xref: /linux/fs/namespace.c (revision 4ac6d90867a4de2e12117e755dbd76e08d88697f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 
35 #include "pnode.h"
36 #include "internal.h"
37 
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40 
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45 
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 	if (!str)
50 		return 0;
51 	mhash_entries = simple_strtoul(str, &str, 0);
52 	return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	if (!str)
60 		return 0;
61 	mphash_entries = simple_strtoul(str, &str, 0);
62 	return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65 
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69 
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76 
77 struct mount_kattr {
78 	unsigned int attr_set;
79 	unsigned int attr_clr;
80 	unsigned int propagation;
81 	unsigned int lookup_flags;
82 	bool recurse;
83 	struct user_namespace *mnt_userns;
84 };
85 
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89 
90 /*
91  * vfsmount lock may be taken for read to prevent changes to the
92  * vfsmount hash, ie. during mountpoint lookups or walking back
93  * up the tree.
94  *
95  * It should be taken for write in all cases where the vfsmount
96  * tree or hash is modified or when a vfsmount structure is modified.
97  */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99 
100 static inline void lock_mount_hash(void)
101 {
102 	write_seqlock(&mount_lock);
103 }
104 
105 static inline void unlock_mount_hash(void)
106 {
107 	write_sequnlock(&mount_lock);
108 }
109 
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 	tmp = tmp + (tmp >> m_hash_shift);
115 	return &mount_hashtable[tmp & m_hash_mask];
116 }
117 
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 	tmp = tmp + (tmp >> mp_hash_shift);
122 	return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124 
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128 
129 	if (res < 0)
130 		return res;
131 	mnt->mnt_id = res;
132 	return 0;
133 }
134 
135 static void mnt_free_id(struct mount *mnt)
136 {
137 	ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139 
140 /*
141  * Allocate a new peer group ID
142  */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146 
147 	if (res < 0)
148 		return res;
149 	mnt->mnt_group_id = res;
150 	return 0;
151 }
152 
153 /*
154  * Release a peer group ID
155  */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 	mnt->mnt_group_id = 0;
160 }
161 
162 /*
163  * vfsmount lock must be held for read
164  */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 	preempt_disable();
171 	mnt->mnt_count += n;
172 	preempt_enable();
173 #endif
174 }
175 
176 /*
177  * vfsmount lock must be held for write
178  */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 	int count = 0;
183 	int cpu;
184 
185 	for_each_possible_cpu(cpu) {
186 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 	}
188 
189 	return count;
190 #else
191 	return mnt->mnt_count;
192 #endif
193 }
194 
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 	if (mnt) {
199 		int err;
200 
201 		err = mnt_alloc_id(mnt);
202 		if (err)
203 			goto out_free_cache;
204 
205 		if (name) {
206 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
207 			if (!mnt->mnt_devname)
208 				goto out_free_id;
209 		}
210 
211 #ifdef CONFIG_SMP
212 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
213 		if (!mnt->mnt_pcp)
214 			goto out_free_devname;
215 
216 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
217 #else
218 		mnt->mnt_count = 1;
219 		mnt->mnt_writers = 0;
220 #endif
221 
222 		INIT_HLIST_NODE(&mnt->mnt_hash);
223 		INIT_LIST_HEAD(&mnt->mnt_child);
224 		INIT_LIST_HEAD(&mnt->mnt_mounts);
225 		INIT_LIST_HEAD(&mnt->mnt_list);
226 		INIT_LIST_HEAD(&mnt->mnt_expire);
227 		INIT_LIST_HEAD(&mnt->mnt_share);
228 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
229 		INIT_LIST_HEAD(&mnt->mnt_slave);
230 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
231 		INIT_LIST_HEAD(&mnt->mnt_umounting);
232 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
233 		mnt->mnt.mnt_userns = &init_user_ns;
234 	}
235 	return mnt;
236 
237 #ifdef CONFIG_SMP
238 out_free_devname:
239 	kfree_const(mnt->mnt_devname);
240 #endif
241 out_free_id:
242 	mnt_free_id(mnt);
243 out_free_cache:
244 	kmem_cache_free(mnt_cache, mnt);
245 	return NULL;
246 }
247 
248 /*
249  * Most r/o checks on a fs are for operations that take
250  * discrete amounts of time, like a write() or unlink().
251  * We must keep track of when those operations start
252  * (for permission checks) and when they end, so that
253  * we can determine when writes are able to occur to
254  * a filesystem.
255  */
256 /*
257  * __mnt_is_readonly: check whether a mount is read-only
258  * @mnt: the mount to check for its write status
259  *
260  * This shouldn't be used directly ouside of the VFS.
261  * It does not guarantee that the filesystem will stay
262  * r/w, just that it is right *now*.  This can not and
263  * should not be used in place of IS_RDONLY(inode).
264  * mnt_want/drop_write() will _keep_ the filesystem
265  * r/w.
266  */
267 bool __mnt_is_readonly(struct vfsmount *mnt)
268 {
269 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272 
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 	mnt->mnt_writers++;
279 #endif
280 }
281 
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 	mnt->mnt_writers--;
288 #endif
289 }
290 
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 	unsigned int count = 0;
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 	}
300 
301 	return count;
302 #else
303 	return mnt->mnt_writers;
304 #endif
305 }
306 
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 	if (mnt->mnt_sb->s_readonly_remount)
310 		return 1;
311 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 	smp_rmb();
313 	return __mnt_is_readonly(mnt);
314 }
315 
316 /*
317  * Most r/o & frozen checks on a fs are for operations that take discrete
318  * amounts of time, like a write() or unlink().  We must keep track of when
319  * those operations start (for permission checks) and when they end, so that we
320  * can determine when writes are able to occur to a filesystem.
321  */
322 /**
323  * __mnt_want_write - get write access to a mount without freeze protection
324  * @m: the mount on which to take a write
325  *
326  * This tells the low-level filesystem that a write is about to be performed to
327  * it, and makes sure that writes are allowed (mnt it read-write) before
328  * returning success. This operation does not protect against filesystem being
329  * frozen. When the write operation is finished, __mnt_drop_write() must be
330  * called. This is effectively a refcount.
331  */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 	struct mount *mnt = real_mount(m);
335 	int ret = 0;
336 
337 	preempt_disable();
338 	mnt_inc_writers(mnt);
339 	/*
340 	 * The store to mnt_inc_writers must be visible before we pass
341 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 	 * incremented count after it has set MNT_WRITE_HOLD.
343 	 */
344 	smp_mb();
345 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 		cpu_relax();
347 	/*
348 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 	 * be set to match its requirements. So we must not load that until
350 	 * MNT_WRITE_HOLD is cleared.
351 	 */
352 	smp_rmb();
353 	if (mnt_is_readonly(m)) {
354 		mnt_dec_writers(mnt);
355 		ret = -EROFS;
356 	}
357 	preempt_enable();
358 
359 	return ret;
360 }
361 
362 /**
363  * mnt_want_write - get write access to a mount
364  * @m: the mount on which to take a write
365  *
366  * This tells the low-level filesystem that a write is about to be performed to
367  * it, and makes sure that writes are allowed (mount is read-write, filesystem
368  * is not frozen) before returning success.  When the write operation is
369  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
370  */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 	int ret;
374 
375 	sb_start_write(m->mnt_sb);
376 	ret = __mnt_want_write(m);
377 	if (ret)
378 		sb_end_write(m->mnt_sb);
379 	return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382 
383 /**
384  * __mnt_want_write_file - get write access to a file's mount
385  * @file: the file who's mount on which to take a write
386  *
387  * This is like __mnt_want_write, but if the file is already open for writing it
388  * skips incrementing mnt_writers (since the open file already has a reference)
389  * and instead only does the check for emergency r/o remounts.  This must be
390  * paired with __mnt_drop_write_file.
391  */
392 int __mnt_want_write_file(struct file *file)
393 {
394 	if (file->f_mode & FMODE_WRITER) {
395 		/*
396 		 * Superblock may have become readonly while there are still
397 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
398 		 */
399 		if (__mnt_is_readonly(file->f_path.mnt))
400 			return -EROFS;
401 		return 0;
402 	}
403 	return __mnt_want_write(file->f_path.mnt);
404 }
405 
406 /**
407  * mnt_want_write_file - get write access to a file's mount
408  * @file: the file who's mount on which to take a write
409  *
410  * This is like mnt_want_write, but if the file is already open for writing it
411  * skips incrementing mnt_writers (since the open file already has a reference)
412  * and instead only does the freeze protection and the check for emergency r/o
413  * remounts.  This must be paired with mnt_drop_write_file.
414  */
415 int mnt_want_write_file(struct file *file)
416 {
417 	int ret;
418 
419 	sb_start_write(file_inode(file)->i_sb);
420 	ret = __mnt_want_write_file(file);
421 	if (ret)
422 		sb_end_write(file_inode(file)->i_sb);
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(mnt_want_write_file);
426 
427 /**
428  * __mnt_drop_write - give up write access to a mount
429  * @mnt: the mount on which to give up write access
430  *
431  * Tells the low-level filesystem that we are done
432  * performing writes to it.  Must be matched with
433  * __mnt_want_write() call above.
434  */
435 void __mnt_drop_write(struct vfsmount *mnt)
436 {
437 	preempt_disable();
438 	mnt_dec_writers(real_mount(mnt));
439 	preempt_enable();
440 }
441 
442 /**
443  * mnt_drop_write - give up write access to a mount
444  * @mnt: the mount on which to give up write access
445  *
446  * Tells the low-level filesystem that we are done performing writes to it and
447  * also allows filesystem to be frozen again.  Must be matched with
448  * mnt_want_write() call above.
449  */
450 void mnt_drop_write(struct vfsmount *mnt)
451 {
452 	__mnt_drop_write(mnt);
453 	sb_end_write(mnt->mnt_sb);
454 }
455 EXPORT_SYMBOL_GPL(mnt_drop_write);
456 
457 void __mnt_drop_write_file(struct file *file)
458 {
459 	if (!(file->f_mode & FMODE_WRITER))
460 		__mnt_drop_write(file->f_path.mnt);
461 }
462 
463 void mnt_drop_write_file(struct file *file)
464 {
465 	__mnt_drop_write_file(file);
466 	sb_end_write(file_inode(file)->i_sb);
467 }
468 EXPORT_SYMBOL(mnt_drop_write_file);
469 
470 static inline int mnt_hold_writers(struct mount *mnt)
471 {
472 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473 	/*
474 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 	 * should be visible before we do.
476 	 */
477 	smp_mb();
478 
479 	/*
480 	 * With writers on hold, if this value is zero, then there are
481 	 * definitely no active writers (although held writers may subsequently
482 	 * increment the count, they'll have to wait, and decrement it after
483 	 * seeing MNT_READONLY).
484 	 *
485 	 * It is OK to have counter incremented on one CPU and decremented on
486 	 * another: the sum will add up correctly. The danger would be when we
487 	 * sum up each counter, if we read a counter before it is incremented,
488 	 * but then read another CPU's count which it has been subsequently
489 	 * decremented from -- we would see more decrements than we should.
490 	 * MNT_WRITE_HOLD protects against this scenario, because
491 	 * mnt_want_write first increments count, then smp_mb, then spins on
492 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 	 * we're counting up here.
494 	 */
495 	if (mnt_get_writers(mnt) > 0)
496 		return -EBUSY;
497 
498 	return 0;
499 }
500 
501 static inline void mnt_unhold_writers(struct mount *mnt)
502 {
503 	/*
504 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
505 	 * that become unheld will see MNT_READONLY.
506 	 */
507 	smp_wmb();
508 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
509 }
510 
511 static int mnt_make_readonly(struct mount *mnt)
512 {
513 	int ret;
514 
515 	ret = mnt_hold_writers(mnt);
516 	if (!ret)
517 		mnt->mnt.mnt_flags |= MNT_READONLY;
518 	mnt_unhold_writers(mnt);
519 	return ret;
520 }
521 
522 int sb_prepare_remount_readonly(struct super_block *sb)
523 {
524 	struct mount *mnt;
525 	int err = 0;
526 
527 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
528 	if (atomic_long_read(&sb->s_remove_count))
529 		return -EBUSY;
530 
531 	lock_mount_hash();
532 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
534 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
535 			smp_mb();
536 			if (mnt_get_writers(mnt) > 0) {
537 				err = -EBUSY;
538 				break;
539 			}
540 		}
541 	}
542 	if (!err && atomic_long_read(&sb->s_remove_count))
543 		err = -EBUSY;
544 
545 	if (!err) {
546 		sb->s_readonly_remount = 1;
547 		smp_wmb();
548 	}
549 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
550 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
551 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
552 	}
553 	unlock_mount_hash();
554 
555 	return err;
556 }
557 
558 static void free_vfsmnt(struct mount *mnt)
559 {
560 	struct user_namespace *mnt_userns;
561 
562 	mnt_userns = mnt_user_ns(&mnt->mnt);
563 	if (mnt_userns != &init_user_ns)
564 		put_user_ns(mnt_userns);
565 	kfree_const(mnt->mnt_devname);
566 #ifdef CONFIG_SMP
567 	free_percpu(mnt->mnt_pcp);
568 #endif
569 	kmem_cache_free(mnt_cache, mnt);
570 }
571 
572 static void delayed_free_vfsmnt(struct rcu_head *head)
573 {
574 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
575 }
576 
577 /* call under rcu_read_lock */
578 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
579 {
580 	struct mount *mnt;
581 	if (read_seqretry(&mount_lock, seq))
582 		return 1;
583 	if (bastard == NULL)
584 		return 0;
585 	mnt = real_mount(bastard);
586 	mnt_add_count(mnt, 1);
587 	smp_mb();			// see mntput_no_expire()
588 	if (likely(!read_seqretry(&mount_lock, seq)))
589 		return 0;
590 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
591 		mnt_add_count(mnt, -1);
592 		return 1;
593 	}
594 	lock_mount_hash();
595 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
596 		mnt_add_count(mnt, -1);
597 		unlock_mount_hash();
598 		return 1;
599 	}
600 	unlock_mount_hash();
601 	/* caller will mntput() */
602 	return -1;
603 }
604 
605 /* call under rcu_read_lock */
606 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
607 {
608 	int res = __legitimize_mnt(bastard, seq);
609 	if (likely(!res))
610 		return true;
611 	if (unlikely(res < 0)) {
612 		rcu_read_unlock();
613 		mntput(bastard);
614 		rcu_read_lock();
615 	}
616 	return false;
617 }
618 
619 /*
620  * find the first mount at @dentry on vfsmount @mnt.
621  * call under rcu_read_lock()
622  */
623 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
624 {
625 	struct hlist_head *head = m_hash(mnt, dentry);
626 	struct mount *p;
627 
628 	hlist_for_each_entry_rcu(p, head, mnt_hash)
629 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
630 			return p;
631 	return NULL;
632 }
633 
634 /*
635  * lookup_mnt - Return the first child mount mounted at path
636  *
637  * "First" means first mounted chronologically.  If you create the
638  * following mounts:
639  *
640  * mount /dev/sda1 /mnt
641  * mount /dev/sda2 /mnt
642  * mount /dev/sda3 /mnt
643  *
644  * Then lookup_mnt() on the base /mnt dentry in the root mount will
645  * return successively the root dentry and vfsmount of /dev/sda1, then
646  * /dev/sda2, then /dev/sda3, then NULL.
647  *
648  * lookup_mnt takes a reference to the found vfsmount.
649  */
650 struct vfsmount *lookup_mnt(const struct path *path)
651 {
652 	struct mount *child_mnt;
653 	struct vfsmount *m;
654 	unsigned seq;
655 
656 	rcu_read_lock();
657 	do {
658 		seq = read_seqbegin(&mount_lock);
659 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
660 		m = child_mnt ? &child_mnt->mnt : NULL;
661 	} while (!legitimize_mnt(m, seq));
662 	rcu_read_unlock();
663 	return m;
664 }
665 
666 static inline void lock_ns_list(struct mnt_namespace *ns)
667 {
668 	spin_lock(&ns->ns_lock);
669 }
670 
671 static inline void unlock_ns_list(struct mnt_namespace *ns)
672 {
673 	spin_unlock(&ns->ns_lock);
674 }
675 
676 static inline bool mnt_is_cursor(struct mount *mnt)
677 {
678 	return mnt->mnt.mnt_flags & MNT_CURSOR;
679 }
680 
681 /*
682  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
683  *                         current mount namespace.
684  *
685  * The common case is dentries are not mountpoints at all and that
686  * test is handled inline.  For the slow case when we are actually
687  * dealing with a mountpoint of some kind, walk through all of the
688  * mounts in the current mount namespace and test to see if the dentry
689  * is a mountpoint.
690  *
691  * The mount_hashtable is not usable in the context because we
692  * need to identify all mounts that may be in the current mount
693  * namespace not just a mount that happens to have some specified
694  * parent mount.
695  */
696 bool __is_local_mountpoint(struct dentry *dentry)
697 {
698 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
699 	struct mount *mnt;
700 	bool is_covered = false;
701 
702 	down_read(&namespace_sem);
703 	lock_ns_list(ns);
704 	list_for_each_entry(mnt, &ns->list, mnt_list) {
705 		if (mnt_is_cursor(mnt))
706 			continue;
707 		is_covered = (mnt->mnt_mountpoint == dentry);
708 		if (is_covered)
709 			break;
710 	}
711 	unlock_ns_list(ns);
712 	up_read(&namespace_sem);
713 
714 	return is_covered;
715 }
716 
717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
718 {
719 	struct hlist_head *chain = mp_hash(dentry);
720 	struct mountpoint *mp;
721 
722 	hlist_for_each_entry(mp, chain, m_hash) {
723 		if (mp->m_dentry == dentry) {
724 			mp->m_count++;
725 			return mp;
726 		}
727 	}
728 	return NULL;
729 }
730 
731 static struct mountpoint *get_mountpoint(struct dentry *dentry)
732 {
733 	struct mountpoint *mp, *new = NULL;
734 	int ret;
735 
736 	if (d_mountpoint(dentry)) {
737 		/* might be worth a WARN_ON() */
738 		if (d_unlinked(dentry))
739 			return ERR_PTR(-ENOENT);
740 mountpoint:
741 		read_seqlock_excl(&mount_lock);
742 		mp = lookup_mountpoint(dentry);
743 		read_sequnlock_excl(&mount_lock);
744 		if (mp)
745 			goto done;
746 	}
747 
748 	if (!new)
749 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
750 	if (!new)
751 		return ERR_PTR(-ENOMEM);
752 
753 
754 	/* Exactly one processes may set d_mounted */
755 	ret = d_set_mounted(dentry);
756 
757 	/* Someone else set d_mounted? */
758 	if (ret == -EBUSY)
759 		goto mountpoint;
760 
761 	/* The dentry is not available as a mountpoint? */
762 	mp = ERR_PTR(ret);
763 	if (ret)
764 		goto done;
765 
766 	/* Add the new mountpoint to the hash table */
767 	read_seqlock_excl(&mount_lock);
768 	new->m_dentry = dget(dentry);
769 	new->m_count = 1;
770 	hlist_add_head(&new->m_hash, mp_hash(dentry));
771 	INIT_HLIST_HEAD(&new->m_list);
772 	read_sequnlock_excl(&mount_lock);
773 
774 	mp = new;
775 	new = NULL;
776 done:
777 	kfree(new);
778 	return mp;
779 }
780 
781 /*
782  * vfsmount lock must be held.  Additionally, the caller is responsible
783  * for serializing calls for given disposal list.
784  */
785 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
786 {
787 	if (!--mp->m_count) {
788 		struct dentry *dentry = mp->m_dentry;
789 		BUG_ON(!hlist_empty(&mp->m_list));
790 		spin_lock(&dentry->d_lock);
791 		dentry->d_flags &= ~DCACHE_MOUNTED;
792 		spin_unlock(&dentry->d_lock);
793 		dput_to_list(dentry, list);
794 		hlist_del(&mp->m_hash);
795 		kfree(mp);
796 	}
797 }
798 
799 /* called with namespace_lock and vfsmount lock */
800 static void put_mountpoint(struct mountpoint *mp)
801 {
802 	__put_mountpoint(mp, &ex_mountpoints);
803 }
804 
805 static inline int check_mnt(struct mount *mnt)
806 {
807 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
808 }
809 
810 /*
811  * vfsmount lock must be held for write
812  */
813 static void touch_mnt_namespace(struct mnt_namespace *ns)
814 {
815 	if (ns) {
816 		ns->event = ++event;
817 		wake_up_interruptible(&ns->poll);
818 	}
819 }
820 
821 /*
822  * vfsmount lock must be held for write
823  */
824 static void __touch_mnt_namespace(struct mnt_namespace *ns)
825 {
826 	if (ns && ns->event != event) {
827 		ns->event = event;
828 		wake_up_interruptible(&ns->poll);
829 	}
830 }
831 
832 /*
833  * vfsmount lock must be held for write
834  */
835 static struct mountpoint *unhash_mnt(struct mount *mnt)
836 {
837 	struct mountpoint *mp;
838 	mnt->mnt_parent = mnt;
839 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
840 	list_del_init(&mnt->mnt_child);
841 	hlist_del_init_rcu(&mnt->mnt_hash);
842 	hlist_del_init(&mnt->mnt_mp_list);
843 	mp = mnt->mnt_mp;
844 	mnt->mnt_mp = NULL;
845 	return mp;
846 }
847 
848 /*
849  * vfsmount lock must be held for write
850  */
851 static void umount_mnt(struct mount *mnt)
852 {
853 	put_mountpoint(unhash_mnt(mnt));
854 }
855 
856 /*
857  * vfsmount lock must be held for write
858  */
859 void mnt_set_mountpoint(struct mount *mnt,
860 			struct mountpoint *mp,
861 			struct mount *child_mnt)
862 {
863 	mp->m_count++;
864 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
865 	child_mnt->mnt_mountpoint = mp->m_dentry;
866 	child_mnt->mnt_parent = mnt;
867 	child_mnt->mnt_mp = mp;
868 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
869 }
870 
871 static void __attach_mnt(struct mount *mnt, struct mount *parent)
872 {
873 	hlist_add_head_rcu(&mnt->mnt_hash,
874 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
875 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
876 }
877 
878 /*
879  * vfsmount lock must be held for write
880  */
881 static void attach_mnt(struct mount *mnt,
882 			struct mount *parent,
883 			struct mountpoint *mp)
884 {
885 	mnt_set_mountpoint(parent, mp, mnt);
886 	__attach_mnt(mnt, parent);
887 }
888 
889 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
890 {
891 	struct mountpoint *old_mp = mnt->mnt_mp;
892 	struct mount *old_parent = mnt->mnt_parent;
893 
894 	list_del_init(&mnt->mnt_child);
895 	hlist_del_init(&mnt->mnt_mp_list);
896 	hlist_del_init_rcu(&mnt->mnt_hash);
897 
898 	attach_mnt(mnt, parent, mp);
899 
900 	put_mountpoint(old_mp);
901 	mnt_add_count(old_parent, -1);
902 }
903 
904 /*
905  * vfsmount lock must be held for write
906  */
907 static void commit_tree(struct mount *mnt)
908 {
909 	struct mount *parent = mnt->mnt_parent;
910 	struct mount *m;
911 	LIST_HEAD(head);
912 	struct mnt_namespace *n = parent->mnt_ns;
913 
914 	BUG_ON(parent == mnt);
915 
916 	list_add_tail(&head, &mnt->mnt_list);
917 	list_for_each_entry(m, &head, mnt_list)
918 		m->mnt_ns = n;
919 
920 	list_splice(&head, n->list.prev);
921 
922 	n->mounts += n->pending_mounts;
923 	n->pending_mounts = 0;
924 
925 	__attach_mnt(mnt, parent);
926 	touch_mnt_namespace(n);
927 }
928 
929 static struct mount *next_mnt(struct mount *p, struct mount *root)
930 {
931 	struct list_head *next = p->mnt_mounts.next;
932 	if (next == &p->mnt_mounts) {
933 		while (1) {
934 			if (p == root)
935 				return NULL;
936 			next = p->mnt_child.next;
937 			if (next != &p->mnt_parent->mnt_mounts)
938 				break;
939 			p = p->mnt_parent;
940 		}
941 	}
942 	return list_entry(next, struct mount, mnt_child);
943 }
944 
945 static struct mount *skip_mnt_tree(struct mount *p)
946 {
947 	struct list_head *prev = p->mnt_mounts.prev;
948 	while (prev != &p->mnt_mounts) {
949 		p = list_entry(prev, struct mount, mnt_child);
950 		prev = p->mnt_mounts.prev;
951 	}
952 	return p;
953 }
954 
955 /**
956  * vfs_create_mount - Create a mount for a configured superblock
957  * @fc: The configuration context with the superblock attached
958  *
959  * Create a mount to an already configured superblock.  If necessary, the
960  * caller should invoke vfs_get_tree() before calling this.
961  *
962  * Note that this does not attach the mount to anything.
963  */
964 struct vfsmount *vfs_create_mount(struct fs_context *fc)
965 {
966 	struct mount *mnt;
967 
968 	if (!fc->root)
969 		return ERR_PTR(-EINVAL);
970 
971 	mnt = alloc_vfsmnt(fc->source ?: "none");
972 	if (!mnt)
973 		return ERR_PTR(-ENOMEM);
974 
975 	if (fc->sb_flags & SB_KERNMOUNT)
976 		mnt->mnt.mnt_flags = MNT_INTERNAL;
977 
978 	atomic_inc(&fc->root->d_sb->s_active);
979 	mnt->mnt.mnt_sb		= fc->root->d_sb;
980 	mnt->mnt.mnt_root	= dget(fc->root);
981 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
982 	mnt->mnt_parent		= mnt;
983 
984 	lock_mount_hash();
985 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
986 	unlock_mount_hash();
987 	return &mnt->mnt;
988 }
989 EXPORT_SYMBOL(vfs_create_mount);
990 
991 struct vfsmount *fc_mount(struct fs_context *fc)
992 {
993 	int err = vfs_get_tree(fc);
994 	if (!err) {
995 		up_write(&fc->root->d_sb->s_umount);
996 		return vfs_create_mount(fc);
997 	}
998 	return ERR_PTR(err);
999 }
1000 EXPORT_SYMBOL(fc_mount);
1001 
1002 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1003 				int flags, const char *name,
1004 				void *data)
1005 {
1006 	struct fs_context *fc;
1007 	struct vfsmount *mnt;
1008 	int ret = 0;
1009 
1010 	if (!type)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	fc = fs_context_for_mount(type, flags);
1014 	if (IS_ERR(fc))
1015 		return ERR_CAST(fc);
1016 
1017 	if (name)
1018 		ret = vfs_parse_fs_string(fc, "source",
1019 					  name, strlen(name));
1020 	if (!ret)
1021 		ret = parse_monolithic_mount_data(fc, data);
1022 	if (!ret)
1023 		mnt = fc_mount(fc);
1024 	else
1025 		mnt = ERR_PTR(ret);
1026 
1027 	put_fs_context(fc);
1028 	return mnt;
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1031 
1032 struct vfsmount *
1033 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1034 	     const char *name, void *data)
1035 {
1036 	/* Until it is worked out how to pass the user namespace
1037 	 * through from the parent mount to the submount don't support
1038 	 * unprivileged mounts with submounts.
1039 	 */
1040 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1041 		return ERR_PTR(-EPERM);
1042 
1043 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1044 }
1045 EXPORT_SYMBOL_GPL(vfs_submount);
1046 
1047 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1048 					int flag)
1049 {
1050 	struct super_block *sb = old->mnt.mnt_sb;
1051 	struct mount *mnt;
1052 	int err;
1053 
1054 	mnt = alloc_vfsmnt(old->mnt_devname);
1055 	if (!mnt)
1056 		return ERR_PTR(-ENOMEM);
1057 
1058 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1059 		mnt->mnt_group_id = 0; /* not a peer of original */
1060 	else
1061 		mnt->mnt_group_id = old->mnt_group_id;
1062 
1063 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1064 		err = mnt_alloc_group_id(mnt);
1065 		if (err)
1066 			goto out_free;
1067 	}
1068 
1069 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1070 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1071 
1072 	atomic_inc(&sb->s_active);
1073 	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1074 	if (mnt->mnt.mnt_userns != &init_user_ns)
1075 		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1076 	mnt->mnt.mnt_sb = sb;
1077 	mnt->mnt.mnt_root = dget(root);
1078 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1079 	mnt->mnt_parent = mnt;
1080 	lock_mount_hash();
1081 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1082 	unlock_mount_hash();
1083 
1084 	if ((flag & CL_SLAVE) ||
1085 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1086 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1087 		mnt->mnt_master = old;
1088 		CLEAR_MNT_SHARED(mnt);
1089 	} else if (!(flag & CL_PRIVATE)) {
1090 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1091 			list_add(&mnt->mnt_share, &old->mnt_share);
1092 		if (IS_MNT_SLAVE(old))
1093 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1094 		mnt->mnt_master = old->mnt_master;
1095 	} else {
1096 		CLEAR_MNT_SHARED(mnt);
1097 	}
1098 	if (flag & CL_MAKE_SHARED)
1099 		set_mnt_shared(mnt);
1100 
1101 	/* stick the duplicate mount on the same expiry list
1102 	 * as the original if that was on one */
1103 	if (flag & CL_EXPIRE) {
1104 		if (!list_empty(&old->mnt_expire))
1105 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1106 	}
1107 
1108 	return mnt;
1109 
1110  out_free:
1111 	mnt_free_id(mnt);
1112 	free_vfsmnt(mnt);
1113 	return ERR_PTR(err);
1114 }
1115 
1116 static void cleanup_mnt(struct mount *mnt)
1117 {
1118 	struct hlist_node *p;
1119 	struct mount *m;
1120 	/*
1121 	 * The warning here probably indicates that somebody messed
1122 	 * up a mnt_want/drop_write() pair.  If this happens, the
1123 	 * filesystem was probably unable to make r/w->r/o transitions.
1124 	 * The locking used to deal with mnt_count decrement provides barriers,
1125 	 * so mnt_get_writers() below is safe.
1126 	 */
1127 	WARN_ON(mnt_get_writers(mnt));
1128 	if (unlikely(mnt->mnt_pins.first))
1129 		mnt_pin_kill(mnt);
1130 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1131 		hlist_del(&m->mnt_umount);
1132 		mntput(&m->mnt);
1133 	}
1134 	fsnotify_vfsmount_delete(&mnt->mnt);
1135 	dput(mnt->mnt.mnt_root);
1136 	deactivate_super(mnt->mnt.mnt_sb);
1137 	mnt_free_id(mnt);
1138 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1139 }
1140 
1141 static void __cleanup_mnt(struct rcu_head *head)
1142 {
1143 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1144 }
1145 
1146 static LLIST_HEAD(delayed_mntput_list);
1147 static void delayed_mntput(struct work_struct *unused)
1148 {
1149 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1150 	struct mount *m, *t;
1151 
1152 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1153 		cleanup_mnt(m);
1154 }
1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156 
1157 static void mntput_no_expire(struct mount *mnt)
1158 {
1159 	LIST_HEAD(list);
1160 	int count;
1161 
1162 	rcu_read_lock();
1163 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1164 		/*
1165 		 * Since we don't do lock_mount_hash() here,
1166 		 * ->mnt_ns can change under us.  However, if it's
1167 		 * non-NULL, then there's a reference that won't
1168 		 * be dropped until after an RCU delay done after
1169 		 * turning ->mnt_ns NULL.  So if we observe it
1170 		 * non-NULL under rcu_read_lock(), the reference
1171 		 * we are dropping is not the final one.
1172 		 */
1173 		mnt_add_count(mnt, -1);
1174 		rcu_read_unlock();
1175 		return;
1176 	}
1177 	lock_mount_hash();
1178 	/*
1179 	 * make sure that if __legitimize_mnt() has not seen us grab
1180 	 * mount_lock, we'll see their refcount increment here.
1181 	 */
1182 	smp_mb();
1183 	mnt_add_count(mnt, -1);
1184 	count = mnt_get_count(mnt);
1185 	if (count != 0) {
1186 		WARN_ON(count < 0);
1187 		rcu_read_unlock();
1188 		unlock_mount_hash();
1189 		return;
1190 	}
1191 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1192 		rcu_read_unlock();
1193 		unlock_mount_hash();
1194 		return;
1195 	}
1196 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1197 	rcu_read_unlock();
1198 
1199 	list_del(&mnt->mnt_instance);
1200 
1201 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1202 		struct mount *p, *tmp;
1203 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1204 			__put_mountpoint(unhash_mnt(p), &list);
1205 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1206 		}
1207 	}
1208 	unlock_mount_hash();
1209 	shrink_dentry_list(&list);
1210 
1211 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1212 		struct task_struct *task = current;
1213 		if (likely(!(task->flags & PF_KTHREAD))) {
1214 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1215 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1216 				return;
1217 		}
1218 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1219 			schedule_delayed_work(&delayed_mntput_work, 1);
1220 		return;
1221 	}
1222 	cleanup_mnt(mnt);
1223 }
1224 
1225 void mntput(struct vfsmount *mnt)
1226 {
1227 	if (mnt) {
1228 		struct mount *m = real_mount(mnt);
1229 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1230 		if (unlikely(m->mnt_expiry_mark))
1231 			m->mnt_expiry_mark = 0;
1232 		mntput_no_expire(m);
1233 	}
1234 }
1235 EXPORT_SYMBOL(mntput);
1236 
1237 struct vfsmount *mntget(struct vfsmount *mnt)
1238 {
1239 	if (mnt)
1240 		mnt_add_count(real_mount(mnt), 1);
1241 	return mnt;
1242 }
1243 EXPORT_SYMBOL(mntget);
1244 
1245 /**
1246  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1247  * @path: path to check
1248  *
1249  *  d_mountpoint() can only be used reliably to establish if a dentry is
1250  *  not mounted in any namespace and that common case is handled inline.
1251  *  d_mountpoint() isn't aware of the possibility there may be multiple
1252  *  mounts using a given dentry in a different namespace. This function
1253  *  checks if the passed in path is a mountpoint rather than the dentry
1254  *  alone.
1255  */
1256 bool path_is_mountpoint(const struct path *path)
1257 {
1258 	unsigned seq;
1259 	bool res;
1260 
1261 	if (!d_mountpoint(path->dentry))
1262 		return false;
1263 
1264 	rcu_read_lock();
1265 	do {
1266 		seq = read_seqbegin(&mount_lock);
1267 		res = __path_is_mountpoint(path);
1268 	} while (read_seqretry(&mount_lock, seq));
1269 	rcu_read_unlock();
1270 
1271 	return res;
1272 }
1273 EXPORT_SYMBOL(path_is_mountpoint);
1274 
1275 struct vfsmount *mnt_clone_internal(const struct path *path)
1276 {
1277 	struct mount *p;
1278 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1279 	if (IS_ERR(p))
1280 		return ERR_CAST(p);
1281 	p->mnt.mnt_flags |= MNT_INTERNAL;
1282 	return &p->mnt;
1283 }
1284 
1285 #ifdef CONFIG_PROC_FS
1286 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1287 				   struct list_head *p)
1288 {
1289 	struct mount *mnt, *ret = NULL;
1290 
1291 	lock_ns_list(ns);
1292 	list_for_each_continue(p, &ns->list) {
1293 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1294 		if (!mnt_is_cursor(mnt)) {
1295 			ret = mnt;
1296 			break;
1297 		}
1298 	}
1299 	unlock_ns_list(ns);
1300 
1301 	return ret;
1302 }
1303 
1304 /* iterator; we want it to have access to namespace_sem, thus here... */
1305 static void *m_start(struct seq_file *m, loff_t *pos)
1306 {
1307 	struct proc_mounts *p = m->private;
1308 	struct list_head *prev;
1309 
1310 	down_read(&namespace_sem);
1311 	if (!*pos) {
1312 		prev = &p->ns->list;
1313 	} else {
1314 		prev = &p->cursor.mnt_list;
1315 
1316 		/* Read after we'd reached the end? */
1317 		if (list_empty(prev))
1318 			return NULL;
1319 	}
1320 
1321 	return mnt_list_next(p->ns, prev);
1322 }
1323 
1324 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1325 {
1326 	struct proc_mounts *p = m->private;
1327 	struct mount *mnt = v;
1328 
1329 	++*pos;
1330 	return mnt_list_next(p->ns, &mnt->mnt_list);
1331 }
1332 
1333 static void m_stop(struct seq_file *m, void *v)
1334 {
1335 	struct proc_mounts *p = m->private;
1336 	struct mount *mnt = v;
1337 
1338 	lock_ns_list(p->ns);
1339 	if (mnt)
1340 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1341 	else
1342 		list_del_init(&p->cursor.mnt_list);
1343 	unlock_ns_list(p->ns);
1344 	up_read(&namespace_sem);
1345 }
1346 
1347 static int m_show(struct seq_file *m, void *v)
1348 {
1349 	struct proc_mounts *p = m->private;
1350 	struct mount *r = v;
1351 	return p->show(m, &r->mnt);
1352 }
1353 
1354 const struct seq_operations mounts_op = {
1355 	.start	= m_start,
1356 	.next	= m_next,
1357 	.stop	= m_stop,
1358 	.show	= m_show,
1359 };
1360 
1361 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1362 {
1363 	down_read(&namespace_sem);
1364 	lock_ns_list(ns);
1365 	list_del(&cursor->mnt_list);
1366 	unlock_ns_list(ns);
1367 	up_read(&namespace_sem);
1368 }
1369 #endif  /* CONFIG_PROC_FS */
1370 
1371 /**
1372  * may_umount_tree - check if a mount tree is busy
1373  * @m: root of mount tree
1374  *
1375  * This is called to check if a tree of mounts has any
1376  * open files, pwds, chroots or sub mounts that are
1377  * busy.
1378  */
1379 int may_umount_tree(struct vfsmount *m)
1380 {
1381 	struct mount *mnt = real_mount(m);
1382 	int actual_refs = 0;
1383 	int minimum_refs = 0;
1384 	struct mount *p;
1385 	BUG_ON(!m);
1386 
1387 	/* write lock needed for mnt_get_count */
1388 	lock_mount_hash();
1389 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1390 		actual_refs += mnt_get_count(p);
1391 		minimum_refs += 2;
1392 	}
1393 	unlock_mount_hash();
1394 
1395 	if (actual_refs > minimum_refs)
1396 		return 0;
1397 
1398 	return 1;
1399 }
1400 
1401 EXPORT_SYMBOL(may_umount_tree);
1402 
1403 /**
1404  * may_umount - check if a mount point is busy
1405  * @mnt: root of mount
1406  *
1407  * This is called to check if a mount point has any
1408  * open files, pwds, chroots or sub mounts. If the
1409  * mount has sub mounts this will return busy
1410  * regardless of whether the sub mounts are busy.
1411  *
1412  * Doesn't take quota and stuff into account. IOW, in some cases it will
1413  * give false negatives. The main reason why it's here is that we need
1414  * a non-destructive way to look for easily umountable filesystems.
1415  */
1416 int may_umount(struct vfsmount *mnt)
1417 {
1418 	int ret = 1;
1419 	down_read(&namespace_sem);
1420 	lock_mount_hash();
1421 	if (propagate_mount_busy(real_mount(mnt), 2))
1422 		ret = 0;
1423 	unlock_mount_hash();
1424 	up_read(&namespace_sem);
1425 	return ret;
1426 }
1427 
1428 EXPORT_SYMBOL(may_umount);
1429 
1430 static void namespace_unlock(void)
1431 {
1432 	struct hlist_head head;
1433 	struct hlist_node *p;
1434 	struct mount *m;
1435 	LIST_HEAD(list);
1436 
1437 	hlist_move_list(&unmounted, &head);
1438 	list_splice_init(&ex_mountpoints, &list);
1439 
1440 	up_write(&namespace_sem);
1441 
1442 	shrink_dentry_list(&list);
1443 
1444 	if (likely(hlist_empty(&head)))
1445 		return;
1446 
1447 	synchronize_rcu_expedited();
1448 
1449 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1450 		hlist_del(&m->mnt_umount);
1451 		mntput(&m->mnt);
1452 	}
1453 }
1454 
1455 static inline void namespace_lock(void)
1456 {
1457 	down_write(&namespace_sem);
1458 }
1459 
1460 enum umount_tree_flags {
1461 	UMOUNT_SYNC = 1,
1462 	UMOUNT_PROPAGATE = 2,
1463 	UMOUNT_CONNECTED = 4,
1464 };
1465 
1466 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1467 {
1468 	/* Leaving mounts connected is only valid for lazy umounts */
1469 	if (how & UMOUNT_SYNC)
1470 		return true;
1471 
1472 	/* A mount without a parent has nothing to be connected to */
1473 	if (!mnt_has_parent(mnt))
1474 		return true;
1475 
1476 	/* Because the reference counting rules change when mounts are
1477 	 * unmounted and connected, umounted mounts may not be
1478 	 * connected to mounted mounts.
1479 	 */
1480 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1481 		return true;
1482 
1483 	/* Has it been requested that the mount remain connected? */
1484 	if (how & UMOUNT_CONNECTED)
1485 		return false;
1486 
1487 	/* Is the mount locked such that it needs to remain connected? */
1488 	if (IS_MNT_LOCKED(mnt))
1489 		return false;
1490 
1491 	/* By default disconnect the mount */
1492 	return true;
1493 }
1494 
1495 /*
1496  * mount_lock must be held
1497  * namespace_sem must be held for write
1498  */
1499 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1500 {
1501 	LIST_HEAD(tmp_list);
1502 	struct mount *p;
1503 
1504 	if (how & UMOUNT_PROPAGATE)
1505 		propagate_mount_unlock(mnt);
1506 
1507 	/* Gather the mounts to umount */
1508 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1509 		p->mnt.mnt_flags |= MNT_UMOUNT;
1510 		list_move(&p->mnt_list, &tmp_list);
1511 	}
1512 
1513 	/* Hide the mounts from mnt_mounts */
1514 	list_for_each_entry(p, &tmp_list, mnt_list) {
1515 		list_del_init(&p->mnt_child);
1516 	}
1517 
1518 	/* Add propogated mounts to the tmp_list */
1519 	if (how & UMOUNT_PROPAGATE)
1520 		propagate_umount(&tmp_list);
1521 
1522 	while (!list_empty(&tmp_list)) {
1523 		struct mnt_namespace *ns;
1524 		bool disconnect;
1525 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1526 		list_del_init(&p->mnt_expire);
1527 		list_del_init(&p->mnt_list);
1528 		ns = p->mnt_ns;
1529 		if (ns) {
1530 			ns->mounts--;
1531 			__touch_mnt_namespace(ns);
1532 		}
1533 		p->mnt_ns = NULL;
1534 		if (how & UMOUNT_SYNC)
1535 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1536 
1537 		disconnect = disconnect_mount(p, how);
1538 		if (mnt_has_parent(p)) {
1539 			mnt_add_count(p->mnt_parent, -1);
1540 			if (!disconnect) {
1541 				/* Don't forget about p */
1542 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1543 			} else {
1544 				umount_mnt(p);
1545 			}
1546 		}
1547 		change_mnt_propagation(p, MS_PRIVATE);
1548 		if (disconnect)
1549 			hlist_add_head(&p->mnt_umount, &unmounted);
1550 	}
1551 }
1552 
1553 static void shrink_submounts(struct mount *mnt);
1554 
1555 static int do_umount_root(struct super_block *sb)
1556 {
1557 	int ret = 0;
1558 
1559 	down_write(&sb->s_umount);
1560 	if (!sb_rdonly(sb)) {
1561 		struct fs_context *fc;
1562 
1563 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1564 						SB_RDONLY);
1565 		if (IS_ERR(fc)) {
1566 			ret = PTR_ERR(fc);
1567 		} else {
1568 			ret = parse_monolithic_mount_data(fc, NULL);
1569 			if (!ret)
1570 				ret = reconfigure_super(fc);
1571 			put_fs_context(fc);
1572 		}
1573 	}
1574 	up_write(&sb->s_umount);
1575 	return ret;
1576 }
1577 
1578 static int do_umount(struct mount *mnt, int flags)
1579 {
1580 	struct super_block *sb = mnt->mnt.mnt_sb;
1581 	int retval;
1582 
1583 	retval = security_sb_umount(&mnt->mnt, flags);
1584 	if (retval)
1585 		return retval;
1586 
1587 	/*
1588 	 * Allow userspace to request a mountpoint be expired rather than
1589 	 * unmounting unconditionally. Unmount only happens if:
1590 	 *  (1) the mark is already set (the mark is cleared by mntput())
1591 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1592 	 */
1593 	if (flags & MNT_EXPIRE) {
1594 		if (&mnt->mnt == current->fs->root.mnt ||
1595 		    flags & (MNT_FORCE | MNT_DETACH))
1596 			return -EINVAL;
1597 
1598 		/*
1599 		 * probably don't strictly need the lock here if we examined
1600 		 * all race cases, but it's a slowpath.
1601 		 */
1602 		lock_mount_hash();
1603 		if (mnt_get_count(mnt) != 2) {
1604 			unlock_mount_hash();
1605 			return -EBUSY;
1606 		}
1607 		unlock_mount_hash();
1608 
1609 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1610 			return -EAGAIN;
1611 	}
1612 
1613 	/*
1614 	 * If we may have to abort operations to get out of this
1615 	 * mount, and they will themselves hold resources we must
1616 	 * allow the fs to do things. In the Unix tradition of
1617 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1618 	 * might fail to complete on the first run through as other tasks
1619 	 * must return, and the like. Thats for the mount program to worry
1620 	 * about for the moment.
1621 	 */
1622 
1623 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1624 		sb->s_op->umount_begin(sb);
1625 	}
1626 
1627 	/*
1628 	 * No sense to grab the lock for this test, but test itself looks
1629 	 * somewhat bogus. Suggestions for better replacement?
1630 	 * Ho-hum... In principle, we might treat that as umount + switch
1631 	 * to rootfs. GC would eventually take care of the old vfsmount.
1632 	 * Actually it makes sense, especially if rootfs would contain a
1633 	 * /reboot - static binary that would close all descriptors and
1634 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1635 	 */
1636 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1637 		/*
1638 		 * Special case for "unmounting" root ...
1639 		 * we just try to remount it readonly.
1640 		 */
1641 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1642 			return -EPERM;
1643 		return do_umount_root(sb);
1644 	}
1645 
1646 	namespace_lock();
1647 	lock_mount_hash();
1648 
1649 	/* Recheck MNT_LOCKED with the locks held */
1650 	retval = -EINVAL;
1651 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1652 		goto out;
1653 
1654 	event++;
1655 	if (flags & MNT_DETACH) {
1656 		if (!list_empty(&mnt->mnt_list))
1657 			umount_tree(mnt, UMOUNT_PROPAGATE);
1658 		retval = 0;
1659 	} else {
1660 		shrink_submounts(mnt);
1661 		retval = -EBUSY;
1662 		if (!propagate_mount_busy(mnt, 2)) {
1663 			if (!list_empty(&mnt->mnt_list))
1664 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1665 			retval = 0;
1666 		}
1667 	}
1668 out:
1669 	unlock_mount_hash();
1670 	namespace_unlock();
1671 	return retval;
1672 }
1673 
1674 /*
1675  * __detach_mounts - lazily unmount all mounts on the specified dentry
1676  *
1677  * During unlink, rmdir, and d_drop it is possible to loose the path
1678  * to an existing mountpoint, and wind up leaking the mount.
1679  * detach_mounts allows lazily unmounting those mounts instead of
1680  * leaking them.
1681  *
1682  * The caller may hold dentry->d_inode->i_mutex.
1683  */
1684 void __detach_mounts(struct dentry *dentry)
1685 {
1686 	struct mountpoint *mp;
1687 	struct mount *mnt;
1688 
1689 	namespace_lock();
1690 	lock_mount_hash();
1691 	mp = lookup_mountpoint(dentry);
1692 	if (!mp)
1693 		goto out_unlock;
1694 
1695 	event++;
1696 	while (!hlist_empty(&mp->m_list)) {
1697 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1698 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1699 			umount_mnt(mnt);
1700 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1701 		}
1702 		else umount_tree(mnt, UMOUNT_CONNECTED);
1703 	}
1704 	put_mountpoint(mp);
1705 out_unlock:
1706 	unlock_mount_hash();
1707 	namespace_unlock();
1708 }
1709 
1710 /*
1711  * Is the caller allowed to modify his namespace?
1712  */
1713 static inline bool may_mount(void)
1714 {
1715 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1716 }
1717 
1718 static void warn_mandlock(void)
1719 {
1720 	pr_warn_once("=======================================================\n"
1721 		     "WARNING: The mand mount option has been deprecated and\n"
1722 		     "         and is ignored by this kernel. Remove the mand\n"
1723 		     "         option from the mount to silence this warning.\n"
1724 		     "=======================================================\n");
1725 }
1726 
1727 static int can_umount(const struct path *path, int flags)
1728 {
1729 	struct mount *mnt = real_mount(path->mnt);
1730 
1731 	if (!may_mount())
1732 		return -EPERM;
1733 	if (path->dentry != path->mnt->mnt_root)
1734 		return -EINVAL;
1735 	if (!check_mnt(mnt))
1736 		return -EINVAL;
1737 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1738 		return -EINVAL;
1739 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1740 		return -EPERM;
1741 	return 0;
1742 }
1743 
1744 // caller is responsible for flags being sane
1745 int path_umount(struct path *path, int flags)
1746 {
1747 	struct mount *mnt = real_mount(path->mnt);
1748 	int ret;
1749 
1750 	ret = can_umount(path, flags);
1751 	if (!ret)
1752 		ret = do_umount(mnt, flags);
1753 
1754 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1755 	dput(path->dentry);
1756 	mntput_no_expire(mnt);
1757 	return ret;
1758 }
1759 
1760 static int ksys_umount(char __user *name, int flags)
1761 {
1762 	int lookup_flags = LOOKUP_MOUNTPOINT;
1763 	struct path path;
1764 	int ret;
1765 
1766 	// basic validity checks done first
1767 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1768 		return -EINVAL;
1769 
1770 	if (!(flags & UMOUNT_NOFOLLOW))
1771 		lookup_flags |= LOOKUP_FOLLOW;
1772 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1773 	if (ret)
1774 		return ret;
1775 	return path_umount(&path, flags);
1776 }
1777 
1778 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1779 {
1780 	return ksys_umount(name, flags);
1781 }
1782 
1783 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1784 
1785 /*
1786  *	The 2.0 compatible umount. No flags.
1787  */
1788 SYSCALL_DEFINE1(oldumount, char __user *, name)
1789 {
1790 	return ksys_umount(name, 0);
1791 }
1792 
1793 #endif
1794 
1795 static bool is_mnt_ns_file(struct dentry *dentry)
1796 {
1797 	/* Is this a proxy for a mount namespace? */
1798 	return dentry->d_op == &ns_dentry_operations &&
1799 	       dentry->d_fsdata == &mntns_operations;
1800 }
1801 
1802 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1803 {
1804 	return container_of(ns, struct mnt_namespace, ns);
1805 }
1806 
1807 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1808 {
1809 	return &mnt->ns;
1810 }
1811 
1812 static bool mnt_ns_loop(struct dentry *dentry)
1813 {
1814 	/* Could bind mounting the mount namespace inode cause a
1815 	 * mount namespace loop?
1816 	 */
1817 	struct mnt_namespace *mnt_ns;
1818 	if (!is_mnt_ns_file(dentry))
1819 		return false;
1820 
1821 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1822 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1823 }
1824 
1825 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1826 					int flag)
1827 {
1828 	struct mount *res, *p, *q, *r, *parent;
1829 
1830 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1831 		return ERR_PTR(-EINVAL);
1832 
1833 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1834 		return ERR_PTR(-EINVAL);
1835 
1836 	res = q = clone_mnt(mnt, dentry, flag);
1837 	if (IS_ERR(q))
1838 		return q;
1839 
1840 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1841 
1842 	p = mnt;
1843 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1844 		struct mount *s;
1845 		if (!is_subdir(r->mnt_mountpoint, dentry))
1846 			continue;
1847 
1848 		for (s = r; s; s = next_mnt(s, r)) {
1849 			if (!(flag & CL_COPY_UNBINDABLE) &&
1850 			    IS_MNT_UNBINDABLE(s)) {
1851 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1852 					/* Both unbindable and locked. */
1853 					q = ERR_PTR(-EPERM);
1854 					goto out;
1855 				} else {
1856 					s = skip_mnt_tree(s);
1857 					continue;
1858 				}
1859 			}
1860 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1861 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1862 				s = skip_mnt_tree(s);
1863 				continue;
1864 			}
1865 			while (p != s->mnt_parent) {
1866 				p = p->mnt_parent;
1867 				q = q->mnt_parent;
1868 			}
1869 			p = s;
1870 			parent = q;
1871 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1872 			if (IS_ERR(q))
1873 				goto out;
1874 			lock_mount_hash();
1875 			list_add_tail(&q->mnt_list, &res->mnt_list);
1876 			attach_mnt(q, parent, p->mnt_mp);
1877 			unlock_mount_hash();
1878 		}
1879 	}
1880 	return res;
1881 out:
1882 	if (res) {
1883 		lock_mount_hash();
1884 		umount_tree(res, UMOUNT_SYNC);
1885 		unlock_mount_hash();
1886 	}
1887 	return q;
1888 }
1889 
1890 /* Caller should check returned pointer for errors */
1891 
1892 struct vfsmount *collect_mounts(const struct path *path)
1893 {
1894 	struct mount *tree;
1895 	namespace_lock();
1896 	if (!check_mnt(real_mount(path->mnt)))
1897 		tree = ERR_PTR(-EINVAL);
1898 	else
1899 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1900 				 CL_COPY_ALL | CL_PRIVATE);
1901 	namespace_unlock();
1902 	if (IS_ERR(tree))
1903 		return ERR_CAST(tree);
1904 	return &tree->mnt;
1905 }
1906 
1907 static void free_mnt_ns(struct mnt_namespace *);
1908 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1909 
1910 void dissolve_on_fput(struct vfsmount *mnt)
1911 {
1912 	struct mnt_namespace *ns;
1913 	namespace_lock();
1914 	lock_mount_hash();
1915 	ns = real_mount(mnt)->mnt_ns;
1916 	if (ns) {
1917 		if (is_anon_ns(ns))
1918 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1919 		else
1920 			ns = NULL;
1921 	}
1922 	unlock_mount_hash();
1923 	namespace_unlock();
1924 	if (ns)
1925 		free_mnt_ns(ns);
1926 }
1927 
1928 void drop_collected_mounts(struct vfsmount *mnt)
1929 {
1930 	namespace_lock();
1931 	lock_mount_hash();
1932 	umount_tree(real_mount(mnt), 0);
1933 	unlock_mount_hash();
1934 	namespace_unlock();
1935 }
1936 
1937 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1938 {
1939 	struct mount *child;
1940 
1941 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1942 		if (!is_subdir(child->mnt_mountpoint, dentry))
1943 			continue;
1944 
1945 		if (child->mnt.mnt_flags & MNT_LOCKED)
1946 			return true;
1947 	}
1948 	return false;
1949 }
1950 
1951 /**
1952  * clone_private_mount - create a private clone of a path
1953  * @path: path to clone
1954  *
1955  * This creates a new vfsmount, which will be the clone of @path.  The new mount
1956  * will not be attached anywhere in the namespace and will be private (i.e.
1957  * changes to the originating mount won't be propagated into this).
1958  *
1959  * Release with mntput().
1960  */
1961 struct vfsmount *clone_private_mount(const struct path *path)
1962 {
1963 	struct mount *old_mnt = real_mount(path->mnt);
1964 	struct mount *new_mnt;
1965 
1966 	down_read(&namespace_sem);
1967 	if (IS_MNT_UNBINDABLE(old_mnt))
1968 		goto invalid;
1969 
1970 	if (!check_mnt(old_mnt))
1971 		goto invalid;
1972 
1973 	if (has_locked_children(old_mnt, path->dentry))
1974 		goto invalid;
1975 
1976 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1977 	up_read(&namespace_sem);
1978 
1979 	if (IS_ERR(new_mnt))
1980 		return ERR_CAST(new_mnt);
1981 
1982 	/* Longterm mount to be removed by kern_unmount*() */
1983 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
1984 
1985 	return &new_mnt->mnt;
1986 
1987 invalid:
1988 	up_read(&namespace_sem);
1989 	return ERR_PTR(-EINVAL);
1990 }
1991 EXPORT_SYMBOL_GPL(clone_private_mount);
1992 
1993 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1994 		   struct vfsmount *root)
1995 {
1996 	struct mount *mnt;
1997 	int res = f(root, arg);
1998 	if (res)
1999 		return res;
2000 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2001 		res = f(&mnt->mnt, arg);
2002 		if (res)
2003 			return res;
2004 	}
2005 	return 0;
2006 }
2007 
2008 static void lock_mnt_tree(struct mount *mnt)
2009 {
2010 	struct mount *p;
2011 
2012 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2013 		int flags = p->mnt.mnt_flags;
2014 		/* Don't allow unprivileged users to change mount flags */
2015 		flags |= MNT_LOCK_ATIME;
2016 
2017 		if (flags & MNT_READONLY)
2018 			flags |= MNT_LOCK_READONLY;
2019 
2020 		if (flags & MNT_NODEV)
2021 			flags |= MNT_LOCK_NODEV;
2022 
2023 		if (flags & MNT_NOSUID)
2024 			flags |= MNT_LOCK_NOSUID;
2025 
2026 		if (flags & MNT_NOEXEC)
2027 			flags |= MNT_LOCK_NOEXEC;
2028 		/* Don't allow unprivileged users to reveal what is under a mount */
2029 		if (list_empty(&p->mnt_expire))
2030 			flags |= MNT_LOCKED;
2031 		p->mnt.mnt_flags = flags;
2032 	}
2033 }
2034 
2035 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2036 {
2037 	struct mount *p;
2038 
2039 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2040 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2041 			mnt_release_group_id(p);
2042 	}
2043 }
2044 
2045 static int invent_group_ids(struct mount *mnt, bool recurse)
2046 {
2047 	struct mount *p;
2048 
2049 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2050 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2051 			int err = mnt_alloc_group_id(p);
2052 			if (err) {
2053 				cleanup_group_ids(mnt, p);
2054 				return err;
2055 			}
2056 		}
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2063 {
2064 	unsigned int max = READ_ONCE(sysctl_mount_max);
2065 	unsigned int mounts = 0, old, pending, sum;
2066 	struct mount *p;
2067 
2068 	for (p = mnt; p; p = next_mnt(p, mnt))
2069 		mounts++;
2070 
2071 	old = ns->mounts;
2072 	pending = ns->pending_mounts;
2073 	sum = old + pending;
2074 	if ((old > sum) ||
2075 	    (pending > sum) ||
2076 	    (max < sum) ||
2077 	    (mounts > (max - sum)))
2078 		return -ENOSPC;
2079 
2080 	ns->pending_mounts = pending + mounts;
2081 	return 0;
2082 }
2083 
2084 /*
2085  *  @source_mnt : mount tree to be attached
2086  *  @nd         : place the mount tree @source_mnt is attached
2087  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2088  *  		   store the parent mount and mountpoint dentry.
2089  *  		   (done when source_mnt is moved)
2090  *
2091  *  NOTE: in the table below explains the semantics when a source mount
2092  *  of a given type is attached to a destination mount of a given type.
2093  * ---------------------------------------------------------------------------
2094  * |         BIND MOUNT OPERATION                                            |
2095  * |**************************************************************************
2096  * | source-->| shared        |       private  |       slave    | unbindable |
2097  * | dest     |               |                |                |            |
2098  * |   |      |               |                |                |            |
2099  * |   v      |               |                |                |            |
2100  * |**************************************************************************
2101  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2102  * |          |               |                |                |            |
2103  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2104  * ***************************************************************************
2105  * A bind operation clones the source mount and mounts the clone on the
2106  * destination mount.
2107  *
2108  * (++)  the cloned mount is propagated to all the mounts in the propagation
2109  * 	 tree of the destination mount and the cloned mount is added to
2110  * 	 the peer group of the source mount.
2111  * (+)   the cloned mount is created under the destination mount and is marked
2112  *       as shared. The cloned mount is added to the peer group of the source
2113  *       mount.
2114  * (+++) the mount is propagated to all the mounts in the propagation tree
2115  *       of the destination mount and the cloned mount is made slave
2116  *       of the same master as that of the source mount. The cloned mount
2117  *       is marked as 'shared and slave'.
2118  * (*)   the cloned mount is made a slave of the same master as that of the
2119  * 	 source mount.
2120  *
2121  * ---------------------------------------------------------------------------
2122  * |         		MOVE MOUNT OPERATION                                 |
2123  * |**************************************************************************
2124  * | source-->| shared        |       private  |       slave    | unbindable |
2125  * | dest     |               |                |                |            |
2126  * |   |      |               |                |                |            |
2127  * |   v      |               |                |                |            |
2128  * |**************************************************************************
2129  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2130  * |          |               |                |                |            |
2131  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2132  * ***************************************************************************
2133  *
2134  * (+)  the mount is moved to the destination. And is then propagated to
2135  * 	all the mounts in the propagation tree of the destination mount.
2136  * (+*)  the mount is moved to the destination.
2137  * (+++)  the mount is moved to the destination and is then propagated to
2138  * 	all the mounts belonging to the destination mount's propagation tree.
2139  * 	the mount is marked as 'shared and slave'.
2140  * (*)	the mount continues to be a slave at the new location.
2141  *
2142  * if the source mount is a tree, the operations explained above is
2143  * applied to each mount in the tree.
2144  * Must be called without spinlocks held, since this function can sleep
2145  * in allocations.
2146  */
2147 static int attach_recursive_mnt(struct mount *source_mnt,
2148 			struct mount *dest_mnt,
2149 			struct mountpoint *dest_mp,
2150 			bool moving)
2151 {
2152 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2153 	HLIST_HEAD(tree_list);
2154 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2155 	struct mountpoint *smp;
2156 	struct mount *child, *p;
2157 	struct hlist_node *n;
2158 	int err;
2159 
2160 	/* Preallocate a mountpoint in case the new mounts need
2161 	 * to be tucked under other mounts.
2162 	 */
2163 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2164 	if (IS_ERR(smp))
2165 		return PTR_ERR(smp);
2166 
2167 	/* Is there space to add these mounts to the mount namespace? */
2168 	if (!moving) {
2169 		err = count_mounts(ns, source_mnt);
2170 		if (err)
2171 			goto out;
2172 	}
2173 
2174 	if (IS_MNT_SHARED(dest_mnt)) {
2175 		err = invent_group_ids(source_mnt, true);
2176 		if (err)
2177 			goto out;
2178 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2179 		lock_mount_hash();
2180 		if (err)
2181 			goto out_cleanup_ids;
2182 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2183 			set_mnt_shared(p);
2184 	} else {
2185 		lock_mount_hash();
2186 	}
2187 	if (moving) {
2188 		unhash_mnt(source_mnt);
2189 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2190 		touch_mnt_namespace(source_mnt->mnt_ns);
2191 	} else {
2192 		if (source_mnt->mnt_ns) {
2193 			/* move from anon - the caller will destroy */
2194 			list_del_init(&source_mnt->mnt_ns->list);
2195 		}
2196 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2197 		commit_tree(source_mnt);
2198 	}
2199 
2200 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2201 		struct mount *q;
2202 		hlist_del_init(&child->mnt_hash);
2203 		q = __lookup_mnt(&child->mnt_parent->mnt,
2204 				 child->mnt_mountpoint);
2205 		if (q)
2206 			mnt_change_mountpoint(child, smp, q);
2207 		/* Notice when we are propagating across user namespaces */
2208 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2209 			lock_mnt_tree(child);
2210 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2211 		commit_tree(child);
2212 	}
2213 	put_mountpoint(smp);
2214 	unlock_mount_hash();
2215 
2216 	return 0;
2217 
2218  out_cleanup_ids:
2219 	while (!hlist_empty(&tree_list)) {
2220 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2221 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2222 		umount_tree(child, UMOUNT_SYNC);
2223 	}
2224 	unlock_mount_hash();
2225 	cleanup_group_ids(source_mnt, NULL);
2226  out:
2227 	ns->pending_mounts = 0;
2228 
2229 	read_seqlock_excl(&mount_lock);
2230 	put_mountpoint(smp);
2231 	read_sequnlock_excl(&mount_lock);
2232 
2233 	return err;
2234 }
2235 
2236 static struct mountpoint *lock_mount(struct path *path)
2237 {
2238 	struct vfsmount *mnt;
2239 	struct dentry *dentry = path->dentry;
2240 retry:
2241 	inode_lock(dentry->d_inode);
2242 	if (unlikely(cant_mount(dentry))) {
2243 		inode_unlock(dentry->d_inode);
2244 		return ERR_PTR(-ENOENT);
2245 	}
2246 	namespace_lock();
2247 	mnt = lookup_mnt(path);
2248 	if (likely(!mnt)) {
2249 		struct mountpoint *mp = get_mountpoint(dentry);
2250 		if (IS_ERR(mp)) {
2251 			namespace_unlock();
2252 			inode_unlock(dentry->d_inode);
2253 			return mp;
2254 		}
2255 		return mp;
2256 	}
2257 	namespace_unlock();
2258 	inode_unlock(path->dentry->d_inode);
2259 	path_put(path);
2260 	path->mnt = mnt;
2261 	dentry = path->dentry = dget(mnt->mnt_root);
2262 	goto retry;
2263 }
2264 
2265 static void unlock_mount(struct mountpoint *where)
2266 {
2267 	struct dentry *dentry = where->m_dentry;
2268 
2269 	read_seqlock_excl(&mount_lock);
2270 	put_mountpoint(where);
2271 	read_sequnlock_excl(&mount_lock);
2272 
2273 	namespace_unlock();
2274 	inode_unlock(dentry->d_inode);
2275 }
2276 
2277 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2278 {
2279 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2280 		return -EINVAL;
2281 
2282 	if (d_is_dir(mp->m_dentry) !=
2283 	      d_is_dir(mnt->mnt.mnt_root))
2284 		return -ENOTDIR;
2285 
2286 	return attach_recursive_mnt(mnt, p, mp, false);
2287 }
2288 
2289 /*
2290  * Sanity check the flags to change_mnt_propagation.
2291  */
2292 
2293 static int flags_to_propagation_type(int ms_flags)
2294 {
2295 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2296 
2297 	/* Fail if any non-propagation flags are set */
2298 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2299 		return 0;
2300 	/* Only one propagation flag should be set */
2301 	if (!is_power_of_2(type))
2302 		return 0;
2303 	return type;
2304 }
2305 
2306 /*
2307  * recursively change the type of the mountpoint.
2308  */
2309 static int do_change_type(struct path *path, int ms_flags)
2310 {
2311 	struct mount *m;
2312 	struct mount *mnt = real_mount(path->mnt);
2313 	int recurse = ms_flags & MS_REC;
2314 	int type;
2315 	int err = 0;
2316 
2317 	if (path->dentry != path->mnt->mnt_root)
2318 		return -EINVAL;
2319 
2320 	type = flags_to_propagation_type(ms_flags);
2321 	if (!type)
2322 		return -EINVAL;
2323 
2324 	namespace_lock();
2325 	if (type == MS_SHARED) {
2326 		err = invent_group_ids(mnt, recurse);
2327 		if (err)
2328 			goto out_unlock;
2329 	}
2330 
2331 	lock_mount_hash();
2332 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2333 		change_mnt_propagation(m, type);
2334 	unlock_mount_hash();
2335 
2336  out_unlock:
2337 	namespace_unlock();
2338 	return err;
2339 }
2340 
2341 static struct mount *__do_loopback(struct path *old_path, int recurse)
2342 {
2343 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2344 
2345 	if (IS_MNT_UNBINDABLE(old))
2346 		return mnt;
2347 
2348 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2349 		return mnt;
2350 
2351 	if (!recurse && has_locked_children(old, old_path->dentry))
2352 		return mnt;
2353 
2354 	if (recurse)
2355 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2356 	else
2357 		mnt = clone_mnt(old, old_path->dentry, 0);
2358 
2359 	if (!IS_ERR(mnt))
2360 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2361 
2362 	return mnt;
2363 }
2364 
2365 /*
2366  * do loopback mount.
2367  */
2368 static int do_loopback(struct path *path, const char *old_name,
2369 				int recurse)
2370 {
2371 	struct path old_path;
2372 	struct mount *mnt = NULL, *parent;
2373 	struct mountpoint *mp;
2374 	int err;
2375 	if (!old_name || !*old_name)
2376 		return -EINVAL;
2377 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2378 	if (err)
2379 		return err;
2380 
2381 	err = -EINVAL;
2382 	if (mnt_ns_loop(old_path.dentry))
2383 		goto out;
2384 
2385 	mp = lock_mount(path);
2386 	if (IS_ERR(mp)) {
2387 		err = PTR_ERR(mp);
2388 		goto out;
2389 	}
2390 
2391 	parent = real_mount(path->mnt);
2392 	if (!check_mnt(parent))
2393 		goto out2;
2394 
2395 	mnt = __do_loopback(&old_path, recurse);
2396 	if (IS_ERR(mnt)) {
2397 		err = PTR_ERR(mnt);
2398 		goto out2;
2399 	}
2400 
2401 	err = graft_tree(mnt, parent, mp);
2402 	if (err) {
2403 		lock_mount_hash();
2404 		umount_tree(mnt, UMOUNT_SYNC);
2405 		unlock_mount_hash();
2406 	}
2407 out2:
2408 	unlock_mount(mp);
2409 out:
2410 	path_put(&old_path);
2411 	return err;
2412 }
2413 
2414 static struct file *open_detached_copy(struct path *path, bool recursive)
2415 {
2416 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2417 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2418 	struct mount *mnt, *p;
2419 	struct file *file;
2420 
2421 	if (IS_ERR(ns))
2422 		return ERR_CAST(ns);
2423 
2424 	namespace_lock();
2425 	mnt = __do_loopback(path, recursive);
2426 	if (IS_ERR(mnt)) {
2427 		namespace_unlock();
2428 		free_mnt_ns(ns);
2429 		return ERR_CAST(mnt);
2430 	}
2431 
2432 	lock_mount_hash();
2433 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2434 		p->mnt_ns = ns;
2435 		ns->mounts++;
2436 	}
2437 	ns->root = mnt;
2438 	list_add_tail(&ns->list, &mnt->mnt_list);
2439 	mntget(&mnt->mnt);
2440 	unlock_mount_hash();
2441 	namespace_unlock();
2442 
2443 	mntput(path->mnt);
2444 	path->mnt = &mnt->mnt;
2445 	file = dentry_open(path, O_PATH, current_cred());
2446 	if (IS_ERR(file))
2447 		dissolve_on_fput(path->mnt);
2448 	else
2449 		file->f_mode |= FMODE_NEED_UNMOUNT;
2450 	return file;
2451 }
2452 
2453 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2454 {
2455 	struct file *file;
2456 	struct path path;
2457 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2458 	bool detached = flags & OPEN_TREE_CLONE;
2459 	int error;
2460 	int fd;
2461 
2462 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2463 
2464 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2465 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2466 		      OPEN_TREE_CLOEXEC))
2467 		return -EINVAL;
2468 
2469 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2470 		return -EINVAL;
2471 
2472 	if (flags & AT_NO_AUTOMOUNT)
2473 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2474 	if (flags & AT_SYMLINK_NOFOLLOW)
2475 		lookup_flags &= ~LOOKUP_FOLLOW;
2476 	if (flags & AT_EMPTY_PATH)
2477 		lookup_flags |= LOOKUP_EMPTY;
2478 
2479 	if (detached && !may_mount())
2480 		return -EPERM;
2481 
2482 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2483 	if (fd < 0)
2484 		return fd;
2485 
2486 	error = user_path_at(dfd, filename, lookup_flags, &path);
2487 	if (unlikely(error)) {
2488 		file = ERR_PTR(error);
2489 	} else {
2490 		if (detached)
2491 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2492 		else
2493 			file = dentry_open(&path, O_PATH, current_cred());
2494 		path_put(&path);
2495 	}
2496 	if (IS_ERR(file)) {
2497 		put_unused_fd(fd);
2498 		return PTR_ERR(file);
2499 	}
2500 	fd_install(fd, file);
2501 	return fd;
2502 }
2503 
2504 /*
2505  * Don't allow locked mount flags to be cleared.
2506  *
2507  * No locks need to be held here while testing the various MNT_LOCK
2508  * flags because those flags can never be cleared once they are set.
2509  */
2510 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2511 {
2512 	unsigned int fl = mnt->mnt.mnt_flags;
2513 
2514 	if ((fl & MNT_LOCK_READONLY) &&
2515 	    !(mnt_flags & MNT_READONLY))
2516 		return false;
2517 
2518 	if ((fl & MNT_LOCK_NODEV) &&
2519 	    !(mnt_flags & MNT_NODEV))
2520 		return false;
2521 
2522 	if ((fl & MNT_LOCK_NOSUID) &&
2523 	    !(mnt_flags & MNT_NOSUID))
2524 		return false;
2525 
2526 	if ((fl & MNT_LOCK_NOEXEC) &&
2527 	    !(mnt_flags & MNT_NOEXEC))
2528 		return false;
2529 
2530 	if ((fl & MNT_LOCK_ATIME) &&
2531 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2532 		return false;
2533 
2534 	return true;
2535 }
2536 
2537 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2538 {
2539 	bool readonly_request = (mnt_flags & MNT_READONLY);
2540 
2541 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2542 		return 0;
2543 
2544 	if (readonly_request)
2545 		return mnt_make_readonly(mnt);
2546 
2547 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2548 	return 0;
2549 }
2550 
2551 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2552 {
2553 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2554 	mnt->mnt.mnt_flags = mnt_flags;
2555 	touch_mnt_namespace(mnt->mnt_ns);
2556 }
2557 
2558 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2559 {
2560 	struct super_block *sb = mnt->mnt_sb;
2561 
2562 	if (!__mnt_is_readonly(mnt) &&
2563 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2564 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2565 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2566 		struct tm tm;
2567 
2568 		time64_to_tm(sb->s_time_max, 0, &tm);
2569 
2570 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2571 			sb->s_type->name,
2572 			is_mounted(mnt) ? "remounted" : "mounted",
2573 			mntpath,
2574 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2575 
2576 		free_page((unsigned long)buf);
2577 	}
2578 }
2579 
2580 /*
2581  * Handle reconfiguration of the mountpoint only without alteration of the
2582  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2583  * to mount(2).
2584  */
2585 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2586 {
2587 	struct super_block *sb = path->mnt->mnt_sb;
2588 	struct mount *mnt = real_mount(path->mnt);
2589 	int ret;
2590 
2591 	if (!check_mnt(mnt))
2592 		return -EINVAL;
2593 
2594 	if (path->dentry != mnt->mnt.mnt_root)
2595 		return -EINVAL;
2596 
2597 	if (!can_change_locked_flags(mnt, mnt_flags))
2598 		return -EPERM;
2599 
2600 	/*
2601 	 * We're only checking whether the superblock is read-only not
2602 	 * changing it, so only take down_read(&sb->s_umount).
2603 	 */
2604 	down_read(&sb->s_umount);
2605 	lock_mount_hash();
2606 	ret = change_mount_ro_state(mnt, mnt_flags);
2607 	if (ret == 0)
2608 		set_mount_attributes(mnt, mnt_flags);
2609 	unlock_mount_hash();
2610 	up_read(&sb->s_umount);
2611 
2612 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2613 
2614 	return ret;
2615 }
2616 
2617 /*
2618  * change filesystem flags. dir should be a physical root of filesystem.
2619  * If you've mounted a non-root directory somewhere and want to do remount
2620  * on it - tough luck.
2621  */
2622 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2623 		      int mnt_flags, void *data)
2624 {
2625 	int err;
2626 	struct super_block *sb = path->mnt->mnt_sb;
2627 	struct mount *mnt = real_mount(path->mnt);
2628 	struct fs_context *fc;
2629 
2630 	if (!check_mnt(mnt))
2631 		return -EINVAL;
2632 
2633 	if (path->dentry != path->mnt->mnt_root)
2634 		return -EINVAL;
2635 
2636 	if (!can_change_locked_flags(mnt, mnt_flags))
2637 		return -EPERM;
2638 
2639 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2640 	if (IS_ERR(fc))
2641 		return PTR_ERR(fc);
2642 
2643 	fc->oldapi = true;
2644 	err = parse_monolithic_mount_data(fc, data);
2645 	if (!err) {
2646 		down_write(&sb->s_umount);
2647 		err = -EPERM;
2648 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2649 			err = reconfigure_super(fc);
2650 			if (!err) {
2651 				lock_mount_hash();
2652 				set_mount_attributes(mnt, mnt_flags);
2653 				unlock_mount_hash();
2654 			}
2655 		}
2656 		up_write(&sb->s_umount);
2657 	}
2658 
2659 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2660 
2661 	put_fs_context(fc);
2662 	return err;
2663 }
2664 
2665 static inline int tree_contains_unbindable(struct mount *mnt)
2666 {
2667 	struct mount *p;
2668 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2669 		if (IS_MNT_UNBINDABLE(p))
2670 			return 1;
2671 	}
2672 	return 0;
2673 }
2674 
2675 /*
2676  * Check that there aren't references to earlier/same mount namespaces in the
2677  * specified subtree.  Such references can act as pins for mount namespaces
2678  * that aren't checked by the mount-cycle checking code, thereby allowing
2679  * cycles to be made.
2680  */
2681 static bool check_for_nsfs_mounts(struct mount *subtree)
2682 {
2683 	struct mount *p;
2684 	bool ret = false;
2685 
2686 	lock_mount_hash();
2687 	for (p = subtree; p; p = next_mnt(p, subtree))
2688 		if (mnt_ns_loop(p->mnt.mnt_root))
2689 			goto out;
2690 
2691 	ret = true;
2692 out:
2693 	unlock_mount_hash();
2694 	return ret;
2695 }
2696 
2697 static int do_set_group(struct path *from_path, struct path *to_path)
2698 {
2699 	struct mount *from, *to;
2700 	int err;
2701 
2702 	from = real_mount(from_path->mnt);
2703 	to = real_mount(to_path->mnt);
2704 
2705 	namespace_lock();
2706 
2707 	err = -EINVAL;
2708 	/* To and From must be mounted */
2709 	if (!is_mounted(&from->mnt))
2710 		goto out;
2711 	if (!is_mounted(&to->mnt))
2712 		goto out;
2713 
2714 	err = -EPERM;
2715 	/* We should be allowed to modify mount namespaces of both mounts */
2716 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2717 		goto out;
2718 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2719 		goto out;
2720 
2721 	err = -EINVAL;
2722 	/* To and From paths should be mount roots */
2723 	if (from_path->dentry != from_path->mnt->mnt_root)
2724 		goto out;
2725 	if (to_path->dentry != to_path->mnt->mnt_root)
2726 		goto out;
2727 
2728 	/* Setting sharing groups is only allowed across same superblock */
2729 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2730 		goto out;
2731 
2732 	/* From mount root should be wider than To mount root */
2733 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2734 		goto out;
2735 
2736 	/* From mount should not have locked children in place of To's root */
2737 	if (has_locked_children(from, to->mnt.mnt_root))
2738 		goto out;
2739 
2740 	/* Setting sharing groups is only allowed on private mounts */
2741 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2742 		goto out;
2743 
2744 	/* From should not be private */
2745 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2746 		goto out;
2747 
2748 	if (IS_MNT_SLAVE(from)) {
2749 		struct mount *m = from->mnt_master;
2750 
2751 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2752 		to->mnt_master = m;
2753 	}
2754 
2755 	if (IS_MNT_SHARED(from)) {
2756 		to->mnt_group_id = from->mnt_group_id;
2757 		list_add(&to->mnt_share, &from->mnt_share);
2758 		lock_mount_hash();
2759 		set_mnt_shared(to);
2760 		unlock_mount_hash();
2761 	}
2762 
2763 	err = 0;
2764 out:
2765 	namespace_unlock();
2766 	return err;
2767 }
2768 
2769 static int do_move_mount(struct path *old_path, struct path *new_path)
2770 {
2771 	struct mnt_namespace *ns;
2772 	struct mount *p;
2773 	struct mount *old;
2774 	struct mount *parent;
2775 	struct mountpoint *mp, *old_mp;
2776 	int err;
2777 	bool attached;
2778 
2779 	mp = lock_mount(new_path);
2780 	if (IS_ERR(mp))
2781 		return PTR_ERR(mp);
2782 
2783 	old = real_mount(old_path->mnt);
2784 	p = real_mount(new_path->mnt);
2785 	parent = old->mnt_parent;
2786 	attached = mnt_has_parent(old);
2787 	old_mp = old->mnt_mp;
2788 	ns = old->mnt_ns;
2789 
2790 	err = -EINVAL;
2791 	/* The mountpoint must be in our namespace. */
2792 	if (!check_mnt(p))
2793 		goto out;
2794 
2795 	/* The thing moved must be mounted... */
2796 	if (!is_mounted(&old->mnt))
2797 		goto out;
2798 
2799 	/* ... and either ours or the root of anon namespace */
2800 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2801 		goto out;
2802 
2803 	if (old->mnt.mnt_flags & MNT_LOCKED)
2804 		goto out;
2805 
2806 	if (old_path->dentry != old_path->mnt->mnt_root)
2807 		goto out;
2808 
2809 	if (d_is_dir(new_path->dentry) !=
2810 	    d_is_dir(old_path->dentry))
2811 		goto out;
2812 	/*
2813 	 * Don't move a mount residing in a shared parent.
2814 	 */
2815 	if (attached && IS_MNT_SHARED(parent))
2816 		goto out;
2817 	/*
2818 	 * Don't move a mount tree containing unbindable mounts to a destination
2819 	 * mount which is shared.
2820 	 */
2821 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2822 		goto out;
2823 	err = -ELOOP;
2824 	if (!check_for_nsfs_mounts(old))
2825 		goto out;
2826 	for (; mnt_has_parent(p); p = p->mnt_parent)
2827 		if (p == old)
2828 			goto out;
2829 
2830 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2831 				   attached);
2832 	if (err)
2833 		goto out;
2834 
2835 	/* if the mount is moved, it should no longer be expire
2836 	 * automatically */
2837 	list_del_init(&old->mnt_expire);
2838 	if (attached)
2839 		put_mountpoint(old_mp);
2840 out:
2841 	unlock_mount(mp);
2842 	if (!err) {
2843 		if (attached)
2844 			mntput_no_expire(parent);
2845 		else
2846 			free_mnt_ns(ns);
2847 	}
2848 	return err;
2849 }
2850 
2851 static int do_move_mount_old(struct path *path, const char *old_name)
2852 {
2853 	struct path old_path;
2854 	int err;
2855 
2856 	if (!old_name || !*old_name)
2857 		return -EINVAL;
2858 
2859 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2860 	if (err)
2861 		return err;
2862 
2863 	err = do_move_mount(&old_path, path);
2864 	path_put(&old_path);
2865 	return err;
2866 }
2867 
2868 /*
2869  * add a mount into a namespace's mount tree
2870  */
2871 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2872 			struct path *path, int mnt_flags)
2873 {
2874 	struct mount *parent = real_mount(path->mnt);
2875 
2876 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2877 
2878 	if (unlikely(!check_mnt(parent))) {
2879 		/* that's acceptable only for automounts done in private ns */
2880 		if (!(mnt_flags & MNT_SHRINKABLE))
2881 			return -EINVAL;
2882 		/* ... and for those we'd better have mountpoint still alive */
2883 		if (!parent->mnt_ns)
2884 			return -EINVAL;
2885 	}
2886 
2887 	/* Refuse the same filesystem on the same mount point */
2888 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2889 	    path->mnt->mnt_root == path->dentry)
2890 		return -EBUSY;
2891 
2892 	if (d_is_symlink(newmnt->mnt.mnt_root))
2893 		return -EINVAL;
2894 
2895 	newmnt->mnt.mnt_flags = mnt_flags;
2896 	return graft_tree(newmnt, parent, mp);
2897 }
2898 
2899 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2900 
2901 /*
2902  * Create a new mount using a superblock configuration and request it
2903  * be added to the namespace tree.
2904  */
2905 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2906 			   unsigned int mnt_flags)
2907 {
2908 	struct vfsmount *mnt;
2909 	struct mountpoint *mp;
2910 	struct super_block *sb = fc->root->d_sb;
2911 	int error;
2912 
2913 	error = security_sb_kern_mount(sb);
2914 	if (!error && mount_too_revealing(sb, &mnt_flags))
2915 		error = -EPERM;
2916 
2917 	if (unlikely(error)) {
2918 		fc_drop_locked(fc);
2919 		return error;
2920 	}
2921 
2922 	up_write(&sb->s_umount);
2923 
2924 	mnt = vfs_create_mount(fc);
2925 	if (IS_ERR(mnt))
2926 		return PTR_ERR(mnt);
2927 
2928 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2929 
2930 	mp = lock_mount(mountpoint);
2931 	if (IS_ERR(mp)) {
2932 		mntput(mnt);
2933 		return PTR_ERR(mp);
2934 	}
2935 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2936 	unlock_mount(mp);
2937 	if (error < 0)
2938 		mntput(mnt);
2939 	return error;
2940 }
2941 
2942 /*
2943  * create a new mount for userspace and request it to be added into the
2944  * namespace's tree
2945  */
2946 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2947 			int mnt_flags, const char *name, void *data)
2948 {
2949 	struct file_system_type *type;
2950 	struct fs_context *fc;
2951 	const char *subtype = NULL;
2952 	int err = 0;
2953 
2954 	if (!fstype)
2955 		return -EINVAL;
2956 
2957 	type = get_fs_type(fstype);
2958 	if (!type)
2959 		return -ENODEV;
2960 
2961 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2962 		subtype = strchr(fstype, '.');
2963 		if (subtype) {
2964 			subtype++;
2965 			if (!*subtype) {
2966 				put_filesystem(type);
2967 				return -EINVAL;
2968 			}
2969 		}
2970 	}
2971 
2972 	fc = fs_context_for_mount(type, sb_flags);
2973 	put_filesystem(type);
2974 	if (IS_ERR(fc))
2975 		return PTR_ERR(fc);
2976 
2977 	if (subtype)
2978 		err = vfs_parse_fs_string(fc, "subtype",
2979 					  subtype, strlen(subtype));
2980 	if (!err && name)
2981 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2982 	if (!err)
2983 		err = parse_monolithic_mount_data(fc, data);
2984 	if (!err && !mount_capable(fc))
2985 		err = -EPERM;
2986 	if (!err)
2987 		err = vfs_get_tree(fc);
2988 	if (!err)
2989 		err = do_new_mount_fc(fc, path, mnt_flags);
2990 
2991 	put_fs_context(fc);
2992 	return err;
2993 }
2994 
2995 int finish_automount(struct vfsmount *m, struct path *path)
2996 {
2997 	struct dentry *dentry = path->dentry;
2998 	struct mountpoint *mp;
2999 	struct mount *mnt;
3000 	int err;
3001 
3002 	if (!m)
3003 		return 0;
3004 	if (IS_ERR(m))
3005 		return PTR_ERR(m);
3006 
3007 	mnt = real_mount(m);
3008 	/* The new mount record should have at least 2 refs to prevent it being
3009 	 * expired before we get a chance to add it
3010 	 */
3011 	BUG_ON(mnt_get_count(mnt) < 2);
3012 
3013 	if (m->mnt_sb == path->mnt->mnt_sb &&
3014 	    m->mnt_root == dentry) {
3015 		err = -ELOOP;
3016 		goto discard;
3017 	}
3018 
3019 	/*
3020 	 * we don't want to use lock_mount() - in this case finding something
3021 	 * that overmounts our mountpoint to be means "quitely drop what we've
3022 	 * got", not "try to mount it on top".
3023 	 */
3024 	inode_lock(dentry->d_inode);
3025 	namespace_lock();
3026 	if (unlikely(cant_mount(dentry))) {
3027 		err = -ENOENT;
3028 		goto discard_locked;
3029 	}
3030 	rcu_read_lock();
3031 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3032 		rcu_read_unlock();
3033 		err = 0;
3034 		goto discard_locked;
3035 	}
3036 	rcu_read_unlock();
3037 	mp = get_mountpoint(dentry);
3038 	if (IS_ERR(mp)) {
3039 		err = PTR_ERR(mp);
3040 		goto discard_locked;
3041 	}
3042 
3043 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3044 	unlock_mount(mp);
3045 	if (unlikely(err))
3046 		goto discard;
3047 	mntput(m);
3048 	return 0;
3049 
3050 discard_locked:
3051 	namespace_unlock();
3052 	inode_unlock(dentry->d_inode);
3053 discard:
3054 	/* remove m from any expiration list it may be on */
3055 	if (!list_empty(&mnt->mnt_expire)) {
3056 		namespace_lock();
3057 		list_del_init(&mnt->mnt_expire);
3058 		namespace_unlock();
3059 	}
3060 	mntput(m);
3061 	mntput(m);
3062 	return err;
3063 }
3064 
3065 /**
3066  * mnt_set_expiry - Put a mount on an expiration list
3067  * @mnt: The mount to list.
3068  * @expiry_list: The list to add the mount to.
3069  */
3070 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3071 {
3072 	namespace_lock();
3073 
3074 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3075 
3076 	namespace_unlock();
3077 }
3078 EXPORT_SYMBOL(mnt_set_expiry);
3079 
3080 /*
3081  * process a list of expirable mountpoints with the intent of discarding any
3082  * mountpoints that aren't in use and haven't been touched since last we came
3083  * here
3084  */
3085 void mark_mounts_for_expiry(struct list_head *mounts)
3086 {
3087 	struct mount *mnt, *next;
3088 	LIST_HEAD(graveyard);
3089 
3090 	if (list_empty(mounts))
3091 		return;
3092 
3093 	namespace_lock();
3094 	lock_mount_hash();
3095 
3096 	/* extract from the expiration list every vfsmount that matches the
3097 	 * following criteria:
3098 	 * - only referenced by its parent vfsmount
3099 	 * - still marked for expiry (marked on the last call here; marks are
3100 	 *   cleared by mntput())
3101 	 */
3102 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3103 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3104 			propagate_mount_busy(mnt, 1))
3105 			continue;
3106 		list_move(&mnt->mnt_expire, &graveyard);
3107 	}
3108 	while (!list_empty(&graveyard)) {
3109 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3110 		touch_mnt_namespace(mnt->mnt_ns);
3111 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3112 	}
3113 	unlock_mount_hash();
3114 	namespace_unlock();
3115 }
3116 
3117 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3118 
3119 /*
3120  * Ripoff of 'select_parent()'
3121  *
3122  * search the list of submounts for a given mountpoint, and move any
3123  * shrinkable submounts to the 'graveyard' list.
3124  */
3125 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3126 {
3127 	struct mount *this_parent = parent;
3128 	struct list_head *next;
3129 	int found = 0;
3130 
3131 repeat:
3132 	next = this_parent->mnt_mounts.next;
3133 resume:
3134 	while (next != &this_parent->mnt_mounts) {
3135 		struct list_head *tmp = next;
3136 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3137 
3138 		next = tmp->next;
3139 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3140 			continue;
3141 		/*
3142 		 * Descend a level if the d_mounts list is non-empty.
3143 		 */
3144 		if (!list_empty(&mnt->mnt_mounts)) {
3145 			this_parent = mnt;
3146 			goto repeat;
3147 		}
3148 
3149 		if (!propagate_mount_busy(mnt, 1)) {
3150 			list_move_tail(&mnt->mnt_expire, graveyard);
3151 			found++;
3152 		}
3153 	}
3154 	/*
3155 	 * All done at this level ... ascend and resume the search
3156 	 */
3157 	if (this_parent != parent) {
3158 		next = this_parent->mnt_child.next;
3159 		this_parent = this_parent->mnt_parent;
3160 		goto resume;
3161 	}
3162 	return found;
3163 }
3164 
3165 /*
3166  * process a list of expirable mountpoints with the intent of discarding any
3167  * submounts of a specific parent mountpoint
3168  *
3169  * mount_lock must be held for write
3170  */
3171 static void shrink_submounts(struct mount *mnt)
3172 {
3173 	LIST_HEAD(graveyard);
3174 	struct mount *m;
3175 
3176 	/* extract submounts of 'mountpoint' from the expiration list */
3177 	while (select_submounts(mnt, &graveyard)) {
3178 		while (!list_empty(&graveyard)) {
3179 			m = list_first_entry(&graveyard, struct mount,
3180 						mnt_expire);
3181 			touch_mnt_namespace(m->mnt_ns);
3182 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3183 		}
3184 	}
3185 }
3186 
3187 static void *copy_mount_options(const void __user * data)
3188 {
3189 	char *copy;
3190 	unsigned left, offset;
3191 
3192 	if (!data)
3193 		return NULL;
3194 
3195 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3196 	if (!copy)
3197 		return ERR_PTR(-ENOMEM);
3198 
3199 	left = copy_from_user(copy, data, PAGE_SIZE);
3200 
3201 	/*
3202 	 * Not all architectures have an exact copy_from_user(). Resort to
3203 	 * byte at a time.
3204 	 */
3205 	offset = PAGE_SIZE - left;
3206 	while (left) {
3207 		char c;
3208 		if (get_user(c, (const char __user *)data + offset))
3209 			break;
3210 		copy[offset] = c;
3211 		left--;
3212 		offset++;
3213 	}
3214 
3215 	if (left == PAGE_SIZE) {
3216 		kfree(copy);
3217 		return ERR_PTR(-EFAULT);
3218 	}
3219 
3220 	return copy;
3221 }
3222 
3223 static char *copy_mount_string(const void __user *data)
3224 {
3225 	return data ? strndup_user(data, PATH_MAX) : NULL;
3226 }
3227 
3228 /*
3229  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3230  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3231  *
3232  * data is a (void *) that can point to any structure up to
3233  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3234  * information (or be NULL).
3235  *
3236  * Pre-0.97 versions of mount() didn't have a flags word.
3237  * When the flags word was introduced its top half was required
3238  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3239  * Therefore, if this magic number is present, it carries no information
3240  * and must be discarded.
3241  */
3242 int path_mount(const char *dev_name, struct path *path,
3243 		const char *type_page, unsigned long flags, void *data_page)
3244 {
3245 	unsigned int mnt_flags = 0, sb_flags;
3246 	int ret;
3247 
3248 	/* Discard magic */
3249 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3250 		flags &= ~MS_MGC_MSK;
3251 
3252 	/* Basic sanity checks */
3253 	if (data_page)
3254 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3255 
3256 	if (flags & MS_NOUSER)
3257 		return -EINVAL;
3258 
3259 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3260 	if (ret)
3261 		return ret;
3262 	if (!may_mount())
3263 		return -EPERM;
3264 	if (flags & SB_MANDLOCK)
3265 		warn_mandlock();
3266 
3267 	/* Default to relatime unless overriden */
3268 	if (!(flags & MS_NOATIME))
3269 		mnt_flags |= MNT_RELATIME;
3270 
3271 	/* Separate the per-mountpoint flags */
3272 	if (flags & MS_NOSUID)
3273 		mnt_flags |= MNT_NOSUID;
3274 	if (flags & MS_NODEV)
3275 		mnt_flags |= MNT_NODEV;
3276 	if (flags & MS_NOEXEC)
3277 		mnt_flags |= MNT_NOEXEC;
3278 	if (flags & MS_NOATIME)
3279 		mnt_flags |= MNT_NOATIME;
3280 	if (flags & MS_NODIRATIME)
3281 		mnt_flags |= MNT_NODIRATIME;
3282 	if (flags & MS_STRICTATIME)
3283 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3284 	if (flags & MS_RDONLY)
3285 		mnt_flags |= MNT_READONLY;
3286 	if (flags & MS_NOSYMFOLLOW)
3287 		mnt_flags |= MNT_NOSYMFOLLOW;
3288 
3289 	/* The default atime for remount is preservation */
3290 	if ((flags & MS_REMOUNT) &&
3291 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3292 		       MS_STRICTATIME)) == 0)) {
3293 		mnt_flags &= ~MNT_ATIME_MASK;
3294 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3295 	}
3296 
3297 	sb_flags = flags & (SB_RDONLY |
3298 			    SB_SYNCHRONOUS |
3299 			    SB_MANDLOCK |
3300 			    SB_DIRSYNC |
3301 			    SB_SILENT |
3302 			    SB_POSIXACL |
3303 			    SB_LAZYTIME |
3304 			    SB_I_VERSION);
3305 
3306 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3307 		return do_reconfigure_mnt(path, mnt_flags);
3308 	if (flags & MS_REMOUNT)
3309 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3310 	if (flags & MS_BIND)
3311 		return do_loopback(path, dev_name, flags & MS_REC);
3312 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3313 		return do_change_type(path, flags);
3314 	if (flags & MS_MOVE)
3315 		return do_move_mount_old(path, dev_name);
3316 
3317 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3318 			    data_page);
3319 }
3320 
3321 long do_mount(const char *dev_name, const char __user *dir_name,
3322 		const char *type_page, unsigned long flags, void *data_page)
3323 {
3324 	struct path path;
3325 	int ret;
3326 
3327 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3328 	if (ret)
3329 		return ret;
3330 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3331 	path_put(&path);
3332 	return ret;
3333 }
3334 
3335 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3336 {
3337 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3338 }
3339 
3340 static void dec_mnt_namespaces(struct ucounts *ucounts)
3341 {
3342 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3343 }
3344 
3345 static void free_mnt_ns(struct mnt_namespace *ns)
3346 {
3347 	if (!is_anon_ns(ns))
3348 		ns_free_inum(&ns->ns);
3349 	dec_mnt_namespaces(ns->ucounts);
3350 	put_user_ns(ns->user_ns);
3351 	kfree(ns);
3352 }
3353 
3354 /*
3355  * Assign a sequence number so we can detect when we attempt to bind
3356  * mount a reference to an older mount namespace into the current
3357  * mount namespace, preventing reference counting loops.  A 64bit
3358  * number incrementing at 10Ghz will take 12,427 years to wrap which
3359  * is effectively never, so we can ignore the possibility.
3360  */
3361 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3362 
3363 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3364 {
3365 	struct mnt_namespace *new_ns;
3366 	struct ucounts *ucounts;
3367 	int ret;
3368 
3369 	ucounts = inc_mnt_namespaces(user_ns);
3370 	if (!ucounts)
3371 		return ERR_PTR(-ENOSPC);
3372 
3373 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3374 	if (!new_ns) {
3375 		dec_mnt_namespaces(ucounts);
3376 		return ERR_PTR(-ENOMEM);
3377 	}
3378 	if (!anon) {
3379 		ret = ns_alloc_inum(&new_ns->ns);
3380 		if (ret) {
3381 			kfree(new_ns);
3382 			dec_mnt_namespaces(ucounts);
3383 			return ERR_PTR(ret);
3384 		}
3385 	}
3386 	new_ns->ns.ops = &mntns_operations;
3387 	if (!anon)
3388 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3389 	refcount_set(&new_ns->ns.count, 1);
3390 	INIT_LIST_HEAD(&new_ns->list);
3391 	init_waitqueue_head(&new_ns->poll);
3392 	spin_lock_init(&new_ns->ns_lock);
3393 	new_ns->user_ns = get_user_ns(user_ns);
3394 	new_ns->ucounts = ucounts;
3395 	return new_ns;
3396 }
3397 
3398 __latent_entropy
3399 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3400 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3401 {
3402 	struct mnt_namespace *new_ns;
3403 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3404 	struct mount *p, *q;
3405 	struct mount *old;
3406 	struct mount *new;
3407 	int copy_flags;
3408 
3409 	BUG_ON(!ns);
3410 
3411 	if (likely(!(flags & CLONE_NEWNS))) {
3412 		get_mnt_ns(ns);
3413 		return ns;
3414 	}
3415 
3416 	old = ns->root;
3417 
3418 	new_ns = alloc_mnt_ns(user_ns, false);
3419 	if (IS_ERR(new_ns))
3420 		return new_ns;
3421 
3422 	namespace_lock();
3423 	/* First pass: copy the tree topology */
3424 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3425 	if (user_ns != ns->user_ns)
3426 		copy_flags |= CL_SHARED_TO_SLAVE;
3427 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3428 	if (IS_ERR(new)) {
3429 		namespace_unlock();
3430 		free_mnt_ns(new_ns);
3431 		return ERR_CAST(new);
3432 	}
3433 	if (user_ns != ns->user_ns) {
3434 		lock_mount_hash();
3435 		lock_mnt_tree(new);
3436 		unlock_mount_hash();
3437 	}
3438 	new_ns->root = new;
3439 	list_add_tail(&new_ns->list, &new->mnt_list);
3440 
3441 	/*
3442 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3443 	 * as belonging to new namespace.  We have already acquired a private
3444 	 * fs_struct, so tsk->fs->lock is not needed.
3445 	 */
3446 	p = old;
3447 	q = new;
3448 	while (p) {
3449 		q->mnt_ns = new_ns;
3450 		new_ns->mounts++;
3451 		if (new_fs) {
3452 			if (&p->mnt == new_fs->root.mnt) {
3453 				new_fs->root.mnt = mntget(&q->mnt);
3454 				rootmnt = &p->mnt;
3455 			}
3456 			if (&p->mnt == new_fs->pwd.mnt) {
3457 				new_fs->pwd.mnt = mntget(&q->mnt);
3458 				pwdmnt = &p->mnt;
3459 			}
3460 		}
3461 		p = next_mnt(p, old);
3462 		q = next_mnt(q, new);
3463 		if (!q)
3464 			break;
3465 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3466 			p = next_mnt(p, old);
3467 	}
3468 	namespace_unlock();
3469 
3470 	if (rootmnt)
3471 		mntput(rootmnt);
3472 	if (pwdmnt)
3473 		mntput(pwdmnt);
3474 
3475 	return new_ns;
3476 }
3477 
3478 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3479 {
3480 	struct mount *mnt = real_mount(m);
3481 	struct mnt_namespace *ns;
3482 	struct super_block *s;
3483 	struct path path;
3484 	int err;
3485 
3486 	ns = alloc_mnt_ns(&init_user_ns, true);
3487 	if (IS_ERR(ns)) {
3488 		mntput(m);
3489 		return ERR_CAST(ns);
3490 	}
3491 	mnt->mnt_ns = ns;
3492 	ns->root = mnt;
3493 	ns->mounts++;
3494 	list_add(&mnt->mnt_list, &ns->list);
3495 
3496 	err = vfs_path_lookup(m->mnt_root, m,
3497 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3498 
3499 	put_mnt_ns(ns);
3500 
3501 	if (err)
3502 		return ERR_PTR(err);
3503 
3504 	/* trade a vfsmount reference for active sb one */
3505 	s = path.mnt->mnt_sb;
3506 	atomic_inc(&s->s_active);
3507 	mntput(path.mnt);
3508 	/* lock the sucker */
3509 	down_write(&s->s_umount);
3510 	/* ... and return the root of (sub)tree on it */
3511 	return path.dentry;
3512 }
3513 EXPORT_SYMBOL(mount_subtree);
3514 
3515 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3516 		char __user *, type, unsigned long, flags, void __user *, data)
3517 {
3518 	int ret;
3519 	char *kernel_type;
3520 	char *kernel_dev;
3521 	void *options;
3522 
3523 	kernel_type = copy_mount_string(type);
3524 	ret = PTR_ERR(kernel_type);
3525 	if (IS_ERR(kernel_type))
3526 		goto out_type;
3527 
3528 	kernel_dev = copy_mount_string(dev_name);
3529 	ret = PTR_ERR(kernel_dev);
3530 	if (IS_ERR(kernel_dev))
3531 		goto out_dev;
3532 
3533 	options = copy_mount_options(data);
3534 	ret = PTR_ERR(options);
3535 	if (IS_ERR(options))
3536 		goto out_data;
3537 
3538 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3539 
3540 	kfree(options);
3541 out_data:
3542 	kfree(kernel_dev);
3543 out_dev:
3544 	kfree(kernel_type);
3545 out_type:
3546 	return ret;
3547 }
3548 
3549 #define FSMOUNT_VALID_FLAGS                                                    \
3550 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3551 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3552 	 MOUNT_ATTR_NOSYMFOLLOW)
3553 
3554 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3555 
3556 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3557 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3558 
3559 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3560 {
3561 	unsigned int mnt_flags = 0;
3562 
3563 	if (attr_flags & MOUNT_ATTR_RDONLY)
3564 		mnt_flags |= MNT_READONLY;
3565 	if (attr_flags & MOUNT_ATTR_NOSUID)
3566 		mnt_flags |= MNT_NOSUID;
3567 	if (attr_flags & MOUNT_ATTR_NODEV)
3568 		mnt_flags |= MNT_NODEV;
3569 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3570 		mnt_flags |= MNT_NOEXEC;
3571 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3572 		mnt_flags |= MNT_NODIRATIME;
3573 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3574 		mnt_flags |= MNT_NOSYMFOLLOW;
3575 
3576 	return mnt_flags;
3577 }
3578 
3579 /*
3580  * Create a kernel mount representation for a new, prepared superblock
3581  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3582  */
3583 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3584 		unsigned int, attr_flags)
3585 {
3586 	struct mnt_namespace *ns;
3587 	struct fs_context *fc;
3588 	struct file *file;
3589 	struct path newmount;
3590 	struct mount *mnt;
3591 	struct fd f;
3592 	unsigned int mnt_flags = 0;
3593 	long ret;
3594 
3595 	if (!may_mount())
3596 		return -EPERM;
3597 
3598 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3599 		return -EINVAL;
3600 
3601 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3602 		return -EINVAL;
3603 
3604 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3605 
3606 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3607 	case MOUNT_ATTR_STRICTATIME:
3608 		break;
3609 	case MOUNT_ATTR_NOATIME:
3610 		mnt_flags |= MNT_NOATIME;
3611 		break;
3612 	case MOUNT_ATTR_RELATIME:
3613 		mnt_flags |= MNT_RELATIME;
3614 		break;
3615 	default:
3616 		return -EINVAL;
3617 	}
3618 
3619 	f = fdget(fs_fd);
3620 	if (!f.file)
3621 		return -EBADF;
3622 
3623 	ret = -EINVAL;
3624 	if (f.file->f_op != &fscontext_fops)
3625 		goto err_fsfd;
3626 
3627 	fc = f.file->private_data;
3628 
3629 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3630 	if (ret < 0)
3631 		goto err_fsfd;
3632 
3633 	/* There must be a valid superblock or we can't mount it */
3634 	ret = -EINVAL;
3635 	if (!fc->root)
3636 		goto err_unlock;
3637 
3638 	ret = -EPERM;
3639 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3640 		pr_warn("VFS: Mount too revealing\n");
3641 		goto err_unlock;
3642 	}
3643 
3644 	ret = -EBUSY;
3645 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3646 		goto err_unlock;
3647 
3648 	if (fc->sb_flags & SB_MANDLOCK)
3649 		warn_mandlock();
3650 
3651 	newmount.mnt = vfs_create_mount(fc);
3652 	if (IS_ERR(newmount.mnt)) {
3653 		ret = PTR_ERR(newmount.mnt);
3654 		goto err_unlock;
3655 	}
3656 	newmount.dentry = dget(fc->root);
3657 	newmount.mnt->mnt_flags = mnt_flags;
3658 
3659 	/* We've done the mount bit - now move the file context into more or
3660 	 * less the same state as if we'd done an fspick().  We don't want to
3661 	 * do any memory allocation or anything like that at this point as we
3662 	 * don't want to have to handle any errors incurred.
3663 	 */
3664 	vfs_clean_context(fc);
3665 
3666 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3667 	if (IS_ERR(ns)) {
3668 		ret = PTR_ERR(ns);
3669 		goto err_path;
3670 	}
3671 	mnt = real_mount(newmount.mnt);
3672 	mnt->mnt_ns = ns;
3673 	ns->root = mnt;
3674 	ns->mounts = 1;
3675 	list_add(&mnt->mnt_list, &ns->list);
3676 	mntget(newmount.mnt);
3677 
3678 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3679 	 * it, not just simply put it.
3680 	 */
3681 	file = dentry_open(&newmount, O_PATH, fc->cred);
3682 	if (IS_ERR(file)) {
3683 		dissolve_on_fput(newmount.mnt);
3684 		ret = PTR_ERR(file);
3685 		goto err_path;
3686 	}
3687 	file->f_mode |= FMODE_NEED_UNMOUNT;
3688 
3689 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3690 	if (ret >= 0)
3691 		fd_install(ret, file);
3692 	else
3693 		fput(file);
3694 
3695 err_path:
3696 	path_put(&newmount);
3697 err_unlock:
3698 	mutex_unlock(&fc->uapi_mutex);
3699 err_fsfd:
3700 	fdput(f);
3701 	return ret;
3702 }
3703 
3704 /*
3705  * Move a mount from one place to another.  In combination with
3706  * fsopen()/fsmount() this is used to install a new mount and in combination
3707  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3708  * a mount subtree.
3709  *
3710  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3711  */
3712 SYSCALL_DEFINE5(move_mount,
3713 		int, from_dfd, const char __user *, from_pathname,
3714 		int, to_dfd, const char __user *, to_pathname,
3715 		unsigned int, flags)
3716 {
3717 	struct path from_path, to_path;
3718 	unsigned int lflags;
3719 	int ret = 0;
3720 
3721 	if (!may_mount())
3722 		return -EPERM;
3723 
3724 	if (flags & ~MOVE_MOUNT__MASK)
3725 		return -EINVAL;
3726 
3727 	/* If someone gives a pathname, they aren't permitted to move
3728 	 * from an fd that requires unmount as we can't get at the flag
3729 	 * to clear it afterwards.
3730 	 */
3731 	lflags = 0;
3732 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3733 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3734 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3735 
3736 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3737 	if (ret < 0)
3738 		return ret;
3739 
3740 	lflags = 0;
3741 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3742 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3743 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3744 
3745 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3746 	if (ret < 0)
3747 		goto out_from;
3748 
3749 	ret = security_move_mount(&from_path, &to_path);
3750 	if (ret < 0)
3751 		goto out_to;
3752 
3753 	if (flags & MOVE_MOUNT_SET_GROUP)
3754 		ret = do_set_group(&from_path, &to_path);
3755 	else
3756 		ret = do_move_mount(&from_path, &to_path);
3757 
3758 out_to:
3759 	path_put(&to_path);
3760 out_from:
3761 	path_put(&from_path);
3762 	return ret;
3763 }
3764 
3765 /*
3766  * Return true if path is reachable from root
3767  *
3768  * namespace_sem or mount_lock is held
3769  */
3770 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3771 			 const struct path *root)
3772 {
3773 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3774 		dentry = mnt->mnt_mountpoint;
3775 		mnt = mnt->mnt_parent;
3776 	}
3777 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3778 }
3779 
3780 bool path_is_under(const struct path *path1, const struct path *path2)
3781 {
3782 	bool res;
3783 	read_seqlock_excl(&mount_lock);
3784 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3785 	read_sequnlock_excl(&mount_lock);
3786 	return res;
3787 }
3788 EXPORT_SYMBOL(path_is_under);
3789 
3790 /*
3791  * pivot_root Semantics:
3792  * Moves the root file system of the current process to the directory put_old,
3793  * makes new_root as the new root file system of the current process, and sets
3794  * root/cwd of all processes which had them on the current root to new_root.
3795  *
3796  * Restrictions:
3797  * The new_root and put_old must be directories, and  must not be on the
3798  * same file  system as the current process root. The put_old  must  be
3799  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3800  * pointed to by put_old must yield the same directory as new_root. No other
3801  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3802  *
3803  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3804  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3805  * in this situation.
3806  *
3807  * Notes:
3808  *  - we don't move root/cwd if they are not at the root (reason: if something
3809  *    cared enough to change them, it's probably wrong to force them elsewhere)
3810  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3811  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3812  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3813  *    first.
3814  */
3815 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3816 		const char __user *, put_old)
3817 {
3818 	struct path new, old, root;
3819 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3820 	struct mountpoint *old_mp, *root_mp;
3821 	int error;
3822 
3823 	if (!may_mount())
3824 		return -EPERM;
3825 
3826 	error = user_path_at(AT_FDCWD, new_root,
3827 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3828 	if (error)
3829 		goto out0;
3830 
3831 	error = user_path_at(AT_FDCWD, put_old,
3832 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3833 	if (error)
3834 		goto out1;
3835 
3836 	error = security_sb_pivotroot(&old, &new);
3837 	if (error)
3838 		goto out2;
3839 
3840 	get_fs_root(current->fs, &root);
3841 	old_mp = lock_mount(&old);
3842 	error = PTR_ERR(old_mp);
3843 	if (IS_ERR(old_mp))
3844 		goto out3;
3845 
3846 	error = -EINVAL;
3847 	new_mnt = real_mount(new.mnt);
3848 	root_mnt = real_mount(root.mnt);
3849 	old_mnt = real_mount(old.mnt);
3850 	ex_parent = new_mnt->mnt_parent;
3851 	root_parent = root_mnt->mnt_parent;
3852 	if (IS_MNT_SHARED(old_mnt) ||
3853 		IS_MNT_SHARED(ex_parent) ||
3854 		IS_MNT_SHARED(root_parent))
3855 		goto out4;
3856 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3857 		goto out4;
3858 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3859 		goto out4;
3860 	error = -ENOENT;
3861 	if (d_unlinked(new.dentry))
3862 		goto out4;
3863 	error = -EBUSY;
3864 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3865 		goto out4; /* loop, on the same file system  */
3866 	error = -EINVAL;
3867 	if (root.mnt->mnt_root != root.dentry)
3868 		goto out4; /* not a mountpoint */
3869 	if (!mnt_has_parent(root_mnt))
3870 		goto out4; /* not attached */
3871 	if (new.mnt->mnt_root != new.dentry)
3872 		goto out4; /* not a mountpoint */
3873 	if (!mnt_has_parent(new_mnt))
3874 		goto out4; /* not attached */
3875 	/* make sure we can reach put_old from new_root */
3876 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3877 		goto out4;
3878 	/* make certain new is below the root */
3879 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3880 		goto out4;
3881 	lock_mount_hash();
3882 	umount_mnt(new_mnt);
3883 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3884 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3885 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3886 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3887 	}
3888 	/* mount old root on put_old */
3889 	attach_mnt(root_mnt, old_mnt, old_mp);
3890 	/* mount new_root on / */
3891 	attach_mnt(new_mnt, root_parent, root_mp);
3892 	mnt_add_count(root_parent, -1);
3893 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3894 	/* A moved mount should not expire automatically */
3895 	list_del_init(&new_mnt->mnt_expire);
3896 	put_mountpoint(root_mp);
3897 	unlock_mount_hash();
3898 	chroot_fs_refs(&root, &new);
3899 	error = 0;
3900 out4:
3901 	unlock_mount(old_mp);
3902 	if (!error)
3903 		mntput_no_expire(ex_parent);
3904 out3:
3905 	path_put(&root);
3906 out2:
3907 	path_put(&old);
3908 out1:
3909 	path_put(&new);
3910 out0:
3911 	return error;
3912 }
3913 
3914 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3915 {
3916 	unsigned int flags = mnt->mnt.mnt_flags;
3917 
3918 	/*  flags to clear */
3919 	flags &= ~kattr->attr_clr;
3920 	/* flags to raise */
3921 	flags |= kattr->attr_set;
3922 
3923 	return flags;
3924 }
3925 
3926 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3927 {
3928 	struct vfsmount *m = &mnt->mnt;
3929 
3930 	if (!kattr->mnt_userns)
3931 		return 0;
3932 
3933 	/*
3934 	 * Once a mount has been idmapped we don't allow it to change its
3935 	 * mapping. It makes things simpler and callers can just create
3936 	 * another bind-mount they can idmap if they want to.
3937 	 */
3938 	if (mnt_user_ns(m) != &init_user_ns)
3939 		return -EPERM;
3940 
3941 	/* The underlying filesystem doesn't support idmapped mounts yet. */
3942 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3943 		return -EINVAL;
3944 
3945 	/* Don't yet support filesystem mountable in user namespaces. */
3946 	if (m->mnt_sb->s_user_ns != &init_user_ns)
3947 		return -EINVAL;
3948 
3949 	/* We're not controlling the superblock. */
3950 	if (!capable(CAP_SYS_ADMIN))
3951 		return -EPERM;
3952 
3953 	/* Mount has already been visible in the filesystem hierarchy. */
3954 	if (!is_anon_ns(mnt->mnt_ns))
3955 		return -EINVAL;
3956 
3957 	return 0;
3958 }
3959 
3960 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3961 					   struct mount *mnt, int *err)
3962 {
3963 	struct mount *m = mnt, *last = NULL;
3964 
3965 	if (!is_mounted(&m->mnt)) {
3966 		*err = -EINVAL;
3967 		goto out;
3968 	}
3969 
3970 	if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3971 		*err = -EINVAL;
3972 		goto out;
3973 	}
3974 
3975 	do {
3976 		unsigned int flags;
3977 
3978 		flags = recalc_flags(kattr, m);
3979 		if (!can_change_locked_flags(m, flags)) {
3980 			*err = -EPERM;
3981 			goto out;
3982 		}
3983 
3984 		*err = can_idmap_mount(kattr, m);
3985 		if (*err)
3986 			goto out;
3987 
3988 		last = m;
3989 
3990 		if ((kattr->attr_set & MNT_READONLY) &&
3991 		    !(m->mnt.mnt_flags & MNT_READONLY)) {
3992 			*err = mnt_hold_writers(m);
3993 			if (*err)
3994 				goto out;
3995 		}
3996 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
3997 
3998 out:
3999 	return last;
4000 }
4001 
4002 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4003 {
4004 	struct user_namespace *mnt_userns;
4005 
4006 	if (!kattr->mnt_userns)
4007 		return;
4008 
4009 	mnt_userns = get_user_ns(kattr->mnt_userns);
4010 	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
4011 	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4012 }
4013 
4014 static void mount_setattr_commit(struct mount_kattr *kattr,
4015 				 struct mount *mnt, struct mount *last,
4016 				 int err)
4017 {
4018 	struct mount *m = mnt;
4019 
4020 	do {
4021 		if (!err) {
4022 			unsigned int flags;
4023 
4024 			do_idmap_mount(kattr, m);
4025 			flags = recalc_flags(kattr, m);
4026 			WRITE_ONCE(m->mnt.mnt_flags, flags);
4027 		}
4028 
4029 		/*
4030 		 * We either set MNT_READONLY above so make it visible
4031 		 * before ~MNT_WRITE_HOLD or we failed to recursively
4032 		 * apply mount options.
4033 		 */
4034 		if ((kattr->attr_set & MNT_READONLY) &&
4035 		    (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4036 			mnt_unhold_writers(m);
4037 
4038 		if (!err && kattr->propagation)
4039 			change_mnt_propagation(m, kattr->propagation);
4040 
4041 		/*
4042 		 * On failure, only cleanup until we found the first mount
4043 		 * we failed to handle.
4044 		 */
4045 		if (err && m == last)
4046 			break;
4047 	} while (kattr->recurse && (m = next_mnt(m, mnt)));
4048 
4049 	if (!err)
4050 		touch_mnt_namespace(mnt->mnt_ns);
4051 }
4052 
4053 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4054 {
4055 	struct mount *mnt = real_mount(path->mnt), *last = NULL;
4056 	int err = 0;
4057 
4058 	if (path->dentry != mnt->mnt.mnt_root)
4059 		return -EINVAL;
4060 
4061 	if (kattr->propagation) {
4062 		/*
4063 		 * Only take namespace_lock() if we're actually changing
4064 		 * propagation.
4065 		 */
4066 		namespace_lock();
4067 		if (kattr->propagation == MS_SHARED) {
4068 			err = invent_group_ids(mnt, kattr->recurse);
4069 			if (err) {
4070 				namespace_unlock();
4071 				return err;
4072 			}
4073 		}
4074 	}
4075 
4076 	lock_mount_hash();
4077 
4078 	/*
4079 	 * Get the mount tree in a shape where we can change mount
4080 	 * properties without failure.
4081 	 */
4082 	last = mount_setattr_prepare(kattr, mnt, &err);
4083 	if (last) /* Commit all changes or revert to the old state. */
4084 		mount_setattr_commit(kattr, mnt, last, err);
4085 
4086 	unlock_mount_hash();
4087 
4088 	if (kattr->propagation) {
4089 		namespace_unlock();
4090 		if (err)
4091 			cleanup_group_ids(mnt, NULL);
4092 	}
4093 
4094 	return err;
4095 }
4096 
4097 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4098 				struct mount_kattr *kattr, unsigned int flags)
4099 {
4100 	int err = 0;
4101 	struct ns_common *ns;
4102 	struct user_namespace *mnt_userns;
4103 	struct file *file;
4104 
4105 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4106 		return 0;
4107 
4108 	/*
4109 	 * We currently do not support clearing an idmapped mount. If this ever
4110 	 * is a use-case we can revisit this but for now let's keep it simple
4111 	 * and not allow it.
4112 	 */
4113 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4114 		return -EINVAL;
4115 
4116 	if (attr->userns_fd > INT_MAX)
4117 		return -EINVAL;
4118 
4119 	file = fget(attr->userns_fd);
4120 	if (!file)
4121 		return -EBADF;
4122 
4123 	if (!proc_ns_file(file)) {
4124 		err = -EINVAL;
4125 		goto out_fput;
4126 	}
4127 
4128 	ns = get_proc_ns(file_inode(file));
4129 	if (ns->ops->type != CLONE_NEWUSER) {
4130 		err = -EINVAL;
4131 		goto out_fput;
4132 	}
4133 
4134 	/*
4135 	 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4136 	 * This is simpler than just having to treat NULL as unmapped. Users
4137 	 * wanting to idmap a mount to init_user_ns can just use a namespace
4138 	 * with an identity mapping.
4139 	 */
4140 	mnt_userns = container_of(ns, struct user_namespace, ns);
4141 	if (mnt_userns == &init_user_ns) {
4142 		err = -EPERM;
4143 		goto out_fput;
4144 	}
4145 	kattr->mnt_userns = get_user_ns(mnt_userns);
4146 
4147 out_fput:
4148 	fput(file);
4149 	return err;
4150 }
4151 
4152 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4153 			     struct mount_kattr *kattr, unsigned int flags)
4154 {
4155 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4156 
4157 	if (flags & AT_NO_AUTOMOUNT)
4158 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4159 	if (flags & AT_SYMLINK_NOFOLLOW)
4160 		lookup_flags &= ~LOOKUP_FOLLOW;
4161 	if (flags & AT_EMPTY_PATH)
4162 		lookup_flags |= LOOKUP_EMPTY;
4163 
4164 	*kattr = (struct mount_kattr) {
4165 		.lookup_flags	= lookup_flags,
4166 		.recurse	= !!(flags & AT_RECURSIVE),
4167 	};
4168 
4169 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4170 		return -EINVAL;
4171 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4172 		return -EINVAL;
4173 	kattr->propagation = attr->propagation;
4174 
4175 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4176 		return -EINVAL;
4177 
4178 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4179 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4180 
4181 	/*
4182 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4183 	 * users wanting to transition to a different atime setting cannot
4184 	 * simply specify the atime setting in @attr_set, but must also
4185 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4186 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4187 	 * @attr_clr and that @attr_set can't have any atime bits set if
4188 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4189 	 */
4190 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4191 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4192 			return -EINVAL;
4193 
4194 		/*
4195 		 * Clear all previous time settings as they are mutually
4196 		 * exclusive.
4197 		 */
4198 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4199 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4200 		case MOUNT_ATTR_RELATIME:
4201 			kattr->attr_set |= MNT_RELATIME;
4202 			break;
4203 		case MOUNT_ATTR_NOATIME:
4204 			kattr->attr_set |= MNT_NOATIME;
4205 			break;
4206 		case MOUNT_ATTR_STRICTATIME:
4207 			break;
4208 		default:
4209 			return -EINVAL;
4210 		}
4211 	} else {
4212 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4213 			return -EINVAL;
4214 	}
4215 
4216 	return build_mount_idmapped(attr, usize, kattr, flags);
4217 }
4218 
4219 static void finish_mount_kattr(struct mount_kattr *kattr)
4220 {
4221 	put_user_ns(kattr->mnt_userns);
4222 	kattr->mnt_userns = NULL;
4223 }
4224 
4225 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4226 		unsigned int, flags, struct mount_attr __user *, uattr,
4227 		size_t, usize)
4228 {
4229 	int err;
4230 	struct path target;
4231 	struct mount_attr attr;
4232 	struct mount_kattr kattr;
4233 
4234 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4235 
4236 	if (flags & ~(AT_EMPTY_PATH |
4237 		      AT_RECURSIVE |
4238 		      AT_SYMLINK_NOFOLLOW |
4239 		      AT_NO_AUTOMOUNT))
4240 		return -EINVAL;
4241 
4242 	if (unlikely(usize > PAGE_SIZE))
4243 		return -E2BIG;
4244 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4245 		return -EINVAL;
4246 
4247 	if (!may_mount())
4248 		return -EPERM;
4249 
4250 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4251 	if (err)
4252 		return err;
4253 
4254 	/* Don't bother walking through the mounts if this is a nop. */
4255 	if (attr.attr_set == 0 &&
4256 	    attr.attr_clr == 0 &&
4257 	    attr.propagation == 0)
4258 		return 0;
4259 
4260 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4261 	if (err)
4262 		return err;
4263 
4264 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4265 	if (err)
4266 		return err;
4267 
4268 	err = do_mount_setattr(&target, &kattr);
4269 	finish_mount_kattr(&kattr);
4270 	path_put(&target);
4271 	return err;
4272 }
4273 
4274 static void __init init_mount_tree(void)
4275 {
4276 	struct vfsmount *mnt;
4277 	struct mount *m;
4278 	struct mnt_namespace *ns;
4279 	struct path root;
4280 
4281 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4282 	if (IS_ERR(mnt))
4283 		panic("Can't create rootfs");
4284 
4285 	ns = alloc_mnt_ns(&init_user_ns, false);
4286 	if (IS_ERR(ns))
4287 		panic("Can't allocate initial namespace");
4288 	m = real_mount(mnt);
4289 	m->mnt_ns = ns;
4290 	ns->root = m;
4291 	ns->mounts = 1;
4292 	list_add(&m->mnt_list, &ns->list);
4293 	init_task.nsproxy->mnt_ns = ns;
4294 	get_mnt_ns(ns);
4295 
4296 	root.mnt = mnt;
4297 	root.dentry = mnt->mnt_root;
4298 	mnt->mnt_flags |= MNT_LOCKED;
4299 
4300 	set_fs_pwd(current->fs, &root);
4301 	set_fs_root(current->fs, &root);
4302 }
4303 
4304 void __init mnt_init(void)
4305 {
4306 	int err;
4307 
4308 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4309 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4310 
4311 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4312 				sizeof(struct hlist_head),
4313 				mhash_entries, 19,
4314 				HASH_ZERO,
4315 				&m_hash_shift, &m_hash_mask, 0, 0);
4316 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4317 				sizeof(struct hlist_head),
4318 				mphash_entries, 19,
4319 				HASH_ZERO,
4320 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4321 
4322 	if (!mount_hashtable || !mountpoint_hashtable)
4323 		panic("Failed to allocate mount hash table\n");
4324 
4325 	kernfs_init();
4326 
4327 	err = sysfs_init();
4328 	if (err)
4329 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4330 			__func__, err);
4331 	fs_kobj = kobject_create_and_add("fs", NULL);
4332 	if (!fs_kobj)
4333 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4334 	shmem_init();
4335 	init_rootfs();
4336 	init_mount_tree();
4337 }
4338 
4339 void put_mnt_ns(struct mnt_namespace *ns)
4340 {
4341 	if (!refcount_dec_and_test(&ns->ns.count))
4342 		return;
4343 	drop_collected_mounts(&ns->root->mnt);
4344 	free_mnt_ns(ns);
4345 }
4346 
4347 struct vfsmount *kern_mount(struct file_system_type *type)
4348 {
4349 	struct vfsmount *mnt;
4350 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4351 	if (!IS_ERR(mnt)) {
4352 		/*
4353 		 * it is a longterm mount, don't release mnt until
4354 		 * we unmount before file sys is unregistered
4355 		*/
4356 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4357 	}
4358 	return mnt;
4359 }
4360 EXPORT_SYMBOL_GPL(kern_mount);
4361 
4362 void kern_unmount(struct vfsmount *mnt)
4363 {
4364 	/* release long term mount so mount point can be released */
4365 	if (!IS_ERR_OR_NULL(mnt)) {
4366 		real_mount(mnt)->mnt_ns = NULL;
4367 		synchronize_rcu();	/* yecchhh... */
4368 		mntput(mnt);
4369 	}
4370 }
4371 EXPORT_SYMBOL(kern_unmount);
4372 
4373 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4374 {
4375 	unsigned int i;
4376 
4377 	for (i = 0; i < num; i++)
4378 		if (mnt[i])
4379 			real_mount(mnt[i])->mnt_ns = NULL;
4380 	synchronize_rcu_expedited();
4381 	for (i = 0; i < num; i++)
4382 		mntput(mnt[i]);
4383 }
4384 EXPORT_SYMBOL(kern_unmount_array);
4385 
4386 bool our_mnt(struct vfsmount *mnt)
4387 {
4388 	return check_mnt(real_mount(mnt));
4389 }
4390 
4391 bool current_chrooted(void)
4392 {
4393 	/* Does the current process have a non-standard root */
4394 	struct path ns_root;
4395 	struct path fs_root;
4396 	bool chrooted;
4397 
4398 	/* Find the namespace root */
4399 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4400 	ns_root.dentry = ns_root.mnt->mnt_root;
4401 	path_get(&ns_root);
4402 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4403 		;
4404 
4405 	get_fs_root(current->fs, &fs_root);
4406 
4407 	chrooted = !path_equal(&fs_root, &ns_root);
4408 
4409 	path_put(&fs_root);
4410 	path_put(&ns_root);
4411 
4412 	return chrooted;
4413 }
4414 
4415 static bool mnt_already_visible(struct mnt_namespace *ns,
4416 				const struct super_block *sb,
4417 				int *new_mnt_flags)
4418 {
4419 	int new_flags = *new_mnt_flags;
4420 	struct mount *mnt;
4421 	bool visible = false;
4422 
4423 	down_read(&namespace_sem);
4424 	lock_ns_list(ns);
4425 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4426 		struct mount *child;
4427 		int mnt_flags;
4428 
4429 		if (mnt_is_cursor(mnt))
4430 			continue;
4431 
4432 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4433 			continue;
4434 
4435 		/* This mount is not fully visible if it's root directory
4436 		 * is not the root directory of the filesystem.
4437 		 */
4438 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4439 			continue;
4440 
4441 		/* A local view of the mount flags */
4442 		mnt_flags = mnt->mnt.mnt_flags;
4443 
4444 		/* Don't miss readonly hidden in the superblock flags */
4445 		if (sb_rdonly(mnt->mnt.mnt_sb))
4446 			mnt_flags |= MNT_LOCK_READONLY;
4447 
4448 		/* Verify the mount flags are equal to or more permissive
4449 		 * than the proposed new mount.
4450 		 */
4451 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4452 		    !(new_flags & MNT_READONLY))
4453 			continue;
4454 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4455 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4456 			continue;
4457 
4458 		/* This mount is not fully visible if there are any
4459 		 * locked child mounts that cover anything except for
4460 		 * empty directories.
4461 		 */
4462 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4463 			struct inode *inode = child->mnt_mountpoint->d_inode;
4464 			/* Only worry about locked mounts */
4465 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4466 				continue;
4467 			/* Is the directory permanetly empty? */
4468 			if (!is_empty_dir_inode(inode))
4469 				goto next;
4470 		}
4471 		/* Preserve the locked attributes */
4472 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4473 					       MNT_LOCK_ATIME);
4474 		visible = true;
4475 		goto found;
4476 	next:	;
4477 	}
4478 found:
4479 	unlock_ns_list(ns);
4480 	up_read(&namespace_sem);
4481 	return visible;
4482 }
4483 
4484 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4485 {
4486 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4487 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4488 	unsigned long s_iflags;
4489 
4490 	if (ns->user_ns == &init_user_ns)
4491 		return false;
4492 
4493 	/* Can this filesystem be too revealing? */
4494 	s_iflags = sb->s_iflags;
4495 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4496 		return false;
4497 
4498 	if ((s_iflags & required_iflags) != required_iflags) {
4499 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4500 			  required_iflags);
4501 		return true;
4502 	}
4503 
4504 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4505 }
4506 
4507 bool mnt_may_suid(struct vfsmount *mnt)
4508 {
4509 	/*
4510 	 * Foreign mounts (accessed via fchdir or through /proc
4511 	 * symlinks) are always treated as if they are nosuid.  This
4512 	 * prevents namespaces from trusting potentially unsafe
4513 	 * suid/sgid bits, file caps, or security labels that originate
4514 	 * in other namespaces.
4515 	 */
4516 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4517 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4518 }
4519 
4520 static struct ns_common *mntns_get(struct task_struct *task)
4521 {
4522 	struct ns_common *ns = NULL;
4523 	struct nsproxy *nsproxy;
4524 
4525 	task_lock(task);
4526 	nsproxy = task->nsproxy;
4527 	if (nsproxy) {
4528 		ns = &nsproxy->mnt_ns->ns;
4529 		get_mnt_ns(to_mnt_ns(ns));
4530 	}
4531 	task_unlock(task);
4532 
4533 	return ns;
4534 }
4535 
4536 static void mntns_put(struct ns_common *ns)
4537 {
4538 	put_mnt_ns(to_mnt_ns(ns));
4539 }
4540 
4541 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4542 {
4543 	struct nsproxy *nsproxy = nsset->nsproxy;
4544 	struct fs_struct *fs = nsset->fs;
4545 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4546 	struct user_namespace *user_ns = nsset->cred->user_ns;
4547 	struct path root;
4548 	int err;
4549 
4550 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4551 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4552 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4553 		return -EPERM;
4554 
4555 	if (is_anon_ns(mnt_ns))
4556 		return -EINVAL;
4557 
4558 	if (fs->users != 1)
4559 		return -EINVAL;
4560 
4561 	get_mnt_ns(mnt_ns);
4562 	old_mnt_ns = nsproxy->mnt_ns;
4563 	nsproxy->mnt_ns = mnt_ns;
4564 
4565 	/* Find the root */
4566 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4567 				"/", LOOKUP_DOWN, &root);
4568 	if (err) {
4569 		/* revert to old namespace */
4570 		nsproxy->mnt_ns = old_mnt_ns;
4571 		put_mnt_ns(mnt_ns);
4572 		return err;
4573 	}
4574 
4575 	put_mnt_ns(old_mnt_ns);
4576 
4577 	/* Update the pwd and root */
4578 	set_fs_pwd(fs, &root);
4579 	set_fs_root(fs, &root);
4580 
4581 	path_put(&root);
4582 	return 0;
4583 }
4584 
4585 static struct user_namespace *mntns_owner(struct ns_common *ns)
4586 {
4587 	return to_mnt_ns(ns)->user_ns;
4588 }
4589 
4590 const struct proc_ns_operations mntns_operations = {
4591 	.name		= "mnt",
4592 	.type		= CLONE_NEWNS,
4593 	.get		= mntns_get,
4594 	.put		= mntns_put,
4595 	.install	= mntns_install,
4596 	.owner		= mntns_owner,
4597 };
4598