1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/uaccess.h> 24 #include <linux/proc_ns.h> 25 #include <linux/magic.h> 26 #include <linux/bootmem.h> 27 #include <linux/task_work.h> 28 #include <linux/sched/task.h> 29 30 #include "pnode.h" 31 #include "internal.h" 32 33 /* Maximum number of mounts in a mount namespace */ 34 unsigned int sysctl_mount_max __read_mostly = 100000; 35 36 static unsigned int m_hash_mask __read_mostly; 37 static unsigned int m_hash_shift __read_mostly; 38 static unsigned int mp_hash_mask __read_mostly; 39 static unsigned int mp_hash_shift __read_mostly; 40 41 static __initdata unsigned long mhash_entries; 42 static int __init set_mhash_entries(char *str) 43 { 44 if (!str) 45 return 0; 46 mhash_entries = simple_strtoul(str, &str, 0); 47 return 1; 48 } 49 __setup("mhash_entries=", set_mhash_entries); 50 51 static __initdata unsigned long mphash_entries; 52 static int __init set_mphash_entries(char *str) 53 { 54 if (!str) 55 return 0; 56 mphash_entries = simple_strtoul(str, &str, 0); 57 return 1; 58 } 59 __setup("mphash_entries=", set_mphash_entries); 60 61 static u64 event; 62 static DEFINE_IDA(mnt_id_ida); 63 static DEFINE_IDA(mnt_group_ida); 64 static DEFINE_SPINLOCK(mnt_id_lock); 65 static int mnt_id_start = 0; 66 static int mnt_group_start = 1; 67 68 static struct hlist_head *mount_hashtable __read_mostly; 69 static struct hlist_head *mountpoint_hashtable __read_mostly; 70 static struct kmem_cache *mnt_cache __read_mostly; 71 static DECLARE_RWSEM(namespace_sem); 72 73 /* /sys/fs */ 74 struct kobject *fs_kobj; 75 EXPORT_SYMBOL_GPL(fs_kobj); 76 77 /* 78 * vfsmount lock may be taken for read to prevent changes to the 79 * vfsmount hash, ie. during mountpoint lookups or walking back 80 * up the tree. 81 * 82 * It should be taken for write in all cases where the vfsmount 83 * tree or hash is modified or when a vfsmount structure is modified. 84 */ 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 86 87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 88 { 89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> m_hash_shift); 92 return &mount_hashtable[tmp & m_hash_mask]; 93 } 94 95 static inline struct hlist_head *mp_hash(struct dentry *dentry) 96 { 97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 98 tmp = tmp + (tmp >> mp_hash_shift); 99 return &mountpoint_hashtable[tmp & mp_hash_mask]; 100 } 101 102 static int mnt_alloc_id(struct mount *mnt) 103 { 104 int res; 105 106 retry: 107 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 108 spin_lock(&mnt_id_lock); 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 110 if (!res) 111 mnt_id_start = mnt->mnt_id + 1; 112 spin_unlock(&mnt_id_lock); 113 if (res == -EAGAIN) 114 goto retry; 115 116 return res; 117 } 118 119 static void mnt_free_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_id; 122 spin_lock(&mnt_id_lock); 123 ida_remove(&mnt_id_ida, id); 124 if (mnt_id_start > id) 125 mnt_id_start = id; 126 spin_unlock(&mnt_id_lock); 127 } 128 129 /* 130 * Allocate a new peer group ID 131 * 132 * mnt_group_ida is protected by namespace_sem 133 */ 134 static int mnt_alloc_group_id(struct mount *mnt) 135 { 136 int res; 137 138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 139 return -ENOMEM; 140 141 res = ida_get_new_above(&mnt_group_ida, 142 mnt_group_start, 143 &mnt->mnt_group_id); 144 if (!res) 145 mnt_group_start = mnt->mnt_group_id + 1; 146 147 return res; 148 } 149 150 /* 151 * Release a peer group ID 152 */ 153 void mnt_release_group_id(struct mount *mnt) 154 { 155 int id = mnt->mnt_group_id; 156 ida_remove(&mnt_group_ida, id); 157 if (mnt_group_start > id) 158 mnt_group_start = id; 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 unsigned int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 unsigned int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static void drop_mountpoint(struct fs_pin *p) 196 { 197 struct mount *m = container_of(p, struct mount, mnt_umount); 198 dput(m->mnt_ex_mountpoint); 199 pin_remove(p); 200 mntput(&m->mnt); 201 } 202 203 static struct mount *alloc_vfsmnt(const char *name) 204 { 205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 206 if (mnt) { 207 int err; 208 209 err = mnt_alloc_id(mnt); 210 if (err) 211 goto out_free_cache; 212 213 if (name) { 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 215 if (!mnt->mnt_devname) 216 goto out_free_id; 217 } 218 219 #ifdef CONFIG_SMP 220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 221 if (!mnt->mnt_pcp) 222 goto out_free_devname; 223 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 225 #else 226 mnt->mnt_count = 1; 227 mnt->mnt_writers = 0; 228 #endif 229 230 INIT_HLIST_NODE(&mnt->mnt_hash); 231 INIT_LIST_HEAD(&mnt->mnt_child); 232 INIT_LIST_HEAD(&mnt->mnt_mounts); 233 INIT_LIST_HEAD(&mnt->mnt_list); 234 INIT_LIST_HEAD(&mnt->mnt_expire); 235 INIT_LIST_HEAD(&mnt->mnt_share); 236 INIT_LIST_HEAD(&mnt->mnt_slave_list); 237 INIT_LIST_HEAD(&mnt->mnt_slave); 238 INIT_HLIST_NODE(&mnt->mnt_mp_list); 239 INIT_LIST_HEAD(&mnt->mnt_umounting); 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244 #ifdef CONFIG_SMP 245 out_free_devname: 246 kfree_const(mnt->mnt_devname); 247 #endif 248 out_free_id: 249 mnt_free_id(mnt); 250 out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253 } 254 255 /* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263 /* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274 int __mnt_is_readonly(struct vfsmount *mnt) 275 { 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (sb_rdonly(mnt->mnt_sb)) 279 return 1; 280 return 0; 281 } 282 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284 static inline void mnt_inc_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers++; 290 #endif 291 } 292 293 static inline void mnt_dec_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297 #else 298 mnt->mnt_writers--; 299 #endif 300 } 301 302 static unsigned int mnt_get_writers(struct mount *mnt) 303 { 304 #ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313 #else 314 return mnt->mnt_writers; 315 #endif 316 } 317 318 static int mnt_is_readonly(struct vfsmount *mnt) 319 { 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325 } 326 327 /* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333 /** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343 int __mnt_want_write(struct vfsmount *m) 344 { 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371 } 372 373 /** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382 int mnt_want_write(struct vfsmount *m) 383 { 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391 } 392 EXPORT_SYMBOL_GPL(mnt_want_write); 393 394 /** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406 int mnt_clone_write(struct vfsmount *mnt) 407 { 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418 /** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425 int __mnt_want_write_file(struct file *file) 426 { 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431 } 432 433 /** 434 * mnt_want_write_file_path - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 * 440 * Called by the vfs for cases when we have an open file at hand, but will do an 441 * inode operation on it (important distinction for files opened on overlayfs, 442 * since the file operations will come from the real underlying file, while 443 * inode operations come from the overlay). 444 */ 445 int mnt_want_write_file_path(struct file *file) 446 { 447 int ret; 448 449 sb_start_write(file->f_path.mnt->mnt_sb); 450 ret = __mnt_want_write_file(file); 451 if (ret) 452 sb_end_write(file->f_path.mnt->mnt_sb); 453 return ret; 454 } 455 456 static inline int may_write_real(struct file *file) 457 { 458 struct dentry *dentry = file->f_path.dentry; 459 struct dentry *upperdentry; 460 461 /* Writable file? */ 462 if (file->f_mode & FMODE_WRITER) 463 return 0; 464 465 /* Not overlayfs? */ 466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL))) 467 return 0; 468 469 /* File refers to upper, writable layer? */ 470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 471 if (upperdentry && 472 (file_inode(file) == d_inode(upperdentry) || 473 file_inode(file) == d_inode(dentry))) 474 return 0; 475 476 /* Lower layer: can't write to real file, sorry... */ 477 return -EPERM; 478 } 479 480 /** 481 * mnt_want_write_file - get write access to a file's mount 482 * @file: the file who's mount on which to take a write 483 * 484 * This is like mnt_want_write, but it takes a file and can 485 * do some optimisations if the file is open for write already 486 * 487 * Mostly called by filesystems from their ioctl operation before performing 488 * modification. On overlayfs this needs to check if the file is on a read-only 489 * lower layer and deny access in that case. 490 */ 491 int mnt_want_write_file(struct file *file) 492 { 493 int ret; 494 495 ret = may_write_real(file); 496 if (!ret) { 497 sb_start_write(file_inode(file)->i_sb); 498 ret = __mnt_want_write_file(file); 499 if (ret) 500 sb_end_write(file_inode(file)->i_sb); 501 } 502 return ret; 503 } 504 EXPORT_SYMBOL_GPL(mnt_want_write_file); 505 506 /** 507 * __mnt_drop_write - give up write access to a mount 508 * @mnt: the mount on which to give up write access 509 * 510 * Tells the low-level filesystem that we are done 511 * performing writes to it. Must be matched with 512 * __mnt_want_write() call above. 513 */ 514 void __mnt_drop_write(struct vfsmount *mnt) 515 { 516 preempt_disable(); 517 mnt_dec_writers(real_mount(mnt)); 518 preempt_enable(); 519 } 520 521 /** 522 * mnt_drop_write - give up write access to a mount 523 * @mnt: the mount on which to give up write access 524 * 525 * Tells the low-level filesystem that we are done performing writes to it and 526 * also allows filesystem to be frozen again. Must be matched with 527 * mnt_want_write() call above. 528 */ 529 void mnt_drop_write(struct vfsmount *mnt) 530 { 531 __mnt_drop_write(mnt); 532 sb_end_write(mnt->mnt_sb); 533 } 534 EXPORT_SYMBOL_GPL(mnt_drop_write); 535 536 void __mnt_drop_write_file(struct file *file) 537 { 538 __mnt_drop_write(file->f_path.mnt); 539 } 540 541 void mnt_drop_write_file_path(struct file *file) 542 { 543 mnt_drop_write(file->f_path.mnt); 544 } 545 546 void mnt_drop_write_file(struct file *file) 547 { 548 __mnt_drop_write(file->f_path.mnt); 549 sb_end_write(file_inode(file)->i_sb); 550 } 551 EXPORT_SYMBOL(mnt_drop_write_file); 552 553 static int mnt_make_readonly(struct mount *mnt) 554 { 555 int ret = 0; 556 557 lock_mount_hash(); 558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 559 /* 560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 561 * should be visible before we do. 562 */ 563 smp_mb(); 564 565 /* 566 * With writers on hold, if this value is zero, then there are 567 * definitely no active writers (although held writers may subsequently 568 * increment the count, they'll have to wait, and decrement it after 569 * seeing MNT_READONLY). 570 * 571 * It is OK to have counter incremented on one CPU and decremented on 572 * another: the sum will add up correctly. The danger would be when we 573 * sum up each counter, if we read a counter before it is incremented, 574 * but then read another CPU's count which it has been subsequently 575 * decremented from -- we would see more decrements than we should. 576 * MNT_WRITE_HOLD protects against this scenario, because 577 * mnt_want_write first increments count, then smp_mb, then spins on 578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 579 * we're counting up here. 580 */ 581 if (mnt_get_writers(mnt) > 0) 582 ret = -EBUSY; 583 else 584 mnt->mnt.mnt_flags |= MNT_READONLY; 585 /* 586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 587 * that become unheld will see MNT_READONLY. 588 */ 589 smp_wmb(); 590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 591 unlock_mount_hash(); 592 return ret; 593 } 594 595 static void __mnt_unmake_readonly(struct mount *mnt) 596 { 597 lock_mount_hash(); 598 mnt->mnt.mnt_flags &= ~MNT_READONLY; 599 unlock_mount_hash(); 600 } 601 602 int sb_prepare_remount_readonly(struct super_block *sb) 603 { 604 struct mount *mnt; 605 int err = 0; 606 607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 608 if (atomic_long_read(&sb->s_remove_count)) 609 return -EBUSY; 610 611 lock_mount_hash(); 612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 615 smp_mb(); 616 if (mnt_get_writers(mnt) > 0) { 617 err = -EBUSY; 618 break; 619 } 620 } 621 } 622 if (!err && atomic_long_read(&sb->s_remove_count)) 623 err = -EBUSY; 624 625 if (!err) { 626 sb->s_readonly_remount = 1; 627 smp_wmb(); 628 } 629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 632 } 633 unlock_mount_hash(); 634 635 return err; 636 } 637 638 static void free_vfsmnt(struct mount *mnt) 639 { 640 kfree_const(mnt->mnt_devname); 641 #ifdef CONFIG_SMP 642 free_percpu(mnt->mnt_pcp); 643 #endif 644 kmem_cache_free(mnt_cache, mnt); 645 } 646 647 static void delayed_free_vfsmnt(struct rcu_head *head) 648 { 649 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 650 } 651 652 /* call under rcu_read_lock */ 653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 654 { 655 struct mount *mnt; 656 if (read_seqretry(&mount_lock, seq)) 657 return 1; 658 if (bastard == NULL) 659 return 0; 660 mnt = real_mount(bastard); 661 mnt_add_count(mnt, 1); 662 smp_mb(); // see mntput_no_expire() 663 if (likely(!read_seqretry(&mount_lock, seq))) 664 return 0; 665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 666 mnt_add_count(mnt, -1); 667 return 1; 668 } 669 lock_mount_hash(); 670 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 671 mnt_add_count(mnt, -1); 672 unlock_mount_hash(); 673 return 1; 674 } 675 unlock_mount_hash(); 676 /* caller will mntput() */ 677 return -1; 678 } 679 680 /* call under rcu_read_lock */ 681 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 682 { 683 int res = __legitimize_mnt(bastard, seq); 684 if (likely(!res)) 685 return true; 686 if (unlikely(res < 0)) { 687 rcu_read_unlock(); 688 mntput(bastard); 689 rcu_read_lock(); 690 } 691 return false; 692 } 693 694 /* 695 * find the first mount at @dentry on vfsmount @mnt. 696 * call under rcu_read_lock() 697 */ 698 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 699 { 700 struct hlist_head *head = m_hash(mnt, dentry); 701 struct mount *p; 702 703 hlist_for_each_entry_rcu(p, head, mnt_hash) 704 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 705 return p; 706 return NULL; 707 } 708 709 /* 710 * lookup_mnt - Return the first child mount mounted at path 711 * 712 * "First" means first mounted chronologically. If you create the 713 * following mounts: 714 * 715 * mount /dev/sda1 /mnt 716 * mount /dev/sda2 /mnt 717 * mount /dev/sda3 /mnt 718 * 719 * Then lookup_mnt() on the base /mnt dentry in the root mount will 720 * return successively the root dentry and vfsmount of /dev/sda1, then 721 * /dev/sda2, then /dev/sda3, then NULL. 722 * 723 * lookup_mnt takes a reference to the found vfsmount. 724 */ 725 struct vfsmount *lookup_mnt(const struct path *path) 726 { 727 struct mount *child_mnt; 728 struct vfsmount *m; 729 unsigned seq; 730 731 rcu_read_lock(); 732 do { 733 seq = read_seqbegin(&mount_lock); 734 child_mnt = __lookup_mnt(path->mnt, path->dentry); 735 m = child_mnt ? &child_mnt->mnt : NULL; 736 } while (!legitimize_mnt(m, seq)); 737 rcu_read_unlock(); 738 return m; 739 } 740 741 /* 742 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 743 * current mount namespace. 744 * 745 * The common case is dentries are not mountpoints at all and that 746 * test is handled inline. For the slow case when we are actually 747 * dealing with a mountpoint of some kind, walk through all of the 748 * mounts in the current mount namespace and test to see if the dentry 749 * is a mountpoint. 750 * 751 * The mount_hashtable is not usable in the context because we 752 * need to identify all mounts that may be in the current mount 753 * namespace not just a mount that happens to have some specified 754 * parent mount. 755 */ 756 bool __is_local_mountpoint(struct dentry *dentry) 757 { 758 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 759 struct mount *mnt; 760 bool is_covered = false; 761 762 if (!d_mountpoint(dentry)) 763 goto out; 764 765 down_read(&namespace_sem); 766 list_for_each_entry(mnt, &ns->list, mnt_list) { 767 is_covered = (mnt->mnt_mountpoint == dentry); 768 if (is_covered) 769 break; 770 } 771 up_read(&namespace_sem); 772 out: 773 return is_covered; 774 } 775 776 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 777 { 778 struct hlist_head *chain = mp_hash(dentry); 779 struct mountpoint *mp; 780 781 hlist_for_each_entry(mp, chain, m_hash) { 782 if (mp->m_dentry == dentry) { 783 /* might be worth a WARN_ON() */ 784 if (d_unlinked(dentry)) 785 return ERR_PTR(-ENOENT); 786 mp->m_count++; 787 return mp; 788 } 789 } 790 return NULL; 791 } 792 793 static struct mountpoint *get_mountpoint(struct dentry *dentry) 794 { 795 struct mountpoint *mp, *new = NULL; 796 int ret; 797 798 if (d_mountpoint(dentry)) { 799 mountpoint: 800 read_seqlock_excl(&mount_lock); 801 mp = lookup_mountpoint(dentry); 802 read_sequnlock_excl(&mount_lock); 803 if (mp) 804 goto done; 805 } 806 807 if (!new) 808 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 809 if (!new) 810 return ERR_PTR(-ENOMEM); 811 812 813 /* Exactly one processes may set d_mounted */ 814 ret = d_set_mounted(dentry); 815 816 /* Someone else set d_mounted? */ 817 if (ret == -EBUSY) 818 goto mountpoint; 819 820 /* The dentry is not available as a mountpoint? */ 821 mp = ERR_PTR(ret); 822 if (ret) 823 goto done; 824 825 /* Add the new mountpoint to the hash table */ 826 read_seqlock_excl(&mount_lock); 827 new->m_dentry = dentry; 828 new->m_count = 1; 829 hlist_add_head(&new->m_hash, mp_hash(dentry)); 830 INIT_HLIST_HEAD(&new->m_list); 831 read_sequnlock_excl(&mount_lock); 832 833 mp = new; 834 new = NULL; 835 done: 836 kfree(new); 837 return mp; 838 } 839 840 static void put_mountpoint(struct mountpoint *mp) 841 { 842 if (!--mp->m_count) { 843 struct dentry *dentry = mp->m_dentry; 844 BUG_ON(!hlist_empty(&mp->m_list)); 845 spin_lock(&dentry->d_lock); 846 dentry->d_flags &= ~DCACHE_MOUNTED; 847 spin_unlock(&dentry->d_lock); 848 hlist_del(&mp->m_hash); 849 kfree(mp); 850 } 851 } 852 853 static inline int check_mnt(struct mount *mnt) 854 { 855 return mnt->mnt_ns == current->nsproxy->mnt_ns; 856 } 857 858 /* 859 * vfsmount lock must be held for write 860 */ 861 static void touch_mnt_namespace(struct mnt_namespace *ns) 862 { 863 if (ns) { 864 ns->event = ++event; 865 wake_up_interruptible(&ns->poll); 866 } 867 } 868 869 /* 870 * vfsmount lock must be held for write 871 */ 872 static void __touch_mnt_namespace(struct mnt_namespace *ns) 873 { 874 if (ns && ns->event != event) { 875 ns->event = event; 876 wake_up_interruptible(&ns->poll); 877 } 878 } 879 880 /* 881 * vfsmount lock must be held for write 882 */ 883 static void unhash_mnt(struct mount *mnt) 884 { 885 mnt->mnt_parent = mnt; 886 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 887 list_del_init(&mnt->mnt_child); 888 hlist_del_init_rcu(&mnt->mnt_hash); 889 hlist_del_init(&mnt->mnt_mp_list); 890 put_mountpoint(mnt->mnt_mp); 891 mnt->mnt_mp = NULL; 892 } 893 894 /* 895 * vfsmount lock must be held for write 896 */ 897 static void detach_mnt(struct mount *mnt, struct path *old_path) 898 { 899 old_path->dentry = mnt->mnt_mountpoint; 900 old_path->mnt = &mnt->mnt_parent->mnt; 901 unhash_mnt(mnt); 902 } 903 904 /* 905 * vfsmount lock must be held for write 906 */ 907 static void umount_mnt(struct mount *mnt) 908 { 909 /* old mountpoint will be dropped when we can do that */ 910 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 911 unhash_mnt(mnt); 912 } 913 914 /* 915 * vfsmount lock must be held for write 916 */ 917 void mnt_set_mountpoint(struct mount *mnt, 918 struct mountpoint *mp, 919 struct mount *child_mnt) 920 { 921 mp->m_count++; 922 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 923 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 924 child_mnt->mnt_parent = mnt; 925 child_mnt->mnt_mp = mp; 926 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 927 } 928 929 static void __attach_mnt(struct mount *mnt, struct mount *parent) 930 { 931 hlist_add_head_rcu(&mnt->mnt_hash, 932 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 933 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 934 } 935 936 /* 937 * vfsmount lock must be held for write 938 */ 939 static void attach_mnt(struct mount *mnt, 940 struct mount *parent, 941 struct mountpoint *mp) 942 { 943 mnt_set_mountpoint(parent, mp, mnt); 944 __attach_mnt(mnt, parent); 945 } 946 947 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 948 { 949 struct mountpoint *old_mp = mnt->mnt_mp; 950 struct dentry *old_mountpoint = mnt->mnt_mountpoint; 951 struct mount *old_parent = mnt->mnt_parent; 952 953 list_del_init(&mnt->mnt_child); 954 hlist_del_init(&mnt->mnt_mp_list); 955 hlist_del_init_rcu(&mnt->mnt_hash); 956 957 attach_mnt(mnt, parent, mp); 958 959 put_mountpoint(old_mp); 960 961 /* 962 * Safely avoid even the suggestion this code might sleep or 963 * lock the mount hash by taking advantage of the knowledge that 964 * mnt_change_mountpoint will not release the final reference 965 * to a mountpoint. 966 * 967 * During mounting, the mount passed in as the parent mount will 968 * continue to use the old mountpoint and during unmounting, the 969 * old mountpoint will continue to exist until namespace_unlock, 970 * which happens well after mnt_change_mountpoint. 971 */ 972 spin_lock(&old_mountpoint->d_lock); 973 old_mountpoint->d_lockref.count--; 974 spin_unlock(&old_mountpoint->d_lock); 975 976 mnt_add_count(old_parent, -1); 977 } 978 979 /* 980 * vfsmount lock must be held for write 981 */ 982 static void commit_tree(struct mount *mnt) 983 { 984 struct mount *parent = mnt->mnt_parent; 985 struct mount *m; 986 LIST_HEAD(head); 987 struct mnt_namespace *n = parent->mnt_ns; 988 989 BUG_ON(parent == mnt); 990 991 list_add_tail(&head, &mnt->mnt_list); 992 list_for_each_entry(m, &head, mnt_list) 993 m->mnt_ns = n; 994 995 list_splice(&head, n->list.prev); 996 997 n->mounts += n->pending_mounts; 998 n->pending_mounts = 0; 999 1000 __attach_mnt(mnt, parent); 1001 touch_mnt_namespace(n); 1002 } 1003 1004 static struct mount *next_mnt(struct mount *p, struct mount *root) 1005 { 1006 struct list_head *next = p->mnt_mounts.next; 1007 if (next == &p->mnt_mounts) { 1008 while (1) { 1009 if (p == root) 1010 return NULL; 1011 next = p->mnt_child.next; 1012 if (next != &p->mnt_parent->mnt_mounts) 1013 break; 1014 p = p->mnt_parent; 1015 } 1016 } 1017 return list_entry(next, struct mount, mnt_child); 1018 } 1019 1020 static struct mount *skip_mnt_tree(struct mount *p) 1021 { 1022 struct list_head *prev = p->mnt_mounts.prev; 1023 while (prev != &p->mnt_mounts) { 1024 p = list_entry(prev, struct mount, mnt_child); 1025 prev = p->mnt_mounts.prev; 1026 } 1027 return p; 1028 } 1029 1030 struct vfsmount * 1031 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 1032 { 1033 struct mount *mnt; 1034 struct dentry *root; 1035 1036 if (!type) 1037 return ERR_PTR(-ENODEV); 1038 1039 mnt = alloc_vfsmnt(name); 1040 if (!mnt) 1041 return ERR_PTR(-ENOMEM); 1042 1043 if (flags & SB_KERNMOUNT) 1044 mnt->mnt.mnt_flags = MNT_INTERNAL; 1045 1046 root = mount_fs(type, flags, name, data); 1047 if (IS_ERR(root)) { 1048 mnt_free_id(mnt); 1049 free_vfsmnt(mnt); 1050 return ERR_CAST(root); 1051 } 1052 1053 mnt->mnt.mnt_root = root; 1054 mnt->mnt.mnt_sb = root->d_sb; 1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1056 mnt->mnt_parent = mnt; 1057 lock_mount_hash(); 1058 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 1059 unlock_mount_hash(); 1060 return &mnt->mnt; 1061 } 1062 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1063 1064 struct vfsmount * 1065 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1066 const char *name, void *data) 1067 { 1068 /* Until it is worked out how to pass the user namespace 1069 * through from the parent mount to the submount don't support 1070 * unprivileged mounts with submounts. 1071 */ 1072 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1073 return ERR_PTR(-EPERM); 1074 1075 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1076 } 1077 EXPORT_SYMBOL_GPL(vfs_submount); 1078 1079 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1080 int flag) 1081 { 1082 struct super_block *sb = old->mnt.mnt_sb; 1083 struct mount *mnt; 1084 int err; 1085 1086 mnt = alloc_vfsmnt(old->mnt_devname); 1087 if (!mnt) 1088 return ERR_PTR(-ENOMEM); 1089 1090 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1091 mnt->mnt_group_id = 0; /* not a peer of original */ 1092 else 1093 mnt->mnt_group_id = old->mnt_group_id; 1094 1095 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1096 err = mnt_alloc_group_id(mnt); 1097 if (err) 1098 goto out_free; 1099 } 1100 1101 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1102 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1103 /* Don't allow unprivileged users to change mount flags */ 1104 if (flag & CL_UNPRIVILEGED) { 1105 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 1106 1107 if (mnt->mnt.mnt_flags & MNT_READONLY) 1108 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1109 1110 if (mnt->mnt.mnt_flags & MNT_NODEV) 1111 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1112 1113 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1114 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1115 1116 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1117 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1118 } 1119 1120 /* Don't allow unprivileged users to reveal what is under a mount */ 1121 if ((flag & CL_UNPRIVILEGED) && 1122 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1123 mnt->mnt.mnt_flags |= MNT_LOCKED; 1124 1125 atomic_inc(&sb->s_active); 1126 mnt->mnt.mnt_sb = sb; 1127 mnt->mnt.mnt_root = dget(root); 1128 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1129 mnt->mnt_parent = mnt; 1130 lock_mount_hash(); 1131 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1132 unlock_mount_hash(); 1133 1134 if ((flag & CL_SLAVE) || 1135 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1136 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1137 mnt->mnt_master = old; 1138 CLEAR_MNT_SHARED(mnt); 1139 } else if (!(flag & CL_PRIVATE)) { 1140 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1141 list_add(&mnt->mnt_share, &old->mnt_share); 1142 if (IS_MNT_SLAVE(old)) 1143 list_add(&mnt->mnt_slave, &old->mnt_slave); 1144 mnt->mnt_master = old->mnt_master; 1145 } else { 1146 CLEAR_MNT_SHARED(mnt); 1147 } 1148 if (flag & CL_MAKE_SHARED) 1149 set_mnt_shared(mnt); 1150 1151 /* stick the duplicate mount on the same expiry list 1152 * as the original if that was on one */ 1153 if (flag & CL_EXPIRE) { 1154 if (!list_empty(&old->mnt_expire)) 1155 list_add(&mnt->mnt_expire, &old->mnt_expire); 1156 } 1157 1158 return mnt; 1159 1160 out_free: 1161 mnt_free_id(mnt); 1162 free_vfsmnt(mnt); 1163 return ERR_PTR(err); 1164 } 1165 1166 static void cleanup_mnt(struct mount *mnt) 1167 { 1168 /* 1169 * This probably indicates that somebody messed 1170 * up a mnt_want/drop_write() pair. If this 1171 * happens, the filesystem was probably unable 1172 * to make r/w->r/o transitions. 1173 */ 1174 /* 1175 * The locking used to deal with mnt_count decrement provides barriers, 1176 * so mnt_get_writers() below is safe. 1177 */ 1178 WARN_ON(mnt_get_writers(mnt)); 1179 if (unlikely(mnt->mnt_pins.first)) 1180 mnt_pin_kill(mnt); 1181 fsnotify_vfsmount_delete(&mnt->mnt); 1182 dput(mnt->mnt.mnt_root); 1183 deactivate_super(mnt->mnt.mnt_sb); 1184 mnt_free_id(mnt); 1185 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1186 } 1187 1188 static void __cleanup_mnt(struct rcu_head *head) 1189 { 1190 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1191 } 1192 1193 static LLIST_HEAD(delayed_mntput_list); 1194 static void delayed_mntput(struct work_struct *unused) 1195 { 1196 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1197 struct mount *m, *t; 1198 1199 llist_for_each_entry_safe(m, t, node, mnt_llist) 1200 cleanup_mnt(m); 1201 } 1202 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1203 1204 static void mntput_no_expire(struct mount *mnt) 1205 { 1206 rcu_read_lock(); 1207 if (likely(READ_ONCE(mnt->mnt_ns))) { 1208 /* 1209 * Since we don't do lock_mount_hash() here, 1210 * ->mnt_ns can change under us. However, if it's 1211 * non-NULL, then there's a reference that won't 1212 * be dropped until after an RCU delay done after 1213 * turning ->mnt_ns NULL. So if we observe it 1214 * non-NULL under rcu_read_lock(), the reference 1215 * we are dropping is not the final one. 1216 */ 1217 mnt_add_count(mnt, -1); 1218 rcu_read_unlock(); 1219 return; 1220 } 1221 lock_mount_hash(); 1222 /* 1223 * make sure that if __legitimize_mnt() has not seen us grab 1224 * mount_lock, we'll see their refcount increment here. 1225 */ 1226 smp_mb(); 1227 mnt_add_count(mnt, -1); 1228 if (mnt_get_count(mnt)) { 1229 rcu_read_unlock(); 1230 unlock_mount_hash(); 1231 return; 1232 } 1233 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1234 rcu_read_unlock(); 1235 unlock_mount_hash(); 1236 return; 1237 } 1238 mnt->mnt.mnt_flags |= MNT_DOOMED; 1239 rcu_read_unlock(); 1240 1241 list_del(&mnt->mnt_instance); 1242 1243 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1244 struct mount *p, *tmp; 1245 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1246 umount_mnt(p); 1247 } 1248 } 1249 unlock_mount_hash(); 1250 1251 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1252 struct task_struct *task = current; 1253 if (likely(!(task->flags & PF_KTHREAD))) { 1254 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1255 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1256 return; 1257 } 1258 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1259 schedule_delayed_work(&delayed_mntput_work, 1); 1260 return; 1261 } 1262 cleanup_mnt(mnt); 1263 } 1264 1265 void mntput(struct vfsmount *mnt) 1266 { 1267 if (mnt) { 1268 struct mount *m = real_mount(mnt); 1269 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1270 if (unlikely(m->mnt_expiry_mark)) 1271 m->mnt_expiry_mark = 0; 1272 mntput_no_expire(m); 1273 } 1274 } 1275 EXPORT_SYMBOL(mntput); 1276 1277 struct vfsmount *mntget(struct vfsmount *mnt) 1278 { 1279 if (mnt) 1280 mnt_add_count(real_mount(mnt), 1); 1281 return mnt; 1282 } 1283 EXPORT_SYMBOL(mntget); 1284 1285 /* path_is_mountpoint() - Check if path is a mount in the current 1286 * namespace. 1287 * 1288 * d_mountpoint() can only be used reliably to establish if a dentry is 1289 * not mounted in any namespace and that common case is handled inline. 1290 * d_mountpoint() isn't aware of the possibility there may be multiple 1291 * mounts using a given dentry in a different namespace. This function 1292 * checks if the passed in path is a mountpoint rather than the dentry 1293 * alone. 1294 */ 1295 bool path_is_mountpoint(const struct path *path) 1296 { 1297 unsigned seq; 1298 bool res; 1299 1300 if (!d_mountpoint(path->dentry)) 1301 return false; 1302 1303 rcu_read_lock(); 1304 do { 1305 seq = read_seqbegin(&mount_lock); 1306 res = __path_is_mountpoint(path); 1307 } while (read_seqretry(&mount_lock, seq)); 1308 rcu_read_unlock(); 1309 1310 return res; 1311 } 1312 EXPORT_SYMBOL(path_is_mountpoint); 1313 1314 struct vfsmount *mnt_clone_internal(const struct path *path) 1315 { 1316 struct mount *p; 1317 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1318 if (IS_ERR(p)) 1319 return ERR_CAST(p); 1320 p->mnt.mnt_flags |= MNT_INTERNAL; 1321 return &p->mnt; 1322 } 1323 1324 #ifdef CONFIG_PROC_FS 1325 /* iterator; we want it to have access to namespace_sem, thus here... */ 1326 static void *m_start(struct seq_file *m, loff_t *pos) 1327 { 1328 struct proc_mounts *p = m->private; 1329 1330 down_read(&namespace_sem); 1331 if (p->cached_event == p->ns->event) { 1332 void *v = p->cached_mount; 1333 if (*pos == p->cached_index) 1334 return v; 1335 if (*pos == p->cached_index + 1) { 1336 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1337 return p->cached_mount = v; 1338 } 1339 } 1340 1341 p->cached_event = p->ns->event; 1342 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1343 p->cached_index = *pos; 1344 return p->cached_mount; 1345 } 1346 1347 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1348 { 1349 struct proc_mounts *p = m->private; 1350 1351 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1352 p->cached_index = *pos; 1353 return p->cached_mount; 1354 } 1355 1356 static void m_stop(struct seq_file *m, void *v) 1357 { 1358 up_read(&namespace_sem); 1359 } 1360 1361 static int m_show(struct seq_file *m, void *v) 1362 { 1363 struct proc_mounts *p = m->private; 1364 struct mount *r = list_entry(v, struct mount, mnt_list); 1365 return p->show(m, &r->mnt); 1366 } 1367 1368 const struct seq_operations mounts_op = { 1369 .start = m_start, 1370 .next = m_next, 1371 .stop = m_stop, 1372 .show = m_show, 1373 }; 1374 #endif /* CONFIG_PROC_FS */ 1375 1376 /** 1377 * may_umount_tree - check if a mount tree is busy 1378 * @mnt: root of mount tree 1379 * 1380 * This is called to check if a tree of mounts has any 1381 * open files, pwds, chroots or sub mounts that are 1382 * busy. 1383 */ 1384 int may_umount_tree(struct vfsmount *m) 1385 { 1386 struct mount *mnt = real_mount(m); 1387 int actual_refs = 0; 1388 int minimum_refs = 0; 1389 struct mount *p; 1390 BUG_ON(!m); 1391 1392 /* write lock needed for mnt_get_count */ 1393 lock_mount_hash(); 1394 for (p = mnt; p; p = next_mnt(p, mnt)) { 1395 actual_refs += mnt_get_count(p); 1396 minimum_refs += 2; 1397 } 1398 unlock_mount_hash(); 1399 1400 if (actual_refs > minimum_refs) 1401 return 0; 1402 1403 return 1; 1404 } 1405 1406 EXPORT_SYMBOL(may_umount_tree); 1407 1408 /** 1409 * may_umount - check if a mount point is busy 1410 * @mnt: root of mount 1411 * 1412 * This is called to check if a mount point has any 1413 * open files, pwds, chroots or sub mounts. If the 1414 * mount has sub mounts this will return busy 1415 * regardless of whether the sub mounts are busy. 1416 * 1417 * Doesn't take quota and stuff into account. IOW, in some cases it will 1418 * give false negatives. The main reason why it's here is that we need 1419 * a non-destructive way to look for easily umountable filesystems. 1420 */ 1421 int may_umount(struct vfsmount *mnt) 1422 { 1423 int ret = 1; 1424 down_read(&namespace_sem); 1425 lock_mount_hash(); 1426 if (propagate_mount_busy(real_mount(mnt), 2)) 1427 ret = 0; 1428 unlock_mount_hash(); 1429 up_read(&namespace_sem); 1430 return ret; 1431 } 1432 1433 EXPORT_SYMBOL(may_umount); 1434 1435 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1436 1437 static void namespace_unlock(void) 1438 { 1439 struct hlist_head head; 1440 1441 hlist_move_list(&unmounted, &head); 1442 1443 up_write(&namespace_sem); 1444 1445 if (likely(hlist_empty(&head))) 1446 return; 1447 1448 synchronize_rcu(); 1449 1450 group_pin_kill(&head); 1451 } 1452 1453 static inline void namespace_lock(void) 1454 { 1455 down_write(&namespace_sem); 1456 } 1457 1458 enum umount_tree_flags { 1459 UMOUNT_SYNC = 1, 1460 UMOUNT_PROPAGATE = 2, 1461 UMOUNT_CONNECTED = 4, 1462 }; 1463 1464 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1465 { 1466 /* Leaving mounts connected is only valid for lazy umounts */ 1467 if (how & UMOUNT_SYNC) 1468 return true; 1469 1470 /* A mount without a parent has nothing to be connected to */ 1471 if (!mnt_has_parent(mnt)) 1472 return true; 1473 1474 /* Because the reference counting rules change when mounts are 1475 * unmounted and connected, umounted mounts may not be 1476 * connected to mounted mounts. 1477 */ 1478 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1479 return true; 1480 1481 /* Has it been requested that the mount remain connected? */ 1482 if (how & UMOUNT_CONNECTED) 1483 return false; 1484 1485 /* Is the mount locked such that it needs to remain connected? */ 1486 if (IS_MNT_LOCKED(mnt)) 1487 return false; 1488 1489 /* By default disconnect the mount */ 1490 return true; 1491 } 1492 1493 /* 1494 * mount_lock must be held 1495 * namespace_sem must be held for write 1496 */ 1497 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1498 { 1499 LIST_HEAD(tmp_list); 1500 struct mount *p; 1501 1502 if (how & UMOUNT_PROPAGATE) 1503 propagate_mount_unlock(mnt); 1504 1505 /* Gather the mounts to umount */ 1506 for (p = mnt; p; p = next_mnt(p, mnt)) { 1507 p->mnt.mnt_flags |= MNT_UMOUNT; 1508 list_move(&p->mnt_list, &tmp_list); 1509 } 1510 1511 /* Hide the mounts from mnt_mounts */ 1512 list_for_each_entry(p, &tmp_list, mnt_list) { 1513 list_del_init(&p->mnt_child); 1514 } 1515 1516 /* Add propogated mounts to the tmp_list */ 1517 if (how & UMOUNT_PROPAGATE) 1518 propagate_umount(&tmp_list); 1519 1520 while (!list_empty(&tmp_list)) { 1521 struct mnt_namespace *ns; 1522 bool disconnect; 1523 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1524 list_del_init(&p->mnt_expire); 1525 list_del_init(&p->mnt_list); 1526 ns = p->mnt_ns; 1527 if (ns) { 1528 ns->mounts--; 1529 __touch_mnt_namespace(ns); 1530 } 1531 p->mnt_ns = NULL; 1532 if (how & UMOUNT_SYNC) 1533 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1534 1535 disconnect = disconnect_mount(p, how); 1536 1537 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1538 disconnect ? &unmounted : NULL); 1539 if (mnt_has_parent(p)) { 1540 mnt_add_count(p->mnt_parent, -1); 1541 if (!disconnect) { 1542 /* Don't forget about p */ 1543 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1544 } else { 1545 umount_mnt(p); 1546 } 1547 } 1548 change_mnt_propagation(p, MS_PRIVATE); 1549 } 1550 } 1551 1552 static void shrink_submounts(struct mount *mnt); 1553 1554 static int do_umount(struct mount *mnt, int flags) 1555 { 1556 struct super_block *sb = mnt->mnt.mnt_sb; 1557 int retval; 1558 1559 retval = security_sb_umount(&mnt->mnt, flags); 1560 if (retval) 1561 return retval; 1562 1563 /* 1564 * Allow userspace to request a mountpoint be expired rather than 1565 * unmounting unconditionally. Unmount only happens if: 1566 * (1) the mark is already set (the mark is cleared by mntput()) 1567 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1568 */ 1569 if (flags & MNT_EXPIRE) { 1570 if (&mnt->mnt == current->fs->root.mnt || 1571 flags & (MNT_FORCE | MNT_DETACH)) 1572 return -EINVAL; 1573 1574 /* 1575 * probably don't strictly need the lock here if we examined 1576 * all race cases, but it's a slowpath. 1577 */ 1578 lock_mount_hash(); 1579 if (mnt_get_count(mnt) != 2) { 1580 unlock_mount_hash(); 1581 return -EBUSY; 1582 } 1583 unlock_mount_hash(); 1584 1585 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1586 return -EAGAIN; 1587 } 1588 1589 /* 1590 * If we may have to abort operations to get out of this 1591 * mount, and they will themselves hold resources we must 1592 * allow the fs to do things. In the Unix tradition of 1593 * 'Gee thats tricky lets do it in userspace' the umount_begin 1594 * might fail to complete on the first run through as other tasks 1595 * must return, and the like. Thats for the mount program to worry 1596 * about for the moment. 1597 */ 1598 1599 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1600 sb->s_op->umount_begin(sb); 1601 } 1602 1603 /* 1604 * No sense to grab the lock for this test, but test itself looks 1605 * somewhat bogus. Suggestions for better replacement? 1606 * Ho-hum... In principle, we might treat that as umount + switch 1607 * to rootfs. GC would eventually take care of the old vfsmount. 1608 * Actually it makes sense, especially if rootfs would contain a 1609 * /reboot - static binary that would close all descriptors and 1610 * call reboot(9). Then init(8) could umount root and exec /reboot. 1611 */ 1612 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1613 /* 1614 * Special case for "unmounting" root ... 1615 * we just try to remount it readonly. 1616 */ 1617 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1618 return -EPERM; 1619 down_write(&sb->s_umount); 1620 if (!sb_rdonly(sb)) 1621 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); 1622 up_write(&sb->s_umount); 1623 return retval; 1624 } 1625 1626 namespace_lock(); 1627 lock_mount_hash(); 1628 event++; 1629 1630 if (flags & MNT_DETACH) { 1631 if (!list_empty(&mnt->mnt_list)) 1632 umount_tree(mnt, UMOUNT_PROPAGATE); 1633 retval = 0; 1634 } else { 1635 shrink_submounts(mnt); 1636 retval = -EBUSY; 1637 if (!propagate_mount_busy(mnt, 2)) { 1638 if (!list_empty(&mnt->mnt_list)) 1639 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1640 retval = 0; 1641 } 1642 } 1643 unlock_mount_hash(); 1644 namespace_unlock(); 1645 return retval; 1646 } 1647 1648 /* 1649 * __detach_mounts - lazily unmount all mounts on the specified dentry 1650 * 1651 * During unlink, rmdir, and d_drop it is possible to loose the path 1652 * to an existing mountpoint, and wind up leaking the mount. 1653 * detach_mounts allows lazily unmounting those mounts instead of 1654 * leaking them. 1655 * 1656 * The caller may hold dentry->d_inode->i_mutex. 1657 */ 1658 void __detach_mounts(struct dentry *dentry) 1659 { 1660 struct mountpoint *mp; 1661 struct mount *mnt; 1662 1663 namespace_lock(); 1664 lock_mount_hash(); 1665 mp = lookup_mountpoint(dentry); 1666 if (IS_ERR_OR_NULL(mp)) 1667 goto out_unlock; 1668 1669 event++; 1670 while (!hlist_empty(&mp->m_list)) { 1671 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1672 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1673 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1674 umount_mnt(mnt); 1675 } 1676 else umount_tree(mnt, UMOUNT_CONNECTED); 1677 } 1678 put_mountpoint(mp); 1679 out_unlock: 1680 unlock_mount_hash(); 1681 namespace_unlock(); 1682 } 1683 1684 /* 1685 * Is the caller allowed to modify his namespace? 1686 */ 1687 static inline bool may_mount(void) 1688 { 1689 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1690 } 1691 1692 static inline bool may_mandlock(void) 1693 { 1694 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1695 return false; 1696 #endif 1697 return capable(CAP_SYS_ADMIN); 1698 } 1699 1700 /* 1701 * Now umount can handle mount points as well as block devices. 1702 * This is important for filesystems which use unnamed block devices. 1703 * 1704 * We now support a flag for forced unmount like the other 'big iron' 1705 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1706 */ 1707 1708 int ksys_umount(char __user *name, int flags) 1709 { 1710 struct path path; 1711 struct mount *mnt; 1712 int retval; 1713 int lookup_flags = 0; 1714 1715 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1716 return -EINVAL; 1717 1718 if (!may_mount()) 1719 return -EPERM; 1720 1721 if (!(flags & UMOUNT_NOFOLLOW)) 1722 lookup_flags |= LOOKUP_FOLLOW; 1723 1724 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1725 if (retval) 1726 goto out; 1727 mnt = real_mount(path.mnt); 1728 retval = -EINVAL; 1729 if (path.dentry != path.mnt->mnt_root) 1730 goto dput_and_out; 1731 if (!check_mnt(mnt)) 1732 goto dput_and_out; 1733 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1734 goto dput_and_out; 1735 retval = -EPERM; 1736 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1737 goto dput_and_out; 1738 1739 retval = do_umount(mnt, flags); 1740 dput_and_out: 1741 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1742 dput(path.dentry); 1743 mntput_no_expire(mnt); 1744 out: 1745 return retval; 1746 } 1747 1748 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1749 { 1750 return ksys_umount(name, flags); 1751 } 1752 1753 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1754 1755 /* 1756 * The 2.0 compatible umount. No flags. 1757 */ 1758 SYSCALL_DEFINE1(oldumount, char __user *, name) 1759 { 1760 return ksys_umount(name, 0); 1761 } 1762 1763 #endif 1764 1765 static bool is_mnt_ns_file(struct dentry *dentry) 1766 { 1767 /* Is this a proxy for a mount namespace? */ 1768 return dentry->d_op == &ns_dentry_operations && 1769 dentry->d_fsdata == &mntns_operations; 1770 } 1771 1772 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1773 { 1774 return container_of(ns, struct mnt_namespace, ns); 1775 } 1776 1777 static bool mnt_ns_loop(struct dentry *dentry) 1778 { 1779 /* Could bind mounting the mount namespace inode cause a 1780 * mount namespace loop? 1781 */ 1782 struct mnt_namespace *mnt_ns; 1783 if (!is_mnt_ns_file(dentry)) 1784 return false; 1785 1786 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1787 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1788 } 1789 1790 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1791 int flag) 1792 { 1793 struct mount *res, *p, *q, *r, *parent; 1794 1795 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1796 return ERR_PTR(-EINVAL); 1797 1798 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1799 return ERR_PTR(-EINVAL); 1800 1801 res = q = clone_mnt(mnt, dentry, flag); 1802 if (IS_ERR(q)) 1803 return q; 1804 1805 q->mnt_mountpoint = mnt->mnt_mountpoint; 1806 1807 p = mnt; 1808 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1809 struct mount *s; 1810 if (!is_subdir(r->mnt_mountpoint, dentry)) 1811 continue; 1812 1813 for (s = r; s; s = next_mnt(s, r)) { 1814 if (!(flag & CL_COPY_UNBINDABLE) && 1815 IS_MNT_UNBINDABLE(s)) { 1816 s = skip_mnt_tree(s); 1817 continue; 1818 } 1819 if (!(flag & CL_COPY_MNT_NS_FILE) && 1820 is_mnt_ns_file(s->mnt.mnt_root)) { 1821 s = skip_mnt_tree(s); 1822 continue; 1823 } 1824 while (p != s->mnt_parent) { 1825 p = p->mnt_parent; 1826 q = q->mnt_parent; 1827 } 1828 p = s; 1829 parent = q; 1830 q = clone_mnt(p, p->mnt.mnt_root, flag); 1831 if (IS_ERR(q)) 1832 goto out; 1833 lock_mount_hash(); 1834 list_add_tail(&q->mnt_list, &res->mnt_list); 1835 attach_mnt(q, parent, p->mnt_mp); 1836 unlock_mount_hash(); 1837 } 1838 } 1839 return res; 1840 out: 1841 if (res) { 1842 lock_mount_hash(); 1843 umount_tree(res, UMOUNT_SYNC); 1844 unlock_mount_hash(); 1845 } 1846 return q; 1847 } 1848 1849 /* Caller should check returned pointer for errors */ 1850 1851 struct vfsmount *collect_mounts(const struct path *path) 1852 { 1853 struct mount *tree; 1854 namespace_lock(); 1855 if (!check_mnt(real_mount(path->mnt))) 1856 tree = ERR_PTR(-EINVAL); 1857 else 1858 tree = copy_tree(real_mount(path->mnt), path->dentry, 1859 CL_COPY_ALL | CL_PRIVATE); 1860 namespace_unlock(); 1861 if (IS_ERR(tree)) 1862 return ERR_CAST(tree); 1863 return &tree->mnt; 1864 } 1865 1866 void drop_collected_mounts(struct vfsmount *mnt) 1867 { 1868 namespace_lock(); 1869 lock_mount_hash(); 1870 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1871 unlock_mount_hash(); 1872 namespace_unlock(); 1873 } 1874 1875 /** 1876 * clone_private_mount - create a private clone of a path 1877 * 1878 * This creates a new vfsmount, which will be the clone of @path. The new will 1879 * not be attached anywhere in the namespace and will be private (i.e. changes 1880 * to the originating mount won't be propagated into this). 1881 * 1882 * Release with mntput(). 1883 */ 1884 struct vfsmount *clone_private_mount(const struct path *path) 1885 { 1886 struct mount *old_mnt = real_mount(path->mnt); 1887 struct mount *new_mnt; 1888 1889 if (IS_MNT_UNBINDABLE(old_mnt)) 1890 return ERR_PTR(-EINVAL); 1891 1892 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1893 if (IS_ERR(new_mnt)) 1894 return ERR_CAST(new_mnt); 1895 1896 return &new_mnt->mnt; 1897 } 1898 EXPORT_SYMBOL_GPL(clone_private_mount); 1899 1900 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1901 struct vfsmount *root) 1902 { 1903 struct mount *mnt; 1904 int res = f(root, arg); 1905 if (res) 1906 return res; 1907 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1908 res = f(&mnt->mnt, arg); 1909 if (res) 1910 return res; 1911 } 1912 return 0; 1913 } 1914 1915 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1916 { 1917 struct mount *p; 1918 1919 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1920 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1921 mnt_release_group_id(p); 1922 } 1923 } 1924 1925 static int invent_group_ids(struct mount *mnt, bool recurse) 1926 { 1927 struct mount *p; 1928 1929 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1930 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1931 int err = mnt_alloc_group_id(p); 1932 if (err) { 1933 cleanup_group_ids(mnt, p); 1934 return err; 1935 } 1936 } 1937 } 1938 1939 return 0; 1940 } 1941 1942 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1943 { 1944 unsigned int max = READ_ONCE(sysctl_mount_max); 1945 unsigned int mounts = 0, old, pending, sum; 1946 struct mount *p; 1947 1948 for (p = mnt; p; p = next_mnt(p, mnt)) 1949 mounts++; 1950 1951 old = ns->mounts; 1952 pending = ns->pending_mounts; 1953 sum = old + pending; 1954 if ((old > sum) || 1955 (pending > sum) || 1956 (max < sum) || 1957 (mounts > (max - sum))) 1958 return -ENOSPC; 1959 1960 ns->pending_mounts = pending + mounts; 1961 return 0; 1962 } 1963 1964 /* 1965 * @source_mnt : mount tree to be attached 1966 * @nd : place the mount tree @source_mnt is attached 1967 * @parent_nd : if non-null, detach the source_mnt from its parent and 1968 * store the parent mount and mountpoint dentry. 1969 * (done when source_mnt is moved) 1970 * 1971 * NOTE: in the table below explains the semantics when a source mount 1972 * of a given type is attached to a destination mount of a given type. 1973 * --------------------------------------------------------------------------- 1974 * | BIND MOUNT OPERATION | 1975 * |************************************************************************** 1976 * | source-->| shared | private | slave | unbindable | 1977 * | dest | | | | | 1978 * | | | | | | | 1979 * | v | | | | | 1980 * |************************************************************************** 1981 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1982 * | | | | | | 1983 * |non-shared| shared (+) | private | slave (*) | invalid | 1984 * *************************************************************************** 1985 * A bind operation clones the source mount and mounts the clone on the 1986 * destination mount. 1987 * 1988 * (++) the cloned mount is propagated to all the mounts in the propagation 1989 * tree of the destination mount and the cloned mount is added to 1990 * the peer group of the source mount. 1991 * (+) the cloned mount is created under the destination mount and is marked 1992 * as shared. The cloned mount is added to the peer group of the source 1993 * mount. 1994 * (+++) the mount is propagated to all the mounts in the propagation tree 1995 * of the destination mount and the cloned mount is made slave 1996 * of the same master as that of the source mount. The cloned mount 1997 * is marked as 'shared and slave'. 1998 * (*) the cloned mount is made a slave of the same master as that of the 1999 * source mount. 2000 * 2001 * --------------------------------------------------------------------------- 2002 * | MOVE MOUNT OPERATION | 2003 * |************************************************************************** 2004 * | source-->| shared | private | slave | unbindable | 2005 * | dest | | | | | 2006 * | | | | | | | 2007 * | v | | | | | 2008 * |************************************************************************** 2009 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2010 * | | | | | | 2011 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2012 * *************************************************************************** 2013 * 2014 * (+) the mount is moved to the destination. And is then propagated to 2015 * all the mounts in the propagation tree of the destination mount. 2016 * (+*) the mount is moved to the destination. 2017 * (+++) the mount is moved to the destination and is then propagated to 2018 * all the mounts belonging to the destination mount's propagation tree. 2019 * the mount is marked as 'shared and slave'. 2020 * (*) the mount continues to be a slave at the new location. 2021 * 2022 * if the source mount is a tree, the operations explained above is 2023 * applied to each mount in the tree. 2024 * Must be called without spinlocks held, since this function can sleep 2025 * in allocations. 2026 */ 2027 static int attach_recursive_mnt(struct mount *source_mnt, 2028 struct mount *dest_mnt, 2029 struct mountpoint *dest_mp, 2030 struct path *parent_path) 2031 { 2032 HLIST_HEAD(tree_list); 2033 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2034 struct mountpoint *smp; 2035 struct mount *child, *p; 2036 struct hlist_node *n; 2037 int err; 2038 2039 /* Preallocate a mountpoint in case the new mounts need 2040 * to be tucked under other mounts. 2041 */ 2042 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2043 if (IS_ERR(smp)) 2044 return PTR_ERR(smp); 2045 2046 /* Is there space to add these mounts to the mount namespace? */ 2047 if (!parent_path) { 2048 err = count_mounts(ns, source_mnt); 2049 if (err) 2050 goto out; 2051 } 2052 2053 if (IS_MNT_SHARED(dest_mnt)) { 2054 err = invent_group_ids(source_mnt, true); 2055 if (err) 2056 goto out; 2057 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2058 lock_mount_hash(); 2059 if (err) 2060 goto out_cleanup_ids; 2061 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2062 set_mnt_shared(p); 2063 } else { 2064 lock_mount_hash(); 2065 } 2066 if (parent_path) { 2067 detach_mnt(source_mnt, parent_path); 2068 attach_mnt(source_mnt, dest_mnt, dest_mp); 2069 touch_mnt_namespace(source_mnt->mnt_ns); 2070 } else { 2071 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2072 commit_tree(source_mnt); 2073 } 2074 2075 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2076 struct mount *q; 2077 hlist_del_init(&child->mnt_hash); 2078 q = __lookup_mnt(&child->mnt_parent->mnt, 2079 child->mnt_mountpoint); 2080 if (q) 2081 mnt_change_mountpoint(child, smp, q); 2082 commit_tree(child); 2083 } 2084 put_mountpoint(smp); 2085 unlock_mount_hash(); 2086 2087 return 0; 2088 2089 out_cleanup_ids: 2090 while (!hlist_empty(&tree_list)) { 2091 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2092 child->mnt_parent->mnt_ns->pending_mounts = 0; 2093 umount_tree(child, UMOUNT_SYNC); 2094 } 2095 unlock_mount_hash(); 2096 cleanup_group_ids(source_mnt, NULL); 2097 out: 2098 ns->pending_mounts = 0; 2099 2100 read_seqlock_excl(&mount_lock); 2101 put_mountpoint(smp); 2102 read_sequnlock_excl(&mount_lock); 2103 2104 return err; 2105 } 2106 2107 static struct mountpoint *lock_mount(struct path *path) 2108 { 2109 struct vfsmount *mnt; 2110 struct dentry *dentry = path->dentry; 2111 retry: 2112 inode_lock(dentry->d_inode); 2113 if (unlikely(cant_mount(dentry))) { 2114 inode_unlock(dentry->d_inode); 2115 return ERR_PTR(-ENOENT); 2116 } 2117 namespace_lock(); 2118 mnt = lookup_mnt(path); 2119 if (likely(!mnt)) { 2120 struct mountpoint *mp = get_mountpoint(dentry); 2121 if (IS_ERR(mp)) { 2122 namespace_unlock(); 2123 inode_unlock(dentry->d_inode); 2124 return mp; 2125 } 2126 return mp; 2127 } 2128 namespace_unlock(); 2129 inode_unlock(path->dentry->d_inode); 2130 path_put(path); 2131 path->mnt = mnt; 2132 dentry = path->dentry = dget(mnt->mnt_root); 2133 goto retry; 2134 } 2135 2136 static void unlock_mount(struct mountpoint *where) 2137 { 2138 struct dentry *dentry = where->m_dentry; 2139 2140 read_seqlock_excl(&mount_lock); 2141 put_mountpoint(where); 2142 read_sequnlock_excl(&mount_lock); 2143 2144 namespace_unlock(); 2145 inode_unlock(dentry->d_inode); 2146 } 2147 2148 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2149 { 2150 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2151 return -EINVAL; 2152 2153 if (d_is_dir(mp->m_dentry) != 2154 d_is_dir(mnt->mnt.mnt_root)) 2155 return -ENOTDIR; 2156 2157 return attach_recursive_mnt(mnt, p, mp, NULL); 2158 } 2159 2160 /* 2161 * Sanity check the flags to change_mnt_propagation. 2162 */ 2163 2164 static int flags_to_propagation_type(int ms_flags) 2165 { 2166 int type = ms_flags & ~(MS_REC | MS_SILENT); 2167 2168 /* Fail if any non-propagation flags are set */ 2169 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2170 return 0; 2171 /* Only one propagation flag should be set */ 2172 if (!is_power_of_2(type)) 2173 return 0; 2174 return type; 2175 } 2176 2177 /* 2178 * recursively change the type of the mountpoint. 2179 */ 2180 static int do_change_type(struct path *path, int ms_flags) 2181 { 2182 struct mount *m; 2183 struct mount *mnt = real_mount(path->mnt); 2184 int recurse = ms_flags & MS_REC; 2185 int type; 2186 int err = 0; 2187 2188 if (path->dentry != path->mnt->mnt_root) 2189 return -EINVAL; 2190 2191 type = flags_to_propagation_type(ms_flags); 2192 if (!type) 2193 return -EINVAL; 2194 2195 namespace_lock(); 2196 if (type == MS_SHARED) { 2197 err = invent_group_ids(mnt, recurse); 2198 if (err) 2199 goto out_unlock; 2200 } 2201 2202 lock_mount_hash(); 2203 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2204 change_mnt_propagation(m, type); 2205 unlock_mount_hash(); 2206 2207 out_unlock: 2208 namespace_unlock(); 2209 return err; 2210 } 2211 2212 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2213 { 2214 struct mount *child; 2215 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2216 if (!is_subdir(child->mnt_mountpoint, dentry)) 2217 continue; 2218 2219 if (child->mnt.mnt_flags & MNT_LOCKED) 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 /* 2226 * do loopback mount. 2227 */ 2228 static int do_loopback(struct path *path, const char *old_name, 2229 int recurse) 2230 { 2231 struct path old_path; 2232 struct mount *mnt = NULL, *old, *parent; 2233 struct mountpoint *mp; 2234 int err; 2235 if (!old_name || !*old_name) 2236 return -EINVAL; 2237 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2238 if (err) 2239 return err; 2240 2241 err = -EINVAL; 2242 if (mnt_ns_loop(old_path.dentry)) 2243 goto out; 2244 2245 mp = lock_mount(path); 2246 err = PTR_ERR(mp); 2247 if (IS_ERR(mp)) 2248 goto out; 2249 2250 old = real_mount(old_path.mnt); 2251 parent = real_mount(path->mnt); 2252 2253 err = -EINVAL; 2254 if (IS_MNT_UNBINDABLE(old)) 2255 goto out2; 2256 2257 if (!check_mnt(parent)) 2258 goto out2; 2259 2260 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2261 goto out2; 2262 2263 if (!recurse && has_locked_children(old, old_path.dentry)) 2264 goto out2; 2265 2266 if (recurse) 2267 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2268 else 2269 mnt = clone_mnt(old, old_path.dentry, 0); 2270 2271 if (IS_ERR(mnt)) { 2272 err = PTR_ERR(mnt); 2273 goto out2; 2274 } 2275 2276 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2277 2278 err = graft_tree(mnt, parent, mp); 2279 if (err) { 2280 lock_mount_hash(); 2281 umount_tree(mnt, UMOUNT_SYNC); 2282 unlock_mount_hash(); 2283 } 2284 out2: 2285 unlock_mount(mp); 2286 out: 2287 path_put(&old_path); 2288 return err; 2289 } 2290 2291 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2292 { 2293 int error = 0; 2294 int readonly_request = 0; 2295 2296 if (ms_flags & MS_RDONLY) 2297 readonly_request = 1; 2298 if (readonly_request == __mnt_is_readonly(mnt)) 2299 return 0; 2300 2301 if (readonly_request) 2302 error = mnt_make_readonly(real_mount(mnt)); 2303 else 2304 __mnt_unmake_readonly(real_mount(mnt)); 2305 return error; 2306 } 2307 2308 /* 2309 * change filesystem flags. dir should be a physical root of filesystem. 2310 * If you've mounted a non-root directory somewhere and want to do remount 2311 * on it - tough luck. 2312 */ 2313 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2314 int mnt_flags, void *data) 2315 { 2316 int err; 2317 struct super_block *sb = path->mnt->mnt_sb; 2318 struct mount *mnt = real_mount(path->mnt); 2319 2320 if (!check_mnt(mnt)) 2321 return -EINVAL; 2322 2323 if (path->dentry != path->mnt->mnt_root) 2324 return -EINVAL; 2325 2326 /* Don't allow changing of locked mnt flags. 2327 * 2328 * No locks need to be held here while testing the various 2329 * MNT_LOCK flags because those flags can never be cleared 2330 * once they are set. 2331 */ 2332 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2333 !(mnt_flags & MNT_READONLY)) { 2334 return -EPERM; 2335 } 2336 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2337 !(mnt_flags & MNT_NODEV)) { 2338 return -EPERM; 2339 } 2340 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2341 !(mnt_flags & MNT_NOSUID)) { 2342 return -EPERM; 2343 } 2344 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2345 !(mnt_flags & MNT_NOEXEC)) { 2346 return -EPERM; 2347 } 2348 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2349 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2350 return -EPERM; 2351 } 2352 2353 err = security_sb_remount(sb, data); 2354 if (err) 2355 return err; 2356 2357 down_write(&sb->s_umount); 2358 if (ms_flags & MS_BIND) 2359 err = change_mount_flags(path->mnt, ms_flags); 2360 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2361 err = -EPERM; 2362 else 2363 err = do_remount_sb(sb, sb_flags, data, 0); 2364 if (!err) { 2365 lock_mount_hash(); 2366 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2367 mnt->mnt.mnt_flags = mnt_flags; 2368 touch_mnt_namespace(mnt->mnt_ns); 2369 unlock_mount_hash(); 2370 } 2371 up_write(&sb->s_umount); 2372 return err; 2373 } 2374 2375 static inline int tree_contains_unbindable(struct mount *mnt) 2376 { 2377 struct mount *p; 2378 for (p = mnt; p; p = next_mnt(p, mnt)) { 2379 if (IS_MNT_UNBINDABLE(p)) 2380 return 1; 2381 } 2382 return 0; 2383 } 2384 2385 static int do_move_mount(struct path *path, const char *old_name) 2386 { 2387 struct path old_path, parent_path; 2388 struct mount *p; 2389 struct mount *old; 2390 struct mountpoint *mp; 2391 int err; 2392 if (!old_name || !*old_name) 2393 return -EINVAL; 2394 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2395 if (err) 2396 return err; 2397 2398 mp = lock_mount(path); 2399 err = PTR_ERR(mp); 2400 if (IS_ERR(mp)) 2401 goto out; 2402 2403 old = real_mount(old_path.mnt); 2404 p = real_mount(path->mnt); 2405 2406 err = -EINVAL; 2407 if (!check_mnt(p) || !check_mnt(old)) 2408 goto out1; 2409 2410 if (old->mnt.mnt_flags & MNT_LOCKED) 2411 goto out1; 2412 2413 err = -EINVAL; 2414 if (old_path.dentry != old_path.mnt->mnt_root) 2415 goto out1; 2416 2417 if (!mnt_has_parent(old)) 2418 goto out1; 2419 2420 if (d_is_dir(path->dentry) != 2421 d_is_dir(old_path.dentry)) 2422 goto out1; 2423 /* 2424 * Don't move a mount residing in a shared parent. 2425 */ 2426 if (IS_MNT_SHARED(old->mnt_parent)) 2427 goto out1; 2428 /* 2429 * Don't move a mount tree containing unbindable mounts to a destination 2430 * mount which is shared. 2431 */ 2432 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2433 goto out1; 2434 err = -ELOOP; 2435 for (; mnt_has_parent(p); p = p->mnt_parent) 2436 if (p == old) 2437 goto out1; 2438 2439 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2440 if (err) 2441 goto out1; 2442 2443 /* if the mount is moved, it should no longer be expire 2444 * automatically */ 2445 list_del_init(&old->mnt_expire); 2446 out1: 2447 unlock_mount(mp); 2448 out: 2449 if (!err) 2450 path_put(&parent_path); 2451 path_put(&old_path); 2452 return err; 2453 } 2454 2455 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2456 { 2457 int err; 2458 const char *subtype = strchr(fstype, '.'); 2459 if (subtype) { 2460 subtype++; 2461 err = -EINVAL; 2462 if (!subtype[0]) 2463 goto err; 2464 } else 2465 subtype = ""; 2466 2467 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2468 err = -ENOMEM; 2469 if (!mnt->mnt_sb->s_subtype) 2470 goto err; 2471 return mnt; 2472 2473 err: 2474 mntput(mnt); 2475 return ERR_PTR(err); 2476 } 2477 2478 /* 2479 * add a mount into a namespace's mount tree 2480 */ 2481 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2482 { 2483 struct mountpoint *mp; 2484 struct mount *parent; 2485 int err; 2486 2487 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2488 2489 mp = lock_mount(path); 2490 if (IS_ERR(mp)) 2491 return PTR_ERR(mp); 2492 2493 parent = real_mount(path->mnt); 2494 err = -EINVAL; 2495 if (unlikely(!check_mnt(parent))) { 2496 /* that's acceptable only for automounts done in private ns */ 2497 if (!(mnt_flags & MNT_SHRINKABLE)) 2498 goto unlock; 2499 /* ... and for those we'd better have mountpoint still alive */ 2500 if (!parent->mnt_ns) 2501 goto unlock; 2502 } 2503 2504 /* Refuse the same filesystem on the same mount point */ 2505 err = -EBUSY; 2506 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2507 path->mnt->mnt_root == path->dentry) 2508 goto unlock; 2509 2510 err = -EINVAL; 2511 if (d_is_symlink(newmnt->mnt.mnt_root)) 2512 goto unlock; 2513 2514 newmnt->mnt.mnt_flags = mnt_flags; 2515 err = graft_tree(newmnt, parent, mp); 2516 2517 unlock: 2518 unlock_mount(mp); 2519 return err; 2520 } 2521 2522 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2523 2524 /* 2525 * create a new mount for userspace and request it to be added into the 2526 * namespace's tree 2527 */ 2528 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2529 int mnt_flags, const char *name, void *data) 2530 { 2531 struct file_system_type *type; 2532 struct vfsmount *mnt; 2533 int err; 2534 2535 if (!fstype) 2536 return -EINVAL; 2537 2538 type = get_fs_type(fstype); 2539 if (!type) 2540 return -ENODEV; 2541 2542 mnt = vfs_kern_mount(type, sb_flags, name, data); 2543 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2544 !mnt->mnt_sb->s_subtype) 2545 mnt = fs_set_subtype(mnt, fstype); 2546 2547 put_filesystem(type); 2548 if (IS_ERR(mnt)) 2549 return PTR_ERR(mnt); 2550 2551 if (mount_too_revealing(mnt, &mnt_flags)) { 2552 mntput(mnt); 2553 return -EPERM; 2554 } 2555 2556 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2557 if (err) 2558 mntput(mnt); 2559 return err; 2560 } 2561 2562 int finish_automount(struct vfsmount *m, struct path *path) 2563 { 2564 struct mount *mnt = real_mount(m); 2565 int err; 2566 /* The new mount record should have at least 2 refs to prevent it being 2567 * expired before we get a chance to add it 2568 */ 2569 BUG_ON(mnt_get_count(mnt) < 2); 2570 2571 if (m->mnt_sb == path->mnt->mnt_sb && 2572 m->mnt_root == path->dentry) { 2573 err = -ELOOP; 2574 goto fail; 2575 } 2576 2577 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2578 if (!err) 2579 return 0; 2580 fail: 2581 /* remove m from any expiration list it may be on */ 2582 if (!list_empty(&mnt->mnt_expire)) { 2583 namespace_lock(); 2584 list_del_init(&mnt->mnt_expire); 2585 namespace_unlock(); 2586 } 2587 mntput(m); 2588 mntput(m); 2589 return err; 2590 } 2591 2592 /** 2593 * mnt_set_expiry - Put a mount on an expiration list 2594 * @mnt: The mount to list. 2595 * @expiry_list: The list to add the mount to. 2596 */ 2597 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2598 { 2599 namespace_lock(); 2600 2601 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2602 2603 namespace_unlock(); 2604 } 2605 EXPORT_SYMBOL(mnt_set_expiry); 2606 2607 /* 2608 * process a list of expirable mountpoints with the intent of discarding any 2609 * mountpoints that aren't in use and haven't been touched since last we came 2610 * here 2611 */ 2612 void mark_mounts_for_expiry(struct list_head *mounts) 2613 { 2614 struct mount *mnt, *next; 2615 LIST_HEAD(graveyard); 2616 2617 if (list_empty(mounts)) 2618 return; 2619 2620 namespace_lock(); 2621 lock_mount_hash(); 2622 2623 /* extract from the expiration list every vfsmount that matches the 2624 * following criteria: 2625 * - only referenced by its parent vfsmount 2626 * - still marked for expiry (marked on the last call here; marks are 2627 * cleared by mntput()) 2628 */ 2629 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2630 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2631 propagate_mount_busy(mnt, 1)) 2632 continue; 2633 list_move(&mnt->mnt_expire, &graveyard); 2634 } 2635 while (!list_empty(&graveyard)) { 2636 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2637 touch_mnt_namespace(mnt->mnt_ns); 2638 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2639 } 2640 unlock_mount_hash(); 2641 namespace_unlock(); 2642 } 2643 2644 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2645 2646 /* 2647 * Ripoff of 'select_parent()' 2648 * 2649 * search the list of submounts for a given mountpoint, and move any 2650 * shrinkable submounts to the 'graveyard' list. 2651 */ 2652 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2653 { 2654 struct mount *this_parent = parent; 2655 struct list_head *next; 2656 int found = 0; 2657 2658 repeat: 2659 next = this_parent->mnt_mounts.next; 2660 resume: 2661 while (next != &this_parent->mnt_mounts) { 2662 struct list_head *tmp = next; 2663 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2664 2665 next = tmp->next; 2666 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2667 continue; 2668 /* 2669 * Descend a level if the d_mounts list is non-empty. 2670 */ 2671 if (!list_empty(&mnt->mnt_mounts)) { 2672 this_parent = mnt; 2673 goto repeat; 2674 } 2675 2676 if (!propagate_mount_busy(mnt, 1)) { 2677 list_move_tail(&mnt->mnt_expire, graveyard); 2678 found++; 2679 } 2680 } 2681 /* 2682 * All done at this level ... ascend and resume the search 2683 */ 2684 if (this_parent != parent) { 2685 next = this_parent->mnt_child.next; 2686 this_parent = this_parent->mnt_parent; 2687 goto resume; 2688 } 2689 return found; 2690 } 2691 2692 /* 2693 * process a list of expirable mountpoints with the intent of discarding any 2694 * submounts of a specific parent mountpoint 2695 * 2696 * mount_lock must be held for write 2697 */ 2698 static void shrink_submounts(struct mount *mnt) 2699 { 2700 LIST_HEAD(graveyard); 2701 struct mount *m; 2702 2703 /* extract submounts of 'mountpoint' from the expiration list */ 2704 while (select_submounts(mnt, &graveyard)) { 2705 while (!list_empty(&graveyard)) { 2706 m = list_first_entry(&graveyard, struct mount, 2707 mnt_expire); 2708 touch_mnt_namespace(m->mnt_ns); 2709 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2710 } 2711 } 2712 } 2713 2714 /* 2715 * Some copy_from_user() implementations do not return the exact number of 2716 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2717 * Note that this function differs from copy_from_user() in that it will oops 2718 * on bad values of `to', rather than returning a short copy. 2719 */ 2720 static long exact_copy_from_user(void *to, const void __user * from, 2721 unsigned long n) 2722 { 2723 char *t = to; 2724 const char __user *f = from; 2725 char c; 2726 2727 if (!access_ok(VERIFY_READ, from, n)) 2728 return n; 2729 2730 while (n) { 2731 if (__get_user(c, f)) { 2732 memset(t, 0, n); 2733 break; 2734 } 2735 *t++ = c; 2736 f++; 2737 n--; 2738 } 2739 return n; 2740 } 2741 2742 void *copy_mount_options(const void __user * data) 2743 { 2744 int i; 2745 unsigned long size; 2746 char *copy; 2747 2748 if (!data) 2749 return NULL; 2750 2751 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2752 if (!copy) 2753 return ERR_PTR(-ENOMEM); 2754 2755 /* We only care that *some* data at the address the user 2756 * gave us is valid. Just in case, we'll zero 2757 * the remainder of the page. 2758 */ 2759 /* copy_from_user cannot cross TASK_SIZE ! */ 2760 size = TASK_SIZE - (unsigned long)data; 2761 if (size > PAGE_SIZE) 2762 size = PAGE_SIZE; 2763 2764 i = size - exact_copy_from_user(copy, data, size); 2765 if (!i) { 2766 kfree(copy); 2767 return ERR_PTR(-EFAULT); 2768 } 2769 if (i != PAGE_SIZE) 2770 memset(copy + i, 0, PAGE_SIZE - i); 2771 return copy; 2772 } 2773 2774 char *copy_mount_string(const void __user *data) 2775 { 2776 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2777 } 2778 2779 /* 2780 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2781 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2782 * 2783 * data is a (void *) that can point to any structure up to 2784 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2785 * information (or be NULL). 2786 * 2787 * Pre-0.97 versions of mount() didn't have a flags word. 2788 * When the flags word was introduced its top half was required 2789 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2790 * Therefore, if this magic number is present, it carries no information 2791 * and must be discarded. 2792 */ 2793 long do_mount(const char *dev_name, const char __user *dir_name, 2794 const char *type_page, unsigned long flags, void *data_page) 2795 { 2796 struct path path; 2797 unsigned int mnt_flags = 0, sb_flags; 2798 int retval = 0; 2799 2800 /* Discard magic */ 2801 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2802 flags &= ~MS_MGC_MSK; 2803 2804 /* Basic sanity checks */ 2805 if (data_page) 2806 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2807 2808 if (flags & MS_NOUSER) 2809 return -EINVAL; 2810 2811 /* ... and get the mountpoint */ 2812 retval = user_path(dir_name, &path); 2813 if (retval) 2814 return retval; 2815 2816 retval = security_sb_mount(dev_name, &path, 2817 type_page, flags, data_page); 2818 if (!retval && !may_mount()) 2819 retval = -EPERM; 2820 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) 2821 retval = -EPERM; 2822 if (retval) 2823 goto dput_out; 2824 2825 /* Default to relatime unless overriden */ 2826 if (!(flags & MS_NOATIME)) 2827 mnt_flags |= MNT_RELATIME; 2828 2829 /* Separate the per-mountpoint flags */ 2830 if (flags & MS_NOSUID) 2831 mnt_flags |= MNT_NOSUID; 2832 if (flags & MS_NODEV) 2833 mnt_flags |= MNT_NODEV; 2834 if (flags & MS_NOEXEC) 2835 mnt_flags |= MNT_NOEXEC; 2836 if (flags & MS_NOATIME) 2837 mnt_flags |= MNT_NOATIME; 2838 if (flags & MS_NODIRATIME) 2839 mnt_flags |= MNT_NODIRATIME; 2840 if (flags & MS_STRICTATIME) 2841 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2842 if (flags & MS_RDONLY) 2843 mnt_flags |= MNT_READONLY; 2844 2845 /* The default atime for remount is preservation */ 2846 if ((flags & MS_REMOUNT) && 2847 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2848 MS_STRICTATIME)) == 0)) { 2849 mnt_flags &= ~MNT_ATIME_MASK; 2850 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2851 } 2852 2853 sb_flags = flags & (SB_RDONLY | 2854 SB_SYNCHRONOUS | 2855 SB_MANDLOCK | 2856 SB_DIRSYNC | 2857 SB_SILENT | 2858 SB_POSIXACL | 2859 SB_LAZYTIME | 2860 SB_I_VERSION); 2861 2862 if (flags & MS_REMOUNT) 2863 retval = do_remount(&path, flags, sb_flags, mnt_flags, 2864 data_page); 2865 else if (flags & MS_BIND) 2866 retval = do_loopback(&path, dev_name, flags & MS_REC); 2867 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2868 retval = do_change_type(&path, flags); 2869 else if (flags & MS_MOVE) 2870 retval = do_move_mount(&path, dev_name); 2871 else 2872 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, 2873 dev_name, data_page); 2874 dput_out: 2875 path_put(&path); 2876 return retval; 2877 } 2878 2879 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2880 { 2881 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2882 } 2883 2884 static void dec_mnt_namespaces(struct ucounts *ucounts) 2885 { 2886 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2887 } 2888 2889 static void free_mnt_ns(struct mnt_namespace *ns) 2890 { 2891 ns_free_inum(&ns->ns); 2892 dec_mnt_namespaces(ns->ucounts); 2893 put_user_ns(ns->user_ns); 2894 kfree(ns); 2895 } 2896 2897 /* 2898 * Assign a sequence number so we can detect when we attempt to bind 2899 * mount a reference to an older mount namespace into the current 2900 * mount namespace, preventing reference counting loops. A 64bit 2901 * number incrementing at 10Ghz will take 12,427 years to wrap which 2902 * is effectively never, so we can ignore the possibility. 2903 */ 2904 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2905 2906 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2907 { 2908 struct mnt_namespace *new_ns; 2909 struct ucounts *ucounts; 2910 int ret; 2911 2912 ucounts = inc_mnt_namespaces(user_ns); 2913 if (!ucounts) 2914 return ERR_PTR(-ENOSPC); 2915 2916 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2917 if (!new_ns) { 2918 dec_mnt_namespaces(ucounts); 2919 return ERR_PTR(-ENOMEM); 2920 } 2921 ret = ns_alloc_inum(&new_ns->ns); 2922 if (ret) { 2923 kfree(new_ns); 2924 dec_mnt_namespaces(ucounts); 2925 return ERR_PTR(ret); 2926 } 2927 new_ns->ns.ops = &mntns_operations; 2928 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2929 atomic_set(&new_ns->count, 1); 2930 new_ns->root = NULL; 2931 INIT_LIST_HEAD(&new_ns->list); 2932 init_waitqueue_head(&new_ns->poll); 2933 new_ns->event = 0; 2934 new_ns->user_ns = get_user_ns(user_ns); 2935 new_ns->ucounts = ucounts; 2936 new_ns->mounts = 0; 2937 new_ns->pending_mounts = 0; 2938 return new_ns; 2939 } 2940 2941 __latent_entropy 2942 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2943 struct user_namespace *user_ns, struct fs_struct *new_fs) 2944 { 2945 struct mnt_namespace *new_ns; 2946 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2947 struct mount *p, *q; 2948 struct mount *old; 2949 struct mount *new; 2950 int copy_flags; 2951 2952 BUG_ON(!ns); 2953 2954 if (likely(!(flags & CLONE_NEWNS))) { 2955 get_mnt_ns(ns); 2956 return ns; 2957 } 2958 2959 old = ns->root; 2960 2961 new_ns = alloc_mnt_ns(user_ns); 2962 if (IS_ERR(new_ns)) 2963 return new_ns; 2964 2965 namespace_lock(); 2966 /* First pass: copy the tree topology */ 2967 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2968 if (user_ns != ns->user_ns) 2969 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2970 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2971 if (IS_ERR(new)) { 2972 namespace_unlock(); 2973 free_mnt_ns(new_ns); 2974 return ERR_CAST(new); 2975 } 2976 new_ns->root = new; 2977 list_add_tail(&new_ns->list, &new->mnt_list); 2978 2979 /* 2980 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2981 * as belonging to new namespace. We have already acquired a private 2982 * fs_struct, so tsk->fs->lock is not needed. 2983 */ 2984 p = old; 2985 q = new; 2986 while (p) { 2987 q->mnt_ns = new_ns; 2988 new_ns->mounts++; 2989 if (new_fs) { 2990 if (&p->mnt == new_fs->root.mnt) { 2991 new_fs->root.mnt = mntget(&q->mnt); 2992 rootmnt = &p->mnt; 2993 } 2994 if (&p->mnt == new_fs->pwd.mnt) { 2995 new_fs->pwd.mnt = mntget(&q->mnt); 2996 pwdmnt = &p->mnt; 2997 } 2998 } 2999 p = next_mnt(p, old); 3000 q = next_mnt(q, new); 3001 if (!q) 3002 break; 3003 while (p->mnt.mnt_root != q->mnt.mnt_root) 3004 p = next_mnt(p, old); 3005 } 3006 namespace_unlock(); 3007 3008 if (rootmnt) 3009 mntput(rootmnt); 3010 if (pwdmnt) 3011 mntput(pwdmnt); 3012 3013 return new_ns; 3014 } 3015 3016 /** 3017 * create_mnt_ns - creates a private namespace and adds a root filesystem 3018 * @mnt: pointer to the new root filesystem mountpoint 3019 */ 3020 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 3021 { 3022 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 3023 if (!IS_ERR(new_ns)) { 3024 struct mount *mnt = real_mount(m); 3025 mnt->mnt_ns = new_ns; 3026 new_ns->root = mnt; 3027 new_ns->mounts++; 3028 list_add(&mnt->mnt_list, &new_ns->list); 3029 } else { 3030 mntput(m); 3031 } 3032 return new_ns; 3033 } 3034 3035 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 3036 { 3037 struct mnt_namespace *ns; 3038 struct super_block *s; 3039 struct path path; 3040 int err; 3041 3042 ns = create_mnt_ns(mnt); 3043 if (IS_ERR(ns)) 3044 return ERR_CAST(ns); 3045 3046 err = vfs_path_lookup(mnt->mnt_root, mnt, 3047 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3048 3049 put_mnt_ns(ns); 3050 3051 if (err) 3052 return ERR_PTR(err); 3053 3054 /* trade a vfsmount reference for active sb one */ 3055 s = path.mnt->mnt_sb; 3056 atomic_inc(&s->s_active); 3057 mntput(path.mnt); 3058 /* lock the sucker */ 3059 down_write(&s->s_umount); 3060 /* ... and return the root of (sub)tree on it */ 3061 return path.dentry; 3062 } 3063 EXPORT_SYMBOL(mount_subtree); 3064 3065 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, 3066 unsigned long flags, void __user *data) 3067 { 3068 int ret; 3069 char *kernel_type; 3070 char *kernel_dev; 3071 void *options; 3072 3073 kernel_type = copy_mount_string(type); 3074 ret = PTR_ERR(kernel_type); 3075 if (IS_ERR(kernel_type)) 3076 goto out_type; 3077 3078 kernel_dev = copy_mount_string(dev_name); 3079 ret = PTR_ERR(kernel_dev); 3080 if (IS_ERR(kernel_dev)) 3081 goto out_dev; 3082 3083 options = copy_mount_options(data); 3084 ret = PTR_ERR(options); 3085 if (IS_ERR(options)) 3086 goto out_data; 3087 3088 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3089 3090 kfree(options); 3091 out_data: 3092 kfree(kernel_dev); 3093 out_dev: 3094 kfree(kernel_type); 3095 out_type: 3096 return ret; 3097 } 3098 3099 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3100 char __user *, type, unsigned long, flags, void __user *, data) 3101 { 3102 return ksys_mount(dev_name, dir_name, type, flags, data); 3103 } 3104 3105 /* 3106 * Return true if path is reachable from root 3107 * 3108 * namespace_sem or mount_lock is held 3109 */ 3110 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3111 const struct path *root) 3112 { 3113 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3114 dentry = mnt->mnt_mountpoint; 3115 mnt = mnt->mnt_parent; 3116 } 3117 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3118 } 3119 3120 bool path_is_under(const struct path *path1, const struct path *path2) 3121 { 3122 bool res; 3123 read_seqlock_excl(&mount_lock); 3124 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3125 read_sequnlock_excl(&mount_lock); 3126 return res; 3127 } 3128 EXPORT_SYMBOL(path_is_under); 3129 3130 /* 3131 * pivot_root Semantics: 3132 * Moves the root file system of the current process to the directory put_old, 3133 * makes new_root as the new root file system of the current process, and sets 3134 * root/cwd of all processes which had them on the current root to new_root. 3135 * 3136 * Restrictions: 3137 * The new_root and put_old must be directories, and must not be on the 3138 * same file system as the current process root. The put_old must be 3139 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3140 * pointed to by put_old must yield the same directory as new_root. No other 3141 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3142 * 3143 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3144 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3145 * in this situation. 3146 * 3147 * Notes: 3148 * - we don't move root/cwd if they are not at the root (reason: if something 3149 * cared enough to change them, it's probably wrong to force them elsewhere) 3150 * - it's okay to pick a root that isn't the root of a file system, e.g. 3151 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3152 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3153 * first. 3154 */ 3155 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3156 const char __user *, put_old) 3157 { 3158 struct path new, old, parent_path, root_parent, root; 3159 struct mount *new_mnt, *root_mnt, *old_mnt; 3160 struct mountpoint *old_mp, *root_mp; 3161 int error; 3162 3163 if (!may_mount()) 3164 return -EPERM; 3165 3166 error = user_path_dir(new_root, &new); 3167 if (error) 3168 goto out0; 3169 3170 error = user_path_dir(put_old, &old); 3171 if (error) 3172 goto out1; 3173 3174 error = security_sb_pivotroot(&old, &new); 3175 if (error) 3176 goto out2; 3177 3178 get_fs_root(current->fs, &root); 3179 old_mp = lock_mount(&old); 3180 error = PTR_ERR(old_mp); 3181 if (IS_ERR(old_mp)) 3182 goto out3; 3183 3184 error = -EINVAL; 3185 new_mnt = real_mount(new.mnt); 3186 root_mnt = real_mount(root.mnt); 3187 old_mnt = real_mount(old.mnt); 3188 if (IS_MNT_SHARED(old_mnt) || 3189 IS_MNT_SHARED(new_mnt->mnt_parent) || 3190 IS_MNT_SHARED(root_mnt->mnt_parent)) 3191 goto out4; 3192 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3193 goto out4; 3194 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3195 goto out4; 3196 error = -ENOENT; 3197 if (d_unlinked(new.dentry)) 3198 goto out4; 3199 error = -EBUSY; 3200 if (new_mnt == root_mnt || old_mnt == root_mnt) 3201 goto out4; /* loop, on the same file system */ 3202 error = -EINVAL; 3203 if (root.mnt->mnt_root != root.dentry) 3204 goto out4; /* not a mountpoint */ 3205 if (!mnt_has_parent(root_mnt)) 3206 goto out4; /* not attached */ 3207 root_mp = root_mnt->mnt_mp; 3208 if (new.mnt->mnt_root != new.dentry) 3209 goto out4; /* not a mountpoint */ 3210 if (!mnt_has_parent(new_mnt)) 3211 goto out4; /* not attached */ 3212 /* make sure we can reach put_old from new_root */ 3213 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3214 goto out4; 3215 /* make certain new is below the root */ 3216 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3217 goto out4; 3218 root_mp->m_count++; /* pin it so it won't go away */ 3219 lock_mount_hash(); 3220 detach_mnt(new_mnt, &parent_path); 3221 detach_mnt(root_mnt, &root_parent); 3222 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3223 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3224 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3225 } 3226 /* mount old root on put_old */ 3227 attach_mnt(root_mnt, old_mnt, old_mp); 3228 /* mount new_root on / */ 3229 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3230 touch_mnt_namespace(current->nsproxy->mnt_ns); 3231 /* A moved mount should not expire automatically */ 3232 list_del_init(&new_mnt->mnt_expire); 3233 put_mountpoint(root_mp); 3234 unlock_mount_hash(); 3235 chroot_fs_refs(&root, &new); 3236 error = 0; 3237 out4: 3238 unlock_mount(old_mp); 3239 if (!error) { 3240 path_put(&root_parent); 3241 path_put(&parent_path); 3242 } 3243 out3: 3244 path_put(&root); 3245 out2: 3246 path_put(&old); 3247 out1: 3248 path_put(&new); 3249 out0: 3250 return error; 3251 } 3252 3253 static void __init init_mount_tree(void) 3254 { 3255 struct vfsmount *mnt; 3256 struct mnt_namespace *ns; 3257 struct path root; 3258 struct file_system_type *type; 3259 3260 type = get_fs_type("rootfs"); 3261 if (!type) 3262 panic("Can't find rootfs type"); 3263 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3264 put_filesystem(type); 3265 if (IS_ERR(mnt)) 3266 panic("Can't create rootfs"); 3267 3268 ns = create_mnt_ns(mnt); 3269 if (IS_ERR(ns)) 3270 panic("Can't allocate initial namespace"); 3271 3272 init_task.nsproxy->mnt_ns = ns; 3273 get_mnt_ns(ns); 3274 3275 root.mnt = mnt; 3276 root.dentry = mnt->mnt_root; 3277 mnt->mnt_flags |= MNT_LOCKED; 3278 3279 set_fs_pwd(current->fs, &root); 3280 set_fs_root(current->fs, &root); 3281 } 3282 3283 void __init mnt_init(void) 3284 { 3285 int err; 3286 3287 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3288 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3289 3290 mount_hashtable = alloc_large_system_hash("Mount-cache", 3291 sizeof(struct hlist_head), 3292 mhash_entries, 19, 3293 HASH_ZERO, 3294 &m_hash_shift, &m_hash_mask, 0, 0); 3295 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3296 sizeof(struct hlist_head), 3297 mphash_entries, 19, 3298 HASH_ZERO, 3299 &mp_hash_shift, &mp_hash_mask, 0, 0); 3300 3301 if (!mount_hashtable || !mountpoint_hashtable) 3302 panic("Failed to allocate mount hash table\n"); 3303 3304 kernfs_init(); 3305 3306 err = sysfs_init(); 3307 if (err) 3308 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3309 __func__, err); 3310 fs_kobj = kobject_create_and_add("fs", NULL); 3311 if (!fs_kobj) 3312 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3313 init_rootfs(); 3314 init_mount_tree(); 3315 } 3316 3317 void put_mnt_ns(struct mnt_namespace *ns) 3318 { 3319 if (!atomic_dec_and_test(&ns->count)) 3320 return; 3321 drop_collected_mounts(&ns->root->mnt); 3322 free_mnt_ns(ns); 3323 } 3324 3325 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3326 { 3327 struct vfsmount *mnt; 3328 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); 3329 if (!IS_ERR(mnt)) { 3330 /* 3331 * it is a longterm mount, don't release mnt until 3332 * we unmount before file sys is unregistered 3333 */ 3334 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3335 } 3336 return mnt; 3337 } 3338 EXPORT_SYMBOL_GPL(kern_mount_data); 3339 3340 void kern_unmount(struct vfsmount *mnt) 3341 { 3342 /* release long term mount so mount point can be released */ 3343 if (!IS_ERR_OR_NULL(mnt)) { 3344 real_mount(mnt)->mnt_ns = NULL; 3345 synchronize_rcu(); /* yecchhh... */ 3346 mntput(mnt); 3347 } 3348 } 3349 EXPORT_SYMBOL(kern_unmount); 3350 3351 bool our_mnt(struct vfsmount *mnt) 3352 { 3353 return check_mnt(real_mount(mnt)); 3354 } 3355 3356 bool current_chrooted(void) 3357 { 3358 /* Does the current process have a non-standard root */ 3359 struct path ns_root; 3360 struct path fs_root; 3361 bool chrooted; 3362 3363 /* Find the namespace root */ 3364 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3365 ns_root.dentry = ns_root.mnt->mnt_root; 3366 path_get(&ns_root); 3367 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3368 ; 3369 3370 get_fs_root(current->fs, &fs_root); 3371 3372 chrooted = !path_equal(&fs_root, &ns_root); 3373 3374 path_put(&fs_root); 3375 path_put(&ns_root); 3376 3377 return chrooted; 3378 } 3379 3380 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3381 int *new_mnt_flags) 3382 { 3383 int new_flags = *new_mnt_flags; 3384 struct mount *mnt; 3385 bool visible = false; 3386 3387 down_read(&namespace_sem); 3388 list_for_each_entry(mnt, &ns->list, mnt_list) { 3389 struct mount *child; 3390 int mnt_flags; 3391 3392 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3393 continue; 3394 3395 /* This mount is not fully visible if it's root directory 3396 * is not the root directory of the filesystem. 3397 */ 3398 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3399 continue; 3400 3401 /* A local view of the mount flags */ 3402 mnt_flags = mnt->mnt.mnt_flags; 3403 3404 /* Don't miss readonly hidden in the superblock flags */ 3405 if (sb_rdonly(mnt->mnt.mnt_sb)) 3406 mnt_flags |= MNT_LOCK_READONLY; 3407 3408 /* Verify the mount flags are equal to or more permissive 3409 * than the proposed new mount. 3410 */ 3411 if ((mnt_flags & MNT_LOCK_READONLY) && 3412 !(new_flags & MNT_READONLY)) 3413 continue; 3414 if ((mnt_flags & MNT_LOCK_ATIME) && 3415 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3416 continue; 3417 3418 /* This mount is not fully visible if there are any 3419 * locked child mounts that cover anything except for 3420 * empty directories. 3421 */ 3422 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3423 struct inode *inode = child->mnt_mountpoint->d_inode; 3424 /* Only worry about locked mounts */ 3425 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3426 continue; 3427 /* Is the directory permanetly empty? */ 3428 if (!is_empty_dir_inode(inode)) 3429 goto next; 3430 } 3431 /* Preserve the locked attributes */ 3432 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3433 MNT_LOCK_ATIME); 3434 visible = true; 3435 goto found; 3436 next: ; 3437 } 3438 found: 3439 up_read(&namespace_sem); 3440 return visible; 3441 } 3442 3443 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3444 { 3445 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3446 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3447 unsigned long s_iflags; 3448 3449 if (ns->user_ns == &init_user_ns) 3450 return false; 3451 3452 /* Can this filesystem be too revealing? */ 3453 s_iflags = mnt->mnt_sb->s_iflags; 3454 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3455 return false; 3456 3457 if ((s_iflags & required_iflags) != required_iflags) { 3458 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3459 required_iflags); 3460 return true; 3461 } 3462 3463 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3464 } 3465 3466 bool mnt_may_suid(struct vfsmount *mnt) 3467 { 3468 /* 3469 * Foreign mounts (accessed via fchdir or through /proc 3470 * symlinks) are always treated as if they are nosuid. This 3471 * prevents namespaces from trusting potentially unsafe 3472 * suid/sgid bits, file caps, or security labels that originate 3473 * in other namespaces. 3474 */ 3475 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3476 current_in_userns(mnt->mnt_sb->s_user_ns); 3477 } 3478 3479 static struct ns_common *mntns_get(struct task_struct *task) 3480 { 3481 struct ns_common *ns = NULL; 3482 struct nsproxy *nsproxy; 3483 3484 task_lock(task); 3485 nsproxy = task->nsproxy; 3486 if (nsproxy) { 3487 ns = &nsproxy->mnt_ns->ns; 3488 get_mnt_ns(to_mnt_ns(ns)); 3489 } 3490 task_unlock(task); 3491 3492 return ns; 3493 } 3494 3495 static void mntns_put(struct ns_common *ns) 3496 { 3497 put_mnt_ns(to_mnt_ns(ns)); 3498 } 3499 3500 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3501 { 3502 struct fs_struct *fs = current->fs; 3503 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 3504 struct path root; 3505 int err; 3506 3507 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3508 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3509 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3510 return -EPERM; 3511 3512 if (fs->users != 1) 3513 return -EINVAL; 3514 3515 get_mnt_ns(mnt_ns); 3516 old_mnt_ns = nsproxy->mnt_ns; 3517 nsproxy->mnt_ns = mnt_ns; 3518 3519 /* Find the root */ 3520 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 3521 "/", LOOKUP_DOWN, &root); 3522 if (err) { 3523 /* revert to old namespace */ 3524 nsproxy->mnt_ns = old_mnt_ns; 3525 put_mnt_ns(mnt_ns); 3526 return err; 3527 } 3528 3529 put_mnt_ns(old_mnt_ns); 3530 3531 /* Update the pwd and root */ 3532 set_fs_pwd(fs, &root); 3533 set_fs_root(fs, &root); 3534 3535 path_put(&root); 3536 return 0; 3537 } 3538 3539 static struct user_namespace *mntns_owner(struct ns_common *ns) 3540 { 3541 return to_mnt_ns(ns)->user_ns; 3542 } 3543 3544 const struct proc_ns_operations mntns_operations = { 3545 .name = "mnt", 3546 .type = CLONE_NEWNS, 3547 .get = mntns_get, 3548 .put = mntns_put, 3549 .install = mntns_install, 3550 .owner = mntns_owner, 3551 }; 3552