xref: /linux/fs/namespace.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include "pnode.h"
35 #include "internal.h"
36 
37 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38 #define HASH_SIZE (1UL << HASH_SHIFT)
39 
40 /* spinlock for vfsmount related operations, inplace of dcache_lock */
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 
43 static int event;
44 static DEFINE_IDA(mnt_id_ida);
45 static DEFINE_IDA(mnt_group_ida);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 {
59 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
61 	tmp = tmp + (tmp >> HASH_SHIFT);
62 	return tmp & (HASH_SIZE - 1);
63 }
64 
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 
67 /* allocation is serialized by namespace_sem */
68 static int mnt_alloc_id(struct vfsmount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&vfsmount_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&vfsmount_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct vfsmount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&vfsmount_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&vfsmount_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct vfsmount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct vfsmount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 struct vfsmount *alloc_vfsmnt(const char *name)
129 {
130 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
131 	if (mnt) {
132 		int err;
133 
134 		err = mnt_alloc_id(mnt);
135 		if (err)
136 			goto out_free_cache;
137 
138 		if (name) {
139 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
140 			if (!mnt->mnt_devname)
141 				goto out_free_id;
142 		}
143 
144 		atomic_set(&mnt->mnt_count, 1);
145 		INIT_LIST_HEAD(&mnt->mnt_hash);
146 		INIT_LIST_HEAD(&mnt->mnt_child);
147 		INIT_LIST_HEAD(&mnt->mnt_mounts);
148 		INIT_LIST_HEAD(&mnt->mnt_list);
149 		INIT_LIST_HEAD(&mnt->mnt_expire);
150 		INIT_LIST_HEAD(&mnt->mnt_share);
151 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
152 		INIT_LIST_HEAD(&mnt->mnt_slave);
153 #ifdef CONFIG_SMP
154 		mnt->mnt_writers = alloc_percpu(int);
155 		if (!mnt->mnt_writers)
156 			goto out_free_devname;
157 #else
158 		mnt->mnt_writers = 0;
159 #endif
160 	}
161 	return mnt;
162 
163 #ifdef CONFIG_SMP
164 out_free_devname:
165 	kfree(mnt->mnt_devname);
166 #endif
167 out_free_id:
168 	mnt_free_id(mnt);
169 out_free_cache:
170 	kmem_cache_free(mnt_cache, mnt);
171 	return NULL;
172 }
173 
174 /*
175  * Most r/o checks on a fs are for operations that take
176  * discrete amounts of time, like a write() or unlink().
177  * We must keep track of when those operations start
178  * (for permission checks) and when they end, so that
179  * we can determine when writes are able to occur to
180  * a filesystem.
181  */
182 /*
183  * __mnt_is_readonly: check whether a mount is read-only
184  * @mnt: the mount to check for its write status
185  *
186  * This shouldn't be used directly ouside of the VFS.
187  * It does not guarantee that the filesystem will stay
188  * r/w, just that it is right *now*.  This can not and
189  * should not be used in place of IS_RDONLY(inode).
190  * mnt_want/drop_write() will _keep_ the filesystem
191  * r/w.
192  */
193 int __mnt_is_readonly(struct vfsmount *mnt)
194 {
195 	if (mnt->mnt_flags & MNT_READONLY)
196 		return 1;
197 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
198 		return 1;
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202 
203 static inline void inc_mnt_writers(struct vfsmount *mnt)
204 {
205 #ifdef CONFIG_SMP
206 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
207 #else
208 	mnt->mnt_writers++;
209 #endif
210 }
211 
212 static inline void dec_mnt_writers(struct vfsmount *mnt)
213 {
214 #ifdef CONFIG_SMP
215 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
216 #else
217 	mnt->mnt_writers--;
218 #endif
219 }
220 
221 static unsigned int count_mnt_writers(struct vfsmount *mnt)
222 {
223 #ifdef CONFIG_SMP
224 	unsigned int count = 0;
225 	int cpu;
226 
227 	for_each_possible_cpu(cpu) {
228 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
229 	}
230 
231 	return count;
232 #else
233 	return mnt->mnt_writers;
234 #endif
235 }
236 
237 /*
238  * Most r/o checks on a fs are for operations that take
239  * discrete amounts of time, like a write() or unlink().
240  * We must keep track of when those operations start
241  * (for permission checks) and when they end, so that
242  * we can determine when writes are able to occur to
243  * a filesystem.
244  */
245 /**
246  * mnt_want_write - get write access to a mount
247  * @mnt: the mount on which to take a write
248  *
249  * This tells the low-level filesystem that a write is
250  * about to be performed to it, and makes sure that
251  * writes are allowed before returning success.  When
252  * the write operation is finished, mnt_drop_write()
253  * must be called.  This is effectively a refcount.
254  */
255 int mnt_want_write(struct vfsmount *mnt)
256 {
257 	int ret = 0;
258 
259 	preempt_disable();
260 	inc_mnt_writers(mnt);
261 	/*
262 	 * The store to inc_mnt_writers must be visible before we pass
263 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 	 * incremented count after it has set MNT_WRITE_HOLD.
265 	 */
266 	smp_mb();
267 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
268 		cpu_relax();
269 	/*
270 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 	 * be set to match its requirements. So we must not load that until
272 	 * MNT_WRITE_HOLD is cleared.
273 	 */
274 	smp_rmb();
275 	if (__mnt_is_readonly(mnt)) {
276 		dec_mnt_writers(mnt);
277 		ret = -EROFS;
278 		goto out;
279 	}
280 out:
281 	preempt_enable();
282 	return ret;
283 }
284 EXPORT_SYMBOL_GPL(mnt_want_write);
285 
286 /**
287  * mnt_clone_write - get write access to a mount
288  * @mnt: the mount on which to take a write
289  *
290  * This is effectively like mnt_want_write, except
291  * it must only be used to take an extra write reference
292  * on a mountpoint that we already know has a write reference
293  * on it. This allows some optimisation.
294  *
295  * After finished, mnt_drop_write must be called as usual to
296  * drop the reference.
297  */
298 int mnt_clone_write(struct vfsmount *mnt)
299 {
300 	/* superblock may be r/o */
301 	if (__mnt_is_readonly(mnt))
302 		return -EROFS;
303 	preempt_disable();
304 	inc_mnt_writers(mnt);
305 	preempt_enable();
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(mnt_clone_write);
309 
310 /**
311  * mnt_want_write_file - get write access to a file's mount
312  * @file: the file who's mount on which to take a write
313  *
314  * This is like mnt_want_write, but it takes a file and can
315  * do some optimisations if the file is open for write already
316  */
317 int mnt_want_write_file(struct file *file)
318 {
319 	struct inode *inode = file->f_dentry->d_inode;
320 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
321 		return mnt_want_write(file->f_path.mnt);
322 	else
323 		return mnt_clone_write(file->f_path.mnt);
324 }
325 EXPORT_SYMBOL_GPL(mnt_want_write_file);
326 
327 /**
328  * mnt_drop_write - give up write access to a mount
329  * @mnt: the mount on which to give up write access
330  *
331  * Tells the low-level filesystem that we are done
332  * performing writes to it.  Must be matched with
333  * mnt_want_write() call above.
334  */
335 void mnt_drop_write(struct vfsmount *mnt)
336 {
337 	preempt_disable();
338 	dec_mnt_writers(mnt);
339 	preempt_enable();
340 }
341 EXPORT_SYMBOL_GPL(mnt_drop_write);
342 
343 static int mnt_make_readonly(struct vfsmount *mnt)
344 {
345 	int ret = 0;
346 
347 	spin_lock(&vfsmount_lock);
348 	mnt->mnt_flags |= MNT_WRITE_HOLD;
349 	/*
350 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
351 	 * should be visible before we do.
352 	 */
353 	smp_mb();
354 
355 	/*
356 	 * With writers on hold, if this value is zero, then there are
357 	 * definitely no active writers (although held writers may subsequently
358 	 * increment the count, they'll have to wait, and decrement it after
359 	 * seeing MNT_READONLY).
360 	 *
361 	 * It is OK to have counter incremented on one CPU and decremented on
362 	 * another: the sum will add up correctly. The danger would be when we
363 	 * sum up each counter, if we read a counter before it is incremented,
364 	 * but then read another CPU's count which it has been subsequently
365 	 * decremented from -- we would see more decrements than we should.
366 	 * MNT_WRITE_HOLD protects against this scenario, because
367 	 * mnt_want_write first increments count, then smp_mb, then spins on
368 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
369 	 * we're counting up here.
370 	 */
371 	if (count_mnt_writers(mnt) > 0)
372 		ret = -EBUSY;
373 	else
374 		mnt->mnt_flags |= MNT_READONLY;
375 	/*
376 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
377 	 * that become unheld will see MNT_READONLY.
378 	 */
379 	smp_wmb();
380 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
381 	spin_unlock(&vfsmount_lock);
382 	return ret;
383 }
384 
385 static void __mnt_unmake_readonly(struct vfsmount *mnt)
386 {
387 	spin_lock(&vfsmount_lock);
388 	mnt->mnt_flags &= ~MNT_READONLY;
389 	spin_unlock(&vfsmount_lock);
390 }
391 
392 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
393 {
394 	mnt->mnt_sb = sb;
395 	mnt->mnt_root = dget(sb->s_root);
396 }
397 
398 EXPORT_SYMBOL(simple_set_mnt);
399 
400 void free_vfsmnt(struct vfsmount *mnt)
401 {
402 	kfree(mnt->mnt_devname);
403 	mnt_free_id(mnt);
404 #ifdef CONFIG_SMP
405 	free_percpu(mnt->mnt_writers);
406 #endif
407 	kmem_cache_free(mnt_cache, mnt);
408 }
409 
410 /*
411  * find the first or last mount at @dentry on vfsmount @mnt depending on
412  * @dir. If @dir is set return the first mount else return the last mount.
413  */
414 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
415 			      int dir)
416 {
417 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
418 	struct list_head *tmp = head;
419 	struct vfsmount *p, *found = NULL;
420 
421 	for (;;) {
422 		tmp = dir ? tmp->next : tmp->prev;
423 		p = NULL;
424 		if (tmp == head)
425 			break;
426 		p = list_entry(tmp, struct vfsmount, mnt_hash);
427 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
428 			found = p;
429 			break;
430 		}
431 	}
432 	return found;
433 }
434 
435 /*
436  * lookup_mnt increments the ref count before returning
437  * the vfsmount struct.
438  */
439 struct vfsmount *lookup_mnt(struct path *path)
440 {
441 	struct vfsmount *child_mnt;
442 	spin_lock(&vfsmount_lock);
443 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
444 		mntget(child_mnt);
445 	spin_unlock(&vfsmount_lock);
446 	return child_mnt;
447 }
448 
449 static inline int check_mnt(struct vfsmount *mnt)
450 {
451 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
452 }
453 
454 static void touch_mnt_namespace(struct mnt_namespace *ns)
455 {
456 	if (ns) {
457 		ns->event = ++event;
458 		wake_up_interruptible(&ns->poll);
459 	}
460 }
461 
462 static void __touch_mnt_namespace(struct mnt_namespace *ns)
463 {
464 	if (ns && ns->event != event) {
465 		ns->event = event;
466 		wake_up_interruptible(&ns->poll);
467 	}
468 }
469 
470 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
471 {
472 	old_path->dentry = mnt->mnt_mountpoint;
473 	old_path->mnt = mnt->mnt_parent;
474 	mnt->mnt_parent = mnt;
475 	mnt->mnt_mountpoint = mnt->mnt_root;
476 	list_del_init(&mnt->mnt_child);
477 	list_del_init(&mnt->mnt_hash);
478 	old_path->dentry->d_mounted--;
479 }
480 
481 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
482 			struct vfsmount *child_mnt)
483 {
484 	child_mnt->mnt_parent = mntget(mnt);
485 	child_mnt->mnt_mountpoint = dget(dentry);
486 	dentry->d_mounted++;
487 }
488 
489 static void attach_mnt(struct vfsmount *mnt, struct path *path)
490 {
491 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
492 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
493 			hash(path->mnt, path->dentry));
494 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
495 }
496 
497 /*
498  * the caller must hold vfsmount_lock
499  */
500 static void commit_tree(struct vfsmount *mnt)
501 {
502 	struct vfsmount *parent = mnt->mnt_parent;
503 	struct vfsmount *m;
504 	LIST_HEAD(head);
505 	struct mnt_namespace *n = parent->mnt_ns;
506 
507 	BUG_ON(parent == mnt);
508 
509 	list_add_tail(&head, &mnt->mnt_list);
510 	list_for_each_entry(m, &head, mnt_list)
511 		m->mnt_ns = n;
512 	list_splice(&head, n->list.prev);
513 
514 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
515 				hash(parent, mnt->mnt_mountpoint));
516 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
517 	touch_mnt_namespace(n);
518 }
519 
520 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
521 {
522 	struct list_head *next = p->mnt_mounts.next;
523 	if (next == &p->mnt_mounts) {
524 		while (1) {
525 			if (p == root)
526 				return NULL;
527 			next = p->mnt_child.next;
528 			if (next != &p->mnt_parent->mnt_mounts)
529 				break;
530 			p = p->mnt_parent;
531 		}
532 	}
533 	return list_entry(next, struct vfsmount, mnt_child);
534 }
535 
536 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
537 {
538 	struct list_head *prev = p->mnt_mounts.prev;
539 	while (prev != &p->mnt_mounts) {
540 		p = list_entry(prev, struct vfsmount, mnt_child);
541 		prev = p->mnt_mounts.prev;
542 	}
543 	return p;
544 }
545 
546 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
547 					int flag)
548 {
549 	struct super_block *sb = old->mnt_sb;
550 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
551 
552 	if (mnt) {
553 		if (flag & (CL_SLAVE | CL_PRIVATE))
554 			mnt->mnt_group_id = 0; /* not a peer of original */
555 		else
556 			mnt->mnt_group_id = old->mnt_group_id;
557 
558 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
559 			int err = mnt_alloc_group_id(mnt);
560 			if (err)
561 				goto out_free;
562 		}
563 
564 		mnt->mnt_flags = old->mnt_flags;
565 		atomic_inc(&sb->s_active);
566 		mnt->mnt_sb = sb;
567 		mnt->mnt_root = dget(root);
568 		mnt->mnt_mountpoint = mnt->mnt_root;
569 		mnt->mnt_parent = mnt;
570 
571 		if (flag & CL_SLAVE) {
572 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
573 			mnt->mnt_master = old;
574 			CLEAR_MNT_SHARED(mnt);
575 		} else if (!(flag & CL_PRIVATE)) {
576 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
577 				list_add(&mnt->mnt_share, &old->mnt_share);
578 			if (IS_MNT_SLAVE(old))
579 				list_add(&mnt->mnt_slave, &old->mnt_slave);
580 			mnt->mnt_master = old->mnt_master;
581 		}
582 		if (flag & CL_MAKE_SHARED)
583 			set_mnt_shared(mnt);
584 
585 		/* stick the duplicate mount on the same expiry list
586 		 * as the original if that was on one */
587 		if (flag & CL_EXPIRE) {
588 			if (!list_empty(&old->mnt_expire))
589 				list_add(&mnt->mnt_expire, &old->mnt_expire);
590 		}
591 	}
592 	return mnt;
593 
594  out_free:
595 	free_vfsmnt(mnt);
596 	return NULL;
597 }
598 
599 static inline void __mntput(struct vfsmount *mnt)
600 {
601 	struct super_block *sb = mnt->mnt_sb;
602 	/*
603 	 * This probably indicates that somebody messed
604 	 * up a mnt_want/drop_write() pair.  If this
605 	 * happens, the filesystem was probably unable
606 	 * to make r/w->r/o transitions.
607 	 */
608 	/*
609 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
610 	 * provides barriers, so count_mnt_writers() below is safe.  AV
611 	 */
612 	WARN_ON(count_mnt_writers(mnt));
613 	dput(mnt->mnt_root);
614 	free_vfsmnt(mnt);
615 	deactivate_super(sb);
616 }
617 
618 void mntput_no_expire(struct vfsmount *mnt)
619 {
620 repeat:
621 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
622 		if (likely(!mnt->mnt_pinned)) {
623 			spin_unlock(&vfsmount_lock);
624 			__mntput(mnt);
625 			return;
626 		}
627 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
628 		mnt->mnt_pinned = 0;
629 		spin_unlock(&vfsmount_lock);
630 		acct_auto_close_mnt(mnt);
631 		security_sb_umount_close(mnt);
632 		goto repeat;
633 	}
634 }
635 
636 EXPORT_SYMBOL(mntput_no_expire);
637 
638 void mnt_pin(struct vfsmount *mnt)
639 {
640 	spin_lock(&vfsmount_lock);
641 	mnt->mnt_pinned++;
642 	spin_unlock(&vfsmount_lock);
643 }
644 
645 EXPORT_SYMBOL(mnt_pin);
646 
647 void mnt_unpin(struct vfsmount *mnt)
648 {
649 	spin_lock(&vfsmount_lock);
650 	if (mnt->mnt_pinned) {
651 		atomic_inc(&mnt->mnt_count);
652 		mnt->mnt_pinned--;
653 	}
654 	spin_unlock(&vfsmount_lock);
655 }
656 
657 EXPORT_SYMBOL(mnt_unpin);
658 
659 static inline void mangle(struct seq_file *m, const char *s)
660 {
661 	seq_escape(m, s, " \t\n\\");
662 }
663 
664 /*
665  * Simple .show_options callback for filesystems which don't want to
666  * implement more complex mount option showing.
667  *
668  * See also save_mount_options().
669  */
670 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
671 {
672 	const char *options;
673 
674 	rcu_read_lock();
675 	options = rcu_dereference(mnt->mnt_sb->s_options);
676 
677 	if (options != NULL && options[0]) {
678 		seq_putc(m, ',');
679 		mangle(m, options);
680 	}
681 	rcu_read_unlock();
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL(generic_show_options);
686 
687 /*
688  * If filesystem uses generic_show_options(), this function should be
689  * called from the fill_super() callback.
690  *
691  * The .remount_fs callback usually needs to be handled in a special
692  * way, to make sure, that previous options are not overwritten if the
693  * remount fails.
694  *
695  * Also note, that if the filesystem's .remount_fs function doesn't
696  * reset all options to their default value, but changes only newly
697  * given options, then the displayed options will not reflect reality
698  * any more.
699  */
700 void save_mount_options(struct super_block *sb, char *options)
701 {
702 	BUG_ON(sb->s_options);
703 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
704 }
705 EXPORT_SYMBOL(save_mount_options);
706 
707 void replace_mount_options(struct super_block *sb, char *options)
708 {
709 	char *old = sb->s_options;
710 	rcu_assign_pointer(sb->s_options, options);
711 	if (old) {
712 		synchronize_rcu();
713 		kfree(old);
714 	}
715 }
716 EXPORT_SYMBOL(replace_mount_options);
717 
718 #ifdef CONFIG_PROC_FS
719 /* iterator */
720 static void *m_start(struct seq_file *m, loff_t *pos)
721 {
722 	struct proc_mounts *p = m->private;
723 
724 	down_read(&namespace_sem);
725 	return seq_list_start(&p->ns->list, *pos);
726 }
727 
728 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
729 {
730 	struct proc_mounts *p = m->private;
731 
732 	return seq_list_next(v, &p->ns->list, pos);
733 }
734 
735 static void m_stop(struct seq_file *m, void *v)
736 {
737 	up_read(&namespace_sem);
738 }
739 
740 int mnt_had_events(struct proc_mounts *p)
741 {
742 	struct mnt_namespace *ns = p->ns;
743 	int res = 0;
744 
745 	spin_lock(&vfsmount_lock);
746 	if (p->event != ns->event) {
747 		p->event = ns->event;
748 		res = 1;
749 	}
750 	spin_unlock(&vfsmount_lock);
751 
752 	return res;
753 }
754 
755 struct proc_fs_info {
756 	int flag;
757 	const char *str;
758 };
759 
760 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
761 {
762 	static const struct proc_fs_info fs_info[] = {
763 		{ MS_SYNCHRONOUS, ",sync" },
764 		{ MS_DIRSYNC, ",dirsync" },
765 		{ MS_MANDLOCK, ",mand" },
766 		{ 0, NULL }
767 	};
768 	const struct proc_fs_info *fs_infop;
769 
770 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
771 		if (sb->s_flags & fs_infop->flag)
772 			seq_puts(m, fs_infop->str);
773 	}
774 
775 	return security_sb_show_options(m, sb);
776 }
777 
778 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
779 {
780 	static const struct proc_fs_info mnt_info[] = {
781 		{ MNT_NOSUID, ",nosuid" },
782 		{ MNT_NODEV, ",nodev" },
783 		{ MNT_NOEXEC, ",noexec" },
784 		{ MNT_NOATIME, ",noatime" },
785 		{ MNT_NODIRATIME, ",nodiratime" },
786 		{ MNT_RELATIME, ",relatime" },
787 		{ MNT_STRICTATIME, ",strictatime" },
788 		{ 0, NULL }
789 	};
790 	const struct proc_fs_info *fs_infop;
791 
792 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
793 		if (mnt->mnt_flags & fs_infop->flag)
794 			seq_puts(m, fs_infop->str);
795 	}
796 }
797 
798 static void show_type(struct seq_file *m, struct super_block *sb)
799 {
800 	mangle(m, sb->s_type->name);
801 	if (sb->s_subtype && sb->s_subtype[0]) {
802 		seq_putc(m, '.');
803 		mangle(m, sb->s_subtype);
804 	}
805 }
806 
807 static int show_vfsmnt(struct seq_file *m, void *v)
808 {
809 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
810 	int err = 0;
811 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
812 
813 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
814 	seq_putc(m, ' ');
815 	seq_path(m, &mnt_path, " \t\n\\");
816 	seq_putc(m, ' ');
817 	show_type(m, mnt->mnt_sb);
818 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
819 	err = show_sb_opts(m, mnt->mnt_sb);
820 	if (err)
821 		goto out;
822 	show_mnt_opts(m, mnt);
823 	if (mnt->mnt_sb->s_op->show_options)
824 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
825 	seq_puts(m, " 0 0\n");
826 out:
827 	return err;
828 }
829 
830 const struct seq_operations mounts_op = {
831 	.start	= m_start,
832 	.next	= m_next,
833 	.stop	= m_stop,
834 	.show	= show_vfsmnt
835 };
836 
837 static int show_mountinfo(struct seq_file *m, void *v)
838 {
839 	struct proc_mounts *p = m->private;
840 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
841 	struct super_block *sb = mnt->mnt_sb;
842 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
843 	struct path root = p->root;
844 	int err = 0;
845 
846 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
847 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
848 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
849 	seq_putc(m, ' ');
850 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
851 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
852 		/*
853 		 * Mountpoint is outside root, discard that one.  Ugly,
854 		 * but less so than trying to do that in iterator in a
855 		 * race-free way (due to renames).
856 		 */
857 		return SEQ_SKIP;
858 	}
859 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
860 	show_mnt_opts(m, mnt);
861 
862 	/* Tagged fields ("foo:X" or "bar") */
863 	if (IS_MNT_SHARED(mnt))
864 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
865 	if (IS_MNT_SLAVE(mnt)) {
866 		int master = mnt->mnt_master->mnt_group_id;
867 		int dom = get_dominating_id(mnt, &p->root);
868 		seq_printf(m, " master:%i", master);
869 		if (dom && dom != master)
870 			seq_printf(m, " propagate_from:%i", dom);
871 	}
872 	if (IS_MNT_UNBINDABLE(mnt))
873 		seq_puts(m, " unbindable");
874 
875 	/* Filesystem specific data */
876 	seq_puts(m, " - ");
877 	show_type(m, sb);
878 	seq_putc(m, ' ');
879 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
880 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
881 	err = show_sb_opts(m, sb);
882 	if (err)
883 		goto out;
884 	if (sb->s_op->show_options)
885 		err = sb->s_op->show_options(m, mnt);
886 	seq_putc(m, '\n');
887 out:
888 	return err;
889 }
890 
891 const struct seq_operations mountinfo_op = {
892 	.start	= m_start,
893 	.next	= m_next,
894 	.stop	= m_stop,
895 	.show	= show_mountinfo,
896 };
897 
898 static int show_vfsstat(struct seq_file *m, void *v)
899 {
900 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
901 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
902 	int err = 0;
903 
904 	/* device */
905 	if (mnt->mnt_devname) {
906 		seq_puts(m, "device ");
907 		mangle(m, mnt->mnt_devname);
908 	} else
909 		seq_puts(m, "no device");
910 
911 	/* mount point */
912 	seq_puts(m, " mounted on ");
913 	seq_path(m, &mnt_path, " \t\n\\");
914 	seq_putc(m, ' ');
915 
916 	/* file system type */
917 	seq_puts(m, "with fstype ");
918 	show_type(m, mnt->mnt_sb);
919 
920 	/* optional statistics */
921 	if (mnt->mnt_sb->s_op->show_stats) {
922 		seq_putc(m, ' ');
923 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
924 	}
925 
926 	seq_putc(m, '\n');
927 	return err;
928 }
929 
930 const struct seq_operations mountstats_op = {
931 	.start	= m_start,
932 	.next	= m_next,
933 	.stop	= m_stop,
934 	.show	= show_vfsstat,
935 };
936 #endif  /* CONFIG_PROC_FS */
937 
938 /**
939  * may_umount_tree - check if a mount tree is busy
940  * @mnt: root of mount tree
941  *
942  * This is called to check if a tree of mounts has any
943  * open files, pwds, chroots or sub mounts that are
944  * busy.
945  */
946 int may_umount_tree(struct vfsmount *mnt)
947 {
948 	int actual_refs = 0;
949 	int minimum_refs = 0;
950 	struct vfsmount *p;
951 
952 	spin_lock(&vfsmount_lock);
953 	for (p = mnt; p; p = next_mnt(p, mnt)) {
954 		actual_refs += atomic_read(&p->mnt_count);
955 		minimum_refs += 2;
956 	}
957 	spin_unlock(&vfsmount_lock);
958 
959 	if (actual_refs > minimum_refs)
960 		return 0;
961 
962 	return 1;
963 }
964 
965 EXPORT_SYMBOL(may_umount_tree);
966 
967 /**
968  * may_umount - check if a mount point is busy
969  * @mnt: root of mount
970  *
971  * This is called to check if a mount point has any
972  * open files, pwds, chroots or sub mounts. If the
973  * mount has sub mounts this will return busy
974  * regardless of whether the sub mounts are busy.
975  *
976  * Doesn't take quota and stuff into account. IOW, in some cases it will
977  * give false negatives. The main reason why it's here is that we need
978  * a non-destructive way to look for easily umountable filesystems.
979  */
980 int may_umount(struct vfsmount *mnt)
981 {
982 	int ret = 1;
983 	down_read(&namespace_sem);
984 	spin_lock(&vfsmount_lock);
985 	if (propagate_mount_busy(mnt, 2))
986 		ret = 0;
987 	spin_unlock(&vfsmount_lock);
988 	up_read(&namespace_sem);
989 	return ret;
990 }
991 
992 EXPORT_SYMBOL(may_umount);
993 
994 void release_mounts(struct list_head *head)
995 {
996 	struct vfsmount *mnt;
997 	while (!list_empty(head)) {
998 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
999 		list_del_init(&mnt->mnt_hash);
1000 		if (mnt->mnt_parent != mnt) {
1001 			struct dentry *dentry;
1002 			struct vfsmount *m;
1003 			spin_lock(&vfsmount_lock);
1004 			dentry = mnt->mnt_mountpoint;
1005 			m = mnt->mnt_parent;
1006 			mnt->mnt_mountpoint = mnt->mnt_root;
1007 			mnt->mnt_parent = mnt;
1008 			m->mnt_ghosts--;
1009 			spin_unlock(&vfsmount_lock);
1010 			dput(dentry);
1011 			mntput(m);
1012 		}
1013 		mntput(mnt);
1014 	}
1015 }
1016 
1017 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1018 {
1019 	struct vfsmount *p;
1020 
1021 	for (p = mnt; p; p = next_mnt(p, mnt))
1022 		list_move(&p->mnt_hash, kill);
1023 
1024 	if (propagate)
1025 		propagate_umount(kill);
1026 
1027 	list_for_each_entry(p, kill, mnt_hash) {
1028 		list_del_init(&p->mnt_expire);
1029 		list_del_init(&p->mnt_list);
1030 		__touch_mnt_namespace(p->mnt_ns);
1031 		p->mnt_ns = NULL;
1032 		list_del_init(&p->mnt_child);
1033 		if (p->mnt_parent != p) {
1034 			p->mnt_parent->mnt_ghosts++;
1035 			p->mnt_mountpoint->d_mounted--;
1036 		}
1037 		change_mnt_propagation(p, MS_PRIVATE);
1038 	}
1039 }
1040 
1041 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1042 
1043 static int do_umount(struct vfsmount *mnt, int flags)
1044 {
1045 	struct super_block *sb = mnt->mnt_sb;
1046 	int retval;
1047 	LIST_HEAD(umount_list);
1048 
1049 	retval = security_sb_umount(mnt, flags);
1050 	if (retval)
1051 		return retval;
1052 
1053 	/*
1054 	 * Allow userspace to request a mountpoint be expired rather than
1055 	 * unmounting unconditionally. Unmount only happens if:
1056 	 *  (1) the mark is already set (the mark is cleared by mntput())
1057 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1058 	 */
1059 	if (flags & MNT_EXPIRE) {
1060 		if (mnt == current->fs->root.mnt ||
1061 		    flags & (MNT_FORCE | MNT_DETACH))
1062 			return -EINVAL;
1063 
1064 		if (atomic_read(&mnt->mnt_count) != 2)
1065 			return -EBUSY;
1066 
1067 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1068 			return -EAGAIN;
1069 	}
1070 
1071 	/*
1072 	 * If we may have to abort operations to get out of this
1073 	 * mount, and they will themselves hold resources we must
1074 	 * allow the fs to do things. In the Unix tradition of
1075 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1076 	 * might fail to complete on the first run through as other tasks
1077 	 * must return, and the like. Thats for the mount program to worry
1078 	 * about for the moment.
1079 	 */
1080 
1081 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1082 		sb->s_op->umount_begin(sb);
1083 	}
1084 
1085 	/*
1086 	 * No sense to grab the lock for this test, but test itself looks
1087 	 * somewhat bogus. Suggestions for better replacement?
1088 	 * Ho-hum... In principle, we might treat that as umount + switch
1089 	 * to rootfs. GC would eventually take care of the old vfsmount.
1090 	 * Actually it makes sense, especially if rootfs would contain a
1091 	 * /reboot - static binary that would close all descriptors and
1092 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1093 	 */
1094 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1095 		/*
1096 		 * Special case for "unmounting" root ...
1097 		 * we just try to remount it readonly.
1098 		 */
1099 		down_write(&sb->s_umount);
1100 		if (!(sb->s_flags & MS_RDONLY))
1101 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1102 		up_write(&sb->s_umount);
1103 		return retval;
1104 	}
1105 
1106 	down_write(&namespace_sem);
1107 	spin_lock(&vfsmount_lock);
1108 	event++;
1109 
1110 	if (!(flags & MNT_DETACH))
1111 		shrink_submounts(mnt, &umount_list);
1112 
1113 	retval = -EBUSY;
1114 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1115 		if (!list_empty(&mnt->mnt_list))
1116 			umount_tree(mnt, 1, &umount_list);
1117 		retval = 0;
1118 	}
1119 	spin_unlock(&vfsmount_lock);
1120 	if (retval)
1121 		security_sb_umount_busy(mnt);
1122 	up_write(&namespace_sem);
1123 	release_mounts(&umount_list);
1124 	return retval;
1125 }
1126 
1127 /*
1128  * Now umount can handle mount points as well as block devices.
1129  * This is important for filesystems which use unnamed block devices.
1130  *
1131  * We now support a flag for forced unmount like the other 'big iron'
1132  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1133  */
1134 
1135 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1136 {
1137 	struct path path;
1138 	int retval;
1139 	int lookup_flags = 0;
1140 
1141 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1142 		return -EINVAL;
1143 
1144 	if (!(flags & UMOUNT_NOFOLLOW))
1145 		lookup_flags |= LOOKUP_FOLLOW;
1146 
1147 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1148 	if (retval)
1149 		goto out;
1150 	retval = -EINVAL;
1151 	if (path.dentry != path.mnt->mnt_root)
1152 		goto dput_and_out;
1153 	if (!check_mnt(path.mnt))
1154 		goto dput_and_out;
1155 
1156 	retval = -EPERM;
1157 	if (!capable(CAP_SYS_ADMIN))
1158 		goto dput_and_out;
1159 
1160 	retval = do_umount(path.mnt, flags);
1161 dput_and_out:
1162 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1163 	dput(path.dentry);
1164 	mntput_no_expire(path.mnt);
1165 out:
1166 	return retval;
1167 }
1168 
1169 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1170 
1171 /*
1172  *	The 2.0 compatible umount. No flags.
1173  */
1174 SYSCALL_DEFINE1(oldumount, char __user *, name)
1175 {
1176 	return sys_umount(name, 0);
1177 }
1178 
1179 #endif
1180 
1181 static int mount_is_safe(struct path *path)
1182 {
1183 	if (capable(CAP_SYS_ADMIN))
1184 		return 0;
1185 	return -EPERM;
1186 #ifdef notyet
1187 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1188 		return -EPERM;
1189 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1190 		if (current_uid() != path->dentry->d_inode->i_uid)
1191 			return -EPERM;
1192 	}
1193 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1194 		return -EPERM;
1195 	return 0;
1196 #endif
1197 }
1198 
1199 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1200 					int flag)
1201 {
1202 	struct vfsmount *res, *p, *q, *r, *s;
1203 	struct path path;
1204 
1205 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1206 		return NULL;
1207 
1208 	res = q = clone_mnt(mnt, dentry, flag);
1209 	if (!q)
1210 		goto Enomem;
1211 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1212 
1213 	p = mnt;
1214 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1215 		if (!is_subdir(r->mnt_mountpoint, dentry))
1216 			continue;
1217 
1218 		for (s = r; s; s = next_mnt(s, r)) {
1219 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1220 				s = skip_mnt_tree(s);
1221 				continue;
1222 			}
1223 			while (p != s->mnt_parent) {
1224 				p = p->mnt_parent;
1225 				q = q->mnt_parent;
1226 			}
1227 			p = s;
1228 			path.mnt = q;
1229 			path.dentry = p->mnt_mountpoint;
1230 			q = clone_mnt(p, p->mnt_root, flag);
1231 			if (!q)
1232 				goto Enomem;
1233 			spin_lock(&vfsmount_lock);
1234 			list_add_tail(&q->mnt_list, &res->mnt_list);
1235 			attach_mnt(q, &path);
1236 			spin_unlock(&vfsmount_lock);
1237 		}
1238 	}
1239 	return res;
1240 Enomem:
1241 	if (res) {
1242 		LIST_HEAD(umount_list);
1243 		spin_lock(&vfsmount_lock);
1244 		umount_tree(res, 0, &umount_list);
1245 		spin_unlock(&vfsmount_lock);
1246 		release_mounts(&umount_list);
1247 	}
1248 	return NULL;
1249 }
1250 
1251 struct vfsmount *collect_mounts(struct path *path)
1252 {
1253 	struct vfsmount *tree;
1254 	down_write(&namespace_sem);
1255 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1256 	up_write(&namespace_sem);
1257 	return tree;
1258 }
1259 
1260 void drop_collected_mounts(struct vfsmount *mnt)
1261 {
1262 	LIST_HEAD(umount_list);
1263 	down_write(&namespace_sem);
1264 	spin_lock(&vfsmount_lock);
1265 	umount_tree(mnt, 0, &umount_list);
1266 	spin_unlock(&vfsmount_lock);
1267 	up_write(&namespace_sem);
1268 	release_mounts(&umount_list);
1269 }
1270 
1271 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1272 		   struct vfsmount *root)
1273 {
1274 	struct vfsmount *mnt;
1275 	int res = f(root, arg);
1276 	if (res)
1277 		return res;
1278 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1279 		res = f(mnt, arg);
1280 		if (res)
1281 			return res;
1282 	}
1283 	return 0;
1284 }
1285 
1286 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1287 {
1288 	struct vfsmount *p;
1289 
1290 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1291 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1292 			mnt_release_group_id(p);
1293 	}
1294 }
1295 
1296 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1297 {
1298 	struct vfsmount *p;
1299 
1300 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1301 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1302 			int err = mnt_alloc_group_id(p);
1303 			if (err) {
1304 				cleanup_group_ids(mnt, p);
1305 				return err;
1306 			}
1307 		}
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  *  @source_mnt : mount tree to be attached
1315  *  @nd         : place the mount tree @source_mnt is attached
1316  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1317  *  		   store the parent mount and mountpoint dentry.
1318  *  		   (done when source_mnt is moved)
1319  *
1320  *  NOTE: in the table below explains the semantics when a source mount
1321  *  of a given type is attached to a destination mount of a given type.
1322  * ---------------------------------------------------------------------------
1323  * |         BIND MOUNT OPERATION                                            |
1324  * |**************************************************************************
1325  * | source-->| shared        |       private  |       slave    | unbindable |
1326  * | dest     |               |                |                |            |
1327  * |   |      |               |                |                |            |
1328  * |   v      |               |                |                |            |
1329  * |**************************************************************************
1330  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1331  * |          |               |                |                |            |
1332  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1333  * ***************************************************************************
1334  * A bind operation clones the source mount and mounts the clone on the
1335  * destination mount.
1336  *
1337  * (++)  the cloned mount is propagated to all the mounts in the propagation
1338  * 	 tree of the destination mount and the cloned mount is added to
1339  * 	 the peer group of the source mount.
1340  * (+)   the cloned mount is created under the destination mount and is marked
1341  *       as shared. The cloned mount is added to the peer group of the source
1342  *       mount.
1343  * (+++) the mount is propagated to all the mounts in the propagation tree
1344  *       of the destination mount and the cloned mount is made slave
1345  *       of the same master as that of the source mount. The cloned mount
1346  *       is marked as 'shared and slave'.
1347  * (*)   the cloned mount is made a slave of the same master as that of the
1348  * 	 source mount.
1349  *
1350  * ---------------------------------------------------------------------------
1351  * |         		MOVE MOUNT OPERATION                                 |
1352  * |**************************************************************************
1353  * | source-->| shared        |       private  |       slave    | unbindable |
1354  * | dest     |               |                |                |            |
1355  * |   |      |               |                |                |            |
1356  * |   v      |               |                |                |            |
1357  * |**************************************************************************
1358  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1359  * |          |               |                |                |            |
1360  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1361  * ***************************************************************************
1362  *
1363  * (+)  the mount is moved to the destination. And is then propagated to
1364  * 	all the mounts in the propagation tree of the destination mount.
1365  * (+*)  the mount is moved to the destination.
1366  * (+++)  the mount is moved to the destination and is then propagated to
1367  * 	all the mounts belonging to the destination mount's propagation tree.
1368  * 	the mount is marked as 'shared and slave'.
1369  * (*)	the mount continues to be a slave at the new location.
1370  *
1371  * if the source mount is a tree, the operations explained above is
1372  * applied to each mount in the tree.
1373  * Must be called without spinlocks held, since this function can sleep
1374  * in allocations.
1375  */
1376 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1377 			struct path *path, struct path *parent_path)
1378 {
1379 	LIST_HEAD(tree_list);
1380 	struct vfsmount *dest_mnt = path->mnt;
1381 	struct dentry *dest_dentry = path->dentry;
1382 	struct vfsmount *child, *p;
1383 	int err;
1384 
1385 	if (IS_MNT_SHARED(dest_mnt)) {
1386 		err = invent_group_ids(source_mnt, true);
1387 		if (err)
1388 			goto out;
1389 	}
1390 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1391 	if (err)
1392 		goto out_cleanup_ids;
1393 
1394 	spin_lock(&vfsmount_lock);
1395 
1396 	if (IS_MNT_SHARED(dest_mnt)) {
1397 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1398 			set_mnt_shared(p);
1399 	}
1400 	if (parent_path) {
1401 		detach_mnt(source_mnt, parent_path);
1402 		attach_mnt(source_mnt, path);
1403 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1404 	} else {
1405 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1406 		commit_tree(source_mnt);
1407 	}
1408 
1409 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1410 		list_del_init(&child->mnt_hash);
1411 		commit_tree(child);
1412 	}
1413 	spin_unlock(&vfsmount_lock);
1414 	return 0;
1415 
1416  out_cleanup_ids:
1417 	if (IS_MNT_SHARED(dest_mnt))
1418 		cleanup_group_ids(source_mnt, NULL);
1419  out:
1420 	return err;
1421 }
1422 
1423 static int graft_tree(struct vfsmount *mnt, struct path *path)
1424 {
1425 	int err;
1426 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1427 		return -EINVAL;
1428 
1429 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1430 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1431 		return -ENOTDIR;
1432 
1433 	err = -ENOENT;
1434 	mutex_lock(&path->dentry->d_inode->i_mutex);
1435 	if (IS_DEADDIR(path->dentry->d_inode))
1436 		goto out_unlock;
1437 
1438 	err = security_sb_check_sb(mnt, path);
1439 	if (err)
1440 		goto out_unlock;
1441 
1442 	err = -ENOENT;
1443 	if (!d_unlinked(path->dentry))
1444 		err = attach_recursive_mnt(mnt, path, NULL);
1445 out_unlock:
1446 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1447 	if (!err)
1448 		security_sb_post_addmount(mnt, path);
1449 	return err;
1450 }
1451 
1452 /*
1453  * recursively change the type of the mountpoint.
1454  */
1455 static int do_change_type(struct path *path, int flag)
1456 {
1457 	struct vfsmount *m, *mnt = path->mnt;
1458 	int recurse = flag & MS_REC;
1459 	int type = flag & ~MS_REC;
1460 	int err = 0;
1461 
1462 	if (!capable(CAP_SYS_ADMIN))
1463 		return -EPERM;
1464 
1465 	if (path->dentry != path->mnt->mnt_root)
1466 		return -EINVAL;
1467 
1468 	down_write(&namespace_sem);
1469 	if (type == MS_SHARED) {
1470 		err = invent_group_ids(mnt, recurse);
1471 		if (err)
1472 			goto out_unlock;
1473 	}
1474 
1475 	spin_lock(&vfsmount_lock);
1476 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1477 		change_mnt_propagation(m, type);
1478 	spin_unlock(&vfsmount_lock);
1479 
1480  out_unlock:
1481 	up_write(&namespace_sem);
1482 	return err;
1483 }
1484 
1485 /*
1486  * do loopback mount.
1487  */
1488 static int do_loopback(struct path *path, char *old_name,
1489 				int recurse)
1490 {
1491 	struct path old_path;
1492 	struct vfsmount *mnt = NULL;
1493 	int err = mount_is_safe(path);
1494 	if (err)
1495 		return err;
1496 	if (!old_name || !*old_name)
1497 		return -EINVAL;
1498 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1499 	if (err)
1500 		return err;
1501 
1502 	down_write(&namespace_sem);
1503 	err = -EINVAL;
1504 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1505 		goto out;
1506 
1507 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1508 		goto out;
1509 
1510 	err = -ENOMEM;
1511 	if (recurse)
1512 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1513 	else
1514 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1515 
1516 	if (!mnt)
1517 		goto out;
1518 
1519 	err = graft_tree(mnt, path);
1520 	if (err) {
1521 		LIST_HEAD(umount_list);
1522 		spin_lock(&vfsmount_lock);
1523 		umount_tree(mnt, 0, &umount_list);
1524 		spin_unlock(&vfsmount_lock);
1525 		release_mounts(&umount_list);
1526 	}
1527 
1528 out:
1529 	up_write(&namespace_sem);
1530 	path_put(&old_path);
1531 	return err;
1532 }
1533 
1534 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1535 {
1536 	int error = 0;
1537 	int readonly_request = 0;
1538 
1539 	if (ms_flags & MS_RDONLY)
1540 		readonly_request = 1;
1541 	if (readonly_request == __mnt_is_readonly(mnt))
1542 		return 0;
1543 
1544 	if (readonly_request)
1545 		error = mnt_make_readonly(mnt);
1546 	else
1547 		__mnt_unmake_readonly(mnt);
1548 	return error;
1549 }
1550 
1551 /*
1552  * change filesystem flags. dir should be a physical root of filesystem.
1553  * If you've mounted a non-root directory somewhere and want to do remount
1554  * on it - tough luck.
1555  */
1556 static int do_remount(struct path *path, int flags, int mnt_flags,
1557 		      void *data)
1558 {
1559 	int err;
1560 	struct super_block *sb = path->mnt->mnt_sb;
1561 
1562 	if (!capable(CAP_SYS_ADMIN))
1563 		return -EPERM;
1564 
1565 	if (!check_mnt(path->mnt))
1566 		return -EINVAL;
1567 
1568 	if (path->dentry != path->mnt->mnt_root)
1569 		return -EINVAL;
1570 
1571 	down_write(&sb->s_umount);
1572 	if (flags & MS_BIND)
1573 		err = change_mount_flags(path->mnt, flags);
1574 	else
1575 		err = do_remount_sb(sb, flags, data, 0);
1576 	if (!err) {
1577 		spin_lock(&vfsmount_lock);
1578 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1579 		path->mnt->mnt_flags = mnt_flags;
1580 		spin_unlock(&vfsmount_lock);
1581 	}
1582 	up_write(&sb->s_umount);
1583 	if (!err) {
1584 		security_sb_post_remount(path->mnt, flags, data);
1585 
1586 		spin_lock(&vfsmount_lock);
1587 		touch_mnt_namespace(path->mnt->mnt_ns);
1588 		spin_unlock(&vfsmount_lock);
1589 	}
1590 	return err;
1591 }
1592 
1593 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1594 {
1595 	struct vfsmount *p;
1596 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1597 		if (IS_MNT_UNBINDABLE(p))
1598 			return 1;
1599 	}
1600 	return 0;
1601 }
1602 
1603 static int do_move_mount(struct path *path, char *old_name)
1604 {
1605 	struct path old_path, parent_path;
1606 	struct vfsmount *p;
1607 	int err = 0;
1608 	if (!capable(CAP_SYS_ADMIN))
1609 		return -EPERM;
1610 	if (!old_name || !*old_name)
1611 		return -EINVAL;
1612 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1613 	if (err)
1614 		return err;
1615 
1616 	down_write(&namespace_sem);
1617 	while (d_mountpoint(path->dentry) &&
1618 	       follow_down(path))
1619 		;
1620 	err = -EINVAL;
1621 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1622 		goto out;
1623 
1624 	err = -ENOENT;
1625 	mutex_lock(&path->dentry->d_inode->i_mutex);
1626 	if (IS_DEADDIR(path->dentry->d_inode))
1627 		goto out1;
1628 
1629 	if (d_unlinked(path->dentry))
1630 		goto out1;
1631 
1632 	err = -EINVAL;
1633 	if (old_path.dentry != old_path.mnt->mnt_root)
1634 		goto out1;
1635 
1636 	if (old_path.mnt == old_path.mnt->mnt_parent)
1637 		goto out1;
1638 
1639 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1640 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1641 		goto out1;
1642 	/*
1643 	 * Don't move a mount residing in a shared parent.
1644 	 */
1645 	if (old_path.mnt->mnt_parent &&
1646 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1647 		goto out1;
1648 	/*
1649 	 * Don't move a mount tree containing unbindable mounts to a destination
1650 	 * mount which is shared.
1651 	 */
1652 	if (IS_MNT_SHARED(path->mnt) &&
1653 	    tree_contains_unbindable(old_path.mnt))
1654 		goto out1;
1655 	err = -ELOOP;
1656 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1657 		if (p == old_path.mnt)
1658 			goto out1;
1659 
1660 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1661 	if (err)
1662 		goto out1;
1663 
1664 	/* if the mount is moved, it should no longer be expire
1665 	 * automatically */
1666 	list_del_init(&old_path.mnt->mnt_expire);
1667 out1:
1668 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1669 out:
1670 	up_write(&namespace_sem);
1671 	if (!err)
1672 		path_put(&parent_path);
1673 	path_put(&old_path);
1674 	return err;
1675 }
1676 
1677 /*
1678  * create a new mount for userspace and request it to be added into the
1679  * namespace's tree
1680  */
1681 static int do_new_mount(struct path *path, char *type, int flags,
1682 			int mnt_flags, char *name, void *data)
1683 {
1684 	struct vfsmount *mnt;
1685 
1686 	if (!type)
1687 		return -EINVAL;
1688 
1689 	/* we need capabilities... */
1690 	if (!capable(CAP_SYS_ADMIN))
1691 		return -EPERM;
1692 
1693 	lock_kernel();
1694 	mnt = do_kern_mount(type, flags, name, data);
1695 	unlock_kernel();
1696 	if (IS_ERR(mnt))
1697 		return PTR_ERR(mnt);
1698 
1699 	return do_add_mount(mnt, path, mnt_flags, NULL);
1700 }
1701 
1702 /*
1703  * add a mount into a namespace's mount tree
1704  * - provide the option of adding the new mount to an expiration list
1705  */
1706 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1707 		 int mnt_flags, struct list_head *fslist)
1708 {
1709 	int err;
1710 
1711 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1712 
1713 	down_write(&namespace_sem);
1714 	/* Something was mounted here while we slept */
1715 	while (d_mountpoint(path->dentry) &&
1716 	       follow_down(path))
1717 		;
1718 	err = -EINVAL;
1719 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1720 		goto unlock;
1721 
1722 	/* Refuse the same filesystem on the same mount point */
1723 	err = -EBUSY;
1724 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1725 	    path->mnt->mnt_root == path->dentry)
1726 		goto unlock;
1727 
1728 	err = -EINVAL;
1729 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1730 		goto unlock;
1731 
1732 	newmnt->mnt_flags = mnt_flags;
1733 	if ((err = graft_tree(newmnt, path)))
1734 		goto unlock;
1735 
1736 	if (fslist) /* add to the specified expiration list */
1737 		list_add_tail(&newmnt->mnt_expire, fslist);
1738 
1739 	up_write(&namespace_sem);
1740 	return 0;
1741 
1742 unlock:
1743 	up_write(&namespace_sem);
1744 	mntput(newmnt);
1745 	return err;
1746 }
1747 
1748 EXPORT_SYMBOL_GPL(do_add_mount);
1749 
1750 /*
1751  * process a list of expirable mountpoints with the intent of discarding any
1752  * mountpoints that aren't in use and haven't been touched since last we came
1753  * here
1754  */
1755 void mark_mounts_for_expiry(struct list_head *mounts)
1756 {
1757 	struct vfsmount *mnt, *next;
1758 	LIST_HEAD(graveyard);
1759 	LIST_HEAD(umounts);
1760 
1761 	if (list_empty(mounts))
1762 		return;
1763 
1764 	down_write(&namespace_sem);
1765 	spin_lock(&vfsmount_lock);
1766 
1767 	/* extract from the expiration list every vfsmount that matches the
1768 	 * following criteria:
1769 	 * - only referenced by its parent vfsmount
1770 	 * - still marked for expiry (marked on the last call here; marks are
1771 	 *   cleared by mntput())
1772 	 */
1773 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1774 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1775 			propagate_mount_busy(mnt, 1))
1776 			continue;
1777 		list_move(&mnt->mnt_expire, &graveyard);
1778 	}
1779 	while (!list_empty(&graveyard)) {
1780 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1781 		touch_mnt_namespace(mnt->mnt_ns);
1782 		umount_tree(mnt, 1, &umounts);
1783 	}
1784 	spin_unlock(&vfsmount_lock);
1785 	up_write(&namespace_sem);
1786 
1787 	release_mounts(&umounts);
1788 }
1789 
1790 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1791 
1792 /*
1793  * Ripoff of 'select_parent()'
1794  *
1795  * search the list of submounts for a given mountpoint, and move any
1796  * shrinkable submounts to the 'graveyard' list.
1797  */
1798 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1799 {
1800 	struct vfsmount *this_parent = parent;
1801 	struct list_head *next;
1802 	int found = 0;
1803 
1804 repeat:
1805 	next = this_parent->mnt_mounts.next;
1806 resume:
1807 	while (next != &this_parent->mnt_mounts) {
1808 		struct list_head *tmp = next;
1809 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1810 
1811 		next = tmp->next;
1812 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1813 			continue;
1814 		/*
1815 		 * Descend a level if the d_mounts list is non-empty.
1816 		 */
1817 		if (!list_empty(&mnt->mnt_mounts)) {
1818 			this_parent = mnt;
1819 			goto repeat;
1820 		}
1821 
1822 		if (!propagate_mount_busy(mnt, 1)) {
1823 			list_move_tail(&mnt->mnt_expire, graveyard);
1824 			found++;
1825 		}
1826 	}
1827 	/*
1828 	 * All done at this level ... ascend and resume the search
1829 	 */
1830 	if (this_parent != parent) {
1831 		next = this_parent->mnt_child.next;
1832 		this_parent = this_parent->mnt_parent;
1833 		goto resume;
1834 	}
1835 	return found;
1836 }
1837 
1838 /*
1839  * process a list of expirable mountpoints with the intent of discarding any
1840  * submounts of a specific parent mountpoint
1841  */
1842 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1843 {
1844 	LIST_HEAD(graveyard);
1845 	struct vfsmount *m;
1846 
1847 	/* extract submounts of 'mountpoint' from the expiration list */
1848 	while (select_submounts(mnt, &graveyard)) {
1849 		while (!list_empty(&graveyard)) {
1850 			m = list_first_entry(&graveyard, struct vfsmount,
1851 						mnt_expire);
1852 			touch_mnt_namespace(m->mnt_ns);
1853 			umount_tree(m, 1, umounts);
1854 		}
1855 	}
1856 }
1857 
1858 /*
1859  * Some copy_from_user() implementations do not return the exact number of
1860  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1861  * Note that this function differs from copy_from_user() in that it will oops
1862  * on bad values of `to', rather than returning a short copy.
1863  */
1864 static long exact_copy_from_user(void *to, const void __user * from,
1865 				 unsigned long n)
1866 {
1867 	char *t = to;
1868 	const char __user *f = from;
1869 	char c;
1870 
1871 	if (!access_ok(VERIFY_READ, from, n))
1872 		return n;
1873 
1874 	while (n) {
1875 		if (__get_user(c, f)) {
1876 			memset(t, 0, n);
1877 			break;
1878 		}
1879 		*t++ = c;
1880 		f++;
1881 		n--;
1882 	}
1883 	return n;
1884 }
1885 
1886 int copy_mount_options(const void __user * data, unsigned long *where)
1887 {
1888 	int i;
1889 	unsigned long page;
1890 	unsigned long size;
1891 
1892 	*where = 0;
1893 	if (!data)
1894 		return 0;
1895 
1896 	if (!(page = __get_free_page(GFP_KERNEL)))
1897 		return -ENOMEM;
1898 
1899 	/* We only care that *some* data at the address the user
1900 	 * gave us is valid.  Just in case, we'll zero
1901 	 * the remainder of the page.
1902 	 */
1903 	/* copy_from_user cannot cross TASK_SIZE ! */
1904 	size = TASK_SIZE - (unsigned long)data;
1905 	if (size > PAGE_SIZE)
1906 		size = PAGE_SIZE;
1907 
1908 	i = size - exact_copy_from_user((void *)page, data, size);
1909 	if (!i) {
1910 		free_page(page);
1911 		return -EFAULT;
1912 	}
1913 	if (i != PAGE_SIZE)
1914 		memset((char *)page + i, 0, PAGE_SIZE - i);
1915 	*where = page;
1916 	return 0;
1917 }
1918 
1919 int copy_mount_string(const void __user *data, char **where)
1920 {
1921 	char *tmp;
1922 
1923 	if (!data) {
1924 		*where = NULL;
1925 		return 0;
1926 	}
1927 
1928 	tmp = strndup_user(data, PAGE_SIZE);
1929 	if (IS_ERR(tmp))
1930 		return PTR_ERR(tmp);
1931 
1932 	*where = tmp;
1933 	return 0;
1934 }
1935 
1936 /*
1937  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1938  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1939  *
1940  * data is a (void *) that can point to any structure up to
1941  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1942  * information (or be NULL).
1943  *
1944  * Pre-0.97 versions of mount() didn't have a flags word.
1945  * When the flags word was introduced its top half was required
1946  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1947  * Therefore, if this magic number is present, it carries no information
1948  * and must be discarded.
1949  */
1950 long do_mount(char *dev_name, char *dir_name, char *type_page,
1951 		  unsigned long flags, void *data_page)
1952 {
1953 	struct path path;
1954 	int retval = 0;
1955 	int mnt_flags = 0;
1956 
1957 	/* Discard magic */
1958 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1959 		flags &= ~MS_MGC_MSK;
1960 
1961 	/* Basic sanity checks */
1962 
1963 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1964 		return -EINVAL;
1965 
1966 	if (data_page)
1967 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1968 
1969 	/* ... and get the mountpoint */
1970 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1971 	if (retval)
1972 		return retval;
1973 
1974 	retval = security_sb_mount(dev_name, &path,
1975 				   type_page, flags, data_page);
1976 	if (retval)
1977 		goto dput_out;
1978 
1979 	/* Default to relatime unless overriden */
1980 	if (!(flags & MS_NOATIME))
1981 		mnt_flags |= MNT_RELATIME;
1982 
1983 	/* Separate the per-mountpoint flags */
1984 	if (flags & MS_NOSUID)
1985 		mnt_flags |= MNT_NOSUID;
1986 	if (flags & MS_NODEV)
1987 		mnt_flags |= MNT_NODEV;
1988 	if (flags & MS_NOEXEC)
1989 		mnt_flags |= MNT_NOEXEC;
1990 	if (flags & MS_NOATIME)
1991 		mnt_flags |= MNT_NOATIME;
1992 	if (flags & MS_NODIRATIME)
1993 		mnt_flags |= MNT_NODIRATIME;
1994 	if (flags & MS_STRICTATIME)
1995 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1996 	if (flags & MS_RDONLY)
1997 		mnt_flags |= MNT_READONLY;
1998 
1999 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
2000 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2001 		   MS_STRICTATIME);
2002 
2003 	if (flags & MS_REMOUNT)
2004 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2005 				    data_page);
2006 	else if (flags & MS_BIND)
2007 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2008 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2009 		retval = do_change_type(&path, flags);
2010 	else if (flags & MS_MOVE)
2011 		retval = do_move_mount(&path, dev_name);
2012 	else
2013 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2014 				      dev_name, data_page);
2015 dput_out:
2016 	path_put(&path);
2017 	return retval;
2018 }
2019 
2020 static struct mnt_namespace *alloc_mnt_ns(void)
2021 {
2022 	struct mnt_namespace *new_ns;
2023 
2024 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2025 	if (!new_ns)
2026 		return ERR_PTR(-ENOMEM);
2027 	atomic_set(&new_ns->count, 1);
2028 	new_ns->root = NULL;
2029 	INIT_LIST_HEAD(&new_ns->list);
2030 	init_waitqueue_head(&new_ns->poll);
2031 	new_ns->event = 0;
2032 	return new_ns;
2033 }
2034 
2035 /*
2036  * Allocate a new namespace structure and populate it with contents
2037  * copied from the namespace of the passed in task structure.
2038  */
2039 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2040 		struct fs_struct *fs)
2041 {
2042 	struct mnt_namespace *new_ns;
2043 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2044 	struct vfsmount *p, *q;
2045 
2046 	new_ns = alloc_mnt_ns();
2047 	if (IS_ERR(new_ns))
2048 		return new_ns;
2049 
2050 	down_write(&namespace_sem);
2051 	/* First pass: copy the tree topology */
2052 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2053 					CL_COPY_ALL | CL_EXPIRE);
2054 	if (!new_ns->root) {
2055 		up_write(&namespace_sem);
2056 		kfree(new_ns);
2057 		return ERR_PTR(-ENOMEM);
2058 	}
2059 	spin_lock(&vfsmount_lock);
2060 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2061 	spin_unlock(&vfsmount_lock);
2062 
2063 	/*
2064 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2065 	 * as belonging to new namespace.  We have already acquired a private
2066 	 * fs_struct, so tsk->fs->lock is not needed.
2067 	 */
2068 	p = mnt_ns->root;
2069 	q = new_ns->root;
2070 	while (p) {
2071 		q->mnt_ns = new_ns;
2072 		if (fs) {
2073 			if (p == fs->root.mnt) {
2074 				rootmnt = p;
2075 				fs->root.mnt = mntget(q);
2076 			}
2077 			if (p == fs->pwd.mnt) {
2078 				pwdmnt = p;
2079 				fs->pwd.mnt = mntget(q);
2080 			}
2081 		}
2082 		p = next_mnt(p, mnt_ns->root);
2083 		q = next_mnt(q, new_ns->root);
2084 	}
2085 	up_write(&namespace_sem);
2086 
2087 	if (rootmnt)
2088 		mntput(rootmnt);
2089 	if (pwdmnt)
2090 		mntput(pwdmnt);
2091 
2092 	return new_ns;
2093 }
2094 
2095 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2096 		struct fs_struct *new_fs)
2097 {
2098 	struct mnt_namespace *new_ns;
2099 
2100 	BUG_ON(!ns);
2101 	get_mnt_ns(ns);
2102 
2103 	if (!(flags & CLONE_NEWNS))
2104 		return ns;
2105 
2106 	new_ns = dup_mnt_ns(ns, new_fs);
2107 
2108 	put_mnt_ns(ns);
2109 	return new_ns;
2110 }
2111 
2112 /**
2113  * create_mnt_ns - creates a private namespace and adds a root filesystem
2114  * @mnt: pointer to the new root filesystem mountpoint
2115  */
2116 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2117 {
2118 	struct mnt_namespace *new_ns;
2119 
2120 	new_ns = alloc_mnt_ns();
2121 	if (!IS_ERR(new_ns)) {
2122 		mnt->mnt_ns = new_ns;
2123 		new_ns->root = mnt;
2124 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2125 	}
2126 	return new_ns;
2127 }
2128 EXPORT_SYMBOL(create_mnt_ns);
2129 
2130 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2131 		char __user *, type, unsigned long, flags, void __user *, data)
2132 {
2133 	int ret;
2134 	char *kernel_type;
2135 	char *kernel_dir;
2136 	char *kernel_dev;
2137 	unsigned long data_page;
2138 
2139 	ret = copy_mount_string(type, &kernel_type);
2140 	if (ret < 0)
2141 		goto out_type;
2142 
2143 	kernel_dir = getname(dir_name);
2144 	if (IS_ERR(kernel_dir)) {
2145 		ret = PTR_ERR(kernel_dir);
2146 		goto out_dir;
2147 	}
2148 
2149 	ret = copy_mount_string(dev_name, &kernel_dev);
2150 	if (ret < 0)
2151 		goto out_dev;
2152 
2153 	ret = copy_mount_options(data, &data_page);
2154 	if (ret < 0)
2155 		goto out_data;
2156 
2157 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2158 		(void *) data_page);
2159 
2160 	free_page(data_page);
2161 out_data:
2162 	kfree(kernel_dev);
2163 out_dev:
2164 	putname(kernel_dir);
2165 out_dir:
2166 	kfree(kernel_type);
2167 out_type:
2168 	return ret;
2169 }
2170 
2171 /*
2172  * pivot_root Semantics:
2173  * Moves the root file system of the current process to the directory put_old,
2174  * makes new_root as the new root file system of the current process, and sets
2175  * root/cwd of all processes which had them on the current root to new_root.
2176  *
2177  * Restrictions:
2178  * The new_root and put_old must be directories, and  must not be on the
2179  * same file  system as the current process root. The put_old  must  be
2180  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2181  * pointed to by put_old must yield the same directory as new_root. No other
2182  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2183  *
2184  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2185  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2186  * in this situation.
2187  *
2188  * Notes:
2189  *  - we don't move root/cwd if they are not at the root (reason: if something
2190  *    cared enough to change them, it's probably wrong to force them elsewhere)
2191  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2192  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2193  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2194  *    first.
2195  */
2196 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2197 		const char __user *, put_old)
2198 {
2199 	struct vfsmount *tmp;
2200 	struct path new, old, parent_path, root_parent, root;
2201 	int error;
2202 
2203 	if (!capable(CAP_SYS_ADMIN))
2204 		return -EPERM;
2205 
2206 	error = user_path_dir(new_root, &new);
2207 	if (error)
2208 		goto out0;
2209 	error = -EINVAL;
2210 	if (!check_mnt(new.mnt))
2211 		goto out1;
2212 
2213 	error = user_path_dir(put_old, &old);
2214 	if (error)
2215 		goto out1;
2216 
2217 	error = security_sb_pivotroot(&old, &new);
2218 	if (error) {
2219 		path_put(&old);
2220 		goto out1;
2221 	}
2222 
2223 	read_lock(&current->fs->lock);
2224 	root = current->fs->root;
2225 	path_get(&current->fs->root);
2226 	read_unlock(&current->fs->lock);
2227 	down_write(&namespace_sem);
2228 	mutex_lock(&old.dentry->d_inode->i_mutex);
2229 	error = -EINVAL;
2230 	if (IS_MNT_SHARED(old.mnt) ||
2231 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2232 		IS_MNT_SHARED(root.mnt->mnt_parent))
2233 		goto out2;
2234 	if (!check_mnt(root.mnt))
2235 		goto out2;
2236 	error = -ENOENT;
2237 	if (IS_DEADDIR(new.dentry->d_inode))
2238 		goto out2;
2239 	if (d_unlinked(new.dentry))
2240 		goto out2;
2241 	if (d_unlinked(old.dentry))
2242 		goto out2;
2243 	error = -EBUSY;
2244 	if (new.mnt == root.mnt ||
2245 	    old.mnt == root.mnt)
2246 		goto out2; /* loop, on the same file system  */
2247 	error = -EINVAL;
2248 	if (root.mnt->mnt_root != root.dentry)
2249 		goto out2; /* not a mountpoint */
2250 	if (root.mnt->mnt_parent == root.mnt)
2251 		goto out2; /* not attached */
2252 	if (new.mnt->mnt_root != new.dentry)
2253 		goto out2; /* not a mountpoint */
2254 	if (new.mnt->mnt_parent == new.mnt)
2255 		goto out2; /* not attached */
2256 	/* make sure we can reach put_old from new_root */
2257 	tmp = old.mnt;
2258 	spin_lock(&vfsmount_lock);
2259 	if (tmp != new.mnt) {
2260 		for (;;) {
2261 			if (tmp->mnt_parent == tmp)
2262 				goto out3; /* already mounted on put_old */
2263 			if (tmp->mnt_parent == new.mnt)
2264 				break;
2265 			tmp = tmp->mnt_parent;
2266 		}
2267 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2268 			goto out3;
2269 	} else if (!is_subdir(old.dentry, new.dentry))
2270 		goto out3;
2271 	detach_mnt(new.mnt, &parent_path);
2272 	detach_mnt(root.mnt, &root_parent);
2273 	/* mount old root on put_old */
2274 	attach_mnt(root.mnt, &old);
2275 	/* mount new_root on / */
2276 	attach_mnt(new.mnt, &root_parent);
2277 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2278 	spin_unlock(&vfsmount_lock);
2279 	chroot_fs_refs(&root, &new);
2280 	security_sb_post_pivotroot(&root, &new);
2281 	error = 0;
2282 	path_put(&root_parent);
2283 	path_put(&parent_path);
2284 out2:
2285 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2286 	up_write(&namespace_sem);
2287 	path_put(&root);
2288 	path_put(&old);
2289 out1:
2290 	path_put(&new);
2291 out0:
2292 	return error;
2293 out3:
2294 	spin_unlock(&vfsmount_lock);
2295 	goto out2;
2296 }
2297 
2298 static void __init init_mount_tree(void)
2299 {
2300 	struct vfsmount *mnt;
2301 	struct mnt_namespace *ns;
2302 	struct path root;
2303 
2304 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2305 	if (IS_ERR(mnt))
2306 		panic("Can't create rootfs");
2307 	ns = create_mnt_ns(mnt);
2308 	if (IS_ERR(ns))
2309 		panic("Can't allocate initial namespace");
2310 
2311 	init_task.nsproxy->mnt_ns = ns;
2312 	get_mnt_ns(ns);
2313 
2314 	root.mnt = ns->root;
2315 	root.dentry = ns->root->mnt_root;
2316 
2317 	set_fs_pwd(current->fs, &root);
2318 	set_fs_root(current->fs, &root);
2319 }
2320 
2321 void __init mnt_init(void)
2322 {
2323 	unsigned u;
2324 	int err;
2325 
2326 	init_rwsem(&namespace_sem);
2327 
2328 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2329 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2330 
2331 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2332 
2333 	if (!mount_hashtable)
2334 		panic("Failed to allocate mount hash table\n");
2335 
2336 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2337 
2338 	for (u = 0; u < HASH_SIZE; u++)
2339 		INIT_LIST_HEAD(&mount_hashtable[u]);
2340 
2341 	err = sysfs_init();
2342 	if (err)
2343 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2344 			__func__, err);
2345 	fs_kobj = kobject_create_and_add("fs", NULL);
2346 	if (!fs_kobj)
2347 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2348 	init_rootfs();
2349 	init_mount_tree();
2350 }
2351 
2352 void put_mnt_ns(struct mnt_namespace *ns)
2353 {
2354 	LIST_HEAD(umount_list);
2355 
2356 	if (!atomic_dec_and_test(&ns->count))
2357 		return;
2358 	down_write(&namespace_sem);
2359 	spin_lock(&vfsmount_lock);
2360 	umount_tree(ns->root, 0, &umount_list);
2361 	spin_unlock(&vfsmount_lock);
2362 	up_write(&namespace_sem);
2363 	release_mounts(&umount_list);
2364 	kfree(ns);
2365 }
2366 EXPORT_SYMBOL(put_mnt_ns);
2367