespaces(user_ns);
2913 	if (!ucounts)
2914 		return ERR_PTR(-ENOSPC);
2915 
2916 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2917 	if (!new_ns) {
2918 		dec_mnt_namespaces(ucounts);
2919 		return ERR_PTR(-ENOMEM);
2920 	}
2921 	ret = ns_alloc_inum(&new_ns->ns);
2922 	if (ret) {
2923 		kfree(new_ns);
2924 		dec_mnt_namespaces(ucounts);
2925 		return ERR_PTR(ret);
2926 	}
2927 	new_ns->ns.ops = &mntns_operations;
2928 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2929 	atomic_set(&new_ns->count, 1);
2930 	new_ns->root = NULL;
2931 	INIT_LIST_HEAD(&new_ns->list);
2932 	init_waitqueue_head(&new_ns->poll);
2933 	new_ns->event = 0;
2934 	new_ns->user_ns = get_user_ns(user_ns);
2935 	new_ns->ucounts = ucounts;
2936 	new_ns->mounts = 0;
2937 	new_ns->pending_mounts = 0;
2938 	return new_ns;
2939 }
2940 
2941 __latent_entropy
2942 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2943 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2944 {
2945 	struct mnt_namespace *new_ns;
2946 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2947 	struct mount *p, *q;
2948 	struct mount *old;
2949 	struct mount *new;
2950 	int copy_flags;
2951 
2952 	BUG_ON(!ns);
2953 
2954 	if (likely(!(flags & CLONE_NEWNS))) {
2955 		get_mnt_ns(ns);
2956 		return ns;
2957 	}
2958 
2959 	old = ns->root;
2960 
2961 	new_ns = alloc_mnt_ns(user_ns);
2962 	if (IS_ERR(new_ns))
2963 		return new_ns;
2964 
2965 	namespace_lock();
2966 	/* First pass: copy the tree topology */
2967 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2968 	if (user_ns != ns->user_ns)
2969 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2970 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2971 	if (IS_ERR(new)) {
2972 		namespace_unlock();
2973 		free_mnt_ns(new_ns);
2974 		return ERR_CAST(new);
2975 	}
2976 	new_ns->root = new;
2977 	list_add_tail(&new_ns->list, &new->mnt_list);
2978 
2979 	/*
2980 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2981 	 * as belonging to new namespace.  We have already acquired a private
2982 	 * fs_struct, so tsk->fs->lock is not needed.
2983 	 */
2984 	p = old;
2985 	q = new;
2986 	while (p) {
2987 		q->mnt_ns = new_ns;
2988 		new_ns->mounts++;
2989 		if (new_fs) {
2990 			if (&p->mnt == new_fs->root.mnt) {
2991 				new_fs->root.mnt = mntget(&q->mnt);
2992 				rootmnt = &p->mnt;
2993 			}
2994 			if (&p->mnt == new_fs->pwd.mnt) {
2995 				new_fs->pwd.mnt = mntget(&q->mnt);
2996 				pwdmnt = &p->mnt;
2997 			}
2998 		}
2999 		p = next_mnt(p, old);
3000 		q = next_mnt(q, new);
3001 		if (!q)
3002 			break;
3003 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3004 			p = next_mnt(p, old);
3005 	}
3006 	namespace_unlock();
3007 
3008 	if (rootmnt)
3009 		mntput(rootmnt);
3010 	if (pwdmnt)
3011 		mntput(pwdmnt);
3012 
3013 	return new_ns;
3014 }
3015 
3016 /**
3017  * create_mnt_ns - creates a private namespace and adds a root filesystem
3018  * @mnt: pointer to the new root filesystem mountpoint
3019  */
3020 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3021 {
3022 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3023 	if (!IS_ERR(new_ns)) {
3024 		struct mount *mnt = real_mount(m);
3025 		mnt->mnt_ns = new_ns;
3026 		new_ns->root = mnt;
3027 		new_ns->mounts++;
3028 		list_add(&mnt->mnt_list, &new_ns->list);
3029 	} else {
3030 		mntput(m);
3031 	}
3032 	return new_ns;
3033 }
3034 
3035 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3036 {
3037 	struct mnt_namespace *ns;
3038 	struct super_block *s;
3039 	struct path path;
3040 	int err;
3041 
3042 	ns = create_mnt_ns(mnt);
3043 	if (IS_ERR(ns))
3044 		return ERR_CAST(ns);
3045 
3046 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3047 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3048 
3049 	put_mnt_ns(ns);
3050 
3051 	if (err)
3052 		return ERR_PTR(err);
3053 
3054 	/* trade a vfsmount reference for active sb one */
3055 	s = path.mnt->mnt_sb;
3056 	atomic_inc(&s->s_active);
3057 	mntput(path.mnt);
3058 	/* lock the sucker */
3059 	down_write(&s->s_umount);
3060 	/* ... and return the root of (sub)tree on it */
3061 	return path.dentry;
3062 }
3063 EXPORT_SYMBOL(mount_subtree);
3064 
3065 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3066 	       unsigned long flags, void __user *data)
3067 {
3068 	int ret;
3069 	char *kernel_type;
3070 	char *kernel_dev;
3071 	void *options;
3072 
3073 	kernel_type = copy_mount_string(type);
3074 	ret = PTR_ERR(kernel_type);
3075 	if (IS_ERR(kernel_type))
3076 		goto out_type;
3077 
3078 	kernel_dev = copy_mount_string(dev_name);
3079 	ret = PTR_ERR(kernel_dev);
3080 	if (IS_ERR(kernel_dev))
3081 		goto out_dev;
3082 
3083 	options = copy_mount_options(data);
3084 	ret = PTR_ERR(options);
3085 	if (IS_ERR(options))
3086 		goto out_data;
3087 
3088 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3089 
3090 	kfree(options);
3091 out_data:
3092 	kfree(kernel_dev);
3093 out_dev:
3094 	kfree(kernel_type);
3095 out_type:
3096 	return ret;
3097 }
3098 
3099 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3100 		char __user *, type, unsigned long, flags, void __user *, data)
3101 {
3102 	return ksys_mount(dev_name, dir_name, type, flags, data);
3103 }
3104 
3105 /*
3106  * Return true if path is reachable from root
3107  *
3108  * namespace_sem or mount_lock is held
3109  */
3110 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3111 			 const struct path *root)
3112 {
3113 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3114 		dentry = mnt->mnt_mountpoint;
3115 		mnt = mnt->mnt_parent;
3116 	}
3117 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3118 }
3119 
3120 bool path_is_under(const struct path *path1, const struct path *path2)
3121 {
3122 	bool res;
3123 	read_seqlock_excl(&mount_lock);
3124 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3125 	read_sequnlock_excl(&mount_lock);
3126 	return res;
3127 }
3128 EXPORT_SYMBOL(path_is_under);
3129 
3130 /*
3131  * pivot_root Semantics:
3132  * Moves the root file system of the current process to the directory put_old,
3133  * makes new_root as the new root file system of the current process, and sets
3134  * root/cwd of all processes which had them on the current root to new_root.
3135  *
3136  * Restrictions:
3137  * The new_root and put_old must be directories, and  must not be on the
3138  * same file  system as the current process root. The put_old  must  be
3139  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3140  * pointed to by put_old must yield the same directory as new_root. No other
3141  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3142  *
3143  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3144  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3145  * in this situation.
3146  *
3147  * Notes:
3148  *  - we don't move root/cwd if they are not at the root (reason: if something
3149  *    cared enough to change them, it's probably wrong to force them elsewhere)
3150  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3151  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3152  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3153  *    first.
3154  */
3155 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3156 		const char __user *, put_old)
3157 {
3158 	struct path new, old, parent_path, root_parent, root;
3159 	struct mount *new_mnt, *root_mnt, *old_mnt;
3160 	struct mountpoint *old_mp, *root_mp;
3161 	int error;
3162 
3163 	if (!may_mount())
3164 		return -EPERM;
3165 
3166 	error = user_path_dir(new_root, &new);
3167 	if (error)
3168 		goto out0;
3169 
3170 	error = user_path_dir(put_old, &old);
3171 	if (error)
3172 		goto out1;
3173 
3174 	error = security_sb_pivotroot(&old, &new);
3175 	if (error)
3176 		goto out2;
3177 
3178 	get_fs_root(current->fs, &root);
3179 	old_mp = lock_mount(&old);
3180 	error = PTR_ERR(old_mp);
3181 	if (IS_ERR(old_mp))
3182 		goto out3;
3183 
3184 	error = -EINVAL;
3185 	new_mnt = real_mount(new.mnt);
3186 	root_mnt = real_mount(root.mnt);
3187 	old_mnt = real_mount(old.mnt);
3188 	if (IS_MNT_SHARED(old_mnt) ||
3189 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3190 		IS_MNT_SHARED(root_mnt->mnt_parent))
3191 		goto out4;
3192 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3193 		goto out4;
3194 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3195 		goto out4;
3196 	error = -ENOENT;
3197 	if (d_unlinked(new.dentry))
3198 		goto out4;
3199 	error = -EBUSY;
3200 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3201 		goto out4; /* loop, on the same file system  */
3202 	error = -EINVAL;
3203 	if (root.mnt->mnt_root != root.dentry)
3204 		goto out4; /* not a mountpoint */
3205 	if (!mnt_has_parent(root_mnt))
3206 		goto out4; /* not attached */
3207 	root_mp = root_mnt->mnt_mp;
3208 	if (new.mnt->mnt_root != new.dentry)
3209 		goto out4; /* not a mountpoint */
3210 	if (!mnt_has_parent(new_mnt))
3211 		goto out4; /* not attached */
3212 	/* make sure we can reach put_old from new_root */
3213 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3214 		goto out4;
3215 	/* make certain new is below the root */
3216 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3217 		goto out4;
3218 	root_mp->m_count++; /* pin it so it won't go away */
3219 	lock_mount_hash();
3220 	detach_mnt(new_mnt, &parent_path);
3221 	detach_mnt(root_mnt, &root_parent);
3222 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3223 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3224 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3225 	}
3226 	/* mount old root on put_old */
3227 	attach_mnt(root_mnt, old_mnt, old_mp);
3228 	/* mount new_root on / */
3229 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3230 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3231 	/* A moved mount should not expire automatically */
3232 	list_del_init(&new_mnt->mnt_expire);
3233 	put_mountpoint(root_mp);
3234 	unlock_mount_hash();
3235 	chroot_fs_refs(&root, &new);
3236 	error = 0;
3237 out4:
3238 	unlock_mount(old_mp);
3239 	if (!error) {
3240 		path_put(&root_parent);
3241 		path_put(&parent_path);
3242 	}
3243 out3:
3244 	path_put(&root);
3245 out2:
3246 	path_put(&old);
3247 out1:
3248 	path_put(&new);
3249 out0:
3250 	return error;
3251 }
3252 
3253 static void __init init_mount_tree(void)
3254 {
3255 	struct vfsmount *mnt;
3256 	struct mnt_namespace *ns;
3257 	struct path root;
3258 	struct file_system_type *type;
3259 
3260 	type = get_fs_type("rootfs");
3261 	if (!type)
3262 		panic("Can't find rootfs type");
3263 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3264 	put_filesystem(type);
3265 	if (IS_ERR(mnt))
3266 		panic("Can't create rootfs");
3267 
3268 	ns = create_mnt_ns(mnt);
3269 	if (IS_ERR(ns))
3270 		panic("Can't allocate initial namespace");
3271 
3272 	init_task.nsproxy->mnt_ns = ns;
3273 	get_mnt_ns(ns);
3274 
3275 	root.mnt = mnt;
3276 	root.dentry = mnt->mnt_root;
3277 	mnt->mnt_flags |= MNT_LOCKED;
3278 
3279 	set_fs_pwd(current->fs, &root);
3280 	set_fs_root(current->fs, &root);
3281 }
3282 
3283 void __init mnt_init(void)
3284 {
3285 	int err;
3286 
3287 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3288 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3289 
3290 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3291 				sizeof(struct hlist_head),
3292 				mhash_entries, 19,
3293 				HASH_ZERO,
3294 				&m_hash_shift, &m_hash_mask, 0, 0);
3295 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3296 				sizeof(struct hlist_head),
3297 				mphash_entries, 19,
3298 				HASH_ZERO,
3299 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3300 
3301 	if (!mount_hashtable || !mountpoint_hashtable)
3302 		panic("Failed to allocate mount hash table\n");
3303 
3304 	kernfs_init();
3305 
3306 	err = sysfs_init();
3307 	if (err)
3308 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3309 			__func__, err);
3310 	fs_kobj = kobject_create_and_add("fs", NULL);
3311 	if (!fs_kobj)
3312 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3313 	init_rootfs();
3314 	init_mount_tree();
3315 }
3316 
3317 void put_mnt_ns(struct mnt_namespace *ns)
3318 {
3319 	if (!atomic_dec_and_test(&ns->count))
3320 		return;
3321 	drop_collected_mounts(&ns->root->mnt);
3322 	free_mnt_ns(ns);
3323 }
3324 
3325 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3326 {
3327 	struct vfsmount *mnt;
3328 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3329 	if (!IS_ERR(mnt)) {
3330 		/*
3331 		 * it is a longterm mount, don't release mnt until
3332 		 * we unmount before file sys is unregistered
3333 		*/
3334 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3335 	}
3336 	return mnt;
3337 }
3338 EXPORT_SYMBOL_GPL(kern_mount_data);
3339 
3340 void kern_unmount(struct vfsmount *mnt)
3341 {
3342 	/* release long term mount so mount point can be released */
3343 	if (!IS_ERR_OR_NULL(mnt)) {
3344 		real_mount(mnt)->mnt_ns = NULL;
3345 		synchronize_rcu();	/* yecchhh... */
3346 		mntput(mnt);
3347 	}
3348 }
3349 EXPORT_SYMBOL(kern_unmount);
3350 
3351 bool our_mnt(struct vfsmount *mnt)
3352 {
3353 	return check_mnt(real_mount(mnt));
3354 }
3355 
3356 bool current_chrooted(void)
3357 {
3358 	/* Does the current process have a non-standard root */
3359 	struct path ns_root;
3360 	struct path fs_root;
3361 	bool chrooted;
3362 
3363 	/* Find the namespace root */
3364 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3365 	ns_root.dentry = ns_root.mnt->mnt_root;
3366 	path_get(&ns_root);
3367 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3368 		;
3369 
3370 	get_fs_root(current->fs, &fs_root);
3371 
3372 	chrooted = !path_equal(&fs_root, &ns_root);
3373 
3374 	path_put(&fs_root);
3375 	path_put(&ns_root);
3376 
3377 	return chrooted;
3378 }
3379 
3380 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3381 				int *new_mnt_flags)
3382 {
3383 	int new_flags = *new_mnt_flags;
3384 	struct mount *mnt;
3385 	bool visible = false;
3386 
3387 	down_read(&namespace_sem);
3388 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3389 		struct mount *child;
3390 		int mnt_flags;
3391 
3392 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3393 			continue;
3394 
3395 		/* This mount is not fully visible if it's root directory
3396 		 * is not the root directory of the filesystem.
3397 		 */
3398 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3399 			continue;
3400 
3401 		/* A local view of the mount flags */
3402 		mnt_flags = mnt->mnt.mnt_flags;
3403 
3404 		/* Don't miss readonly hidden in the superblock flags */
3405 		if (sb_rdonly(mnt->mnt.mnt_sb))
3406 			mnt_flags |= MNT_LOCK_READONLY;
3407 
3408 		/* Verify the mount flags are equal to or more permissive
3409 		 * than the proposed new mount.
3410 		 */
3411 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3412 		    !(new_flags & MNT_READONLY))
3413 			continue;
3414 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3415 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3416 			continue;
3417 
3418 		/* This mount is not fully visible if there are any
3419 		 * locked child mounts that cover anything except for
3420 		 * empty directories.
3421 		 */
3422 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3423 			struct inode *inode = child->mnt_mountpoint->d_inode;
3424 			/* Only worry about locked mounts */
3425 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3426 				continue;
3427 			/* Is the directory permanetly empty? */
3428 			if (!is_empty_dir_inode(inode))
3429 				goto next;
3430 		}
3431 		/* Preserve the locked attributes */
3432 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3433 					       MNT_LOCK_ATIME);
3434 		visible = true;
3435 		goto found;
3436 	next:	;
3437 	}
3438 found:
3439 	up_read(&namespace_sem);
3440 	return visible;
3441 }
3442 
3443 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3444 {
3445 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3446 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3447 	unsigned long s_iflags;
3448 
3449 	if (ns->user_ns == &init_user_ns)
3450 		return false;
3451 
3452 	/* Can this filesystem be too revealing? */
3453 	s_iflags = mnt->mnt_sb->s_iflags;
3454 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3455 		return false;
3456 
3457 	if ((s_iflags & required_iflags) != required_iflags) {
3458 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3459 			  required_iflags);
3460 		return true;
3461 	}
3462 
3463 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3464 }
3465 
3466 bool mnt_may_suid(struct vfsmount *mnt)
3467 {
3468 	/*
3469 	 * Foreign mounts (accessed via fchdir or through /proc
3470 	 * symlinks) are always treated as if they are nosuid.  This
3471 	 * prevents namespaces from trusting potentially unsafe
3472 	 * suid/sgid bits, file caps, or security labels that originate
3473 	 * in other namespaces.
3474 	 */
3475 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3476 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3477 }
3478 
3479 static struct ns_common *mntns_get(struct task_struct *task)
3480 {
3481 	struct ns_common *ns = NULL;
3482 	struct nsproxy *nsproxy;
3483 
3484 	task_lock(task);
3485 	nsproxy = task->nsproxy;
3486 	if (nsproxy) {
3487 		ns = &nsproxy->mnt_ns->ns;
3488 		get_mnt_ns(to_mnt_ns(ns));
3489 	}
3490 	task_unlock(task);
3491 
3492 	return ns;
3493 }
3494 
3495 static void mntns_put(struct ns_common *ns)
3496 {
3497 	put_mnt_ns(to_mnt_ns(ns));
3498 }
3499 
3500 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3501 {
3502 	struct fs_struct *fs = current->fs;
3503 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3504 	struct path root;
3505 	int err;
3506 
3507 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3508 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3509 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3510 		return -EPERM;
3511 
3512 	if (fs->users != 1)
3513 		return -EINVAL;
3514 
3515 	get_mnt_ns(mnt_ns);
3516 	old_mnt_ns = nsproxy->mnt_ns;
3517 	nsproxy->mnt_ns = mnt_ns;
3518 
3519 	/* Find the root */
3520 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3521 				"/", LOOKUP_DOWN, &root);
3522 	if (err) {
3523 		/* revert to old namespace */
3524 		nsproxy->mnt_ns = old_mnt_ns;
3525 		put_mnt_ns(mnt_ns);
3526 		return err;
3527 	}
3528 
3529 	put_mnt_ns(old_mnt_ns);
3530 
3531 	/* Update the pwd and root */
3532 	set_fs_pwd(fs, &root);
3533 	set_fs_root(fs, &root);
3534 
3535 	path_put(&root);
3536 	return 0;
3537 }
3538 
3539 static struct user_namespace *mntns_owner(struct ns_common *ns)
3540 {
3541 	return to_mnt_ns(ns)->user_ns;
3542 }
3543 
3544 const struct proc_ns_operations mntns_operations = {
3545 	.name		= "mnt",
3546 	.type		= CLONE_NEWNS,
3547 	.get		= mntns_get,
3548 	.put		= mntns_put,
3549 	.install	= mntns_install,
3550 	.owner		= mntns_owner,
3551 };
3552