1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include "pnode.h" 27 #include "internal.h" 28 29 static unsigned int m_hash_mask __read_mostly; 30 static unsigned int m_hash_shift __read_mostly; 31 static unsigned int mp_hash_mask __read_mostly; 32 static unsigned int mp_hash_shift __read_mostly; 33 34 static __initdata unsigned long mhash_entries; 35 static int __init set_mhash_entries(char *str) 36 { 37 if (!str) 38 return 0; 39 mhash_entries = simple_strtoul(str, &str, 0); 40 return 1; 41 } 42 __setup("mhash_entries=", set_mhash_entries); 43 44 static __initdata unsigned long mphash_entries; 45 static int __init set_mphash_entries(char *str) 46 { 47 if (!str) 48 return 0; 49 mphash_entries = simple_strtoul(str, &str, 0); 50 return 1; 51 } 52 __setup("mphash_entries=", set_mphash_entries); 53 54 static u64 event; 55 static DEFINE_IDA(mnt_id_ida); 56 static DEFINE_IDA(mnt_group_ida); 57 static DEFINE_SPINLOCK(mnt_id_lock); 58 static int mnt_id_start = 0; 59 static int mnt_group_start = 1; 60 61 static struct hlist_head *mount_hashtable __read_mostly; 62 static struct hlist_head *mountpoint_hashtable __read_mostly; 63 static struct kmem_cache *mnt_cache __read_mostly; 64 static DECLARE_RWSEM(namespace_sem); 65 66 /* /sys/fs */ 67 struct kobject *fs_kobj; 68 EXPORT_SYMBOL_GPL(fs_kobj); 69 70 /* 71 * vfsmount lock may be taken for read to prevent changes to the 72 * vfsmount hash, ie. during mountpoint lookups or walking back 73 * up the tree. 74 * 75 * It should be taken for write in all cases where the vfsmount 76 * tree or hash is modified or when a vfsmount structure is modified. 77 */ 78 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 79 80 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 81 { 82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 84 tmp = tmp + (tmp >> m_hash_shift); 85 return &mount_hashtable[tmp & m_hash_mask]; 86 } 87 88 static inline struct hlist_head *mp_hash(struct dentry *dentry) 89 { 90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 91 tmp = tmp + (tmp >> mp_hash_shift); 92 return &mountpoint_hashtable[tmp & mp_hash_mask]; 93 } 94 95 /* 96 * allocation is serialized by namespace_sem, but we need the spinlock to 97 * serialize with freeing. 98 */ 99 static int mnt_alloc_id(struct mount *mnt) 100 { 101 int res; 102 103 retry: 104 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 105 spin_lock(&mnt_id_lock); 106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 107 if (!res) 108 mnt_id_start = mnt->mnt_id + 1; 109 spin_unlock(&mnt_id_lock); 110 if (res == -EAGAIN) 111 goto retry; 112 113 return res; 114 } 115 116 static void mnt_free_id(struct mount *mnt) 117 { 118 int id = mnt->mnt_id; 119 spin_lock(&mnt_id_lock); 120 ida_remove(&mnt_id_ida, id); 121 if (mnt_id_start > id) 122 mnt_id_start = id; 123 spin_unlock(&mnt_id_lock); 124 } 125 126 /* 127 * Allocate a new peer group ID 128 * 129 * mnt_group_ida is protected by namespace_sem 130 */ 131 static int mnt_alloc_group_id(struct mount *mnt) 132 { 133 int res; 134 135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 136 return -ENOMEM; 137 138 res = ida_get_new_above(&mnt_group_ida, 139 mnt_group_start, 140 &mnt->mnt_group_id); 141 if (!res) 142 mnt_group_start = mnt->mnt_group_id + 1; 143 144 return res; 145 } 146 147 /* 148 * Release a peer group ID 149 */ 150 void mnt_release_group_id(struct mount *mnt) 151 { 152 int id = mnt->mnt_group_id; 153 ida_remove(&mnt_group_ida, id); 154 if (mnt_group_start > id) 155 mnt_group_start = id; 156 mnt->mnt_group_id = 0; 157 } 158 159 /* 160 * vfsmount lock must be held for read 161 */ 162 static inline void mnt_add_count(struct mount *mnt, int n) 163 { 164 #ifdef CONFIG_SMP 165 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 166 #else 167 preempt_disable(); 168 mnt->mnt_count += n; 169 preempt_enable(); 170 #endif 171 } 172 173 /* 174 * vfsmount lock must be held for write 175 */ 176 unsigned int mnt_get_count(struct mount *mnt) 177 { 178 #ifdef CONFIG_SMP 179 unsigned int count = 0; 180 int cpu; 181 182 for_each_possible_cpu(cpu) { 183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 184 } 185 186 return count; 187 #else 188 return mnt->mnt_count; 189 #endif 190 } 191 192 static struct mount *alloc_vfsmnt(const char *name) 193 { 194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 195 if (mnt) { 196 int err; 197 198 err = mnt_alloc_id(mnt); 199 if (err) 200 goto out_free_cache; 201 202 if (name) { 203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 204 if (!mnt->mnt_devname) 205 goto out_free_id; 206 } 207 208 #ifdef CONFIG_SMP 209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 210 if (!mnt->mnt_pcp) 211 goto out_free_devname; 212 213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 214 #else 215 mnt->mnt_count = 1; 216 mnt->mnt_writers = 0; 217 #endif 218 219 INIT_HLIST_NODE(&mnt->mnt_hash); 220 INIT_LIST_HEAD(&mnt->mnt_child); 221 INIT_LIST_HEAD(&mnt->mnt_mounts); 222 INIT_LIST_HEAD(&mnt->mnt_list); 223 INIT_LIST_HEAD(&mnt->mnt_expire); 224 INIT_LIST_HEAD(&mnt->mnt_share); 225 INIT_LIST_HEAD(&mnt->mnt_slave_list); 226 INIT_LIST_HEAD(&mnt->mnt_slave); 227 #ifdef CONFIG_FSNOTIFY 228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 229 #endif 230 } 231 return mnt; 232 233 #ifdef CONFIG_SMP 234 out_free_devname: 235 kfree(mnt->mnt_devname); 236 #endif 237 out_free_id: 238 mnt_free_id(mnt); 239 out_free_cache: 240 kmem_cache_free(mnt_cache, mnt); 241 return NULL; 242 } 243 244 /* 245 * Most r/o checks on a fs are for operations that take 246 * discrete amounts of time, like a write() or unlink(). 247 * We must keep track of when those operations start 248 * (for permission checks) and when they end, so that 249 * we can determine when writes are able to occur to 250 * a filesystem. 251 */ 252 /* 253 * __mnt_is_readonly: check whether a mount is read-only 254 * @mnt: the mount to check for its write status 255 * 256 * This shouldn't be used directly ouside of the VFS. 257 * It does not guarantee that the filesystem will stay 258 * r/w, just that it is right *now*. This can not and 259 * should not be used in place of IS_RDONLY(inode). 260 * mnt_want/drop_write() will _keep_ the filesystem 261 * r/w. 262 */ 263 int __mnt_is_readonly(struct vfsmount *mnt) 264 { 265 if (mnt->mnt_flags & MNT_READONLY) 266 return 1; 267 if (mnt->mnt_sb->s_flags & MS_RDONLY) 268 return 1; 269 return 0; 270 } 271 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 272 273 static inline void mnt_inc_writers(struct mount *mnt) 274 { 275 #ifdef CONFIG_SMP 276 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 277 #else 278 mnt->mnt_writers++; 279 #endif 280 } 281 282 static inline void mnt_dec_writers(struct mount *mnt) 283 { 284 #ifdef CONFIG_SMP 285 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 286 #else 287 mnt->mnt_writers--; 288 #endif 289 } 290 291 static unsigned int mnt_get_writers(struct mount *mnt) 292 { 293 #ifdef CONFIG_SMP 294 unsigned int count = 0; 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 299 } 300 301 return count; 302 #else 303 return mnt->mnt_writers; 304 #endif 305 } 306 307 static int mnt_is_readonly(struct vfsmount *mnt) 308 { 309 if (mnt->mnt_sb->s_readonly_remount) 310 return 1; 311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 312 smp_rmb(); 313 return __mnt_is_readonly(mnt); 314 } 315 316 /* 317 * Most r/o & frozen checks on a fs are for operations that take discrete 318 * amounts of time, like a write() or unlink(). We must keep track of when 319 * those operations start (for permission checks) and when they end, so that we 320 * can determine when writes are able to occur to a filesystem. 321 */ 322 /** 323 * __mnt_want_write - get write access to a mount without freeze protection 324 * @m: the mount on which to take a write 325 * 326 * This tells the low-level filesystem that a write is about to be performed to 327 * it, and makes sure that writes are allowed (mnt it read-write) before 328 * returning success. This operation does not protect against filesystem being 329 * frozen. When the write operation is finished, __mnt_drop_write() must be 330 * called. This is effectively a refcount. 331 */ 332 int __mnt_want_write(struct vfsmount *m) 333 { 334 struct mount *mnt = real_mount(m); 335 int ret = 0; 336 337 preempt_disable(); 338 mnt_inc_writers(mnt); 339 /* 340 * The store to mnt_inc_writers must be visible before we pass 341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 342 * incremented count after it has set MNT_WRITE_HOLD. 343 */ 344 smp_mb(); 345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 346 cpu_relax(); 347 /* 348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 349 * be set to match its requirements. So we must not load that until 350 * MNT_WRITE_HOLD is cleared. 351 */ 352 smp_rmb(); 353 if (mnt_is_readonly(m)) { 354 mnt_dec_writers(mnt); 355 ret = -EROFS; 356 } 357 preempt_enable(); 358 359 return ret; 360 } 361 362 /** 363 * mnt_want_write - get write access to a mount 364 * @m: the mount on which to take a write 365 * 366 * This tells the low-level filesystem that a write is about to be performed to 367 * it, and makes sure that writes are allowed (mount is read-write, filesystem 368 * is not frozen) before returning success. When the write operation is 369 * finished, mnt_drop_write() must be called. This is effectively a refcount. 370 */ 371 int mnt_want_write(struct vfsmount *m) 372 { 373 int ret; 374 375 sb_start_write(m->mnt_sb); 376 ret = __mnt_want_write(m); 377 if (ret) 378 sb_end_write(m->mnt_sb); 379 return ret; 380 } 381 EXPORT_SYMBOL_GPL(mnt_want_write); 382 383 /** 384 * mnt_clone_write - get write access to a mount 385 * @mnt: the mount on which to take a write 386 * 387 * This is effectively like mnt_want_write, except 388 * it must only be used to take an extra write reference 389 * on a mountpoint that we already know has a write reference 390 * on it. This allows some optimisation. 391 * 392 * After finished, mnt_drop_write must be called as usual to 393 * drop the reference. 394 */ 395 int mnt_clone_write(struct vfsmount *mnt) 396 { 397 /* superblock may be r/o */ 398 if (__mnt_is_readonly(mnt)) 399 return -EROFS; 400 preempt_disable(); 401 mnt_inc_writers(real_mount(mnt)); 402 preempt_enable(); 403 return 0; 404 } 405 EXPORT_SYMBOL_GPL(mnt_clone_write); 406 407 /** 408 * __mnt_want_write_file - get write access to a file's mount 409 * @file: the file who's mount on which to take a write 410 * 411 * This is like __mnt_want_write, but it takes a file and can 412 * do some optimisations if the file is open for write already 413 */ 414 int __mnt_want_write_file(struct file *file) 415 { 416 if (!(file->f_mode & FMODE_WRITER)) 417 return __mnt_want_write(file->f_path.mnt); 418 else 419 return mnt_clone_write(file->f_path.mnt); 420 } 421 422 /** 423 * mnt_want_write_file - get write access to a file's mount 424 * @file: the file who's mount on which to take a write 425 * 426 * This is like mnt_want_write, but it takes a file and can 427 * do some optimisations if the file is open for write already 428 */ 429 int mnt_want_write_file(struct file *file) 430 { 431 int ret; 432 433 sb_start_write(file->f_path.mnt->mnt_sb); 434 ret = __mnt_want_write_file(file); 435 if (ret) 436 sb_end_write(file->f_path.mnt->mnt_sb); 437 return ret; 438 } 439 EXPORT_SYMBOL_GPL(mnt_want_write_file); 440 441 /** 442 * __mnt_drop_write - give up write access to a mount 443 * @mnt: the mount on which to give up write access 444 * 445 * Tells the low-level filesystem that we are done 446 * performing writes to it. Must be matched with 447 * __mnt_want_write() call above. 448 */ 449 void __mnt_drop_write(struct vfsmount *mnt) 450 { 451 preempt_disable(); 452 mnt_dec_writers(real_mount(mnt)); 453 preempt_enable(); 454 } 455 456 /** 457 * mnt_drop_write - give up write access to a mount 458 * @mnt: the mount on which to give up write access 459 * 460 * Tells the low-level filesystem that we are done performing writes to it and 461 * also allows filesystem to be frozen again. Must be matched with 462 * mnt_want_write() call above. 463 */ 464 void mnt_drop_write(struct vfsmount *mnt) 465 { 466 __mnt_drop_write(mnt); 467 sb_end_write(mnt->mnt_sb); 468 } 469 EXPORT_SYMBOL_GPL(mnt_drop_write); 470 471 void __mnt_drop_write_file(struct file *file) 472 { 473 __mnt_drop_write(file->f_path.mnt); 474 } 475 476 void mnt_drop_write_file(struct file *file) 477 { 478 mnt_drop_write(file->f_path.mnt); 479 } 480 EXPORT_SYMBOL(mnt_drop_write_file); 481 482 static int mnt_make_readonly(struct mount *mnt) 483 { 484 int ret = 0; 485 486 lock_mount_hash(); 487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 488 /* 489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 490 * should be visible before we do. 491 */ 492 smp_mb(); 493 494 /* 495 * With writers on hold, if this value is zero, then there are 496 * definitely no active writers (although held writers may subsequently 497 * increment the count, they'll have to wait, and decrement it after 498 * seeing MNT_READONLY). 499 * 500 * It is OK to have counter incremented on one CPU and decremented on 501 * another: the sum will add up correctly. The danger would be when we 502 * sum up each counter, if we read a counter before it is incremented, 503 * but then read another CPU's count which it has been subsequently 504 * decremented from -- we would see more decrements than we should. 505 * MNT_WRITE_HOLD protects against this scenario, because 506 * mnt_want_write first increments count, then smp_mb, then spins on 507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 508 * we're counting up here. 509 */ 510 if (mnt_get_writers(mnt) > 0) 511 ret = -EBUSY; 512 else 513 mnt->mnt.mnt_flags |= MNT_READONLY; 514 /* 515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 516 * that become unheld will see MNT_READONLY. 517 */ 518 smp_wmb(); 519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 520 unlock_mount_hash(); 521 return ret; 522 } 523 524 static void __mnt_unmake_readonly(struct mount *mnt) 525 { 526 lock_mount_hash(); 527 mnt->mnt.mnt_flags &= ~MNT_READONLY; 528 unlock_mount_hash(); 529 } 530 531 int sb_prepare_remount_readonly(struct super_block *sb) 532 { 533 struct mount *mnt; 534 int err = 0; 535 536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 537 if (atomic_long_read(&sb->s_remove_count)) 538 return -EBUSY; 539 540 lock_mount_hash(); 541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 544 smp_mb(); 545 if (mnt_get_writers(mnt) > 0) { 546 err = -EBUSY; 547 break; 548 } 549 } 550 } 551 if (!err && atomic_long_read(&sb->s_remove_count)) 552 err = -EBUSY; 553 554 if (!err) { 555 sb->s_readonly_remount = 1; 556 smp_wmb(); 557 } 558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 561 } 562 unlock_mount_hash(); 563 564 return err; 565 } 566 567 static void free_vfsmnt(struct mount *mnt) 568 { 569 kfree(mnt->mnt_devname); 570 #ifdef CONFIG_SMP 571 free_percpu(mnt->mnt_pcp); 572 #endif 573 kmem_cache_free(mnt_cache, mnt); 574 } 575 576 static void delayed_free_vfsmnt(struct rcu_head *head) 577 { 578 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 579 } 580 581 /* call under rcu_read_lock */ 582 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 583 { 584 struct mount *mnt; 585 if (read_seqretry(&mount_lock, seq)) 586 return false; 587 if (bastard == NULL) 588 return true; 589 mnt = real_mount(bastard); 590 mnt_add_count(mnt, 1); 591 if (likely(!read_seqretry(&mount_lock, seq))) 592 return true; 593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 594 mnt_add_count(mnt, -1); 595 return false; 596 } 597 rcu_read_unlock(); 598 mntput(bastard); 599 rcu_read_lock(); 600 return false; 601 } 602 603 /* 604 * find the first mount at @dentry on vfsmount @mnt. 605 * call under rcu_read_lock() 606 */ 607 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 608 { 609 struct hlist_head *head = m_hash(mnt, dentry); 610 struct mount *p; 611 612 hlist_for_each_entry_rcu(p, head, mnt_hash) 613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 614 return p; 615 return NULL; 616 } 617 618 /* 619 * find the last mount at @dentry on vfsmount @mnt. 620 * mount_lock must be held. 621 */ 622 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 623 { 624 struct mount *p, *res; 625 res = p = __lookup_mnt(mnt, dentry); 626 if (!p) 627 goto out; 628 hlist_for_each_entry_continue(p, mnt_hash) { 629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 630 break; 631 res = p; 632 } 633 out: 634 return res; 635 } 636 637 /* 638 * lookup_mnt - Return the first child mount mounted at path 639 * 640 * "First" means first mounted chronologically. If you create the 641 * following mounts: 642 * 643 * mount /dev/sda1 /mnt 644 * mount /dev/sda2 /mnt 645 * mount /dev/sda3 /mnt 646 * 647 * Then lookup_mnt() on the base /mnt dentry in the root mount will 648 * return successively the root dentry and vfsmount of /dev/sda1, then 649 * /dev/sda2, then /dev/sda3, then NULL. 650 * 651 * lookup_mnt takes a reference to the found vfsmount. 652 */ 653 struct vfsmount *lookup_mnt(struct path *path) 654 { 655 struct mount *child_mnt; 656 struct vfsmount *m; 657 unsigned seq; 658 659 rcu_read_lock(); 660 do { 661 seq = read_seqbegin(&mount_lock); 662 child_mnt = __lookup_mnt(path->mnt, path->dentry); 663 m = child_mnt ? &child_mnt->mnt : NULL; 664 } while (!legitimize_mnt(m, seq)); 665 rcu_read_unlock(); 666 return m; 667 } 668 669 static struct mountpoint *new_mountpoint(struct dentry *dentry) 670 { 671 struct hlist_head *chain = mp_hash(dentry); 672 struct mountpoint *mp; 673 int ret; 674 675 hlist_for_each_entry(mp, chain, m_hash) { 676 if (mp->m_dentry == dentry) { 677 /* might be worth a WARN_ON() */ 678 if (d_unlinked(dentry)) 679 return ERR_PTR(-ENOENT); 680 mp->m_count++; 681 return mp; 682 } 683 } 684 685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 686 if (!mp) 687 return ERR_PTR(-ENOMEM); 688 689 ret = d_set_mounted(dentry); 690 if (ret) { 691 kfree(mp); 692 return ERR_PTR(ret); 693 } 694 695 mp->m_dentry = dentry; 696 mp->m_count = 1; 697 hlist_add_head(&mp->m_hash, chain); 698 return mp; 699 } 700 701 static void put_mountpoint(struct mountpoint *mp) 702 { 703 if (!--mp->m_count) { 704 struct dentry *dentry = mp->m_dentry; 705 spin_lock(&dentry->d_lock); 706 dentry->d_flags &= ~DCACHE_MOUNTED; 707 spin_unlock(&dentry->d_lock); 708 hlist_del(&mp->m_hash); 709 kfree(mp); 710 } 711 } 712 713 static inline int check_mnt(struct mount *mnt) 714 { 715 return mnt->mnt_ns == current->nsproxy->mnt_ns; 716 } 717 718 /* 719 * vfsmount lock must be held for write 720 */ 721 static void touch_mnt_namespace(struct mnt_namespace *ns) 722 { 723 if (ns) { 724 ns->event = ++event; 725 wake_up_interruptible(&ns->poll); 726 } 727 } 728 729 /* 730 * vfsmount lock must be held for write 731 */ 732 static void __touch_mnt_namespace(struct mnt_namespace *ns) 733 { 734 if (ns && ns->event != event) { 735 ns->event = event; 736 wake_up_interruptible(&ns->poll); 737 } 738 } 739 740 /* 741 * vfsmount lock must be held for write 742 */ 743 static void detach_mnt(struct mount *mnt, struct path *old_path) 744 { 745 old_path->dentry = mnt->mnt_mountpoint; 746 old_path->mnt = &mnt->mnt_parent->mnt; 747 mnt->mnt_parent = mnt; 748 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 749 list_del_init(&mnt->mnt_child); 750 hlist_del_init_rcu(&mnt->mnt_hash); 751 put_mountpoint(mnt->mnt_mp); 752 mnt->mnt_mp = NULL; 753 } 754 755 /* 756 * vfsmount lock must be held for write 757 */ 758 void mnt_set_mountpoint(struct mount *mnt, 759 struct mountpoint *mp, 760 struct mount *child_mnt) 761 { 762 mp->m_count++; 763 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 764 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 765 child_mnt->mnt_parent = mnt; 766 child_mnt->mnt_mp = mp; 767 } 768 769 /* 770 * vfsmount lock must be held for write 771 */ 772 static void attach_mnt(struct mount *mnt, 773 struct mount *parent, 774 struct mountpoint *mp) 775 { 776 mnt_set_mountpoint(parent, mp, mnt); 777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 779 } 780 781 static void attach_shadowed(struct mount *mnt, 782 struct mount *parent, 783 struct mount *shadows) 784 { 785 if (shadows) { 786 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 787 list_add(&mnt->mnt_child, &shadows->mnt_child); 788 } else { 789 hlist_add_head_rcu(&mnt->mnt_hash, 790 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 791 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 792 } 793 } 794 795 /* 796 * vfsmount lock must be held for write 797 */ 798 static void commit_tree(struct mount *mnt, struct mount *shadows) 799 { 800 struct mount *parent = mnt->mnt_parent; 801 struct mount *m; 802 LIST_HEAD(head); 803 struct mnt_namespace *n = parent->mnt_ns; 804 805 BUG_ON(parent == mnt); 806 807 list_add_tail(&head, &mnt->mnt_list); 808 list_for_each_entry(m, &head, mnt_list) 809 m->mnt_ns = n; 810 811 list_splice(&head, n->list.prev); 812 813 attach_shadowed(mnt, parent, shadows); 814 touch_mnt_namespace(n); 815 } 816 817 static struct mount *next_mnt(struct mount *p, struct mount *root) 818 { 819 struct list_head *next = p->mnt_mounts.next; 820 if (next == &p->mnt_mounts) { 821 while (1) { 822 if (p == root) 823 return NULL; 824 next = p->mnt_child.next; 825 if (next != &p->mnt_parent->mnt_mounts) 826 break; 827 p = p->mnt_parent; 828 } 829 } 830 return list_entry(next, struct mount, mnt_child); 831 } 832 833 static struct mount *skip_mnt_tree(struct mount *p) 834 { 835 struct list_head *prev = p->mnt_mounts.prev; 836 while (prev != &p->mnt_mounts) { 837 p = list_entry(prev, struct mount, mnt_child); 838 prev = p->mnt_mounts.prev; 839 } 840 return p; 841 } 842 843 struct vfsmount * 844 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 845 { 846 struct mount *mnt; 847 struct dentry *root; 848 849 if (!type) 850 return ERR_PTR(-ENODEV); 851 852 mnt = alloc_vfsmnt(name); 853 if (!mnt) 854 return ERR_PTR(-ENOMEM); 855 856 if (flags & MS_KERNMOUNT) 857 mnt->mnt.mnt_flags = MNT_INTERNAL; 858 859 root = mount_fs(type, flags, name, data); 860 if (IS_ERR(root)) { 861 mnt_free_id(mnt); 862 free_vfsmnt(mnt); 863 return ERR_CAST(root); 864 } 865 866 mnt->mnt.mnt_root = root; 867 mnt->mnt.mnt_sb = root->d_sb; 868 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 869 mnt->mnt_parent = mnt; 870 lock_mount_hash(); 871 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 872 unlock_mount_hash(); 873 return &mnt->mnt; 874 } 875 EXPORT_SYMBOL_GPL(vfs_kern_mount); 876 877 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 878 int flag) 879 { 880 struct super_block *sb = old->mnt.mnt_sb; 881 struct mount *mnt; 882 int err; 883 884 mnt = alloc_vfsmnt(old->mnt_devname); 885 if (!mnt) 886 return ERR_PTR(-ENOMEM); 887 888 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 889 mnt->mnt_group_id = 0; /* not a peer of original */ 890 else 891 mnt->mnt_group_id = old->mnt_group_id; 892 893 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 894 err = mnt_alloc_group_id(mnt); 895 if (err) 896 goto out_free; 897 } 898 899 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 900 /* Don't allow unprivileged users to change mount flags */ 901 if (flag & CL_UNPRIVILEGED) { 902 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 903 904 if (mnt->mnt.mnt_flags & MNT_READONLY) 905 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 906 907 if (mnt->mnt.mnt_flags & MNT_NODEV) 908 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 909 910 if (mnt->mnt.mnt_flags & MNT_NOSUID) 911 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 912 913 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 914 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 915 } 916 917 /* Don't allow unprivileged users to reveal what is under a mount */ 918 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire)) 919 mnt->mnt.mnt_flags |= MNT_LOCKED; 920 921 atomic_inc(&sb->s_active); 922 mnt->mnt.mnt_sb = sb; 923 mnt->mnt.mnt_root = dget(root); 924 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 925 mnt->mnt_parent = mnt; 926 lock_mount_hash(); 927 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 928 unlock_mount_hash(); 929 930 if ((flag & CL_SLAVE) || 931 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 932 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 933 mnt->mnt_master = old; 934 CLEAR_MNT_SHARED(mnt); 935 } else if (!(flag & CL_PRIVATE)) { 936 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 937 list_add(&mnt->mnt_share, &old->mnt_share); 938 if (IS_MNT_SLAVE(old)) 939 list_add(&mnt->mnt_slave, &old->mnt_slave); 940 mnt->mnt_master = old->mnt_master; 941 } 942 if (flag & CL_MAKE_SHARED) 943 set_mnt_shared(mnt); 944 945 /* stick the duplicate mount on the same expiry list 946 * as the original if that was on one */ 947 if (flag & CL_EXPIRE) { 948 if (!list_empty(&old->mnt_expire)) 949 list_add(&mnt->mnt_expire, &old->mnt_expire); 950 } 951 952 return mnt; 953 954 out_free: 955 mnt_free_id(mnt); 956 free_vfsmnt(mnt); 957 return ERR_PTR(err); 958 } 959 960 static void mntput_no_expire(struct mount *mnt) 961 { 962 rcu_read_lock(); 963 mnt_add_count(mnt, -1); 964 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 965 rcu_read_unlock(); 966 return; 967 } 968 lock_mount_hash(); 969 if (mnt_get_count(mnt)) { 970 rcu_read_unlock(); 971 unlock_mount_hash(); 972 return; 973 } 974 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 975 rcu_read_unlock(); 976 unlock_mount_hash(); 977 return; 978 } 979 mnt->mnt.mnt_flags |= MNT_DOOMED; 980 rcu_read_unlock(); 981 982 list_del(&mnt->mnt_instance); 983 unlock_mount_hash(); 984 985 /* 986 * This probably indicates that somebody messed 987 * up a mnt_want/drop_write() pair. If this 988 * happens, the filesystem was probably unable 989 * to make r/w->r/o transitions. 990 */ 991 /* 992 * The locking used to deal with mnt_count decrement provides barriers, 993 * so mnt_get_writers() below is safe. 994 */ 995 WARN_ON(mnt_get_writers(mnt)); 996 if (unlikely(mnt->mnt_pins.first)) 997 mnt_pin_kill(mnt); 998 fsnotify_vfsmount_delete(&mnt->mnt); 999 dput(mnt->mnt.mnt_root); 1000 deactivate_super(mnt->mnt.mnt_sb); 1001 mnt_free_id(mnt); 1002 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1003 } 1004 1005 void mntput(struct vfsmount *mnt) 1006 { 1007 if (mnt) { 1008 struct mount *m = real_mount(mnt); 1009 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1010 if (unlikely(m->mnt_expiry_mark)) 1011 m->mnt_expiry_mark = 0; 1012 mntput_no_expire(m); 1013 } 1014 } 1015 EXPORT_SYMBOL(mntput); 1016 1017 struct vfsmount *mntget(struct vfsmount *mnt) 1018 { 1019 if (mnt) 1020 mnt_add_count(real_mount(mnt), 1); 1021 return mnt; 1022 } 1023 EXPORT_SYMBOL(mntget); 1024 1025 struct vfsmount *mnt_clone_internal(struct path *path) 1026 { 1027 struct mount *p; 1028 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1029 if (IS_ERR(p)) 1030 return ERR_CAST(p); 1031 p->mnt.mnt_flags |= MNT_INTERNAL; 1032 return &p->mnt; 1033 } 1034 1035 static inline void mangle(struct seq_file *m, const char *s) 1036 { 1037 seq_escape(m, s, " \t\n\\"); 1038 } 1039 1040 /* 1041 * Simple .show_options callback for filesystems which don't want to 1042 * implement more complex mount option showing. 1043 * 1044 * See also save_mount_options(). 1045 */ 1046 int generic_show_options(struct seq_file *m, struct dentry *root) 1047 { 1048 const char *options; 1049 1050 rcu_read_lock(); 1051 options = rcu_dereference(root->d_sb->s_options); 1052 1053 if (options != NULL && options[0]) { 1054 seq_putc(m, ','); 1055 mangle(m, options); 1056 } 1057 rcu_read_unlock(); 1058 1059 return 0; 1060 } 1061 EXPORT_SYMBOL(generic_show_options); 1062 1063 /* 1064 * If filesystem uses generic_show_options(), this function should be 1065 * called from the fill_super() callback. 1066 * 1067 * The .remount_fs callback usually needs to be handled in a special 1068 * way, to make sure, that previous options are not overwritten if the 1069 * remount fails. 1070 * 1071 * Also note, that if the filesystem's .remount_fs function doesn't 1072 * reset all options to their default value, but changes only newly 1073 * given options, then the displayed options will not reflect reality 1074 * any more. 1075 */ 1076 void save_mount_options(struct super_block *sb, char *options) 1077 { 1078 BUG_ON(sb->s_options); 1079 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1080 } 1081 EXPORT_SYMBOL(save_mount_options); 1082 1083 void replace_mount_options(struct super_block *sb, char *options) 1084 { 1085 char *old = sb->s_options; 1086 rcu_assign_pointer(sb->s_options, options); 1087 if (old) { 1088 synchronize_rcu(); 1089 kfree(old); 1090 } 1091 } 1092 EXPORT_SYMBOL(replace_mount_options); 1093 1094 #ifdef CONFIG_PROC_FS 1095 /* iterator; we want it to have access to namespace_sem, thus here... */ 1096 static void *m_start(struct seq_file *m, loff_t *pos) 1097 { 1098 struct proc_mounts *p = proc_mounts(m); 1099 1100 down_read(&namespace_sem); 1101 if (p->cached_event == p->ns->event) { 1102 void *v = p->cached_mount; 1103 if (*pos == p->cached_index) 1104 return v; 1105 if (*pos == p->cached_index + 1) { 1106 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1107 return p->cached_mount = v; 1108 } 1109 } 1110 1111 p->cached_event = p->ns->event; 1112 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1113 p->cached_index = *pos; 1114 return p->cached_mount; 1115 } 1116 1117 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1118 { 1119 struct proc_mounts *p = proc_mounts(m); 1120 1121 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1122 p->cached_index = *pos; 1123 return p->cached_mount; 1124 } 1125 1126 static void m_stop(struct seq_file *m, void *v) 1127 { 1128 up_read(&namespace_sem); 1129 } 1130 1131 static int m_show(struct seq_file *m, void *v) 1132 { 1133 struct proc_mounts *p = proc_mounts(m); 1134 struct mount *r = list_entry(v, struct mount, mnt_list); 1135 return p->show(m, &r->mnt); 1136 } 1137 1138 const struct seq_operations mounts_op = { 1139 .start = m_start, 1140 .next = m_next, 1141 .stop = m_stop, 1142 .show = m_show, 1143 }; 1144 #endif /* CONFIG_PROC_FS */ 1145 1146 /** 1147 * may_umount_tree - check if a mount tree is busy 1148 * @mnt: root of mount tree 1149 * 1150 * This is called to check if a tree of mounts has any 1151 * open files, pwds, chroots or sub mounts that are 1152 * busy. 1153 */ 1154 int may_umount_tree(struct vfsmount *m) 1155 { 1156 struct mount *mnt = real_mount(m); 1157 int actual_refs = 0; 1158 int minimum_refs = 0; 1159 struct mount *p; 1160 BUG_ON(!m); 1161 1162 /* write lock needed for mnt_get_count */ 1163 lock_mount_hash(); 1164 for (p = mnt; p; p = next_mnt(p, mnt)) { 1165 actual_refs += mnt_get_count(p); 1166 minimum_refs += 2; 1167 } 1168 unlock_mount_hash(); 1169 1170 if (actual_refs > minimum_refs) 1171 return 0; 1172 1173 return 1; 1174 } 1175 1176 EXPORT_SYMBOL(may_umount_tree); 1177 1178 /** 1179 * may_umount - check if a mount point is busy 1180 * @mnt: root of mount 1181 * 1182 * This is called to check if a mount point has any 1183 * open files, pwds, chroots or sub mounts. If the 1184 * mount has sub mounts this will return busy 1185 * regardless of whether the sub mounts are busy. 1186 * 1187 * Doesn't take quota and stuff into account. IOW, in some cases it will 1188 * give false negatives. The main reason why it's here is that we need 1189 * a non-destructive way to look for easily umountable filesystems. 1190 */ 1191 int may_umount(struct vfsmount *mnt) 1192 { 1193 int ret = 1; 1194 down_read(&namespace_sem); 1195 lock_mount_hash(); 1196 if (propagate_mount_busy(real_mount(mnt), 2)) 1197 ret = 0; 1198 unlock_mount_hash(); 1199 up_read(&namespace_sem); 1200 return ret; 1201 } 1202 1203 EXPORT_SYMBOL(may_umount); 1204 1205 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1206 1207 static void namespace_unlock(void) 1208 { 1209 struct mount *mnt; 1210 struct hlist_head head = unmounted; 1211 1212 if (likely(hlist_empty(&head))) { 1213 up_write(&namespace_sem); 1214 return; 1215 } 1216 1217 head.first->pprev = &head.first; 1218 INIT_HLIST_HEAD(&unmounted); 1219 1220 /* undo decrements we'd done in umount_tree() */ 1221 hlist_for_each_entry(mnt, &head, mnt_hash) 1222 if (mnt->mnt_ex_mountpoint.mnt) 1223 mntget(mnt->mnt_ex_mountpoint.mnt); 1224 1225 up_write(&namespace_sem); 1226 1227 synchronize_rcu(); 1228 1229 while (!hlist_empty(&head)) { 1230 mnt = hlist_entry(head.first, struct mount, mnt_hash); 1231 hlist_del_init(&mnt->mnt_hash); 1232 if (mnt->mnt_ex_mountpoint.mnt) 1233 path_put(&mnt->mnt_ex_mountpoint); 1234 mntput(&mnt->mnt); 1235 } 1236 } 1237 1238 static inline void namespace_lock(void) 1239 { 1240 down_write(&namespace_sem); 1241 } 1242 1243 /* 1244 * mount_lock must be held 1245 * namespace_sem must be held for write 1246 * how = 0 => just this tree, don't propagate 1247 * how = 1 => propagate; we know that nobody else has reference to any victims 1248 * how = 2 => lazy umount 1249 */ 1250 void umount_tree(struct mount *mnt, int how) 1251 { 1252 HLIST_HEAD(tmp_list); 1253 struct mount *p; 1254 struct mount *last = NULL; 1255 1256 for (p = mnt; p; p = next_mnt(p, mnt)) { 1257 hlist_del_init_rcu(&p->mnt_hash); 1258 hlist_add_head(&p->mnt_hash, &tmp_list); 1259 } 1260 1261 hlist_for_each_entry(p, &tmp_list, mnt_hash) 1262 list_del_init(&p->mnt_child); 1263 1264 if (how) 1265 propagate_umount(&tmp_list); 1266 1267 hlist_for_each_entry(p, &tmp_list, mnt_hash) { 1268 list_del_init(&p->mnt_expire); 1269 list_del_init(&p->mnt_list); 1270 __touch_mnt_namespace(p->mnt_ns); 1271 p->mnt_ns = NULL; 1272 if (how < 2) 1273 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1274 if (mnt_has_parent(p)) { 1275 put_mountpoint(p->mnt_mp); 1276 mnt_add_count(p->mnt_parent, -1); 1277 /* move the reference to mountpoint into ->mnt_ex_mountpoint */ 1278 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint; 1279 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt; 1280 p->mnt_mountpoint = p->mnt.mnt_root; 1281 p->mnt_parent = p; 1282 p->mnt_mp = NULL; 1283 } 1284 change_mnt_propagation(p, MS_PRIVATE); 1285 last = p; 1286 } 1287 if (last) { 1288 last->mnt_hash.next = unmounted.first; 1289 unmounted.first = tmp_list.first; 1290 unmounted.first->pprev = &unmounted.first; 1291 } 1292 } 1293 1294 static void shrink_submounts(struct mount *mnt); 1295 1296 static int do_umount(struct mount *mnt, int flags) 1297 { 1298 struct super_block *sb = mnt->mnt.mnt_sb; 1299 int retval; 1300 1301 retval = security_sb_umount(&mnt->mnt, flags); 1302 if (retval) 1303 return retval; 1304 1305 /* 1306 * Allow userspace to request a mountpoint be expired rather than 1307 * unmounting unconditionally. Unmount only happens if: 1308 * (1) the mark is already set (the mark is cleared by mntput()) 1309 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1310 */ 1311 if (flags & MNT_EXPIRE) { 1312 if (&mnt->mnt == current->fs->root.mnt || 1313 flags & (MNT_FORCE | MNT_DETACH)) 1314 return -EINVAL; 1315 1316 /* 1317 * probably don't strictly need the lock here if we examined 1318 * all race cases, but it's a slowpath. 1319 */ 1320 lock_mount_hash(); 1321 if (mnt_get_count(mnt) != 2) { 1322 unlock_mount_hash(); 1323 return -EBUSY; 1324 } 1325 unlock_mount_hash(); 1326 1327 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1328 return -EAGAIN; 1329 } 1330 1331 /* 1332 * If we may have to abort operations to get out of this 1333 * mount, and they will themselves hold resources we must 1334 * allow the fs to do things. In the Unix tradition of 1335 * 'Gee thats tricky lets do it in userspace' the umount_begin 1336 * might fail to complete on the first run through as other tasks 1337 * must return, and the like. Thats for the mount program to worry 1338 * about for the moment. 1339 */ 1340 1341 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1342 sb->s_op->umount_begin(sb); 1343 } 1344 1345 /* 1346 * No sense to grab the lock for this test, but test itself looks 1347 * somewhat bogus. Suggestions for better replacement? 1348 * Ho-hum... In principle, we might treat that as umount + switch 1349 * to rootfs. GC would eventually take care of the old vfsmount. 1350 * Actually it makes sense, especially if rootfs would contain a 1351 * /reboot - static binary that would close all descriptors and 1352 * call reboot(9). Then init(8) could umount root and exec /reboot. 1353 */ 1354 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1355 /* 1356 * Special case for "unmounting" root ... 1357 * we just try to remount it readonly. 1358 */ 1359 down_write(&sb->s_umount); 1360 if (!(sb->s_flags & MS_RDONLY)) 1361 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1362 up_write(&sb->s_umount); 1363 return retval; 1364 } 1365 1366 namespace_lock(); 1367 lock_mount_hash(); 1368 event++; 1369 1370 if (flags & MNT_DETACH) { 1371 if (!list_empty(&mnt->mnt_list)) 1372 umount_tree(mnt, 2); 1373 retval = 0; 1374 } else { 1375 shrink_submounts(mnt); 1376 retval = -EBUSY; 1377 if (!propagate_mount_busy(mnt, 2)) { 1378 if (!list_empty(&mnt->mnt_list)) 1379 umount_tree(mnt, 1); 1380 retval = 0; 1381 } 1382 } 1383 unlock_mount_hash(); 1384 namespace_unlock(); 1385 return retval; 1386 } 1387 1388 /* 1389 * Is the caller allowed to modify his namespace? 1390 */ 1391 static inline bool may_mount(void) 1392 { 1393 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1394 } 1395 1396 /* 1397 * Now umount can handle mount points as well as block devices. 1398 * This is important for filesystems which use unnamed block devices. 1399 * 1400 * We now support a flag for forced unmount like the other 'big iron' 1401 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1402 */ 1403 1404 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1405 { 1406 struct path path; 1407 struct mount *mnt; 1408 int retval; 1409 int lookup_flags = 0; 1410 1411 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1412 return -EINVAL; 1413 1414 if (!may_mount()) 1415 return -EPERM; 1416 1417 if (!(flags & UMOUNT_NOFOLLOW)) 1418 lookup_flags |= LOOKUP_FOLLOW; 1419 1420 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1421 if (retval) 1422 goto out; 1423 mnt = real_mount(path.mnt); 1424 retval = -EINVAL; 1425 if (path.dentry != path.mnt->mnt_root) 1426 goto dput_and_out; 1427 if (!check_mnt(mnt)) 1428 goto dput_and_out; 1429 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1430 goto dput_and_out; 1431 1432 retval = do_umount(mnt, flags); 1433 dput_and_out: 1434 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1435 dput(path.dentry); 1436 mntput_no_expire(mnt); 1437 out: 1438 return retval; 1439 } 1440 1441 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1442 1443 /* 1444 * The 2.0 compatible umount. No flags. 1445 */ 1446 SYSCALL_DEFINE1(oldumount, char __user *, name) 1447 { 1448 return sys_umount(name, 0); 1449 } 1450 1451 #endif 1452 1453 static bool is_mnt_ns_file(struct dentry *dentry) 1454 { 1455 /* Is this a proxy for a mount namespace? */ 1456 struct inode *inode = dentry->d_inode; 1457 struct proc_ns *ei; 1458 1459 if (!proc_ns_inode(inode)) 1460 return false; 1461 1462 ei = get_proc_ns(inode); 1463 if (ei->ns_ops != &mntns_operations) 1464 return false; 1465 1466 return true; 1467 } 1468 1469 static bool mnt_ns_loop(struct dentry *dentry) 1470 { 1471 /* Could bind mounting the mount namespace inode cause a 1472 * mount namespace loop? 1473 */ 1474 struct mnt_namespace *mnt_ns; 1475 if (!is_mnt_ns_file(dentry)) 1476 return false; 1477 1478 mnt_ns = get_proc_ns(dentry->d_inode)->ns; 1479 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1480 } 1481 1482 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1483 int flag) 1484 { 1485 struct mount *res, *p, *q, *r, *parent; 1486 1487 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1488 return ERR_PTR(-EINVAL); 1489 1490 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1491 return ERR_PTR(-EINVAL); 1492 1493 res = q = clone_mnt(mnt, dentry, flag); 1494 if (IS_ERR(q)) 1495 return q; 1496 1497 q->mnt.mnt_flags &= ~MNT_LOCKED; 1498 q->mnt_mountpoint = mnt->mnt_mountpoint; 1499 1500 p = mnt; 1501 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1502 struct mount *s; 1503 if (!is_subdir(r->mnt_mountpoint, dentry)) 1504 continue; 1505 1506 for (s = r; s; s = next_mnt(s, r)) { 1507 struct mount *t = NULL; 1508 if (!(flag & CL_COPY_UNBINDABLE) && 1509 IS_MNT_UNBINDABLE(s)) { 1510 s = skip_mnt_tree(s); 1511 continue; 1512 } 1513 if (!(flag & CL_COPY_MNT_NS_FILE) && 1514 is_mnt_ns_file(s->mnt.mnt_root)) { 1515 s = skip_mnt_tree(s); 1516 continue; 1517 } 1518 while (p != s->mnt_parent) { 1519 p = p->mnt_parent; 1520 q = q->mnt_parent; 1521 } 1522 p = s; 1523 parent = q; 1524 q = clone_mnt(p, p->mnt.mnt_root, flag); 1525 if (IS_ERR(q)) 1526 goto out; 1527 lock_mount_hash(); 1528 list_add_tail(&q->mnt_list, &res->mnt_list); 1529 mnt_set_mountpoint(parent, p->mnt_mp, q); 1530 if (!list_empty(&parent->mnt_mounts)) { 1531 t = list_last_entry(&parent->mnt_mounts, 1532 struct mount, mnt_child); 1533 if (t->mnt_mp != p->mnt_mp) 1534 t = NULL; 1535 } 1536 attach_shadowed(q, parent, t); 1537 unlock_mount_hash(); 1538 } 1539 } 1540 return res; 1541 out: 1542 if (res) { 1543 lock_mount_hash(); 1544 umount_tree(res, 0); 1545 unlock_mount_hash(); 1546 } 1547 return q; 1548 } 1549 1550 /* Caller should check returned pointer for errors */ 1551 1552 struct vfsmount *collect_mounts(struct path *path) 1553 { 1554 struct mount *tree; 1555 namespace_lock(); 1556 tree = copy_tree(real_mount(path->mnt), path->dentry, 1557 CL_COPY_ALL | CL_PRIVATE); 1558 namespace_unlock(); 1559 if (IS_ERR(tree)) 1560 return ERR_CAST(tree); 1561 return &tree->mnt; 1562 } 1563 1564 void drop_collected_mounts(struct vfsmount *mnt) 1565 { 1566 namespace_lock(); 1567 lock_mount_hash(); 1568 umount_tree(real_mount(mnt), 0); 1569 unlock_mount_hash(); 1570 namespace_unlock(); 1571 } 1572 1573 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1574 struct vfsmount *root) 1575 { 1576 struct mount *mnt; 1577 int res = f(root, arg); 1578 if (res) 1579 return res; 1580 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1581 res = f(&mnt->mnt, arg); 1582 if (res) 1583 return res; 1584 } 1585 return 0; 1586 } 1587 1588 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1589 { 1590 struct mount *p; 1591 1592 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1593 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1594 mnt_release_group_id(p); 1595 } 1596 } 1597 1598 static int invent_group_ids(struct mount *mnt, bool recurse) 1599 { 1600 struct mount *p; 1601 1602 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1603 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1604 int err = mnt_alloc_group_id(p); 1605 if (err) { 1606 cleanup_group_ids(mnt, p); 1607 return err; 1608 } 1609 } 1610 } 1611 1612 return 0; 1613 } 1614 1615 /* 1616 * @source_mnt : mount tree to be attached 1617 * @nd : place the mount tree @source_mnt is attached 1618 * @parent_nd : if non-null, detach the source_mnt from its parent and 1619 * store the parent mount and mountpoint dentry. 1620 * (done when source_mnt is moved) 1621 * 1622 * NOTE: in the table below explains the semantics when a source mount 1623 * of a given type is attached to a destination mount of a given type. 1624 * --------------------------------------------------------------------------- 1625 * | BIND MOUNT OPERATION | 1626 * |************************************************************************** 1627 * | source-->| shared | private | slave | unbindable | 1628 * | dest | | | | | 1629 * | | | | | | | 1630 * | v | | | | | 1631 * |************************************************************************** 1632 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1633 * | | | | | | 1634 * |non-shared| shared (+) | private | slave (*) | invalid | 1635 * *************************************************************************** 1636 * A bind operation clones the source mount and mounts the clone on the 1637 * destination mount. 1638 * 1639 * (++) the cloned mount is propagated to all the mounts in the propagation 1640 * tree of the destination mount and the cloned mount is added to 1641 * the peer group of the source mount. 1642 * (+) the cloned mount is created under the destination mount and is marked 1643 * as shared. The cloned mount is added to the peer group of the source 1644 * mount. 1645 * (+++) the mount is propagated to all the mounts in the propagation tree 1646 * of the destination mount and the cloned mount is made slave 1647 * of the same master as that of the source mount. The cloned mount 1648 * is marked as 'shared and slave'. 1649 * (*) the cloned mount is made a slave of the same master as that of the 1650 * source mount. 1651 * 1652 * --------------------------------------------------------------------------- 1653 * | MOVE MOUNT OPERATION | 1654 * |************************************************************************** 1655 * | source-->| shared | private | slave | unbindable | 1656 * | dest | | | | | 1657 * | | | | | | | 1658 * | v | | | | | 1659 * |************************************************************************** 1660 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1661 * | | | | | | 1662 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1663 * *************************************************************************** 1664 * 1665 * (+) the mount is moved to the destination. And is then propagated to 1666 * all the mounts in the propagation tree of the destination mount. 1667 * (+*) the mount is moved to the destination. 1668 * (+++) the mount is moved to the destination and is then propagated to 1669 * all the mounts belonging to the destination mount's propagation tree. 1670 * the mount is marked as 'shared and slave'. 1671 * (*) the mount continues to be a slave at the new location. 1672 * 1673 * if the source mount is a tree, the operations explained above is 1674 * applied to each mount in the tree. 1675 * Must be called without spinlocks held, since this function can sleep 1676 * in allocations. 1677 */ 1678 static int attach_recursive_mnt(struct mount *source_mnt, 1679 struct mount *dest_mnt, 1680 struct mountpoint *dest_mp, 1681 struct path *parent_path) 1682 { 1683 HLIST_HEAD(tree_list); 1684 struct mount *child, *p; 1685 struct hlist_node *n; 1686 int err; 1687 1688 if (IS_MNT_SHARED(dest_mnt)) { 1689 err = invent_group_ids(source_mnt, true); 1690 if (err) 1691 goto out; 1692 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1693 lock_mount_hash(); 1694 if (err) 1695 goto out_cleanup_ids; 1696 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1697 set_mnt_shared(p); 1698 } else { 1699 lock_mount_hash(); 1700 } 1701 if (parent_path) { 1702 detach_mnt(source_mnt, parent_path); 1703 attach_mnt(source_mnt, dest_mnt, dest_mp); 1704 touch_mnt_namespace(source_mnt->mnt_ns); 1705 } else { 1706 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1707 commit_tree(source_mnt, NULL); 1708 } 1709 1710 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1711 struct mount *q; 1712 hlist_del_init(&child->mnt_hash); 1713 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1714 child->mnt_mountpoint); 1715 commit_tree(child, q); 1716 } 1717 unlock_mount_hash(); 1718 1719 return 0; 1720 1721 out_cleanup_ids: 1722 while (!hlist_empty(&tree_list)) { 1723 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1724 umount_tree(child, 0); 1725 } 1726 unlock_mount_hash(); 1727 cleanup_group_ids(source_mnt, NULL); 1728 out: 1729 return err; 1730 } 1731 1732 static struct mountpoint *lock_mount(struct path *path) 1733 { 1734 struct vfsmount *mnt; 1735 struct dentry *dentry = path->dentry; 1736 retry: 1737 mutex_lock(&dentry->d_inode->i_mutex); 1738 if (unlikely(cant_mount(dentry))) { 1739 mutex_unlock(&dentry->d_inode->i_mutex); 1740 return ERR_PTR(-ENOENT); 1741 } 1742 namespace_lock(); 1743 mnt = lookup_mnt(path); 1744 if (likely(!mnt)) { 1745 struct mountpoint *mp = new_mountpoint(dentry); 1746 if (IS_ERR(mp)) { 1747 namespace_unlock(); 1748 mutex_unlock(&dentry->d_inode->i_mutex); 1749 return mp; 1750 } 1751 return mp; 1752 } 1753 namespace_unlock(); 1754 mutex_unlock(&path->dentry->d_inode->i_mutex); 1755 path_put(path); 1756 path->mnt = mnt; 1757 dentry = path->dentry = dget(mnt->mnt_root); 1758 goto retry; 1759 } 1760 1761 static void unlock_mount(struct mountpoint *where) 1762 { 1763 struct dentry *dentry = where->m_dentry; 1764 put_mountpoint(where); 1765 namespace_unlock(); 1766 mutex_unlock(&dentry->d_inode->i_mutex); 1767 } 1768 1769 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1770 { 1771 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1772 return -EINVAL; 1773 1774 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1775 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1776 return -ENOTDIR; 1777 1778 return attach_recursive_mnt(mnt, p, mp, NULL); 1779 } 1780 1781 /* 1782 * Sanity check the flags to change_mnt_propagation. 1783 */ 1784 1785 static int flags_to_propagation_type(int flags) 1786 { 1787 int type = flags & ~(MS_REC | MS_SILENT); 1788 1789 /* Fail if any non-propagation flags are set */ 1790 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1791 return 0; 1792 /* Only one propagation flag should be set */ 1793 if (!is_power_of_2(type)) 1794 return 0; 1795 return type; 1796 } 1797 1798 /* 1799 * recursively change the type of the mountpoint. 1800 */ 1801 static int do_change_type(struct path *path, int flag) 1802 { 1803 struct mount *m; 1804 struct mount *mnt = real_mount(path->mnt); 1805 int recurse = flag & MS_REC; 1806 int type; 1807 int err = 0; 1808 1809 if (path->dentry != path->mnt->mnt_root) 1810 return -EINVAL; 1811 1812 type = flags_to_propagation_type(flag); 1813 if (!type) 1814 return -EINVAL; 1815 1816 namespace_lock(); 1817 if (type == MS_SHARED) { 1818 err = invent_group_ids(mnt, recurse); 1819 if (err) 1820 goto out_unlock; 1821 } 1822 1823 lock_mount_hash(); 1824 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1825 change_mnt_propagation(m, type); 1826 unlock_mount_hash(); 1827 1828 out_unlock: 1829 namespace_unlock(); 1830 return err; 1831 } 1832 1833 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1834 { 1835 struct mount *child; 1836 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1837 if (!is_subdir(child->mnt_mountpoint, dentry)) 1838 continue; 1839 1840 if (child->mnt.mnt_flags & MNT_LOCKED) 1841 return true; 1842 } 1843 return false; 1844 } 1845 1846 /* 1847 * do loopback mount. 1848 */ 1849 static int do_loopback(struct path *path, const char *old_name, 1850 int recurse) 1851 { 1852 struct path old_path; 1853 struct mount *mnt = NULL, *old, *parent; 1854 struct mountpoint *mp; 1855 int err; 1856 if (!old_name || !*old_name) 1857 return -EINVAL; 1858 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1859 if (err) 1860 return err; 1861 1862 err = -EINVAL; 1863 if (mnt_ns_loop(old_path.dentry)) 1864 goto out; 1865 1866 mp = lock_mount(path); 1867 err = PTR_ERR(mp); 1868 if (IS_ERR(mp)) 1869 goto out; 1870 1871 old = real_mount(old_path.mnt); 1872 parent = real_mount(path->mnt); 1873 1874 err = -EINVAL; 1875 if (IS_MNT_UNBINDABLE(old)) 1876 goto out2; 1877 1878 if (!check_mnt(parent) || !check_mnt(old)) 1879 goto out2; 1880 1881 if (!recurse && has_locked_children(old, old_path.dentry)) 1882 goto out2; 1883 1884 if (recurse) 1885 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 1886 else 1887 mnt = clone_mnt(old, old_path.dentry, 0); 1888 1889 if (IS_ERR(mnt)) { 1890 err = PTR_ERR(mnt); 1891 goto out2; 1892 } 1893 1894 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 1895 1896 err = graft_tree(mnt, parent, mp); 1897 if (err) { 1898 lock_mount_hash(); 1899 umount_tree(mnt, 0); 1900 unlock_mount_hash(); 1901 } 1902 out2: 1903 unlock_mount(mp); 1904 out: 1905 path_put(&old_path); 1906 return err; 1907 } 1908 1909 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1910 { 1911 int error = 0; 1912 int readonly_request = 0; 1913 1914 if (ms_flags & MS_RDONLY) 1915 readonly_request = 1; 1916 if (readonly_request == __mnt_is_readonly(mnt)) 1917 return 0; 1918 1919 if (readonly_request) 1920 error = mnt_make_readonly(real_mount(mnt)); 1921 else 1922 __mnt_unmake_readonly(real_mount(mnt)); 1923 return error; 1924 } 1925 1926 /* 1927 * change filesystem flags. dir should be a physical root of filesystem. 1928 * If you've mounted a non-root directory somewhere and want to do remount 1929 * on it - tough luck. 1930 */ 1931 static int do_remount(struct path *path, int flags, int mnt_flags, 1932 void *data) 1933 { 1934 int err; 1935 struct super_block *sb = path->mnt->mnt_sb; 1936 struct mount *mnt = real_mount(path->mnt); 1937 1938 if (!check_mnt(mnt)) 1939 return -EINVAL; 1940 1941 if (path->dentry != path->mnt->mnt_root) 1942 return -EINVAL; 1943 1944 /* Don't allow changing of locked mnt flags. 1945 * 1946 * No locks need to be held here while testing the various 1947 * MNT_LOCK flags because those flags can never be cleared 1948 * once they are set. 1949 */ 1950 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 1951 !(mnt_flags & MNT_READONLY)) { 1952 return -EPERM; 1953 } 1954 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 1955 !(mnt_flags & MNT_NODEV)) { 1956 return -EPERM; 1957 } 1958 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 1959 !(mnt_flags & MNT_NOSUID)) { 1960 return -EPERM; 1961 } 1962 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 1963 !(mnt_flags & MNT_NOEXEC)) { 1964 return -EPERM; 1965 } 1966 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 1967 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 1968 return -EPERM; 1969 } 1970 1971 err = security_sb_remount(sb, data); 1972 if (err) 1973 return err; 1974 1975 down_write(&sb->s_umount); 1976 if (flags & MS_BIND) 1977 err = change_mount_flags(path->mnt, flags); 1978 else if (!capable(CAP_SYS_ADMIN)) 1979 err = -EPERM; 1980 else 1981 err = do_remount_sb(sb, flags, data, 0); 1982 if (!err) { 1983 lock_mount_hash(); 1984 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 1985 mnt->mnt.mnt_flags = mnt_flags; 1986 touch_mnt_namespace(mnt->mnt_ns); 1987 unlock_mount_hash(); 1988 } 1989 up_write(&sb->s_umount); 1990 return err; 1991 } 1992 1993 static inline int tree_contains_unbindable(struct mount *mnt) 1994 { 1995 struct mount *p; 1996 for (p = mnt; p; p = next_mnt(p, mnt)) { 1997 if (IS_MNT_UNBINDABLE(p)) 1998 return 1; 1999 } 2000 return 0; 2001 } 2002 2003 static int do_move_mount(struct path *path, const char *old_name) 2004 { 2005 struct path old_path, parent_path; 2006 struct mount *p; 2007 struct mount *old; 2008 struct mountpoint *mp; 2009 int err; 2010 if (!old_name || !*old_name) 2011 return -EINVAL; 2012 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2013 if (err) 2014 return err; 2015 2016 mp = lock_mount(path); 2017 err = PTR_ERR(mp); 2018 if (IS_ERR(mp)) 2019 goto out; 2020 2021 old = real_mount(old_path.mnt); 2022 p = real_mount(path->mnt); 2023 2024 err = -EINVAL; 2025 if (!check_mnt(p) || !check_mnt(old)) 2026 goto out1; 2027 2028 if (old->mnt.mnt_flags & MNT_LOCKED) 2029 goto out1; 2030 2031 err = -EINVAL; 2032 if (old_path.dentry != old_path.mnt->mnt_root) 2033 goto out1; 2034 2035 if (!mnt_has_parent(old)) 2036 goto out1; 2037 2038 if (S_ISDIR(path->dentry->d_inode->i_mode) != 2039 S_ISDIR(old_path.dentry->d_inode->i_mode)) 2040 goto out1; 2041 /* 2042 * Don't move a mount residing in a shared parent. 2043 */ 2044 if (IS_MNT_SHARED(old->mnt_parent)) 2045 goto out1; 2046 /* 2047 * Don't move a mount tree containing unbindable mounts to a destination 2048 * mount which is shared. 2049 */ 2050 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2051 goto out1; 2052 err = -ELOOP; 2053 for (; mnt_has_parent(p); p = p->mnt_parent) 2054 if (p == old) 2055 goto out1; 2056 2057 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2058 if (err) 2059 goto out1; 2060 2061 /* if the mount is moved, it should no longer be expire 2062 * automatically */ 2063 list_del_init(&old->mnt_expire); 2064 out1: 2065 unlock_mount(mp); 2066 out: 2067 if (!err) 2068 path_put(&parent_path); 2069 path_put(&old_path); 2070 return err; 2071 } 2072 2073 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2074 { 2075 int err; 2076 const char *subtype = strchr(fstype, '.'); 2077 if (subtype) { 2078 subtype++; 2079 err = -EINVAL; 2080 if (!subtype[0]) 2081 goto err; 2082 } else 2083 subtype = ""; 2084 2085 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2086 err = -ENOMEM; 2087 if (!mnt->mnt_sb->s_subtype) 2088 goto err; 2089 return mnt; 2090 2091 err: 2092 mntput(mnt); 2093 return ERR_PTR(err); 2094 } 2095 2096 /* 2097 * add a mount into a namespace's mount tree 2098 */ 2099 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2100 { 2101 struct mountpoint *mp; 2102 struct mount *parent; 2103 int err; 2104 2105 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2106 2107 mp = lock_mount(path); 2108 if (IS_ERR(mp)) 2109 return PTR_ERR(mp); 2110 2111 parent = real_mount(path->mnt); 2112 err = -EINVAL; 2113 if (unlikely(!check_mnt(parent))) { 2114 /* that's acceptable only for automounts done in private ns */ 2115 if (!(mnt_flags & MNT_SHRINKABLE)) 2116 goto unlock; 2117 /* ... and for those we'd better have mountpoint still alive */ 2118 if (!parent->mnt_ns) 2119 goto unlock; 2120 } 2121 2122 /* Refuse the same filesystem on the same mount point */ 2123 err = -EBUSY; 2124 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2125 path->mnt->mnt_root == path->dentry) 2126 goto unlock; 2127 2128 err = -EINVAL; 2129 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2130 goto unlock; 2131 2132 newmnt->mnt.mnt_flags = mnt_flags; 2133 err = graft_tree(newmnt, parent, mp); 2134 2135 unlock: 2136 unlock_mount(mp); 2137 return err; 2138 } 2139 2140 /* 2141 * create a new mount for userspace and request it to be added into the 2142 * namespace's tree 2143 */ 2144 static int do_new_mount(struct path *path, const char *fstype, int flags, 2145 int mnt_flags, const char *name, void *data) 2146 { 2147 struct file_system_type *type; 2148 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2149 struct vfsmount *mnt; 2150 int err; 2151 2152 if (!fstype) 2153 return -EINVAL; 2154 2155 type = get_fs_type(fstype); 2156 if (!type) 2157 return -ENODEV; 2158 2159 if (user_ns != &init_user_ns) { 2160 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2161 put_filesystem(type); 2162 return -EPERM; 2163 } 2164 /* Only in special cases allow devices from mounts 2165 * created outside the initial user namespace. 2166 */ 2167 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2168 flags |= MS_NODEV; 2169 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2170 } 2171 } 2172 2173 mnt = vfs_kern_mount(type, flags, name, data); 2174 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2175 !mnt->mnt_sb->s_subtype) 2176 mnt = fs_set_subtype(mnt, fstype); 2177 2178 put_filesystem(type); 2179 if (IS_ERR(mnt)) 2180 return PTR_ERR(mnt); 2181 2182 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2183 if (err) 2184 mntput(mnt); 2185 return err; 2186 } 2187 2188 int finish_automount(struct vfsmount *m, struct path *path) 2189 { 2190 struct mount *mnt = real_mount(m); 2191 int err; 2192 /* The new mount record should have at least 2 refs to prevent it being 2193 * expired before we get a chance to add it 2194 */ 2195 BUG_ON(mnt_get_count(mnt) < 2); 2196 2197 if (m->mnt_sb == path->mnt->mnt_sb && 2198 m->mnt_root == path->dentry) { 2199 err = -ELOOP; 2200 goto fail; 2201 } 2202 2203 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2204 if (!err) 2205 return 0; 2206 fail: 2207 /* remove m from any expiration list it may be on */ 2208 if (!list_empty(&mnt->mnt_expire)) { 2209 namespace_lock(); 2210 list_del_init(&mnt->mnt_expire); 2211 namespace_unlock(); 2212 } 2213 mntput(m); 2214 mntput(m); 2215 return err; 2216 } 2217 2218 /** 2219 * mnt_set_expiry - Put a mount on an expiration list 2220 * @mnt: The mount to list. 2221 * @expiry_list: The list to add the mount to. 2222 */ 2223 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2224 { 2225 namespace_lock(); 2226 2227 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2228 2229 namespace_unlock(); 2230 } 2231 EXPORT_SYMBOL(mnt_set_expiry); 2232 2233 /* 2234 * process a list of expirable mountpoints with the intent of discarding any 2235 * mountpoints that aren't in use and haven't been touched since last we came 2236 * here 2237 */ 2238 void mark_mounts_for_expiry(struct list_head *mounts) 2239 { 2240 struct mount *mnt, *next; 2241 LIST_HEAD(graveyard); 2242 2243 if (list_empty(mounts)) 2244 return; 2245 2246 namespace_lock(); 2247 lock_mount_hash(); 2248 2249 /* extract from the expiration list every vfsmount that matches the 2250 * following criteria: 2251 * - only referenced by its parent vfsmount 2252 * - still marked for expiry (marked on the last call here; marks are 2253 * cleared by mntput()) 2254 */ 2255 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2256 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2257 propagate_mount_busy(mnt, 1)) 2258 continue; 2259 list_move(&mnt->mnt_expire, &graveyard); 2260 } 2261 while (!list_empty(&graveyard)) { 2262 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2263 touch_mnt_namespace(mnt->mnt_ns); 2264 umount_tree(mnt, 1); 2265 } 2266 unlock_mount_hash(); 2267 namespace_unlock(); 2268 } 2269 2270 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2271 2272 /* 2273 * Ripoff of 'select_parent()' 2274 * 2275 * search the list of submounts for a given mountpoint, and move any 2276 * shrinkable submounts to the 'graveyard' list. 2277 */ 2278 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2279 { 2280 struct mount *this_parent = parent; 2281 struct list_head *next; 2282 int found = 0; 2283 2284 repeat: 2285 next = this_parent->mnt_mounts.next; 2286 resume: 2287 while (next != &this_parent->mnt_mounts) { 2288 struct list_head *tmp = next; 2289 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2290 2291 next = tmp->next; 2292 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2293 continue; 2294 /* 2295 * Descend a level if the d_mounts list is non-empty. 2296 */ 2297 if (!list_empty(&mnt->mnt_mounts)) { 2298 this_parent = mnt; 2299 goto repeat; 2300 } 2301 2302 if (!propagate_mount_busy(mnt, 1)) { 2303 list_move_tail(&mnt->mnt_expire, graveyard); 2304 found++; 2305 } 2306 } 2307 /* 2308 * All done at this level ... ascend and resume the search 2309 */ 2310 if (this_parent != parent) { 2311 next = this_parent->mnt_child.next; 2312 this_parent = this_parent->mnt_parent; 2313 goto resume; 2314 } 2315 return found; 2316 } 2317 2318 /* 2319 * process a list of expirable mountpoints with the intent of discarding any 2320 * submounts of a specific parent mountpoint 2321 * 2322 * mount_lock must be held for write 2323 */ 2324 static void shrink_submounts(struct mount *mnt) 2325 { 2326 LIST_HEAD(graveyard); 2327 struct mount *m; 2328 2329 /* extract submounts of 'mountpoint' from the expiration list */ 2330 while (select_submounts(mnt, &graveyard)) { 2331 while (!list_empty(&graveyard)) { 2332 m = list_first_entry(&graveyard, struct mount, 2333 mnt_expire); 2334 touch_mnt_namespace(m->mnt_ns); 2335 umount_tree(m, 1); 2336 } 2337 } 2338 } 2339 2340 /* 2341 * Some copy_from_user() implementations do not return the exact number of 2342 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2343 * Note that this function differs from copy_from_user() in that it will oops 2344 * on bad values of `to', rather than returning a short copy. 2345 */ 2346 static long exact_copy_from_user(void *to, const void __user * from, 2347 unsigned long n) 2348 { 2349 char *t = to; 2350 const char __user *f = from; 2351 char c; 2352 2353 if (!access_ok(VERIFY_READ, from, n)) 2354 return n; 2355 2356 while (n) { 2357 if (__get_user(c, f)) { 2358 memset(t, 0, n); 2359 break; 2360 } 2361 *t++ = c; 2362 f++; 2363 n--; 2364 } 2365 return n; 2366 } 2367 2368 int copy_mount_options(const void __user * data, unsigned long *where) 2369 { 2370 int i; 2371 unsigned long page; 2372 unsigned long size; 2373 2374 *where = 0; 2375 if (!data) 2376 return 0; 2377 2378 if (!(page = __get_free_page(GFP_KERNEL))) 2379 return -ENOMEM; 2380 2381 /* We only care that *some* data at the address the user 2382 * gave us is valid. Just in case, we'll zero 2383 * the remainder of the page. 2384 */ 2385 /* copy_from_user cannot cross TASK_SIZE ! */ 2386 size = TASK_SIZE - (unsigned long)data; 2387 if (size > PAGE_SIZE) 2388 size = PAGE_SIZE; 2389 2390 i = size - exact_copy_from_user((void *)page, data, size); 2391 if (!i) { 2392 free_page(page); 2393 return -EFAULT; 2394 } 2395 if (i != PAGE_SIZE) 2396 memset((char *)page + i, 0, PAGE_SIZE - i); 2397 *where = page; 2398 return 0; 2399 } 2400 2401 int copy_mount_string(const void __user *data, char **where) 2402 { 2403 char *tmp; 2404 2405 if (!data) { 2406 *where = NULL; 2407 return 0; 2408 } 2409 2410 tmp = strndup_user(data, PAGE_SIZE); 2411 if (IS_ERR(tmp)) 2412 return PTR_ERR(tmp); 2413 2414 *where = tmp; 2415 return 0; 2416 } 2417 2418 /* 2419 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2420 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2421 * 2422 * data is a (void *) that can point to any structure up to 2423 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2424 * information (or be NULL). 2425 * 2426 * Pre-0.97 versions of mount() didn't have a flags word. 2427 * When the flags word was introduced its top half was required 2428 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2429 * Therefore, if this magic number is present, it carries no information 2430 * and must be discarded. 2431 */ 2432 long do_mount(const char *dev_name, const char *dir_name, 2433 const char *type_page, unsigned long flags, void *data_page) 2434 { 2435 struct path path; 2436 int retval = 0; 2437 int mnt_flags = 0; 2438 2439 /* Discard magic */ 2440 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2441 flags &= ~MS_MGC_MSK; 2442 2443 /* Basic sanity checks */ 2444 2445 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2446 return -EINVAL; 2447 2448 if (data_page) 2449 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2450 2451 /* ... and get the mountpoint */ 2452 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2453 if (retval) 2454 return retval; 2455 2456 retval = security_sb_mount(dev_name, &path, 2457 type_page, flags, data_page); 2458 if (!retval && !may_mount()) 2459 retval = -EPERM; 2460 if (retval) 2461 goto dput_out; 2462 2463 /* Default to relatime unless overriden */ 2464 if (!(flags & MS_NOATIME)) 2465 mnt_flags |= MNT_RELATIME; 2466 2467 /* Separate the per-mountpoint flags */ 2468 if (flags & MS_NOSUID) 2469 mnt_flags |= MNT_NOSUID; 2470 if (flags & MS_NODEV) 2471 mnt_flags |= MNT_NODEV; 2472 if (flags & MS_NOEXEC) 2473 mnt_flags |= MNT_NOEXEC; 2474 if (flags & MS_NOATIME) 2475 mnt_flags |= MNT_NOATIME; 2476 if (flags & MS_NODIRATIME) 2477 mnt_flags |= MNT_NODIRATIME; 2478 if (flags & MS_STRICTATIME) 2479 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2480 if (flags & MS_RDONLY) 2481 mnt_flags |= MNT_READONLY; 2482 2483 /* The default atime for remount is preservation */ 2484 if ((flags & MS_REMOUNT) && 2485 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2486 MS_STRICTATIME)) == 0)) { 2487 mnt_flags &= ~MNT_ATIME_MASK; 2488 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2489 } 2490 2491 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2492 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2493 MS_STRICTATIME); 2494 2495 if (flags & MS_REMOUNT) 2496 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2497 data_page); 2498 else if (flags & MS_BIND) 2499 retval = do_loopback(&path, dev_name, flags & MS_REC); 2500 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2501 retval = do_change_type(&path, flags); 2502 else if (flags & MS_MOVE) 2503 retval = do_move_mount(&path, dev_name); 2504 else 2505 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2506 dev_name, data_page); 2507 dput_out: 2508 path_put(&path); 2509 return retval; 2510 } 2511 2512 static void free_mnt_ns(struct mnt_namespace *ns) 2513 { 2514 proc_free_inum(ns->proc_inum); 2515 put_user_ns(ns->user_ns); 2516 kfree(ns); 2517 } 2518 2519 /* 2520 * Assign a sequence number so we can detect when we attempt to bind 2521 * mount a reference to an older mount namespace into the current 2522 * mount namespace, preventing reference counting loops. A 64bit 2523 * number incrementing at 10Ghz will take 12,427 years to wrap which 2524 * is effectively never, so we can ignore the possibility. 2525 */ 2526 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2527 2528 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2529 { 2530 struct mnt_namespace *new_ns; 2531 int ret; 2532 2533 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2534 if (!new_ns) 2535 return ERR_PTR(-ENOMEM); 2536 ret = proc_alloc_inum(&new_ns->proc_inum); 2537 if (ret) { 2538 kfree(new_ns); 2539 return ERR_PTR(ret); 2540 } 2541 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2542 atomic_set(&new_ns->count, 1); 2543 new_ns->root = NULL; 2544 INIT_LIST_HEAD(&new_ns->list); 2545 init_waitqueue_head(&new_ns->poll); 2546 new_ns->event = 0; 2547 new_ns->user_ns = get_user_ns(user_ns); 2548 return new_ns; 2549 } 2550 2551 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2552 struct user_namespace *user_ns, struct fs_struct *new_fs) 2553 { 2554 struct mnt_namespace *new_ns; 2555 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2556 struct mount *p, *q; 2557 struct mount *old; 2558 struct mount *new; 2559 int copy_flags; 2560 2561 BUG_ON(!ns); 2562 2563 if (likely(!(flags & CLONE_NEWNS))) { 2564 get_mnt_ns(ns); 2565 return ns; 2566 } 2567 2568 old = ns->root; 2569 2570 new_ns = alloc_mnt_ns(user_ns); 2571 if (IS_ERR(new_ns)) 2572 return new_ns; 2573 2574 namespace_lock(); 2575 /* First pass: copy the tree topology */ 2576 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2577 if (user_ns != ns->user_ns) 2578 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2579 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2580 if (IS_ERR(new)) { 2581 namespace_unlock(); 2582 free_mnt_ns(new_ns); 2583 return ERR_CAST(new); 2584 } 2585 new_ns->root = new; 2586 list_add_tail(&new_ns->list, &new->mnt_list); 2587 2588 /* 2589 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2590 * as belonging to new namespace. We have already acquired a private 2591 * fs_struct, so tsk->fs->lock is not needed. 2592 */ 2593 p = old; 2594 q = new; 2595 while (p) { 2596 q->mnt_ns = new_ns; 2597 if (new_fs) { 2598 if (&p->mnt == new_fs->root.mnt) { 2599 new_fs->root.mnt = mntget(&q->mnt); 2600 rootmnt = &p->mnt; 2601 } 2602 if (&p->mnt == new_fs->pwd.mnt) { 2603 new_fs->pwd.mnt = mntget(&q->mnt); 2604 pwdmnt = &p->mnt; 2605 } 2606 } 2607 p = next_mnt(p, old); 2608 q = next_mnt(q, new); 2609 if (!q) 2610 break; 2611 while (p->mnt.mnt_root != q->mnt.mnt_root) 2612 p = next_mnt(p, old); 2613 } 2614 namespace_unlock(); 2615 2616 if (rootmnt) 2617 mntput(rootmnt); 2618 if (pwdmnt) 2619 mntput(pwdmnt); 2620 2621 return new_ns; 2622 } 2623 2624 /** 2625 * create_mnt_ns - creates a private namespace and adds a root filesystem 2626 * @mnt: pointer to the new root filesystem mountpoint 2627 */ 2628 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2629 { 2630 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2631 if (!IS_ERR(new_ns)) { 2632 struct mount *mnt = real_mount(m); 2633 mnt->mnt_ns = new_ns; 2634 new_ns->root = mnt; 2635 list_add(&mnt->mnt_list, &new_ns->list); 2636 } else { 2637 mntput(m); 2638 } 2639 return new_ns; 2640 } 2641 2642 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2643 { 2644 struct mnt_namespace *ns; 2645 struct super_block *s; 2646 struct path path; 2647 int err; 2648 2649 ns = create_mnt_ns(mnt); 2650 if (IS_ERR(ns)) 2651 return ERR_CAST(ns); 2652 2653 err = vfs_path_lookup(mnt->mnt_root, mnt, 2654 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2655 2656 put_mnt_ns(ns); 2657 2658 if (err) 2659 return ERR_PTR(err); 2660 2661 /* trade a vfsmount reference for active sb one */ 2662 s = path.mnt->mnt_sb; 2663 atomic_inc(&s->s_active); 2664 mntput(path.mnt); 2665 /* lock the sucker */ 2666 down_write(&s->s_umount); 2667 /* ... and return the root of (sub)tree on it */ 2668 return path.dentry; 2669 } 2670 EXPORT_SYMBOL(mount_subtree); 2671 2672 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2673 char __user *, type, unsigned long, flags, void __user *, data) 2674 { 2675 int ret; 2676 char *kernel_type; 2677 struct filename *kernel_dir; 2678 char *kernel_dev; 2679 unsigned long data_page; 2680 2681 ret = copy_mount_string(type, &kernel_type); 2682 if (ret < 0) 2683 goto out_type; 2684 2685 kernel_dir = getname(dir_name); 2686 if (IS_ERR(kernel_dir)) { 2687 ret = PTR_ERR(kernel_dir); 2688 goto out_dir; 2689 } 2690 2691 ret = copy_mount_string(dev_name, &kernel_dev); 2692 if (ret < 0) 2693 goto out_dev; 2694 2695 ret = copy_mount_options(data, &data_page); 2696 if (ret < 0) 2697 goto out_data; 2698 2699 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags, 2700 (void *) data_page); 2701 2702 free_page(data_page); 2703 out_data: 2704 kfree(kernel_dev); 2705 out_dev: 2706 putname(kernel_dir); 2707 out_dir: 2708 kfree(kernel_type); 2709 out_type: 2710 return ret; 2711 } 2712 2713 /* 2714 * Return true if path is reachable from root 2715 * 2716 * namespace_sem or mount_lock is held 2717 */ 2718 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2719 const struct path *root) 2720 { 2721 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2722 dentry = mnt->mnt_mountpoint; 2723 mnt = mnt->mnt_parent; 2724 } 2725 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2726 } 2727 2728 int path_is_under(struct path *path1, struct path *path2) 2729 { 2730 int res; 2731 read_seqlock_excl(&mount_lock); 2732 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2733 read_sequnlock_excl(&mount_lock); 2734 return res; 2735 } 2736 EXPORT_SYMBOL(path_is_under); 2737 2738 /* 2739 * pivot_root Semantics: 2740 * Moves the root file system of the current process to the directory put_old, 2741 * makes new_root as the new root file system of the current process, and sets 2742 * root/cwd of all processes which had them on the current root to new_root. 2743 * 2744 * Restrictions: 2745 * The new_root and put_old must be directories, and must not be on the 2746 * same file system as the current process root. The put_old must be 2747 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2748 * pointed to by put_old must yield the same directory as new_root. No other 2749 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2750 * 2751 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2752 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2753 * in this situation. 2754 * 2755 * Notes: 2756 * - we don't move root/cwd if they are not at the root (reason: if something 2757 * cared enough to change them, it's probably wrong to force them elsewhere) 2758 * - it's okay to pick a root that isn't the root of a file system, e.g. 2759 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2760 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2761 * first. 2762 */ 2763 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2764 const char __user *, put_old) 2765 { 2766 struct path new, old, parent_path, root_parent, root; 2767 struct mount *new_mnt, *root_mnt, *old_mnt; 2768 struct mountpoint *old_mp, *root_mp; 2769 int error; 2770 2771 if (!may_mount()) 2772 return -EPERM; 2773 2774 error = user_path_dir(new_root, &new); 2775 if (error) 2776 goto out0; 2777 2778 error = user_path_dir(put_old, &old); 2779 if (error) 2780 goto out1; 2781 2782 error = security_sb_pivotroot(&old, &new); 2783 if (error) 2784 goto out2; 2785 2786 get_fs_root(current->fs, &root); 2787 old_mp = lock_mount(&old); 2788 error = PTR_ERR(old_mp); 2789 if (IS_ERR(old_mp)) 2790 goto out3; 2791 2792 error = -EINVAL; 2793 new_mnt = real_mount(new.mnt); 2794 root_mnt = real_mount(root.mnt); 2795 old_mnt = real_mount(old.mnt); 2796 if (IS_MNT_SHARED(old_mnt) || 2797 IS_MNT_SHARED(new_mnt->mnt_parent) || 2798 IS_MNT_SHARED(root_mnt->mnt_parent)) 2799 goto out4; 2800 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2801 goto out4; 2802 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2803 goto out4; 2804 error = -ENOENT; 2805 if (d_unlinked(new.dentry)) 2806 goto out4; 2807 error = -EBUSY; 2808 if (new_mnt == root_mnt || old_mnt == root_mnt) 2809 goto out4; /* loop, on the same file system */ 2810 error = -EINVAL; 2811 if (root.mnt->mnt_root != root.dentry) 2812 goto out4; /* not a mountpoint */ 2813 if (!mnt_has_parent(root_mnt)) 2814 goto out4; /* not attached */ 2815 root_mp = root_mnt->mnt_mp; 2816 if (new.mnt->mnt_root != new.dentry) 2817 goto out4; /* not a mountpoint */ 2818 if (!mnt_has_parent(new_mnt)) 2819 goto out4; /* not attached */ 2820 /* make sure we can reach put_old from new_root */ 2821 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2822 goto out4; 2823 root_mp->m_count++; /* pin it so it won't go away */ 2824 lock_mount_hash(); 2825 detach_mnt(new_mnt, &parent_path); 2826 detach_mnt(root_mnt, &root_parent); 2827 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2828 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2829 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2830 } 2831 /* mount old root on put_old */ 2832 attach_mnt(root_mnt, old_mnt, old_mp); 2833 /* mount new_root on / */ 2834 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2835 touch_mnt_namespace(current->nsproxy->mnt_ns); 2836 unlock_mount_hash(); 2837 chroot_fs_refs(&root, &new); 2838 put_mountpoint(root_mp); 2839 error = 0; 2840 out4: 2841 unlock_mount(old_mp); 2842 if (!error) { 2843 path_put(&root_parent); 2844 path_put(&parent_path); 2845 } 2846 out3: 2847 path_put(&root); 2848 out2: 2849 path_put(&old); 2850 out1: 2851 path_put(&new); 2852 out0: 2853 return error; 2854 } 2855 2856 static void __init init_mount_tree(void) 2857 { 2858 struct vfsmount *mnt; 2859 struct mnt_namespace *ns; 2860 struct path root; 2861 struct file_system_type *type; 2862 2863 type = get_fs_type("rootfs"); 2864 if (!type) 2865 panic("Can't find rootfs type"); 2866 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2867 put_filesystem(type); 2868 if (IS_ERR(mnt)) 2869 panic("Can't create rootfs"); 2870 2871 ns = create_mnt_ns(mnt); 2872 if (IS_ERR(ns)) 2873 panic("Can't allocate initial namespace"); 2874 2875 init_task.nsproxy->mnt_ns = ns; 2876 get_mnt_ns(ns); 2877 2878 root.mnt = mnt; 2879 root.dentry = mnt->mnt_root; 2880 2881 set_fs_pwd(current->fs, &root); 2882 set_fs_root(current->fs, &root); 2883 } 2884 2885 void __init mnt_init(void) 2886 { 2887 unsigned u; 2888 int err; 2889 2890 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2891 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2892 2893 mount_hashtable = alloc_large_system_hash("Mount-cache", 2894 sizeof(struct hlist_head), 2895 mhash_entries, 19, 2896 0, 2897 &m_hash_shift, &m_hash_mask, 0, 0); 2898 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 2899 sizeof(struct hlist_head), 2900 mphash_entries, 19, 2901 0, 2902 &mp_hash_shift, &mp_hash_mask, 0, 0); 2903 2904 if (!mount_hashtable || !mountpoint_hashtable) 2905 panic("Failed to allocate mount hash table\n"); 2906 2907 for (u = 0; u <= m_hash_mask; u++) 2908 INIT_HLIST_HEAD(&mount_hashtable[u]); 2909 for (u = 0; u <= mp_hash_mask; u++) 2910 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 2911 2912 kernfs_init(); 2913 2914 err = sysfs_init(); 2915 if (err) 2916 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2917 __func__, err); 2918 fs_kobj = kobject_create_and_add("fs", NULL); 2919 if (!fs_kobj) 2920 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2921 init_rootfs(); 2922 init_mount_tree(); 2923 } 2924 2925 void put_mnt_ns(struct mnt_namespace *ns) 2926 { 2927 if (!atomic_dec_and_test(&ns->count)) 2928 return; 2929 drop_collected_mounts(&ns->root->mnt); 2930 free_mnt_ns(ns); 2931 } 2932 2933 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2934 { 2935 struct vfsmount *mnt; 2936 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2937 if (!IS_ERR(mnt)) { 2938 /* 2939 * it is a longterm mount, don't release mnt until 2940 * we unmount before file sys is unregistered 2941 */ 2942 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 2943 } 2944 return mnt; 2945 } 2946 EXPORT_SYMBOL_GPL(kern_mount_data); 2947 2948 void kern_unmount(struct vfsmount *mnt) 2949 { 2950 /* release long term mount so mount point can be released */ 2951 if (!IS_ERR_OR_NULL(mnt)) { 2952 real_mount(mnt)->mnt_ns = NULL; 2953 synchronize_rcu(); /* yecchhh... */ 2954 mntput(mnt); 2955 } 2956 } 2957 EXPORT_SYMBOL(kern_unmount); 2958 2959 bool our_mnt(struct vfsmount *mnt) 2960 { 2961 return check_mnt(real_mount(mnt)); 2962 } 2963 2964 bool current_chrooted(void) 2965 { 2966 /* Does the current process have a non-standard root */ 2967 struct path ns_root; 2968 struct path fs_root; 2969 bool chrooted; 2970 2971 /* Find the namespace root */ 2972 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 2973 ns_root.dentry = ns_root.mnt->mnt_root; 2974 path_get(&ns_root); 2975 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 2976 ; 2977 2978 get_fs_root(current->fs, &fs_root); 2979 2980 chrooted = !path_equal(&fs_root, &ns_root); 2981 2982 path_put(&fs_root); 2983 path_put(&ns_root); 2984 2985 return chrooted; 2986 } 2987 2988 bool fs_fully_visible(struct file_system_type *type) 2989 { 2990 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 2991 struct mount *mnt; 2992 bool visible = false; 2993 2994 if (unlikely(!ns)) 2995 return false; 2996 2997 down_read(&namespace_sem); 2998 list_for_each_entry(mnt, &ns->list, mnt_list) { 2999 struct mount *child; 3000 if (mnt->mnt.mnt_sb->s_type != type) 3001 continue; 3002 3003 /* This mount is not fully visible if there are any child mounts 3004 * that cover anything except for empty directories. 3005 */ 3006 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3007 struct inode *inode = child->mnt_mountpoint->d_inode; 3008 if (!S_ISDIR(inode->i_mode)) 3009 goto next; 3010 if (inode->i_nlink > 2) 3011 goto next; 3012 } 3013 visible = true; 3014 goto found; 3015 next: ; 3016 } 3017 found: 3018 up_read(&namespace_sem); 3019 return visible; 3020 } 3021 3022 static void *mntns_get(struct task_struct *task) 3023 { 3024 struct mnt_namespace *ns = NULL; 3025 struct nsproxy *nsproxy; 3026 3027 task_lock(task); 3028 nsproxy = task->nsproxy; 3029 if (nsproxy) { 3030 ns = nsproxy->mnt_ns; 3031 get_mnt_ns(ns); 3032 } 3033 task_unlock(task); 3034 3035 return ns; 3036 } 3037 3038 static void mntns_put(void *ns) 3039 { 3040 put_mnt_ns(ns); 3041 } 3042 3043 static int mntns_install(struct nsproxy *nsproxy, void *ns) 3044 { 3045 struct fs_struct *fs = current->fs; 3046 struct mnt_namespace *mnt_ns = ns; 3047 struct path root; 3048 3049 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3050 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3051 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3052 return -EPERM; 3053 3054 if (fs->users != 1) 3055 return -EINVAL; 3056 3057 get_mnt_ns(mnt_ns); 3058 put_mnt_ns(nsproxy->mnt_ns); 3059 nsproxy->mnt_ns = mnt_ns; 3060 3061 /* Find the root */ 3062 root.mnt = &mnt_ns->root->mnt; 3063 root.dentry = mnt_ns->root->mnt.mnt_root; 3064 path_get(&root); 3065 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3066 ; 3067 3068 /* Update the pwd and root */ 3069 set_fs_pwd(fs, &root); 3070 set_fs_root(fs, &root); 3071 3072 path_put(&root); 3073 return 0; 3074 } 3075 3076 static unsigned int mntns_inum(void *ns) 3077 { 3078 struct mnt_namespace *mnt_ns = ns; 3079 return mnt_ns->proc_inum; 3080 } 3081 3082 const struct proc_ns_operations mntns_operations = { 3083 .name = "mnt", 3084 .type = CLONE_NEWNS, 3085 .get = mntns_get, 3086 .put = mntns_put, 3087 .install = mntns_install, 3088 .inum = mntns_inum, 3089 }; 3090