xref: /linux/fs/namespace.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 	if (mnt) {
197 		int err;
198 
199 		err = mnt_alloc_id(mnt);
200 		if (err)
201 			goto out_free_cache;
202 
203 		if (name) {
204 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 			if (!mnt->mnt_devname)
206 				goto out_free_id;
207 		}
208 
209 #ifdef CONFIG_SMP
210 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 		if (!mnt->mnt_pcp)
212 			goto out_free_devname;
213 
214 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 		mnt->mnt_count = 1;
217 		mnt->mnt_writers = 0;
218 #endif
219 
220 		INIT_HLIST_NODE(&mnt->mnt_hash);
221 		INIT_LIST_HEAD(&mnt->mnt_child);
222 		INIT_LIST_HEAD(&mnt->mnt_mounts);
223 		INIT_LIST_HEAD(&mnt->mnt_list);
224 		INIT_LIST_HEAD(&mnt->mnt_expire);
225 		INIT_LIST_HEAD(&mnt->mnt_share);
226 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 		INIT_LIST_HEAD(&mnt->mnt_slave);
228 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
229 #ifdef CONFIG_FSNOTIFY
230 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
231 #endif
232 	}
233 	return mnt;
234 
235 #ifdef CONFIG_SMP
236 out_free_devname:
237 	kfree(mnt->mnt_devname);
238 #endif
239 out_free_id:
240 	mnt_free_id(mnt);
241 out_free_cache:
242 	kmem_cache_free(mnt_cache, mnt);
243 	return NULL;
244 }
245 
246 /*
247  * Most r/o checks on a fs are for operations that take
248  * discrete amounts of time, like a write() or unlink().
249  * We must keep track of when those operations start
250  * (for permission checks) and when they end, so that
251  * we can determine when writes are able to occur to
252  * a filesystem.
253  */
254 /*
255  * __mnt_is_readonly: check whether a mount is read-only
256  * @mnt: the mount to check for its write status
257  *
258  * This shouldn't be used directly ouside of the VFS.
259  * It does not guarantee that the filesystem will stay
260  * r/w, just that it is right *now*.  This can not and
261  * should not be used in place of IS_RDONLY(inode).
262  * mnt_want/drop_write() will _keep_ the filesystem
263  * r/w.
264  */
265 int __mnt_is_readonly(struct vfsmount *mnt)
266 {
267 	if (mnt->mnt_flags & MNT_READONLY)
268 		return 1;
269 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 		return 1;
271 	return 0;
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 
275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 	mnt->mnt_writers++;
281 #endif
282 }
283 
284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers--;
290 #endif
291 }
292 
293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	unsigned int count = 0;
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 	}
302 
303 	return count;
304 #else
305 	return mnt->mnt_writers;
306 #endif
307 }
308 
309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 	if (mnt->mnt_sb->s_readonly_remount)
312 		return 1;
313 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 	smp_rmb();
315 	return __mnt_is_readonly(mnt);
316 }
317 
318 /*
319  * Most r/o & frozen checks on a fs are for operations that take discrete
320  * amounts of time, like a write() or unlink().  We must keep track of when
321  * those operations start (for permission checks) and when they end, so that we
322  * can determine when writes are able to occur to a filesystem.
323  */
324 /**
325  * __mnt_want_write - get write access to a mount without freeze protection
326  * @m: the mount on which to take a write
327  *
328  * This tells the low-level filesystem that a write is about to be performed to
329  * it, and makes sure that writes are allowed (mnt it read-write) before
330  * returning success. This operation does not protect against filesystem being
331  * frozen. When the write operation is finished, __mnt_drop_write() must be
332  * called. This is effectively a refcount.
333  */
334 int __mnt_want_write(struct vfsmount *m)
335 {
336 	struct mount *mnt = real_mount(m);
337 	int ret = 0;
338 
339 	preempt_disable();
340 	mnt_inc_writers(mnt);
341 	/*
342 	 * The store to mnt_inc_writers must be visible before we pass
343 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 	 * incremented count after it has set MNT_WRITE_HOLD.
345 	 */
346 	smp_mb();
347 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 		cpu_relax();
349 	/*
350 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 	 * be set to match its requirements. So we must not load that until
352 	 * MNT_WRITE_HOLD is cleared.
353 	 */
354 	smp_rmb();
355 	if (mnt_is_readonly(m)) {
356 		mnt_dec_writers(mnt);
357 		ret = -EROFS;
358 	}
359 	preempt_enable();
360 
361 	return ret;
362 }
363 
364 /**
365  * mnt_want_write - get write access to a mount
366  * @m: the mount on which to take a write
367  *
368  * This tells the low-level filesystem that a write is about to be performed to
369  * it, and makes sure that writes are allowed (mount is read-write, filesystem
370  * is not frozen) before returning success.  When the write operation is
371  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
372  */
373 int mnt_want_write(struct vfsmount *m)
374 {
375 	int ret;
376 
377 	sb_start_write(m->mnt_sb);
378 	ret = __mnt_want_write(m);
379 	if (ret)
380 		sb_end_write(m->mnt_sb);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384 
385 /**
386  * mnt_clone_write - get write access to a mount
387  * @mnt: the mount on which to take a write
388  *
389  * This is effectively like mnt_want_write, except
390  * it must only be used to take an extra write reference
391  * on a mountpoint that we already know has a write reference
392  * on it. This allows some optimisation.
393  *
394  * After finished, mnt_drop_write must be called as usual to
395  * drop the reference.
396  */
397 int mnt_clone_write(struct vfsmount *mnt)
398 {
399 	/* superblock may be r/o */
400 	if (__mnt_is_readonly(mnt))
401 		return -EROFS;
402 	preempt_disable();
403 	mnt_inc_writers(real_mount(mnt));
404 	preempt_enable();
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(mnt_clone_write);
408 
409 /**
410  * __mnt_want_write_file - get write access to a file's mount
411  * @file: the file who's mount on which to take a write
412  *
413  * This is like __mnt_want_write, but it takes a file and can
414  * do some optimisations if the file is open for write already
415  */
416 int __mnt_want_write_file(struct file *file)
417 {
418 	if (!(file->f_mode & FMODE_WRITER))
419 		return __mnt_want_write(file->f_path.mnt);
420 	else
421 		return mnt_clone_write(file->f_path.mnt);
422 }
423 
424 /**
425  * mnt_want_write_file - get write access to a file's mount
426  * @file: the file who's mount on which to take a write
427  *
428  * This is like mnt_want_write, but it takes a file and can
429  * do some optimisations if the file is open for write already
430  */
431 int mnt_want_write_file(struct file *file)
432 {
433 	int ret;
434 
435 	sb_start_write(file->f_path.mnt->mnt_sb);
436 	ret = __mnt_want_write_file(file);
437 	if (ret)
438 		sb_end_write(file->f_path.mnt->mnt_sb);
439 	return ret;
440 }
441 EXPORT_SYMBOL_GPL(mnt_want_write_file);
442 
443 /**
444  * __mnt_drop_write - give up write access to a mount
445  * @mnt: the mount on which to give up write access
446  *
447  * Tells the low-level filesystem that we are done
448  * performing writes to it.  Must be matched with
449  * __mnt_want_write() call above.
450  */
451 void __mnt_drop_write(struct vfsmount *mnt)
452 {
453 	preempt_disable();
454 	mnt_dec_writers(real_mount(mnt));
455 	preempt_enable();
456 }
457 
458 /**
459  * mnt_drop_write - give up write access to a mount
460  * @mnt: the mount on which to give up write access
461  *
462  * Tells the low-level filesystem that we are done performing writes to it and
463  * also allows filesystem to be frozen again.  Must be matched with
464  * mnt_want_write() call above.
465  */
466 void mnt_drop_write(struct vfsmount *mnt)
467 {
468 	__mnt_drop_write(mnt);
469 	sb_end_write(mnt->mnt_sb);
470 }
471 EXPORT_SYMBOL_GPL(mnt_drop_write);
472 
473 void __mnt_drop_write_file(struct file *file)
474 {
475 	__mnt_drop_write(file->f_path.mnt);
476 }
477 
478 void mnt_drop_write_file(struct file *file)
479 {
480 	mnt_drop_write(file->f_path.mnt);
481 }
482 EXPORT_SYMBOL(mnt_drop_write_file);
483 
484 static int mnt_make_readonly(struct mount *mnt)
485 {
486 	int ret = 0;
487 
488 	lock_mount_hash();
489 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
490 	/*
491 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 	 * should be visible before we do.
493 	 */
494 	smp_mb();
495 
496 	/*
497 	 * With writers on hold, if this value is zero, then there are
498 	 * definitely no active writers (although held writers may subsequently
499 	 * increment the count, they'll have to wait, and decrement it after
500 	 * seeing MNT_READONLY).
501 	 *
502 	 * It is OK to have counter incremented on one CPU and decremented on
503 	 * another: the sum will add up correctly. The danger would be when we
504 	 * sum up each counter, if we read a counter before it is incremented,
505 	 * but then read another CPU's count which it has been subsequently
506 	 * decremented from -- we would see more decrements than we should.
507 	 * MNT_WRITE_HOLD protects against this scenario, because
508 	 * mnt_want_write first increments count, then smp_mb, then spins on
509 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 	 * we're counting up here.
511 	 */
512 	if (mnt_get_writers(mnt) > 0)
513 		ret = -EBUSY;
514 	else
515 		mnt->mnt.mnt_flags |= MNT_READONLY;
516 	/*
517 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 	 * that become unheld will see MNT_READONLY.
519 	 */
520 	smp_wmb();
521 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 	unlock_mount_hash();
523 	return ret;
524 }
525 
526 static void __mnt_unmake_readonly(struct mount *mnt)
527 {
528 	lock_mount_hash();
529 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
530 	unlock_mount_hash();
531 }
532 
533 int sb_prepare_remount_readonly(struct super_block *sb)
534 {
535 	struct mount *mnt;
536 	int err = 0;
537 
538 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
539 	if (atomic_long_read(&sb->s_remove_count))
540 		return -EBUSY;
541 
542 	lock_mount_hash();
543 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 			smp_mb();
547 			if (mnt_get_writers(mnt) > 0) {
548 				err = -EBUSY;
549 				break;
550 			}
551 		}
552 	}
553 	if (!err && atomic_long_read(&sb->s_remove_count))
554 		err = -EBUSY;
555 
556 	if (!err) {
557 		sb->s_readonly_remount = 1;
558 		smp_wmb();
559 	}
560 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 	}
564 	unlock_mount_hash();
565 
566 	return err;
567 }
568 
569 static void free_vfsmnt(struct mount *mnt)
570 {
571 	kfree(mnt->mnt_devname);
572 #ifdef CONFIG_SMP
573 	free_percpu(mnt->mnt_pcp);
574 #endif
575 	kmem_cache_free(mnt_cache, mnt);
576 }
577 
578 static void delayed_free_vfsmnt(struct rcu_head *head)
579 {
580 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581 }
582 
583 /* call under rcu_read_lock */
584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585 {
586 	struct mount *mnt;
587 	if (read_seqretry(&mount_lock, seq))
588 		return false;
589 	if (bastard == NULL)
590 		return true;
591 	mnt = real_mount(bastard);
592 	mnt_add_count(mnt, 1);
593 	if (likely(!read_seqretry(&mount_lock, seq)))
594 		return true;
595 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 		mnt_add_count(mnt, -1);
597 		return false;
598 	}
599 	rcu_read_unlock();
600 	mntput(bastard);
601 	rcu_read_lock();
602 	return false;
603 }
604 
605 /*
606  * find the first mount at @dentry on vfsmount @mnt.
607  * call under rcu_read_lock()
608  */
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 {
611 	struct hlist_head *head = m_hash(mnt, dentry);
612 	struct mount *p;
613 
614 	hlist_for_each_entry_rcu(p, head, mnt_hash)
615 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 			return p;
617 	return NULL;
618 }
619 
620 /*
621  * find the last mount at @dentry on vfsmount @mnt.
622  * mount_lock must be held.
623  */
624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 	struct mount *p, *res;
627 	res = p = __lookup_mnt(mnt, dentry);
628 	if (!p)
629 		goto out;
630 	hlist_for_each_entry_continue(p, mnt_hash) {
631 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 			break;
633 		res = p;
634 	}
635 out:
636 	return res;
637 }
638 
639 /*
640  * lookup_mnt - Return the first child mount mounted at path
641  *
642  * "First" means first mounted chronologically.  If you create the
643  * following mounts:
644  *
645  * mount /dev/sda1 /mnt
646  * mount /dev/sda2 /mnt
647  * mount /dev/sda3 /mnt
648  *
649  * Then lookup_mnt() on the base /mnt dentry in the root mount will
650  * return successively the root dentry and vfsmount of /dev/sda1, then
651  * /dev/sda2, then /dev/sda3, then NULL.
652  *
653  * lookup_mnt takes a reference to the found vfsmount.
654  */
655 struct vfsmount *lookup_mnt(struct path *path)
656 {
657 	struct mount *child_mnt;
658 	struct vfsmount *m;
659 	unsigned seq;
660 
661 	rcu_read_lock();
662 	do {
663 		seq = read_seqbegin(&mount_lock);
664 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 		m = child_mnt ? &child_mnt->mnt : NULL;
666 	} while (!legitimize_mnt(m, seq));
667 	rcu_read_unlock();
668 	return m;
669 }
670 
671 /*
672  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673  *                         current mount namespace.
674  *
675  * The common case is dentries are not mountpoints at all and that
676  * test is handled inline.  For the slow case when we are actually
677  * dealing with a mountpoint of some kind, walk through all of the
678  * mounts in the current mount namespace and test to see if the dentry
679  * is a mountpoint.
680  *
681  * The mount_hashtable is not usable in the context because we
682  * need to identify all mounts that may be in the current mount
683  * namespace not just a mount that happens to have some specified
684  * parent mount.
685  */
686 bool __is_local_mountpoint(struct dentry *dentry)
687 {
688 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 	struct mount *mnt;
690 	bool is_covered = false;
691 
692 	if (!d_mountpoint(dentry))
693 		goto out;
694 
695 	down_read(&namespace_sem);
696 	list_for_each_entry(mnt, &ns->list, mnt_list) {
697 		is_covered = (mnt->mnt_mountpoint == dentry);
698 		if (is_covered)
699 			break;
700 	}
701 	up_read(&namespace_sem);
702 out:
703 	return is_covered;
704 }
705 
706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
707 {
708 	struct hlist_head *chain = mp_hash(dentry);
709 	struct mountpoint *mp;
710 
711 	hlist_for_each_entry(mp, chain, m_hash) {
712 		if (mp->m_dentry == dentry) {
713 			/* might be worth a WARN_ON() */
714 			if (d_unlinked(dentry))
715 				return ERR_PTR(-ENOENT);
716 			mp->m_count++;
717 			return mp;
718 		}
719 	}
720 	return NULL;
721 }
722 
723 static struct mountpoint *new_mountpoint(struct dentry *dentry)
724 {
725 	struct hlist_head *chain = mp_hash(dentry);
726 	struct mountpoint *mp;
727 	int ret;
728 
729 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 	if (!mp)
731 		return ERR_PTR(-ENOMEM);
732 
733 	ret = d_set_mounted(dentry);
734 	if (ret) {
735 		kfree(mp);
736 		return ERR_PTR(ret);
737 	}
738 
739 	mp->m_dentry = dentry;
740 	mp->m_count = 1;
741 	hlist_add_head(&mp->m_hash, chain);
742 	INIT_HLIST_HEAD(&mp->m_list);
743 	return mp;
744 }
745 
746 static void put_mountpoint(struct mountpoint *mp)
747 {
748 	if (!--mp->m_count) {
749 		struct dentry *dentry = mp->m_dentry;
750 		BUG_ON(!hlist_empty(&mp->m_list));
751 		spin_lock(&dentry->d_lock);
752 		dentry->d_flags &= ~DCACHE_MOUNTED;
753 		spin_unlock(&dentry->d_lock);
754 		hlist_del(&mp->m_hash);
755 		kfree(mp);
756 	}
757 }
758 
759 static inline int check_mnt(struct mount *mnt)
760 {
761 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
762 }
763 
764 /*
765  * vfsmount lock must be held for write
766  */
767 static void touch_mnt_namespace(struct mnt_namespace *ns)
768 {
769 	if (ns) {
770 		ns->event = ++event;
771 		wake_up_interruptible(&ns->poll);
772 	}
773 }
774 
775 /*
776  * vfsmount lock must be held for write
777  */
778 static void __touch_mnt_namespace(struct mnt_namespace *ns)
779 {
780 	if (ns && ns->event != event) {
781 		ns->event = event;
782 		wake_up_interruptible(&ns->poll);
783 	}
784 }
785 
786 /*
787  * vfsmount lock must be held for write
788  */
789 static void detach_mnt(struct mount *mnt, struct path *old_path)
790 {
791 	old_path->dentry = mnt->mnt_mountpoint;
792 	old_path->mnt = &mnt->mnt_parent->mnt;
793 	mnt->mnt_parent = mnt;
794 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
795 	list_del_init(&mnt->mnt_child);
796 	hlist_del_init_rcu(&mnt->mnt_hash);
797 	hlist_del_init(&mnt->mnt_mp_list);
798 	put_mountpoint(mnt->mnt_mp);
799 	mnt->mnt_mp = NULL;
800 }
801 
802 /*
803  * vfsmount lock must be held for write
804  */
805 void mnt_set_mountpoint(struct mount *mnt,
806 			struct mountpoint *mp,
807 			struct mount *child_mnt)
808 {
809 	mp->m_count++;
810 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
811 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
812 	child_mnt->mnt_parent = mnt;
813 	child_mnt->mnt_mp = mp;
814 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static void attach_mnt(struct mount *mnt,
821 			struct mount *parent,
822 			struct mountpoint *mp)
823 {
824 	mnt_set_mountpoint(parent, mp, mnt);
825 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
826 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
827 }
828 
829 static void attach_shadowed(struct mount *mnt,
830 			struct mount *parent,
831 			struct mount *shadows)
832 {
833 	if (shadows) {
834 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
835 		list_add(&mnt->mnt_child, &shadows->mnt_child);
836 	} else {
837 		hlist_add_head_rcu(&mnt->mnt_hash,
838 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 	}
841 }
842 
843 /*
844  * vfsmount lock must be held for write
845  */
846 static void commit_tree(struct mount *mnt, struct mount *shadows)
847 {
848 	struct mount *parent = mnt->mnt_parent;
849 	struct mount *m;
850 	LIST_HEAD(head);
851 	struct mnt_namespace *n = parent->mnt_ns;
852 
853 	BUG_ON(parent == mnt);
854 
855 	list_add_tail(&head, &mnt->mnt_list);
856 	list_for_each_entry(m, &head, mnt_list)
857 		m->mnt_ns = n;
858 
859 	list_splice(&head, n->list.prev);
860 
861 	attach_shadowed(mnt, parent, shadows);
862 	touch_mnt_namespace(n);
863 }
864 
865 static struct mount *next_mnt(struct mount *p, struct mount *root)
866 {
867 	struct list_head *next = p->mnt_mounts.next;
868 	if (next == &p->mnt_mounts) {
869 		while (1) {
870 			if (p == root)
871 				return NULL;
872 			next = p->mnt_child.next;
873 			if (next != &p->mnt_parent->mnt_mounts)
874 				break;
875 			p = p->mnt_parent;
876 		}
877 	}
878 	return list_entry(next, struct mount, mnt_child);
879 }
880 
881 static struct mount *skip_mnt_tree(struct mount *p)
882 {
883 	struct list_head *prev = p->mnt_mounts.prev;
884 	while (prev != &p->mnt_mounts) {
885 		p = list_entry(prev, struct mount, mnt_child);
886 		prev = p->mnt_mounts.prev;
887 	}
888 	return p;
889 }
890 
891 struct vfsmount *
892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893 {
894 	struct mount *mnt;
895 	struct dentry *root;
896 
897 	if (!type)
898 		return ERR_PTR(-ENODEV);
899 
900 	mnt = alloc_vfsmnt(name);
901 	if (!mnt)
902 		return ERR_PTR(-ENOMEM);
903 
904 	if (flags & MS_KERNMOUNT)
905 		mnt->mnt.mnt_flags = MNT_INTERNAL;
906 
907 	root = mount_fs(type, flags, name, data);
908 	if (IS_ERR(root)) {
909 		mnt_free_id(mnt);
910 		free_vfsmnt(mnt);
911 		return ERR_CAST(root);
912 	}
913 
914 	mnt->mnt.mnt_root = root;
915 	mnt->mnt.mnt_sb = root->d_sb;
916 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 	mnt->mnt_parent = mnt;
918 	lock_mount_hash();
919 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
920 	unlock_mount_hash();
921 	return &mnt->mnt;
922 }
923 EXPORT_SYMBOL_GPL(vfs_kern_mount);
924 
925 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
926 					int flag)
927 {
928 	struct super_block *sb = old->mnt.mnt_sb;
929 	struct mount *mnt;
930 	int err;
931 
932 	mnt = alloc_vfsmnt(old->mnt_devname);
933 	if (!mnt)
934 		return ERR_PTR(-ENOMEM);
935 
936 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
937 		mnt->mnt_group_id = 0; /* not a peer of original */
938 	else
939 		mnt->mnt_group_id = old->mnt_group_id;
940 
941 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 		err = mnt_alloc_group_id(mnt);
943 		if (err)
944 			goto out_free;
945 	}
946 
947 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
948 	/* Don't allow unprivileged users to change mount flags */
949 	if (flag & CL_UNPRIVILEGED) {
950 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951 
952 		if (mnt->mnt.mnt_flags & MNT_READONLY)
953 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954 
955 		if (mnt->mnt.mnt_flags & MNT_NODEV)
956 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957 
958 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960 
961 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 	}
964 
965 	/* Don't allow unprivileged users to reveal what is under a mount */
966 	if ((flag & CL_UNPRIVILEGED) &&
967 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
968 		mnt->mnt.mnt_flags |= MNT_LOCKED;
969 
970 	atomic_inc(&sb->s_active);
971 	mnt->mnt.mnt_sb = sb;
972 	mnt->mnt.mnt_root = dget(root);
973 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
974 	mnt->mnt_parent = mnt;
975 	lock_mount_hash();
976 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
977 	unlock_mount_hash();
978 
979 	if ((flag & CL_SLAVE) ||
980 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
981 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
982 		mnt->mnt_master = old;
983 		CLEAR_MNT_SHARED(mnt);
984 	} else if (!(flag & CL_PRIVATE)) {
985 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
986 			list_add(&mnt->mnt_share, &old->mnt_share);
987 		if (IS_MNT_SLAVE(old))
988 			list_add(&mnt->mnt_slave, &old->mnt_slave);
989 		mnt->mnt_master = old->mnt_master;
990 	}
991 	if (flag & CL_MAKE_SHARED)
992 		set_mnt_shared(mnt);
993 
994 	/* stick the duplicate mount on the same expiry list
995 	 * as the original if that was on one */
996 	if (flag & CL_EXPIRE) {
997 		if (!list_empty(&old->mnt_expire))
998 			list_add(&mnt->mnt_expire, &old->mnt_expire);
999 	}
1000 
1001 	return mnt;
1002 
1003  out_free:
1004 	mnt_free_id(mnt);
1005 	free_vfsmnt(mnt);
1006 	return ERR_PTR(err);
1007 }
1008 
1009 static void cleanup_mnt(struct mount *mnt)
1010 {
1011 	/*
1012 	 * This probably indicates that somebody messed
1013 	 * up a mnt_want/drop_write() pair.  If this
1014 	 * happens, the filesystem was probably unable
1015 	 * to make r/w->r/o transitions.
1016 	 */
1017 	/*
1018 	 * The locking used to deal with mnt_count decrement provides barriers,
1019 	 * so mnt_get_writers() below is safe.
1020 	 */
1021 	WARN_ON(mnt_get_writers(mnt));
1022 	if (unlikely(mnt->mnt_pins.first))
1023 		mnt_pin_kill(mnt);
1024 	fsnotify_vfsmount_delete(&mnt->mnt);
1025 	dput(mnt->mnt.mnt_root);
1026 	deactivate_super(mnt->mnt.mnt_sb);
1027 	mnt_free_id(mnt);
1028 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1029 }
1030 
1031 static void __cleanup_mnt(struct rcu_head *head)
1032 {
1033 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1034 }
1035 
1036 static LLIST_HEAD(delayed_mntput_list);
1037 static void delayed_mntput(struct work_struct *unused)
1038 {
1039 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1040 	struct llist_node *next;
1041 
1042 	for (; node; node = next) {
1043 		next = llist_next(node);
1044 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1045 	}
1046 }
1047 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1048 
1049 static void mntput_no_expire(struct mount *mnt)
1050 {
1051 	rcu_read_lock();
1052 	mnt_add_count(mnt, -1);
1053 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1054 		rcu_read_unlock();
1055 		return;
1056 	}
1057 	lock_mount_hash();
1058 	if (mnt_get_count(mnt)) {
1059 		rcu_read_unlock();
1060 		unlock_mount_hash();
1061 		return;
1062 	}
1063 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1064 		rcu_read_unlock();
1065 		unlock_mount_hash();
1066 		return;
1067 	}
1068 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1069 	rcu_read_unlock();
1070 
1071 	list_del(&mnt->mnt_instance);
1072 	unlock_mount_hash();
1073 
1074 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1075 		struct task_struct *task = current;
1076 		if (likely(!(task->flags & PF_KTHREAD))) {
1077 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1078 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1079 				return;
1080 		}
1081 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1082 			schedule_delayed_work(&delayed_mntput_work, 1);
1083 		return;
1084 	}
1085 	cleanup_mnt(mnt);
1086 }
1087 
1088 void mntput(struct vfsmount *mnt)
1089 {
1090 	if (mnt) {
1091 		struct mount *m = real_mount(mnt);
1092 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1093 		if (unlikely(m->mnt_expiry_mark))
1094 			m->mnt_expiry_mark = 0;
1095 		mntput_no_expire(m);
1096 	}
1097 }
1098 EXPORT_SYMBOL(mntput);
1099 
1100 struct vfsmount *mntget(struct vfsmount *mnt)
1101 {
1102 	if (mnt)
1103 		mnt_add_count(real_mount(mnt), 1);
1104 	return mnt;
1105 }
1106 EXPORT_SYMBOL(mntget);
1107 
1108 struct vfsmount *mnt_clone_internal(struct path *path)
1109 {
1110 	struct mount *p;
1111 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1112 	if (IS_ERR(p))
1113 		return ERR_CAST(p);
1114 	p->mnt.mnt_flags |= MNT_INTERNAL;
1115 	return &p->mnt;
1116 }
1117 
1118 static inline void mangle(struct seq_file *m, const char *s)
1119 {
1120 	seq_escape(m, s, " \t\n\\");
1121 }
1122 
1123 /*
1124  * Simple .show_options callback for filesystems which don't want to
1125  * implement more complex mount option showing.
1126  *
1127  * See also save_mount_options().
1128  */
1129 int generic_show_options(struct seq_file *m, struct dentry *root)
1130 {
1131 	const char *options;
1132 
1133 	rcu_read_lock();
1134 	options = rcu_dereference(root->d_sb->s_options);
1135 
1136 	if (options != NULL && options[0]) {
1137 		seq_putc(m, ',');
1138 		mangle(m, options);
1139 	}
1140 	rcu_read_unlock();
1141 
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL(generic_show_options);
1145 
1146 /*
1147  * If filesystem uses generic_show_options(), this function should be
1148  * called from the fill_super() callback.
1149  *
1150  * The .remount_fs callback usually needs to be handled in a special
1151  * way, to make sure, that previous options are not overwritten if the
1152  * remount fails.
1153  *
1154  * Also note, that if the filesystem's .remount_fs function doesn't
1155  * reset all options to their default value, but changes only newly
1156  * given options, then the displayed options will not reflect reality
1157  * any more.
1158  */
1159 void save_mount_options(struct super_block *sb, char *options)
1160 {
1161 	BUG_ON(sb->s_options);
1162 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1163 }
1164 EXPORT_SYMBOL(save_mount_options);
1165 
1166 void replace_mount_options(struct super_block *sb, char *options)
1167 {
1168 	char *old = sb->s_options;
1169 	rcu_assign_pointer(sb->s_options, options);
1170 	if (old) {
1171 		synchronize_rcu();
1172 		kfree(old);
1173 	}
1174 }
1175 EXPORT_SYMBOL(replace_mount_options);
1176 
1177 #ifdef CONFIG_PROC_FS
1178 /* iterator; we want it to have access to namespace_sem, thus here... */
1179 static void *m_start(struct seq_file *m, loff_t *pos)
1180 {
1181 	struct proc_mounts *p = proc_mounts(m);
1182 
1183 	down_read(&namespace_sem);
1184 	if (p->cached_event == p->ns->event) {
1185 		void *v = p->cached_mount;
1186 		if (*pos == p->cached_index)
1187 			return v;
1188 		if (*pos == p->cached_index + 1) {
1189 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1190 			return p->cached_mount = v;
1191 		}
1192 	}
1193 
1194 	p->cached_event = p->ns->event;
1195 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1196 	p->cached_index = *pos;
1197 	return p->cached_mount;
1198 }
1199 
1200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1201 {
1202 	struct proc_mounts *p = proc_mounts(m);
1203 
1204 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1205 	p->cached_index = *pos;
1206 	return p->cached_mount;
1207 }
1208 
1209 static void m_stop(struct seq_file *m, void *v)
1210 {
1211 	up_read(&namespace_sem);
1212 }
1213 
1214 static int m_show(struct seq_file *m, void *v)
1215 {
1216 	struct proc_mounts *p = proc_mounts(m);
1217 	struct mount *r = list_entry(v, struct mount, mnt_list);
1218 	return p->show(m, &r->mnt);
1219 }
1220 
1221 const struct seq_operations mounts_op = {
1222 	.start	= m_start,
1223 	.next	= m_next,
1224 	.stop	= m_stop,
1225 	.show	= m_show,
1226 };
1227 #endif  /* CONFIG_PROC_FS */
1228 
1229 /**
1230  * may_umount_tree - check if a mount tree is busy
1231  * @mnt: root of mount tree
1232  *
1233  * This is called to check if a tree of mounts has any
1234  * open files, pwds, chroots or sub mounts that are
1235  * busy.
1236  */
1237 int may_umount_tree(struct vfsmount *m)
1238 {
1239 	struct mount *mnt = real_mount(m);
1240 	int actual_refs = 0;
1241 	int minimum_refs = 0;
1242 	struct mount *p;
1243 	BUG_ON(!m);
1244 
1245 	/* write lock needed for mnt_get_count */
1246 	lock_mount_hash();
1247 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1248 		actual_refs += mnt_get_count(p);
1249 		minimum_refs += 2;
1250 	}
1251 	unlock_mount_hash();
1252 
1253 	if (actual_refs > minimum_refs)
1254 		return 0;
1255 
1256 	return 1;
1257 }
1258 
1259 EXPORT_SYMBOL(may_umount_tree);
1260 
1261 /**
1262  * may_umount - check if a mount point is busy
1263  * @mnt: root of mount
1264  *
1265  * This is called to check if a mount point has any
1266  * open files, pwds, chroots or sub mounts. If the
1267  * mount has sub mounts this will return busy
1268  * regardless of whether the sub mounts are busy.
1269  *
1270  * Doesn't take quota and stuff into account. IOW, in some cases it will
1271  * give false negatives. The main reason why it's here is that we need
1272  * a non-destructive way to look for easily umountable filesystems.
1273  */
1274 int may_umount(struct vfsmount *mnt)
1275 {
1276 	int ret = 1;
1277 	down_read(&namespace_sem);
1278 	lock_mount_hash();
1279 	if (propagate_mount_busy(real_mount(mnt), 2))
1280 		ret = 0;
1281 	unlock_mount_hash();
1282 	up_read(&namespace_sem);
1283 	return ret;
1284 }
1285 
1286 EXPORT_SYMBOL(may_umount);
1287 
1288 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1289 
1290 static void namespace_unlock(void)
1291 {
1292 	struct mount *mnt;
1293 	struct hlist_head head = unmounted;
1294 
1295 	if (likely(hlist_empty(&head))) {
1296 		up_write(&namespace_sem);
1297 		return;
1298 	}
1299 
1300 	head.first->pprev = &head.first;
1301 	INIT_HLIST_HEAD(&unmounted);
1302 
1303 	/* undo decrements we'd done in umount_tree() */
1304 	hlist_for_each_entry(mnt, &head, mnt_hash)
1305 		if (mnt->mnt_ex_mountpoint.mnt)
1306 			mntget(mnt->mnt_ex_mountpoint.mnt);
1307 
1308 	up_write(&namespace_sem);
1309 
1310 	synchronize_rcu();
1311 
1312 	while (!hlist_empty(&head)) {
1313 		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1314 		hlist_del_init(&mnt->mnt_hash);
1315 		if (mnt->mnt_ex_mountpoint.mnt)
1316 			path_put(&mnt->mnt_ex_mountpoint);
1317 		mntput(&mnt->mnt);
1318 	}
1319 }
1320 
1321 static inline void namespace_lock(void)
1322 {
1323 	down_write(&namespace_sem);
1324 }
1325 
1326 /*
1327  * mount_lock must be held
1328  * namespace_sem must be held for write
1329  * how = 0 => just this tree, don't propagate
1330  * how = 1 => propagate; we know that nobody else has reference to any victims
1331  * how = 2 => lazy umount
1332  */
1333 void umount_tree(struct mount *mnt, int how)
1334 {
1335 	HLIST_HEAD(tmp_list);
1336 	struct mount *p;
1337 	struct mount *last = NULL;
1338 
1339 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1340 		hlist_del_init_rcu(&p->mnt_hash);
1341 		hlist_add_head(&p->mnt_hash, &tmp_list);
1342 	}
1343 
1344 	hlist_for_each_entry(p, &tmp_list, mnt_hash)
1345 		list_del_init(&p->mnt_child);
1346 
1347 	if (how)
1348 		propagate_umount(&tmp_list);
1349 
1350 	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1351 		list_del_init(&p->mnt_expire);
1352 		list_del_init(&p->mnt_list);
1353 		__touch_mnt_namespace(p->mnt_ns);
1354 		p->mnt_ns = NULL;
1355 		if (how < 2)
1356 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1357 		if (mnt_has_parent(p)) {
1358 			hlist_del_init(&p->mnt_mp_list);
1359 			put_mountpoint(p->mnt_mp);
1360 			mnt_add_count(p->mnt_parent, -1);
1361 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1362 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1363 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1364 			p->mnt_mountpoint = p->mnt.mnt_root;
1365 			p->mnt_parent = p;
1366 			p->mnt_mp = NULL;
1367 		}
1368 		change_mnt_propagation(p, MS_PRIVATE);
1369 		last = p;
1370 	}
1371 	if (last) {
1372 		last->mnt_hash.next = unmounted.first;
1373 		if (unmounted.first)
1374 			unmounted.first->pprev = &last->mnt_hash.next;
1375 		unmounted.first = tmp_list.first;
1376 		unmounted.first->pprev = &unmounted.first;
1377 	}
1378 }
1379 
1380 static void shrink_submounts(struct mount *mnt);
1381 
1382 static int do_umount(struct mount *mnt, int flags)
1383 {
1384 	struct super_block *sb = mnt->mnt.mnt_sb;
1385 	int retval;
1386 
1387 	retval = security_sb_umount(&mnt->mnt, flags);
1388 	if (retval)
1389 		return retval;
1390 
1391 	/*
1392 	 * Allow userspace to request a mountpoint be expired rather than
1393 	 * unmounting unconditionally. Unmount only happens if:
1394 	 *  (1) the mark is already set (the mark is cleared by mntput())
1395 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1396 	 */
1397 	if (flags & MNT_EXPIRE) {
1398 		if (&mnt->mnt == current->fs->root.mnt ||
1399 		    flags & (MNT_FORCE | MNT_DETACH))
1400 			return -EINVAL;
1401 
1402 		/*
1403 		 * probably don't strictly need the lock here if we examined
1404 		 * all race cases, but it's a slowpath.
1405 		 */
1406 		lock_mount_hash();
1407 		if (mnt_get_count(mnt) != 2) {
1408 			unlock_mount_hash();
1409 			return -EBUSY;
1410 		}
1411 		unlock_mount_hash();
1412 
1413 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1414 			return -EAGAIN;
1415 	}
1416 
1417 	/*
1418 	 * If we may have to abort operations to get out of this
1419 	 * mount, and they will themselves hold resources we must
1420 	 * allow the fs to do things. In the Unix tradition of
1421 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1422 	 * might fail to complete on the first run through as other tasks
1423 	 * must return, and the like. Thats for the mount program to worry
1424 	 * about for the moment.
1425 	 */
1426 
1427 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1428 		sb->s_op->umount_begin(sb);
1429 	}
1430 
1431 	/*
1432 	 * No sense to grab the lock for this test, but test itself looks
1433 	 * somewhat bogus. Suggestions for better replacement?
1434 	 * Ho-hum... In principle, we might treat that as umount + switch
1435 	 * to rootfs. GC would eventually take care of the old vfsmount.
1436 	 * Actually it makes sense, especially if rootfs would contain a
1437 	 * /reboot - static binary that would close all descriptors and
1438 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1439 	 */
1440 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1441 		/*
1442 		 * Special case for "unmounting" root ...
1443 		 * we just try to remount it readonly.
1444 		 */
1445 		if (!capable(CAP_SYS_ADMIN))
1446 			return -EPERM;
1447 		down_write(&sb->s_umount);
1448 		if (!(sb->s_flags & MS_RDONLY))
1449 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1450 		up_write(&sb->s_umount);
1451 		return retval;
1452 	}
1453 
1454 	namespace_lock();
1455 	lock_mount_hash();
1456 	event++;
1457 
1458 	if (flags & MNT_DETACH) {
1459 		if (!list_empty(&mnt->mnt_list))
1460 			umount_tree(mnt, 2);
1461 		retval = 0;
1462 	} else {
1463 		shrink_submounts(mnt);
1464 		retval = -EBUSY;
1465 		if (!propagate_mount_busy(mnt, 2)) {
1466 			if (!list_empty(&mnt->mnt_list))
1467 				umount_tree(mnt, 1);
1468 			retval = 0;
1469 		}
1470 	}
1471 	unlock_mount_hash();
1472 	namespace_unlock();
1473 	return retval;
1474 }
1475 
1476 /*
1477  * __detach_mounts - lazily unmount all mounts on the specified dentry
1478  *
1479  * During unlink, rmdir, and d_drop it is possible to loose the path
1480  * to an existing mountpoint, and wind up leaking the mount.
1481  * detach_mounts allows lazily unmounting those mounts instead of
1482  * leaking them.
1483  *
1484  * The caller may hold dentry->d_inode->i_mutex.
1485  */
1486 void __detach_mounts(struct dentry *dentry)
1487 {
1488 	struct mountpoint *mp;
1489 	struct mount *mnt;
1490 
1491 	namespace_lock();
1492 	mp = lookup_mountpoint(dentry);
1493 	if (!mp)
1494 		goto out_unlock;
1495 
1496 	lock_mount_hash();
1497 	while (!hlist_empty(&mp->m_list)) {
1498 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1499 		umount_tree(mnt, 2);
1500 	}
1501 	unlock_mount_hash();
1502 	put_mountpoint(mp);
1503 out_unlock:
1504 	namespace_unlock();
1505 }
1506 
1507 /*
1508  * Is the caller allowed to modify his namespace?
1509  */
1510 static inline bool may_mount(void)
1511 {
1512 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1513 }
1514 
1515 /*
1516  * Now umount can handle mount points as well as block devices.
1517  * This is important for filesystems which use unnamed block devices.
1518  *
1519  * We now support a flag for forced unmount like the other 'big iron'
1520  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1521  */
1522 
1523 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1524 {
1525 	struct path path;
1526 	struct mount *mnt;
1527 	int retval;
1528 	int lookup_flags = 0;
1529 
1530 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1531 		return -EINVAL;
1532 
1533 	if (!may_mount())
1534 		return -EPERM;
1535 
1536 	if (!(flags & UMOUNT_NOFOLLOW))
1537 		lookup_flags |= LOOKUP_FOLLOW;
1538 
1539 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1540 	if (retval)
1541 		goto out;
1542 	mnt = real_mount(path.mnt);
1543 	retval = -EINVAL;
1544 	if (path.dentry != path.mnt->mnt_root)
1545 		goto dput_and_out;
1546 	if (!check_mnt(mnt))
1547 		goto dput_and_out;
1548 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1549 		goto dput_and_out;
1550 	retval = -EPERM;
1551 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1552 		goto dput_and_out;
1553 
1554 	retval = do_umount(mnt, flags);
1555 dput_and_out:
1556 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1557 	dput(path.dentry);
1558 	mntput_no_expire(mnt);
1559 out:
1560 	return retval;
1561 }
1562 
1563 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1564 
1565 /*
1566  *	The 2.0 compatible umount. No flags.
1567  */
1568 SYSCALL_DEFINE1(oldumount, char __user *, name)
1569 {
1570 	return sys_umount(name, 0);
1571 }
1572 
1573 #endif
1574 
1575 static bool is_mnt_ns_file(struct dentry *dentry)
1576 {
1577 	/* Is this a proxy for a mount namespace? */
1578 	return dentry->d_op == &ns_dentry_operations &&
1579 	       dentry->d_fsdata == &mntns_operations;
1580 }
1581 
1582 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1583 {
1584 	return container_of(ns, struct mnt_namespace, ns);
1585 }
1586 
1587 static bool mnt_ns_loop(struct dentry *dentry)
1588 {
1589 	/* Could bind mounting the mount namespace inode cause a
1590 	 * mount namespace loop?
1591 	 */
1592 	struct mnt_namespace *mnt_ns;
1593 	if (!is_mnt_ns_file(dentry))
1594 		return false;
1595 
1596 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1597 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1598 }
1599 
1600 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1601 					int flag)
1602 {
1603 	struct mount *res, *p, *q, *r, *parent;
1604 
1605 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1606 		return ERR_PTR(-EINVAL);
1607 
1608 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1609 		return ERR_PTR(-EINVAL);
1610 
1611 	res = q = clone_mnt(mnt, dentry, flag);
1612 	if (IS_ERR(q))
1613 		return q;
1614 
1615 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1616 
1617 	p = mnt;
1618 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1619 		struct mount *s;
1620 		if (!is_subdir(r->mnt_mountpoint, dentry))
1621 			continue;
1622 
1623 		for (s = r; s; s = next_mnt(s, r)) {
1624 			struct mount *t = NULL;
1625 			if (!(flag & CL_COPY_UNBINDABLE) &&
1626 			    IS_MNT_UNBINDABLE(s)) {
1627 				s = skip_mnt_tree(s);
1628 				continue;
1629 			}
1630 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1631 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1632 				s = skip_mnt_tree(s);
1633 				continue;
1634 			}
1635 			while (p != s->mnt_parent) {
1636 				p = p->mnt_parent;
1637 				q = q->mnt_parent;
1638 			}
1639 			p = s;
1640 			parent = q;
1641 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1642 			if (IS_ERR(q))
1643 				goto out;
1644 			lock_mount_hash();
1645 			list_add_tail(&q->mnt_list, &res->mnt_list);
1646 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1647 			if (!list_empty(&parent->mnt_mounts)) {
1648 				t = list_last_entry(&parent->mnt_mounts,
1649 					struct mount, mnt_child);
1650 				if (t->mnt_mp != p->mnt_mp)
1651 					t = NULL;
1652 			}
1653 			attach_shadowed(q, parent, t);
1654 			unlock_mount_hash();
1655 		}
1656 	}
1657 	return res;
1658 out:
1659 	if (res) {
1660 		lock_mount_hash();
1661 		umount_tree(res, 0);
1662 		unlock_mount_hash();
1663 	}
1664 	return q;
1665 }
1666 
1667 /* Caller should check returned pointer for errors */
1668 
1669 struct vfsmount *collect_mounts(struct path *path)
1670 {
1671 	struct mount *tree;
1672 	namespace_lock();
1673 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1674 			 CL_COPY_ALL | CL_PRIVATE);
1675 	namespace_unlock();
1676 	if (IS_ERR(tree))
1677 		return ERR_CAST(tree);
1678 	return &tree->mnt;
1679 }
1680 
1681 void drop_collected_mounts(struct vfsmount *mnt)
1682 {
1683 	namespace_lock();
1684 	lock_mount_hash();
1685 	umount_tree(real_mount(mnt), 0);
1686 	unlock_mount_hash();
1687 	namespace_unlock();
1688 }
1689 
1690 /**
1691  * clone_private_mount - create a private clone of a path
1692  *
1693  * This creates a new vfsmount, which will be the clone of @path.  The new will
1694  * not be attached anywhere in the namespace and will be private (i.e. changes
1695  * to the originating mount won't be propagated into this).
1696  *
1697  * Release with mntput().
1698  */
1699 struct vfsmount *clone_private_mount(struct path *path)
1700 {
1701 	struct mount *old_mnt = real_mount(path->mnt);
1702 	struct mount *new_mnt;
1703 
1704 	if (IS_MNT_UNBINDABLE(old_mnt))
1705 		return ERR_PTR(-EINVAL);
1706 
1707 	down_read(&namespace_sem);
1708 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1709 	up_read(&namespace_sem);
1710 	if (IS_ERR(new_mnt))
1711 		return ERR_CAST(new_mnt);
1712 
1713 	return &new_mnt->mnt;
1714 }
1715 EXPORT_SYMBOL_GPL(clone_private_mount);
1716 
1717 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1718 		   struct vfsmount *root)
1719 {
1720 	struct mount *mnt;
1721 	int res = f(root, arg);
1722 	if (res)
1723 		return res;
1724 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1725 		res = f(&mnt->mnt, arg);
1726 		if (res)
1727 			return res;
1728 	}
1729 	return 0;
1730 }
1731 
1732 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1733 {
1734 	struct mount *p;
1735 
1736 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1737 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1738 			mnt_release_group_id(p);
1739 	}
1740 }
1741 
1742 static int invent_group_ids(struct mount *mnt, bool recurse)
1743 {
1744 	struct mount *p;
1745 
1746 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1747 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1748 			int err = mnt_alloc_group_id(p);
1749 			if (err) {
1750 				cleanup_group_ids(mnt, p);
1751 				return err;
1752 			}
1753 		}
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 /*
1760  *  @source_mnt : mount tree to be attached
1761  *  @nd         : place the mount tree @source_mnt is attached
1762  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1763  *  		   store the parent mount and mountpoint dentry.
1764  *  		   (done when source_mnt is moved)
1765  *
1766  *  NOTE: in the table below explains the semantics when a source mount
1767  *  of a given type is attached to a destination mount of a given type.
1768  * ---------------------------------------------------------------------------
1769  * |         BIND MOUNT OPERATION                                            |
1770  * |**************************************************************************
1771  * | source-->| shared        |       private  |       slave    | unbindable |
1772  * | dest     |               |                |                |            |
1773  * |   |      |               |                |                |            |
1774  * |   v      |               |                |                |            |
1775  * |**************************************************************************
1776  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1777  * |          |               |                |                |            |
1778  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1779  * ***************************************************************************
1780  * A bind operation clones the source mount and mounts the clone on the
1781  * destination mount.
1782  *
1783  * (++)  the cloned mount is propagated to all the mounts in the propagation
1784  * 	 tree of the destination mount and the cloned mount is added to
1785  * 	 the peer group of the source mount.
1786  * (+)   the cloned mount is created under the destination mount and is marked
1787  *       as shared. The cloned mount is added to the peer group of the source
1788  *       mount.
1789  * (+++) the mount is propagated to all the mounts in the propagation tree
1790  *       of the destination mount and the cloned mount is made slave
1791  *       of the same master as that of the source mount. The cloned mount
1792  *       is marked as 'shared and slave'.
1793  * (*)   the cloned mount is made a slave of the same master as that of the
1794  * 	 source mount.
1795  *
1796  * ---------------------------------------------------------------------------
1797  * |         		MOVE MOUNT OPERATION                                 |
1798  * |**************************************************************************
1799  * | source-->| shared        |       private  |       slave    | unbindable |
1800  * | dest     |               |                |                |            |
1801  * |   |      |               |                |                |            |
1802  * |   v      |               |                |                |            |
1803  * |**************************************************************************
1804  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1805  * |          |               |                |                |            |
1806  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1807  * ***************************************************************************
1808  *
1809  * (+)  the mount is moved to the destination. And is then propagated to
1810  * 	all the mounts in the propagation tree of the destination mount.
1811  * (+*)  the mount is moved to the destination.
1812  * (+++)  the mount is moved to the destination and is then propagated to
1813  * 	all the mounts belonging to the destination mount's propagation tree.
1814  * 	the mount is marked as 'shared and slave'.
1815  * (*)	the mount continues to be a slave at the new location.
1816  *
1817  * if the source mount is a tree, the operations explained above is
1818  * applied to each mount in the tree.
1819  * Must be called without spinlocks held, since this function can sleep
1820  * in allocations.
1821  */
1822 static int attach_recursive_mnt(struct mount *source_mnt,
1823 			struct mount *dest_mnt,
1824 			struct mountpoint *dest_mp,
1825 			struct path *parent_path)
1826 {
1827 	HLIST_HEAD(tree_list);
1828 	struct mount *child, *p;
1829 	struct hlist_node *n;
1830 	int err;
1831 
1832 	if (IS_MNT_SHARED(dest_mnt)) {
1833 		err = invent_group_ids(source_mnt, true);
1834 		if (err)
1835 			goto out;
1836 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1837 		lock_mount_hash();
1838 		if (err)
1839 			goto out_cleanup_ids;
1840 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1841 			set_mnt_shared(p);
1842 	} else {
1843 		lock_mount_hash();
1844 	}
1845 	if (parent_path) {
1846 		detach_mnt(source_mnt, parent_path);
1847 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1848 		touch_mnt_namespace(source_mnt->mnt_ns);
1849 	} else {
1850 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1851 		commit_tree(source_mnt, NULL);
1852 	}
1853 
1854 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1855 		struct mount *q;
1856 		hlist_del_init(&child->mnt_hash);
1857 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1858 				      child->mnt_mountpoint);
1859 		commit_tree(child, q);
1860 	}
1861 	unlock_mount_hash();
1862 
1863 	return 0;
1864 
1865  out_cleanup_ids:
1866 	while (!hlist_empty(&tree_list)) {
1867 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1868 		umount_tree(child, 0);
1869 	}
1870 	unlock_mount_hash();
1871 	cleanup_group_ids(source_mnt, NULL);
1872  out:
1873 	return err;
1874 }
1875 
1876 static struct mountpoint *lock_mount(struct path *path)
1877 {
1878 	struct vfsmount *mnt;
1879 	struct dentry *dentry = path->dentry;
1880 retry:
1881 	mutex_lock(&dentry->d_inode->i_mutex);
1882 	if (unlikely(cant_mount(dentry))) {
1883 		mutex_unlock(&dentry->d_inode->i_mutex);
1884 		return ERR_PTR(-ENOENT);
1885 	}
1886 	namespace_lock();
1887 	mnt = lookup_mnt(path);
1888 	if (likely(!mnt)) {
1889 		struct mountpoint *mp = lookup_mountpoint(dentry);
1890 		if (!mp)
1891 			mp = new_mountpoint(dentry);
1892 		if (IS_ERR(mp)) {
1893 			namespace_unlock();
1894 			mutex_unlock(&dentry->d_inode->i_mutex);
1895 			return mp;
1896 		}
1897 		return mp;
1898 	}
1899 	namespace_unlock();
1900 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1901 	path_put(path);
1902 	path->mnt = mnt;
1903 	dentry = path->dentry = dget(mnt->mnt_root);
1904 	goto retry;
1905 }
1906 
1907 static void unlock_mount(struct mountpoint *where)
1908 {
1909 	struct dentry *dentry = where->m_dentry;
1910 	put_mountpoint(where);
1911 	namespace_unlock();
1912 	mutex_unlock(&dentry->d_inode->i_mutex);
1913 }
1914 
1915 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1916 {
1917 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1918 		return -EINVAL;
1919 
1920 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1921 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1922 		return -ENOTDIR;
1923 
1924 	return attach_recursive_mnt(mnt, p, mp, NULL);
1925 }
1926 
1927 /*
1928  * Sanity check the flags to change_mnt_propagation.
1929  */
1930 
1931 static int flags_to_propagation_type(int flags)
1932 {
1933 	int type = flags & ~(MS_REC | MS_SILENT);
1934 
1935 	/* Fail if any non-propagation flags are set */
1936 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1937 		return 0;
1938 	/* Only one propagation flag should be set */
1939 	if (!is_power_of_2(type))
1940 		return 0;
1941 	return type;
1942 }
1943 
1944 /*
1945  * recursively change the type of the mountpoint.
1946  */
1947 static int do_change_type(struct path *path, int flag)
1948 {
1949 	struct mount *m;
1950 	struct mount *mnt = real_mount(path->mnt);
1951 	int recurse = flag & MS_REC;
1952 	int type;
1953 	int err = 0;
1954 
1955 	if (path->dentry != path->mnt->mnt_root)
1956 		return -EINVAL;
1957 
1958 	type = flags_to_propagation_type(flag);
1959 	if (!type)
1960 		return -EINVAL;
1961 
1962 	namespace_lock();
1963 	if (type == MS_SHARED) {
1964 		err = invent_group_ids(mnt, recurse);
1965 		if (err)
1966 			goto out_unlock;
1967 	}
1968 
1969 	lock_mount_hash();
1970 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1971 		change_mnt_propagation(m, type);
1972 	unlock_mount_hash();
1973 
1974  out_unlock:
1975 	namespace_unlock();
1976 	return err;
1977 }
1978 
1979 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1980 {
1981 	struct mount *child;
1982 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1983 		if (!is_subdir(child->mnt_mountpoint, dentry))
1984 			continue;
1985 
1986 		if (child->mnt.mnt_flags & MNT_LOCKED)
1987 			return true;
1988 	}
1989 	return false;
1990 }
1991 
1992 /*
1993  * do loopback mount.
1994  */
1995 static int do_loopback(struct path *path, const char *old_name,
1996 				int recurse)
1997 {
1998 	struct path old_path;
1999 	struct mount *mnt = NULL, *old, *parent;
2000 	struct mountpoint *mp;
2001 	int err;
2002 	if (!old_name || !*old_name)
2003 		return -EINVAL;
2004 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2005 	if (err)
2006 		return err;
2007 
2008 	err = -EINVAL;
2009 	if (mnt_ns_loop(old_path.dentry))
2010 		goto out;
2011 
2012 	mp = lock_mount(path);
2013 	err = PTR_ERR(mp);
2014 	if (IS_ERR(mp))
2015 		goto out;
2016 
2017 	old = real_mount(old_path.mnt);
2018 	parent = real_mount(path->mnt);
2019 
2020 	err = -EINVAL;
2021 	if (IS_MNT_UNBINDABLE(old))
2022 		goto out2;
2023 
2024 	if (!check_mnt(parent))
2025 		goto out2;
2026 
2027 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2028 		goto out2;
2029 
2030 	if (!recurse && has_locked_children(old, old_path.dentry))
2031 		goto out2;
2032 
2033 	if (recurse)
2034 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2035 	else
2036 		mnt = clone_mnt(old, old_path.dentry, 0);
2037 
2038 	if (IS_ERR(mnt)) {
2039 		err = PTR_ERR(mnt);
2040 		goto out2;
2041 	}
2042 
2043 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2044 
2045 	err = graft_tree(mnt, parent, mp);
2046 	if (err) {
2047 		lock_mount_hash();
2048 		umount_tree(mnt, 0);
2049 		unlock_mount_hash();
2050 	}
2051 out2:
2052 	unlock_mount(mp);
2053 out:
2054 	path_put(&old_path);
2055 	return err;
2056 }
2057 
2058 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2059 {
2060 	int error = 0;
2061 	int readonly_request = 0;
2062 
2063 	if (ms_flags & MS_RDONLY)
2064 		readonly_request = 1;
2065 	if (readonly_request == __mnt_is_readonly(mnt))
2066 		return 0;
2067 
2068 	if (readonly_request)
2069 		error = mnt_make_readonly(real_mount(mnt));
2070 	else
2071 		__mnt_unmake_readonly(real_mount(mnt));
2072 	return error;
2073 }
2074 
2075 /*
2076  * change filesystem flags. dir should be a physical root of filesystem.
2077  * If you've mounted a non-root directory somewhere and want to do remount
2078  * on it - tough luck.
2079  */
2080 static int do_remount(struct path *path, int flags, int mnt_flags,
2081 		      void *data)
2082 {
2083 	int err;
2084 	struct super_block *sb = path->mnt->mnt_sb;
2085 	struct mount *mnt = real_mount(path->mnt);
2086 
2087 	if (!check_mnt(mnt))
2088 		return -EINVAL;
2089 
2090 	if (path->dentry != path->mnt->mnt_root)
2091 		return -EINVAL;
2092 
2093 	/* Don't allow changing of locked mnt flags.
2094 	 *
2095 	 * No locks need to be held here while testing the various
2096 	 * MNT_LOCK flags because those flags can never be cleared
2097 	 * once they are set.
2098 	 */
2099 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2100 	    !(mnt_flags & MNT_READONLY)) {
2101 		return -EPERM;
2102 	}
2103 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2104 	    !(mnt_flags & MNT_NODEV)) {
2105 		/* Was the nodev implicitly added in mount? */
2106 		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2107 		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2108 			mnt_flags |= MNT_NODEV;
2109 		} else {
2110 			return -EPERM;
2111 		}
2112 	}
2113 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2114 	    !(mnt_flags & MNT_NOSUID)) {
2115 		return -EPERM;
2116 	}
2117 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2118 	    !(mnt_flags & MNT_NOEXEC)) {
2119 		return -EPERM;
2120 	}
2121 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2122 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2123 		return -EPERM;
2124 	}
2125 
2126 	err = security_sb_remount(sb, data);
2127 	if (err)
2128 		return err;
2129 
2130 	down_write(&sb->s_umount);
2131 	if (flags & MS_BIND)
2132 		err = change_mount_flags(path->mnt, flags);
2133 	else if (!capable(CAP_SYS_ADMIN))
2134 		err = -EPERM;
2135 	else
2136 		err = do_remount_sb(sb, flags, data, 0);
2137 	if (!err) {
2138 		lock_mount_hash();
2139 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2140 		mnt->mnt.mnt_flags = mnt_flags;
2141 		touch_mnt_namespace(mnt->mnt_ns);
2142 		unlock_mount_hash();
2143 	}
2144 	up_write(&sb->s_umount);
2145 	return err;
2146 }
2147 
2148 static inline int tree_contains_unbindable(struct mount *mnt)
2149 {
2150 	struct mount *p;
2151 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2152 		if (IS_MNT_UNBINDABLE(p))
2153 			return 1;
2154 	}
2155 	return 0;
2156 }
2157 
2158 static int do_move_mount(struct path *path, const char *old_name)
2159 {
2160 	struct path old_path, parent_path;
2161 	struct mount *p;
2162 	struct mount *old;
2163 	struct mountpoint *mp;
2164 	int err;
2165 	if (!old_name || !*old_name)
2166 		return -EINVAL;
2167 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2168 	if (err)
2169 		return err;
2170 
2171 	mp = lock_mount(path);
2172 	err = PTR_ERR(mp);
2173 	if (IS_ERR(mp))
2174 		goto out;
2175 
2176 	old = real_mount(old_path.mnt);
2177 	p = real_mount(path->mnt);
2178 
2179 	err = -EINVAL;
2180 	if (!check_mnt(p) || !check_mnt(old))
2181 		goto out1;
2182 
2183 	if (old->mnt.mnt_flags & MNT_LOCKED)
2184 		goto out1;
2185 
2186 	err = -EINVAL;
2187 	if (old_path.dentry != old_path.mnt->mnt_root)
2188 		goto out1;
2189 
2190 	if (!mnt_has_parent(old))
2191 		goto out1;
2192 
2193 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2194 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
2195 		goto out1;
2196 	/*
2197 	 * Don't move a mount residing in a shared parent.
2198 	 */
2199 	if (IS_MNT_SHARED(old->mnt_parent))
2200 		goto out1;
2201 	/*
2202 	 * Don't move a mount tree containing unbindable mounts to a destination
2203 	 * mount which is shared.
2204 	 */
2205 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2206 		goto out1;
2207 	err = -ELOOP;
2208 	for (; mnt_has_parent(p); p = p->mnt_parent)
2209 		if (p == old)
2210 			goto out1;
2211 
2212 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2213 	if (err)
2214 		goto out1;
2215 
2216 	/* if the mount is moved, it should no longer be expire
2217 	 * automatically */
2218 	list_del_init(&old->mnt_expire);
2219 out1:
2220 	unlock_mount(mp);
2221 out:
2222 	if (!err)
2223 		path_put(&parent_path);
2224 	path_put(&old_path);
2225 	return err;
2226 }
2227 
2228 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2229 {
2230 	int err;
2231 	const char *subtype = strchr(fstype, '.');
2232 	if (subtype) {
2233 		subtype++;
2234 		err = -EINVAL;
2235 		if (!subtype[0])
2236 			goto err;
2237 	} else
2238 		subtype = "";
2239 
2240 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2241 	err = -ENOMEM;
2242 	if (!mnt->mnt_sb->s_subtype)
2243 		goto err;
2244 	return mnt;
2245 
2246  err:
2247 	mntput(mnt);
2248 	return ERR_PTR(err);
2249 }
2250 
2251 /*
2252  * add a mount into a namespace's mount tree
2253  */
2254 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2255 {
2256 	struct mountpoint *mp;
2257 	struct mount *parent;
2258 	int err;
2259 
2260 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2261 
2262 	mp = lock_mount(path);
2263 	if (IS_ERR(mp))
2264 		return PTR_ERR(mp);
2265 
2266 	parent = real_mount(path->mnt);
2267 	err = -EINVAL;
2268 	if (unlikely(!check_mnt(parent))) {
2269 		/* that's acceptable only for automounts done in private ns */
2270 		if (!(mnt_flags & MNT_SHRINKABLE))
2271 			goto unlock;
2272 		/* ... and for those we'd better have mountpoint still alive */
2273 		if (!parent->mnt_ns)
2274 			goto unlock;
2275 	}
2276 
2277 	/* Refuse the same filesystem on the same mount point */
2278 	err = -EBUSY;
2279 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2280 	    path->mnt->mnt_root == path->dentry)
2281 		goto unlock;
2282 
2283 	err = -EINVAL;
2284 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2285 		goto unlock;
2286 
2287 	newmnt->mnt.mnt_flags = mnt_flags;
2288 	err = graft_tree(newmnt, parent, mp);
2289 
2290 unlock:
2291 	unlock_mount(mp);
2292 	return err;
2293 }
2294 
2295 /*
2296  * create a new mount for userspace and request it to be added into the
2297  * namespace's tree
2298  */
2299 static int do_new_mount(struct path *path, const char *fstype, int flags,
2300 			int mnt_flags, const char *name, void *data)
2301 {
2302 	struct file_system_type *type;
2303 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2304 	struct vfsmount *mnt;
2305 	int err;
2306 
2307 	if (!fstype)
2308 		return -EINVAL;
2309 
2310 	type = get_fs_type(fstype);
2311 	if (!type)
2312 		return -ENODEV;
2313 
2314 	if (user_ns != &init_user_ns) {
2315 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2316 			put_filesystem(type);
2317 			return -EPERM;
2318 		}
2319 		/* Only in special cases allow devices from mounts
2320 		 * created outside the initial user namespace.
2321 		 */
2322 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2323 			flags |= MS_NODEV;
2324 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2325 		}
2326 	}
2327 
2328 	mnt = vfs_kern_mount(type, flags, name, data);
2329 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2330 	    !mnt->mnt_sb->s_subtype)
2331 		mnt = fs_set_subtype(mnt, fstype);
2332 
2333 	put_filesystem(type);
2334 	if (IS_ERR(mnt))
2335 		return PTR_ERR(mnt);
2336 
2337 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2338 	if (err)
2339 		mntput(mnt);
2340 	return err;
2341 }
2342 
2343 int finish_automount(struct vfsmount *m, struct path *path)
2344 {
2345 	struct mount *mnt = real_mount(m);
2346 	int err;
2347 	/* The new mount record should have at least 2 refs to prevent it being
2348 	 * expired before we get a chance to add it
2349 	 */
2350 	BUG_ON(mnt_get_count(mnt) < 2);
2351 
2352 	if (m->mnt_sb == path->mnt->mnt_sb &&
2353 	    m->mnt_root == path->dentry) {
2354 		err = -ELOOP;
2355 		goto fail;
2356 	}
2357 
2358 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2359 	if (!err)
2360 		return 0;
2361 fail:
2362 	/* remove m from any expiration list it may be on */
2363 	if (!list_empty(&mnt->mnt_expire)) {
2364 		namespace_lock();
2365 		list_del_init(&mnt->mnt_expire);
2366 		namespace_unlock();
2367 	}
2368 	mntput(m);
2369 	mntput(m);
2370 	return err;
2371 }
2372 
2373 /**
2374  * mnt_set_expiry - Put a mount on an expiration list
2375  * @mnt: The mount to list.
2376  * @expiry_list: The list to add the mount to.
2377  */
2378 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2379 {
2380 	namespace_lock();
2381 
2382 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2383 
2384 	namespace_unlock();
2385 }
2386 EXPORT_SYMBOL(mnt_set_expiry);
2387 
2388 /*
2389  * process a list of expirable mountpoints with the intent of discarding any
2390  * mountpoints that aren't in use and haven't been touched since last we came
2391  * here
2392  */
2393 void mark_mounts_for_expiry(struct list_head *mounts)
2394 {
2395 	struct mount *mnt, *next;
2396 	LIST_HEAD(graveyard);
2397 
2398 	if (list_empty(mounts))
2399 		return;
2400 
2401 	namespace_lock();
2402 	lock_mount_hash();
2403 
2404 	/* extract from the expiration list every vfsmount that matches the
2405 	 * following criteria:
2406 	 * - only referenced by its parent vfsmount
2407 	 * - still marked for expiry (marked on the last call here; marks are
2408 	 *   cleared by mntput())
2409 	 */
2410 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2411 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2412 			propagate_mount_busy(mnt, 1))
2413 			continue;
2414 		list_move(&mnt->mnt_expire, &graveyard);
2415 	}
2416 	while (!list_empty(&graveyard)) {
2417 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2418 		touch_mnt_namespace(mnt->mnt_ns);
2419 		umount_tree(mnt, 1);
2420 	}
2421 	unlock_mount_hash();
2422 	namespace_unlock();
2423 }
2424 
2425 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2426 
2427 /*
2428  * Ripoff of 'select_parent()'
2429  *
2430  * search the list of submounts for a given mountpoint, and move any
2431  * shrinkable submounts to the 'graveyard' list.
2432  */
2433 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2434 {
2435 	struct mount *this_parent = parent;
2436 	struct list_head *next;
2437 	int found = 0;
2438 
2439 repeat:
2440 	next = this_parent->mnt_mounts.next;
2441 resume:
2442 	while (next != &this_parent->mnt_mounts) {
2443 		struct list_head *tmp = next;
2444 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2445 
2446 		next = tmp->next;
2447 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2448 			continue;
2449 		/*
2450 		 * Descend a level if the d_mounts list is non-empty.
2451 		 */
2452 		if (!list_empty(&mnt->mnt_mounts)) {
2453 			this_parent = mnt;
2454 			goto repeat;
2455 		}
2456 
2457 		if (!propagate_mount_busy(mnt, 1)) {
2458 			list_move_tail(&mnt->mnt_expire, graveyard);
2459 			found++;
2460 		}
2461 	}
2462 	/*
2463 	 * All done at this level ... ascend and resume the search
2464 	 */
2465 	if (this_parent != parent) {
2466 		next = this_parent->mnt_child.next;
2467 		this_parent = this_parent->mnt_parent;
2468 		goto resume;
2469 	}
2470 	return found;
2471 }
2472 
2473 /*
2474  * process a list of expirable mountpoints with the intent of discarding any
2475  * submounts of a specific parent mountpoint
2476  *
2477  * mount_lock must be held for write
2478  */
2479 static void shrink_submounts(struct mount *mnt)
2480 {
2481 	LIST_HEAD(graveyard);
2482 	struct mount *m;
2483 
2484 	/* extract submounts of 'mountpoint' from the expiration list */
2485 	while (select_submounts(mnt, &graveyard)) {
2486 		while (!list_empty(&graveyard)) {
2487 			m = list_first_entry(&graveyard, struct mount,
2488 						mnt_expire);
2489 			touch_mnt_namespace(m->mnt_ns);
2490 			umount_tree(m, 1);
2491 		}
2492 	}
2493 }
2494 
2495 /*
2496  * Some copy_from_user() implementations do not return the exact number of
2497  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2498  * Note that this function differs from copy_from_user() in that it will oops
2499  * on bad values of `to', rather than returning a short copy.
2500  */
2501 static long exact_copy_from_user(void *to, const void __user * from,
2502 				 unsigned long n)
2503 {
2504 	char *t = to;
2505 	const char __user *f = from;
2506 	char c;
2507 
2508 	if (!access_ok(VERIFY_READ, from, n))
2509 		return n;
2510 
2511 	while (n) {
2512 		if (__get_user(c, f)) {
2513 			memset(t, 0, n);
2514 			break;
2515 		}
2516 		*t++ = c;
2517 		f++;
2518 		n--;
2519 	}
2520 	return n;
2521 }
2522 
2523 int copy_mount_options(const void __user * data, unsigned long *where)
2524 {
2525 	int i;
2526 	unsigned long page;
2527 	unsigned long size;
2528 
2529 	*where = 0;
2530 	if (!data)
2531 		return 0;
2532 
2533 	if (!(page = __get_free_page(GFP_KERNEL)))
2534 		return -ENOMEM;
2535 
2536 	/* We only care that *some* data at the address the user
2537 	 * gave us is valid.  Just in case, we'll zero
2538 	 * the remainder of the page.
2539 	 */
2540 	/* copy_from_user cannot cross TASK_SIZE ! */
2541 	size = TASK_SIZE - (unsigned long)data;
2542 	if (size > PAGE_SIZE)
2543 		size = PAGE_SIZE;
2544 
2545 	i = size - exact_copy_from_user((void *)page, data, size);
2546 	if (!i) {
2547 		free_page(page);
2548 		return -EFAULT;
2549 	}
2550 	if (i != PAGE_SIZE)
2551 		memset((char *)page + i, 0, PAGE_SIZE - i);
2552 	*where = page;
2553 	return 0;
2554 }
2555 
2556 char *copy_mount_string(const void __user *data)
2557 {
2558 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2559 }
2560 
2561 /*
2562  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2563  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2564  *
2565  * data is a (void *) that can point to any structure up to
2566  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2567  * information (or be NULL).
2568  *
2569  * Pre-0.97 versions of mount() didn't have a flags word.
2570  * When the flags word was introduced its top half was required
2571  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2572  * Therefore, if this magic number is present, it carries no information
2573  * and must be discarded.
2574  */
2575 long do_mount(const char *dev_name, const char __user *dir_name,
2576 		const char *type_page, unsigned long flags, void *data_page)
2577 {
2578 	struct path path;
2579 	int retval = 0;
2580 	int mnt_flags = 0;
2581 
2582 	/* Discard magic */
2583 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2584 		flags &= ~MS_MGC_MSK;
2585 
2586 	/* Basic sanity checks */
2587 	if (data_page)
2588 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2589 
2590 	/* ... and get the mountpoint */
2591 	retval = user_path(dir_name, &path);
2592 	if (retval)
2593 		return retval;
2594 
2595 	retval = security_sb_mount(dev_name, &path,
2596 				   type_page, flags, data_page);
2597 	if (!retval && !may_mount())
2598 		retval = -EPERM;
2599 	if (retval)
2600 		goto dput_out;
2601 
2602 	/* Default to relatime unless overriden */
2603 	if (!(flags & MS_NOATIME))
2604 		mnt_flags |= MNT_RELATIME;
2605 
2606 	/* Separate the per-mountpoint flags */
2607 	if (flags & MS_NOSUID)
2608 		mnt_flags |= MNT_NOSUID;
2609 	if (flags & MS_NODEV)
2610 		mnt_flags |= MNT_NODEV;
2611 	if (flags & MS_NOEXEC)
2612 		mnt_flags |= MNT_NOEXEC;
2613 	if (flags & MS_NOATIME)
2614 		mnt_flags |= MNT_NOATIME;
2615 	if (flags & MS_NODIRATIME)
2616 		mnt_flags |= MNT_NODIRATIME;
2617 	if (flags & MS_STRICTATIME)
2618 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2619 	if (flags & MS_RDONLY)
2620 		mnt_flags |= MNT_READONLY;
2621 
2622 	/* The default atime for remount is preservation */
2623 	if ((flags & MS_REMOUNT) &&
2624 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2625 		       MS_STRICTATIME)) == 0)) {
2626 		mnt_flags &= ~MNT_ATIME_MASK;
2627 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2628 	}
2629 
2630 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2631 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2632 		   MS_STRICTATIME);
2633 
2634 	if (flags & MS_REMOUNT)
2635 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2636 				    data_page);
2637 	else if (flags & MS_BIND)
2638 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2639 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2640 		retval = do_change_type(&path, flags);
2641 	else if (flags & MS_MOVE)
2642 		retval = do_move_mount(&path, dev_name);
2643 	else
2644 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2645 				      dev_name, data_page);
2646 dput_out:
2647 	path_put(&path);
2648 	return retval;
2649 }
2650 
2651 static void free_mnt_ns(struct mnt_namespace *ns)
2652 {
2653 	ns_free_inum(&ns->ns);
2654 	put_user_ns(ns->user_ns);
2655 	kfree(ns);
2656 }
2657 
2658 /*
2659  * Assign a sequence number so we can detect when we attempt to bind
2660  * mount a reference to an older mount namespace into the current
2661  * mount namespace, preventing reference counting loops.  A 64bit
2662  * number incrementing at 10Ghz will take 12,427 years to wrap which
2663  * is effectively never, so we can ignore the possibility.
2664  */
2665 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2666 
2667 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2668 {
2669 	struct mnt_namespace *new_ns;
2670 	int ret;
2671 
2672 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2673 	if (!new_ns)
2674 		return ERR_PTR(-ENOMEM);
2675 	ret = ns_alloc_inum(&new_ns->ns);
2676 	if (ret) {
2677 		kfree(new_ns);
2678 		return ERR_PTR(ret);
2679 	}
2680 	new_ns->ns.ops = &mntns_operations;
2681 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2682 	atomic_set(&new_ns->count, 1);
2683 	new_ns->root = NULL;
2684 	INIT_LIST_HEAD(&new_ns->list);
2685 	init_waitqueue_head(&new_ns->poll);
2686 	new_ns->event = 0;
2687 	new_ns->user_ns = get_user_ns(user_ns);
2688 	return new_ns;
2689 }
2690 
2691 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2692 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2693 {
2694 	struct mnt_namespace *new_ns;
2695 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2696 	struct mount *p, *q;
2697 	struct mount *old;
2698 	struct mount *new;
2699 	int copy_flags;
2700 
2701 	BUG_ON(!ns);
2702 
2703 	if (likely(!(flags & CLONE_NEWNS))) {
2704 		get_mnt_ns(ns);
2705 		return ns;
2706 	}
2707 
2708 	old = ns->root;
2709 
2710 	new_ns = alloc_mnt_ns(user_ns);
2711 	if (IS_ERR(new_ns))
2712 		return new_ns;
2713 
2714 	namespace_lock();
2715 	/* First pass: copy the tree topology */
2716 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2717 	if (user_ns != ns->user_ns)
2718 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2719 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2720 	if (IS_ERR(new)) {
2721 		namespace_unlock();
2722 		free_mnt_ns(new_ns);
2723 		return ERR_CAST(new);
2724 	}
2725 	new_ns->root = new;
2726 	list_add_tail(&new_ns->list, &new->mnt_list);
2727 
2728 	/*
2729 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2730 	 * as belonging to new namespace.  We have already acquired a private
2731 	 * fs_struct, so tsk->fs->lock is not needed.
2732 	 */
2733 	p = old;
2734 	q = new;
2735 	while (p) {
2736 		q->mnt_ns = new_ns;
2737 		if (new_fs) {
2738 			if (&p->mnt == new_fs->root.mnt) {
2739 				new_fs->root.mnt = mntget(&q->mnt);
2740 				rootmnt = &p->mnt;
2741 			}
2742 			if (&p->mnt == new_fs->pwd.mnt) {
2743 				new_fs->pwd.mnt = mntget(&q->mnt);
2744 				pwdmnt = &p->mnt;
2745 			}
2746 		}
2747 		p = next_mnt(p, old);
2748 		q = next_mnt(q, new);
2749 		if (!q)
2750 			break;
2751 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2752 			p = next_mnt(p, old);
2753 	}
2754 	namespace_unlock();
2755 
2756 	if (rootmnt)
2757 		mntput(rootmnt);
2758 	if (pwdmnt)
2759 		mntput(pwdmnt);
2760 
2761 	return new_ns;
2762 }
2763 
2764 /**
2765  * create_mnt_ns - creates a private namespace and adds a root filesystem
2766  * @mnt: pointer to the new root filesystem mountpoint
2767  */
2768 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2769 {
2770 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2771 	if (!IS_ERR(new_ns)) {
2772 		struct mount *mnt = real_mount(m);
2773 		mnt->mnt_ns = new_ns;
2774 		new_ns->root = mnt;
2775 		list_add(&mnt->mnt_list, &new_ns->list);
2776 	} else {
2777 		mntput(m);
2778 	}
2779 	return new_ns;
2780 }
2781 
2782 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2783 {
2784 	struct mnt_namespace *ns;
2785 	struct super_block *s;
2786 	struct path path;
2787 	int err;
2788 
2789 	ns = create_mnt_ns(mnt);
2790 	if (IS_ERR(ns))
2791 		return ERR_CAST(ns);
2792 
2793 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2794 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2795 
2796 	put_mnt_ns(ns);
2797 
2798 	if (err)
2799 		return ERR_PTR(err);
2800 
2801 	/* trade a vfsmount reference for active sb one */
2802 	s = path.mnt->mnt_sb;
2803 	atomic_inc(&s->s_active);
2804 	mntput(path.mnt);
2805 	/* lock the sucker */
2806 	down_write(&s->s_umount);
2807 	/* ... and return the root of (sub)tree on it */
2808 	return path.dentry;
2809 }
2810 EXPORT_SYMBOL(mount_subtree);
2811 
2812 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2813 		char __user *, type, unsigned long, flags, void __user *, data)
2814 {
2815 	int ret;
2816 	char *kernel_type;
2817 	char *kernel_dev;
2818 	unsigned long data_page;
2819 
2820 	kernel_type = copy_mount_string(type);
2821 	ret = PTR_ERR(kernel_type);
2822 	if (IS_ERR(kernel_type))
2823 		goto out_type;
2824 
2825 	kernel_dev = copy_mount_string(dev_name);
2826 	ret = PTR_ERR(kernel_dev);
2827 	if (IS_ERR(kernel_dev))
2828 		goto out_dev;
2829 
2830 	ret = copy_mount_options(data, &data_page);
2831 	if (ret < 0)
2832 		goto out_data;
2833 
2834 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2835 		(void *) data_page);
2836 
2837 	free_page(data_page);
2838 out_data:
2839 	kfree(kernel_dev);
2840 out_dev:
2841 	kfree(kernel_type);
2842 out_type:
2843 	return ret;
2844 }
2845 
2846 /*
2847  * Return true if path is reachable from root
2848  *
2849  * namespace_sem or mount_lock is held
2850  */
2851 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2852 			 const struct path *root)
2853 {
2854 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2855 		dentry = mnt->mnt_mountpoint;
2856 		mnt = mnt->mnt_parent;
2857 	}
2858 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2859 }
2860 
2861 int path_is_under(struct path *path1, struct path *path2)
2862 {
2863 	int res;
2864 	read_seqlock_excl(&mount_lock);
2865 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2866 	read_sequnlock_excl(&mount_lock);
2867 	return res;
2868 }
2869 EXPORT_SYMBOL(path_is_under);
2870 
2871 /*
2872  * pivot_root Semantics:
2873  * Moves the root file system of the current process to the directory put_old,
2874  * makes new_root as the new root file system of the current process, and sets
2875  * root/cwd of all processes which had them on the current root to new_root.
2876  *
2877  * Restrictions:
2878  * The new_root and put_old must be directories, and  must not be on the
2879  * same file  system as the current process root. The put_old  must  be
2880  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2881  * pointed to by put_old must yield the same directory as new_root. No other
2882  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2883  *
2884  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2885  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2886  * in this situation.
2887  *
2888  * Notes:
2889  *  - we don't move root/cwd if they are not at the root (reason: if something
2890  *    cared enough to change them, it's probably wrong to force them elsewhere)
2891  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2892  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2893  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2894  *    first.
2895  */
2896 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2897 		const char __user *, put_old)
2898 {
2899 	struct path new, old, parent_path, root_parent, root;
2900 	struct mount *new_mnt, *root_mnt, *old_mnt;
2901 	struct mountpoint *old_mp, *root_mp;
2902 	int error;
2903 
2904 	if (!may_mount())
2905 		return -EPERM;
2906 
2907 	error = user_path_dir(new_root, &new);
2908 	if (error)
2909 		goto out0;
2910 
2911 	error = user_path_dir(put_old, &old);
2912 	if (error)
2913 		goto out1;
2914 
2915 	error = security_sb_pivotroot(&old, &new);
2916 	if (error)
2917 		goto out2;
2918 
2919 	get_fs_root(current->fs, &root);
2920 	old_mp = lock_mount(&old);
2921 	error = PTR_ERR(old_mp);
2922 	if (IS_ERR(old_mp))
2923 		goto out3;
2924 
2925 	error = -EINVAL;
2926 	new_mnt = real_mount(new.mnt);
2927 	root_mnt = real_mount(root.mnt);
2928 	old_mnt = real_mount(old.mnt);
2929 	if (IS_MNT_SHARED(old_mnt) ||
2930 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2931 		IS_MNT_SHARED(root_mnt->mnt_parent))
2932 		goto out4;
2933 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2934 		goto out4;
2935 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2936 		goto out4;
2937 	error = -ENOENT;
2938 	if (d_unlinked(new.dentry))
2939 		goto out4;
2940 	error = -EBUSY;
2941 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2942 		goto out4; /* loop, on the same file system  */
2943 	error = -EINVAL;
2944 	if (root.mnt->mnt_root != root.dentry)
2945 		goto out4; /* not a mountpoint */
2946 	if (!mnt_has_parent(root_mnt))
2947 		goto out4; /* not attached */
2948 	root_mp = root_mnt->mnt_mp;
2949 	if (new.mnt->mnt_root != new.dentry)
2950 		goto out4; /* not a mountpoint */
2951 	if (!mnt_has_parent(new_mnt))
2952 		goto out4; /* not attached */
2953 	/* make sure we can reach put_old from new_root */
2954 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2955 		goto out4;
2956 	/* make certain new is below the root */
2957 	if (!is_path_reachable(new_mnt, new.dentry, &root))
2958 		goto out4;
2959 	root_mp->m_count++; /* pin it so it won't go away */
2960 	lock_mount_hash();
2961 	detach_mnt(new_mnt, &parent_path);
2962 	detach_mnt(root_mnt, &root_parent);
2963 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2964 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2965 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2966 	}
2967 	/* mount old root on put_old */
2968 	attach_mnt(root_mnt, old_mnt, old_mp);
2969 	/* mount new_root on / */
2970 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2971 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2972 	/* A moved mount should not expire automatically */
2973 	list_del_init(&new_mnt->mnt_expire);
2974 	unlock_mount_hash();
2975 	chroot_fs_refs(&root, &new);
2976 	put_mountpoint(root_mp);
2977 	error = 0;
2978 out4:
2979 	unlock_mount(old_mp);
2980 	if (!error) {
2981 		path_put(&root_parent);
2982 		path_put(&parent_path);
2983 	}
2984 out3:
2985 	path_put(&root);
2986 out2:
2987 	path_put(&old);
2988 out1:
2989 	path_put(&new);
2990 out0:
2991 	return error;
2992 }
2993 
2994 static void __init init_mount_tree(void)
2995 {
2996 	struct vfsmount *mnt;
2997 	struct mnt_namespace *ns;
2998 	struct path root;
2999 	struct file_system_type *type;
3000 
3001 	type = get_fs_type("rootfs");
3002 	if (!type)
3003 		panic("Can't find rootfs type");
3004 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3005 	put_filesystem(type);
3006 	if (IS_ERR(mnt))
3007 		panic("Can't create rootfs");
3008 
3009 	ns = create_mnt_ns(mnt);
3010 	if (IS_ERR(ns))
3011 		panic("Can't allocate initial namespace");
3012 
3013 	init_task.nsproxy->mnt_ns = ns;
3014 	get_mnt_ns(ns);
3015 
3016 	root.mnt = mnt;
3017 	root.dentry = mnt->mnt_root;
3018 	mnt->mnt_flags |= MNT_LOCKED;
3019 
3020 	set_fs_pwd(current->fs, &root);
3021 	set_fs_root(current->fs, &root);
3022 }
3023 
3024 void __init mnt_init(void)
3025 {
3026 	unsigned u;
3027 	int err;
3028 
3029 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3030 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3031 
3032 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3033 				sizeof(struct hlist_head),
3034 				mhash_entries, 19,
3035 				0,
3036 				&m_hash_shift, &m_hash_mask, 0, 0);
3037 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3038 				sizeof(struct hlist_head),
3039 				mphash_entries, 19,
3040 				0,
3041 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3042 
3043 	if (!mount_hashtable || !mountpoint_hashtable)
3044 		panic("Failed to allocate mount hash table\n");
3045 
3046 	for (u = 0; u <= m_hash_mask; u++)
3047 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3048 	for (u = 0; u <= mp_hash_mask; u++)
3049 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3050 
3051 	kernfs_init();
3052 
3053 	err = sysfs_init();
3054 	if (err)
3055 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3056 			__func__, err);
3057 	fs_kobj = kobject_create_and_add("fs", NULL);
3058 	if (!fs_kobj)
3059 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3060 	init_rootfs();
3061 	init_mount_tree();
3062 }
3063 
3064 void put_mnt_ns(struct mnt_namespace *ns)
3065 {
3066 	if (!atomic_dec_and_test(&ns->count))
3067 		return;
3068 	drop_collected_mounts(&ns->root->mnt);
3069 	free_mnt_ns(ns);
3070 }
3071 
3072 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3073 {
3074 	struct vfsmount *mnt;
3075 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3076 	if (!IS_ERR(mnt)) {
3077 		/*
3078 		 * it is a longterm mount, don't release mnt until
3079 		 * we unmount before file sys is unregistered
3080 		*/
3081 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3082 	}
3083 	return mnt;
3084 }
3085 EXPORT_SYMBOL_GPL(kern_mount_data);
3086 
3087 void kern_unmount(struct vfsmount *mnt)
3088 {
3089 	/* release long term mount so mount point can be released */
3090 	if (!IS_ERR_OR_NULL(mnt)) {
3091 		real_mount(mnt)->mnt_ns = NULL;
3092 		synchronize_rcu();	/* yecchhh... */
3093 		mntput(mnt);
3094 	}
3095 }
3096 EXPORT_SYMBOL(kern_unmount);
3097 
3098 bool our_mnt(struct vfsmount *mnt)
3099 {
3100 	return check_mnt(real_mount(mnt));
3101 }
3102 
3103 bool current_chrooted(void)
3104 {
3105 	/* Does the current process have a non-standard root */
3106 	struct path ns_root;
3107 	struct path fs_root;
3108 	bool chrooted;
3109 
3110 	/* Find the namespace root */
3111 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3112 	ns_root.dentry = ns_root.mnt->mnt_root;
3113 	path_get(&ns_root);
3114 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3115 		;
3116 
3117 	get_fs_root(current->fs, &fs_root);
3118 
3119 	chrooted = !path_equal(&fs_root, &ns_root);
3120 
3121 	path_put(&fs_root);
3122 	path_put(&ns_root);
3123 
3124 	return chrooted;
3125 }
3126 
3127 bool fs_fully_visible(struct file_system_type *type)
3128 {
3129 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3130 	struct mount *mnt;
3131 	bool visible = false;
3132 
3133 	if (unlikely(!ns))
3134 		return false;
3135 
3136 	down_read(&namespace_sem);
3137 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3138 		struct mount *child;
3139 		if (mnt->mnt.mnt_sb->s_type != type)
3140 			continue;
3141 
3142 		/* This mount is not fully visible if there are any child mounts
3143 		 * that cover anything except for empty directories.
3144 		 */
3145 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3146 			struct inode *inode = child->mnt_mountpoint->d_inode;
3147 			if (!S_ISDIR(inode->i_mode))
3148 				goto next;
3149 			if (inode->i_nlink > 2)
3150 				goto next;
3151 		}
3152 		visible = true;
3153 		goto found;
3154 	next:	;
3155 	}
3156 found:
3157 	up_read(&namespace_sem);
3158 	return visible;
3159 }
3160 
3161 static struct ns_common *mntns_get(struct task_struct *task)
3162 {
3163 	struct ns_common *ns = NULL;
3164 	struct nsproxy *nsproxy;
3165 
3166 	task_lock(task);
3167 	nsproxy = task->nsproxy;
3168 	if (nsproxy) {
3169 		ns = &nsproxy->mnt_ns->ns;
3170 		get_mnt_ns(to_mnt_ns(ns));
3171 	}
3172 	task_unlock(task);
3173 
3174 	return ns;
3175 }
3176 
3177 static void mntns_put(struct ns_common *ns)
3178 {
3179 	put_mnt_ns(to_mnt_ns(ns));
3180 }
3181 
3182 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3183 {
3184 	struct fs_struct *fs = current->fs;
3185 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3186 	struct path root;
3187 
3188 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3189 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3190 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3191 		return -EPERM;
3192 
3193 	if (fs->users != 1)
3194 		return -EINVAL;
3195 
3196 	get_mnt_ns(mnt_ns);
3197 	put_mnt_ns(nsproxy->mnt_ns);
3198 	nsproxy->mnt_ns = mnt_ns;
3199 
3200 	/* Find the root */
3201 	root.mnt    = &mnt_ns->root->mnt;
3202 	root.dentry = mnt_ns->root->mnt.mnt_root;
3203 	path_get(&root);
3204 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3205 		;
3206 
3207 	/* Update the pwd and root */
3208 	set_fs_pwd(fs, &root);
3209 	set_fs_root(fs, &root);
3210 
3211 	path_put(&root);
3212 	return 0;
3213 }
3214 
3215 const struct proc_ns_operations mntns_operations = {
3216 	.name		= "mnt",
3217 	.type		= CLONE_NEWNS,
3218 	.get		= mntns_get,
3219 	.put		= mntns_put,
3220 	.install	= mntns_install,
3221 };
3222