1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 35 #include "pnode.h" 36 #include "internal.h" 37 38 /* Maximum number of mounts in a mount namespace */ 39 unsigned int sysctl_mount_max __read_mostly = 100000; 40 41 static unsigned int m_hash_mask __read_mostly; 42 static unsigned int m_hash_shift __read_mostly; 43 static unsigned int mp_hash_mask __read_mostly; 44 static unsigned int mp_hash_shift __read_mostly; 45 46 static __initdata unsigned long mhash_entries; 47 static int __init set_mhash_entries(char *str) 48 { 49 if (!str) 50 return 0; 51 mhash_entries = simple_strtoul(str, &str, 0); 52 return 1; 53 } 54 __setup("mhash_entries=", set_mhash_entries); 55 56 static __initdata unsigned long mphash_entries; 57 static int __init set_mphash_entries(char *str) 58 { 59 if (!str) 60 return 0; 61 mphash_entries = simple_strtoul(str, &str, 0); 62 return 1; 63 } 64 __setup("mphash_entries=", set_mphash_entries); 65 66 static u64 event; 67 static DEFINE_IDA(mnt_id_ida); 68 static DEFINE_IDA(mnt_group_ida); 69 70 static struct hlist_head *mount_hashtable __read_mostly; 71 static struct hlist_head *mountpoint_hashtable __read_mostly; 72 static struct kmem_cache *mnt_cache __read_mostly; 73 static DECLARE_RWSEM(namespace_sem); 74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 76 77 struct mount_kattr { 78 unsigned int attr_set; 79 unsigned int attr_clr; 80 unsigned int propagation; 81 unsigned int lookup_flags; 82 bool recurse; 83 struct user_namespace *mnt_userns; 84 }; 85 86 /* /sys/fs */ 87 struct kobject *fs_kobj; 88 EXPORT_SYMBOL_GPL(fs_kobj); 89 90 /* 91 * vfsmount lock may be taken for read to prevent changes to the 92 * vfsmount hash, ie. during mountpoint lookups or walking back 93 * up the tree. 94 * 95 * It should be taken for write in all cases where the vfsmount 96 * tree or hash is modified or when a vfsmount structure is modified. 97 */ 98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 99 100 static inline void lock_mount_hash(void) 101 { 102 write_seqlock(&mount_lock); 103 } 104 105 static inline void unlock_mount_hash(void) 106 { 107 write_sequnlock(&mount_lock); 108 } 109 110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 111 { 112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 114 tmp = tmp + (tmp >> m_hash_shift); 115 return &mount_hashtable[tmp & m_hash_mask]; 116 } 117 118 static inline struct hlist_head *mp_hash(struct dentry *dentry) 119 { 120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 121 tmp = tmp + (tmp >> mp_hash_shift); 122 return &mountpoint_hashtable[tmp & mp_hash_mask]; 123 } 124 125 static int mnt_alloc_id(struct mount *mnt) 126 { 127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 128 129 if (res < 0) 130 return res; 131 mnt->mnt_id = res; 132 return 0; 133 } 134 135 static void mnt_free_id(struct mount *mnt) 136 { 137 ida_free(&mnt_id_ida, mnt->mnt_id); 138 } 139 140 /* 141 * Allocate a new peer group ID 142 */ 143 static int mnt_alloc_group_id(struct mount *mnt) 144 { 145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 146 147 if (res < 0) 148 return res; 149 mnt->mnt_group_id = res; 150 return 0; 151 } 152 153 /* 154 * Release a peer group ID 155 */ 156 void mnt_release_group_id(struct mount *mnt) 157 { 158 ida_free(&mnt_group_ida, mnt->mnt_group_id); 159 mnt->mnt_group_id = 0; 160 } 161 162 /* 163 * vfsmount lock must be held for read 164 */ 165 static inline void mnt_add_count(struct mount *mnt, int n) 166 { 167 #ifdef CONFIG_SMP 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 169 #else 170 preempt_disable(); 171 mnt->mnt_count += n; 172 preempt_enable(); 173 #endif 174 } 175 176 /* 177 * vfsmount lock must be held for write 178 */ 179 int mnt_get_count(struct mount *mnt) 180 { 181 #ifdef CONFIG_SMP 182 int count = 0; 183 int cpu; 184 185 for_each_possible_cpu(cpu) { 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 187 } 188 189 return count; 190 #else 191 return mnt->mnt_count; 192 #endif 193 } 194 195 static struct mount *alloc_vfsmnt(const char *name) 196 { 197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 198 if (mnt) { 199 int err; 200 201 err = mnt_alloc_id(mnt); 202 if (err) 203 goto out_free_cache; 204 205 if (name) { 206 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 207 if (!mnt->mnt_devname) 208 goto out_free_id; 209 } 210 211 #ifdef CONFIG_SMP 212 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 213 if (!mnt->mnt_pcp) 214 goto out_free_devname; 215 216 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 217 #else 218 mnt->mnt_count = 1; 219 mnt->mnt_writers = 0; 220 #endif 221 222 INIT_HLIST_NODE(&mnt->mnt_hash); 223 INIT_LIST_HEAD(&mnt->mnt_child); 224 INIT_LIST_HEAD(&mnt->mnt_mounts); 225 INIT_LIST_HEAD(&mnt->mnt_list); 226 INIT_LIST_HEAD(&mnt->mnt_expire); 227 INIT_LIST_HEAD(&mnt->mnt_share); 228 INIT_LIST_HEAD(&mnt->mnt_slave_list); 229 INIT_LIST_HEAD(&mnt->mnt_slave); 230 INIT_HLIST_NODE(&mnt->mnt_mp_list); 231 INIT_LIST_HEAD(&mnt->mnt_umounting); 232 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 233 mnt->mnt.mnt_userns = &init_user_ns; 234 } 235 return mnt; 236 237 #ifdef CONFIG_SMP 238 out_free_devname: 239 kfree_const(mnt->mnt_devname); 240 #endif 241 out_free_id: 242 mnt_free_id(mnt); 243 out_free_cache: 244 kmem_cache_free(mnt_cache, mnt); 245 return NULL; 246 } 247 248 /* 249 * Most r/o checks on a fs are for operations that take 250 * discrete amounts of time, like a write() or unlink(). 251 * We must keep track of when those operations start 252 * (for permission checks) and when they end, so that 253 * we can determine when writes are able to occur to 254 * a filesystem. 255 */ 256 /* 257 * __mnt_is_readonly: check whether a mount is read-only 258 * @mnt: the mount to check for its write status 259 * 260 * This shouldn't be used directly ouside of the VFS. 261 * It does not guarantee that the filesystem will stay 262 * r/w, just that it is right *now*. This can not and 263 * should not be used in place of IS_RDONLY(inode). 264 * mnt_want/drop_write() will _keep_ the filesystem 265 * r/w. 266 */ 267 bool __mnt_is_readonly(struct vfsmount *mnt) 268 { 269 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 270 } 271 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 272 273 static inline void mnt_inc_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 277 #else 278 mnt->mnt_writers++; 279 #endif 280 } 281 282 static inline void mnt_dec_writers(struct mount *mnt) 283 { 284 #ifdef CONFIG_SMP 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 286 #else 287 mnt->mnt_writers--; 288 #endif 289 } 290 291 static unsigned int mnt_get_writers(struct mount *mnt) 292 { 293 #ifdef CONFIG_SMP 294 unsigned int count = 0; 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 299 } 300 301 return count; 302 #else 303 return mnt->mnt_writers; 304 #endif 305 } 306 307 static int mnt_is_readonly(struct vfsmount *mnt) 308 { 309 if (mnt->mnt_sb->s_readonly_remount) 310 return 1; 311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 312 smp_rmb(); 313 return __mnt_is_readonly(mnt); 314 } 315 316 /* 317 * Most r/o & frozen checks on a fs are for operations that take discrete 318 * amounts of time, like a write() or unlink(). We must keep track of when 319 * those operations start (for permission checks) and when they end, so that we 320 * can determine when writes are able to occur to a filesystem. 321 */ 322 /** 323 * __mnt_want_write - get write access to a mount without freeze protection 324 * @m: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is about to be performed to 327 * it, and makes sure that writes are allowed (mnt it read-write) before 328 * returning success. This operation does not protect against filesystem being 329 * frozen. When the write operation is finished, __mnt_drop_write() must be 330 * called. This is effectively a refcount. 331 */ 332 int __mnt_want_write(struct vfsmount *m) 333 { 334 struct mount *mnt = real_mount(m); 335 int ret = 0; 336 337 preempt_disable(); 338 mnt_inc_writers(mnt); 339 /* 340 * The store to mnt_inc_writers must be visible before we pass 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 342 * incremented count after it has set MNT_WRITE_HOLD. 343 */ 344 smp_mb(); 345 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 346 cpu_relax(); 347 /* 348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 349 * be set to match its requirements. So we must not load that until 350 * MNT_WRITE_HOLD is cleared. 351 */ 352 smp_rmb(); 353 if (mnt_is_readonly(m)) { 354 mnt_dec_writers(mnt); 355 ret = -EROFS; 356 } 357 preempt_enable(); 358 359 return ret; 360 } 361 362 /** 363 * mnt_want_write - get write access to a mount 364 * @m: the mount on which to take a write 365 * 366 * This tells the low-level filesystem that a write is about to be performed to 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem 368 * is not frozen) before returning success. When the write operation is 369 * finished, mnt_drop_write() must be called. This is effectively a refcount. 370 */ 371 int mnt_want_write(struct vfsmount *m) 372 { 373 int ret; 374 375 sb_start_write(m->mnt_sb); 376 ret = __mnt_want_write(m); 377 if (ret) 378 sb_end_write(m->mnt_sb); 379 return ret; 380 } 381 EXPORT_SYMBOL_GPL(mnt_want_write); 382 383 /** 384 * __mnt_want_write_file - get write access to a file's mount 385 * @file: the file who's mount on which to take a write 386 * 387 * This is like __mnt_want_write, but if the file is already open for writing it 388 * skips incrementing mnt_writers (since the open file already has a reference) 389 * and instead only does the check for emergency r/o remounts. This must be 390 * paired with __mnt_drop_write_file. 391 */ 392 int __mnt_want_write_file(struct file *file) 393 { 394 if (file->f_mode & FMODE_WRITER) { 395 /* 396 * Superblock may have become readonly while there are still 397 * writable fd's, e.g. due to a fs error with errors=remount-ro 398 */ 399 if (__mnt_is_readonly(file->f_path.mnt)) 400 return -EROFS; 401 return 0; 402 } 403 return __mnt_want_write(file->f_path.mnt); 404 } 405 406 /** 407 * mnt_want_write_file - get write access to a file's mount 408 * @file: the file who's mount on which to take a write 409 * 410 * This is like mnt_want_write, but if the file is already open for writing it 411 * skips incrementing mnt_writers (since the open file already has a reference) 412 * and instead only does the freeze protection and the check for emergency r/o 413 * remounts. This must be paired with mnt_drop_write_file. 414 */ 415 int mnt_want_write_file(struct file *file) 416 { 417 int ret; 418 419 sb_start_write(file_inode(file)->i_sb); 420 ret = __mnt_want_write_file(file); 421 if (ret) 422 sb_end_write(file_inode(file)->i_sb); 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(mnt_want_write_file); 426 427 /** 428 * __mnt_drop_write - give up write access to a mount 429 * @mnt: the mount on which to give up write access 430 * 431 * Tells the low-level filesystem that we are done 432 * performing writes to it. Must be matched with 433 * __mnt_want_write() call above. 434 */ 435 void __mnt_drop_write(struct vfsmount *mnt) 436 { 437 preempt_disable(); 438 mnt_dec_writers(real_mount(mnt)); 439 preempt_enable(); 440 } 441 442 /** 443 * mnt_drop_write - give up write access to a mount 444 * @mnt: the mount on which to give up write access 445 * 446 * Tells the low-level filesystem that we are done performing writes to it and 447 * also allows filesystem to be frozen again. Must be matched with 448 * mnt_want_write() call above. 449 */ 450 void mnt_drop_write(struct vfsmount *mnt) 451 { 452 __mnt_drop_write(mnt); 453 sb_end_write(mnt->mnt_sb); 454 } 455 EXPORT_SYMBOL_GPL(mnt_drop_write); 456 457 void __mnt_drop_write_file(struct file *file) 458 { 459 if (!(file->f_mode & FMODE_WRITER)) 460 __mnt_drop_write(file->f_path.mnt); 461 } 462 463 void mnt_drop_write_file(struct file *file) 464 { 465 __mnt_drop_write_file(file); 466 sb_end_write(file_inode(file)->i_sb); 467 } 468 EXPORT_SYMBOL(mnt_drop_write_file); 469 470 static inline int mnt_hold_writers(struct mount *mnt) 471 { 472 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 473 /* 474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 475 * should be visible before we do. 476 */ 477 smp_mb(); 478 479 /* 480 * With writers on hold, if this value is zero, then there are 481 * definitely no active writers (although held writers may subsequently 482 * increment the count, they'll have to wait, and decrement it after 483 * seeing MNT_READONLY). 484 * 485 * It is OK to have counter incremented on one CPU and decremented on 486 * another: the sum will add up correctly. The danger would be when we 487 * sum up each counter, if we read a counter before it is incremented, 488 * but then read another CPU's count which it has been subsequently 489 * decremented from -- we would see more decrements than we should. 490 * MNT_WRITE_HOLD protects against this scenario, because 491 * mnt_want_write first increments count, then smp_mb, then spins on 492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 493 * we're counting up here. 494 */ 495 if (mnt_get_writers(mnt) > 0) 496 return -EBUSY; 497 498 return 0; 499 } 500 501 static inline void mnt_unhold_writers(struct mount *mnt) 502 { 503 /* 504 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 505 * that become unheld will see MNT_READONLY. 506 */ 507 smp_wmb(); 508 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 509 } 510 511 static int mnt_make_readonly(struct mount *mnt) 512 { 513 int ret; 514 515 ret = mnt_hold_writers(mnt); 516 if (!ret) 517 mnt->mnt.mnt_flags |= MNT_READONLY; 518 mnt_unhold_writers(mnt); 519 return ret; 520 } 521 522 int sb_prepare_remount_readonly(struct super_block *sb) 523 { 524 struct mount *mnt; 525 int err = 0; 526 527 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 528 if (atomic_long_read(&sb->s_remove_count)) 529 return -EBUSY; 530 531 lock_mount_hash(); 532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 533 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 534 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 535 smp_mb(); 536 if (mnt_get_writers(mnt) > 0) { 537 err = -EBUSY; 538 break; 539 } 540 } 541 } 542 if (!err && atomic_long_read(&sb->s_remove_count)) 543 err = -EBUSY; 544 545 if (!err) { 546 sb->s_readonly_remount = 1; 547 smp_wmb(); 548 } 549 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 550 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 551 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 552 } 553 unlock_mount_hash(); 554 555 return err; 556 } 557 558 static void free_vfsmnt(struct mount *mnt) 559 { 560 struct user_namespace *mnt_userns; 561 562 mnt_userns = mnt_user_ns(&mnt->mnt); 563 if (mnt_userns != &init_user_ns) 564 put_user_ns(mnt_userns); 565 kfree_const(mnt->mnt_devname); 566 #ifdef CONFIG_SMP 567 free_percpu(mnt->mnt_pcp); 568 #endif 569 kmem_cache_free(mnt_cache, mnt); 570 } 571 572 static void delayed_free_vfsmnt(struct rcu_head *head) 573 { 574 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 575 } 576 577 /* call under rcu_read_lock */ 578 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 579 { 580 struct mount *mnt; 581 if (read_seqretry(&mount_lock, seq)) 582 return 1; 583 if (bastard == NULL) 584 return 0; 585 mnt = real_mount(bastard); 586 mnt_add_count(mnt, 1); 587 smp_mb(); // see mntput_no_expire() 588 if (likely(!read_seqretry(&mount_lock, seq))) 589 return 0; 590 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 591 mnt_add_count(mnt, -1); 592 return 1; 593 } 594 lock_mount_hash(); 595 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 596 mnt_add_count(mnt, -1); 597 unlock_mount_hash(); 598 return 1; 599 } 600 unlock_mount_hash(); 601 /* caller will mntput() */ 602 return -1; 603 } 604 605 /* call under rcu_read_lock */ 606 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 607 { 608 int res = __legitimize_mnt(bastard, seq); 609 if (likely(!res)) 610 return true; 611 if (unlikely(res < 0)) { 612 rcu_read_unlock(); 613 mntput(bastard); 614 rcu_read_lock(); 615 } 616 return false; 617 } 618 619 /* 620 * find the first mount at @dentry on vfsmount @mnt. 621 * call under rcu_read_lock() 622 */ 623 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 624 { 625 struct hlist_head *head = m_hash(mnt, dentry); 626 struct mount *p; 627 628 hlist_for_each_entry_rcu(p, head, mnt_hash) 629 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 630 return p; 631 return NULL; 632 } 633 634 /* 635 * lookup_mnt - Return the first child mount mounted at path 636 * 637 * "First" means first mounted chronologically. If you create the 638 * following mounts: 639 * 640 * mount /dev/sda1 /mnt 641 * mount /dev/sda2 /mnt 642 * mount /dev/sda3 /mnt 643 * 644 * Then lookup_mnt() on the base /mnt dentry in the root mount will 645 * return successively the root dentry and vfsmount of /dev/sda1, then 646 * /dev/sda2, then /dev/sda3, then NULL. 647 * 648 * lookup_mnt takes a reference to the found vfsmount. 649 */ 650 struct vfsmount *lookup_mnt(const struct path *path) 651 { 652 struct mount *child_mnt; 653 struct vfsmount *m; 654 unsigned seq; 655 656 rcu_read_lock(); 657 do { 658 seq = read_seqbegin(&mount_lock); 659 child_mnt = __lookup_mnt(path->mnt, path->dentry); 660 m = child_mnt ? &child_mnt->mnt : NULL; 661 } while (!legitimize_mnt(m, seq)); 662 rcu_read_unlock(); 663 return m; 664 } 665 666 static inline void lock_ns_list(struct mnt_namespace *ns) 667 { 668 spin_lock(&ns->ns_lock); 669 } 670 671 static inline void unlock_ns_list(struct mnt_namespace *ns) 672 { 673 spin_unlock(&ns->ns_lock); 674 } 675 676 static inline bool mnt_is_cursor(struct mount *mnt) 677 { 678 return mnt->mnt.mnt_flags & MNT_CURSOR; 679 } 680 681 /* 682 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 683 * current mount namespace. 684 * 685 * The common case is dentries are not mountpoints at all and that 686 * test is handled inline. For the slow case when we are actually 687 * dealing with a mountpoint of some kind, walk through all of the 688 * mounts in the current mount namespace and test to see if the dentry 689 * is a mountpoint. 690 * 691 * The mount_hashtable is not usable in the context because we 692 * need to identify all mounts that may be in the current mount 693 * namespace not just a mount that happens to have some specified 694 * parent mount. 695 */ 696 bool __is_local_mountpoint(struct dentry *dentry) 697 { 698 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 699 struct mount *mnt; 700 bool is_covered = false; 701 702 down_read(&namespace_sem); 703 lock_ns_list(ns); 704 list_for_each_entry(mnt, &ns->list, mnt_list) { 705 if (mnt_is_cursor(mnt)) 706 continue; 707 is_covered = (mnt->mnt_mountpoint == dentry); 708 if (is_covered) 709 break; 710 } 711 unlock_ns_list(ns); 712 up_read(&namespace_sem); 713 714 return is_covered; 715 } 716 717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 718 { 719 struct hlist_head *chain = mp_hash(dentry); 720 struct mountpoint *mp; 721 722 hlist_for_each_entry(mp, chain, m_hash) { 723 if (mp->m_dentry == dentry) { 724 mp->m_count++; 725 return mp; 726 } 727 } 728 return NULL; 729 } 730 731 static struct mountpoint *get_mountpoint(struct dentry *dentry) 732 { 733 struct mountpoint *mp, *new = NULL; 734 int ret; 735 736 if (d_mountpoint(dentry)) { 737 /* might be worth a WARN_ON() */ 738 if (d_unlinked(dentry)) 739 return ERR_PTR(-ENOENT); 740 mountpoint: 741 read_seqlock_excl(&mount_lock); 742 mp = lookup_mountpoint(dentry); 743 read_sequnlock_excl(&mount_lock); 744 if (mp) 745 goto done; 746 } 747 748 if (!new) 749 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 750 if (!new) 751 return ERR_PTR(-ENOMEM); 752 753 754 /* Exactly one processes may set d_mounted */ 755 ret = d_set_mounted(dentry); 756 757 /* Someone else set d_mounted? */ 758 if (ret == -EBUSY) 759 goto mountpoint; 760 761 /* The dentry is not available as a mountpoint? */ 762 mp = ERR_PTR(ret); 763 if (ret) 764 goto done; 765 766 /* Add the new mountpoint to the hash table */ 767 read_seqlock_excl(&mount_lock); 768 new->m_dentry = dget(dentry); 769 new->m_count = 1; 770 hlist_add_head(&new->m_hash, mp_hash(dentry)); 771 INIT_HLIST_HEAD(&new->m_list); 772 read_sequnlock_excl(&mount_lock); 773 774 mp = new; 775 new = NULL; 776 done: 777 kfree(new); 778 return mp; 779 } 780 781 /* 782 * vfsmount lock must be held. Additionally, the caller is responsible 783 * for serializing calls for given disposal list. 784 */ 785 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 786 { 787 if (!--mp->m_count) { 788 struct dentry *dentry = mp->m_dentry; 789 BUG_ON(!hlist_empty(&mp->m_list)); 790 spin_lock(&dentry->d_lock); 791 dentry->d_flags &= ~DCACHE_MOUNTED; 792 spin_unlock(&dentry->d_lock); 793 dput_to_list(dentry, list); 794 hlist_del(&mp->m_hash); 795 kfree(mp); 796 } 797 } 798 799 /* called with namespace_lock and vfsmount lock */ 800 static void put_mountpoint(struct mountpoint *mp) 801 { 802 __put_mountpoint(mp, &ex_mountpoints); 803 } 804 805 static inline int check_mnt(struct mount *mnt) 806 { 807 return mnt->mnt_ns == current->nsproxy->mnt_ns; 808 } 809 810 /* 811 * vfsmount lock must be held for write 812 */ 813 static void touch_mnt_namespace(struct mnt_namespace *ns) 814 { 815 if (ns) { 816 ns->event = ++event; 817 wake_up_interruptible(&ns->poll); 818 } 819 } 820 821 /* 822 * vfsmount lock must be held for write 823 */ 824 static void __touch_mnt_namespace(struct mnt_namespace *ns) 825 { 826 if (ns && ns->event != event) { 827 ns->event = event; 828 wake_up_interruptible(&ns->poll); 829 } 830 } 831 832 /* 833 * vfsmount lock must be held for write 834 */ 835 static struct mountpoint *unhash_mnt(struct mount *mnt) 836 { 837 struct mountpoint *mp; 838 mnt->mnt_parent = mnt; 839 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 840 list_del_init(&mnt->mnt_child); 841 hlist_del_init_rcu(&mnt->mnt_hash); 842 hlist_del_init(&mnt->mnt_mp_list); 843 mp = mnt->mnt_mp; 844 mnt->mnt_mp = NULL; 845 return mp; 846 } 847 848 /* 849 * vfsmount lock must be held for write 850 */ 851 static void umount_mnt(struct mount *mnt) 852 { 853 put_mountpoint(unhash_mnt(mnt)); 854 } 855 856 /* 857 * vfsmount lock must be held for write 858 */ 859 void mnt_set_mountpoint(struct mount *mnt, 860 struct mountpoint *mp, 861 struct mount *child_mnt) 862 { 863 mp->m_count++; 864 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 865 child_mnt->mnt_mountpoint = mp->m_dentry; 866 child_mnt->mnt_parent = mnt; 867 child_mnt->mnt_mp = mp; 868 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 869 } 870 871 static void __attach_mnt(struct mount *mnt, struct mount *parent) 872 { 873 hlist_add_head_rcu(&mnt->mnt_hash, 874 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 875 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 876 } 877 878 /* 879 * vfsmount lock must be held for write 880 */ 881 static void attach_mnt(struct mount *mnt, 882 struct mount *parent, 883 struct mountpoint *mp) 884 { 885 mnt_set_mountpoint(parent, mp, mnt); 886 __attach_mnt(mnt, parent); 887 } 888 889 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 890 { 891 struct mountpoint *old_mp = mnt->mnt_mp; 892 struct mount *old_parent = mnt->mnt_parent; 893 894 list_del_init(&mnt->mnt_child); 895 hlist_del_init(&mnt->mnt_mp_list); 896 hlist_del_init_rcu(&mnt->mnt_hash); 897 898 attach_mnt(mnt, parent, mp); 899 900 put_mountpoint(old_mp); 901 mnt_add_count(old_parent, -1); 902 } 903 904 /* 905 * vfsmount lock must be held for write 906 */ 907 static void commit_tree(struct mount *mnt) 908 { 909 struct mount *parent = mnt->mnt_parent; 910 struct mount *m; 911 LIST_HEAD(head); 912 struct mnt_namespace *n = parent->mnt_ns; 913 914 BUG_ON(parent == mnt); 915 916 list_add_tail(&head, &mnt->mnt_list); 917 list_for_each_entry(m, &head, mnt_list) 918 m->mnt_ns = n; 919 920 list_splice(&head, n->list.prev); 921 922 n->mounts += n->pending_mounts; 923 n->pending_mounts = 0; 924 925 __attach_mnt(mnt, parent); 926 touch_mnt_namespace(n); 927 } 928 929 static struct mount *next_mnt(struct mount *p, struct mount *root) 930 { 931 struct list_head *next = p->mnt_mounts.next; 932 if (next == &p->mnt_mounts) { 933 while (1) { 934 if (p == root) 935 return NULL; 936 next = p->mnt_child.next; 937 if (next != &p->mnt_parent->mnt_mounts) 938 break; 939 p = p->mnt_parent; 940 } 941 } 942 return list_entry(next, struct mount, mnt_child); 943 } 944 945 static struct mount *skip_mnt_tree(struct mount *p) 946 { 947 struct list_head *prev = p->mnt_mounts.prev; 948 while (prev != &p->mnt_mounts) { 949 p = list_entry(prev, struct mount, mnt_child); 950 prev = p->mnt_mounts.prev; 951 } 952 return p; 953 } 954 955 /** 956 * vfs_create_mount - Create a mount for a configured superblock 957 * @fc: The configuration context with the superblock attached 958 * 959 * Create a mount to an already configured superblock. If necessary, the 960 * caller should invoke vfs_get_tree() before calling this. 961 * 962 * Note that this does not attach the mount to anything. 963 */ 964 struct vfsmount *vfs_create_mount(struct fs_context *fc) 965 { 966 struct mount *mnt; 967 968 if (!fc->root) 969 return ERR_PTR(-EINVAL); 970 971 mnt = alloc_vfsmnt(fc->source ?: "none"); 972 if (!mnt) 973 return ERR_PTR(-ENOMEM); 974 975 if (fc->sb_flags & SB_KERNMOUNT) 976 mnt->mnt.mnt_flags = MNT_INTERNAL; 977 978 atomic_inc(&fc->root->d_sb->s_active); 979 mnt->mnt.mnt_sb = fc->root->d_sb; 980 mnt->mnt.mnt_root = dget(fc->root); 981 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 982 mnt->mnt_parent = mnt; 983 984 lock_mount_hash(); 985 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 986 unlock_mount_hash(); 987 return &mnt->mnt; 988 } 989 EXPORT_SYMBOL(vfs_create_mount); 990 991 struct vfsmount *fc_mount(struct fs_context *fc) 992 { 993 int err = vfs_get_tree(fc); 994 if (!err) { 995 up_write(&fc->root->d_sb->s_umount); 996 return vfs_create_mount(fc); 997 } 998 return ERR_PTR(err); 999 } 1000 EXPORT_SYMBOL(fc_mount); 1001 1002 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1003 int flags, const char *name, 1004 void *data) 1005 { 1006 struct fs_context *fc; 1007 struct vfsmount *mnt; 1008 int ret = 0; 1009 1010 if (!type) 1011 return ERR_PTR(-EINVAL); 1012 1013 fc = fs_context_for_mount(type, flags); 1014 if (IS_ERR(fc)) 1015 return ERR_CAST(fc); 1016 1017 if (name) 1018 ret = vfs_parse_fs_string(fc, "source", 1019 name, strlen(name)); 1020 if (!ret) 1021 ret = parse_monolithic_mount_data(fc, data); 1022 if (!ret) 1023 mnt = fc_mount(fc); 1024 else 1025 mnt = ERR_PTR(ret); 1026 1027 put_fs_context(fc); 1028 return mnt; 1029 } 1030 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1031 1032 struct vfsmount * 1033 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1034 const char *name, void *data) 1035 { 1036 /* Until it is worked out how to pass the user namespace 1037 * through from the parent mount to the submount don't support 1038 * unprivileged mounts with submounts. 1039 */ 1040 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1041 return ERR_PTR(-EPERM); 1042 1043 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1044 } 1045 EXPORT_SYMBOL_GPL(vfs_submount); 1046 1047 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1048 int flag) 1049 { 1050 struct super_block *sb = old->mnt.mnt_sb; 1051 struct mount *mnt; 1052 int err; 1053 1054 mnt = alloc_vfsmnt(old->mnt_devname); 1055 if (!mnt) 1056 return ERR_PTR(-ENOMEM); 1057 1058 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1059 mnt->mnt_group_id = 0; /* not a peer of original */ 1060 else 1061 mnt->mnt_group_id = old->mnt_group_id; 1062 1063 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1064 err = mnt_alloc_group_id(mnt); 1065 if (err) 1066 goto out_free; 1067 } 1068 1069 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1070 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1071 1072 atomic_inc(&sb->s_active); 1073 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1074 if (mnt->mnt.mnt_userns != &init_user_ns) 1075 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1076 mnt->mnt.mnt_sb = sb; 1077 mnt->mnt.mnt_root = dget(root); 1078 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1079 mnt->mnt_parent = mnt; 1080 lock_mount_hash(); 1081 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1082 unlock_mount_hash(); 1083 1084 if ((flag & CL_SLAVE) || 1085 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1086 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1087 mnt->mnt_master = old; 1088 CLEAR_MNT_SHARED(mnt); 1089 } else if (!(flag & CL_PRIVATE)) { 1090 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1091 list_add(&mnt->mnt_share, &old->mnt_share); 1092 if (IS_MNT_SLAVE(old)) 1093 list_add(&mnt->mnt_slave, &old->mnt_slave); 1094 mnt->mnt_master = old->mnt_master; 1095 } else { 1096 CLEAR_MNT_SHARED(mnt); 1097 } 1098 if (flag & CL_MAKE_SHARED) 1099 set_mnt_shared(mnt); 1100 1101 /* stick the duplicate mount on the same expiry list 1102 * as the original if that was on one */ 1103 if (flag & CL_EXPIRE) { 1104 if (!list_empty(&old->mnt_expire)) 1105 list_add(&mnt->mnt_expire, &old->mnt_expire); 1106 } 1107 1108 return mnt; 1109 1110 out_free: 1111 mnt_free_id(mnt); 1112 free_vfsmnt(mnt); 1113 return ERR_PTR(err); 1114 } 1115 1116 static void cleanup_mnt(struct mount *mnt) 1117 { 1118 struct hlist_node *p; 1119 struct mount *m; 1120 /* 1121 * The warning here probably indicates that somebody messed 1122 * up a mnt_want/drop_write() pair. If this happens, the 1123 * filesystem was probably unable to make r/w->r/o transitions. 1124 * The locking used to deal with mnt_count decrement provides barriers, 1125 * so mnt_get_writers() below is safe. 1126 */ 1127 WARN_ON(mnt_get_writers(mnt)); 1128 if (unlikely(mnt->mnt_pins.first)) 1129 mnt_pin_kill(mnt); 1130 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1131 hlist_del(&m->mnt_umount); 1132 mntput(&m->mnt); 1133 } 1134 fsnotify_vfsmount_delete(&mnt->mnt); 1135 dput(mnt->mnt.mnt_root); 1136 deactivate_super(mnt->mnt.mnt_sb); 1137 mnt_free_id(mnt); 1138 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1139 } 1140 1141 static void __cleanup_mnt(struct rcu_head *head) 1142 { 1143 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1144 } 1145 1146 static LLIST_HEAD(delayed_mntput_list); 1147 static void delayed_mntput(struct work_struct *unused) 1148 { 1149 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1150 struct mount *m, *t; 1151 1152 llist_for_each_entry_safe(m, t, node, mnt_llist) 1153 cleanup_mnt(m); 1154 } 1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1156 1157 static void mntput_no_expire(struct mount *mnt) 1158 { 1159 LIST_HEAD(list); 1160 int count; 1161 1162 rcu_read_lock(); 1163 if (likely(READ_ONCE(mnt->mnt_ns))) { 1164 /* 1165 * Since we don't do lock_mount_hash() here, 1166 * ->mnt_ns can change under us. However, if it's 1167 * non-NULL, then there's a reference that won't 1168 * be dropped until after an RCU delay done after 1169 * turning ->mnt_ns NULL. So if we observe it 1170 * non-NULL under rcu_read_lock(), the reference 1171 * we are dropping is not the final one. 1172 */ 1173 mnt_add_count(mnt, -1); 1174 rcu_read_unlock(); 1175 return; 1176 } 1177 lock_mount_hash(); 1178 /* 1179 * make sure that if __legitimize_mnt() has not seen us grab 1180 * mount_lock, we'll see their refcount increment here. 1181 */ 1182 smp_mb(); 1183 mnt_add_count(mnt, -1); 1184 count = mnt_get_count(mnt); 1185 if (count != 0) { 1186 WARN_ON(count < 0); 1187 rcu_read_unlock(); 1188 unlock_mount_hash(); 1189 return; 1190 } 1191 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1192 rcu_read_unlock(); 1193 unlock_mount_hash(); 1194 return; 1195 } 1196 mnt->mnt.mnt_flags |= MNT_DOOMED; 1197 rcu_read_unlock(); 1198 1199 list_del(&mnt->mnt_instance); 1200 1201 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1202 struct mount *p, *tmp; 1203 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1204 __put_mountpoint(unhash_mnt(p), &list); 1205 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1206 } 1207 } 1208 unlock_mount_hash(); 1209 shrink_dentry_list(&list); 1210 1211 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1212 struct task_struct *task = current; 1213 if (likely(!(task->flags & PF_KTHREAD))) { 1214 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1215 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1216 return; 1217 } 1218 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1219 schedule_delayed_work(&delayed_mntput_work, 1); 1220 return; 1221 } 1222 cleanup_mnt(mnt); 1223 } 1224 1225 void mntput(struct vfsmount *mnt) 1226 { 1227 if (mnt) { 1228 struct mount *m = real_mount(mnt); 1229 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1230 if (unlikely(m->mnt_expiry_mark)) 1231 m->mnt_expiry_mark = 0; 1232 mntput_no_expire(m); 1233 } 1234 } 1235 EXPORT_SYMBOL(mntput); 1236 1237 struct vfsmount *mntget(struct vfsmount *mnt) 1238 { 1239 if (mnt) 1240 mnt_add_count(real_mount(mnt), 1); 1241 return mnt; 1242 } 1243 EXPORT_SYMBOL(mntget); 1244 1245 /** 1246 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1247 * @path: path to check 1248 * 1249 * d_mountpoint() can only be used reliably to establish if a dentry is 1250 * not mounted in any namespace and that common case is handled inline. 1251 * d_mountpoint() isn't aware of the possibility there may be multiple 1252 * mounts using a given dentry in a different namespace. This function 1253 * checks if the passed in path is a mountpoint rather than the dentry 1254 * alone. 1255 */ 1256 bool path_is_mountpoint(const struct path *path) 1257 { 1258 unsigned seq; 1259 bool res; 1260 1261 if (!d_mountpoint(path->dentry)) 1262 return false; 1263 1264 rcu_read_lock(); 1265 do { 1266 seq = read_seqbegin(&mount_lock); 1267 res = __path_is_mountpoint(path); 1268 } while (read_seqretry(&mount_lock, seq)); 1269 rcu_read_unlock(); 1270 1271 return res; 1272 } 1273 EXPORT_SYMBOL(path_is_mountpoint); 1274 1275 struct vfsmount *mnt_clone_internal(const struct path *path) 1276 { 1277 struct mount *p; 1278 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1279 if (IS_ERR(p)) 1280 return ERR_CAST(p); 1281 p->mnt.mnt_flags |= MNT_INTERNAL; 1282 return &p->mnt; 1283 } 1284 1285 #ifdef CONFIG_PROC_FS 1286 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1287 struct list_head *p) 1288 { 1289 struct mount *mnt, *ret = NULL; 1290 1291 lock_ns_list(ns); 1292 list_for_each_continue(p, &ns->list) { 1293 mnt = list_entry(p, typeof(*mnt), mnt_list); 1294 if (!mnt_is_cursor(mnt)) { 1295 ret = mnt; 1296 break; 1297 } 1298 } 1299 unlock_ns_list(ns); 1300 1301 return ret; 1302 } 1303 1304 /* iterator; we want it to have access to namespace_sem, thus here... */ 1305 static void *m_start(struct seq_file *m, loff_t *pos) 1306 { 1307 struct proc_mounts *p = m->private; 1308 struct list_head *prev; 1309 1310 down_read(&namespace_sem); 1311 if (!*pos) { 1312 prev = &p->ns->list; 1313 } else { 1314 prev = &p->cursor.mnt_list; 1315 1316 /* Read after we'd reached the end? */ 1317 if (list_empty(prev)) 1318 return NULL; 1319 } 1320 1321 return mnt_list_next(p->ns, prev); 1322 } 1323 1324 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1325 { 1326 struct proc_mounts *p = m->private; 1327 struct mount *mnt = v; 1328 1329 ++*pos; 1330 return mnt_list_next(p->ns, &mnt->mnt_list); 1331 } 1332 1333 static void m_stop(struct seq_file *m, void *v) 1334 { 1335 struct proc_mounts *p = m->private; 1336 struct mount *mnt = v; 1337 1338 lock_ns_list(p->ns); 1339 if (mnt) 1340 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1341 else 1342 list_del_init(&p->cursor.mnt_list); 1343 unlock_ns_list(p->ns); 1344 up_read(&namespace_sem); 1345 } 1346 1347 static int m_show(struct seq_file *m, void *v) 1348 { 1349 struct proc_mounts *p = m->private; 1350 struct mount *r = v; 1351 return p->show(m, &r->mnt); 1352 } 1353 1354 const struct seq_operations mounts_op = { 1355 .start = m_start, 1356 .next = m_next, 1357 .stop = m_stop, 1358 .show = m_show, 1359 }; 1360 1361 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1362 { 1363 down_read(&namespace_sem); 1364 lock_ns_list(ns); 1365 list_del(&cursor->mnt_list); 1366 unlock_ns_list(ns); 1367 up_read(&namespace_sem); 1368 } 1369 #endif /* CONFIG_PROC_FS */ 1370 1371 /** 1372 * may_umount_tree - check if a mount tree is busy 1373 * @m: root of mount tree 1374 * 1375 * This is called to check if a tree of mounts has any 1376 * open files, pwds, chroots or sub mounts that are 1377 * busy. 1378 */ 1379 int may_umount_tree(struct vfsmount *m) 1380 { 1381 struct mount *mnt = real_mount(m); 1382 int actual_refs = 0; 1383 int minimum_refs = 0; 1384 struct mount *p; 1385 BUG_ON(!m); 1386 1387 /* write lock needed for mnt_get_count */ 1388 lock_mount_hash(); 1389 for (p = mnt; p; p = next_mnt(p, mnt)) { 1390 actual_refs += mnt_get_count(p); 1391 minimum_refs += 2; 1392 } 1393 unlock_mount_hash(); 1394 1395 if (actual_refs > minimum_refs) 1396 return 0; 1397 1398 return 1; 1399 } 1400 1401 EXPORT_SYMBOL(may_umount_tree); 1402 1403 /** 1404 * may_umount - check if a mount point is busy 1405 * @mnt: root of mount 1406 * 1407 * This is called to check if a mount point has any 1408 * open files, pwds, chroots or sub mounts. If the 1409 * mount has sub mounts this will return busy 1410 * regardless of whether the sub mounts are busy. 1411 * 1412 * Doesn't take quota and stuff into account. IOW, in some cases it will 1413 * give false negatives. The main reason why it's here is that we need 1414 * a non-destructive way to look for easily umountable filesystems. 1415 */ 1416 int may_umount(struct vfsmount *mnt) 1417 { 1418 int ret = 1; 1419 down_read(&namespace_sem); 1420 lock_mount_hash(); 1421 if (propagate_mount_busy(real_mount(mnt), 2)) 1422 ret = 0; 1423 unlock_mount_hash(); 1424 up_read(&namespace_sem); 1425 return ret; 1426 } 1427 1428 EXPORT_SYMBOL(may_umount); 1429 1430 static void namespace_unlock(void) 1431 { 1432 struct hlist_head head; 1433 struct hlist_node *p; 1434 struct mount *m; 1435 LIST_HEAD(list); 1436 1437 hlist_move_list(&unmounted, &head); 1438 list_splice_init(&ex_mountpoints, &list); 1439 1440 up_write(&namespace_sem); 1441 1442 shrink_dentry_list(&list); 1443 1444 if (likely(hlist_empty(&head))) 1445 return; 1446 1447 synchronize_rcu_expedited(); 1448 1449 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1450 hlist_del(&m->mnt_umount); 1451 mntput(&m->mnt); 1452 } 1453 } 1454 1455 static inline void namespace_lock(void) 1456 { 1457 down_write(&namespace_sem); 1458 } 1459 1460 enum umount_tree_flags { 1461 UMOUNT_SYNC = 1, 1462 UMOUNT_PROPAGATE = 2, 1463 UMOUNT_CONNECTED = 4, 1464 }; 1465 1466 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1467 { 1468 /* Leaving mounts connected is only valid for lazy umounts */ 1469 if (how & UMOUNT_SYNC) 1470 return true; 1471 1472 /* A mount without a parent has nothing to be connected to */ 1473 if (!mnt_has_parent(mnt)) 1474 return true; 1475 1476 /* Because the reference counting rules change when mounts are 1477 * unmounted and connected, umounted mounts may not be 1478 * connected to mounted mounts. 1479 */ 1480 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1481 return true; 1482 1483 /* Has it been requested that the mount remain connected? */ 1484 if (how & UMOUNT_CONNECTED) 1485 return false; 1486 1487 /* Is the mount locked such that it needs to remain connected? */ 1488 if (IS_MNT_LOCKED(mnt)) 1489 return false; 1490 1491 /* By default disconnect the mount */ 1492 return true; 1493 } 1494 1495 /* 1496 * mount_lock must be held 1497 * namespace_sem must be held for write 1498 */ 1499 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1500 { 1501 LIST_HEAD(tmp_list); 1502 struct mount *p; 1503 1504 if (how & UMOUNT_PROPAGATE) 1505 propagate_mount_unlock(mnt); 1506 1507 /* Gather the mounts to umount */ 1508 for (p = mnt; p; p = next_mnt(p, mnt)) { 1509 p->mnt.mnt_flags |= MNT_UMOUNT; 1510 list_move(&p->mnt_list, &tmp_list); 1511 } 1512 1513 /* Hide the mounts from mnt_mounts */ 1514 list_for_each_entry(p, &tmp_list, mnt_list) { 1515 list_del_init(&p->mnt_child); 1516 } 1517 1518 /* Add propogated mounts to the tmp_list */ 1519 if (how & UMOUNT_PROPAGATE) 1520 propagate_umount(&tmp_list); 1521 1522 while (!list_empty(&tmp_list)) { 1523 struct mnt_namespace *ns; 1524 bool disconnect; 1525 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1526 list_del_init(&p->mnt_expire); 1527 list_del_init(&p->mnt_list); 1528 ns = p->mnt_ns; 1529 if (ns) { 1530 ns->mounts--; 1531 __touch_mnt_namespace(ns); 1532 } 1533 p->mnt_ns = NULL; 1534 if (how & UMOUNT_SYNC) 1535 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1536 1537 disconnect = disconnect_mount(p, how); 1538 if (mnt_has_parent(p)) { 1539 mnt_add_count(p->mnt_parent, -1); 1540 if (!disconnect) { 1541 /* Don't forget about p */ 1542 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1543 } else { 1544 umount_mnt(p); 1545 } 1546 } 1547 change_mnt_propagation(p, MS_PRIVATE); 1548 if (disconnect) 1549 hlist_add_head(&p->mnt_umount, &unmounted); 1550 } 1551 } 1552 1553 static void shrink_submounts(struct mount *mnt); 1554 1555 static int do_umount_root(struct super_block *sb) 1556 { 1557 int ret = 0; 1558 1559 down_write(&sb->s_umount); 1560 if (!sb_rdonly(sb)) { 1561 struct fs_context *fc; 1562 1563 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1564 SB_RDONLY); 1565 if (IS_ERR(fc)) { 1566 ret = PTR_ERR(fc); 1567 } else { 1568 ret = parse_monolithic_mount_data(fc, NULL); 1569 if (!ret) 1570 ret = reconfigure_super(fc); 1571 put_fs_context(fc); 1572 } 1573 } 1574 up_write(&sb->s_umount); 1575 return ret; 1576 } 1577 1578 static int do_umount(struct mount *mnt, int flags) 1579 { 1580 struct super_block *sb = mnt->mnt.mnt_sb; 1581 int retval; 1582 1583 retval = security_sb_umount(&mnt->mnt, flags); 1584 if (retval) 1585 return retval; 1586 1587 /* 1588 * Allow userspace to request a mountpoint be expired rather than 1589 * unmounting unconditionally. Unmount only happens if: 1590 * (1) the mark is already set (the mark is cleared by mntput()) 1591 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1592 */ 1593 if (flags & MNT_EXPIRE) { 1594 if (&mnt->mnt == current->fs->root.mnt || 1595 flags & (MNT_FORCE | MNT_DETACH)) 1596 return -EINVAL; 1597 1598 /* 1599 * probably don't strictly need the lock here if we examined 1600 * all race cases, but it's a slowpath. 1601 */ 1602 lock_mount_hash(); 1603 if (mnt_get_count(mnt) != 2) { 1604 unlock_mount_hash(); 1605 return -EBUSY; 1606 } 1607 unlock_mount_hash(); 1608 1609 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1610 return -EAGAIN; 1611 } 1612 1613 /* 1614 * If we may have to abort operations to get out of this 1615 * mount, and they will themselves hold resources we must 1616 * allow the fs to do things. In the Unix tradition of 1617 * 'Gee thats tricky lets do it in userspace' the umount_begin 1618 * might fail to complete on the first run through as other tasks 1619 * must return, and the like. Thats for the mount program to worry 1620 * about for the moment. 1621 */ 1622 1623 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1624 sb->s_op->umount_begin(sb); 1625 } 1626 1627 /* 1628 * No sense to grab the lock for this test, but test itself looks 1629 * somewhat bogus. Suggestions for better replacement? 1630 * Ho-hum... In principle, we might treat that as umount + switch 1631 * to rootfs. GC would eventually take care of the old vfsmount. 1632 * Actually it makes sense, especially if rootfs would contain a 1633 * /reboot - static binary that would close all descriptors and 1634 * call reboot(9). Then init(8) could umount root and exec /reboot. 1635 */ 1636 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1637 /* 1638 * Special case for "unmounting" root ... 1639 * we just try to remount it readonly. 1640 */ 1641 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1642 return -EPERM; 1643 return do_umount_root(sb); 1644 } 1645 1646 namespace_lock(); 1647 lock_mount_hash(); 1648 1649 /* Recheck MNT_LOCKED with the locks held */ 1650 retval = -EINVAL; 1651 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1652 goto out; 1653 1654 event++; 1655 if (flags & MNT_DETACH) { 1656 if (!list_empty(&mnt->mnt_list)) 1657 umount_tree(mnt, UMOUNT_PROPAGATE); 1658 retval = 0; 1659 } else { 1660 shrink_submounts(mnt); 1661 retval = -EBUSY; 1662 if (!propagate_mount_busy(mnt, 2)) { 1663 if (!list_empty(&mnt->mnt_list)) 1664 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1665 retval = 0; 1666 } 1667 } 1668 out: 1669 unlock_mount_hash(); 1670 namespace_unlock(); 1671 return retval; 1672 } 1673 1674 /* 1675 * __detach_mounts - lazily unmount all mounts on the specified dentry 1676 * 1677 * During unlink, rmdir, and d_drop it is possible to loose the path 1678 * to an existing mountpoint, and wind up leaking the mount. 1679 * detach_mounts allows lazily unmounting those mounts instead of 1680 * leaking them. 1681 * 1682 * The caller may hold dentry->d_inode->i_mutex. 1683 */ 1684 void __detach_mounts(struct dentry *dentry) 1685 { 1686 struct mountpoint *mp; 1687 struct mount *mnt; 1688 1689 namespace_lock(); 1690 lock_mount_hash(); 1691 mp = lookup_mountpoint(dentry); 1692 if (!mp) 1693 goto out_unlock; 1694 1695 event++; 1696 while (!hlist_empty(&mp->m_list)) { 1697 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1698 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1699 umount_mnt(mnt); 1700 hlist_add_head(&mnt->mnt_umount, &unmounted); 1701 } 1702 else umount_tree(mnt, UMOUNT_CONNECTED); 1703 } 1704 put_mountpoint(mp); 1705 out_unlock: 1706 unlock_mount_hash(); 1707 namespace_unlock(); 1708 } 1709 1710 /* 1711 * Is the caller allowed to modify his namespace? 1712 */ 1713 static inline bool may_mount(void) 1714 { 1715 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1716 } 1717 1718 static void warn_mandlock(void) 1719 { 1720 pr_warn_once("=======================================================\n" 1721 "WARNING: The mand mount option has been deprecated and\n" 1722 " and is ignored by this kernel. Remove the mand\n" 1723 " option from the mount to silence this warning.\n" 1724 "=======================================================\n"); 1725 } 1726 1727 static int can_umount(const struct path *path, int flags) 1728 { 1729 struct mount *mnt = real_mount(path->mnt); 1730 1731 if (!may_mount()) 1732 return -EPERM; 1733 if (path->dentry != path->mnt->mnt_root) 1734 return -EINVAL; 1735 if (!check_mnt(mnt)) 1736 return -EINVAL; 1737 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1738 return -EINVAL; 1739 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1740 return -EPERM; 1741 return 0; 1742 } 1743 1744 // caller is responsible for flags being sane 1745 int path_umount(struct path *path, int flags) 1746 { 1747 struct mount *mnt = real_mount(path->mnt); 1748 int ret; 1749 1750 ret = can_umount(path, flags); 1751 if (!ret) 1752 ret = do_umount(mnt, flags); 1753 1754 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1755 dput(path->dentry); 1756 mntput_no_expire(mnt); 1757 return ret; 1758 } 1759 1760 static int ksys_umount(char __user *name, int flags) 1761 { 1762 int lookup_flags = LOOKUP_MOUNTPOINT; 1763 struct path path; 1764 int ret; 1765 1766 // basic validity checks done first 1767 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1768 return -EINVAL; 1769 1770 if (!(flags & UMOUNT_NOFOLLOW)) 1771 lookup_flags |= LOOKUP_FOLLOW; 1772 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1773 if (ret) 1774 return ret; 1775 return path_umount(&path, flags); 1776 } 1777 1778 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1779 { 1780 return ksys_umount(name, flags); 1781 } 1782 1783 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1784 1785 /* 1786 * The 2.0 compatible umount. No flags. 1787 */ 1788 SYSCALL_DEFINE1(oldumount, char __user *, name) 1789 { 1790 return ksys_umount(name, 0); 1791 } 1792 1793 #endif 1794 1795 static bool is_mnt_ns_file(struct dentry *dentry) 1796 { 1797 /* Is this a proxy for a mount namespace? */ 1798 return dentry->d_op == &ns_dentry_operations && 1799 dentry->d_fsdata == &mntns_operations; 1800 } 1801 1802 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1803 { 1804 return container_of(ns, struct mnt_namespace, ns); 1805 } 1806 1807 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1808 { 1809 return &mnt->ns; 1810 } 1811 1812 static bool mnt_ns_loop(struct dentry *dentry) 1813 { 1814 /* Could bind mounting the mount namespace inode cause a 1815 * mount namespace loop? 1816 */ 1817 struct mnt_namespace *mnt_ns; 1818 if (!is_mnt_ns_file(dentry)) 1819 return false; 1820 1821 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1822 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1823 } 1824 1825 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1826 int flag) 1827 { 1828 struct mount *res, *p, *q, *r, *parent; 1829 1830 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1831 return ERR_PTR(-EINVAL); 1832 1833 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1834 return ERR_PTR(-EINVAL); 1835 1836 res = q = clone_mnt(mnt, dentry, flag); 1837 if (IS_ERR(q)) 1838 return q; 1839 1840 q->mnt_mountpoint = mnt->mnt_mountpoint; 1841 1842 p = mnt; 1843 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1844 struct mount *s; 1845 if (!is_subdir(r->mnt_mountpoint, dentry)) 1846 continue; 1847 1848 for (s = r; s; s = next_mnt(s, r)) { 1849 if (!(flag & CL_COPY_UNBINDABLE) && 1850 IS_MNT_UNBINDABLE(s)) { 1851 if (s->mnt.mnt_flags & MNT_LOCKED) { 1852 /* Both unbindable and locked. */ 1853 q = ERR_PTR(-EPERM); 1854 goto out; 1855 } else { 1856 s = skip_mnt_tree(s); 1857 continue; 1858 } 1859 } 1860 if (!(flag & CL_COPY_MNT_NS_FILE) && 1861 is_mnt_ns_file(s->mnt.mnt_root)) { 1862 s = skip_mnt_tree(s); 1863 continue; 1864 } 1865 while (p != s->mnt_parent) { 1866 p = p->mnt_parent; 1867 q = q->mnt_parent; 1868 } 1869 p = s; 1870 parent = q; 1871 q = clone_mnt(p, p->mnt.mnt_root, flag); 1872 if (IS_ERR(q)) 1873 goto out; 1874 lock_mount_hash(); 1875 list_add_tail(&q->mnt_list, &res->mnt_list); 1876 attach_mnt(q, parent, p->mnt_mp); 1877 unlock_mount_hash(); 1878 } 1879 } 1880 return res; 1881 out: 1882 if (res) { 1883 lock_mount_hash(); 1884 umount_tree(res, UMOUNT_SYNC); 1885 unlock_mount_hash(); 1886 } 1887 return q; 1888 } 1889 1890 /* Caller should check returned pointer for errors */ 1891 1892 struct vfsmount *collect_mounts(const struct path *path) 1893 { 1894 struct mount *tree; 1895 namespace_lock(); 1896 if (!check_mnt(real_mount(path->mnt))) 1897 tree = ERR_PTR(-EINVAL); 1898 else 1899 tree = copy_tree(real_mount(path->mnt), path->dentry, 1900 CL_COPY_ALL | CL_PRIVATE); 1901 namespace_unlock(); 1902 if (IS_ERR(tree)) 1903 return ERR_CAST(tree); 1904 return &tree->mnt; 1905 } 1906 1907 static void free_mnt_ns(struct mnt_namespace *); 1908 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1909 1910 void dissolve_on_fput(struct vfsmount *mnt) 1911 { 1912 struct mnt_namespace *ns; 1913 namespace_lock(); 1914 lock_mount_hash(); 1915 ns = real_mount(mnt)->mnt_ns; 1916 if (ns) { 1917 if (is_anon_ns(ns)) 1918 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1919 else 1920 ns = NULL; 1921 } 1922 unlock_mount_hash(); 1923 namespace_unlock(); 1924 if (ns) 1925 free_mnt_ns(ns); 1926 } 1927 1928 void drop_collected_mounts(struct vfsmount *mnt) 1929 { 1930 namespace_lock(); 1931 lock_mount_hash(); 1932 umount_tree(real_mount(mnt), 0); 1933 unlock_mount_hash(); 1934 namespace_unlock(); 1935 } 1936 1937 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1938 { 1939 struct mount *child; 1940 1941 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1942 if (!is_subdir(child->mnt_mountpoint, dentry)) 1943 continue; 1944 1945 if (child->mnt.mnt_flags & MNT_LOCKED) 1946 return true; 1947 } 1948 return false; 1949 } 1950 1951 /** 1952 * clone_private_mount - create a private clone of a path 1953 * @path: path to clone 1954 * 1955 * This creates a new vfsmount, which will be the clone of @path. The new mount 1956 * will not be attached anywhere in the namespace and will be private (i.e. 1957 * changes to the originating mount won't be propagated into this). 1958 * 1959 * Release with mntput(). 1960 */ 1961 struct vfsmount *clone_private_mount(const struct path *path) 1962 { 1963 struct mount *old_mnt = real_mount(path->mnt); 1964 struct mount *new_mnt; 1965 1966 down_read(&namespace_sem); 1967 if (IS_MNT_UNBINDABLE(old_mnt)) 1968 goto invalid; 1969 1970 if (!check_mnt(old_mnt)) 1971 goto invalid; 1972 1973 if (has_locked_children(old_mnt, path->dentry)) 1974 goto invalid; 1975 1976 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1977 up_read(&namespace_sem); 1978 1979 if (IS_ERR(new_mnt)) 1980 return ERR_CAST(new_mnt); 1981 1982 /* Longterm mount to be removed by kern_unmount*() */ 1983 new_mnt->mnt_ns = MNT_NS_INTERNAL; 1984 1985 return &new_mnt->mnt; 1986 1987 invalid: 1988 up_read(&namespace_sem); 1989 return ERR_PTR(-EINVAL); 1990 } 1991 EXPORT_SYMBOL_GPL(clone_private_mount); 1992 1993 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1994 struct vfsmount *root) 1995 { 1996 struct mount *mnt; 1997 int res = f(root, arg); 1998 if (res) 1999 return res; 2000 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2001 res = f(&mnt->mnt, arg); 2002 if (res) 2003 return res; 2004 } 2005 return 0; 2006 } 2007 2008 static void lock_mnt_tree(struct mount *mnt) 2009 { 2010 struct mount *p; 2011 2012 for (p = mnt; p; p = next_mnt(p, mnt)) { 2013 int flags = p->mnt.mnt_flags; 2014 /* Don't allow unprivileged users to change mount flags */ 2015 flags |= MNT_LOCK_ATIME; 2016 2017 if (flags & MNT_READONLY) 2018 flags |= MNT_LOCK_READONLY; 2019 2020 if (flags & MNT_NODEV) 2021 flags |= MNT_LOCK_NODEV; 2022 2023 if (flags & MNT_NOSUID) 2024 flags |= MNT_LOCK_NOSUID; 2025 2026 if (flags & MNT_NOEXEC) 2027 flags |= MNT_LOCK_NOEXEC; 2028 /* Don't allow unprivileged users to reveal what is under a mount */ 2029 if (list_empty(&p->mnt_expire)) 2030 flags |= MNT_LOCKED; 2031 p->mnt.mnt_flags = flags; 2032 } 2033 } 2034 2035 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2036 { 2037 struct mount *p; 2038 2039 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2040 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2041 mnt_release_group_id(p); 2042 } 2043 } 2044 2045 static int invent_group_ids(struct mount *mnt, bool recurse) 2046 { 2047 struct mount *p; 2048 2049 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2050 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2051 int err = mnt_alloc_group_id(p); 2052 if (err) { 2053 cleanup_group_ids(mnt, p); 2054 return err; 2055 } 2056 } 2057 } 2058 2059 return 0; 2060 } 2061 2062 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2063 { 2064 unsigned int max = READ_ONCE(sysctl_mount_max); 2065 unsigned int mounts = 0, old, pending, sum; 2066 struct mount *p; 2067 2068 for (p = mnt; p; p = next_mnt(p, mnt)) 2069 mounts++; 2070 2071 old = ns->mounts; 2072 pending = ns->pending_mounts; 2073 sum = old + pending; 2074 if ((old > sum) || 2075 (pending > sum) || 2076 (max < sum) || 2077 (mounts > (max - sum))) 2078 return -ENOSPC; 2079 2080 ns->pending_mounts = pending + mounts; 2081 return 0; 2082 } 2083 2084 /* 2085 * @source_mnt : mount tree to be attached 2086 * @nd : place the mount tree @source_mnt is attached 2087 * @parent_nd : if non-null, detach the source_mnt from its parent and 2088 * store the parent mount and mountpoint dentry. 2089 * (done when source_mnt is moved) 2090 * 2091 * NOTE: in the table below explains the semantics when a source mount 2092 * of a given type is attached to a destination mount of a given type. 2093 * --------------------------------------------------------------------------- 2094 * | BIND MOUNT OPERATION | 2095 * |************************************************************************** 2096 * | source-->| shared | private | slave | unbindable | 2097 * | dest | | | | | 2098 * | | | | | | | 2099 * | v | | | | | 2100 * |************************************************************************** 2101 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2102 * | | | | | | 2103 * |non-shared| shared (+) | private | slave (*) | invalid | 2104 * *************************************************************************** 2105 * A bind operation clones the source mount and mounts the clone on the 2106 * destination mount. 2107 * 2108 * (++) the cloned mount is propagated to all the mounts in the propagation 2109 * tree of the destination mount and the cloned mount is added to 2110 * the peer group of the source mount. 2111 * (+) the cloned mount is created under the destination mount and is marked 2112 * as shared. The cloned mount is added to the peer group of the source 2113 * mount. 2114 * (+++) the mount is propagated to all the mounts in the propagation tree 2115 * of the destination mount and the cloned mount is made slave 2116 * of the same master as that of the source mount. The cloned mount 2117 * is marked as 'shared and slave'. 2118 * (*) the cloned mount is made a slave of the same master as that of the 2119 * source mount. 2120 * 2121 * --------------------------------------------------------------------------- 2122 * | MOVE MOUNT OPERATION | 2123 * |************************************************************************** 2124 * | source-->| shared | private | slave | unbindable | 2125 * | dest | | | | | 2126 * | | | | | | | 2127 * | v | | | | | 2128 * |************************************************************************** 2129 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2130 * | | | | | | 2131 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2132 * *************************************************************************** 2133 * 2134 * (+) the mount is moved to the destination. And is then propagated to 2135 * all the mounts in the propagation tree of the destination mount. 2136 * (+*) the mount is moved to the destination. 2137 * (+++) the mount is moved to the destination and is then propagated to 2138 * all the mounts belonging to the destination mount's propagation tree. 2139 * the mount is marked as 'shared and slave'. 2140 * (*) the mount continues to be a slave at the new location. 2141 * 2142 * if the source mount is a tree, the operations explained above is 2143 * applied to each mount in the tree. 2144 * Must be called without spinlocks held, since this function can sleep 2145 * in allocations. 2146 */ 2147 static int attach_recursive_mnt(struct mount *source_mnt, 2148 struct mount *dest_mnt, 2149 struct mountpoint *dest_mp, 2150 bool moving) 2151 { 2152 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2153 HLIST_HEAD(tree_list); 2154 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2155 struct mountpoint *smp; 2156 struct mount *child, *p; 2157 struct hlist_node *n; 2158 int err; 2159 2160 /* Preallocate a mountpoint in case the new mounts need 2161 * to be tucked under other mounts. 2162 */ 2163 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2164 if (IS_ERR(smp)) 2165 return PTR_ERR(smp); 2166 2167 /* Is there space to add these mounts to the mount namespace? */ 2168 if (!moving) { 2169 err = count_mounts(ns, source_mnt); 2170 if (err) 2171 goto out; 2172 } 2173 2174 if (IS_MNT_SHARED(dest_mnt)) { 2175 err = invent_group_ids(source_mnt, true); 2176 if (err) 2177 goto out; 2178 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2179 lock_mount_hash(); 2180 if (err) 2181 goto out_cleanup_ids; 2182 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2183 set_mnt_shared(p); 2184 } else { 2185 lock_mount_hash(); 2186 } 2187 if (moving) { 2188 unhash_mnt(source_mnt); 2189 attach_mnt(source_mnt, dest_mnt, dest_mp); 2190 touch_mnt_namespace(source_mnt->mnt_ns); 2191 } else { 2192 if (source_mnt->mnt_ns) { 2193 /* move from anon - the caller will destroy */ 2194 list_del_init(&source_mnt->mnt_ns->list); 2195 } 2196 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2197 commit_tree(source_mnt); 2198 } 2199 2200 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2201 struct mount *q; 2202 hlist_del_init(&child->mnt_hash); 2203 q = __lookup_mnt(&child->mnt_parent->mnt, 2204 child->mnt_mountpoint); 2205 if (q) 2206 mnt_change_mountpoint(child, smp, q); 2207 /* Notice when we are propagating across user namespaces */ 2208 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2209 lock_mnt_tree(child); 2210 child->mnt.mnt_flags &= ~MNT_LOCKED; 2211 commit_tree(child); 2212 } 2213 put_mountpoint(smp); 2214 unlock_mount_hash(); 2215 2216 return 0; 2217 2218 out_cleanup_ids: 2219 while (!hlist_empty(&tree_list)) { 2220 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2221 child->mnt_parent->mnt_ns->pending_mounts = 0; 2222 umount_tree(child, UMOUNT_SYNC); 2223 } 2224 unlock_mount_hash(); 2225 cleanup_group_ids(source_mnt, NULL); 2226 out: 2227 ns->pending_mounts = 0; 2228 2229 read_seqlock_excl(&mount_lock); 2230 put_mountpoint(smp); 2231 read_sequnlock_excl(&mount_lock); 2232 2233 return err; 2234 } 2235 2236 static struct mountpoint *lock_mount(struct path *path) 2237 { 2238 struct vfsmount *mnt; 2239 struct dentry *dentry = path->dentry; 2240 retry: 2241 inode_lock(dentry->d_inode); 2242 if (unlikely(cant_mount(dentry))) { 2243 inode_unlock(dentry->d_inode); 2244 return ERR_PTR(-ENOENT); 2245 } 2246 namespace_lock(); 2247 mnt = lookup_mnt(path); 2248 if (likely(!mnt)) { 2249 struct mountpoint *mp = get_mountpoint(dentry); 2250 if (IS_ERR(mp)) { 2251 namespace_unlock(); 2252 inode_unlock(dentry->d_inode); 2253 return mp; 2254 } 2255 return mp; 2256 } 2257 namespace_unlock(); 2258 inode_unlock(path->dentry->d_inode); 2259 path_put(path); 2260 path->mnt = mnt; 2261 dentry = path->dentry = dget(mnt->mnt_root); 2262 goto retry; 2263 } 2264 2265 static void unlock_mount(struct mountpoint *where) 2266 { 2267 struct dentry *dentry = where->m_dentry; 2268 2269 read_seqlock_excl(&mount_lock); 2270 put_mountpoint(where); 2271 read_sequnlock_excl(&mount_lock); 2272 2273 namespace_unlock(); 2274 inode_unlock(dentry->d_inode); 2275 } 2276 2277 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2278 { 2279 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2280 return -EINVAL; 2281 2282 if (d_is_dir(mp->m_dentry) != 2283 d_is_dir(mnt->mnt.mnt_root)) 2284 return -ENOTDIR; 2285 2286 return attach_recursive_mnt(mnt, p, mp, false); 2287 } 2288 2289 /* 2290 * Sanity check the flags to change_mnt_propagation. 2291 */ 2292 2293 static int flags_to_propagation_type(int ms_flags) 2294 { 2295 int type = ms_flags & ~(MS_REC | MS_SILENT); 2296 2297 /* Fail if any non-propagation flags are set */ 2298 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2299 return 0; 2300 /* Only one propagation flag should be set */ 2301 if (!is_power_of_2(type)) 2302 return 0; 2303 return type; 2304 } 2305 2306 /* 2307 * recursively change the type of the mountpoint. 2308 */ 2309 static int do_change_type(struct path *path, int ms_flags) 2310 { 2311 struct mount *m; 2312 struct mount *mnt = real_mount(path->mnt); 2313 int recurse = ms_flags & MS_REC; 2314 int type; 2315 int err = 0; 2316 2317 if (path->dentry != path->mnt->mnt_root) 2318 return -EINVAL; 2319 2320 type = flags_to_propagation_type(ms_flags); 2321 if (!type) 2322 return -EINVAL; 2323 2324 namespace_lock(); 2325 if (type == MS_SHARED) { 2326 err = invent_group_ids(mnt, recurse); 2327 if (err) 2328 goto out_unlock; 2329 } 2330 2331 lock_mount_hash(); 2332 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2333 change_mnt_propagation(m, type); 2334 unlock_mount_hash(); 2335 2336 out_unlock: 2337 namespace_unlock(); 2338 return err; 2339 } 2340 2341 static struct mount *__do_loopback(struct path *old_path, int recurse) 2342 { 2343 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2344 2345 if (IS_MNT_UNBINDABLE(old)) 2346 return mnt; 2347 2348 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2349 return mnt; 2350 2351 if (!recurse && has_locked_children(old, old_path->dentry)) 2352 return mnt; 2353 2354 if (recurse) 2355 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2356 else 2357 mnt = clone_mnt(old, old_path->dentry, 0); 2358 2359 if (!IS_ERR(mnt)) 2360 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2361 2362 return mnt; 2363 } 2364 2365 /* 2366 * do loopback mount. 2367 */ 2368 static int do_loopback(struct path *path, const char *old_name, 2369 int recurse) 2370 { 2371 struct path old_path; 2372 struct mount *mnt = NULL, *parent; 2373 struct mountpoint *mp; 2374 int err; 2375 if (!old_name || !*old_name) 2376 return -EINVAL; 2377 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2378 if (err) 2379 return err; 2380 2381 err = -EINVAL; 2382 if (mnt_ns_loop(old_path.dentry)) 2383 goto out; 2384 2385 mp = lock_mount(path); 2386 if (IS_ERR(mp)) { 2387 err = PTR_ERR(mp); 2388 goto out; 2389 } 2390 2391 parent = real_mount(path->mnt); 2392 if (!check_mnt(parent)) 2393 goto out2; 2394 2395 mnt = __do_loopback(&old_path, recurse); 2396 if (IS_ERR(mnt)) { 2397 err = PTR_ERR(mnt); 2398 goto out2; 2399 } 2400 2401 err = graft_tree(mnt, parent, mp); 2402 if (err) { 2403 lock_mount_hash(); 2404 umount_tree(mnt, UMOUNT_SYNC); 2405 unlock_mount_hash(); 2406 } 2407 out2: 2408 unlock_mount(mp); 2409 out: 2410 path_put(&old_path); 2411 return err; 2412 } 2413 2414 static struct file *open_detached_copy(struct path *path, bool recursive) 2415 { 2416 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2417 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2418 struct mount *mnt, *p; 2419 struct file *file; 2420 2421 if (IS_ERR(ns)) 2422 return ERR_CAST(ns); 2423 2424 namespace_lock(); 2425 mnt = __do_loopback(path, recursive); 2426 if (IS_ERR(mnt)) { 2427 namespace_unlock(); 2428 free_mnt_ns(ns); 2429 return ERR_CAST(mnt); 2430 } 2431 2432 lock_mount_hash(); 2433 for (p = mnt; p; p = next_mnt(p, mnt)) { 2434 p->mnt_ns = ns; 2435 ns->mounts++; 2436 } 2437 ns->root = mnt; 2438 list_add_tail(&ns->list, &mnt->mnt_list); 2439 mntget(&mnt->mnt); 2440 unlock_mount_hash(); 2441 namespace_unlock(); 2442 2443 mntput(path->mnt); 2444 path->mnt = &mnt->mnt; 2445 file = dentry_open(path, O_PATH, current_cred()); 2446 if (IS_ERR(file)) 2447 dissolve_on_fput(path->mnt); 2448 else 2449 file->f_mode |= FMODE_NEED_UNMOUNT; 2450 return file; 2451 } 2452 2453 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2454 { 2455 struct file *file; 2456 struct path path; 2457 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2458 bool detached = flags & OPEN_TREE_CLONE; 2459 int error; 2460 int fd; 2461 2462 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2463 2464 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2465 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2466 OPEN_TREE_CLOEXEC)) 2467 return -EINVAL; 2468 2469 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2470 return -EINVAL; 2471 2472 if (flags & AT_NO_AUTOMOUNT) 2473 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2474 if (flags & AT_SYMLINK_NOFOLLOW) 2475 lookup_flags &= ~LOOKUP_FOLLOW; 2476 if (flags & AT_EMPTY_PATH) 2477 lookup_flags |= LOOKUP_EMPTY; 2478 2479 if (detached && !may_mount()) 2480 return -EPERM; 2481 2482 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2483 if (fd < 0) 2484 return fd; 2485 2486 error = user_path_at(dfd, filename, lookup_flags, &path); 2487 if (unlikely(error)) { 2488 file = ERR_PTR(error); 2489 } else { 2490 if (detached) 2491 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2492 else 2493 file = dentry_open(&path, O_PATH, current_cred()); 2494 path_put(&path); 2495 } 2496 if (IS_ERR(file)) { 2497 put_unused_fd(fd); 2498 return PTR_ERR(file); 2499 } 2500 fd_install(fd, file); 2501 return fd; 2502 } 2503 2504 /* 2505 * Don't allow locked mount flags to be cleared. 2506 * 2507 * No locks need to be held here while testing the various MNT_LOCK 2508 * flags because those flags can never be cleared once they are set. 2509 */ 2510 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2511 { 2512 unsigned int fl = mnt->mnt.mnt_flags; 2513 2514 if ((fl & MNT_LOCK_READONLY) && 2515 !(mnt_flags & MNT_READONLY)) 2516 return false; 2517 2518 if ((fl & MNT_LOCK_NODEV) && 2519 !(mnt_flags & MNT_NODEV)) 2520 return false; 2521 2522 if ((fl & MNT_LOCK_NOSUID) && 2523 !(mnt_flags & MNT_NOSUID)) 2524 return false; 2525 2526 if ((fl & MNT_LOCK_NOEXEC) && 2527 !(mnt_flags & MNT_NOEXEC)) 2528 return false; 2529 2530 if ((fl & MNT_LOCK_ATIME) && 2531 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2532 return false; 2533 2534 return true; 2535 } 2536 2537 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2538 { 2539 bool readonly_request = (mnt_flags & MNT_READONLY); 2540 2541 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2542 return 0; 2543 2544 if (readonly_request) 2545 return mnt_make_readonly(mnt); 2546 2547 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2548 return 0; 2549 } 2550 2551 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2552 { 2553 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2554 mnt->mnt.mnt_flags = mnt_flags; 2555 touch_mnt_namespace(mnt->mnt_ns); 2556 } 2557 2558 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2559 { 2560 struct super_block *sb = mnt->mnt_sb; 2561 2562 if (!__mnt_is_readonly(mnt) && 2563 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2564 char *buf = (char *)__get_free_page(GFP_KERNEL); 2565 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2566 struct tm tm; 2567 2568 time64_to_tm(sb->s_time_max, 0, &tm); 2569 2570 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2571 sb->s_type->name, 2572 is_mounted(mnt) ? "remounted" : "mounted", 2573 mntpath, 2574 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2575 2576 free_page((unsigned long)buf); 2577 } 2578 } 2579 2580 /* 2581 * Handle reconfiguration of the mountpoint only without alteration of the 2582 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2583 * to mount(2). 2584 */ 2585 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2586 { 2587 struct super_block *sb = path->mnt->mnt_sb; 2588 struct mount *mnt = real_mount(path->mnt); 2589 int ret; 2590 2591 if (!check_mnt(mnt)) 2592 return -EINVAL; 2593 2594 if (path->dentry != mnt->mnt.mnt_root) 2595 return -EINVAL; 2596 2597 if (!can_change_locked_flags(mnt, mnt_flags)) 2598 return -EPERM; 2599 2600 /* 2601 * We're only checking whether the superblock is read-only not 2602 * changing it, so only take down_read(&sb->s_umount). 2603 */ 2604 down_read(&sb->s_umount); 2605 lock_mount_hash(); 2606 ret = change_mount_ro_state(mnt, mnt_flags); 2607 if (ret == 0) 2608 set_mount_attributes(mnt, mnt_flags); 2609 unlock_mount_hash(); 2610 up_read(&sb->s_umount); 2611 2612 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2613 2614 return ret; 2615 } 2616 2617 /* 2618 * change filesystem flags. dir should be a physical root of filesystem. 2619 * If you've mounted a non-root directory somewhere and want to do remount 2620 * on it - tough luck. 2621 */ 2622 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2623 int mnt_flags, void *data) 2624 { 2625 int err; 2626 struct super_block *sb = path->mnt->mnt_sb; 2627 struct mount *mnt = real_mount(path->mnt); 2628 struct fs_context *fc; 2629 2630 if (!check_mnt(mnt)) 2631 return -EINVAL; 2632 2633 if (path->dentry != path->mnt->mnt_root) 2634 return -EINVAL; 2635 2636 if (!can_change_locked_flags(mnt, mnt_flags)) 2637 return -EPERM; 2638 2639 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2640 if (IS_ERR(fc)) 2641 return PTR_ERR(fc); 2642 2643 fc->oldapi = true; 2644 err = parse_monolithic_mount_data(fc, data); 2645 if (!err) { 2646 down_write(&sb->s_umount); 2647 err = -EPERM; 2648 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2649 err = reconfigure_super(fc); 2650 if (!err) { 2651 lock_mount_hash(); 2652 set_mount_attributes(mnt, mnt_flags); 2653 unlock_mount_hash(); 2654 } 2655 } 2656 up_write(&sb->s_umount); 2657 } 2658 2659 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2660 2661 put_fs_context(fc); 2662 return err; 2663 } 2664 2665 static inline int tree_contains_unbindable(struct mount *mnt) 2666 { 2667 struct mount *p; 2668 for (p = mnt; p; p = next_mnt(p, mnt)) { 2669 if (IS_MNT_UNBINDABLE(p)) 2670 return 1; 2671 } 2672 return 0; 2673 } 2674 2675 /* 2676 * Check that there aren't references to earlier/same mount namespaces in the 2677 * specified subtree. Such references can act as pins for mount namespaces 2678 * that aren't checked by the mount-cycle checking code, thereby allowing 2679 * cycles to be made. 2680 */ 2681 static bool check_for_nsfs_mounts(struct mount *subtree) 2682 { 2683 struct mount *p; 2684 bool ret = false; 2685 2686 lock_mount_hash(); 2687 for (p = subtree; p; p = next_mnt(p, subtree)) 2688 if (mnt_ns_loop(p->mnt.mnt_root)) 2689 goto out; 2690 2691 ret = true; 2692 out: 2693 unlock_mount_hash(); 2694 return ret; 2695 } 2696 2697 static int do_set_group(struct path *from_path, struct path *to_path) 2698 { 2699 struct mount *from, *to; 2700 int err; 2701 2702 from = real_mount(from_path->mnt); 2703 to = real_mount(to_path->mnt); 2704 2705 namespace_lock(); 2706 2707 err = -EINVAL; 2708 /* To and From must be mounted */ 2709 if (!is_mounted(&from->mnt)) 2710 goto out; 2711 if (!is_mounted(&to->mnt)) 2712 goto out; 2713 2714 err = -EPERM; 2715 /* We should be allowed to modify mount namespaces of both mounts */ 2716 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2717 goto out; 2718 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2719 goto out; 2720 2721 err = -EINVAL; 2722 /* To and From paths should be mount roots */ 2723 if (from_path->dentry != from_path->mnt->mnt_root) 2724 goto out; 2725 if (to_path->dentry != to_path->mnt->mnt_root) 2726 goto out; 2727 2728 /* Setting sharing groups is only allowed across same superblock */ 2729 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2730 goto out; 2731 2732 /* From mount root should be wider than To mount root */ 2733 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2734 goto out; 2735 2736 /* From mount should not have locked children in place of To's root */ 2737 if (has_locked_children(from, to->mnt.mnt_root)) 2738 goto out; 2739 2740 /* Setting sharing groups is only allowed on private mounts */ 2741 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2742 goto out; 2743 2744 /* From should not be private */ 2745 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2746 goto out; 2747 2748 if (IS_MNT_SLAVE(from)) { 2749 struct mount *m = from->mnt_master; 2750 2751 list_add(&to->mnt_slave, &m->mnt_slave_list); 2752 to->mnt_master = m; 2753 } 2754 2755 if (IS_MNT_SHARED(from)) { 2756 to->mnt_group_id = from->mnt_group_id; 2757 list_add(&to->mnt_share, &from->mnt_share); 2758 lock_mount_hash(); 2759 set_mnt_shared(to); 2760 unlock_mount_hash(); 2761 } 2762 2763 err = 0; 2764 out: 2765 namespace_unlock(); 2766 return err; 2767 } 2768 2769 static int do_move_mount(struct path *old_path, struct path *new_path) 2770 { 2771 struct mnt_namespace *ns; 2772 struct mount *p; 2773 struct mount *old; 2774 struct mount *parent; 2775 struct mountpoint *mp, *old_mp; 2776 int err; 2777 bool attached; 2778 2779 mp = lock_mount(new_path); 2780 if (IS_ERR(mp)) 2781 return PTR_ERR(mp); 2782 2783 old = real_mount(old_path->mnt); 2784 p = real_mount(new_path->mnt); 2785 parent = old->mnt_parent; 2786 attached = mnt_has_parent(old); 2787 old_mp = old->mnt_mp; 2788 ns = old->mnt_ns; 2789 2790 err = -EINVAL; 2791 /* The mountpoint must be in our namespace. */ 2792 if (!check_mnt(p)) 2793 goto out; 2794 2795 /* The thing moved must be mounted... */ 2796 if (!is_mounted(&old->mnt)) 2797 goto out; 2798 2799 /* ... and either ours or the root of anon namespace */ 2800 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2801 goto out; 2802 2803 if (old->mnt.mnt_flags & MNT_LOCKED) 2804 goto out; 2805 2806 if (old_path->dentry != old_path->mnt->mnt_root) 2807 goto out; 2808 2809 if (d_is_dir(new_path->dentry) != 2810 d_is_dir(old_path->dentry)) 2811 goto out; 2812 /* 2813 * Don't move a mount residing in a shared parent. 2814 */ 2815 if (attached && IS_MNT_SHARED(parent)) 2816 goto out; 2817 /* 2818 * Don't move a mount tree containing unbindable mounts to a destination 2819 * mount which is shared. 2820 */ 2821 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2822 goto out; 2823 err = -ELOOP; 2824 if (!check_for_nsfs_mounts(old)) 2825 goto out; 2826 for (; mnt_has_parent(p); p = p->mnt_parent) 2827 if (p == old) 2828 goto out; 2829 2830 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2831 attached); 2832 if (err) 2833 goto out; 2834 2835 /* if the mount is moved, it should no longer be expire 2836 * automatically */ 2837 list_del_init(&old->mnt_expire); 2838 if (attached) 2839 put_mountpoint(old_mp); 2840 out: 2841 unlock_mount(mp); 2842 if (!err) { 2843 if (attached) 2844 mntput_no_expire(parent); 2845 else 2846 free_mnt_ns(ns); 2847 } 2848 return err; 2849 } 2850 2851 static int do_move_mount_old(struct path *path, const char *old_name) 2852 { 2853 struct path old_path; 2854 int err; 2855 2856 if (!old_name || !*old_name) 2857 return -EINVAL; 2858 2859 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2860 if (err) 2861 return err; 2862 2863 err = do_move_mount(&old_path, path); 2864 path_put(&old_path); 2865 return err; 2866 } 2867 2868 /* 2869 * add a mount into a namespace's mount tree 2870 */ 2871 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2872 struct path *path, int mnt_flags) 2873 { 2874 struct mount *parent = real_mount(path->mnt); 2875 2876 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2877 2878 if (unlikely(!check_mnt(parent))) { 2879 /* that's acceptable only for automounts done in private ns */ 2880 if (!(mnt_flags & MNT_SHRINKABLE)) 2881 return -EINVAL; 2882 /* ... and for those we'd better have mountpoint still alive */ 2883 if (!parent->mnt_ns) 2884 return -EINVAL; 2885 } 2886 2887 /* Refuse the same filesystem on the same mount point */ 2888 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2889 path->mnt->mnt_root == path->dentry) 2890 return -EBUSY; 2891 2892 if (d_is_symlink(newmnt->mnt.mnt_root)) 2893 return -EINVAL; 2894 2895 newmnt->mnt.mnt_flags = mnt_flags; 2896 return graft_tree(newmnt, parent, mp); 2897 } 2898 2899 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2900 2901 /* 2902 * Create a new mount using a superblock configuration and request it 2903 * be added to the namespace tree. 2904 */ 2905 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2906 unsigned int mnt_flags) 2907 { 2908 struct vfsmount *mnt; 2909 struct mountpoint *mp; 2910 struct super_block *sb = fc->root->d_sb; 2911 int error; 2912 2913 error = security_sb_kern_mount(sb); 2914 if (!error && mount_too_revealing(sb, &mnt_flags)) 2915 error = -EPERM; 2916 2917 if (unlikely(error)) { 2918 fc_drop_locked(fc); 2919 return error; 2920 } 2921 2922 up_write(&sb->s_umount); 2923 2924 mnt = vfs_create_mount(fc); 2925 if (IS_ERR(mnt)) 2926 return PTR_ERR(mnt); 2927 2928 mnt_warn_timestamp_expiry(mountpoint, mnt); 2929 2930 mp = lock_mount(mountpoint); 2931 if (IS_ERR(mp)) { 2932 mntput(mnt); 2933 return PTR_ERR(mp); 2934 } 2935 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2936 unlock_mount(mp); 2937 if (error < 0) 2938 mntput(mnt); 2939 return error; 2940 } 2941 2942 /* 2943 * create a new mount for userspace and request it to be added into the 2944 * namespace's tree 2945 */ 2946 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2947 int mnt_flags, const char *name, void *data) 2948 { 2949 struct file_system_type *type; 2950 struct fs_context *fc; 2951 const char *subtype = NULL; 2952 int err = 0; 2953 2954 if (!fstype) 2955 return -EINVAL; 2956 2957 type = get_fs_type(fstype); 2958 if (!type) 2959 return -ENODEV; 2960 2961 if (type->fs_flags & FS_HAS_SUBTYPE) { 2962 subtype = strchr(fstype, '.'); 2963 if (subtype) { 2964 subtype++; 2965 if (!*subtype) { 2966 put_filesystem(type); 2967 return -EINVAL; 2968 } 2969 } 2970 } 2971 2972 fc = fs_context_for_mount(type, sb_flags); 2973 put_filesystem(type); 2974 if (IS_ERR(fc)) 2975 return PTR_ERR(fc); 2976 2977 if (subtype) 2978 err = vfs_parse_fs_string(fc, "subtype", 2979 subtype, strlen(subtype)); 2980 if (!err && name) 2981 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 2982 if (!err) 2983 err = parse_monolithic_mount_data(fc, data); 2984 if (!err && !mount_capable(fc)) 2985 err = -EPERM; 2986 if (!err) 2987 err = vfs_get_tree(fc); 2988 if (!err) 2989 err = do_new_mount_fc(fc, path, mnt_flags); 2990 2991 put_fs_context(fc); 2992 return err; 2993 } 2994 2995 int finish_automount(struct vfsmount *m, struct path *path) 2996 { 2997 struct dentry *dentry = path->dentry; 2998 struct mountpoint *mp; 2999 struct mount *mnt; 3000 int err; 3001 3002 if (!m) 3003 return 0; 3004 if (IS_ERR(m)) 3005 return PTR_ERR(m); 3006 3007 mnt = real_mount(m); 3008 /* The new mount record should have at least 2 refs to prevent it being 3009 * expired before we get a chance to add it 3010 */ 3011 BUG_ON(mnt_get_count(mnt) < 2); 3012 3013 if (m->mnt_sb == path->mnt->mnt_sb && 3014 m->mnt_root == dentry) { 3015 err = -ELOOP; 3016 goto discard; 3017 } 3018 3019 /* 3020 * we don't want to use lock_mount() - in this case finding something 3021 * that overmounts our mountpoint to be means "quitely drop what we've 3022 * got", not "try to mount it on top". 3023 */ 3024 inode_lock(dentry->d_inode); 3025 namespace_lock(); 3026 if (unlikely(cant_mount(dentry))) { 3027 err = -ENOENT; 3028 goto discard_locked; 3029 } 3030 rcu_read_lock(); 3031 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3032 rcu_read_unlock(); 3033 err = 0; 3034 goto discard_locked; 3035 } 3036 rcu_read_unlock(); 3037 mp = get_mountpoint(dentry); 3038 if (IS_ERR(mp)) { 3039 err = PTR_ERR(mp); 3040 goto discard_locked; 3041 } 3042 3043 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3044 unlock_mount(mp); 3045 if (unlikely(err)) 3046 goto discard; 3047 mntput(m); 3048 return 0; 3049 3050 discard_locked: 3051 namespace_unlock(); 3052 inode_unlock(dentry->d_inode); 3053 discard: 3054 /* remove m from any expiration list it may be on */ 3055 if (!list_empty(&mnt->mnt_expire)) { 3056 namespace_lock(); 3057 list_del_init(&mnt->mnt_expire); 3058 namespace_unlock(); 3059 } 3060 mntput(m); 3061 mntput(m); 3062 return err; 3063 } 3064 3065 /** 3066 * mnt_set_expiry - Put a mount on an expiration list 3067 * @mnt: The mount to list. 3068 * @expiry_list: The list to add the mount to. 3069 */ 3070 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3071 { 3072 namespace_lock(); 3073 3074 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3075 3076 namespace_unlock(); 3077 } 3078 EXPORT_SYMBOL(mnt_set_expiry); 3079 3080 /* 3081 * process a list of expirable mountpoints with the intent of discarding any 3082 * mountpoints that aren't in use and haven't been touched since last we came 3083 * here 3084 */ 3085 void mark_mounts_for_expiry(struct list_head *mounts) 3086 { 3087 struct mount *mnt, *next; 3088 LIST_HEAD(graveyard); 3089 3090 if (list_empty(mounts)) 3091 return; 3092 3093 namespace_lock(); 3094 lock_mount_hash(); 3095 3096 /* extract from the expiration list every vfsmount that matches the 3097 * following criteria: 3098 * - only referenced by its parent vfsmount 3099 * - still marked for expiry (marked on the last call here; marks are 3100 * cleared by mntput()) 3101 */ 3102 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3103 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3104 propagate_mount_busy(mnt, 1)) 3105 continue; 3106 list_move(&mnt->mnt_expire, &graveyard); 3107 } 3108 while (!list_empty(&graveyard)) { 3109 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3110 touch_mnt_namespace(mnt->mnt_ns); 3111 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3112 } 3113 unlock_mount_hash(); 3114 namespace_unlock(); 3115 } 3116 3117 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3118 3119 /* 3120 * Ripoff of 'select_parent()' 3121 * 3122 * search the list of submounts for a given mountpoint, and move any 3123 * shrinkable submounts to the 'graveyard' list. 3124 */ 3125 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3126 { 3127 struct mount *this_parent = parent; 3128 struct list_head *next; 3129 int found = 0; 3130 3131 repeat: 3132 next = this_parent->mnt_mounts.next; 3133 resume: 3134 while (next != &this_parent->mnt_mounts) { 3135 struct list_head *tmp = next; 3136 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3137 3138 next = tmp->next; 3139 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3140 continue; 3141 /* 3142 * Descend a level if the d_mounts list is non-empty. 3143 */ 3144 if (!list_empty(&mnt->mnt_mounts)) { 3145 this_parent = mnt; 3146 goto repeat; 3147 } 3148 3149 if (!propagate_mount_busy(mnt, 1)) { 3150 list_move_tail(&mnt->mnt_expire, graveyard); 3151 found++; 3152 } 3153 } 3154 /* 3155 * All done at this level ... ascend and resume the search 3156 */ 3157 if (this_parent != parent) { 3158 next = this_parent->mnt_child.next; 3159 this_parent = this_parent->mnt_parent; 3160 goto resume; 3161 } 3162 return found; 3163 } 3164 3165 /* 3166 * process a list of expirable mountpoints with the intent of discarding any 3167 * submounts of a specific parent mountpoint 3168 * 3169 * mount_lock must be held for write 3170 */ 3171 static void shrink_submounts(struct mount *mnt) 3172 { 3173 LIST_HEAD(graveyard); 3174 struct mount *m; 3175 3176 /* extract submounts of 'mountpoint' from the expiration list */ 3177 while (select_submounts(mnt, &graveyard)) { 3178 while (!list_empty(&graveyard)) { 3179 m = list_first_entry(&graveyard, struct mount, 3180 mnt_expire); 3181 touch_mnt_namespace(m->mnt_ns); 3182 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3183 } 3184 } 3185 } 3186 3187 static void *copy_mount_options(const void __user * data) 3188 { 3189 char *copy; 3190 unsigned left, offset; 3191 3192 if (!data) 3193 return NULL; 3194 3195 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3196 if (!copy) 3197 return ERR_PTR(-ENOMEM); 3198 3199 left = copy_from_user(copy, data, PAGE_SIZE); 3200 3201 /* 3202 * Not all architectures have an exact copy_from_user(). Resort to 3203 * byte at a time. 3204 */ 3205 offset = PAGE_SIZE - left; 3206 while (left) { 3207 char c; 3208 if (get_user(c, (const char __user *)data + offset)) 3209 break; 3210 copy[offset] = c; 3211 left--; 3212 offset++; 3213 } 3214 3215 if (left == PAGE_SIZE) { 3216 kfree(copy); 3217 return ERR_PTR(-EFAULT); 3218 } 3219 3220 return copy; 3221 } 3222 3223 static char *copy_mount_string(const void __user *data) 3224 { 3225 return data ? strndup_user(data, PATH_MAX) : NULL; 3226 } 3227 3228 /* 3229 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3230 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3231 * 3232 * data is a (void *) that can point to any structure up to 3233 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3234 * information (or be NULL). 3235 * 3236 * Pre-0.97 versions of mount() didn't have a flags word. 3237 * When the flags word was introduced its top half was required 3238 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3239 * Therefore, if this magic number is present, it carries no information 3240 * and must be discarded. 3241 */ 3242 int path_mount(const char *dev_name, struct path *path, 3243 const char *type_page, unsigned long flags, void *data_page) 3244 { 3245 unsigned int mnt_flags = 0, sb_flags; 3246 int ret; 3247 3248 /* Discard magic */ 3249 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3250 flags &= ~MS_MGC_MSK; 3251 3252 /* Basic sanity checks */ 3253 if (data_page) 3254 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3255 3256 if (flags & MS_NOUSER) 3257 return -EINVAL; 3258 3259 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3260 if (ret) 3261 return ret; 3262 if (!may_mount()) 3263 return -EPERM; 3264 if (flags & SB_MANDLOCK) 3265 warn_mandlock(); 3266 3267 /* Default to relatime unless overriden */ 3268 if (!(flags & MS_NOATIME)) 3269 mnt_flags |= MNT_RELATIME; 3270 3271 /* Separate the per-mountpoint flags */ 3272 if (flags & MS_NOSUID) 3273 mnt_flags |= MNT_NOSUID; 3274 if (flags & MS_NODEV) 3275 mnt_flags |= MNT_NODEV; 3276 if (flags & MS_NOEXEC) 3277 mnt_flags |= MNT_NOEXEC; 3278 if (flags & MS_NOATIME) 3279 mnt_flags |= MNT_NOATIME; 3280 if (flags & MS_NODIRATIME) 3281 mnt_flags |= MNT_NODIRATIME; 3282 if (flags & MS_STRICTATIME) 3283 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3284 if (flags & MS_RDONLY) 3285 mnt_flags |= MNT_READONLY; 3286 if (flags & MS_NOSYMFOLLOW) 3287 mnt_flags |= MNT_NOSYMFOLLOW; 3288 3289 /* The default atime for remount is preservation */ 3290 if ((flags & MS_REMOUNT) && 3291 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3292 MS_STRICTATIME)) == 0)) { 3293 mnt_flags &= ~MNT_ATIME_MASK; 3294 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3295 } 3296 3297 sb_flags = flags & (SB_RDONLY | 3298 SB_SYNCHRONOUS | 3299 SB_MANDLOCK | 3300 SB_DIRSYNC | 3301 SB_SILENT | 3302 SB_POSIXACL | 3303 SB_LAZYTIME | 3304 SB_I_VERSION); 3305 3306 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3307 return do_reconfigure_mnt(path, mnt_flags); 3308 if (flags & MS_REMOUNT) 3309 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3310 if (flags & MS_BIND) 3311 return do_loopback(path, dev_name, flags & MS_REC); 3312 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3313 return do_change_type(path, flags); 3314 if (flags & MS_MOVE) 3315 return do_move_mount_old(path, dev_name); 3316 3317 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3318 data_page); 3319 } 3320 3321 long do_mount(const char *dev_name, const char __user *dir_name, 3322 const char *type_page, unsigned long flags, void *data_page) 3323 { 3324 struct path path; 3325 int ret; 3326 3327 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3328 if (ret) 3329 return ret; 3330 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3331 path_put(&path); 3332 return ret; 3333 } 3334 3335 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3336 { 3337 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3338 } 3339 3340 static void dec_mnt_namespaces(struct ucounts *ucounts) 3341 { 3342 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3343 } 3344 3345 static void free_mnt_ns(struct mnt_namespace *ns) 3346 { 3347 if (!is_anon_ns(ns)) 3348 ns_free_inum(&ns->ns); 3349 dec_mnt_namespaces(ns->ucounts); 3350 put_user_ns(ns->user_ns); 3351 kfree(ns); 3352 } 3353 3354 /* 3355 * Assign a sequence number so we can detect when we attempt to bind 3356 * mount a reference to an older mount namespace into the current 3357 * mount namespace, preventing reference counting loops. A 64bit 3358 * number incrementing at 10Ghz will take 12,427 years to wrap which 3359 * is effectively never, so we can ignore the possibility. 3360 */ 3361 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3362 3363 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3364 { 3365 struct mnt_namespace *new_ns; 3366 struct ucounts *ucounts; 3367 int ret; 3368 3369 ucounts = inc_mnt_namespaces(user_ns); 3370 if (!ucounts) 3371 return ERR_PTR(-ENOSPC); 3372 3373 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 3374 if (!new_ns) { 3375 dec_mnt_namespaces(ucounts); 3376 return ERR_PTR(-ENOMEM); 3377 } 3378 if (!anon) { 3379 ret = ns_alloc_inum(&new_ns->ns); 3380 if (ret) { 3381 kfree(new_ns); 3382 dec_mnt_namespaces(ucounts); 3383 return ERR_PTR(ret); 3384 } 3385 } 3386 new_ns->ns.ops = &mntns_operations; 3387 if (!anon) 3388 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3389 refcount_set(&new_ns->ns.count, 1); 3390 INIT_LIST_HEAD(&new_ns->list); 3391 init_waitqueue_head(&new_ns->poll); 3392 spin_lock_init(&new_ns->ns_lock); 3393 new_ns->user_ns = get_user_ns(user_ns); 3394 new_ns->ucounts = ucounts; 3395 return new_ns; 3396 } 3397 3398 __latent_entropy 3399 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3400 struct user_namespace *user_ns, struct fs_struct *new_fs) 3401 { 3402 struct mnt_namespace *new_ns; 3403 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3404 struct mount *p, *q; 3405 struct mount *old; 3406 struct mount *new; 3407 int copy_flags; 3408 3409 BUG_ON(!ns); 3410 3411 if (likely(!(flags & CLONE_NEWNS))) { 3412 get_mnt_ns(ns); 3413 return ns; 3414 } 3415 3416 old = ns->root; 3417 3418 new_ns = alloc_mnt_ns(user_ns, false); 3419 if (IS_ERR(new_ns)) 3420 return new_ns; 3421 3422 namespace_lock(); 3423 /* First pass: copy the tree topology */ 3424 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3425 if (user_ns != ns->user_ns) 3426 copy_flags |= CL_SHARED_TO_SLAVE; 3427 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3428 if (IS_ERR(new)) { 3429 namespace_unlock(); 3430 free_mnt_ns(new_ns); 3431 return ERR_CAST(new); 3432 } 3433 if (user_ns != ns->user_ns) { 3434 lock_mount_hash(); 3435 lock_mnt_tree(new); 3436 unlock_mount_hash(); 3437 } 3438 new_ns->root = new; 3439 list_add_tail(&new_ns->list, &new->mnt_list); 3440 3441 /* 3442 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3443 * as belonging to new namespace. We have already acquired a private 3444 * fs_struct, so tsk->fs->lock is not needed. 3445 */ 3446 p = old; 3447 q = new; 3448 while (p) { 3449 q->mnt_ns = new_ns; 3450 new_ns->mounts++; 3451 if (new_fs) { 3452 if (&p->mnt == new_fs->root.mnt) { 3453 new_fs->root.mnt = mntget(&q->mnt); 3454 rootmnt = &p->mnt; 3455 } 3456 if (&p->mnt == new_fs->pwd.mnt) { 3457 new_fs->pwd.mnt = mntget(&q->mnt); 3458 pwdmnt = &p->mnt; 3459 } 3460 } 3461 p = next_mnt(p, old); 3462 q = next_mnt(q, new); 3463 if (!q) 3464 break; 3465 while (p->mnt.mnt_root != q->mnt.mnt_root) 3466 p = next_mnt(p, old); 3467 } 3468 namespace_unlock(); 3469 3470 if (rootmnt) 3471 mntput(rootmnt); 3472 if (pwdmnt) 3473 mntput(pwdmnt); 3474 3475 return new_ns; 3476 } 3477 3478 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3479 { 3480 struct mount *mnt = real_mount(m); 3481 struct mnt_namespace *ns; 3482 struct super_block *s; 3483 struct path path; 3484 int err; 3485 3486 ns = alloc_mnt_ns(&init_user_ns, true); 3487 if (IS_ERR(ns)) { 3488 mntput(m); 3489 return ERR_CAST(ns); 3490 } 3491 mnt->mnt_ns = ns; 3492 ns->root = mnt; 3493 ns->mounts++; 3494 list_add(&mnt->mnt_list, &ns->list); 3495 3496 err = vfs_path_lookup(m->mnt_root, m, 3497 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3498 3499 put_mnt_ns(ns); 3500 3501 if (err) 3502 return ERR_PTR(err); 3503 3504 /* trade a vfsmount reference for active sb one */ 3505 s = path.mnt->mnt_sb; 3506 atomic_inc(&s->s_active); 3507 mntput(path.mnt); 3508 /* lock the sucker */ 3509 down_write(&s->s_umount); 3510 /* ... and return the root of (sub)tree on it */ 3511 return path.dentry; 3512 } 3513 EXPORT_SYMBOL(mount_subtree); 3514 3515 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3516 char __user *, type, unsigned long, flags, void __user *, data) 3517 { 3518 int ret; 3519 char *kernel_type; 3520 char *kernel_dev; 3521 void *options; 3522 3523 kernel_type = copy_mount_string(type); 3524 ret = PTR_ERR(kernel_type); 3525 if (IS_ERR(kernel_type)) 3526 goto out_type; 3527 3528 kernel_dev = copy_mount_string(dev_name); 3529 ret = PTR_ERR(kernel_dev); 3530 if (IS_ERR(kernel_dev)) 3531 goto out_dev; 3532 3533 options = copy_mount_options(data); 3534 ret = PTR_ERR(options); 3535 if (IS_ERR(options)) 3536 goto out_data; 3537 3538 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3539 3540 kfree(options); 3541 out_data: 3542 kfree(kernel_dev); 3543 out_dev: 3544 kfree(kernel_type); 3545 out_type: 3546 return ret; 3547 } 3548 3549 #define FSMOUNT_VALID_FLAGS \ 3550 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3551 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3552 MOUNT_ATTR_NOSYMFOLLOW) 3553 3554 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3555 3556 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3557 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3558 3559 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3560 { 3561 unsigned int mnt_flags = 0; 3562 3563 if (attr_flags & MOUNT_ATTR_RDONLY) 3564 mnt_flags |= MNT_READONLY; 3565 if (attr_flags & MOUNT_ATTR_NOSUID) 3566 mnt_flags |= MNT_NOSUID; 3567 if (attr_flags & MOUNT_ATTR_NODEV) 3568 mnt_flags |= MNT_NODEV; 3569 if (attr_flags & MOUNT_ATTR_NOEXEC) 3570 mnt_flags |= MNT_NOEXEC; 3571 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3572 mnt_flags |= MNT_NODIRATIME; 3573 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3574 mnt_flags |= MNT_NOSYMFOLLOW; 3575 3576 return mnt_flags; 3577 } 3578 3579 /* 3580 * Create a kernel mount representation for a new, prepared superblock 3581 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3582 */ 3583 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3584 unsigned int, attr_flags) 3585 { 3586 struct mnt_namespace *ns; 3587 struct fs_context *fc; 3588 struct file *file; 3589 struct path newmount; 3590 struct mount *mnt; 3591 struct fd f; 3592 unsigned int mnt_flags = 0; 3593 long ret; 3594 3595 if (!may_mount()) 3596 return -EPERM; 3597 3598 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3599 return -EINVAL; 3600 3601 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3602 return -EINVAL; 3603 3604 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3605 3606 switch (attr_flags & MOUNT_ATTR__ATIME) { 3607 case MOUNT_ATTR_STRICTATIME: 3608 break; 3609 case MOUNT_ATTR_NOATIME: 3610 mnt_flags |= MNT_NOATIME; 3611 break; 3612 case MOUNT_ATTR_RELATIME: 3613 mnt_flags |= MNT_RELATIME; 3614 break; 3615 default: 3616 return -EINVAL; 3617 } 3618 3619 f = fdget(fs_fd); 3620 if (!f.file) 3621 return -EBADF; 3622 3623 ret = -EINVAL; 3624 if (f.file->f_op != &fscontext_fops) 3625 goto err_fsfd; 3626 3627 fc = f.file->private_data; 3628 3629 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3630 if (ret < 0) 3631 goto err_fsfd; 3632 3633 /* There must be a valid superblock or we can't mount it */ 3634 ret = -EINVAL; 3635 if (!fc->root) 3636 goto err_unlock; 3637 3638 ret = -EPERM; 3639 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3640 pr_warn("VFS: Mount too revealing\n"); 3641 goto err_unlock; 3642 } 3643 3644 ret = -EBUSY; 3645 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3646 goto err_unlock; 3647 3648 if (fc->sb_flags & SB_MANDLOCK) 3649 warn_mandlock(); 3650 3651 newmount.mnt = vfs_create_mount(fc); 3652 if (IS_ERR(newmount.mnt)) { 3653 ret = PTR_ERR(newmount.mnt); 3654 goto err_unlock; 3655 } 3656 newmount.dentry = dget(fc->root); 3657 newmount.mnt->mnt_flags = mnt_flags; 3658 3659 /* We've done the mount bit - now move the file context into more or 3660 * less the same state as if we'd done an fspick(). We don't want to 3661 * do any memory allocation or anything like that at this point as we 3662 * don't want to have to handle any errors incurred. 3663 */ 3664 vfs_clean_context(fc); 3665 3666 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3667 if (IS_ERR(ns)) { 3668 ret = PTR_ERR(ns); 3669 goto err_path; 3670 } 3671 mnt = real_mount(newmount.mnt); 3672 mnt->mnt_ns = ns; 3673 ns->root = mnt; 3674 ns->mounts = 1; 3675 list_add(&mnt->mnt_list, &ns->list); 3676 mntget(newmount.mnt); 3677 3678 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3679 * it, not just simply put it. 3680 */ 3681 file = dentry_open(&newmount, O_PATH, fc->cred); 3682 if (IS_ERR(file)) { 3683 dissolve_on_fput(newmount.mnt); 3684 ret = PTR_ERR(file); 3685 goto err_path; 3686 } 3687 file->f_mode |= FMODE_NEED_UNMOUNT; 3688 3689 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3690 if (ret >= 0) 3691 fd_install(ret, file); 3692 else 3693 fput(file); 3694 3695 err_path: 3696 path_put(&newmount); 3697 err_unlock: 3698 mutex_unlock(&fc->uapi_mutex); 3699 err_fsfd: 3700 fdput(f); 3701 return ret; 3702 } 3703 3704 /* 3705 * Move a mount from one place to another. In combination with 3706 * fsopen()/fsmount() this is used to install a new mount and in combination 3707 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3708 * a mount subtree. 3709 * 3710 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3711 */ 3712 SYSCALL_DEFINE5(move_mount, 3713 int, from_dfd, const char __user *, from_pathname, 3714 int, to_dfd, const char __user *, to_pathname, 3715 unsigned int, flags) 3716 { 3717 struct path from_path, to_path; 3718 unsigned int lflags; 3719 int ret = 0; 3720 3721 if (!may_mount()) 3722 return -EPERM; 3723 3724 if (flags & ~MOVE_MOUNT__MASK) 3725 return -EINVAL; 3726 3727 /* If someone gives a pathname, they aren't permitted to move 3728 * from an fd that requires unmount as we can't get at the flag 3729 * to clear it afterwards. 3730 */ 3731 lflags = 0; 3732 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3733 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3734 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3735 3736 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3737 if (ret < 0) 3738 return ret; 3739 3740 lflags = 0; 3741 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3742 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3743 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3744 3745 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3746 if (ret < 0) 3747 goto out_from; 3748 3749 ret = security_move_mount(&from_path, &to_path); 3750 if (ret < 0) 3751 goto out_to; 3752 3753 if (flags & MOVE_MOUNT_SET_GROUP) 3754 ret = do_set_group(&from_path, &to_path); 3755 else 3756 ret = do_move_mount(&from_path, &to_path); 3757 3758 out_to: 3759 path_put(&to_path); 3760 out_from: 3761 path_put(&from_path); 3762 return ret; 3763 } 3764 3765 /* 3766 * Return true if path is reachable from root 3767 * 3768 * namespace_sem or mount_lock is held 3769 */ 3770 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3771 const struct path *root) 3772 { 3773 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3774 dentry = mnt->mnt_mountpoint; 3775 mnt = mnt->mnt_parent; 3776 } 3777 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3778 } 3779 3780 bool path_is_under(const struct path *path1, const struct path *path2) 3781 { 3782 bool res; 3783 read_seqlock_excl(&mount_lock); 3784 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3785 read_sequnlock_excl(&mount_lock); 3786 return res; 3787 } 3788 EXPORT_SYMBOL(path_is_under); 3789 3790 /* 3791 * pivot_root Semantics: 3792 * Moves the root file system of the current process to the directory put_old, 3793 * makes new_root as the new root file system of the current process, and sets 3794 * root/cwd of all processes which had them on the current root to new_root. 3795 * 3796 * Restrictions: 3797 * The new_root and put_old must be directories, and must not be on the 3798 * same file system as the current process root. The put_old must be 3799 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3800 * pointed to by put_old must yield the same directory as new_root. No other 3801 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3802 * 3803 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3804 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3805 * in this situation. 3806 * 3807 * Notes: 3808 * - we don't move root/cwd if they are not at the root (reason: if something 3809 * cared enough to change them, it's probably wrong to force them elsewhere) 3810 * - it's okay to pick a root that isn't the root of a file system, e.g. 3811 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3812 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3813 * first. 3814 */ 3815 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3816 const char __user *, put_old) 3817 { 3818 struct path new, old, root; 3819 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3820 struct mountpoint *old_mp, *root_mp; 3821 int error; 3822 3823 if (!may_mount()) 3824 return -EPERM; 3825 3826 error = user_path_at(AT_FDCWD, new_root, 3827 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3828 if (error) 3829 goto out0; 3830 3831 error = user_path_at(AT_FDCWD, put_old, 3832 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3833 if (error) 3834 goto out1; 3835 3836 error = security_sb_pivotroot(&old, &new); 3837 if (error) 3838 goto out2; 3839 3840 get_fs_root(current->fs, &root); 3841 old_mp = lock_mount(&old); 3842 error = PTR_ERR(old_mp); 3843 if (IS_ERR(old_mp)) 3844 goto out3; 3845 3846 error = -EINVAL; 3847 new_mnt = real_mount(new.mnt); 3848 root_mnt = real_mount(root.mnt); 3849 old_mnt = real_mount(old.mnt); 3850 ex_parent = new_mnt->mnt_parent; 3851 root_parent = root_mnt->mnt_parent; 3852 if (IS_MNT_SHARED(old_mnt) || 3853 IS_MNT_SHARED(ex_parent) || 3854 IS_MNT_SHARED(root_parent)) 3855 goto out4; 3856 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3857 goto out4; 3858 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3859 goto out4; 3860 error = -ENOENT; 3861 if (d_unlinked(new.dentry)) 3862 goto out4; 3863 error = -EBUSY; 3864 if (new_mnt == root_mnt || old_mnt == root_mnt) 3865 goto out4; /* loop, on the same file system */ 3866 error = -EINVAL; 3867 if (root.mnt->mnt_root != root.dentry) 3868 goto out4; /* not a mountpoint */ 3869 if (!mnt_has_parent(root_mnt)) 3870 goto out4; /* not attached */ 3871 if (new.mnt->mnt_root != new.dentry) 3872 goto out4; /* not a mountpoint */ 3873 if (!mnt_has_parent(new_mnt)) 3874 goto out4; /* not attached */ 3875 /* make sure we can reach put_old from new_root */ 3876 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3877 goto out4; 3878 /* make certain new is below the root */ 3879 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3880 goto out4; 3881 lock_mount_hash(); 3882 umount_mnt(new_mnt); 3883 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3884 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3885 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3886 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3887 } 3888 /* mount old root on put_old */ 3889 attach_mnt(root_mnt, old_mnt, old_mp); 3890 /* mount new_root on / */ 3891 attach_mnt(new_mnt, root_parent, root_mp); 3892 mnt_add_count(root_parent, -1); 3893 touch_mnt_namespace(current->nsproxy->mnt_ns); 3894 /* A moved mount should not expire automatically */ 3895 list_del_init(&new_mnt->mnt_expire); 3896 put_mountpoint(root_mp); 3897 unlock_mount_hash(); 3898 chroot_fs_refs(&root, &new); 3899 error = 0; 3900 out4: 3901 unlock_mount(old_mp); 3902 if (!error) 3903 mntput_no_expire(ex_parent); 3904 out3: 3905 path_put(&root); 3906 out2: 3907 path_put(&old); 3908 out1: 3909 path_put(&new); 3910 out0: 3911 return error; 3912 } 3913 3914 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3915 { 3916 unsigned int flags = mnt->mnt.mnt_flags; 3917 3918 /* flags to clear */ 3919 flags &= ~kattr->attr_clr; 3920 /* flags to raise */ 3921 flags |= kattr->attr_set; 3922 3923 return flags; 3924 } 3925 3926 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3927 { 3928 struct vfsmount *m = &mnt->mnt; 3929 3930 if (!kattr->mnt_userns) 3931 return 0; 3932 3933 /* 3934 * Once a mount has been idmapped we don't allow it to change its 3935 * mapping. It makes things simpler and callers can just create 3936 * another bind-mount they can idmap if they want to. 3937 */ 3938 if (mnt_user_ns(m) != &init_user_ns) 3939 return -EPERM; 3940 3941 /* The underlying filesystem doesn't support idmapped mounts yet. */ 3942 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 3943 return -EINVAL; 3944 3945 /* Don't yet support filesystem mountable in user namespaces. */ 3946 if (m->mnt_sb->s_user_ns != &init_user_ns) 3947 return -EINVAL; 3948 3949 /* We're not controlling the superblock. */ 3950 if (!capable(CAP_SYS_ADMIN)) 3951 return -EPERM; 3952 3953 /* Mount has already been visible in the filesystem hierarchy. */ 3954 if (!is_anon_ns(mnt->mnt_ns)) 3955 return -EINVAL; 3956 3957 return 0; 3958 } 3959 3960 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr, 3961 struct mount *mnt, int *err) 3962 { 3963 struct mount *m = mnt, *last = NULL; 3964 3965 if (!is_mounted(&m->mnt)) { 3966 *err = -EINVAL; 3967 goto out; 3968 } 3969 3970 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) { 3971 *err = -EINVAL; 3972 goto out; 3973 } 3974 3975 do { 3976 unsigned int flags; 3977 3978 flags = recalc_flags(kattr, m); 3979 if (!can_change_locked_flags(m, flags)) { 3980 *err = -EPERM; 3981 goto out; 3982 } 3983 3984 *err = can_idmap_mount(kattr, m); 3985 if (*err) 3986 goto out; 3987 3988 last = m; 3989 3990 if ((kattr->attr_set & MNT_READONLY) && 3991 !(m->mnt.mnt_flags & MNT_READONLY)) { 3992 *err = mnt_hold_writers(m); 3993 if (*err) 3994 goto out; 3995 } 3996 } while (kattr->recurse && (m = next_mnt(m, mnt))); 3997 3998 out: 3999 return last; 4000 } 4001 4002 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4003 { 4004 struct user_namespace *mnt_userns; 4005 4006 if (!kattr->mnt_userns) 4007 return; 4008 4009 mnt_userns = get_user_ns(kattr->mnt_userns); 4010 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 4011 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 4012 } 4013 4014 static void mount_setattr_commit(struct mount_kattr *kattr, 4015 struct mount *mnt, struct mount *last, 4016 int err) 4017 { 4018 struct mount *m = mnt; 4019 4020 do { 4021 if (!err) { 4022 unsigned int flags; 4023 4024 do_idmap_mount(kattr, m); 4025 flags = recalc_flags(kattr, m); 4026 WRITE_ONCE(m->mnt.mnt_flags, flags); 4027 } 4028 4029 /* 4030 * We either set MNT_READONLY above so make it visible 4031 * before ~MNT_WRITE_HOLD or we failed to recursively 4032 * apply mount options. 4033 */ 4034 if ((kattr->attr_set & MNT_READONLY) && 4035 (m->mnt.mnt_flags & MNT_WRITE_HOLD)) 4036 mnt_unhold_writers(m); 4037 4038 if (!err && kattr->propagation) 4039 change_mnt_propagation(m, kattr->propagation); 4040 4041 /* 4042 * On failure, only cleanup until we found the first mount 4043 * we failed to handle. 4044 */ 4045 if (err && m == last) 4046 break; 4047 } while (kattr->recurse && (m = next_mnt(m, mnt))); 4048 4049 if (!err) 4050 touch_mnt_namespace(mnt->mnt_ns); 4051 } 4052 4053 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4054 { 4055 struct mount *mnt = real_mount(path->mnt), *last = NULL; 4056 int err = 0; 4057 4058 if (path->dentry != mnt->mnt.mnt_root) 4059 return -EINVAL; 4060 4061 if (kattr->propagation) { 4062 /* 4063 * Only take namespace_lock() if we're actually changing 4064 * propagation. 4065 */ 4066 namespace_lock(); 4067 if (kattr->propagation == MS_SHARED) { 4068 err = invent_group_ids(mnt, kattr->recurse); 4069 if (err) { 4070 namespace_unlock(); 4071 return err; 4072 } 4073 } 4074 } 4075 4076 lock_mount_hash(); 4077 4078 /* 4079 * Get the mount tree in a shape where we can change mount 4080 * properties without failure. 4081 */ 4082 last = mount_setattr_prepare(kattr, mnt, &err); 4083 if (last) /* Commit all changes or revert to the old state. */ 4084 mount_setattr_commit(kattr, mnt, last, err); 4085 4086 unlock_mount_hash(); 4087 4088 if (kattr->propagation) { 4089 namespace_unlock(); 4090 if (err) 4091 cleanup_group_ids(mnt, NULL); 4092 } 4093 4094 return err; 4095 } 4096 4097 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4098 struct mount_kattr *kattr, unsigned int flags) 4099 { 4100 int err = 0; 4101 struct ns_common *ns; 4102 struct user_namespace *mnt_userns; 4103 struct file *file; 4104 4105 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4106 return 0; 4107 4108 /* 4109 * We currently do not support clearing an idmapped mount. If this ever 4110 * is a use-case we can revisit this but for now let's keep it simple 4111 * and not allow it. 4112 */ 4113 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4114 return -EINVAL; 4115 4116 if (attr->userns_fd > INT_MAX) 4117 return -EINVAL; 4118 4119 file = fget(attr->userns_fd); 4120 if (!file) 4121 return -EBADF; 4122 4123 if (!proc_ns_file(file)) { 4124 err = -EINVAL; 4125 goto out_fput; 4126 } 4127 4128 ns = get_proc_ns(file_inode(file)); 4129 if (ns->ops->type != CLONE_NEWUSER) { 4130 err = -EINVAL; 4131 goto out_fput; 4132 } 4133 4134 /* 4135 * The init_user_ns is used to indicate that a vfsmount is not idmapped. 4136 * This is simpler than just having to treat NULL as unmapped. Users 4137 * wanting to idmap a mount to init_user_ns can just use a namespace 4138 * with an identity mapping. 4139 */ 4140 mnt_userns = container_of(ns, struct user_namespace, ns); 4141 if (mnt_userns == &init_user_ns) { 4142 err = -EPERM; 4143 goto out_fput; 4144 } 4145 kattr->mnt_userns = get_user_ns(mnt_userns); 4146 4147 out_fput: 4148 fput(file); 4149 return err; 4150 } 4151 4152 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4153 struct mount_kattr *kattr, unsigned int flags) 4154 { 4155 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4156 4157 if (flags & AT_NO_AUTOMOUNT) 4158 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4159 if (flags & AT_SYMLINK_NOFOLLOW) 4160 lookup_flags &= ~LOOKUP_FOLLOW; 4161 if (flags & AT_EMPTY_PATH) 4162 lookup_flags |= LOOKUP_EMPTY; 4163 4164 *kattr = (struct mount_kattr) { 4165 .lookup_flags = lookup_flags, 4166 .recurse = !!(flags & AT_RECURSIVE), 4167 }; 4168 4169 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4170 return -EINVAL; 4171 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4172 return -EINVAL; 4173 kattr->propagation = attr->propagation; 4174 4175 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4176 return -EINVAL; 4177 4178 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4179 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4180 4181 /* 4182 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4183 * users wanting to transition to a different atime setting cannot 4184 * simply specify the atime setting in @attr_set, but must also 4185 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4186 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4187 * @attr_clr and that @attr_set can't have any atime bits set if 4188 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4189 */ 4190 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4191 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4192 return -EINVAL; 4193 4194 /* 4195 * Clear all previous time settings as they are mutually 4196 * exclusive. 4197 */ 4198 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4199 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4200 case MOUNT_ATTR_RELATIME: 4201 kattr->attr_set |= MNT_RELATIME; 4202 break; 4203 case MOUNT_ATTR_NOATIME: 4204 kattr->attr_set |= MNT_NOATIME; 4205 break; 4206 case MOUNT_ATTR_STRICTATIME: 4207 break; 4208 default: 4209 return -EINVAL; 4210 } 4211 } else { 4212 if (attr->attr_set & MOUNT_ATTR__ATIME) 4213 return -EINVAL; 4214 } 4215 4216 return build_mount_idmapped(attr, usize, kattr, flags); 4217 } 4218 4219 static void finish_mount_kattr(struct mount_kattr *kattr) 4220 { 4221 put_user_ns(kattr->mnt_userns); 4222 kattr->mnt_userns = NULL; 4223 } 4224 4225 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4226 unsigned int, flags, struct mount_attr __user *, uattr, 4227 size_t, usize) 4228 { 4229 int err; 4230 struct path target; 4231 struct mount_attr attr; 4232 struct mount_kattr kattr; 4233 4234 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4235 4236 if (flags & ~(AT_EMPTY_PATH | 4237 AT_RECURSIVE | 4238 AT_SYMLINK_NOFOLLOW | 4239 AT_NO_AUTOMOUNT)) 4240 return -EINVAL; 4241 4242 if (unlikely(usize > PAGE_SIZE)) 4243 return -E2BIG; 4244 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4245 return -EINVAL; 4246 4247 if (!may_mount()) 4248 return -EPERM; 4249 4250 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4251 if (err) 4252 return err; 4253 4254 /* Don't bother walking through the mounts if this is a nop. */ 4255 if (attr.attr_set == 0 && 4256 attr.attr_clr == 0 && 4257 attr.propagation == 0) 4258 return 0; 4259 4260 err = build_mount_kattr(&attr, usize, &kattr, flags); 4261 if (err) 4262 return err; 4263 4264 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4265 if (err) 4266 return err; 4267 4268 err = do_mount_setattr(&target, &kattr); 4269 finish_mount_kattr(&kattr); 4270 path_put(&target); 4271 return err; 4272 } 4273 4274 static void __init init_mount_tree(void) 4275 { 4276 struct vfsmount *mnt; 4277 struct mount *m; 4278 struct mnt_namespace *ns; 4279 struct path root; 4280 4281 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4282 if (IS_ERR(mnt)) 4283 panic("Can't create rootfs"); 4284 4285 ns = alloc_mnt_ns(&init_user_ns, false); 4286 if (IS_ERR(ns)) 4287 panic("Can't allocate initial namespace"); 4288 m = real_mount(mnt); 4289 m->mnt_ns = ns; 4290 ns->root = m; 4291 ns->mounts = 1; 4292 list_add(&m->mnt_list, &ns->list); 4293 init_task.nsproxy->mnt_ns = ns; 4294 get_mnt_ns(ns); 4295 4296 root.mnt = mnt; 4297 root.dentry = mnt->mnt_root; 4298 mnt->mnt_flags |= MNT_LOCKED; 4299 4300 set_fs_pwd(current->fs, &root); 4301 set_fs_root(current->fs, &root); 4302 } 4303 4304 void __init mnt_init(void) 4305 { 4306 int err; 4307 4308 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4309 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 4310 4311 mount_hashtable = alloc_large_system_hash("Mount-cache", 4312 sizeof(struct hlist_head), 4313 mhash_entries, 19, 4314 HASH_ZERO, 4315 &m_hash_shift, &m_hash_mask, 0, 0); 4316 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4317 sizeof(struct hlist_head), 4318 mphash_entries, 19, 4319 HASH_ZERO, 4320 &mp_hash_shift, &mp_hash_mask, 0, 0); 4321 4322 if (!mount_hashtable || !mountpoint_hashtable) 4323 panic("Failed to allocate mount hash table\n"); 4324 4325 kernfs_init(); 4326 4327 err = sysfs_init(); 4328 if (err) 4329 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4330 __func__, err); 4331 fs_kobj = kobject_create_and_add("fs", NULL); 4332 if (!fs_kobj) 4333 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4334 shmem_init(); 4335 init_rootfs(); 4336 init_mount_tree(); 4337 } 4338 4339 void put_mnt_ns(struct mnt_namespace *ns) 4340 { 4341 if (!refcount_dec_and_test(&ns->ns.count)) 4342 return; 4343 drop_collected_mounts(&ns->root->mnt); 4344 free_mnt_ns(ns); 4345 } 4346 4347 struct vfsmount *kern_mount(struct file_system_type *type) 4348 { 4349 struct vfsmount *mnt; 4350 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4351 if (!IS_ERR(mnt)) { 4352 /* 4353 * it is a longterm mount, don't release mnt until 4354 * we unmount before file sys is unregistered 4355 */ 4356 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4357 } 4358 return mnt; 4359 } 4360 EXPORT_SYMBOL_GPL(kern_mount); 4361 4362 void kern_unmount(struct vfsmount *mnt) 4363 { 4364 /* release long term mount so mount point can be released */ 4365 if (!IS_ERR_OR_NULL(mnt)) { 4366 real_mount(mnt)->mnt_ns = NULL; 4367 synchronize_rcu(); /* yecchhh... */ 4368 mntput(mnt); 4369 } 4370 } 4371 EXPORT_SYMBOL(kern_unmount); 4372 4373 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4374 { 4375 unsigned int i; 4376 4377 for (i = 0; i < num; i++) 4378 if (mnt[i]) 4379 real_mount(mnt[i])->mnt_ns = NULL; 4380 synchronize_rcu_expedited(); 4381 for (i = 0; i < num; i++) 4382 mntput(mnt[i]); 4383 } 4384 EXPORT_SYMBOL(kern_unmount_array); 4385 4386 bool our_mnt(struct vfsmount *mnt) 4387 { 4388 return check_mnt(real_mount(mnt)); 4389 } 4390 4391 bool current_chrooted(void) 4392 { 4393 /* Does the current process have a non-standard root */ 4394 struct path ns_root; 4395 struct path fs_root; 4396 bool chrooted; 4397 4398 /* Find the namespace root */ 4399 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4400 ns_root.dentry = ns_root.mnt->mnt_root; 4401 path_get(&ns_root); 4402 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4403 ; 4404 4405 get_fs_root(current->fs, &fs_root); 4406 4407 chrooted = !path_equal(&fs_root, &ns_root); 4408 4409 path_put(&fs_root); 4410 path_put(&ns_root); 4411 4412 return chrooted; 4413 } 4414 4415 static bool mnt_already_visible(struct mnt_namespace *ns, 4416 const struct super_block *sb, 4417 int *new_mnt_flags) 4418 { 4419 int new_flags = *new_mnt_flags; 4420 struct mount *mnt; 4421 bool visible = false; 4422 4423 down_read(&namespace_sem); 4424 lock_ns_list(ns); 4425 list_for_each_entry(mnt, &ns->list, mnt_list) { 4426 struct mount *child; 4427 int mnt_flags; 4428 4429 if (mnt_is_cursor(mnt)) 4430 continue; 4431 4432 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4433 continue; 4434 4435 /* This mount is not fully visible if it's root directory 4436 * is not the root directory of the filesystem. 4437 */ 4438 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4439 continue; 4440 4441 /* A local view of the mount flags */ 4442 mnt_flags = mnt->mnt.mnt_flags; 4443 4444 /* Don't miss readonly hidden in the superblock flags */ 4445 if (sb_rdonly(mnt->mnt.mnt_sb)) 4446 mnt_flags |= MNT_LOCK_READONLY; 4447 4448 /* Verify the mount flags are equal to or more permissive 4449 * than the proposed new mount. 4450 */ 4451 if ((mnt_flags & MNT_LOCK_READONLY) && 4452 !(new_flags & MNT_READONLY)) 4453 continue; 4454 if ((mnt_flags & MNT_LOCK_ATIME) && 4455 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4456 continue; 4457 4458 /* This mount is not fully visible if there are any 4459 * locked child mounts that cover anything except for 4460 * empty directories. 4461 */ 4462 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4463 struct inode *inode = child->mnt_mountpoint->d_inode; 4464 /* Only worry about locked mounts */ 4465 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4466 continue; 4467 /* Is the directory permanetly empty? */ 4468 if (!is_empty_dir_inode(inode)) 4469 goto next; 4470 } 4471 /* Preserve the locked attributes */ 4472 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4473 MNT_LOCK_ATIME); 4474 visible = true; 4475 goto found; 4476 next: ; 4477 } 4478 found: 4479 unlock_ns_list(ns); 4480 up_read(&namespace_sem); 4481 return visible; 4482 } 4483 4484 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4485 { 4486 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4487 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4488 unsigned long s_iflags; 4489 4490 if (ns->user_ns == &init_user_ns) 4491 return false; 4492 4493 /* Can this filesystem be too revealing? */ 4494 s_iflags = sb->s_iflags; 4495 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4496 return false; 4497 4498 if ((s_iflags & required_iflags) != required_iflags) { 4499 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4500 required_iflags); 4501 return true; 4502 } 4503 4504 return !mnt_already_visible(ns, sb, new_mnt_flags); 4505 } 4506 4507 bool mnt_may_suid(struct vfsmount *mnt) 4508 { 4509 /* 4510 * Foreign mounts (accessed via fchdir or through /proc 4511 * symlinks) are always treated as if they are nosuid. This 4512 * prevents namespaces from trusting potentially unsafe 4513 * suid/sgid bits, file caps, or security labels that originate 4514 * in other namespaces. 4515 */ 4516 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4517 current_in_userns(mnt->mnt_sb->s_user_ns); 4518 } 4519 4520 static struct ns_common *mntns_get(struct task_struct *task) 4521 { 4522 struct ns_common *ns = NULL; 4523 struct nsproxy *nsproxy; 4524 4525 task_lock(task); 4526 nsproxy = task->nsproxy; 4527 if (nsproxy) { 4528 ns = &nsproxy->mnt_ns->ns; 4529 get_mnt_ns(to_mnt_ns(ns)); 4530 } 4531 task_unlock(task); 4532 4533 return ns; 4534 } 4535 4536 static void mntns_put(struct ns_common *ns) 4537 { 4538 put_mnt_ns(to_mnt_ns(ns)); 4539 } 4540 4541 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4542 { 4543 struct nsproxy *nsproxy = nsset->nsproxy; 4544 struct fs_struct *fs = nsset->fs; 4545 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4546 struct user_namespace *user_ns = nsset->cred->user_ns; 4547 struct path root; 4548 int err; 4549 4550 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4551 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4552 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4553 return -EPERM; 4554 4555 if (is_anon_ns(mnt_ns)) 4556 return -EINVAL; 4557 4558 if (fs->users != 1) 4559 return -EINVAL; 4560 4561 get_mnt_ns(mnt_ns); 4562 old_mnt_ns = nsproxy->mnt_ns; 4563 nsproxy->mnt_ns = mnt_ns; 4564 4565 /* Find the root */ 4566 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4567 "/", LOOKUP_DOWN, &root); 4568 if (err) { 4569 /* revert to old namespace */ 4570 nsproxy->mnt_ns = old_mnt_ns; 4571 put_mnt_ns(mnt_ns); 4572 return err; 4573 } 4574 4575 put_mnt_ns(old_mnt_ns); 4576 4577 /* Update the pwd and root */ 4578 set_fs_pwd(fs, &root); 4579 set_fs_root(fs, &root); 4580 4581 path_put(&root); 4582 return 0; 4583 } 4584 4585 static struct user_namespace *mntns_owner(struct ns_common *ns) 4586 { 4587 return to_mnt_ns(ns)->user_ns; 4588 } 4589 4590 const struct proc_ns_operations mntns_operations = { 4591 .name = "mnt", 4592 .type = CLONE_NEWNS, 4593 .get = mntns_get, 4594 .put = mntns_put, 4595 .install = mntns_install, 4596 .owner = mntns_owner, 4597 }; 4598