xref: /linux/fs/namespace.c (revision 3f6bc9e3ab9b127171d39f9ac6eca1abb693b731)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36 
37 #include "pnode.h"
38 #include "internal.h"
39 
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47 
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mhash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57 
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 	if (!str)
62 		return 0;
63 	mphash_entries = simple_strtoul(str, &str, 0);
64 	return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67 
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71 
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET);
75 
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_RWLOCK(mnt_ns_tree_lock);
83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
84 
85 struct mount_kattr {
86 	unsigned int attr_set;
87 	unsigned int attr_clr;
88 	unsigned int propagation;
89 	unsigned int lookup_flags;
90 	bool recurse;
91 	struct user_namespace *mnt_userns;
92 	struct mnt_idmap *mnt_idmap;
93 };
94 
95 /* /sys/fs */
96 struct kobject *fs_kobj __ro_after_init;
97 EXPORT_SYMBOL_GPL(fs_kobj);
98 
99 /*
100  * vfsmount lock may be taken for read to prevent changes to the
101  * vfsmount hash, ie. during mountpoint lookups or walking back
102  * up the tree.
103  *
104  * It should be taken for write in all cases where the vfsmount
105  * tree or hash is modified or when a vfsmount structure is modified.
106  */
107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
108 
109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns)
110 {
111 	u64 seq_b = ns->seq;
112 
113 	if (seq < seq_b)
114 		return -1;
115 	if (seq > seq_b)
116 		return 1;
117 	return 0;
118 }
119 
120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
121 {
122 	if (!node)
123 		return NULL;
124 	return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
125 }
126 
127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b)
128 {
129 	struct mnt_namespace *ns_a = node_to_mnt_ns(a);
130 	struct mnt_namespace *ns_b = node_to_mnt_ns(b);
131 	u64 seq_a = ns_a->seq;
132 
133 	return mnt_ns_cmp(seq_a, ns_b) < 0;
134 }
135 
136 static void mnt_ns_tree_add(struct mnt_namespace *ns)
137 {
138 	guard(write_lock)(&mnt_ns_tree_lock);
139 	rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less);
140 }
141 
142 static void mnt_ns_release(struct mnt_namespace *ns)
143 {
144 	lockdep_assert_not_held(&mnt_ns_tree_lock);
145 
146 	/* keep alive for {list,stat}mount() */
147 	if (refcount_dec_and_test(&ns->passive)) {
148 		put_user_ns(ns->user_ns);
149 		kfree(ns);
150 	}
151 }
152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
153 
154 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
155 {
156 	/* remove from global mount namespace list */
157 	if (!is_anon_ns(ns)) {
158 		guard(write_lock)(&mnt_ns_tree_lock);
159 		rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
160 	}
161 
162 	mnt_ns_release(ns);
163 }
164 
165 /*
166  * Returns the mount namespace which either has the specified id, or has the
167  * next smallest id afer the specified one.
168  */
169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id)
170 {
171 	struct rb_node *node = mnt_ns_tree.rb_node;
172 	struct mnt_namespace *ret = NULL;
173 
174 	lockdep_assert_held(&mnt_ns_tree_lock);
175 
176 	while (node) {
177 		struct mnt_namespace *n = node_to_mnt_ns(node);
178 
179 		if (mnt_ns_id <= n->seq) {
180 			ret = node_to_mnt_ns(node);
181 			if (mnt_ns_id == n->seq)
182 				break;
183 			node = node->rb_left;
184 		} else {
185 			node = node->rb_right;
186 		}
187 	}
188 	return ret;
189 }
190 
191 /*
192  * Lookup a mount namespace by id and take a passive reference count. Taking a
193  * passive reference means the mount namespace can be emptied if e.g., the last
194  * task holding an active reference exits. To access the mounts of the
195  * namespace the @namespace_sem must first be acquired. If the namespace has
196  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
197  * see that the mount rbtree of the namespace is empty.
198  */
199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
200 {
201        struct mnt_namespace *ns;
202 
203        guard(read_lock)(&mnt_ns_tree_lock);
204        ns = mnt_ns_find_id_at(mnt_ns_id);
205        if (!ns || ns->seq != mnt_ns_id)
206                return NULL;
207 
208        refcount_inc(&ns->passive);
209        return ns;
210 }
211 
212 static inline void lock_mount_hash(void)
213 {
214 	write_seqlock(&mount_lock);
215 }
216 
217 static inline void unlock_mount_hash(void)
218 {
219 	write_sequnlock(&mount_lock);
220 }
221 
222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
223 {
224 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
225 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
226 	tmp = tmp + (tmp >> m_hash_shift);
227 	return &mount_hashtable[tmp & m_hash_mask];
228 }
229 
230 static inline struct hlist_head *mp_hash(struct dentry *dentry)
231 {
232 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
233 	tmp = tmp + (tmp >> mp_hash_shift);
234 	return &mountpoint_hashtable[tmp & mp_hash_mask];
235 }
236 
237 static int mnt_alloc_id(struct mount *mnt)
238 {
239 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
240 
241 	if (res < 0)
242 		return res;
243 	mnt->mnt_id = res;
244 	mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
245 	return 0;
246 }
247 
248 static void mnt_free_id(struct mount *mnt)
249 {
250 	ida_free(&mnt_id_ida, mnt->mnt_id);
251 }
252 
253 /*
254  * Allocate a new peer group ID
255  */
256 static int mnt_alloc_group_id(struct mount *mnt)
257 {
258 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
259 
260 	if (res < 0)
261 		return res;
262 	mnt->mnt_group_id = res;
263 	return 0;
264 }
265 
266 /*
267  * Release a peer group ID
268  */
269 void mnt_release_group_id(struct mount *mnt)
270 {
271 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
272 	mnt->mnt_group_id = 0;
273 }
274 
275 /*
276  * vfsmount lock must be held for read
277  */
278 static inline void mnt_add_count(struct mount *mnt, int n)
279 {
280 #ifdef CONFIG_SMP
281 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
282 #else
283 	preempt_disable();
284 	mnt->mnt_count += n;
285 	preempt_enable();
286 #endif
287 }
288 
289 /*
290  * vfsmount lock must be held for write
291  */
292 int mnt_get_count(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 	int count = 0;
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
300 	}
301 
302 	return count;
303 #else
304 	return mnt->mnt_count;
305 #endif
306 }
307 
308 static struct mount *alloc_vfsmnt(const char *name)
309 {
310 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
311 	if (mnt) {
312 		int err;
313 
314 		err = mnt_alloc_id(mnt);
315 		if (err)
316 			goto out_free_cache;
317 
318 		if (name) {
319 			mnt->mnt_devname = kstrdup_const(name,
320 							 GFP_KERNEL_ACCOUNT);
321 			if (!mnt->mnt_devname)
322 				goto out_free_id;
323 		}
324 
325 #ifdef CONFIG_SMP
326 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
327 		if (!mnt->mnt_pcp)
328 			goto out_free_devname;
329 
330 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
331 #else
332 		mnt->mnt_count = 1;
333 		mnt->mnt_writers = 0;
334 #endif
335 
336 		INIT_HLIST_NODE(&mnt->mnt_hash);
337 		INIT_LIST_HEAD(&mnt->mnt_child);
338 		INIT_LIST_HEAD(&mnt->mnt_mounts);
339 		INIT_LIST_HEAD(&mnt->mnt_list);
340 		INIT_LIST_HEAD(&mnt->mnt_expire);
341 		INIT_LIST_HEAD(&mnt->mnt_share);
342 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
343 		INIT_LIST_HEAD(&mnt->mnt_slave);
344 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
345 		INIT_LIST_HEAD(&mnt->mnt_umounting);
346 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
347 		RB_CLEAR_NODE(&mnt->mnt_node);
348 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
349 	}
350 	return mnt;
351 
352 #ifdef CONFIG_SMP
353 out_free_devname:
354 	kfree_const(mnt->mnt_devname);
355 #endif
356 out_free_id:
357 	mnt_free_id(mnt);
358 out_free_cache:
359 	kmem_cache_free(mnt_cache, mnt);
360 	return NULL;
361 }
362 
363 /*
364  * Most r/o checks on a fs are for operations that take
365  * discrete amounts of time, like a write() or unlink().
366  * We must keep track of when those operations start
367  * (for permission checks) and when they end, so that
368  * we can determine when writes are able to occur to
369  * a filesystem.
370  */
371 /*
372  * __mnt_is_readonly: check whether a mount is read-only
373  * @mnt: the mount to check for its write status
374  *
375  * This shouldn't be used directly ouside of the VFS.
376  * It does not guarantee that the filesystem will stay
377  * r/w, just that it is right *now*.  This can not and
378  * should not be used in place of IS_RDONLY(inode).
379  * mnt_want/drop_write() will _keep_ the filesystem
380  * r/w.
381  */
382 bool __mnt_is_readonly(struct vfsmount *mnt)
383 {
384 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
385 }
386 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
387 
388 static inline void mnt_inc_writers(struct mount *mnt)
389 {
390 #ifdef CONFIG_SMP
391 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
392 #else
393 	mnt->mnt_writers++;
394 #endif
395 }
396 
397 static inline void mnt_dec_writers(struct mount *mnt)
398 {
399 #ifdef CONFIG_SMP
400 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
401 #else
402 	mnt->mnt_writers--;
403 #endif
404 }
405 
406 static unsigned int mnt_get_writers(struct mount *mnt)
407 {
408 #ifdef CONFIG_SMP
409 	unsigned int count = 0;
410 	int cpu;
411 
412 	for_each_possible_cpu(cpu) {
413 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
414 	}
415 
416 	return count;
417 #else
418 	return mnt->mnt_writers;
419 #endif
420 }
421 
422 static int mnt_is_readonly(struct vfsmount *mnt)
423 {
424 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
425 		return 1;
426 	/*
427 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
428 	 * making sure if we don't see s_readonly_remount set yet, we also will
429 	 * not see any superblock / mount flag changes done by remount.
430 	 * It also pairs with the barrier in sb_end_ro_state_change()
431 	 * assuring that if we see s_readonly_remount already cleared, we will
432 	 * see the values of superblock / mount flags updated by remount.
433 	 */
434 	smp_rmb();
435 	return __mnt_is_readonly(mnt);
436 }
437 
438 /*
439  * Most r/o & frozen checks on a fs are for operations that take discrete
440  * amounts of time, like a write() or unlink().  We must keep track of when
441  * those operations start (for permission checks) and when they end, so that we
442  * can determine when writes are able to occur to a filesystem.
443  */
444 /**
445  * mnt_get_write_access - get write access to a mount without freeze protection
446  * @m: the mount on which to take a write
447  *
448  * This tells the low-level filesystem that a write is about to be performed to
449  * it, and makes sure that writes are allowed (mnt it read-write) before
450  * returning success. This operation does not protect against filesystem being
451  * frozen. When the write operation is finished, mnt_put_write_access() must be
452  * called. This is effectively a refcount.
453  */
454 int mnt_get_write_access(struct vfsmount *m)
455 {
456 	struct mount *mnt = real_mount(m);
457 	int ret = 0;
458 
459 	preempt_disable();
460 	mnt_inc_writers(mnt);
461 	/*
462 	 * The store to mnt_inc_writers must be visible before we pass
463 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
464 	 * incremented count after it has set MNT_WRITE_HOLD.
465 	 */
466 	smp_mb();
467 	might_lock(&mount_lock.lock);
468 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
469 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
470 			cpu_relax();
471 		} else {
472 			/*
473 			 * This prevents priority inversion, if the task
474 			 * setting MNT_WRITE_HOLD got preempted on a remote
475 			 * CPU, and it prevents life lock if the task setting
476 			 * MNT_WRITE_HOLD has a lower priority and is bound to
477 			 * the same CPU as the task that is spinning here.
478 			 */
479 			preempt_enable();
480 			lock_mount_hash();
481 			unlock_mount_hash();
482 			preempt_disable();
483 		}
484 	}
485 	/*
486 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
487 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
488 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
489 	 * mnt_is_readonly() and bail in case we are racing with remount
490 	 * read-only.
491 	 */
492 	smp_rmb();
493 	if (mnt_is_readonly(m)) {
494 		mnt_dec_writers(mnt);
495 		ret = -EROFS;
496 	}
497 	preempt_enable();
498 
499 	return ret;
500 }
501 EXPORT_SYMBOL_GPL(mnt_get_write_access);
502 
503 /**
504  * mnt_want_write - get write access to a mount
505  * @m: the mount on which to take a write
506  *
507  * This tells the low-level filesystem that a write is about to be performed to
508  * it, and makes sure that writes are allowed (mount is read-write, filesystem
509  * is not frozen) before returning success.  When the write operation is
510  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
511  */
512 int mnt_want_write(struct vfsmount *m)
513 {
514 	int ret;
515 
516 	sb_start_write(m->mnt_sb);
517 	ret = mnt_get_write_access(m);
518 	if (ret)
519 		sb_end_write(m->mnt_sb);
520 	return ret;
521 }
522 EXPORT_SYMBOL_GPL(mnt_want_write);
523 
524 /**
525  * mnt_get_write_access_file - get write access to a file's mount
526  * @file: the file who's mount on which to take a write
527  *
528  * This is like mnt_get_write_access, but if @file is already open for write it
529  * skips incrementing mnt_writers (since the open file already has a reference)
530  * and instead only does the check for emergency r/o remounts.  This must be
531  * paired with mnt_put_write_access_file.
532  */
533 int mnt_get_write_access_file(struct file *file)
534 {
535 	if (file->f_mode & FMODE_WRITER) {
536 		/*
537 		 * Superblock may have become readonly while there are still
538 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
539 		 */
540 		if (__mnt_is_readonly(file->f_path.mnt))
541 			return -EROFS;
542 		return 0;
543 	}
544 	return mnt_get_write_access(file->f_path.mnt);
545 }
546 
547 /**
548  * mnt_want_write_file - get write access to a file's mount
549  * @file: the file who's mount on which to take a write
550  *
551  * This is like mnt_want_write, but if the file is already open for writing it
552  * skips incrementing mnt_writers (since the open file already has a reference)
553  * and instead only does the freeze protection and the check for emergency r/o
554  * remounts.  This must be paired with mnt_drop_write_file.
555  */
556 int mnt_want_write_file(struct file *file)
557 {
558 	int ret;
559 
560 	sb_start_write(file_inode(file)->i_sb);
561 	ret = mnt_get_write_access_file(file);
562 	if (ret)
563 		sb_end_write(file_inode(file)->i_sb);
564 	return ret;
565 }
566 EXPORT_SYMBOL_GPL(mnt_want_write_file);
567 
568 /**
569  * mnt_put_write_access - give up write access to a mount
570  * @mnt: the mount on which to give up write access
571  *
572  * Tells the low-level filesystem that we are done
573  * performing writes to it.  Must be matched with
574  * mnt_get_write_access() call above.
575  */
576 void mnt_put_write_access(struct vfsmount *mnt)
577 {
578 	preempt_disable();
579 	mnt_dec_writers(real_mount(mnt));
580 	preempt_enable();
581 }
582 EXPORT_SYMBOL_GPL(mnt_put_write_access);
583 
584 /**
585  * mnt_drop_write - give up write access to a mount
586  * @mnt: the mount on which to give up write access
587  *
588  * Tells the low-level filesystem that we are done performing writes to it and
589  * also allows filesystem to be frozen again.  Must be matched with
590  * mnt_want_write() call above.
591  */
592 void mnt_drop_write(struct vfsmount *mnt)
593 {
594 	mnt_put_write_access(mnt);
595 	sb_end_write(mnt->mnt_sb);
596 }
597 EXPORT_SYMBOL_GPL(mnt_drop_write);
598 
599 void mnt_put_write_access_file(struct file *file)
600 {
601 	if (!(file->f_mode & FMODE_WRITER))
602 		mnt_put_write_access(file->f_path.mnt);
603 }
604 
605 void mnt_drop_write_file(struct file *file)
606 {
607 	mnt_put_write_access_file(file);
608 	sb_end_write(file_inode(file)->i_sb);
609 }
610 EXPORT_SYMBOL(mnt_drop_write_file);
611 
612 /**
613  * mnt_hold_writers - prevent write access to the given mount
614  * @mnt: mnt to prevent write access to
615  *
616  * Prevents write access to @mnt if there are no active writers for @mnt.
617  * This function needs to be called and return successfully before changing
618  * properties of @mnt that need to remain stable for callers with write access
619  * to @mnt.
620  *
621  * After this functions has been called successfully callers must pair it with
622  * a call to mnt_unhold_writers() in order to stop preventing write access to
623  * @mnt.
624  *
625  * Context: This function expects lock_mount_hash() to be held serializing
626  *          setting MNT_WRITE_HOLD.
627  * Return: On success 0 is returned.
628  *	   On error, -EBUSY is returned.
629  */
630 static inline int mnt_hold_writers(struct mount *mnt)
631 {
632 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
633 	/*
634 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
635 	 * should be visible before we do.
636 	 */
637 	smp_mb();
638 
639 	/*
640 	 * With writers on hold, if this value is zero, then there are
641 	 * definitely no active writers (although held writers may subsequently
642 	 * increment the count, they'll have to wait, and decrement it after
643 	 * seeing MNT_READONLY).
644 	 *
645 	 * It is OK to have counter incremented on one CPU and decremented on
646 	 * another: the sum will add up correctly. The danger would be when we
647 	 * sum up each counter, if we read a counter before it is incremented,
648 	 * but then read another CPU's count which it has been subsequently
649 	 * decremented from -- we would see more decrements than we should.
650 	 * MNT_WRITE_HOLD protects against this scenario, because
651 	 * mnt_want_write first increments count, then smp_mb, then spins on
652 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
653 	 * we're counting up here.
654 	 */
655 	if (mnt_get_writers(mnt) > 0)
656 		return -EBUSY;
657 
658 	return 0;
659 }
660 
661 /**
662  * mnt_unhold_writers - stop preventing write access to the given mount
663  * @mnt: mnt to stop preventing write access to
664  *
665  * Stop preventing write access to @mnt allowing callers to gain write access
666  * to @mnt again.
667  *
668  * This function can only be called after a successful call to
669  * mnt_hold_writers().
670  *
671  * Context: This function expects lock_mount_hash() to be held.
672  */
673 static inline void mnt_unhold_writers(struct mount *mnt)
674 {
675 	/*
676 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
677 	 * that become unheld will see MNT_READONLY.
678 	 */
679 	smp_wmb();
680 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
681 }
682 
683 static int mnt_make_readonly(struct mount *mnt)
684 {
685 	int ret;
686 
687 	ret = mnt_hold_writers(mnt);
688 	if (!ret)
689 		mnt->mnt.mnt_flags |= MNT_READONLY;
690 	mnt_unhold_writers(mnt);
691 	return ret;
692 }
693 
694 int sb_prepare_remount_readonly(struct super_block *sb)
695 {
696 	struct mount *mnt;
697 	int err = 0;
698 
699 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
700 	if (atomic_long_read(&sb->s_remove_count))
701 		return -EBUSY;
702 
703 	lock_mount_hash();
704 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
705 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
706 			err = mnt_hold_writers(mnt);
707 			if (err)
708 				break;
709 		}
710 	}
711 	if (!err && atomic_long_read(&sb->s_remove_count))
712 		err = -EBUSY;
713 
714 	if (!err)
715 		sb_start_ro_state_change(sb);
716 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
717 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
718 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719 	}
720 	unlock_mount_hash();
721 
722 	return err;
723 }
724 
725 static void free_vfsmnt(struct mount *mnt)
726 {
727 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
728 	kfree_const(mnt->mnt_devname);
729 #ifdef CONFIG_SMP
730 	free_percpu(mnt->mnt_pcp);
731 #endif
732 	kmem_cache_free(mnt_cache, mnt);
733 }
734 
735 static void delayed_free_vfsmnt(struct rcu_head *head)
736 {
737 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
738 }
739 
740 /* call under rcu_read_lock */
741 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
742 {
743 	struct mount *mnt;
744 	if (read_seqretry(&mount_lock, seq))
745 		return 1;
746 	if (bastard == NULL)
747 		return 0;
748 	mnt = real_mount(bastard);
749 	mnt_add_count(mnt, 1);
750 	smp_mb();			// see mntput_no_expire()
751 	if (likely(!read_seqretry(&mount_lock, seq)))
752 		return 0;
753 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
754 		mnt_add_count(mnt, -1);
755 		return 1;
756 	}
757 	lock_mount_hash();
758 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
759 		mnt_add_count(mnt, -1);
760 		unlock_mount_hash();
761 		return 1;
762 	}
763 	unlock_mount_hash();
764 	/* caller will mntput() */
765 	return -1;
766 }
767 
768 /* call under rcu_read_lock */
769 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
770 {
771 	int res = __legitimize_mnt(bastard, seq);
772 	if (likely(!res))
773 		return true;
774 	if (unlikely(res < 0)) {
775 		rcu_read_unlock();
776 		mntput(bastard);
777 		rcu_read_lock();
778 	}
779 	return false;
780 }
781 
782 /**
783  * __lookup_mnt - find first child mount
784  * @mnt:	parent mount
785  * @dentry:	mountpoint
786  *
787  * If @mnt has a child mount @c mounted @dentry find and return it.
788  *
789  * Note that the child mount @c need not be unique. There are cases
790  * where shadow mounts are created. For example, during mount
791  * propagation when a source mount @mnt whose root got overmounted by a
792  * mount @o after path lookup but before @namespace_sem could be
793  * acquired gets copied and propagated. So @mnt gets copied including
794  * @o. When @mnt is propagated to a destination mount @d that already
795  * has another mount @n mounted at the same mountpoint then the source
796  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
797  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
798  * on @dentry.
799  *
800  * Return: The first child of @mnt mounted @dentry or NULL.
801  */
802 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
803 {
804 	struct hlist_head *head = m_hash(mnt, dentry);
805 	struct mount *p;
806 
807 	hlist_for_each_entry_rcu(p, head, mnt_hash)
808 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
809 			return p;
810 	return NULL;
811 }
812 
813 /*
814  * lookup_mnt - Return the first child mount mounted at path
815  *
816  * "First" means first mounted chronologically.  If you create the
817  * following mounts:
818  *
819  * mount /dev/sda1 /mnt
820  * mount /dev/sda2 /mnt
821  * mount /dev/sda3 /mnt
822  *
823  * Then lookup_mnt() on the base /mnt dentry in the root mount will
824  * return successively the root dentry and vfsmount of /dev/sda1, then
825  * /dev/sda2, then /dev/sda3, then NULL.
826  *
827  * lookup_mnt takes a reference to the found vfsmount.
828  */
829 struct vfsmount *lookup_mnt(const struct path *path)
830 {
831 	struct mount *child_mnt;
832 	struct vfsmount *m;
833 	unsigned seq;
834 
835 	rcu_read_lock();
836 	do {
837 		seq = read_seqbegin(&mount_lock);
838 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
839 		m = child_mnt ? &child_mnt->mnt : NULL;
840 	} while (!legitimize_mnt(m, seq));
841 	rcu_read_unlock();
842 	return m;
843 }
844 
845 /*
846  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
847  *                         current mount namespace.
848  *
849  * The common case is dentries are not mountpoints at all and that
850  * test is handled inline.  For the slow case when we are actually
851  * dealing with a mountpoint of some kind, walk through all of the
852  * mounts in the current mount namespace and test to see if the dentry
853  * is a mountpoint.
854  *
855  * The mount_hashtable is not usable in the context because we
856  * need to identify all mounts that may be in the current mount
857  * namespace not just a mount that happens to have some specified
858  * parent mount.
859  */
860 bool __is_local_mountpoint(struct dentry *dentry)
861 {
862 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
863 	struct mount *mnt, *n;
864 	bool is_covered = false;
865 
866 	down_read(&namespace_sem);
867 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
868 		is_covered = (mnt->mnt_mountpoint == dentry);
869 		if (is_covered)
870 			break;
871 	}
872 	up_read(&namespace_sem);
873 
874 	return is_covered;
875 }
876 
877 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
878 {
879 	struct hlist_head *chain = mp_hash(dentry);
880 	struct mountpoint *mp;
881 
882 	hlist_for_each_entry(mp, chain, m_hash) {
883 		if (mp->m_dentry == dentry) {
884 			mp->m_count++;
885 			return mp;
886 		}
887 	}
888 	return NULL;
889 }
890 
891 static struct mountpoint *get_mountpoint(struct dentry *dentry)
892 {
893 	struct mountpoint *mp, *new = NULL;
894 	int ret;
895 
896 	if (d_mountpoint(dentry)) {
897 		/* might be worth a WARN_ON() */
898 		if (d_unlinked(dentry))
899 			return ERR_PTR(-ENOENT);
900 mountpoint:
901 		read_seqlock_excl(&mount_lock);
902 		mp = lookup_mountpoint(dentry);
903 		read_sequnlock_excl(&mount_lock);
904 		if (mp)
905 			goto done;
906 	}
907 
908 	if (!new)
909 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
910 	if (!new)
911 		return ERR_PTR(-ENOMEM);
912 
913 
914 	/* Exactly one processes may set d_mounted */
915 	ret = d_set_mounted(dentry);
916 
917 	/* Someone else set d_mounted? */
918 	if (ret == -EBUSY)
919 		goto mountpoint;
920 
921 	/* The dentry is not available as a mountpoint? */
922 	mp = ERR_PTR(ret);
923 	if (ret)
924 		goto done;
925 
926 	/* Add the new mountpoint to the hash table */
927 	read_seqlock_excl(&mount_lock);
928 	new->m_dentry = dget(dentry);
929 	new->m_count = 1;
930 	hlist_add_head(&new->m_hash, mp_hash(dentry));
931 	INIT_HLIST_HEAD(&new->m_list);
932 	read_sequnlock_excl(&mount_lock);
933 
934 	mp = new;
935 	new = NULL;
936 done:
937 	kfree(new);
938 	return mp;
939 }
940 
941 /*
942  * vfsmount lock must be held.  Additionally, the caller is responsible
943  * for serializing calls for given disposal list.
944  */
945 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
946 {
947 	if (!--mp->m_count) {
948 		struct dentry *dentry = mp->m_dentry;
949 		BUG_ON(!hlist_empty(&mp->m_list));
950 		spin_lock(&dentry->d_lock);
951 		dentry->d_flags &= ~DCACHE_MOUNTED;
952 		spin_unlock(&dentry->d_lock);
953 		dput_to_list(dentry, list);
954 		hlist_del(&mp->m_hash);
955 		kfree(mp);
956 	}
957 }
958 
959 /* called with namespace_lock and vfsmount lock */
960 static void put_mountpoint(struct mountpoint *mp)
961 {
962 	__put_mountpoint(mp, &ex_mountpoints);
963 }
964 
965 static inline int check_mnt(struct mount *mnt)
966 {
967 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
968 }
969 
970 /*
971  * vfsmount lock must be held for write
972  */
973 static void touch_mnt_namespace(struct mnt_namespace *ns)
974 {
975 	if (ns) {
976 		ns->event = ++event;
977 		wake_up_interruptible(&ns->poll);
978 	}
979 }
980 
981 /*
982  * vfsmount lock must be held for write
983  */
984 static void __touch_mnt_namespace(struct mnt_namespace *ns)
985 {
986 	if (ns && ns->event != event) {
987 		ns->event = event;
988 		wake_up_interruptible(&ns->poll);
989 	}
990 }
991 
992 /*
993  * vfsmount lock must be held for write
994  */
995 static struct mountpoint *unhash_mnt(struct mount *mnt)
996 {
997 	struct mountpoint *mp;
998 	mnt->mnt_parent = mnt;
999 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1000 	list_del_init(&mnt->mnt_child);
1001 	hlist_del_init_rcu(&mnt->mnt_hash);
1002 	hlist_del_init(&mnt->mnt_mp_list);
1003 	mp = mnt->mnt_mp;
1004 	mnt->mnt_mp = NULL;
1005 	return mp;
1006 }
1007 
1008 /*
1009  * vfsmount lock must be held for write
1010  */
1011 static void umount_mnt(struct mount *mnt)
1012 {
1013 	put_mountpoint(unhash_mnt(mnt));
1014 }
1015 
1016 /*
1017  * vfsmount lock must be held for write
1018  */
1019 void mnt_set_mountpoint(struct mount *mnt,
1020 			struct mountpoint *mp,
1021 			struct mount *child_mnt)
1022 {
1023 	mp->m_count++;
1024 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
1025 	child_mnt->mnt_mountpoint = mp->m_dentry;
1026 	child_mnt->mnt_parent = mnt;
1027 	child_mnt->mnt_mp = mp;
1028 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1029 }
1030 
1031 /**
1032  * mnt_set_mountpoint_beneath - mount a mount beneath another one
1033  *
1034  * @new_parent: the source mount
1035  * @top_mnt:    the mount beneath which @new_parent is mounted
1036  * @new_mp:     the new mountpoint of @top_mnt on @new_parent
1037  *
1038  * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1039  * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1040  * @new_mp. And mount @new_parent on the old parent and old
1041  * mountpoint of @top_mnt.
1042  *
1043  * Context: This function expects namespace_lock() and lock_mount_hash()
1044  *          to have been acquired in that order.
1045  */
1046 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1047 				       struct mount *top_mnt,
1048 				       struct mountpoint *new_mp)
1049 {
1050 	struct mount *old_top_parent = top_mnt->mnt_parent;
1051 	struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1052 
1053 	mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1054 	mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1055 }
1056 
1057 
1058 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1059 {
1060 	hlist_add_head_rcu(&mnt->mnt_hash,
1061 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1062 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1063 }
1064 
1065 /**
1066  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1067  *              list of child mounts
1068  * @parent:  the parent
1069  * @mnt:     the new mount
1070  * @mp:      the new mountpoint
1071  * @beneath: whether to mount @mnt beneath or on top of @parent
1072  *
1073  * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1074  * to @parent's child mount list and to @mount_hashtable.
1075  *
1076  * If @beneath is true, remove @mnt from its current parent and
1077  * mountpoint and mount it on @mp on @parent, and mount @parent on the
1078  * old parent and old mountpoint of @mnt. Finally, attach @parent to
1079  * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1080  *
1081  * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1082  * to the correct parent.
1083  *
1084  * Context: This function expects namespace_lock() and lock_mount_hash()
1085  *          to have been acquired in that order.
1086  */
1087 static void attach_mnt(struct mount *mnt, struct mount *parent,
1088 		       struct mountpoint *mp, bool beneath)
1089 {
1090 	if (beneath)
1091 		mnt_set_mountpoint_beneath(mnt, parent, mp);
1092 	else
1093 		mnt_set_mountpoint(parent, mp, mnt);
1094 	/*
1095 	 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1096 	 * beneath @parent then @mnt will need to be attached to
1097 	 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1098 	 * isn't the same mount as @parent.
1099 	 */
1100 	__attach_mnt(mnt, mnt->mnt_parent);
1101 }
1102 
1103 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1104 {
1105 	struct mountpoint *old_mp = mnt->mnt_mp;
1106 	struct mount *old_parent = mnt->mnt_parent;
1107 
1108 	list_del_init(&mnt->mnt_child);
1109 	hlist_del_init(&mnt->mnt_mp_list);
1110 	hlist_del_init_rcu(&mnt->mnt_hash);
1111 
1112 	attach_mnt(mnt, parent, mp, false);
1113 
1114 	put_mountpoint(old_mp);
1115 	mnt_add_count(old_parent, -1);
1116 }
1117 
1118 static inline struct mount *node_to_mount(struct rb_node *node)
1119 {
1120 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1121 }
1122 
1123 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1124 {
1125 	struct rb_node **link = &ns->mounts.rb_node;
1126 	struct rb_node *parent = NULL;
1127 
1128 	WARN_ON(mnt_ns_attached(mnt));
1129 	mnt->mnt_ns = ns;
1130 	while (*link) {
1131 		parent = *link;
1132 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1133 			link = &parent->rb_left;
1134 		else
1135 			link = &parent->rb_right;
1136 	}
1137 	rb_link_node(&mnt->mnt_node, parent, link);
1138 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1139 }
1140 
1141 /*
1142  * vfsmount lock must be held for write
1143  */
1144 static void commit_tree(struct mount *mnt)
1145 {
1146 	struct mount *parent = mnt->mnt_parent;
1147 	struct mount *m;
1148 	LIST_HEAD(head);
1149 	struct mnt_namespace *n = parent->mnt_ns;
1150 
1151 	BUG_ON(parent == mnt);
1152 
1153 	list_add_tail(&head, &mnt->mnt_list);
1154 	while (!list_empty(&head)) {
1155 		m = list_first_entry(&head, typeof(*m), mnt_list);
1156 		list_del(&m->mnt_list);
1157 
1158 		mnt_add_to_ns(n, m);
1159 	}
1160 	n->nr_mounts += n->pending_mounts;
1161 	n->pending_mounts = 0;
1162 
1163 	__attach_mnt(mnt, parent);
1164 	touch_mnt_namespace(n);
1165 }
1166 
1167 static struct mount *next_mnt(struct mount *p, struct mount *root)
1168 {
1169 	struct list_head *next = p->mnt_mounts.next;
1170 	if (next == &p->mnt_mounts) {
1171 		while (1) {
1172 			if (p == root)
1173 				return NULL;
1174 			next = p->mnt_child.next;
1175 			if (next != &p->mnt_parent->mnt_mounts)
1176 				break;
1177 			p = p->mnt_parent;
1178 		}
1179 	}
1180 	return list_entry(next, struct mount, mnt_child);
1181 }
1182 
1183 static struct mount *skip_mnt_tree(struct mount *p)
1184 {
1185 	struct list_head *prev = p->mnt_mounts.prev;
1186 	while (prev != &p->mnt_mounts) {
1187 		p = list_entry(prev, struct mount, mnt_child);
1188 		prev = p->mnt_mounts.prev;
1189 	}
1190 	return p;
1191 }
1192 
1193 /**
1194  * vfs_create_mount - Create a mount for a configured superblock
1195  * @fc: The configuration context with the superblock attached
1196  *
1197  * Create a mount to an already configured superblock.  If necessary, the
1198  * caller should invoke vfs_get_tree() before calling this.
1199  *
1200  * Note that this does not attach the mount to anything.
1201  */
1202 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1203 {
1204 	struct mount *mnt;
1205 
1206 	if (!fc->root)
1207 		return ERR_PTR(-EINVAL);
1208 
1209 	mnt = alloc_vfsmnt(fc->source ?: "none");
1210 	if (!mnt)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	if (fc->sb_flags & SB_KERNMOUNT)
1214 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1215 
1216 	atomic_inc(&fc->root->d_sb->s_active);
1217 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1218 	mnt->mnt.mnt_root	= dget(fc->root);
1219 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1220 	mnt->mnt_parent		= mnt;
1221 
1222 	lock_mount_hash();
1223 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1224 	unlock_mount_hash();
1225 	return &mnt->mnt;
1226 }
1227 EXPORT_SYMBOL(vfs_create_mount);
1228 
1229 struct vfsmount *fc_mount(struct fs_context *fc)
1230 {
1231 	int err = vfs_get_tree(fc);
1232 	if (!err) {
1233 		up_write(&fc->root->d_sb->s_umount);
1234 		return vfs_create_mount(fc);
1235 	}
1236 	return ERR_PTR(err);
1237 }
1238 EXPORT_SYMBOL(fc_mount);
1239 
1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1241 				int flags, const char *name,
1242 				void *data)
1243 {
1244 	struct fs_context *fc;
1245 	struct vfsmount *mnt;
1246 	int ret = 0;
1247 
1248 	if (!type)
1249 		return ERR_PTR(-EINVAL);
1250 
1251 	fc = fs_context_for_mount(type, flags);
1252 	if (IS_ERR(fc))
1253 		return ERR_CAST(fc);
1254 
1255 	if (name)
1256 		ret = vfs_parse_fs_string(fc, "source",
1257 					  name, strlen(name));
1258 	if (!ret)
1259 		ret = parse_monolithic_mount_data(fc, data);
1260 	if (!ret)
1261 		mnt = fc_mount(fc);
1262 	else
1263 		mnt = ERR_PTR(ret);
1264 
1265 	put_fs_context(fc);
1266 	return mnt;
1267 }
1268 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1269 
1270 struct vfsmount *
1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1272 	     const char *name, void *data)
1273 {
1274 	/* Until it is worked out how to pass the user namespace
1275 	 * through from the parent mount to the submount don't support
1276 	 * unprivileged mounts with submounts.
1277 	 */
1278 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1279 		return ERR_PTR(-EPERM);
1280 
1281 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1282 }
1283 EXPORT_SYMBOL_GPL(vfs_submount);
1284 
1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1286 					int flag)
1287 {
1288 	struct super_block *sb = old->mnt.mnt_sb;
1289 	struct mount *mnt;
1290 	int err;
1291 
1292 	mnt = alloc_vfsmnt(old->mnt_devname);
1293 	if (!mnt)
1294 		return ERR_PTR(-ENOMEM);
1295 
1296 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1297 		mnt->mnt_group_id = 0; /* not a peer of original */
1298 	else
1299 		mnt->mnt_group_id = old->mnt_group_id;
1300 
1301 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1302 		err = mnt_alloc_group_id(mnt);
1303 		if (err)
1304 			goto out_free;
1305 	}
1306 
1307 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1308 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1309 
1310 	atomic_inc(&sb->s_active);
1311 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1312 
1313 	mnt->mnt.mnt_sb = sb;
1314 	mnt->mnt.mnt_root = dget(root);
1315 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1316 	mnt->mnt_parent = mnt;
1317 	lock_mount_hash();
1318 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1319 	unlock_mount_hash();
1320 
1321 	if ((flag & CL_SLAVE) ||
1322 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1323 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1324 		mnt->mnt_master = old;
1325 		CLEAR_MNT_SHARED(mnt);
1326 	} else if (!(flag & CL_PRIVATE)) {
1327 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1328 			list_add(&mnt->mnt_share, &old->mnt_share);
1329 		if (IS_MNT_SLAVE(old))
1330 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1331 		mnt->mnt_master = old->mnt_master;
1332 	} else {
1333 		CLEAR_MNT_SHARED(mnt);
1334 	}
1335 	if (flag & CL_MAKE_SHARED)
1336 		set_mnt_shared(mnt);
1337 
1338 	/* stick the duplicate mount on the same expiry list
1339 	 * as the original if that was on one */
1340 	if (flag & CL_EXPIRE) {
1341 		if (!list_empty(&old->mnt_expire))
1342 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1343 	}
1344 
1345 	return mnt;
1346 
1347  out_free:
1348 	mnt_free_id(mnt);
1349 	free_vfsmnt(mnt);
1350 	return ERR_PTR(err);
1351 }
1352 
1353 static void cleanup_mnt(struct mount *mnt)
1354 {
1355 	struct hlist_node *p;
1356 	struct mount *m;
1357 	/*
1358 	 * The warning here probably indicates that somebody messed
1359 	 * up a mnt_want/drop_write() pair.  If this happens, the
1360 	 * filesystem was probably unable to make r/w->r/o transitions.
1361 	 * The locking used to deal with mnt_count decrement provides barriers,
1362 	 * so mnt_get_writers() below is safe.
1363 	 */
1364 	WARN_ON(mnt_get_writers(mnt));
1365 	if (unlikely(mnt->mnt_pins.first))
1366 		mnt_pin_kill(mnt);
1367 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1368 		hlist_del(&m->mnt_umount);
1369 		mntput(&m->mnt);
1370 	}
1371 	fsnotify_vfsmount_delete(&mnt->mnt);
1372 	dput(mnt->mnt.mnt_root);
1373 	deactivate_super(mnt->mnt.mnt_sb);
1374 	mnt_free_id(mnt);
1375 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1376 }
1377 
1378 static void __cleanup_mnt(struct rcu_head *head)
1379 {
1380 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1381 }
1382 
1383 static LLIST_HEAD(delayed_mntput_list);
1384 static void delayed_mntput(struct work_struct *unused)
1385 {
1386 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1387 	struct mount *m, *t;
1388 
1389 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1390 		cleanup_mnt(m);
1391 }
1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1393 
1394 static void mntput_no_expire(struct mount *mnt)
1395 {
1396 	LIST_HEAD(list);
1397 	int count;
1398 
1399 	rcu_read_lock();
1400 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1401 		/*
1402 		 * Since we don't do lock_mount_hash() here,
1403 		 * ->mnt_ns can change under us.  However, if it's
1404 		 * non-NULL, then there's a reference that won't
1405 		 * be dropped until after an RCU delay done after
1406 		 * turning ->mnt_ns NULL.  So if we observe it
1407 		 * non-NULL under rcu_read_lock(), the reference
1408 		 * we are dropping is not the final one.
1409 		 */
1410 		mnt_add_count(mnt, -1);
1411 		rcu_read_unlock();
1412 		return;
1413 	}
1414 	lock_mount_hash();
1415 	/*
1416 	 * make sure that if __legitimize_mnt() has not seen us grab
1417 	 * mount_lock, we'll see their refcount increment here.
1418 	 */
1419 	smp_mb();
1420 	mnt_add_count(mnt, -1);
1421 	count = mnt_get_count(mnt);
1422 	if (count != 0) {
1423 		WARN_ON(count < 0);
1424 		rcu_read_unlock();
1425 		unlock_mount_hash();
1426 		return;
1427 	}
1428 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1429 		rcu_read_unlock();
1430 		unlock_mount_hash();
1431 		return;
1432 	}
1433 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1434 	rcu_read_unlock();
1435 
1436 	list_del(&mnt->mnt_instance);
1437 
1438 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1439 		struct mount *p, *tmp;
1440 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1441 			__put_mountpoint(unhash_mnt(p), &list);
1442 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1443 		}
1444 	}
1445 	unlock_mount_hash();
1446 	shrink_dentry_list(&list);
1447 
1448 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1449 		struct task_struct *task = current;
1450 		if (likely(!(task->flags & PF_KTHREAD))) {
1451 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1452 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1453 				return;
1454 		}
1455 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1456 			schedule_delayed_work(&delayed_mntput_work, 1);
1457 		return;
1458 	}
1459 	cleanup_mnt(mnt);
1460 }
1461 
1462 void mntput(struct vfsmount *mnt)
1463 {
1464 	if (mnt) {
1465 		struct mount *m = real_mount(mnt);
1466 		/* avoid cacheline pingpong */
1467 		if (unlikely(m->mnt_expiry_mark))
1468 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1469 		mntput_no_expire(m);
1470 	}
1471 }
1472 EXPORT_SYMBOL(mntput);
1473 
1474 struct vfsmount *mntget(struct vfsmount *mnt)
1475 {
1476 	if (mnt)
1477 		mnt_add_count(real_mount(mnt), 1);
1478 	return mnt;
1479 }
1480 EXPORT_SYMBOL(mntget);
1481 
1482 /*
1483  * Make a mount point inaccessible to new lookups.
1484  * Because there may still be current users, the caller MUST WAIT
1485  * for an RCU grace period before destroying the mount point.
1486  */
1487 void mnt_make_shortterm(struct vfsmount *mnt)
1488 {
1489 	if (mnt)
1490 		real_mount(mnt)->mnt_ns = NULL;
1491 }
1492 
1493 /**
1494  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1495  * @path: path to check
1496  *
1497  *  d_mountpoint() can only be used reliably to establish if a dentry is
1498  *  not mounted in any namespace and that common case is handled inline.
1499  *  d_mountpoint() isn't aware of the possibility there may be multiple
1500  *  mounts using a given dentry in a different namespace. This function
1501  *  checks if the passed in path is a mountpoint rather than the dentry
1502  *  alone.
1503  */
1504 bool path_is_mountpoint(const struct path *path)
1505 {
1506 	unsigned seq;
1507 	bool res;
1508 
1509 	if (!d_mountpoint(path->dentry))
1510 		return false;
1511 
1512 	rcu_read_lock();
1513 	do {
1514 		seq = read_seqbegin(&mount_lock);
1515 		res = __path_is_mountpoint(path);
1516 	} while (read_seqretry(&mount_lock, seq));
1517 	rcu_read_unlock();
1518 
1519 	return res;
1520 }
1521 EXPORT_SYMBOL(path_is_mountpoint);
1522 
1523 struct vfsmount *mnt_clone_internal(const struct path *path)
1524 {
1525 	struct mount *p;
1526 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1527 	if (IS_ERR(p))
1528 		return ERR_CAST(p);
1529 	p->mnt.mnt_flags |= MNT_INTERNAL;
1530 	return &p->mnt;
1531 }
1532 
1533 /*
1534  * Returns the mount which either has the specified mnt_id, or has the next
1535  * smallest id afer the specified one.
1536  */
1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1538 {
1539 	struct rb_node *node = ns->mounts.rb_node;
1540 	struct mount *ret = NULL;
1541 
1542 	while (node) {
1543 		struct mount *m = node_to_mount(node);
1544 
1545 		if (mnt_id <= m->mnt_id_unique) {
1546 			ret = node_to_mount(node);
1547 			if (mnt_id == m->mnt_id_unique)
1548 				break;
1549 			node = node->rb_left;
1550 		} else {
1551 			node = node->rb_right;
1552 		}
1553 	}
1554 	return ret;
1555 }
1556 
1557 /*
1558  * Returns the mount which either has the specified mnt_id, or has the next
1559  * greater id before the specified one.
1560  */
1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1562 {
1563 	struct rb_node *node = ns->mounts.rb_node;
1564 	struct mount *ret = NULL;
1565 
1566 	while (node) {
1567 		struct mount *m = node_to_mount(node);
1568 
1569 		if (mnt_id >= m->mnt_id_unique) {
1570 			ret = node_to_mount(node);
1571 			if (mnt_id == m->mnt_id_unique)
1572 				break;
1573 			node = node->rb_right;
1574 		} else {
1575 			node = node->rb_left;
1576 		}
1577 	}
1578 	return ret;
1579 }
1580 
1581 #ifdef CONFIG_PROC_FS
1582 
1583 /* iterator; we want it to have access to namespace_sem, thus here... */
1584 static void *m_start(struct seq_file *m, loff_t *pos)
1585 {
1586 	struct proc_mounts *p = m->private;
1587 
1588 	down_read(&namespace_sem);
1589 
1590 	return mnt_find_id_at(p->ns, *pos);
1591 }
1592 
1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1594 {
1595 	struct mount *next = NULL, *mnt = v;
1596 	struct rb_node *node = rb_next(&mnt->mnt_node);
1597 
1598 	++*pos;
1599 	if (node) {
1600 		next = node_to_mount(node);
1601 		*pos = next->mnt_id_unique;
1602 	}
1603 	return next;
1604 }
1605 
1606 static void m_stop(struct seq_file *m, void *v)
1607 {
1608 	up_read(&namespace_sem);
1609 }
1610 
1611 static int m_show(struct seq_file *m, void *v)
1612 {
1613 	struct proc_mounts *p = m->private;
1614 	struct mount *r = v;
1615 	return p->show(m, &r->mnt);
1616 }
1617 
1618 const struct seq_operations mounts_op = {
1619 	.start	= m_start,
1620 	.next	= m_next,
1621 	.stop	= m_stop,
1622 	.show	= m_show,
1623 };
1624 
1625 #endif  /* CONFIG_PROC_FS */
1626 
1627 /**
1628  * may_umount_tree - check if a mount tree is busy
1629  * @m: root of mount tree
1630  *
1631  * This is called to check if a tree of mounts has any
1632  * open files, pwds, chroots or sub mounts that are
1633  * busy.
1634  */
1635 int may_umount_tree(struct vfsmount *m)
1636 {
1637 	struct mount *mnt = real_mount(m);
1638 	int actual_refs = 0;
1639 	int minimum_refs = 0;
1640 	struct mount *p;
1641 	BUG_ON(!m);
1642 
1643 	/* write lock needed for mnt_get_count */
1644 	lock_mount_hash();
1645 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1646 		actual_refs += mnt_get_count(p);
1647 		minimum_refs += 2;
1648 	}
1649 	unlock_mount_hash();
1650 
1651 	if (actual_refs > minimum_refs)
1652 		return 0;
1653 
1654 	return 1;
1655 }
1656 
1657 EXPORT_SYMBOL(may_umount_tree);
1658 
1659 /**
1660  * may_umount - check if a mount point is busy
1661  * @mnt: root of mount
1662  *
1663  * This is called to check if a mount point has any
1664  * open files, pwds, chroots or sub mounts. If the
1665  * mount has sub mounts this will return busy
1666  * regardless of whether the sub mounts are busy.
1667  *
1668  * Doesn't take quota and stuff into account. IOW, in some cases it will
1669  * give false negatives. The main reason why it's here is that we need
1670  * a non-destructive way to look for easily umountable filesystems.
1671  */
1672 int may_umount(struct vfsmount *mnt)
1673 {
1674 	int ret = 1;
1675 	down_read(&namespace_sem);
1676 	lock_mount_hash();
1677 	if (propagate_mount_busy(real_mount(mnt), 2))
1678 		ret = 0;
1679 	unlock_mount_hash();
1680 	up_read(&namespace_sem);
1681 	return ret;
1682 }
1683 
1684 EXPORT_SYMBOL(may_umount);
1685 
1686 static void namespace_unlock(void)
1687 {
1688 	struct hlist_head head;
1689 	struct hlist_node *p;
1690 	struct mount *m;
1691 	LIST_HEAD(list);
1692 
1693 	hlist_move_list(&unmounted, &head);
1694 	list_splice_init(&ex_mountpoints, &list);
1695 
1696 	up_write(&namespace_sem);
1697 
1698 	shrink_dentry_list(&list);
1699 
1700 	if (likely(hlist_empty(&head)))
1701 		return;
1702 
1703 	synchronize_rcu_expedited();
1704 
1705 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1706 		hlist_del(&m->mnt_umount);
1707 		mntput(&m->mnt);
1708 	}
1709 }
1710 
1711 static inline void namespace_lock(void)
1712 {
1713 	down_write(&namespace_sem);
1714 }
1715 
1716 enum umount_tree_flags {
1717 	UMOUNT_SYNC = 1,
1718 	UMOUNT_PROPAGATE = 2,
1719 	UMOUNT_CONNECTED = 4,
1720 };
1721 
1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1723 {
1724 	/* Leaving mounts connected is only valid for lazy umounts */
1725 	if (how & UMOUNT_SYNC)
1726 		return true;
1727 
1728 	/* A mount without a parent has nothing to be connected to */
1729 	if (!mnt_has_parent(mnt))
1730 		return true;
1731 
1732 	/* Because the reference counting rules change when mounts are
1733 	 * unmounted and connected, umounted mounts may not be
1734 	 * connected to mounted mounts.
1735 	 */
1736 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1737 		return true;
1738 
1739 	/* Has it been requested that the mount remain connected? */
1740 	if (how & UMOUNT_CONNECTED)
1741 		return false;
1742 
1743 	/* Is the mount locked such that it needs to remain connected? */
1744 	if (IS_MNT_LOCKED(mnt))
1745 		return false;
1746 
1747 	/* By default disconnect the mount */
1748 	return true;
1749 }
1750 
1751 /*
1752  * mount_lock must be held
1753  * namespace_sem must be held for write
1754  */
1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1756 {
1757 	LIST_HEAD(tmp_list);
1758 	struct mount *p;
1759 
1760 	if (how & UMOUNT_PROPAGATE)
1761 		propagate_mount_unlock(mnt);
1762 
1763 	/* Gather the mounts to umount */
1764 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1765 		p->mnt.mnt_flags |= MNT_UMOUNT;
1766 		if (mnt_ns_attached(p))
1767 			move_from_ns(p, &tmp_list);
1768 		else
1769 			list_move(&p->mnt_list, &tmp_list);
1770 	}
1771 
1772 	/* Hide the mounts from mnt_mounts */
1773 	list_for_each_entry(p, &tmp_list, mnt_list) {
1774 		list_del_init(&p->mnt_child);
1775 	}
1776 
1777 	/* Add propagated mounts to the tmp_list */
1778 	if (how & UMOUNT_PROPAGATE)
1779 		propagate_umount(&tmp_list);
1780 
1781 	while (!list_empty(&tmp_list)) {
1782 		struct mnt_namespace *ns;
1783 		bool disconnect;
1784 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1785 		list_del_init(&p->mnt_expire);
1786 		list_del_init(&p->mnt_list);
1787 		ns = p->mnt_ns;
1788 		if (ns) {
1789 			ns->nr_mounts--;
1790 			__touch_mnt_namespace(ns);
1791 		}
1792 		p->mnt_ns = NULL;
1793 		if (how & UMOUNT_SYNC)
1794 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1795 
1796 		disconnect = disconnect_mount(p, how);
1797 		if (mnt_has_parent(p)) {
1798 			mnt_add_count(p->mnt_parent, -1);
1799 			if (!disconnect) {
1800 				/* Don't forget about p */
1801 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1802 			} else {
1803 				umount_mnt(p);
1804 			}
1805 		}
1806 		change_mnt_propagation(p, MS_PRIVATE);
1807 		if (disconnect)
1808 			hlist_add_head(&p->mnt_umount, &unmounted);
1809 	}
1810 }
1811 
1812 static void shrink_submounts(struct mount *mnt);
1813 
1814 static int do_umount_root(struct super_block *sb)
1815 {
1816 	int ret = 0;
1817 
1818 	down_write(&sb->s_umount);
1819 	if (!sb_rdonly(sb)) {
1820 		struct fs_context *fc;
1821 
1822 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1823 						SB_RDONLY);
1824 		if (IS_ERR(fc)) {
1825 			ret = PTR_ERR(fc);
1826 		} else {
1827 			ret = parse_monolithic_mount_data(fc, NULL);
1828 			if (!ret)
1829 				ret = reconfigure_super(fc);
1830 			put_fs_context(fc);
1831 		}
1832 	}
1833 	up_write(&sb->s_umount);
1834 	return ret;
1835 }
1836 
1837 static int do_umount(struct mount *mnt, int flags)
1838 {
1839 	struct super_block *sb = mnt->mnt.mnt_sb;
1840 	int retval;
1841 
1842 	retval = security_sb_umount(&mnt->mnt, flags);
1843 	if (retval)
1844 		return retval;
1845 
1846 	/*
1847 	 * Allow userspace to request a mountpoint be expired rather than
1848 	 * unmounting unconditionally. Unmount only happens if:
1849 	 *  (1) the mark is already set (the mark is cleared by mntput())
1850 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1851 	 */
1852 	if (flags & MNT_EXPIRE) {
1853 		if (&mnt->mnt == current->fs->root.mnt ||
1854 		    flags & (MNT_FORCE | MNT_DETACH))
1855 			return -EINVAL;
1856 
1857 		/*
1858 		 * probably don't strictly need the lock here if we examined
1859 		 * all race cases, but it's a slowpath.
1860 		 */
1861 		lock_mount_hash();
1862 		if (mnt_get_count(mnt) != 2) {
1863 			unlock_mount_hash();
1864 			return -EBUSY;
1865 		}
1866 		unlock_mount_hash();
1867 
1868 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1869 			return -EAGAIN;
1870 	}
1871 
1872 	/*
1873 	 * If we may have to abort operations to get out of this
1874 	 * mount, and they will themselves hold resources we must
1875 	 * allow the fs to do things. In the Unix tradition of
1876 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1877 	 * might fail to complete on the first run through as other tasks
1878 	 * must return, and the like. Thats for the mount program to worry
1879 	 * about for the moment.
1880 	 */
1881 
1882 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1883 		sb->s_op->umount_begin(sb);
1884 	}
1885 
1886 	/*
1887 	 * No sense to grab the lock for this test, but test itself looks
1888 	 * somewhat bogus. Suggestions for better replacement?
1889 	 * Ho-hum... In principle, we might treat that as umount + switch
1890 	 * to rootfs. GC would eventually take care of the old vfsmount.
1891 	 * Actually it makes sense, especially if rootfs would contain a
1892 	 * /reboot - static binary that would close all descriptors and
1893 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1894 	 */
1895 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1896 		/*
1897 		 * Special case for "unmounting" root ...
1898 		 * we just try to remount it readonly.
1899 		 */
1900 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1901 			return -EPERM;
1902 		return do_umount_root(sb);
1903 	}
1904 
1905 	namespace_lock();
1906 	lock_mount_hash();
1907 
1908 	/* Recheck MNT_LOCKED with the locks held */
1909 	retval = -EINVAL;
1910 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1911 		goto out;
1912 
1913 	event++;
1914 	if (flags & MNT_DETACH) {
1915 		if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1916 			umount_tree(mnt, UMOUNT_PROPAGATE);
1917 		retval = 0;
1918 	} else {
1919 		shrink_submounts(mnt);
1920 		retval = -EBUSY;
1921 		if (!propagate_mount_busy(mnt, 2)) {
1922 			if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
1923 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1924 			retval = 0;
1925 		}
1926 	}
1927 out:
1928 	unlock_mount_hash();
1929 	namespace_unlock();
1930 	return retval;
1931 }
1932 
1933 /*
1934  * __detach_mounts - lazily unmount all mounts on the specified dentry
1935  *
1936  * During unlink, rmdir, and d_drop it is possible to loose the path
1937  * to an existing mountpoint, and wind up leaking the mount.
1938  * detach_mounts allows lazily unmounting those mounts instead of
1939  * leaking them.
1940  *
1941  * The caller may hold dentry->d_inode->i_mutex.
1942  */
1943 void __detach_mounts(struct dentry *dentry)
1944 {
1945 	struct mountpoint *mp;
1946 	struct mount *mnt;
1947 
1948 	namespace_lock();
1949 	lock_mount_hash();
1950 	mp = lookup_mountpoint(dentry);
1951 	if (!mp)
1952 		goto out_unlock;
1953 
1954 	event++;
1955 	while (!hlist_empty(&mp->m_list)) {
1956 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1957 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1958 			umount_mnt(mnt);
1959 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1960 		}
1961 		else umount_tree(mnt, UMOUNT_CONNECTED);
1962 	}
1963 	put_mountpoint(mp);
1964 out_unlock:
1965 	unlock_mount_hash();
1966 	namespace_unlock();
1967 }
1968 
1969 /*
1970  * Is the caller allowed to modify his namespace?
1971  */
1972 bool may_mount(void)
1973 {
1974 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1975 }
1976 
1977 static void warn_mandlock(void)
1978 {
1979 	pr_warn_once("=======================================================\n"
1980 		     "WARNING: The mand mount option has been deprecated and\n"
1981 		     "         and is ignored by this kernel. Remove the mand\n"
1982 		     "         option from the mount to silence this warning.\n"
1983 		     "=======================================================\n");
1984 }
1985 
1986 static int can_umount(const struct path *path, int flags)
1987 {
1988 	struct mount *mnt = real_mount(path->mnt);
1989 
1990 	if (!may_mount())
1991 		return -EPERM;
1992 	if (!path_mounted(path))
1993 		return -EINVAL;
1994 	if (!check_mnt(mnt))
1995 		return -EINVAL;
1996 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1997 		return -EINVAL;
1998 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1999 		return -EPERM;
2000 	return 0;
2001 }
2002 
2003 // caller is responsible for flags being sane
2004 int path_umount(struct path *path, int flags)
2005 {
2006 	struct mount *mnt = real_mount(path->mnt);
2007 	int ret;
2008 
2009 	ret = can_umount(path, flags);
2010 	if (!ret)
2011 		ret = do_umount(mnt, flags);
2012 
2013 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2014 	dput(path->dentry);
2015 	mntput_no_expire(mnt);
2016 	return ret;
2017 }
2018 
2019 static int ksys_umount(char __user *name, int flags)
2020 {
2021 	int lookup_flags = LOOKUP_MOUNTPOINT;
2022 	struct path path;
2023 	int ret;
2024 
2025 	// basic validity checks done first
2026 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2027 		return -EINVAL;
2028 
2029 	if (!(flags & UMOUNT_NOFOLLOW))
2030 		lookup_flags |= LOOKUP_FOLLOW;
2031 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2032 	if (ret)
2033 		return ret;
2034 	return path_umount(&path, flags);
2035 }
2036 
2037 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2038 {
2039 	return ksys_umount(name, flags);
2040 }
2041 
2042 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2043 
2044 /*
2045  *	The 2.0 compatible umount. No flags.
2046  */
2047 SYSCALL_DEFINE1(oldumount, char __user *, name)
2048 {
2049 	return ksys_umount(name, 0);
2050 }
2051 
2052 #endif
2053 
2054 static bool is_mnt_ns_file(struct dentry *dentry)
2055 {
2056 	struct ns_common *ns;
2057 
2058 	/* Is this a proxy for a mount namespace? */
2059 	if (dentry->d_op != &ns_dentry_operations)
2060 		return false;
2061 
2062 	ns = d_inode(dentry)->i_private;
2063 
2064 	return ns->ops == &mntns_operations;
2065 }
2066 
2067 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2068 {
2069 	return &mnt->ns;
2070 }
2071 
2072 struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous)
2073 {
2074 	guard(read_lock)(&mnt_ns_tree_lock);
2075 	for (;;) {
2076 		struct rb_node *node;
2077 
2078 		if (previous)
2079 			node = rb_prev(&mntns->mnt_ns_tree_node);
2080 		else
2081 			node = rb_next(&mntns->mnt_ns_tree_node);
2082 		if (!node)
2083 			return ERR_PTR(-ENOENT);
2084 
2085 		mntns = node_to_mnt_ns(node);
2086 		node = &mntns->mnt_ns_tree_node;
2087 
2088 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2089 			continue;
2090 
2091 		/*
2092 		 * Holding mnt_ns_tree_lock prevents the mount namespace from
2093 		 * being freed but it may well be on it's deathbed. We want an
2094 		 * active reference, not just a passive one here as we're
2095 		 * persisting the mount namespace.
2096 		 */
2097 		if (!refcount_inc_not_zero(&mntns->ns.count))
2098 			continue;
2099 
2100 		return mntns;
2101 	}
2102 }
2103 
2104 static bool mnt_ns_loop(struct dentry *dentry)
2105 {
2106 	/* Could bind mounting the mount namespace inode cause a
2107 	 * mount namespace loop?
2108 	 */
2109 	struct mnt_namespace *mnt_ns;
2110 	if (!is_mnt_ns_file(dentry))
2111 		return false;
2112 
2113 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
2114 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2115 }
2116 
2117 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2118 					int flag)
2119 {
2120 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2121 		*dst_parent, *dst_mnt;
2122 
2123 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2124 		return ERR_PTR(-EINVAL);
2125 
2126 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2127 		return ERR_PTR(-EINVAL);
2128 
2129 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2130 	if (IS_ERR(dst_mnt))
2131 		return dst_mnt;
2132 
2133 	src_parent = src_root;
2134 	dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2135 
2136 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2137 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2138 			continue;
2139 
2140 		for (src_mnt = src_root_child; src_mnt;
2141 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2142 			if (!(flag & CL_COPY_UNBINDABLE) &&
2143 			    IS_MNT_UNBINDABLE(src_mnt)) {
2144 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2145 					/* Both unbindable and locked. */
2146 					dst_mnt = ERR_PTR(-EPERM);
2147 					goto out;
2148 				} else {
2149 					src_mnt = skip_mnt_tree(src_mnt);
2150 					continue;
2151 				}
2152 			}
2153 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2154 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2155 				src_mnt = skip_mnt_tree(src_mnt);
2156 				continue;
2157 			}
2158 			while (src_parent != src_mnt->mnt_parent) {
2159 				src_parent = src_parent->mnt_parent;
2160 				dst_mnt = dst_mnt->mnt_parent;
2161 			}
2162 
2163 			src_parent = src_mnt;
2164 			dst_parent = dst_mnt;
2165 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2166 			if (IS_ERR(dst_mnt))
2167 				goto out;
2168 			lock_mount_hash();
2169 			list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2170 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2171 			unlock_mount_hash();
2172 		}
2173 	}
2174 	return res;
2175 
2176 out:
2177 	if (res) {
2178 		lock_mount_hash();
2179 		umount_tree(res, UMOUNT_SYNC);
2180 		unlock_mount_hash();
2181 	}
2182 	return dst_mnt;
2183 }
2184 
2185 /* Caller should check returned pointer for errors */
2186 
2187 struct vfsmount *collect_mounts(const struct path *path)
2188 {
2189 	struct mount *tree;
2190 	namespace_lock();
2191 	if (!check_mnt(real_mount(path->mnt)))
2192 		tree = ERR_PTR(-EINVAL);
2193 	else
2194 		tree = copy_tree(real_mount(path->mnt), path->dentry,
2195 				 CL_COPY_ALL | CL_PRIVATE);
2196 	namespace_unlock();
2197 	if (IS_ERR(tree))
2198 		return ERR_CAST(tree);
2199 	return &tree->mnt;
2200 }
2201 
2202 static void free_mnt_ns(struct mnt_namespace *);
2203 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2204 
2205 void dissolve_on_fput(struct vfsmount *mnt)
2206 {
2207 	struct mnt_namespace *ns;
2208 	namespace_lock();
2209 	lock_mount_hash();
2210 	ns = real_mount(mnt)->mnt_ns;
2211 	if (ns) {
2212 		if (is_anon_ns(ns))
2213 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2214 		else
2215 			ns = NULL;
2216 	}
2217 	unlock_mount_hash();
2218 	namespace_unlock();
2219 	if (ns)
2220 		free_mnt_ns(ns);
2221 }
2222 
2223 void drop_collected_mounts(struct vfsmount *mnt)
2224 {
2225 	namespace_lock();
2226 	lock_mount_hash();
2227 	umount_tree(real_mount(mnt), 0);
2228 	unlock_mount_hash();
2229 	namespace_unlock();
2230 }
2231 
2232 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2233 {
2234 	struct mount *child;
2235 
2236 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2237 		if (!is_subdir(child->mnt_mountpoint, dentry))
2238 			continue;
2239 
2240 		if (child->mnt.mnt_flags & MNT_LOCKED)
2241 			return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 /**
2247  * clone_private_mount - create a private clone of a path
2248  * @path: path to clone
2249  *
2250  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2251  * will not be attached anywhere in the namespace and will be private (i.e.
2252  * changes to the originating mount won't be propagated into this).
2253  *
2254  * Release with mntput().
2255  */
2256 struct vfsmount *clone_private_mount(const struct path *path)
2257 {
2258 	struct mount *old_mnt = real_mount(path->mnt);
2259 	struct mount *new_mnt;
2260 
2261 	down_read(&namespace_sem);
2262 	if (IS_MNT_UNBINDABLE(old_mnt))
2263 		goto invalid;
2264 
2265 	if (!check_mnt(old_mnt))
2266 		goto invalid;
2267 
2268 	if (has_locked_children(old_mnt, path->dentry))
2269 		goto invalid;
2270 
2271 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2272 	up_read(&namespace_sem);
2273 
2274 	if (IS_ERR(new_mnt))
2275 		return ERR_CAST(new_mnt);
2276 
2277 	/* Longterm mount to be removed by kern_unmount*() */
2278 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2279 
2280 	return &new_mnt->mnt;
2281 
2282 invalid:
2283 	up_read(&namespace_sem);
2284 	return ERR_PTR(-EINVAL);
2285 }
2286 EXPORT_SYMBOL_GPL(clone_private_mount);
2287 
2288 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2289 		   struct vfsmount *root)
2290 {
2291 	struct mount *mnt;
2292 	int res = f(root, arg);
2293 	if (res)
2294 		return res;
2295 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2296 		res = f(&mnt->mnt, arg);
2297 		if (res)
2298 			return res;
2299 	}
2300 	return 0;
2301 }
2302 
2303 static void lock_mnt_tree(struct mount *mnt)
2304 {
2305 	struct mount *p;
2306 
2307 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2308 		int flags = p->mnt.mnt_flags;
2309 		/* Don't allow unprivileged users to change mount flags */
2310 		flags |= MNT_LOCK_ATIME;
2311 
2312 		if (flags & MNT_READONLY)
2313 			flags |= MNT_LOCK_READONLY;
2314 
2315 		if (flags & MNT_NODEV)
2316 			flags |= MNT_LOCK_NODEV;
2317 
2318 		if (flags & MNT_NOSUID)
2319 			flags |= MNT_LOCK_NOSUID;
2320 
2321 		if (flags & MNT_NOEXEC)
2322 			flags |= MNT_LOCK_NOEXEC;
2323 		/* Don't allow unprivileged users to reveal what is under a mount */
2324 		if (list_empty(&p->mnt_expire))
2325 			flags |= MNT_LOCKED;
2326 		p->mnt.mnt_flags = flags;
2327 	}
2328 }
2329 
2330 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2331 {
2332 	struct mount *p;
2333 
2334 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2335 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2336 			mnt_release_group_id(p);
2337 	}
2338 }
2339 
2340 static int invent_group_ids(struct mount *mnt, bool recurse)
2341 {
2342 	struct mount *p;
2343 
2344 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2345 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2346 			int err = mnt_alloc_group_id(p);
2347 			if (err) {
2348 				cleanup_group_ids(mnt, p);
2349 				return err;
2350 			}
2351 		}
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2358 {
2359 	unsigned int max = READ_ONCE(sysctl_mount_max);
2360 	unsigned int mounts = 0;
2361 	struct mount *p;
2362 
2363 	if (ns->nr_mounts >= max)
2364 		return -ENOSPC;
2365 	max -= ns->nr_mounts;
2366 	if (ns->pending_mounts >= max)
2367 		return -ENOSPC;
2368 	max -= ns->pending_mounts;
2369 
2370 	for (p = mnt; p; p = next_mnt(p, mnt))
2371 		mounts++;
2372 
2373 	if (mounts > max)
2374 		return -ENOSPC;
2375 
2376 	ns->pending_mounts += mounts;
2377 	return 0;
2378 }
2379 
2380 enum mnt_tree_flags_t {
2381 	MNT_TREE_MOVE = BIT(0),
2382 	MNT_TREE_BENEATH = BIT(1),
2383 };
2384 
2385 /**
2386  * attach_recursive_mnt - attach a source mount tree
2387  * @source_mnt: mount tree to be attached
2388  * @top_mnt:    mount that @source_mnt will be mounted on or mounted beneath
2389  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2390  * @flags:      modify how @source_mnt is supposed to be attached
2391  *
2392  *  NOTE: in the table below explains the semantics when a source mount
2393  *  of a given type is attached to a destination mount of a given type.
2394  * ---------------------------------------------------------------------------
2395  * |         BIND MOUNT OPERATION                                            |
2396  * |**************************************************************************
2397  * | source-->| shared        |       private  |       slave    | unbindable |
2398  * | dest     |               |                |                |            |
2399  * |   |      |               |                |                |            |
2400  * |   v      |               |                |                |            |
2401  * |**************************************************************************
2402  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2403  * |          |               |                |                |            |
2404  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2405  * ***************************************************************************
2406  * A bind operation clones the source mount and mounts the clone on the
2407  * destination mount.
2408  *
2409  * (++)  the cloned mount is propagated to all the mounts in the propagation
2410  * 	 tree of the destination mount and the cloned mount is added to
2411  * 	 the peer group of the source mount.
2412  * (+)   the cloned mount is created under the destination mount and is marked
2413  *       as shared. The cloned mount is added to the peer group of the source
2414  *       mount.
2415  * (+++) the mount is propagated to all the mounts in the propagation tree
2416  *       of the destination mount and the cloned mount is made slave
2417  *       of the same master as that of the source mount. The cloned mount
2418  *       is marked as 'shared and slave'.
2419  * (*)   the cloned mount is made a slave of the same master as that of the
2420  * 	 source mount.
2421  *
2422  * ---------------------------------------------------------------------------
2423  * |         		MOVE MOUNT OPERATION                                 |
2424  * |**************************************************************************
2425  * | source-->| shared        |       private  |       slave    | unbindable |
2426  * | dest     |               |                |                |            |
2427  * |   |      |               |                |                |            |
2428  * |   v      |               |                |                |            |
2429  * |**************************************************************************
2430  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2431  * |          |               |                |                |            |
2432  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2433  * ***************************************************************************
2434  *
2435  * (+)  the mount is moved to the destination. And is then propagated to
2436  * 	all the mounts in the propagation tree of the destination mount.
2437  * (+*)  the mount is moved to the destination.
2438  * (+++)  the mount is moved to the destination and is then propagated to
2439  * 	all the mounts belonging to the destination mount's propagation tree.
2440  * 	the mount is marked as 'shared and slave'.
2441  * (*)	the mount continues to be a slave at the new location.
2442  *
2443  * if the source mount is a tree, the operations explained above is
2444  * applied to each mount in the tree.
2445  * Must be called without spinlocks held, since this function can sleep
2446  * in allocations.
2447  *
2448  * Context: The function expects namespace_lock() to be held.
2449  * Return: If @source_mnt was successfully attached 0 is returned.
2450  *         Otherwise a negative error code is returned.
2451  */
2452 static int attach_recursive_mnt(struct mount *source_mnt,
2453 				struct mount *top_mnt,
2454 				struct mountpoint *dest_mp,
2455 				enum mnt_tree_flags_t flags)
2456 {
2457 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2458 	HLIST_HEAD(tree_list);
2459 	struct mnt_namespace *ns = top_mnt->mnt_ns;
2460 	struct mountpoint *smp;
2461 	struct mount *child, *dest_mnt, *p;
2462 	struct hlist_node *n;
2463 	int err = 0;
2464 	bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2465 
2466 	/*
2467 	 * Preallocate a mountpoint in case the new mounts need to be
2468 	 * mounted beneath mounts on the same mountpoint.
2469 	 */
2470 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2471 	if (IS_ERR(smp))
2472 		return PTR_ERR(smp);
2473 
2474 	/* Is there space to add these mounts to the mount namespace? */
2475 	if (!moving) {
2476 		err = count_mounts(ns, source_mnt);
2477 		if (err)
2478 			goto out;
2479 	}
2480 
2481 	if (beneath)
2482 		dest_mnt = top_mnt->mnt_parent;
2483 	else
2484 		dest_mnt = top_mnt;
2485 
2486 	if (IS_MNT_SHARED(dest_mnt)) {
2487 		err = invent_group_ids(source_mnt, true);
2488 		if (err)
2489 			goto out;
2490 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2491 	}
2492 	lock_mount_hash();
2493 	if (err)
2494 		goto out_cleanup_ids;
2495 
2496 	if (IS_MNT_SHARED(dest_mnt)) {
2497 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2498 			set_mnt_shared(p);
2499 	}
2500 
2501 	if (moving) {
2502 		if (beneath)
2503 			dest_mp = smp;
2504 		unhash_mnt(source_mnt);
2505 		attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2506 		touch_mnt_namespace(source_mnt->mnt_ns);
2507 	} else {
2508 		if (source_mnt->mnt_ns) {
2509 			LIST_HEAD(head);
2510 
2511 			/* move from anon - the caller will destroy */
2512 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2513 				move_from_ns(p, &head);
2514 			list_del_init(&head);
2515 		}
2516 		if (beneath)
2517 			mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2518 		else
2519 			mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2520 		commit_tree(source_mnt);
2521 	}
2522 
2523 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2524 		struct mount *q;
2525 		hlist_del_init(&child->mnt_hash);
2526 		q = __lookup_mnt(&child->mnt_parent->mnt,
2527 				 child->mnt_mountpoint);
2528 		if (q)
2529 			mnt_change_mountpoint(child, smp, q);
2530 		/* Notice when we are propagating across user namespaces */
2531 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2532 			lock_mnt_tree(child);
2533 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2534 		commit_tree(child);
2535 	}
2536 	put_mountpoint(smp);
2537 	unlock_mount_hash();
2538 
2539 	return 0;
2540 
2541  out_cleanup_ids:
2542 	while (!hlist_empty(&tree_list)) {
2543 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2544 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2545 		umount_tree(child, UMOUNT_SYNC);
2546 	}
2547 	unlock_mount_hash();
2548 	cleanup_group_ids(source_mnt, NULL);
2549  out:
2550 	ns->pending_mounts = 0;
2551 
2552 	read_seqlock_excl(&mount_lock);
2553 	put_mountpoint(smp);
2554 	read_sequnlock_excl(&mount_lock);
2555 
2556 	return err;
2557 }
2558 
2559 /**
2560  * do_lock_mount - lock mount and mountpoint
2561  * @path:    target path
2562  * @beneath: whether the intention is to mount beneath @path
2563  *
2564  * Follow the mount stack on @path until the top mount @mnt is found. If
2565  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2566  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2567  * until nothing is stacked on top of it anymore.
2568  *
2569  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2570  * against concurrent removal of the new mountpoint from another mount
2571  * namespace.
2572  *
2573  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2574  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2575  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2576  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2577  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2578  * on top of it for @beneath.
2579  *
2580  * In addition, @beneath needs to make sure that @mnt hasn't been
2581  * unmounted or moved from its current mountpoint in between dropping
2582  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2583  * being unmounted would be detected later by e.g., calling
2584  * check_mnt(mnt) in the function it's called from. For the @beneath
2585  * case however, it's useful to detect it directly in do_lock_mount().
2586  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2587  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2588  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2589  *
2590  * Return: Either the target mountpoint on the top mount or the top
2591  *         mount's mountpoint.
2592  */
2593 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2594 {
2595 	struct vfsmount *mnt = path->mnt;
2596 	struct dentry *dentry;
2597 	struct mountpoint *mp = ERR_PTR(-ENOENT);
2598 
2599 	for (;;) {
2600 		struct mount *m;
2601 
2602 		if (beneath) {
2603 			m = real_mount(mnt);
2604 			read_seqlock_excl(&mount_lock);
2605 			dentry = dget(m->mnt_mountpoint);
2606 			read_sequnlock_excl(&mount_lock);
2607 		} else {
2608 			dentry = path->dentry;
2609 		}
2610 
2611 		inode_lock(dentry->d_inode);
2612 		if (unlikely(cant_mount(dentry))) {
2613 			inode_unlock(dentry->d_inode);
2614 			goto out;
2615 		}
2616 
2617 		namespace_lock();
2618 
2619 		if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2620 			namespace_unlock();
2621 			inode_unlock(dentry->d_inode);
2622 			goto out;
2623 		}
2624 
2625 		mnt = lookup_mnt(path);
2626 		if (likely(!mnt))
2627 			break;
2628 
2629 		namespace_unlock();
2630 		inode_unlock(dentry->d_inode);
2631 		if (beneath)
2632 			dput(dentry);
2633 		path_put(path);
2634 		path->mnt = mnt;
2635 		path->dentry = dget(mnt->mnt_root);
2636 	}
2637 
2638 	mp = get_mountpoint(dentry);
2639 	if (IS_ERR(mp)) {
2640 		namespace_unlock();
2641 		inode_unlock(dentry->d_inode);
2642 	}
2643 
2644 out:
2645 	if (beneath)
2646 		dput(dentry);
2647 
2648 	return mp;
2649 }
2650 
2651 static inline struct mountpoint *lock_mount(struct path *path)
2652 {
2653 	return do_lock_mount(path, false);
2654 }
2655 
2656 static void unlock_mount(struct mountpoint *where)
2657 {
2658 	struct dentry *dentry = where->m_dentry;
2659 
2660 	read_seqlock_excl(&mount_lock);
2661 	put_mountpoint(where);
2662 	read_sequnlock_excl(&mount_lock);
2663 
2664 	namespace_unlock();
2665 	inode_unlock(dentry->d_inode);
2666 }
2667 
2668 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2669 {
2670 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2671 		return -EINVAL;
2672 
2673 	if (d_is_dir(mp->m_dentry) !=
2674 	      d_is_dir(mnt->mnt.mnt_root))
2675 		return -ENOTDIR;
2676 
2677 	return attach_recursive_mnt(mnt, p, mp, 0);
2678 }
2679 
2680 /*
2681  * Sanity check the flags to change_mnt_propagation.
2682  */
2683 
2684 static int flags_to_propagation_type(int ms_flags)
2685 {
2686 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2687 
2688 	/* Fail if any non-propagation flags are set */
2689 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2690 		return 0;
2691 	/* Only one propagation flag should be set */
2692 	if (!is_power_of_2(type))
2693 		return 0;
2694 	return type;
2695 }
2696 
2697 /*
2698  * recursively change the type of the mountpoint.
2699  */
2700 static int do_change_type(struct path *path, int ms_flags)
2701 {
2702 	struct mount *m;
2703 	struct mount *mnt = real_mount(path->mnt);
2704 	int recurse = ms_flags & MS_REC;
2705 	int type;
2706 	int err = 0;
2707 
2708 	if (!path_mounted(path))
2709 		return -EINVAL;
2710 
2711 	type = flags_to_propagation_type(ms_flags);
2712 	if (!type)
2713 		return -EINVAL;
2714 
2715 	namespace_lock();
2716 	if (type == MS_SHARED) {
2717 		err = invent_group_ids(mnt, recurse);
2718 		if (err)
2719 			goto out_unlock;
2720 	}
2721 
2722 	lock_mount_hash();
2723 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2724 		change_mnt_propagation(m, type);
2725 	unlock_mount_hash();
2726 
2727  out_unlock:
2728 	namespace_unlock();
2729 	return err;
2730 }
2731 
2732 static struct mount *__do_loopback(struct path *old_path, int recurse)
2733 {
2734 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2735 
2736 	if (IS_MNT_UNBINDABLE(old))
2737 		return mnt;
2738 
2739 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2740 		return mnt;
2741 
2742 	if (!recurse && has_locked_children(old, old_path->dentry))
2743 		return mnt;
2744 
2745 	if (recurse)
2746 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2747 	else
2748 		mnt = clone_mnt(old, old_path->dentry, 0);
2749 
2750 	if (!IS_ERR(mnt))
2751 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2752 
2753 	return mnt;
2754 }
2755 
2756 /*
2757  * do loopback mount.
2758  */
2759 static int do_loopback(struct path *path, const char *old_name,
2760 				int recurse)
2761 {
2762 	struct path old_path;
2763 	struct mount *mnt = NULL, *parent;
2764 	struct mountpoint *mp;
2765 	int err;
2766 	if (!old_name || !*old_name)
2767 		return -EINVAL;
2768 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2769 	if (err)
2770 		return err;
2771 
2772 	err = -EINVAL;
2773 	if (mnt_ns_loop(old_path.dentry))
2774 		goto out;
2775 
2776 	mp = lock_mount(path);
2777 	if (IS_ERR(mp)) {
2778 		err = PTR_ERR(mp);
2779 		goto out;
2780 	}
2781 
2782 	parent = real_mount(path->mnt);
2783 	if (!check_mnt(parent))
2784 		goto out2;
2785 
2786 	mnt = __do_loopback(&old_path, recurse);
2787 	if (IS_ERR(mnt)) {
2788 		err = PTR_ERR(mnt);
2789 		goto out2;
2790 	}
2791 
2792 	err = graft_tree(mnt, parent, mp);
2793 	if (err) {
2794 		lock_mount_hash();
2795 		umount_tree(mnt, UMOUNT_SYNC);
2796 		unlock_mount_hash();
2797 	}
2798 out2:
2799 	unlock_mount(mp);
2800 out:
2801 	path_put(&old_path);
2802 	return err;
2803 }
2804 
2805 static struct file *open_detached_copy(struct path *path, bool recursive)
2806 {
2807 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2808 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2809 	struct mount *mnt, *p;
2810 	struct file *file;
2811 
2812 	if (IS_ERR(ns))
2813 		return ERR_CAST(ns);
2814 
2815 	namespace_lock();
2816 	mnt = __do_loopback(path, recursive);
2817 	if (IS_ERR(mnt)) {
2818 		namespace_unlock();
2819 		free_mnt_ns(ns);
2820 		return ERR_CAST(mnt);
2821 	}
2822 
2823 	lock_mount_hash();
2824 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2825 		mnt_add_to_ns(ns, p);
2826 		ns->nr_mounts++;
2827 	}
2828 	ns->root = mnt;
2829 	mntget(&mnt->mnt);
2830 	unlock_mount_hash();
2831 	namespace_unlock();
2832 
2833 	mntput(path->mnt);
2834 	path->mnt = &mnt->mnt;
2835 	file = dentry_open(path, O_PATH, current_cred());
2836 	if (IS_ERR(file))
2837 		dissolve_on_fput(path->mnt);
2838 	else
2839 		file->f_mode |= FMODE_NEED_UNMOUNT;
2840 	return file;
2841 }
2842 
2843 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2844 {
2845 	struct file *file;
2846 	struct path path;
2847 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2848 	bool detached = flags & OPEN_TREE_CLONE;
2849 	int error;
2850 	int fd;
2851 
2852 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2853 
2854 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2855 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2856 		      OPEN_TREE_CLOEXEC))
2857 		return -EINVAL;
2858 
2859 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2860 		return -EINVAL;
2861 
2862 	if (flags & AT_NO_AUTOMOUNT)
2863 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2864 	if (flags & AT_SYMLINK_NOFOLLOW)
2865 		lookup_flags &= ~LOOKUP_FOLLOW;
2866 	if (flags & AT_EMPTY_PATH)
2867 		lookup_flags |= LOOKUP_EMPTY;
2868 
2869 	if (detached && !may_mount())
2870 		return -EPERM;
2871 
2872 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2873 	if (fd < 0)
2874 		return fd;
2875 
2876 	error = user_path_at(dfd, filename, lookup_flags, &path);
2877 	if (unlikely(error)) {
2878 		file = ERR_PTR(error);
2879 	} else {
2880 		if (detached)
2881 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2882 		else
2883 			file = dentry_open(&path, O_PATH, current_cred());
2884 		path_put(&path);
2885 	}
2886 	if (IS_ERR(file)) {
2887 		put_unused_fd(fd);
2888 		return PTR_ERR(file);
2889 	}
2890 	fd_install(fd, file);
2891 	return fd;
2892 }
2893 
2894 /*
2895  * Don't allow locked mount flags to be cleared.
2896  *
2897  * No locks need to be held here while testing the various MNT_LOCK
2898  * flags because those flags can never be cleared once they are set.
2899  */
2900 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2901 {
2902 	unsigned int fl = mnt->mnt.mnt_flags;
2903 
2904 	if ((fl & MNT_LOCK_READONLY) &&
2905 	    !(mnt_flags & MNT_READONLY))
2906 		return false;
2907 
2908 	if ((fl & MNT_LOCK_NODEV) &&
2909 	    !(mnt_flags & MNT_NODEV))
2910 		return false;
2911 
2912 	if ((fl & MNT_LOCK_NOSUID) &&
2913 	    !(mnt_flags & MNT_NOSUID))
2914 		return false;
2915 
2916 	if ((fl & MNT_LOCK_NOEXEC) &&
2917 	    !(mnt_flags & MNT_NOEXEC))
2918 		return false;
2919 
2920 	if ((fl & MNT_LOCK_ATIME) &&
2921 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2922 		return false;
2923 
2924 	return true;
2925 }
2926 
2927 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2928 {
2929 	bool readonly_request = (mnt_flags & MNT_READONLY);
2930 
2931 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2932 		return 0;
2933 
2934 	if (readonly_request)
2935 		return mnt_make_readonly(mnt);
2936 
2937 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2938 	return 0;
2939 }
2940 
2941 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2942 {
2943 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2944 	mnt->mnt.mnt_flags = mnt_flags;
2945 	touch_mnt_namespace(mnt->mnt_ns);
2946 }
2947 
2948 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2949 {
2950 	struct super_block *sb = mnt->mnt_sb;
2951 
2952 	if (!__mnt_is_readonly(mnt) &&
2953 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2954 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2955 		char *buf, *mntpath;
2956 
2957 		buf = (char *)__get_free_page(GFP_KERNEL);
2958 		if (buf)
2959 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2960 		else
2961 			mntpath = ERR_PTR(-ENOMEM);
2962 		if (IS_ERR(mntpath))
2963 			mntpath = "(unknown)";
2964 
2965 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2966 			sb->s_type->name,
2967 			is_mounted(mnt) ? "remounted" : "mounted",
2968 			mntpath, &sb->s_time_max,
2969 			(unsigned long long)sb->s_time_max);
2970 
2971 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2972 		if (buf)
2973 			free_page((unsigned long)buf);
2974 	}
2975 }
2976 
2977 /*
2978  * Handle reconfiguration of the mountpoint only without alteration of the
2979  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2980  * to mount(2).
2981  */
2982 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2983 {
2984 	struct super_block *sb = path->mnt->mnt_sb;
2985 	struct mount *mnt = real_mount(path->mnt);
2986 	int ret;
2987 
2988 	if (!check_mnt(mnt))
2989 		return -EINVAL;
2990 
2991 	if (!path_mounted(path))
2992 		return -EINVAL;
2993 
2994 	if (!can_change_locked_flags(mnt, mnt_flags))
2995 		return -EPERM;
2996 
2997 	/*
2998 	 * We're only checking whether the superblock is read-only not
2999 	 * changing it, so only take down_read(&sb->s_umount).
3000 	 */
3001 	down_read(&sb->s_umount);
3002 	lock_mount_hash();
3003 	ret = change_mount_ro_state(mnt, mnt_flags);
3004 	if (ret == 0)
3005 		set_mount_attributes(mnt, mnt_flags);
3006 	unlock_mount_hash();
3007 	up_read(&sb->s_umount);
3008 
3009 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3010 
3011 	return ret;
3012 }
3013 
3014 /*
3015  * change filesystem flags. dir should be a physical root of filesystem.
3016  * If you've mounted a non-root directory somewhere and want to do remount
3017  * on it - tough luck.
3018  */
3019 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3020 		      int mnt_flags, void *data)
3021 {
3022 	int err;
3023 	struct super_block *sb = path->mnt->mnt_sb;
3024 	struct mount *mnt = real_mount(path->mnt);
3025 	struct fs_context *fc;
3026 
3027 	if (!check_mnt(mnt))
3028 		return -EINVAL;
3029 
3030 	if (!path_mounted(path))
3031 		return -EINVAL;
3032 
3033 	if (!can_change_locked_flags(mnt, mnt_flags))
3034 		return -EPERM;
3035 
3036 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3037 	if (IS_ERR(fc))
3038 		return PTR_ERR(fc);
3039 
3040 	/*
3041 	 * Indicate to the filesystem that the remount request is coming
3042 	 * from the legacy mount system call.
3043 	 */
3044 	fc->oldapi = true;
3045 
3046 	err = parse_monolithic_mount_data(fc, data);
3047 	if (!err) {
3048 		down_write(&sb->s_umount);
3049 		err = -EPERM;
3050 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3051 			err = reconfigure_super(fc);
3052 			if (!err) {
3053 				lock_mount_hash();
3054 				set_mount_attributes(mnt, mnt_flags);
3055 				unlock_mount_hash();
3056 			}
3057 		}
3058 		up_write(&sb->s_umount);
3059 	}
3060 
3061 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3062 
3063 	put_fs_context(fc);
3064 	return err;
3065 }
3066 
3067 static inline int tree_contains_unbindable(struct mount *mnt)
3068 {
3069 	struct mount *p;
3070 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3071 		if (IS_MNT_UNBINDABLE(p))
3072 			return 1;
3073 	}
3074 	return 0;
3075 }
3076 
3077 /*
3078  * Check that there aren't references to earlier/same mount namespaces in the
3079  * specified subtree.  Such references can act as pins for mount namespaces
3080  * that aren't checked by the mount-cycle checking code, thereby allowing
3081  * cycles to be made.
3082  */
3083 static bool check_for_nsfs_mounts(struct mount *subtree)
3084 {
3085 	struct mount *p;
3086 	bool ret = false;
3087 
3088 	lock_mount_hash();
3089 	for (p = subtree; p; p = next_mnt(p, subtree))
3090 		if (mnt_ns_loop(p->mnt.mnt_root))
3091 			goto out;
3092 
3093 	ret = true;
3094 out:
3095 	unlock_mount_hash();
3096 	return ret;
3097 }
3098 
3099 static int do_set_group(struct path *from_path, struct path *to_path)
3100 {
3101 	struct mount *from, *to;
3102 	int err;
3103 
3104 	from = real_mount(from_path->mnt);
3105 	to = real_mount(to_path->mnt);
3106 
3107 	namespace_lock();
3108 
3109 	err = -EINVAL;
3110 	/* To and From must be mounted */
3111 	if (!is_mounted(&from->mnt))
3112 		goto out;
3113 	if (!is_mounted(&to->mnt))
3114 		goto out;
3115 
3116 	err = -EPERM;
3117 	/* We should be allowed to modify mount namespaces of both mounts */
3118 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3119 		goto out;
3120 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3121 		goto out;
3122 
3123 	err = -EINVAL;
3124 	/* To and From paths should be mount roots */
3125 	if (!path_mounted(from_path))
3126 		goto out;
3127 	if (!path_mounted(to_path))
3128 		goto out;
3129 
3130 	/* Setting sharing groups is only allowed across same superblock */
3131 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3132 		goto out;
3133 
3134 	/* From mount root should be wider than To mount root */
3135 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3136 		goto out;
3137 
3138 	/* From mount should not have locked children in place of To's root */
3139 	if (has_locked_children(from, to->mnt.mnt_root))
3140 		goto out;
3141 
3142 	/* Setting sharing groups is only allowed on private mounts */
3143 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3144 		goto out;
3145 
3146 	/* From should not be private */
3147 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3148 		goto out;
3149 
3150 	if (IS_MNT_SLAVE(from)) {
3151 		struct mount *m = from->mnt_master;
3152 
3153 		list_add(&to->mnt_slave, &m->mnt_slave_list);
3154 		to->mnt_master = m;
3155 	}
3156 
3157 	if (IS_MNT_SHARED(from)) {
3158 		to->mnt_group_id = from->mnt_group_id;
3159 		list_add(&to->mnt_share, &from->mnt_share);
3160 		lock_mount_hash();
3161 		set_mnt_shared(to);
3162 		unlock_mount_hash();
3163 	}
3164 
3165 	err = 0;
3166 out:
3167 	namespace_unlock();
3168 	return err;
3169 }
3170 
3171 /**
3172  * path_overmounted - check if path is overmounted
3173  * @path: path to check
3174  *
3175  * Check if path is overmounted, i.e., if there's a mount on top of
3176  * @path->mnt with @path->dentry as mountpoint.
3177  *
3178  * Context: This function expects namespace_lock() to be held.
3179  * Return: If path is overmounted true is returned, false if not.
3180  */
3181 static inline bool path_overmounted(const struct path *path)
3182 {
3183 	rcu_read_lock();
3184 	if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3185 		rcu_read_unlock();
3186 		return true;
3187 	}
3188 	rcu_read_unlock();
3189 	return false;
3190 }
3191 
3192 /**
3193  * can_move_mount_beneath - check that we can mount beneath the top mount
3194  * @from: mount to mount beneath
3195  * @to:   mount under which to mount
3196  * @mp:   mountpoint of @to
3197  *
3198  * - Make sure that @to->dentry is actually the root of a mount under
3199  *   which we can mount another mount.
3200  * - Make sure that nothing can be mounted beneath the caller's current
3201  *   root or the rootfs of the namespace.
3202  * - Make sure that the caller can unmount the topmost mount ensuring
3203  *   that the caller could reveal the underlying mountpoint.
3204  * - Ensure that nothing has been mounted on top of @from before we
3205  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3206  * - Prevent mounting beneath a mount if the propagation relationship
3207  *   between the source mount, parent mount, and top mount would lead to
3208  *   nonsensical mount trees.
3209  *
3210  * Context: This function expects namespace_lock() to be held.
3211  * Return: On success 0, and on error a negative error code is returned.
3212  */
3213 static int can_move_mount_beneath(const struct path *from,
3214 				  const struct path *to,
3215 				  const struct mountpoint *mp)
3216 {
3217 	struct mount *mnt_from = real_mount(from->mnt),
3218 		     *mnt_to = real_mount(to->mnt),
3219 		     *parent_mnt_to = mnt_to->mnt_parent;
3220 
3221 	if (!mnt_has_parent(mnt_to))
3222 		return -EINVAL;
3223 
3224 	if (!path_mounted(to))
3225 		return -EINVAL;
3226 
3227 	if (IS_MNT_LOCKED(mnt_to))
3228 		return -EINVAL;
3229 
3230 	/* Avoid creating shadow mounts during mount propagation. */
3231 	if (path_overmounted(from))
3232 		return -EINVAL;
3233 
3234 	/*
3235 	 * Mounting beneath the rootfs only makes sense when the
3236 	 * semantics of pivot_root(".", ".") are used.
3237 	 */
3238 	if (&mnt_to->mnt == current->fs->root.mnt)
3239 		return -EINVAL;
3240 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3241 		return -EINVAL;
3242 
3243 	for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3244 		if (p == mnt_to)
3245 			return -EINVAL;
3246 
3247 	/*
3248 	 * If the parent mount propagates to the child mount this would
3249 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3250 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3251 	 * defeats the whole purpose of mounting beneath another mount.
3252 	 */
3253 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3254 		return -EINVAL;
3255 
3256 	/*
3257 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3258 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3259 	 * Afterwards @mnt_from would be mounted on top of
3260 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3261 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3262 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3263 	 * remounted on top of @c. Afterwards, @mnt_from would be
3264 	 * covered by a copy @c of @mnt_from and @c would be covered by
3265 	 * @mnt_from itself. This defeats the whole purpose of mounting
3266 	 * @mnt_from beneath @mnt_to.
3267 	 */
3268 	if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3269 		return -EINVAL;
3270 
3271 	return 0;
3272 }
3273 
3274 static int do_move_mount(struct path *old_path, struct path *new_path,
3275 			 bool beneath)
3276 {
3277 	struct mnt_namespace *ns;
3278 	struct mount *p;
3279 	struct mount *old;
3280 	struct mount *parent;
3281 	struct mountpoint *mp, *old_mp;
3282 	int err;
3283 	bool attached;
3284 	enum mnt_tree_flags_t flags = 0;
3285 
3286 	mp = do_lock_mount(new_path, beneath);
3287 	if (IS_ERR(mp))
3288 		return PTR_ERR(mp);
3289 
3290 	old = real_mount(old_path->mnt);
3291 	p = real_mount(new_path->mnt);
3292 	parent = old->mnt_parent;
3293 	attached = mnt_has_parent(old);
3294 	if (attached)
3295 		flags |= MNT_TREE_MOVE;
3296 	old_mp = old->mnt_mp;
3297 	ns = old->mnt_ns;
3298 
3299 	err = -EINVAL;
3300 	/* The mountpoint must be in our namespace. */
3301 	if (!check_mnt(p))
3302 		goto out;
3303 
3304 	/* The thing moved must be mounted... */
3305 	if (!is_mounted(&old->mnt))
3306 		goto out;
3307 
3308 	/* ... and either ours or the root of anon namespace */
3309 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3310 		goto out;
3311 
3312 	if (old->mnt.mnt_flags & MNT_LOCKED)
3313 		goto out;
3314 
3315 	if (!path_mounted(old_path))
3316 		goto out;
3317 
3318 	if (d_is_dir(new_path->dentry) !=
3319 	    d_is_dir(old_path->dentry))
3320 		goto out;
3321 	/*
3322 	 * Don't move a mount residing in a shared parent.
3323 	 */
3324 	if (attached && IS_MNT_SHARED(parent))
3325 		goto out;
3326 
3327 	if (beneath) {
3328 		err = can_move_mount_beneath(old_path, new_path, mp);
3329 		if (err)
3330 			goto out;
3331 
3332 		err = -EINVAL;
3333 		p = p->mnt_parent;
3334 		flags |= MNT_TREE_BENEATH;
3335 	}
3336 
3337 	/*
3338 	 * Don't move a mount tree containing unbindable mounts to a destination
3339 	 * mount which is shared.
3340 	 */
3341 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3342 		goto out;
3343 	err = -ELOOP;
3344 	if (!check_for_nsfs_mounts(old))
3345 		goto out;
3346 	for (; mnt_has_parent(p); p = p->mnt_parent)
3347 		if (p == old)
3348 			goto out;
3349 
3350 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3351 	if (err)
3352 		goto out;
3353 
3354 	/* if the mount is moved, it should no longer be expire
3355 	 * automatically */
3356 	list_del_init(&old->mnt_expire);
3357 	if (attached)
3358 		put_mountpoint(old_mp);
3359 out:
3360 	unlock_mount(mp);
3361 	if (!err) {
3362 		if (attached)
3363 			mntput_no_expire(parent);
3364 		else
3365 			free_mnt_ns(ns);
3366 	}
3367 	return err;
3368 }
3369 
3370 static int do_move_mount_old(struct path *path, const char *old_name)
3371 {
3372 	struct path old_path;
3373 	int err;
3374 
3375 	if (!old_name || !*old_name)
3376 		return -EINVAL;
3377 
3378 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3379 	if (err)
3380 		return err;
3381 
3382 	err = do_move_mount(&old_path, path, false);
3383 	path_put(&old_path);
3384 	return err;
3385 }
3386 
3387 /*
3388  * add a mount into a namespace's mount tree
3389  */
3390 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3391 			const struct path *path, int mnt_flags)
3392 {
3393 	struct mount *parent = real_mount(path->mnt);
3394 
3395 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3396 
3397 	if (unlikely(!check_mnt(parent))) {
3398 		/* that's acceptable only for automounts done in private ns */
3399 		if (!(mnt_flags & MNT_SHRINKABLE))
3400 			return -EINVAL;
3401 		/* ... and for those we'd better have mountpoint still alive */
3402 		if (!parent->mnt_ns)
3403 			return -EINVAL;
3404 	}
3405 
3406 	/* Refuse the same filesystem on the same mount point */
3407 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3408 		return -EBUSY;
3409 
3410 	if (d_is_symlink(newmnt->mnt.mnt_root))
3411 		return -EINVAL;
3412 
3413 	newmnt->mnt.mnt_flags = mnt_flags;
3414 	return graft_tree(newmnt, parent, mp);
3415 }
3416 
3417 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3418 
3419 /*
3420  * Create a new mount using a superblock configuration and request it
3421  * be added to the namespace tree.
3422  */
3423 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3424 			   unsigned int mnt_flags)
3425 {
3426 	struct vfsmount *mnt;
3427 	struct mountpoint *mp;
3428 	struct super_block *sb = fc->root->d_sb;
3429 	int error;
3430 
3431 	error = security_sb_kern_mount(sb);
3432 	if (!error && mount_too_revealing(sb, &mnt_flags))
3433 		error = -EPERM;
3434 
3435 	if (unlikely(error)) {
3436 		fc_drop_locked(fc);
3437 		return error;
3438 	}
3439 
3440 	up_write(&sb->s_umount);
3441 
3442 	mnt = vfs_create_mount(fc);
3443 	if (IS_ERR(mnt))
3444 		return PTR_ERR(mnt);
3445 
3446 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3447 
3448 	mp = lock_mount(mountpoint);
3449 	if (IS_ERR(mp)) {
3450 		mntput(mnt);
3451 		return PTR_ERR(mp);
3452 	}
3453 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3454 	unlock_mount(mp);
3455 	if (error < 0)
3456 		mntput(mnt);
3457 	return error;
3458 }
3459 
3460 /*
3461  * create a new mount for userspace and request it to be added into the
3462  * namespace's tree
3463  */
3464 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3465 			int mnt_flags, const char *name, void *data)
3466 {
3467 	struct file_system_type *type;
3468 	struct fs_context *fc;
3469 	const char *subtype = NULL;
3470 	int err = 0;
3471 
3472 	if (!fstype)
3473 		return -EINVAL;
3474 
3475 	type = get_fs_type(fstype);
3476 	if (!type)
3477 		return -ENODEV;
3478 
3479 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3480 		subtype = strchr(fstype, '.');
3481 		if (subtype) {
3482 			subtype++;
3483 			if (!*subtype) {
3484 				put_filesystem(type);
3485 				return -EINVAL;
3486 			}
3487 		}
3488 	}
3489 
3490 	fc = fs_context_for_mount(type, sb_flags);
3491 	put_filesystem(type);
3492 	if (IS_ERR(fc))
3493 		return PTR_ERR(fc);
3494 
3495 	/*
3496 	 * Indicate to the filesystem that the mount request is coming
3497 	 * from the legacy mount system call.
3498 	 */
3499 	fc->oldapi = true;
3500 
3501 	if (subtype)
3502 		err = vfs_parse_fs_string(fc, "subtype",
3503 					  subtype, strlen(subtype));
3504 	if (!err && name)
3505 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3506 	if (!err)
3507 		err = parse_monolithic_mount_data(fc, data);
3508 	if (!err && !mount_capable(fc))
3509 		err = -EPERM;
3510 	if (!err)
3511 		err = vfs_get_tree(fc);
3512 	if (!err)
3513 		err = do_new_mount_fc(fc, path, mnt_flags);
3514 
3515 	put_fs_context(fc);
3516 	return err;
3517 }
3518 
3519 int finish_automount(struct vfsmount *m, const struct path *path)
3520 {
3521 	struct dentry *dentry = path->dentry;
3522 	struct mountpoint *mp;
3523 	struct mount *mnt;
3524 	int err;
3525 
3526 	if (!m)
3527 		return 0;
3528 	if (IS_ERR(m))
3529 		return PTR_ERR(m);
3530 
3531 	mnt = real_mount(m);
3532 	/* The new mount record should have at least 2 refs to prevent it being
3533 	 * expired before we get a chance to add it
3534 	 */
3535 	BUG_ON(mnt_get_count(mnt) < 2);
3536 
3537 	if (m->mnt_sb == path->mnt->mnt_sb &&
3538 	    m->mnt_root == dentry) {
3539 		err = -ELOOP;
3540 		goto discard;
3541 	}
3542 
3543 	/*
3544 	 * we don't want to use lock_mount() - in this case finding something
3545 	 * that overmounts our mountpoint to be means "quitely drop what we've
3546 	 * got", not "try to mount it on top".
3547 	 */
3548 	inode_lock(dentry->d_inode);
3549 	namespace_lock();
3550 	if (unlikely(cant_mount(dentry))) {
3551 		err = -ENOENT;
3552 		goto discard_locked;
3553 	}
3554 	if (path_overmounted(path)) {
3555 		err = 0;
3556 		goto discard_locked;
3557 	}
3558 	mp = get_mountpoint(dentry);
3559 	if (IS_ERR(mp)) {
3560 		err = PTR_ERR(mp);
3561 		goto discard_locked;
3562 	}
3563 
3564 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3565 	unlock_mount(mp);
3566 	if (unlikely(err))
3567 		goto discard;
3568 	mntput(m);
3569 	return 0;
3570 
3571 discard_locked:
3572 	namespace_unlock();
3573 	inode_unlock(dentry->d_inode);
3574 discard:
3575 	/* remove m from any expiration list it may be on */
3576 	if (!list_empty(&mnt->mnt_expire)) {
3577 		namespace_lock();
3578 		list_del_init(&mnt->mnt_expire);
3579 		namespace_unlock();
3580 	}
3581 	mntput(m);
3582 	mntput(m);
3583 	return err;
3584 }
3585 
3586 /**
3587  * mnt_set_expiry - Put a mount on an expiration list
3588  * @mnt: The mount to list.
3589  * @expiry_list: The list to add the mount to.
3590  */
3591 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3592 {
3593 	namespace_lock();
3594 
3595 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3596 
3597 	namespace_unlock();
3598 }
3599 EXPORT_SYMBOL(mnt_set_expiry);
3600 
3601 /*
3602  * process a list of expirable mountpoints with the intent of discarding any
3603  * mountpoints that aren't in use and haven't been touched since last we came
3604  * here
3605  */
3606 void mark_mounts_for_expiry(struct list_head *mounts)
3607 {
3608 	struct mount *mnt, *next;
3609 	LIST_HEAD(graveyard);
3610 
3611 	if (list_empty(mounts))
3612 		return;
3613 
3614 	namespace_lock();
3615 	lock_mount_hash();
3616 
3617 	/* extract from the expiration list every vfsmount that matches the
3618 	 * following criteria:
3619 	 * - only referenced by its parent vfsmount
3620 	 * - still marked for expiry (marked on the last call here; marks are
3621 	 *   cleared by mntput())
3622 	 */
3623 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3624 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3625 			propagate_mount_busy(mnt, 1))
3626 			continue;
3627 		list_move(&mnt->mnt_expire, &graveyard);
3628 	}
3629 	while (!list_empty(&graveyard)) {
3630 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3631 		touch_mnt_namespace(mnt->mnt_ns);
3632 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3633 	}
3634 	unlock_mount_hash();
3635 	namespace_unlock();
3636 }
3637 
3638 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3639 
3640 /*
3641  * Ripoff of 'select_parent()'
3642  *
3643  * search the list of submounts for a given mountpoint, and move any
3644  * shrinkable submounts to the 'graveyard' list.
3645  */
3646 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3647 {
3648 	struct mount *this_parent = parent;
3649 	struct list_head *next;
3650 	int found = 0;
3651 
3652 repeat:
3653 	next = this_parent->mnt_mounts.next;
3654 resume:
3655 	while (next != &this_parent->mnt_mounts) {
3656 		struct list_head *tmp = next;
3657 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3658 
3659 		next = tmp->next;
3660 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3661 			continue;
3662 		/*
3663 		 * Descend a level if the d_mounts list is non-empty.
3664 		 */
3665 		if (!list_empty(&mnt->mnt_mounts)) {
3666 			this_parent = mnt;
3667 			goto repeat;
3668 		}
3669 
3670 		if (!propagate_mount_busy(mnt, 1)) {
3671 			list_move_tail(&mnt->mnt_expire, graveyard);
3672 			found++;
3673 		}
3674 	}
3675 	/*
3676 	 * All done at this level ... ascend and resume the search
3677 	 */
3678 	if (this_parent != parent) {
3679 		next = this_parent->mnt_child.next;
3680 		this_parent = this_parent->mnt_parent;
3681 		goto resume;
3682 	}
3683 	return found;
3684 }
3685 
3686 /*
3687  * process a list of expirable mountpoints with the intent of discarding any
3688  * submounts of a specific parent mountpoint
3689  *
3690  * mount_lock must be held for write
3691  */
3692 static void shrink_submounts(struct mount *mnt)
3693 {
3694 	LIST_HEAD(graveyard);
3695 	struct mount *m;
3696 
3697 	/* extract submounts of 'mountpoint' from the expiration list */
3698 	while (select_submounts(mnt, &graveyard)) {
3699 		while (!list_empty(&graveyard)) {
3700 			m = list_first_entry(&graveyard, struct mount,
3701 						mnt_expire);
3702 			touch_mnt_namespace(m->mnt_ns);
3703 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3704 		}
3705 	}
3706 }
3707 
3708 static void *copy_mount_options(const void __user * data)
3709 {
3710 	char *copy;
3711 	unsigned left, offset;
3712 
3713 	if (!data)
3714 		return NULL;
3715 
3716 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3717 	if (!copy)
3718 		return ERR_PTR(-ENOMEM);
3719 
3720 	left = copy_from_user(copy, data, PAGE_SIZE);
3721 
3722 	/*
3723 	 * Not all architectures have an exact copy_from_user(). Resort to
3724 	 * byte at a time.
3725 	 */
3726 	offset = PAGE_SIZE - left;
3727 	while (left) {
3728 		char c;
3729 		if (get_user(c, (const char __user *)data + offset))
3730 			break;
3731 		copy[offset] = c;
3732 		left--;
3733 		offset++;
3734 	}
3735 
3736 	if (left == PAGE_SIZE) {
3737 		kfree(copy);
3738 		return ERR_PTR(-EFAULT);
3739 	}
3740 
3741 	return copy;
3742 }
3743 
3744 static char *copy_mount_string(const void __user *data)
3745 {
3746 	return data ? strndup_user(data, PATH_MAX) : NULL;
3747 }
3748 
3749 /*
3750  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3751  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3752  *
3753  * data is a (void *) that can point to any structure up to
3754  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3755  * information (or be NULL).
3756  *
3757  * Pre-0.97 versions of mount() didn't have a flags word.
3758  * When the flags word was introduced its top half was required
3759  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3760  * Therefore, if this magic number is present, it carries no information
3761  * and must be discarded.
3762  */
3763 int path_mount(const char *dev_name, struct path *path,
3764 		const char *type_page, unsigned long flags, void *data_page)
3765 {
3766 	unsigned int mnt_flags = 0, sb_flags;
3767 	int ret;
3768 
3769 	/* Discard magic */
3770 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3771 		flags &= ~MS_MGC_MSK;
3772 
3773 	/* Basic sanity checks */
3774 	if (data_page)
3775 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3776 
3777 	if (flags & MS_NOUSER)
3778 		return -EINVAL;
3779 
3780 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3781 	if (ret)
3782 		return ret;
3783 	if (!may_mount())
3784 		return -EPERM;
3785 	if (flags & SB_MANDLOCK)
3786 		warn_mandlock();
3787 
3788 	/* Default to relatime unless overriden */
3789 	if (!(flags & MS_NOATIME))
3790 		mnt_flags |= MNT_RELATIME;
3791 
3792 	/* Separate the per-mountpoint flags */
3793 	if (flags & MS_NOSUID)
3794 		mnt_flags |= MNT_NOSUID;
3795 	if (flags & MS_NODEV)
3796 		mnt_flags |= MNT_NODEV;
3797 	if (flags & MS_NOEXEC)
3798 		mnt_flags |= MNT_NOEXEC;
3799 	if (flags & MS_NOATIME)
3800 		mnt_flags |= MNT_NOATIME;
3801 	if (flags & MS_NODIRATIME)
3802 		mnt_flags |= MNT_NODIRATIME;
3803 	if (flags & MS_STRICTATIME)
3804 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3805 	if (flags & MS_RDONLY)
3806 		mnt_flags |= MNT_READONLY;
3807 	if (flags & MS_NOSYMFOLLOW)
3808 		mnt_flags |= MNT_NOSYMFOLLOW;
3809 
3810 	/* The default atime for remount is preservation */
3811 	if ((flags & MS_REMOUNT) &&
3812 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3813 		       MS_STRICTATIME)) == 0)) {
3814 		mnt_flags &= ~MNT_ATIME_MASK;
3815 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3816 	}
3817 
3818 	sb_flags = flags & (SB_RDONLY |
3819 			    SB_SYNCHRONOUS |
3820 			    SB_MANDLOCK |
3821 			    SB_DIRSYNC |
3822 			    SB_SILENT |
3823 			    SB_POSIXACL |
3824 			    SB_LAZYTIME |
3825 			    SB_I_VERSION);
3826 
3827 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3828 		return do_reconfigure_mnt(path, mnt_flags);
3829 	if (flags & MS_REMOUNT)
3830 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3831 	if (flags & MS_BIND)
3832 		return do_loopback(path, dev_name, flags & MS_REC);
3833 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3834 		return do_change_type(path, flags);
3835 	if (flags & MS_MOVE)
3836 		return do_move_mount_old(path, dev_name);
3837 
3838 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3839 			    data_page);
3840 }
3841 
3842 long do_mount(const char *dev_name, const char __user *dir_name,
3843 		const char *type_page, unsigned long flags, void *data_page)
3844 {
3845 	struct path path;
3846 	int ret;
3847 
3848 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3849 	if (ret)
3850 		return ret;
3851 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3852 	path_put(&path);
3853 	return ret;
3854 }
3855 
3856 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3857 {
3858 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3859 }
3860 
3861 static void dec_mnt_namespaces(struct ucounts *ucounts)
3862 {
3863 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3864 }
3865 
3866 static void free_mnt_ns(struct mnt_namespace *ns)
3867 {
3868 	if (!is_anon_ns(ns))
3869 		ns_free_inum(&ns->ns);
3870 	dec_mnt_namespaces(ns->ucounts);
3871 	mnt_ns_tree_remove(ns);
3872 }
3873 
3874 /*
3875  * Assign a sequence number so we can detect when we attempt to bind
3876  * mount a reference to an older mount namespace into the current
3877  * mount namespace, preventing reference counting loops.  A 64bit
3878  * number incrementing at 10Ghz will take 12,427 years to wrap which
3879  * is effectively never, so we can ignore the possibility.
3880  */
3881 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3882 
3883 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3884 {
3885 	struct mnt_namespace *new_ns;
3886 	struct ucounts *ucounts;
3887 	int ret;
3888 
3889 	ucounts = inc_mnt_namespaces(user_ns);
3890 	if (!ucounts)
3891 		return ERR_PTR(-ENOSPC);
3892 
3893 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3894 	if (!new_ns) {
3895 		dec_mnt_namespaces(ucounts);
3896 		return ERR_PTR(-ENOMEM);
3897 	}
3898 	if (!anon) {
3899 		ret = ns_alloc_inum(&new_ns->ns);
3900 		if (ret) {
3901 			kfree(new_ns);
3902 			dec_mnt_namespaces(ucounts);
3903 			return ERR_PTR(ret);
3904 		}
3905 	}
3906 	new_ns->ns.ops = &mntns_operations;
3907 	if (!anon)
3908 		new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
3909 	refcount_set(&new_ns->ns.count, 1);
3910 	refcount_set(&new_ns->passive, 1);
3911 	new_ns->mounts = RB_ROOT;
3912 	RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
3913 	init_waitqueue_head(&new_ns->poll);
3914 	new_ns->user_ns = get_user_ns(user_ns);
3915 	new_ns->ucounts = ucounts;
3916 	return new_ns;
3917 }
3918 
3919 __latent_entropy
3920 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3921 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3922 {
3923 	struct mnt_namespace *new_ns;
3924 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3925 	struct mount *p, *q;
3926 	struct mount *old;
3927 	struct mount *new;
3928 	int copy_flags;
3929 
3930 	BUG_ON(!ns);
3931 
3932 	if (likely(!(flags & CLONE_NEWNS))) {
3933 		get_mnt_ns(ns);
3934 		return ns;
3935 	}
3936 
3937 	old = ns->root;
3938 
3939 	new_ns = alloc_mnt_ns(user_ns, false);
3940 	if (IS_ERR(new_ns))
3941 		return new_ns;
3942 
3943 	namespace_lock();
3944 	/* First pass: copy the tree topology */
3945 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3946 	if (user_ns != ns->user_ns)
3947 		copy_flags |= CL_SHARED_TO_SLAVE;
3948 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3949 	if (IS_ERR(new)) {
3950 		namespace_unlock();
3951 		ns_free_inum(&new_ns->ns);
3952 		dec_mnt_namespaces(new_ns->ucounts);
3953 		mnt_ns_release(new_ns);
3954 		return ERR_CAST(new);
3955 	}
3956 	if (user_ns != ns->user_ns) {
3957 		lock_mount_hash();
3958 		lock_mnt_tree(new);
3959 		unlock_mount_hash();
3960 	}
3961 	new_ns->root = new;
3962 
3963 	/*
3964 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3965 	 * as belonging to new namespace.  We have already acquired a private
3966 	 * fs_struct, so tsk->fs->lock is not needed.
3967 	 */
3968 	p = old;
3969 	q = new;
3970 	while (p) {
3971 		mnt_add_to_ns(new_ns, q);
3972 		new_ns->nr_mounts++;
3973 		if (new_fs) {
3974 			if (&p->mnt == new_fs->root.mnt) {
3975 				new_fs->root.mnt = mntget(&q->mnt);
3976 				rootmnt = &p->mnt;
3977 			}
3978 			if (&p->mnt == new_fs->pwd.mnt) {
3979 				new_fs->pwd.mnt = mntget(&q->mnt);
3980 				pwdmnt = &p->mnt;
3981 			}
3982 		}
3983 		p = next_mnt(p, old);
3984 		q = next_mnt(q, new);
3985 		if (!q)
3986 			break;
3987 		// an mntns binding we'd skipped?
3988 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3989 			p = next_mnt(skip_mnt_tree(p), old);
3990 	}
3991 	mnt_ns_tree_add(new_ns);
3992 	namespace_unlock();
3993 
3994 	if (rootmnt)
3995 		mntput(rootmnt);
3996 	if (pwdmnt)
3997 		mntput(pwdmnt);
3998 
3999 	return new_ns;
4000 }
4001 
4002 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4003 {
4004 	struct mount *mnt = real_mount(m);
4005 	struct mnt_namespace *ns;
4006 	struct super_block *s;
4007 	struct path path;
4008 	int err;
4009 
4010 	ns = alloc_mnt_ns(&init_user_ns, true);
4011 	if (IS_ERR(ns)) {
4012 		mntput(m);
4013 		return ERR_CAST(ns);
4014 	}
4015 	ns->root = mnt;
4016 	ns->nr_mounts++;
4017 	mnt_add_to_ns(ns, mnt);
4018 
4019 	err = vfs_path_lookup(m->mnt_root, m,
4020 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4021 
4022 	put_mnt_ns(ns);
4023 
4024 	if (err)
4025 		return ERR_PTR(err);
4026 
4027 	/* trade a vfsmount reference for active sb one */
4028 	s = path.mnt->mnt_sb;
4029 	atomic_inc(&s->s_active);
4030 	mntput(path.mnt);
4031 	/* lock the sucker */
4032 	down_write(&s->s_umount);
4033 	/* ... and return the root of (sub)tree on it */
4034 	return path.dentry;
4035 }
4036 EXPORT_SYMBOL(mount_subtree);
4037 
4038 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4039 		char __user *, type, unsigned long, flags, void __user *, data)
4040 {
4041 	int ret;
4042 	char *kernel_type;
4043 	char *kernel_dev;
4044 	void *options;
4045 
4046 	kernel_type = copy_mount_string(type);
4047 	ret = PTR_ERR(kernel_type);
4048 	if (IS_ERR(kernel_type))
4049 		goto out_type;
4050 
4051 	kernel_dev = copy_mount_string(dev_name);
4052 	ret = PTR_ERR(kernel_dev);
4053 	if (IS_ERR(kernel_dev))
4054 		goto out_dev;
4055 
4056 	options = copy_mount_options(data);
4057 	ret = PTR_ERR(options);
4058 	if (IS_ERR(options))
4059 		goto out_data;
4060 
4061 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4062 
4063 	kfree(options);
4064 out_data:
4065 	kfree(kernel_dev);
4066 out_dev:
4067 	kfree(kernel_type);
4068 out_type:
4069 	return ret;
4070 }
4071 
4072 #define FSMOUNT_VALID_FLAGS                                                    \
4073 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4074 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4075 	 MOUNT_ATTR_NOSYMFOLLOW)
4076 
4077 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4078 
4079 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4080 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4081 
4082 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4083 {
4084 	unsigned int mnt_flags = 0;
4085 
4086 	if (attr_flags & MOUNT_ATTR_RDONLY)
4087 		mnt_flags |= MNT_READONLY;
4088 	if (attr_flags & MOUNT_ATTR_NOSUID)
4089 		mnt_flags |= MNT_NOSUID;
4090 	if (attr_flags & MOUNT_ATTR_NODEV)
4091 		mnt_flags |= MNT_NODEV;
4092 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4093 		mnt_flags |= MNT_NOEXEC;
4094 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4095 		mnt_flags |= MNT_NODIRATIME;
4096 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4097 		mnt_flags |= MNT_NOSYMFOLLOW;
4098 
4099 	return mnt_flags;
4100 }
4101 
4102 /*
4103  * Create a kernel mount representation for a new, prepared superblock
4104  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4105  */
4106 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4107 		unsigned int, attr_flags)
4108 {
4109 	struct mnt_namespace *ns;
4110 	struct fs_context *fc;
4111 	struct file *file;
4112 	struct path newmount;
4113 	struct mount *mnt;
4114 	unsigned int mnt_flags = 0;
4115 	long ret;
4116 
4117 	if (!may_mount())
4118 		return -EPERM;
4119 
4120 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4121 		return -EINVAL;
4122 
4123 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4124 		return -EINVAL;
4125 
4126 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4127 
4128 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4129 	case MOUNT_ATTR_STRICTATIME:
4130 		break;
4131 	case MOUNT_ATTR_NOATIME:
4132 		mnt_flags |= MNT_NOATIME;
4133 		break;
4134 	case MOUNT_ATTR_RELATIME:
4135 		mnt_flags |= MNT_RELATIME;
4136 		break;
4137 	default:
4138 		return -EINVAL;
4139 	}
4140 
4141 	CLASS(fd, f)(fs_fd);
4142 	if (fd_empty(f))
4143 		return -EBADF;
4144 
4145 	if (fd_file(f)->f_op != &fscontext_fops)
4146 		return -EINVAL;
4147 
4148 	fc = fd_file(f)->private_data;
4149 
4150 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4151 	if (ret < 0)
4152 		return ret;
4153 
4154 	/* There must be a valid superblock or we can't mount it */
4155 	ret = -EINVAL;
4156 	if (!fc->root)
4157 		goto err_unlock;
4158 
4159 	ret = -EPERM;
4160 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4161 		pr_warn("VFS: Mount too revealing\n");
4162 		goto err_unlock;
4163 	}
4164 
4165 	ret = -EBUSY;
4166 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4167 		goto err_unlock;
4168 
4169 	if (fc->sb_flags & SB_MANDLOCK)
4170 		warn_mandlock();
4171 
4172 	newmount.mnt = vfs_create_mount(fc);
4173 	if (IS_ERR(newmount.mnt)) {
4174 		ret = PTR_ERR(newmount.mnt);
4175 		goto err_unlock;
4176 	}
4177 	newmount.dentry = dget(fc->root);
4178 	newmount.mnt->mnt_flags = mnt_flags;
4179 
4180 	/* We've done the mount bit - now move the file context into more or
4181 	 * less the same state as if we'd done an fspick().  We don't want to
4182 	 * do any memory allocation or anything like that at this point as we
4183 	 * don't want to have to handle any errors incurred.
4184 	 */
4185 	vfs_clean_context(fc);
4186 
4187 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4188 	if (IS_ERR(ns)) {
4189 		ret = PTR_ERR(ns);
4190 		goto err_path;
4191 	}
4192 	mnt = real_mount(newmount.mnt);
4193 	ns->root = mnt;
4194 	ns->nr_mounts = 1;
4195 	mnt_add_to_ns(ns, mnt);
4196 	mntget(newmount.mnt);
4197 
4198 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4199 	 * it, not just simply put it.
4200 	 */
4201 	file = dentry_open(&newmount, O_PATH, fc->cred);
4202 	if (IS_ERR(file)) {
4203 		dissolve_on_fput(newmount.mnt);
4204 		ret = PTR_ERR(file);
4205 		goto err_path;
4206 	}
4207 	file->f_mode |= FMODE_NEED_UNMOUNT;
4208 
4209 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4210 	if (ret >= 0)
4211 		fd_install(ret, file);
4212 	else
4213 		fput(file);
4214 
4215 err_path:
4216 	path_put(&newmount);
4217 err_unlock:
4218 	mutex_unlock(&fc->uapi_mutex);
4219 	return ret;
4220 }
4221 
4222 /*
4223  * Move a mount from one place to another.  In combination with
4224  * fsopen()/fsmount() this is used to install a new mount and in combination
4225  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4226  * a mount subtree.
4227  *
4228  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4229  */
4230 SYSCALL_DEFINE5(move_mount,
4231 		int, from_dfd, const char __user *, from_pathname,
4232 		int, to_dfd, const char __user *, to_pathname,
4233 		unsigned int, flags)
4234 {
4235 	struct path from_path, to_path;
4236 	unsigned int lflags;
4237 	int ret = 0;
4238 
4239 	if (!may_mount())
4240 		return -EPERM;
4241 
4242 	if (flags & ~MOVE_MOUNT__MASK)
4243 		return -EINVAL;
4244 
4245 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4246 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4247 		return -EINVAL;
4248 
4249 	/* If someone gives a pathname, they aren't permitted to move
4250 	 * from an fd that requires unmount as we can't get at the flag
4251 	 * to clear it afterwards.
4252 	 */
4253 	lflags = 0;
4254 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4255 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4256 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4257 
4258 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4259 	if (ret < 0)
4260 		return ret;
4261 
4262 	lflags = 0;
4263 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
4264 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
4265 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
4266 
4267 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4268 	if (ret < 0)
4269 		goto out_from;
4270 
4271 	ret = security_move_mount(&from_path, &to_path);
4272 	if (ret < 0)
4273 		goto out_to;
4274 
4275 	if (flags & MOVE_MOUNT_SET_GROUP)
4276 		ret = do_set_group(&from_path, &to_path);
4277 	else
4278 		ret = do_move_mount(&from_path, &to_path,
4279 				    (flags & MOVE_MOUNT_BENEATH));
4280 
4281 out_to:
4282 	path_put(&to_path);
4283 out_from:
4284 	path_put(&from_path);
4285 	return ret;
4286 }
4287 
4288 /*
4289  * Return true if path is reachable from root
4290  *
4291  * namespace_sem or mount_lock is held
4292  */
4293 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4294 			 const struct path *root)
4295 {
4296 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4297 		dentry = mnt->mnt_mountpoint;
4298 		mnt = mnt->mnt_parent;
4299 	}
4300 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4301 }
4302 
4303 bool path_is_under(const struct path *path1, const struct path *path2)
4304 {
4305 	bool res;
4306 	read_seqlock_excl(&mount_lock);
4307 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4308 	read_sequnlock_excl(&mount_lock);
4309 	return res;
4310 }
4311 EXPORT_SYMBOL(path_is_under);
4312 
4313 /*
4314  * pivot_root Semantics:
4315  * Moves the root file system of the current process to the directory put_old,
4316  * makes new_root as the new root file system of the current process, and sets
4317  * root/cwd of all processes which had them on the current root to new_root.
4318  *
4319  * Restrictions:
4320  * The new_root and put_old must be directories, and  must not be on the
4321  * same file  system as the current process root. The put_old  must  be
4322  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4323  * pointed to by put_old must yield the same directory as new_root. No other
4324  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4325  *
4326  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4327  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4328  * in this situation.
4329  *
4330  * Notes:
4331  *  - we don't move root/cwd if they are not at the root (reason: if something
4332  *    cared enough to change them, it's probably wrong to force them elsewhere)
4333  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4334  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4335  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4336  *    first.
4337  */
4338 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4339 		const char __user *, put_old)
4340 {
4341 	struct path new, old, root;
4342 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4343 	struct mountpoint *old_mp, *root_mp;
4344 	int error;
4345 
4346 	if (!may_mount())
4347 		return -EPERM;
4348 
4349 	error = user_path_at(AT_FDCWD, new_root,
4350 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4351 	if (error)
4352 		goto out0;
4353 
4354 	error = user_path_at(AT_FDCWD, put_old,
4355 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4356 	if (error)
4357 		goto out1;
4358 
4359 	error = security_sb_pivotroot(&old, &new);
4360 	if (error)
4361 		goto out2;
4362 
4363 	get_fs_root(current->fs, &root);
4364 	old_mp = lock_mount(&old);
4365 	error = PTR_ERR(old_mp);
4366 	if (IS_ERR(old_mp))
4367 		goto out3;
4368 
4369 	error = -EINVAL;
4370 	new_mnt = real_mount(new.mnt);
4371 	root_mnt = real_mount(root.mnt);
4372 	old_mnt = real_mount(old.mnt);
4373 	ex_parent = new_mnt->mnt_parent;
4374 	root_parent = root_mnt->mnt_parent;
4375 	if (IS_MNT_SHARED(old_mnt) ||
4376 		IS_MNT_SHARED(ex_parent) ||
4377 		IS_MNT_SHARED(root_parent))
4378 		goto out4;
4379 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4380 		goto out4;
4381 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4382 		goto out4;
4383 	error = -ENOENT;
4384 	if (d_unlinked(new.dentry))
4385 		goto out4;
4386 	error = -EBUSY;
4387 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4388 		goto out4; /* loop, on the same file system  */
4389 	error = -EINVAL;
4390 	if (!path_mounted(&root))
4391 		goto out4; /* not a mountpoint */
4392 	if (!mnt_has_parent(root_mnt))
4393 		goto out4; /* not attached */
4394 	if (!path_mounted(&new))
4395 		goto out4; /* not a mountpoint */
4396 	if (!mnt_has_parent(new_mnt))
4397 		goto out4; /* not attached */
4398 	/* make sure we can reach put_old from new_root */
4399 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4400 		goto out4;
4401 	/* make certain new is below the root */
4402 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4403 		goto out4;
4404 	lock_mount_hash();
4405 	umount_mnt(new_mnt);
4406 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
4407 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4408 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4409 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4410 	}
4411 	/* mount old root on put_old */
4412 	attach_mnt(root_mnt, old_mnt, old_mp, false);
4413 	/* mount new_root on / */
4414 	attach_mnt(new_mnt, root_parent, root_mp, false);
4415 	mnt_add_count(root_parent, -1);
4416 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4417 	/* A moved mount should not expire automatically */
4418 	list_del_init(&new_mnt->mnt_expire);
4419 	put_mountpoint(root_mp);
4420 	unlock_mount_hash();
4421 	chroot_fs_refs(&root, &new);
4422 	error = 0;
4423 out4:
4424 	unlock_mount(old_mp);
4425 	if (!error)
4426 		mntput_no_expire(ex_parent);
4427 out3:
4428 	path_put(&root);
4429 out2:
4430 	path_put(&old);
4431 out1:
4432 	path_put(&new);
4433 out0:
4434 	return error;
4435 }
4436 
4437 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4438 {
4439 	unsigned int flags = mnt->mnt.mnt_flags;
4440 
4441 	/*  flags to clear */
4442 	flags &= ~kattr->attr_clr;
4443 	/* flags to raise */
4444 	flags |= kattr->attr_set;
4445 
4446 	return flags;
4447 }
4448 
4449 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4450 {
4451 	struct vfsmount *m = &mnt->mnt;
4452 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4453 
4454 	if (!kattr->mnt_idmap)
4455 		return 0;
4456 
4457 	/*
4458 	 * Creating an idmapped mount with the filesystem wide idmapping
4459 	 * doesn't make sense so block that. We don't allow mushy semantics.
4460 	 */
4461 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4462 		return -EINVAL;
4463 
4464 	/*
4465 	 * Once a mount has been idmapped we don't allow it to change its
4466 	 * mapping. It makes things simpler and callers can just create
4467 	 * another bind-mount they can idmap if they want to.
4468 	 */
4469 	if (is_idmapped_mnt(m))
4470 		return -EPERM;
4471 
4472 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4473 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4474 		return -EINVAL;
4475 
4476 	/* The filesystem has turned off idmapped mounts. */
4477 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4478 		return -EINVAL;
4479 
4480 	/* We're not controlling the superblock. */
4481 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4482 		return -EPERM;
4483 
4484 	/* Mount has already been visible in the filesystem hierarchy. */
4485 	if (!is_anon_ns(mnt->mnt_ns))
4486 		return -EINVAL;
4487 
4488 	return 0;
4489 }
4490 
4491 /**
4492  * mnt_allow_writers() - check whether the attribute change allows writers
4493  * @kattr: the new mount attributes
4494  * @mnt: the mount to which @kattr will be applied
4495  *
4496  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4497  *
4498  * Return: true if writers need to be held, false if not
4499  */
4500 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4501 				     const struct mount *mnt)
4502 {
4503 	return (!(kattr->attr_set & MNT_READONLY) ||
4504 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4505 	       !kattr->mnt_idmap;
4506 }
4507 
4508 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4509 {
4510 	struct mount *m;
4511 	int err;
4512 
4513 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4514 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4515 			err = -EPERM;
4516 			break;
4517 		}
4518 
4519 		err = can_idmap_mount(kattr, m);
4520 		if (err)
4521 			break;
4522 
4523 		if (!mnt_allow_writers(kattr, m)) {
4524 			err = mnt_hold_writers(m);
4525 			if (err)
4526 				break;
4527 		}
4528 
4529 		if (!kattr->recurse)
4530 			return 0;
4531 	}
4532 
4533 	if (err) {
4534 		struct mount *p;
4535 
4536 		/*
4537 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4538 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4539 		 * mounts and needs to take care to include the first mount.
4540 		 */
4541 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4542 			/* If we had to hold writers unblock them. */
4543 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4544 				mnt_unhold_writers(p);
4545 
4546 			/*
4547 			 * We're done once the first mount we changed got
4548 			 * MNT_WRITE_HOLD unset.
4549 			 */
4550 			if (p == m)
4551 				break;
4552 		}
4553 	}
4554 	return err;
4555 }
4556 
4557 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4558 {
4559 	if (!kattr->mnt_idmap)
4560 		return;
4561 
4562 	/*
4563 	 * Pairs with smp_load_acquire() in mnt_idmap().
4564 	 *
4565 	 * Since we only allow a mount to change the idmapping once and
4566 	 * verified this in can_idmap_mount() we know that the mount has
4567 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4568 	 * references.
4569 	 */
4570 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4571 }
4572 
4573 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4574 {
4575 	struct mount *m;
4576 
4577 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4578 		unsigned int flags;
4579 
4580 		do_idmap_mount(kattr, m);
4581 		flags = recalc_flags(kattr, m);
4582 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4583 
4584 		/* If we had to hold writers unblock them. */
4585 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4586 			mnt_unhold_writers(m);
4587 
4588 		if (kattr->propagation)
4589 			change_mnt_propagation(m, kattr->propagation);
4590 		if (!kattr->recurse)
4591 			break;
4592 	}
4593 	touch_mnt_namespace(mnt->mnt_ns);
4594 }
4595 
4596 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4597 {
4598 	struct mount *mnt = real_mount(path->mnt);
4599 	int err = 0;
4600 
4601 	if (!path_mounted(path))
4602 		return -EINVAL;
4603 
4604 	if (kattr->mnt_userns) {
4605 		struct mnt_idmap *mnt_idmap;
4606 
4607 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4608 		if (IS_ERR(mnt_idmap))
4609 			return PTR_ERR(mnt_idmap);
4610 		kattr->mnt_idmap = mnt_idmap;
4611 	}
4612 
4613 	if (kattr->propagation) {
4614 		/*
4615 		 * Only take namespace_lock() if we're actually changing
4616 		 * propagation.
4617 		 */
4618 		namespace_lock();
4619 		if (kattr->propagation == MS_SHARED) {
4620 			err = invent_group_ids(mnt, kattr->recurse);
4621 			if (err) {
4622 				namespace_unlock();
4623 				return err;
4624 			}
4625 		}
4626 	}
4627 
4628 	err = -EINVAL;
4629 	lock_mount_hash();
4630 
4631 	/* Ensure that this isn't anything purely vfs internal. */
4632 	if (!is_mounted(&mnt->mnt))
4633 		goto out;
4634 
4635 	/*
4636 	 * If this is an attached mount make sure it's located in the callers
4637 	 * mount namespace. If it's not don't let the caller interact with it.
4638 	 *
4639 	 * If this mount doesn't have a parent it's most often simply a
4640 	 * detached mount with an anonymous mount namespace. IOW, something
4641 	 * that's simply not attached yet. But there are apparently also users
4642 	 * that do change mount properties on the rootfs itself. That obviously
4643 	 * neither has a parent nor is it a detached mount so we cannot
4644 	 * unconditionally check for detached mounts.
4645 	 */
4646 	if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4647 		goto out;
4648 
4649 	/*
4650 	 * First, we get the mount tree in a shape where we can change mount
4651 	 * properties without failure. If we succeeded to do so we commit all
4652 	 * changes and if we failed we clean up.
4653 	 */
4654 	err = mount_setattr_prepare(kattr, mnt);
4655 	if (!err)
4656 		mount_setattr_commit(kattr, mnt);
4657 
4658 out:
4659 	unlock_mount_hash();
4660 
4661 	if (kattr->propagation) {
4662 		if (err)
4663 			cleanup_group_ids(mnt, NULL);
4664 		namespace_unlock();
4665 	}
4666 
4667 	return err;
4668 }
4669 
4670 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4671 				struct mount_kattr *kattr, unsigned int flags)
4672 {
4673 	struct ns_common *ns;
4674 	struct user_namespace *mnt_userns;
4675 
4676 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4677 		return 0;
4678 
4679 	/*
4680 	 * We currently do not support clearing an idmapped mount. If this ever
4681 	 * is a use-case we can revisit this but for now let's keep it simple
4682 	 * and not allow it.
4683 	 */
4684 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4685 		return -EINVAL;
4686 
4687 	if (attr->userns_fd > INT_MAX)
4688 		return -EINVAL;
4689 
4690 	CLASS(fd, f)(attr->userns_fd);
4691 	if (fd_empty(f))
4692 		return -EBADF;
4693 
4694 	if (!proc_ns_file(fd_file(f)))
4695 		return -EINVAL;
4696 
4697 	ns = get_proc_ns(file_inode(fd_file(f)));
4698 	if (ns->ops->type != CLONE_NEWUSER)
4699 		return -EINVAL;
4700 
4701 	/*
4702 	 * The initial idmapping cannot be used to create an idmapped
4703 	 * mount. We use the initial idmapping as an indicator of a mount
4704 	 * that is not idmapped. It can simply be passed into helpers that
4705 	 * are aware of idmapped mounts as a convenient shortcut. A user
4706 	 * can just create a dedicated identity mapping to achieve the same
4707 	 * result.
4708 	 */
4709 	mnt_userns = container_of(ns, struct user_namespace, ns);
4710 	if (mnt_userns == &init_user_ns)
4711 		return -EPERM;
4712 
4713 	/* We're not controlling the target namespace. */
4714 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4715 		return -EPERM;
4716 
4717 	kattr->mnt_userns = get_user_ns(mnt_userns);
4718 	return 0;
4719 }
4720 
4721 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4722 			     struct mount_kattr *kattr, unsigned int flags)
4723 {
4724 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4725 
4726 	if (flags & AT_NO_AUTOMOUNT)
4727 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4728 	if (flags & AT_SYMLINK_NOFOLLOW)
4729 		lookup_flags &= ~LOOKUP_FOLLOW;
4730 	if (flags & AT_EMPTY_PATH)
4731 		lookup_flags |= LOOKUP_EMPTY;
4732 
4733 	*kattr = (struct mount_kattr) {
4734 		.lookup_flags	= lookup_flags,
4735 		.recurse	= !!(flags & AT_RECURSIVE),
4736 	};
4737 
4738 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4739 		return -EINVAL;
4740 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4741 		return -EINVAL;
4742 	kattr->propagation = attr->propagation;
4743 
4744 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4745 		return -EINVAL;
4746 
4747 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4748 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4749 
4750 	/*
4751 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4752 	 * users wanting to transition to a different atime setting cannot
4753 	 * simply specify the atime setting in @attr_set, but must also
4754 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4755 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4756 	 * @attr_clr and that @attr_set can't have any atime bits set if
4757 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4758 	 */
4759 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4760 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4761 			return -EINVAL;
4762 
4763 		/*
4764 		 * Clear all previous time settings as they are mutually
4765 		 * exclusive.
4766 		 */
4767 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4768 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4769 		case MOUNT_ATTR_RELATIME:
4770 			kattr->attr_set |= MNT_RELATIME;
4771 			break;
4772 		case MOUNT_ATTR_NOATIME:
4773 			kattr->attr_set |= MNT_NOATIME;
4774 			break;
4775 		case MOUNT_ATTR_STRICTATIME:
4776 			break;
4777 		default:
4778 			return -EINVAL;
4779 		}
4780 	} else {
4781 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4782 			return -EINVAL;
4783 	}
4784 
4785 	return build_mount_idmapped(attr, usize, kattr, flags);
4786 }
4787 
4788 static void finish_mount_kattr(struct mount_kattr *kattr)
4789 {
4790 	put_user_ns(kattr->mnt_userns);
4791 	kattr->mnt_userns = NULL;
4792 
4793 	if (kattr->mnt_idmap)
4794 		mnt_idmap_put(kattr->mnt_idmap);
4795 }
4796 
4797 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4798 		unsigned int, flags, struct mount_attr __user *, uattr,
4799 		size_t, usize)
4800 {
4801 	int err;
4802 	struct path target;
4803 	struct mount_attr attr;
4804 	struct mount_kattr kattr;
4805 
4806 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4807 
4808 	if (flags & ~(AT_EMPTY_PATH |
4809 		      AT_RECURSIVE |
4810 		      AT_SYMLINK_NOFOLLOW |
4811 		      AT_NO_AUTOMOUNT))
4812 		return -EINVAL;
4813 
4814 	if (unlikely(usize > PAGE_SIZE))
4815 		return -E2BIG;
4816 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4817 		return -EINVAL;
4818 
4819 	if (!may_mount())
4820 		return -EPERM;
4821 
4822 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4823 	if (err)
4824 		return err;
4825 
4826 	/* Don't bother walking through the mounts if this is a nop. */
4827 	if (attr.attr_set == 0 &&
4828 	    attr.attr_clr == 0 &&
4829 	    attr.propagation == 0)
4830 		return 0;
4831 
4832 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4833 	if (err)
4834 		return err;
4835 
4836 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4837 	if (!err) {
4838 		err = do_mount_setattr(&target, &kattr);
4839 		path_put(&target);
4840 	}
4841 	finish_mount_kattr(&kattr);
4842 	return err;
4843 }
4844 
4845 int show_path(struct seq_file *m, struct dentry *root)
4846 {
4847 	if (root->d_sb->s_op->show_path)
4848 		return root->d_sb->s_op->show_path(m, root);
4849 
4850 	seq_dentry(m, root, " \t\n\\");
4851 	return 0;
4852 }
4853 
4854 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4855 {
4856 	struct mount *mnt = mnt_find_id_at(ns, id);
4857 
4858 	if (!mnt || mnt->mnt_id_unique != id)
4859 		return NULL;
4860 
4861 	return &mnt->mnt;
4862 }
4863 
4864 struct kstatmount {
4865 	struct statmount __user *buf;
4866 	size_t bufsize;
4867 	struct vfsmount *mnt;
4868 	u64 mask;
4869 	struct path root;
4870 	struct statmount sm;
4871 	struct seq_file seq;
4872 };
4873 
4874 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4875 {
4876 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4877 	u64 attr_flags = 0;
4878 
4879 	if (mnt_flags & MNT_READONLY)
4880 		attr_flags |= MOUNT_ATTR_RDONLY;
4881 	if (mnt_flags & MNT_NOSUID)
4882 		attr_flags |= MOUNT_ATTR_NOSUID;
4883 	if (mnt_flags & MNT_NODEV)
4884 		attr_flags |= MOUNT_ATTR_NODEV;
4885 	if (mnt_flags & MNT_NOEXEC)
4886 		attr_flags |= MOUNT_ATTR_NOEXEC;
4887 	if (mnt_flags & MNT_NODIRATIME)
4888 		attr_flags |= MOUNT_ATTR_NODIRATIME;
4889 	if (mnt_flags & MNT_NOSYMFOLLOW)
4890 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4891 
4892 	if (mnt_flags & MNT_NOATIME)
4893 		attr_flags |= MOUNT_ATTR_NOATIME;
4894 	else if (mnt_flags & MNT_RELATIME)
4895 		attr_flags |= MOUNT_ATTR_RELATIME;
4896 	else
4897 		attr_flags |= MOUNT_ATTR_STRICTATIME;
4898 
4899 	if (is_idmapped_mnt(mnt))
4900 		attr_flags |= MOUNT_ATTR_IDMAP;
4901 
4902 	return attr_flags;
4903 }
4904 
4905 static u64 mnt_to_propagation_flags(struct mount *m)
4906 {
4907 	u64 propagation = 0;
4908 
4909 	if (IS_MNT_SHARED(m))
4910 		propagation |= MS_SHARED;
4911 	if (IS_MNT_SLAVE(m))
4912 		propagation |= MS_SLAVE;
4913 	if (IS_MNT_UNBINDABLE(m))
4914 		propagation |= MS_UNBINDABLE;
4915 	if (!propagation)
4916 		propagation |= MS_PRIVATE;
4917 
4918 	return propagation;
4919 }
4920 
4921 static void statmount_sb_basic(struct kstatmount *s)
4922 {
4923 	struct super_block *sb = s->mnt->mnt_sb;
4924 
4925 	s->sm.mask |= STATMOUNT_SB_BASIC;
4926 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
4927 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
4928 	s->sm.sb_magic = sb->s_magic;
4929 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4930 }
4931 
4932 static void statmount_mnt_basic(struct kstatmount *s)
4933 {
4934 	struct mount *m = real_mount(s->mnt);
4935 
4936 	s->sm.mask |= STATMOUNT_MNT_BASIC;
4937 	s->sm.mnt_id = m->mnt_id_unique;
4938 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4939 	s->sm.mnt_id_old = m->mnt_id;
4940 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4941 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4942 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4943 	s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4944 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4945 }
4946 
4947 static void statmount_propagate_from(struct kstatmount *s)
4948 {
4949 	struct mount *m = real_mount(s->mnt);
4950 
4951 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4952 	if (IS_MNT_SLAVE(m))
4953 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4954 }
4955 
4956 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4957 {
4958 	int ret;
4959 	size_t start = seq->count;
4960 
4961 	ret = show_path(seq, s->mnt->mnt_root);
4962 	if (ret)
4963 		return ret;
4964 
4965 	if (unlikely(seq_has_overflowed(seq)))
4966 		return -EAGAIN;
4967 
4968 	/*
4969          * Unescape the result. It would be better if supplied string was not
4970          * escaped in the first place, but that's a pretty invasive change.
4971          */
4972 	seq->buf[seq->count] = '\0';
4973 	seq->count = start;
4974 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4975 	return 0;
4976 }
4977 
4978 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4979 {
4980 	struct vfsmount *mnt = s->mnt;
4981 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4982 	int err;
4983 
4984 	err = seq_path_root(seq, &mnt_path, &s->root, "");
4985 	return err == SEQ_SKIP ? 0 : err;
4986 }
4987 
4988 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4989 {
4990 	struct super_block *sb = s->mnt->mnt_sb;
4991 
4992 	seq_puts(seq, sb->s_type->name);
4993 	return 0;
4994 }
4995 
4996 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
4997 {
4998 	struct super_block *sb = s->mnt->mnt_sb;
4999 
5000 	if (sb->s_subtype)
5001 		seq_puts(seq, sb->s_subtype);
5002 }
5003 
5004 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5005 {
5006 	struct super_block *sb = s->mnt->mnt_sb;
5007 	struct mount *r = real_mount(s->mnt);
5008 
5009 	if (sb->s_op->show_devname) {
5010 		size_t start = seq->count;
5011 		int ret;
5012 
5013 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5014 		if (ret)
5015 			return ret;
5016 
5017 		if (unlikely(seq_has_overflowed(seq)))
5018 			return -EAGAIN;
5019 
5020 		/* Unescape the result */
5021 		seq->buf[seq->count] = '\0';
5022 		seq->count = start;
5023 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5024 	} else if (r->mnt_devname) {
5025 		seq_puts(seq, r->mnt_devname);
5026 	}
5027 	return 0;
5028 }
5029 
5030 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5031 {
5032 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5033 	s->sm.mnt_ns_id = ns->seq;
5034 }
5035 
5036 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5037 {
5038 	struct vfsmount *mnt = s->mnt;
5039 	struct super_block *sb = mnt->mnt_sb;
5040 	int err;
5041 
5042 	if (sb->s_op->show_options) {
5043 		size_t start = seq->count;
5044 
5045 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5046 		if (err)
5047 			return err;
5048 
5049 		if (unlikely(seq_has_overflowed(seq)))
5050 			return -EAGAIN;
5051 
5052 		if (seq->count == start)
5053 			return 0;
5054 
5055 		/* skip leading comma */
5056 		memmove(seq->buf + start, seq->buf + start + 1,
5057 			seq->count - start - 1);
5058 		seq->count--;
5059 	}
5060 
5061 	return 0;
5062 }
5063 
5064 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5065 {
5066 	char *buf_end, *opt_end, *src, *dst;
5067 	int count = 0;
5068 
5069 	if (unlikely(seq_has_overflowed(seq)))
5070 		return -EAGAIN;
5071 
5072 	buf_end = seq->buf + seq->count;
5073 	dst = seq->buf + start;
5074 	src = dst + 1;	/* skip initial comma */
5075 
5076 	if (src >= buf_end) {
5077 		seq->count = start;
5078 		return 0;
5079 	}
5080 
5081 	*buf_end = '\0';
5082 	for (; src < buf_end; src = opt_end + 1) {
5083 		opt_end = strchrnul(src, ',');
5084 		*opt_end = '\0';
5085 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5086 		if (WARN_ON_ONCE(++count == INT_MAX))
5087 			return -EOVERFLOW;
5088 	}
5089 	seq->count = dst - 1 - seq->buf;
5090 	return count;
5091 }
5092 
5093 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5094 {
5095 	struct vfsmount *mnt = s->mnt;
5096 	struct super_block *sb = mnt->mnt_sb;
5097 	size_t start = seq->count;
5098 	int err;
5099 
5100 	if (!sb->s_op->show_options)
5101 		return 0;
5102 
5103 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5104 	if (err)
5105 		return err;
5106 
5107 	err = statmount_opt_process(seq, start);
5108 	if (err < 0)
5109 		return err;
5110 
5111 	s->sm.opt_num = err;
5112 	return 0;
5113 }
5114 
5115 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5116 {
5117 	struct vfsmount *mnt = s->mnt;
5118 	struct super_block *sb = mnt->mnt_sb;
5119 	size_t start = seq->count;
5120 	int err;
5121 
5122 	err = security_sb_show_options(seq, sb);
5123 	if (err)
5124 		return err;
5125 
5126 	err = statmount_opt_process(seq, start);
5127 	if (err < 0)
5128 		return err;
5129 
5130 	s->sm.opt_sec_num = err;
5131 	return 0;
5132 }
5133 
5134 static int statmount_string(struct kstatmount *s, u64 flag)
5135 {
5136 	int ret = 0;
5137 	size_t kbufsize;
5138 	struct seq_file *seq = &s->seq;
5139 	struct statmount *sm = &s->sm;
5140 	u32 start = seq->count;
5141 
5142 	switch (flag) {
5143 	case STATMOUNT_FS_TYPE:
5144 		sm->fs_type = start;
5145 		ret = statmount_fs_type(s, seq);
5146 		break;
5147 	case STATMOUNT_MNT_ROOT:
5148 		sm->mnt_root = start;
5149 		ret = statmount_mnt_root(s, seq);
5150 		break;
5151 	case STATMOUNT_MNT_POINT:
5152 		sm->mnt_point = start;
5153 		ret = statmount_mnt_point(s, seq);
5154 		break;
5155 	case STATMOUNT_MNT_OPTS:
5156 		sm->mnt_opts = start;
5157 		ret = statmount_mnt_opts(s, seq);
5158 		break;
5159 	case STATMOUNT_OPT_ARRAY:
5160 		sm->opt_array = start;
5161 		ret = statmount_opt_array(s, seq);
5162 		break;
5163 	case STATMOUNT_OPT_SEC_ARRAY:
5164 		sm->opt_sec_array = start;
5165 		ret = statmount_opt_sec_array(s, seq);
5166 		break;
5167 	case STATMOUNT_FS_SUBTYPE:
5168 		sm->fs_subtype = start;
5169 		statmount_fs_subtype(s, seq);
5170 		break;
5171 	case STATMOUNT_SB_SOURCE:
5172 		sm->sb_source = start;
5173 		ret = statmount_sb_source(s, seq);
5174 		break;
5175 	default:
5176 		WARN_ON_ONCE(true);
5177 		return -EINVAL;
5178 	}
5179 
5180 	/*
5181 	 * If nothing was emitted, return to avoid setting the flag
5182 	 * and terminating the buffer.
5183 	 */
5184 	if (seq->count == start)
5185 		return ret;
5186 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5187 		return -EOVERFLOW;
5188 	if (kbufsize >= s->bufsize)
5189 		return -EOVERFLOW;
5190 
5191 	/* signal a retry */
5192 	if (unlikely(seq_has_overflowed(seq)))
5193 		return -EAGAIN;
5194 
5195 	if (ret)
5196 		return ret;
5197 
5198 	seq->buf[seq->count++] = '\0';
5199 	sm->mask |= flag;
5200 	return 0;
5201 }
5202 
5203 static int copy_statmount_to_user(struct kstatmount *s)
5204 {
5205 	struct statmount *sm = &s->sm;
5206 	struct seq_file *seq = &s->seq;
5207 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5208 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5209 
5210 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5211 		return -EFAULT;
5212 
5213 	/* Return the number of bytes copied to the buffer */
5214 	sm->size = copysize + seq->count;
5215 	if (copy_to_user(s->buf, sm, copysize))
5216 		return -EFAULT;
5217 
5218 	return 0;
5219 }
5220 
5221 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5222 {
5223 	struct rb_node *node;
5224 
5225 	if (reverse)
5226 		node = rb_prev(&curr->mnt_node);
5227 	else
5228 		node = rb_next(&curr->mnt_node);
5229 
5230 	return node_to_mount(node);
5231 }
5232 
5233 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5234 {
5235 	struct mount *first, *child;
5236 
5237 	rwsem_assert_held(&namespace_sem);
5238 
5239 	/* We're looking at our own ns, just use get_fs_root. */
5240 	if (ns == current->nsproxy->mnt_ns) {
5241 		get_fs_root(current->fs, root);
5242 		return 0;
5243 	}
5244 
5245 	/*
5246 	 * We have to find the first mount in our ns and use that, however it
5247 	 * may not exist, so handle that properly.
5248 	 */
5249 	if (RB_EMPTY_ROOT(&ns->mounts))
5250 		return -ENOENT;
5251 
5252 	first = child = ns->root;
5253 	for (;;) {
5254 		child = listmnt_next(child, false);
5255 		if (!child)
5256 			return -ENOENT;
5257 		if (child->mnt_parent == first)
5258 			break;
5259 	}
5260 
5261 	root->mnt = mntget(&child->mnt);
5262 	root->dentry = dget(root->mnt->mnt_root);
5263 	return 0;
5264 }
5265 
5266 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5267 			struct mnt_namespace *ns)
5268 {
5269 	struct path root __free(path_put) = {};
5270 	struct mount *m;
5271 	int err;
5272 
5273 	/* Has the namespace already been emptied? */
5274 	if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts))
5275 		return -ENOENT;
5276 
5277 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5278 	if (!s->mnt)
5279 		return -ENOENT;
5280 
5281 	err = grab_requested_root(ns, &root);
5282 	if (err)
5283 		return err;
5284 
5285 	/*
5286 	 * Don't trigger audit denials. We just want to determine what
5287 	 * mounts to show users.
5288 	 */
5289 	m = real_mount(s->mnt);
5290 	if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5291 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5292 		return -EPERM;
5293 
5294 	err = security_sb_statfs(s->mnt->mnt_root);
5295 	if (err)
5296 		return err;
5297 
5298 	s->root = root;
5299 	if (s->mask & STATMOUNT_SB_BASIC)
5300 		statmount_sb_basic(s);
5301 
5302 	if (s->mask & STATMOUNT_MNT_BASIC)
5303 		statmount_mnt_basic(s);
5304 
5305 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5306 		statmount_propagate_from(s);
5307 
5308 	if (s->mask & STATMOUNT_FS_TYPE)
5309 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5310 
5311 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5312 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5313 
5314 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5315 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5316 
5317 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5318 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5319 
5320 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5321 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5322 
5323 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5324 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5325 
5326 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5327 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5328 
5329 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5330 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5331 
5332 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5333 		statmount_mnt_ns_id(s, ns);
5334 
5335 	if (err)
5336 		return err;
5337 
5338 	return 0;
5339 }
5340 
5341 static inline bool retry_statmount(const long ret, size_t *seq_size)
5342 {
5343 	if (likely(ret != -EAGAIN))
5344 		return false;
5345 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5346 		return false;
5347 	if (unlikely(*seq_size > MAX_RW_COUNT))
5348 		return false;
5349 	return true;
5350 }
5351 
5352 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5353 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5354 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5355 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY)
5356 
5357 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5358 			      struct statmount __user *buf, size_t bufsize,
5359 			      size_t seq_size)
5360 {
5361 	if (!access_ok(buf, bufsize))
5362 		return -EFAULT;
5363 
5364 	memset(ks, 0, sizeof(*ks));
5365 	ks->mask = kreq->param;
5366 	ks->buf = buf;
5367 	ks->bufsize = bufsize;
5368 
5369 	if (ks->mask & STATMOUNT_STRING_REQ) {
5370 		if (bufsize == sizeof(ks->sm))
5371 			return -EOVERFLOW;
5372 
5373 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5374 		if (!ks->seq.buf)
5375 			return -ENOMEM;
5376 
5377 		ks->seq.size = seq_size;
5378 	}
5379 
5380 	return 0;
5381 }
5382 
5383 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5384 			   struct mnt_id_req *kreq)
5385 {
5386 	int ret;
5387 	size_t usize;
5388 
5389 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5390 
5391 	ret = get_user(usize, &req->size);
5392 	if (ret)
5393 		return -EFAULT;
5394 	if (unlikely(usize > PAGE_SIZE))
5395 		return -E2BIG;
5396 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5397 		return -EINVAL;
5398 	memset(kreq, 0, sizeof(*kreq));
5399 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5400 	if (ret)
5401 		return ret;
5402 	if (kreq->spare != 0)
5403 		return -EINVAL;
5404 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5405 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5406 		return -EINVAL;
5407 	return 0;
5408 }
5409 
5410 /*
5411  * If the user requested a specific mount namespace id, look that up and return
5412  * that, or if not simply grab a passive reference on our mount namespace and
5413  * return that.
5414  */
5415 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5416 {
5417 	struct mnt_namespace *mnt_ns;
5418 
5419 	if (kreq->mnt_ns_id && kreq->spare)
5420 		return ERR_PTR(-EINVAL);
5421 
5422 	if (kreq->mnt_ns_id)
5423 		return lookup_mnt_ns(kreq->mnt_ns_id);
5424 
5425 	if (kreq->spare) {
5426 		struct ns_common *ns;
5427 
5428 		CLASS(fd, f)(kreq->spare);
5429 		if (fd_empty(f))
5430 			return ERR_PTR(-EBADF);
5431 
5432 		if (!proc_ns_file(fd_file(f)))
5433 			return ERR_PTR(-EINVAL);
5434 
5435 		ns = get_proc_ns(file_inode(fd_file(f)));
5436 		if (ns->ops->type != CLONE_NEWNS)
5437 			return ERR_PTR(-EINVAL);
5438 
5439 		mnt_ns = to_mnt_ns(ns);
5440 	} else {
5441 		mnt_ns = current->nsproxy->mnt_ns;
5442 	}
5443 
5444 	refcount_inc(&mnt_ns->passive);
5445 	return mnt_ns;
5446 }
5447 
5448 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5449 		struct statmount __user *, buf, size_t, bufsize,
5450 		unsigned int, flags)
5451 {
5452 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5453 	struct kstatmount *ks __free(kfree) = NULL;
5454 	struct mnt_id_req kreq;
5455 	/* We currently support retrieval of 3 strings. */
5456 	size_t seq_size = 3 * PATH_MAX;
5457 	int ret;
5458 
5459 	if (flags)
5460 		return -EINVAL;
5461 
5462 	ret = copy_mnt_id_req(req, &kreq);
5463 	if (ret)
5464 		return ret;
5465 
5466 	ns = grab_requested_mnt_ns(&kreq);
5467 	if (!ns)
5468 		return -ENOENT;
5469 
5470 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5471 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5472 		return -ENOENT;
5473 
5474 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5475 	if (!ks)
5476 		return -ENOMEM;
5477 
5478 retry:
5479 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5480 	if (ret)
5481 		return ret;
5482 
5483 	scoped_guard(rwsem_read, &namespace_sem)
5484 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5485 
5486 	if (!ret)
5487 		ret = copy_statmount_to_user(ks);
5488 	kvfree(ks->seq.buf);
5489 	if (retry_statmount(ret, &seq_size))
5490 		goto retry;
5491 	return ret;
5492 }
5493 
5494 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
5495 			    u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
5496 			    bool reverse)
5497 {
5498 	struct path root __free(path_put) = {};
5499 	struct path orig;
5500 	struct mount *r, *first;
5501 	ssize_t ret;
5502 
5503 	rwsem_assert_held(&namespace_sem);
5504 
5505 	ret = grab_requested_root(ns, &root);
5506 	if (ret)
5507 		return ret;
5508 
5509 	if (mnt_parent_id == LSMT_ROOT) {
5510 		orig = root;
5511 	} else {
5512 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5513 		if (!orig.mnt)
5514 			return -ENOENT;
5515 		orig.dentry = orig.mnt->mnt_root;
5516 	}
5517 
5518 	/*
5519 	 * Don't trigger audit denials. We just want to determine what
5520 	 * mounts to show users.
5521 	 */
5522 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
5523 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5524 		return -EPERM;
5525 
5526 	ret = security_sb_statfs(orig.dentry);
5527 	if (ret)
5528 		return ret;
5529 
5530 	if (!last_mnt_id) {
5531 		if (reverse)
5532 			first = node_to_mount(rb_last(&ns->mounts));
5533 		else
5534 			first = node_to_mount(rb_first(&ns->mounts));
5535 	} else {
5536 		if (reverse)
5537 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5538 		else
5539 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5540 	}
5541 
5542 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5543 		if (r->mnt_id_unique == mnt_parent_id)
5544 			continue;
5545 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5546 			continue;
5547 		*mnt_ids = r->mnt_id_unique;
5548 		mnt_ids++;
5549 		nr_mnt_ids--;
5550 		ret++;
5551 	}
5552 	return ret;
5553 }
5554 
5555 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5556 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5557 {
5558 	u64 *kmnt_ids __free(kvfree) = NULL;
5559 	const size_t maxcount = 1000000;
5560 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5561 	struct mnt_id_req kreq;
5562 	u64 last_mnt_id;
5563 	ssize_t ret;
5564 
5565 	if (flags & ~LISTMOUNT_REVERSE)
5566 		return -EINVAL;
5567 
5568 	/*
5569 	 * If the mount namespace really has more than 1 million mounts the
5570 	 * caller must iterate over the mount namespace (and reconsider their
5571 	 * system design...).
5572 	 */
5573 	if (unlikely(nr_mnt_ids > maxcount))
5574 		return -EOVERFLOW;
5575 
5576 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5577 		return -EFAULT;
5578 
5579 	ret = copy_mnt_id_req(req, &kreq);
5580 	if (ret)
5581 		return ret;
5582 
5583 	last_mnt_id = kreq.param;
5584 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5585 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5586 		return -EINVAL;
5587 
5588 	kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
5589 				  GFP_KERNEL_ACCOUNT);
5590 	if (!kmnt_ids)
5591 		return -ENOMEM;
5592 
5593 	ns = grab_requested_mnt_ns(&kreq);
5594 	if (!ns)
5595 		return -ENOENT;
5596 
5597 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5598 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5599 		return -ENOENT;
5600 
5601 	scoped_guard(rwsem_read, &namespace_sem)
5602 		ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
5603 				   nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
5604 	if (ret <= 0)
5605 		return ret;
5606 
5607 	if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
5608 		return -EFAULT;
5609 
5610 	return ret;
5611 }
5612 
5613 static void __init init_mount_tree(void)
5614 {
5615 	struct vfsmount *mnt;
5616 	struct mount *m;
5617 	struct mnt_namespace *ns;
5618 	struct path root;
5619 
5620 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5621 	if (IS_ERR(mnt))
5622 		panic("Can't create rootfs");
5623 
5624 	ns = alloc_mnt_ns(&init_user_ns, false);
5625 	if (IS_ERR(ns))
5626 		panic("Can't allocate initial namespace");
5627 	m = real_mount(mnt);
5628 	ns->root = m;
5629 	ns->nr_mounts = 1;
5630 	mnt_add_to_ns(ns, m);
5631 	init_task.nsproxy->mnt_ns = ns;
5632 	get_mnt_ns(ns);
5633 
5634 	root.mnt = mnt;
5635 	root.dentry = mnt->mnt_root;
5636 	mnt->mnt_flags |= MNT_LOCKED;
5637 
5638 	set_fs_pwd(current->fs, &root);
5639 	set_fs_root(current->fs, &root);
5640 
5641 	mnt_ns_tree_add(ns);
5642 }
5643 
5644 void __init mnt_init(void)
5645 {
5646 	int err;
5647 
5648 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5649 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5650 
5651 	mount_hashtable = alloc_large_system_hash("Mount-cache",
5652 				sizeof(struct hlist_head),
5653 				mhash_entries, 19,
5654 				HASH_ZERO,
5655 				&m_hash_shift, &m_hash_mask, 0, 0);
5656 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5657 				sizeof(struct hlist_head),
5658 				mphash_entries, 19,
5659 				HASH_ZERO,
5660 				&mp_hash_shift, &mp_hash_mask, 0, 0);
5661 
5662 	if (!mount_hashtable || !mountpoint_hashtable)
5663 		panic("Failed to allocate mount hash table\n");
5664 
5665 	kernfs_init();
5666 
5667 	err = sysfs_init();
5668 	if (err)
5669 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5670 			__func__, err);
5671 	fs_kobj = kobject_create_and_add("fs", NULL);
5672 	if (!fs_kobj)
5673 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
5674 	shmem_init();
5675 	init_rootfs();
5676 	init_mount_tree();
5677 }
5678 
5679 void put_mnt_ns(struct mnt_namespace *ns)
5680 {
5681 	if (!refcount_dec_and_test(&ns->ns.count))
5682 		return;
5683 	drop_collected_mounts(&ns->root->mnt);
5684 	free_mnt_ns(ns);
5685 }
5686 
5687 struct vfsmount *kern_mount(struct file_system_type *type)
5688 {
5689 	struct vfsmount *mnt;
5690 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5691 	if (!IS_ERR(mnt)) {
5692 		/*
5693 		 * it is a longterm mount, don't release mnt until
5694 		 * we unmount before file sys is unregistered
5695 		*/
5696 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5697 	}
5698 	return mnt;
5699 }
5700 EXPORT_SYMBOL_GPL(kern_mount);
5701 
5702 void kern_unmount(struct vfsmount *mnt)
5703 {
5704 	/* release long term mount so mount point can be released */
5705 	if (!IS_ERR(mnt)) {
5706 		mnt_make_shortterm(mnt);
5707 		synchronize_rcu();	/* yecchhh... */
5708 		mntput(mnt);
5709 	}
5710 }
5711 EXPORT_SYMBOL(kern_unmount);
5712 
5713 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5714 {
5715 	unsigned int i;
5716 
5717 	for (i = 0; i < num; i++)
5718 		mnt_make_shortterm(mnt[i]);
5719 	synchronize_rcu_expedited();
5720 	for (i = 0; i < num; i++)
5721 		mntput(mnt[i]);
5722 }
5723 EXPORT_SYMBOL(kern_unmount_array);
5724 
5725 bool our_mnt(struct vfsmount *mnt)
5726 {
5727 	return check_mnt(real_mount(mnt));
5728 }
5729 
5730 bool current_chrooted(void)
5731 {
5732 	/* Does the current process have a non-standard root */
5733 	struct path ns_root;
5734 	struct path fs_root;
5735 	bool chrooted;
5736 
5737 	/* Find the namespace root */
5738 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5739 	ns_root.dentry = ns_root.mnt->mnt_root;
5740 	path_get(&ns_root);
5741 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5742 		;
5743 
5744 	get_fs_root(current->fs, &fs_root);
5745 
5746 	chrooted = !path_equal(&fs_root, &ns_root);
5747 
5748 	path_put(&fs_root);
5749 	path_put(&ns_root);
5750 
5751 	return chrooted;
5752 }
5753 
5754 static bool mnt_already_visible(struct mnt_namespace *ns,
5755 				const struct super_block *sb,
5756 				int *new_mnt_flags)
5757 {
5758 	int new_flags = *new_mnt_flags;
5759 	struct mount *mnt, *n;
5760 	bool visible = false;
5761 
5762 	down_read(&namespace_sem);
5763 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5764 		struct mount *child;
5765 		int mnt_flags;
5766 
5767 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5768 			continue;
5769 
5770 		/* This mount is not fully visible if it's root directory
5771 		 * is not the root directory of the filesystem.
5772 		 */
5773 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5774 			continue;
5775 
5776 		/* A local view of the mount flags */
5777 		mnt_flags = mnt->mnt.mnt_flags;
5778 
5779 		/* Don't miss readonly hidden in the superblock flags */
5780 		if (sb_rdonly(mnt->mnt.mnt_sb))
5781 			mnt_flags |= MNT_LOCK_READONLY;
5782 
5783 		/* Verify the mount flags are equal to or more permissive
5784 		 * than the proposed new mount.
5785 		 */
5786 		if ((mnt_flags & MNT_LOCK_READONLY) &&
5787 		    !(new_flags & MNT_READONLY))
5788 			continue;
5789 		if ((mnt_flags & MNT_LOCK_ATIME) &&
5790 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5791 			continue;
5792 
5793 		/* This mount is not fully visible if there are any
5794 		 * locked child mounts that cover anything except for
5795 		 * empty directories.
5796 		 */
5797 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5798 			struct inode *inode = child->mnt_mountpoint->d_inode;
5799 			/* Only worry about locked mounts */
5800 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
5801 				continue;
5802 			/* Is the directory permanently empty? */
5803 			if (!is_empty_dir_inode(inode))
5804 				goto next;
5805 		}
5806 		/* Preserve the locked attributes */
5807 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5808 					       MNT_LOCK_ATIME);
5809 		visible = true;
5810 		goto found;
5811 	next:	;
5812 	}
5813 found:
5814 	up_read(&namespace_sem);
5815 	return visible;
5816 }
5817 
5818 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5819 {
5820 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5821 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5822 	unsigned long s_iflags;
5823 
5824 	if (ns->user_ns == &init_user_ns)
5825 		return false;
5826 
5827 	/* Can this filesystem be too revealing? */
5828 	s_iflags = sb->s_iflags;
5829 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
5830 		return false;
5831 
5832 	if ((s_iflags & required_iflags) != required_iflags) {
5833 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5834 			  required_iflags);
5835 		return true;
5836 	}
5837 
5838 	return !mnt_already_visible(ns, sb, new_mnt_flags);
5839 }
5840 
5841 bool mnt_may_suid(struct vfsmount *mnt)
5842 {
5843 	/*
5844 	 * Foreign mounts (accessed via fchdir or through /proc
5845 	 * symlinks) are always treated as if they are nosuid.  This
5846 	 * prevents namespaces from trusting potentially unsafe
5847 	 * suid/sgid bits, file caps, or security labels that originate
5848 	 * in other namespaces.
5849 	 */
5850 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5851 	       current_in_userns(mnt->mnt_sb->s_user_ns);
5852 }
5853 
5854 static struct ns_common *mntns_get(struct task_struct *task)
5855 {
5856 	struct ns_common *ns = NULL;
5857 	struct nsproxy *nsproxy;
5858 
5859 	task_lock(task);
5860 	nsproxy = task->nsproxy;
5861 	if (nsproxy) {
5862 		ns = &nsproxy->mnt_ns->ns;
5863 		get_mnt_ns(to_mnt_ns(ns));
5864 	}
5865 	task_unlock(task);
5866 
5867 	return ns;
5868 }
5869 
5870 static void mntns_put(struct ns_common *ns)
5871 {
5872 	put_mnt_ns(to_mnt_ns(ns));
5873 }
5874 
5875 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5876 {
5877 	struct nsproxy *nsproxy = nsset->nsproxy;
5878 	struct fs_struct *fs = nsset->fs;
5879 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5880 	struct user_namespace *user_ns = nsset->cred->user_ns;
5881 	struct path root;
5882 	int err;
5883 
5884 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5885 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5886 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
5887 		return -EPERM;
5888 
5889 	if (is_anon_ns(mnt_ns))
5890 		return -EINVAL;
5891 
5892 	if (fs->users != 1)
5893 		return -EINVAL;
5894 
5895 	get_mnt_ns(mnt_ns);
5896 	old_mnt_ns = nsproxy->mnt_ns;
5897 	nsproxy->mnt_ns = mnt_ns;
5898 
5899 	/* Find the root */
5900 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5901 				"/", LOOKUP_DOWN, &root);
5902 	if (err) {
5903 		/* revert to old namespace */
5904 		nsproxy->mnt_ns = old_mnt_ns;
5905 		put_mnt_ns(mnt_ns);
5906 		return err;
5907 	}
5908 
5909 	put_mnt_ns(old_mnt_ns);
5910 
5911 	/* Update the pwd and root */
5912 	set_fs_pwd(fs, &root);
5913 	set_fs_root(fs, &root);
5914 
5915 	path_put(&root);
5916 	return 0;
5917 }
5918 
5919 static struct user_namespace *mntns_owner(struct ns_common *ns)
5920 {
5921 	return to_mnt_ns(ns)->user_ns;
5922 }
5923 
5924 const struct proc_ns_operations mntns_operations = {
5925 	.name		= "mnt",
5926 	.type		= CLONE_NEWNS,
5927 	.get		= mntns_get,
5928 	.put		= mntns_put,
5929 	.install	= mntns_install,
5930 	.owner		= mntns_owner,
5931 };
5932 
5933 #ifdef CONFIG_SYSCTL
5934 static struct ctl_table fs_namespace_sysctls[] = {
5935 	{
5936 		.procname	= "mount-max",
5937 		.data		= &sysctl_mount_max,
5938 		.maxlen		= sizeof(unsigned int),
5939 		.mode		= 0644,
5940 		.proc_handler	= proc_dointvec_minmax,
5941 		.extra1		= SYSCTL_ONE,
5942 	},
5943 };
5944 
5945 static int __init init_fs_namespace_sysctls(void)
5946 {
5947 	register_sysctl_init("fs", fs_namespace_sysctls);
5948 	return 0;
5949 }
5950 fs_initcall(init_fs_namespace_sysctls);
5951 
5952 #endif /* CONFIG_SYSCTL */
5953