1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 /* Maximum number of mounts in a mount namespace */ 31 unsigned int sysctl_mount_max __read_mostly = 100000; 32 33 static unsigned int m_hash_mask __read_mostly; 34 static unsigned int m_hash_shift __read_mostly; 35 static unsigned int mp_hash_mask __read_mostly; 36 static unsigned int mp_hash_shift __read_mostly; 37 38 static __initdata unsigned long mhash_entries; 39 static int __init set_mhash_entries(char *str) 40 { 41 if (!str) 42 return 0; 43 mhash_entries = simple_strtoul(str, &str, 0); 44 return 1; 45 } 46 __setup("mhash_entries=", set_mhash_entries); 47 48 static __initdata unsigned long mphash_entries; 49 static int __init set_mphash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mphash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mphash_entries=", set_mphash_entries); 57 58 static u64 event; 59 static DEFINE_IDA(mnt_id_ida); 60 static DEFINE_IDA(mnt_group_ida); 61 static DEFINE_SPINLOCK(mnt_id_lock); 62 static int mnt_id_start = 0; 63 static int mnt_group_start = 1; 64 65 static struct hlist_head *mount_hashtable __read_mostly; 66 static struct hlist_head *mountpoint_hashtable __read_mostly; 67 static struct kmem_cache *mnt_cache __read_mostly; 68 static DECLARE_RWSEM(namespace_sem); 69 70 /* /sys/fs */ 71 struct kobject *fs_kobj; 72 EXPORT_SYMBOL_GPL(fs_kobj); 73 74 /* 75 * vfsmount lock may be taken for read to prevent changes to the 76 * vfsmount hash, ie. during mountpoint lookups or walking back 77 * up the tree. 78 * 79 * It should be taken for write in all cases where the vfsmount 80 * tree or hash is modified or when a vfsmount structure is modified. 81 */ 82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 83 84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 85 { 86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 88 tmp = tmp + (tmp >> m_hash_shift); 89 return &mount_hashtable[tmp & m_hash_mask]; 90 } 91 92 static inline struct hlist_head *mp_hash(struct dentry *dentry) 93 { 94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 95 tmp = tmp + (tmp >> mp_hash_shift); 96 return &mountpoint_hashtable[tmp & mp_hash_mask]; 97 } 98 99 /* 100 * allocation is serialized by namespace_sem, but we need the spinlock to 101 * serialize with freeing. 102 */ 103 static int mnt_alloc_id(struct mount *mnt) 104 { 105 int res; 106 107 retry: 108 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 109 spin_lock(&mnt_id_lock); 110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 111 if (!res) 112 mnt_id_start = mnt->mnt_id + 1; 113 spin_unlock(&mnt_id_lock); 114 if (res == -EAGAIN) 115 goto retry; 116 117 return res; 118 } 119 120 static void mnt_free_id(struct mount *mnt) 121 { 122 int id = mnt->mnt_id; 123 spin_lock(&mnt_id_lock); 124 ida_remove(&mnt_id_ida, id); 125 if (mnt_id_start > id) 126 mnt_id_start = id; 127 spin_unlock(&mnt_id_lock); 128 } 129 130 /* 131 * Allocate a new peer group ID 132 * 133 * mnt_group_ida is protected by namespace_sem 134 */ 135 static int mnt_alloc_group_id(struct mount *mnt) 136 { 137 int res; 138 139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 140 return -ENOMEM; 141 142 res = ida_get_new_above(&mnt_group_ida, 143 mnt_group_start, 144 &mnt->mnt_group_id); 145 if (!res) 146 mnt_group_start = mnt->mnt_group_id + 1; 147 148 return res; 149 } 150 151 /* 152 * Release a peer group ID 153 */ 154 void mnt_release_group_id(struct mount *mnt) 155 { 156 int id = mnt->mnt_group_id; 157 ida_remove(&mnt_group_ida, id); 158 if (mnt_group_start > id) 159 mnt_group_start = id; 160 mnt->mnt_group_id = 0; 161 } 162 163 /* 164 * vfsmount lock must be held for read 165 */ 166 static inline void mnt_add_count(struct mount *mnt, int n) 167 { 168 #ifdef CONFIG_SMP 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 170 #else 171 preempt_disable(); 172 mnt->mnt_count += n; 173 preempt_enable(); 174 #endif 175 } 176 177 /* 178 * vfsmount lock must be held for write 179 */ 180 unsigned int mnt_get_count(struct mount *mnt) 181 { 182 #ifdef CONFIG_SMP 183 unsigned int count = 0; 184 int cpu; 185 186 for_each_possible_cpu(cpu) { 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 188 } 189 190 return count; 191 #else 192 return mnt->mnt_count; 193 #endif 194 } 195 196 static void drop_mountpoint(struct fs_pin *p) 197 { 198 struct mount *m = container_of(p, struct mount, mnt_umount); 199 dput(m->mnt_ex_mountpoint); 200 pin_remove(p); 201 mntput(&m->mnt); 202 } 203 204 static struct mount *alloc_vfsmnt(const char *name) 205 { 206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 207 if (mnt) { 208 int err; 209 210 err = mnt_alloc_id(mnt); 211 if (err) 212 goto out_free_cache; 213 214 if (name) { 215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 216 if (!mnt->mnt_devname) 217 goto out_free_id; 218 } 219 220 #ifdef CONFIG_SMP 221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 222 if (!mnt->mnt_pcp) 223 goto out_free_devname; 224 225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 226 #else 227 mnt->mnt_count = 1; 228 mnt->mnt_writers = 0; 229 #endif 230 231 INIT_HLIST_NODE(&mnt->mnt_hash); 232 INIT_LIST_HEAD(&mnt->mnt_child); 233 INIT_LIST_HEAD(&mnt->mnt_mounts); 234 INIT_LIST_HEAD(&mnt->mnt_list); 235 INIT_LIST_HEAD(&mnt->mnt_expire); 236 INIT_LIST_HEAD(&mnt->mnt_share); 237 INIT_LIST_HEAD(&mnt->mnt_slave_list); 238 INIT_LIST_HEAD(&mnt->mnt_slave); 239 INIT_HLIST_NODE(&mnt->mnt_mp_list); 240 #ifdef CONFIG_FSNOTIFY 241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 242 #endif 243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 244 } 245 return mnt; 246 247 #ifdef CONFIG_SMP 248 out_free_devname: 249 kfree_const(mnt->mnt_devname); 250 #endif 251 out_free_id: 252 mnt_free_id(mnt); 253 out_free_cache: 254 kmem_cache_free(mnt_cache, mnt); 255 return NULL; 256 } 257 258 /* 259 * Most r/o checks on a fs are for operations that take 260 * discrete amounts of time, like a write() or unlink(). 261 * We must keep track of when those operations start 262 * (for permission checks) and when they end, so that 263 * we can determine when writes are able to occur to 264 * a filesystem. 265 */ 266 /* 267 * __mnt_is_readonly: check whether a mount is read-only 268 * @mnt: the mount to check for its write status 269 * 270 * This shouldn't be used directly ouside of the VFS. 271 * It does not guarantee that the filesystem will stay 272 * r/w, just that it is right *now*. This can not and 273 * should not be used in place of IS_RDONLY(inode). 274 * mnt_want/drop_write() will _keep_ the filesystem 275 * r/w. 276 */ 277 int __mnt_is_readonly(struct vfsmount *mnt) 278 { 279 if (mnt->mnt_flags & MNT_READONLY) 280 return 1; 281 if (mnt->mnt_sb->s_flags & MS_RDONLY) 282 return 1; 283 return 0; 284 } 285 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 286 287 static inline void mnt_inc_writers(struct mount *mnt) 288 { 289 #ifdef CONFIG_SMP 290 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 291 #else 292 mnt->mnt_writers++; 293 #endif 294 } 295 296 static inline void mnt_dec_writers(struct mount *mnt) 297 { 298 #ifdef CONFIG_SMP 299 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 300 #else 301 mnt->mnt_writers--; 302 #endif 303 } 304 305 static unsigned int mnt_get_writers(struct mount *mnt) 306 { 307 #ifdef CONFIG_SMP 308 unsigned int count = 0; 309 int cpu; 310 311 for_each_possible_cpu(cpu) { 312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 313 } 314 315 return count; 316 #else 317 return mnt->mnt_writers; 318 #endif 319 } 320 321 static int mnt_is_readonly(struct vfsmount *mnt) 322 { 323 if (mnt->mnt_sb->s_readonly_remount) 324 return 1; 325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 326 smp_rmb(); 327 return __mnt_is_readonly(mnt); 328 } 329 330 /* 331 * Most r/o & frozen checks on a fs are for operations that take discrete 332 * amounts of time, like a write() or unlink(). We must keep track of when 333 * those operations start (for permission checks) and when they end, so that we 334 * can determine when writes are able to occur to a filesystem. 335 */ 336 /** 337 * __mnt_want_write - get write access to a mount without freeze protection 338 * @m: the mount on which to take a write 339 * 340 * This tells the low-level filesystem that a write is about to be performed to 341 * it, and makes sure that writes are allowed (mnt it read-write) before 342 * returning success. This operation does not protect against filesystem being 343 * frozen. When the write operation is finished, __mnt_drop_write() must be 344 * called. This is effectively a refcount. 345 */ 346 int __mnt_want_write(struct vfsmount *m) 347 { 348 struct mount *mnt = real_mount(m); 349 int ret = 0; 350 351 preempt_disable(); 352 mnt_inc_writers(mnt); 353 /* 354 * The store to mnt_inc_writers must be visible before we pass 355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 356 * incremented count after it has set MNT_WRITE_HOLD. 357 */ 358 smp_mb(); 359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 360 cpu_relax(); 361 /* 362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 363 * be set to match its requirements. So we must not load that until 364 * MNT_WRITE_HOLD is cleared. 365 */ 366 smp_rmb(); 367 if (mnt_is_readonly(m)) { 368 mnt_dec_writers(mnt); 369 ret = -EROFS; 370 } 371 preempt_enable(); 372 373 return ret; 374 } 375 376 /** 377 * mnt_want_write - get write access to a mount 378 * @m: the mount on which to take a write 379 * 380 * This tells the low-level filesystem that a write is about to be performed to 381 * it, and makes sure that writes are allowed (mount is read-write, filesystem 382 * is not frozen) before returning success. When the write operation is 383 * finished, mnt_drop_write() must be called. This is effectively a refcount. 384 */ 385 int mnt_want_write(struct vfsmount *m) 386 { 387 int ret; 388 389 sb_start_write(m->mnt_sb); 390 ret = __mnt_want_write(m); 391 if (ret) 392 sb_end_write(m->mnt_sb); 393 return ret; 394 } 395 EXPORT_SYMBOL_GPL(mnt_want_write); 396 397 /** 398 * mnt_clone_write - get write access to a mount 399 * @mnt: the mount on which to take a write 400 * 401 * This is effectively like mnt_want_write, except 402 * it must only be used to take an extra write reference 403 * on a mountpoint that we already know has a write reference 404 * on it. This allows some optimisation. 405 * 406 * After finished, mnt_drop_write must be called as usual to 407 * drop the reference. 408 */ 409 int mnt_clone_write(struct vfsmount *mnt) 410 { 411 /* superblock may be r/o */ 412 if (__mnt_is_readonly(mnt)) 413 return -EROFS; 414 preempt_disable(); 415 mnt_inc_writers(real_mount(mnt)); 416 preempt_enable(); 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mnt_clone_write); 420 421 /** 422 * __mnt_want_write_file - get write access to a file's mount 423 * @file: the file who's mount on which to take a write 424 * 425 * This is like __mnt_want_write, but it takes a file and can 426 * do some optimisations if the file is open for write already 427 */ 428 int __mnt_want_write_file(struct file *file) 429 { 430 if (!(file->f_mode & FMODE_WRITER)) 431 return __mnt_want_write(file->f_path.mnt); 432 else 433 return mnt_clone_write(file->f_path.mnt); 434 } 435 436 /** 437 * mnt_want_write_file - get write access to a file's mount 438 * @file: the file who's mount on which to take a write 439 * 440 * This is like mnt_want_write, but it takes a file and can 441 * do some optimisations if the file is open for write already 442 */ 443 int mnt_want_write_file(struct file *file) 444 { 445 int ret; 446 447 sb_start_write(file->f_path.mnt->mnt_sb); 448 ret = __mnt_want_write_file(file); 449 if (ret) 450 sb_end_write(file->f_path.mnt->mnt_sb); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(mnt_want_write_file); 454 455 /** 456 * __mnt_drop_write - give up write access to a mount 457 * @mnt: the mount on which to give up write access 458 * 459 * Tells the low-level filesystem that we are done 460 * performing writes to it. Must be matched with 461 * __mnt_want_write() call above. 462 */ 463 void __mnt_drop_write(struct vfsmount *mnt) 464 { 465 preempt_disable(); 466 mnt_dec_writers(real_mount(mnt)); 467 preempt_enable(); 468 } 469 470 /** 471 * mnt_drop_write - give up write access to a mount 472 * @mnt: the mount on which to give up write access 473 * 474 * Tells the low-level filesystem that we are done performing writes to it and 475 * also allows filesystem to be frozen again. Must be matched with 476 * mnt_want_write() call above. 477 */ 478 void mnt_drop_write(struct vfsmount *mnt) 479 { 480 __mnt_drop_write(mnt); 481 sb_end_write(mnt->mnt_sb); 482 } 483 EXPORT_SYMBOL_GPL(mnt_drop_write); 484 485 void __mnt_drop_write_file(struct file *file) 486 { 487 __mnt_drop_write(file->f_path.mnt); 488 } 489 490 void mnt_drop_write_file(struct file *file) 491 { 492 mnt_drop_write(file->f_path.mnt); 493 } 494 EXPORT_SYMBOL(mnt_drop_write_file); 495 496 static int mnt_make_readonly(struct mount *mnt) 497 { 498 int ret = 0; 499 500 lock_mount_hash(); 501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 502 /* 503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 504 * should be visible before we do. 505 */ 506 smp_mb(); 507 508 /* 509 * With writers on hold, if this value is zero, then there are 510 * definitely no active writers (although held writers may subsequently 511 * increment the count, they'll have to wait, and decrement it after 512 * seeing MNT_READONLY). 513 * 514 * It is OK to have counter incremented on one CPU and decremented on 515 * another: the sum will add up correctly. The danger would be when we 516 * sum up each counter, if we read a counter before it is incremented, 517 * but then read another CPU's count which it has been subsequently 518 * decremented from -- we would see more decrements than we should. 519 * MNT_WRITE_HOLD protects against this scenario, because 520 * mnt_want_write first increments count, then smp_mb, then spins on 521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 522 * we're counting up here. 523 */ 524 if (mnt_get_writers(mnt) > 0) 525 ret = -EBUSY; 526 else 527 mnt->mnt.mnt_flags |= MNT_READONLY; 528 /* 529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 530 * that become unheld will see MNT_READONLY. 531 */ 532 smp_wmb(); 533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 534 unlock_mount_hash(); 535 return ret; 536 } 537 538 static void __mnt_unmake_readonly(struct mount *mnt) 539 { 540 lock_mount_hash(); 541 mnt->mnt.mnt_flags &= ~MNT_READONLY; 542 unlock_mount_hash(); 543 } 544 545 int sb_prepare_remount_readonly(struct super_block *sb) 546 { 547 struct mount *mnt; 548 int err = 0; 549 550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 551 if (atomic_long_read(&sb->s_remove_count)) 552 return -EBUSY; 553 554 lock_mount_hash(); 555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 558 smp_mb(); 559 if (mnt_get_writers(mnt) > 0) { 560 err = -EBUSY; 561 break; 562 } 563 } 564 } 565 if (!err && atomic_long_read(&sb->s_remove_count)) 566 err = -EBUSY; 567 568 if (!err) { 569 sb->s_readonly_remount = 1; 570 smp_wmb(); 571 } 572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 575 } 576 unlock_mount_hash(); 577 578 return err; 579 } 580 581 static void free_vfsmnt(struct mount *mnt) 582 { 583 kfree_const(mnt->mnt_devname); 584 #ifdef CONFIG_SMP 585 free_percpu(mnt->mnt_pcp); 586 #endif 587 kmem_cache_free(mnt_cache, mnt); 588 } 589 590 static void delayed_free_vfsmnt(struct rcu_head *head) 591 { 592 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 593 } 594 595 /* call under rcu_read_lock */ 596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 597 { 598 struct mount *mnt; 599 if (read_seqretry(&mount_lock, seq)) 600 return 1; 601 if (bastard == NULL) 602 return 0; 603 mnt = real_mount(bastard); 604 mnt_add_count(mnt, 1); 605 if (likely(!read_seqretry(&mount_lock, seq))) 606 return 0; 607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 608 mnt_add_count(mnt, -1); 609 return 1; 610 } 611 return -1; 612 } 613 614 /* call under rcu_read_lock */ 615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 616 { 617 int res = __legitimize_mnt(bastard, seq); 618 if (likely(!res)) 619 return true; 620 if (unlikely(res < 0)) { 621 rcu_read_unlock(); 622 mntput(bastard); 623 rcu_read_lock(); 624 } 625 return false; 626 } 627 628 /* 629 * find the first mount at @dentry on vfsmount @mnt. 630 * call under rcu_read_lock() 631 */ 632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 633 { 634 struct hlist_head *head = m_hash(mnt, dentry); 635 struct mount *p; 636 637 hlist_for_each_entry_rcu(p, head, mnt_hash) 638 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 639 return p; 640 return NULL; 641 } 642 643 /* 644 * find the last mount at @dentry on vfsmount @mnt. 645 * mount_lock must be held. 646 */ 647 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 648 { 649 struct mount *p, *res = NULL; 650 p = __lookup_mnt(mnt, dentry); 651 if (!p) 652 goto out; 653 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 654 res = p; 655 hlist_for_each_entry_continue(p, mnt_hash) { 656 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 657 break; 658 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 659 res = p; 660 } 661 out: 662 return res; 663 } 664 665 /* 666 * lookup_mnt - Return the first child mount mounted at path 667 * 668 * "First" means first mounted chronologically. If you create the 669 * following mounts: 670 * 671 * mount /dev/sda1 /mnt 672 * mount /dev/sda2 /mnt 673 * mount /dev/sda3 /mnt 674 * 675 * Then lookup_mnt() on the base /mnt dentry in the root mount will 676 * return successively the root dentry and vfsmount of /dev/sda1, then 677 * /dev/sda2, then /dev/sda3, then NULL. 678 * 679 * lookup_mnt takes a reference to the found vfsmount. 680 */ 681 struct vfsmount *lookup_mnt(const struct path *path) 682 { 683 struct mount *child_mnt; 684 struct vfsmount *m; 685 unsigned seq; 686 687 rcu_read_lock(); 688 do { 689 seq = read_seqbegin(&mount_lock); 690 child_mnt = __lookup_mnt(path->mnt, path->dentry); 691 m = child_mnt ? &child_mnt->mnt : NULL; 692 } while (!legitimize_mnt(m, seq)); 693 rcu_read_unlock(); 694 return m; 695 } 696 697 /* 698 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 699 * current mount namespace. 700 * 701 * The common case is dentries are not mountpoints at all and that 702 * test is handled inline. For the slow case when we are actually 703 * dealing with a mountpoint of some kind, walk through all of the 704 * mounts in the current mount namespace and test to see if the dentry 705 * is a mountpoint. 706 * 707 * The mount_hashtable is not usable in the context because we 708 * need to identify all mounts that may be in the current mount 709 * namespace not just a mount that happens to have some specified 710 * parent mount. 711 */ 712 bool __is_local_mountpoint(struct dentry *dentry) 713 { 714 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 715 struct mount *mnt; 716 bool is_covered = false; 717 718 if (!d_mountpoint(dentry)) 719 goto out; 720 721 down_read(&namespace_sem); 722 list_for_each_entry(mnt, &ns->list, mnt_list) { 723 is_covered = (mnt->mnt_mountpoint == dentry); 724 if (is_covered) 725 break; 726 } 727 up_read(&namespace_sem); 728 out: 729 return is_covered; 730 } 731 732 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 733 { 734 struct hlist_head *chain = mp_hash(dentry); 735 struct mountpoint *mp; 736 737 hlist_for_each_entry(mp, chain, m_hash) { 738 if (mp->m_dentry == dentry) { 739 /* might be worth a WARN_ON() */ 740 if (d_unlinked(dentry)) 741 return ERR_PTR(-ENOENT); 742 mp->m_count++; 743 return mp; 744 } 745 } 746 return NULL; 747 } 748 749 static struct mountpoint *new_mountpoint(struct dentry *dentry) 750 { 751 struct hlist_head *chain = mp_hash(dentry); 752 struct mountpoint *mp; 753 int ret; 754 755 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 756 if (!mp) 757 return ERR_PTR(-ENOMEM); 758 759 ret = d_set_mounted(dentry); 760 if (ret) { 761 kfree(mp); 762 return ERR_PTR(ret); 763 } 764 765 mp->m_dentry = dentry; 766 mp->m_count = 1; 767 hlist_add_head(&mp->m_hash, chain); 768 INIT_HLIST_HEAD(&mp->m_list); 769 return mp; 770 } 771 772 static void put_mountpoint(struct mountpoint *mp) 773 { 774 if (!--mp->m_count) { 775 struct dentry *dentry = mp->m_dentry; 776 BUG_ON(!hlist_empty(&mp->m_list)); 777 spin_lock(&dentry->d_lock); 778 dentry->d_flags &= ~DCACHE_MOUNTED; 779 spin_unlock(&dentry->d_lock); 780 hlist_del(&mp->m_hash); 781 kfree(mp); 782 } 783 } 784 785 static inline int check_mnt(struct mount *mnt) 786 { 787 return mnt->mnt_ns == current->nsproxy->mnt_ns; 788 } 789 790 /* 791 * vfsmount lock must be held for write 792 */ 793 static void touch_mnt_namespace(struct mnt_namespace *ns) 794 { 795 if (ns) { 796 ns->event = ++event; 797 wake_up_interruptible(&ns->poll); 798 } 799 } 800 801 /* 802 * vfsmount lock must be held for write 803 */ 804 static void __touch_mnt_namespace(struct mnt_namespace *ns) 805 { 806 if (ns && ns->event != event) { 807 ns->event = event; 808 wake_up_interruptible(&ns->poll); 809 } 810 } 811 812 /* 813 * vfsmount lock must be held for write 814 */ 815 static void unhash_mnt(struct mount *mnt) 816 { 817 mnt->mnt_parent = mnt; 818 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 819 list_del_init(&mnt->mnt_child); 820 hlist_del_init_rcu(&mnt->mnt_hash); 821 hlist_del_init(&mnt->mnt_mp_list); 822 put_mountpoint(mnt->mnt_mp); 823 mnt->mnt_mp = NULL; 824 } 825 826 /* 827 * vfsmount lock must be held for write 828 */ 829 static void detach_mnt(struct mount *mnt, struct path *old_path) 830 { 831 old_path->dentry = mnt->mnt_mountpoint; 832 old_path->mnt = &mnt->mnt_parent->mnt; 833 unhash_mnt(mnt); 834 } 835 836 /* 837 * vfsmount lock must be held for write 838 */ 839 static void umount_mnt(struct mount *mnt) 840 { 841 /* old mountpoint will be dropped when we can do that */ 842 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 843 unhash_mnt(mnt); 844 } 845 846 /* 847 * vfsmount lock must be held for write 848 */ 849 void mnt_set_mountpoint(struct mount *mnt, 850 struct mountpoint *mp, 851 struct mount *child_mnt) 852 { 853 mp->m_count++; 854 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 855 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 856 child_mnt->mnt_parent = mnt; 857 child_mnt->mnt_mp = mp; 858 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 859 } 860 861 /* 862 * vfsmount lock must be held for write 863 */ 864 static void attach_mnt(struct mount *mnt, 865 struct mount *parent, 866 struct mountpoint *mp) 867 { 868 mnt_set_mountpoint(parent, mp, mnt); 869 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 870 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 871 } 872 873 static void attach_shadowed(struct mount *mnt, 874 struct mount *parent, 875 struct mount *shadows) 876 { 877 if (shadows) { 878 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 879 list_add(&mnt->mnt_child, &shadows->mnt_child); 880 } else { 881 hlist_add_head_rcu(&mnt->mnt_hash, 882 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 883 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 884 } 885 } 886 887 /* 888 * vfsmount lock must be held for write 889 */ 890 static void commit_tree(struct mount *mnt, struct mount *shadows) 891 { 892 struct mount *parent = mnt->mnt_parent; 893 struct mount *m; 894 LIST_HEAD(head); 895 struct mnt_namespace *n = parent->mnt_ns; 896 897 BUG_ON(parent == mnt); 898 899 list_add_tail(&head, &mnt->mnt_list); 900 list_for_each_entry(m, &head, mnt_list) 901 m->mnt_ns = n; 902 903 list_splice(&head, n->list.prev); 904 905 n->mounts += n->pending_mounts; 906 n->pending_mounts = 0; 907 908 attach_shadowed(mnt, parent, shadows); 909 touch_mnt_namespace(n); 910 } 911 912 static struct mount *next_mnt(struct mount *p, struct mount *root) 913 { 914 struct list_head *next = p->mnt_mounts.next; 915 if (next == &p->mnt_mounts) { 916 while (1) { 917 if (p == root) 918 return NULL; 919 next = p->mnt_child.next; 920 if (next != &p->mnt_parent->mnt_mounts) 921 break; 922 p = p->mnt_parent; 923 } 924 } 925 return list_entry(next, struct mount, mnt_child); 926 } 927 928 static struct mount *skip_mnt_tree(struct mount *p) 929 { 930 struct list_head *prev = p->mnt_mounts.prev; 931 while (prev != &p->mnt_mounts) { 932 p = list_entry(prev, struct mount, mnt_child); 933 prev = p->mnt_mounts.prev; 934 } 935 return p; 936 } 937 938 struct vfsmount * 939 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 940 { 941 struct mount *mnt; 942 struct dentry *root; 943 944 if (!type) 945 return ERR_PTR(-ENODEV); 946 947 mnt = alloc_vfsmnt(name); 948 if (!mnt) 949 return ERR_PTR(-ENOMEM); 950 951 if (flags & MS_KERNMOUNT) 952 mnt->mnt.mnt_flags = MNT_INTERNAL; 953 954 root = mount_fs(type, flags, name, data); 955 if (IS_ERR(root)) { 956 mnt_free_id(mnt); 957 free_vfsmnt(mnt); 958 return ERR_CAST(root); 959 } 960 961 mnt->mnt.mnt_root = root; 962 mnt->mnt.mnt_sb = root->d_sb; 963 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 964 mnt->mnt_parent = mnt; 965 lock_mount_hash(); 966 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 967 unlock_mount_hash(); 968 return &mnt->mnt; 969 } 970 EXPORT_SYMBOL_GPL(vfs_kern_mount); 971 972 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 973 int flag) 974 { 975 struct super_block *sb = old->mnt.mnt_sb; 976 struct mount *mnt; 977 int err; 978 979 mnt = alloc_vfsmnt(old->mnt_devname); 980 if (!mnt) 981 return ERR_PTR(-ENOMEM); 982 983 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 984 mnt->mnt_group_id = 0; /* not a peer of original */ 985 else 986 mnt->mnt_group_id = old->mnt_group_id; 987 988 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 989 err = mnt_alloc_group_id(mnt); 990 if (err) 991 goto out_free; 992 } 993 994 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 995 /* Don't allow unprivileged users to change mount flags */ 996 if (flag & CL_UNPRIVILEGED) { 997 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 998 999 if (mnt->mnt.mnt_flags & MNT_READONLY) 1000 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 1001 1002 if (mnt->mnt.mnt_flags & MNT_NODEV) 1003 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 1004 1005 if (mnt->mnt.mnt_flags & MNT_NOSUID) 1006 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 1007 1008 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 1009 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 1010 } 1011 1012 /* Don't allow unprivileged users to reveal what is under a mount */ 1013 if ((flag & CL_UNPRIVILEGED) && 1014 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 1015 mnt->mnt.mnt_flags |= MNT_LOCKED; 1016 1017 atomic_inc(&sb->s_active); 1018 mnt->mnt.mnt_sb = sb; 1019 mnt->mnt.mnt_root = dget(root); 1020 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1021 mnt->mnt_parent = mnt; 1022 lock_mount_hash(); 1023 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1024 unlock_mount_hash(); 1025 1026 if ((flag & CL_SLAVE) || 1027 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1028 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1029 mnt->mnt_master = old; 1030 CLEAR_MNT_SHARED(mnt); 1031 } else if (!(flag & CL_PRIVATE)) { 1032 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1033 list_add(&mnt->mnt_share, &old->mnt_share); 1034 if (IS_MNT_SLAVE(old)) 1035 list_add(&mnt->mnt_slave, &old->mnt_slave); 1036 mnt->mnt_master = old->mnt_master; 1037 } 1038 if (flag & CL_MAKE_SHARED) 1039 set_mnt_shared(mnt); 1040 1041 /* stick the duplicate mount on the same expiry list 1042 * as the original if that was on one */ 1043 if (flag & CL_EXPIRE) { 1044 if (!list_empty(&old->mnt_expire)) 1045 list_add(&mnt->mnt_expire, &old->mnt_expire); 1046 } 1047 1048 return mnt; 1049 1050 out_free: 1051 mnt_free_id(mnt); 1052 free_vfsmnt(mnt); 1053 return ERR_PTR(err); 1054 } 1055 1056 static void cleanup_mnt(struct mount *mnt) 1057 { 1058 /* 1059 * This probably indicates that somebody messed 1060 * up a mnt_want/drop_write() pair. If this 1061 * happens, the filesystem was probably unable 1062 * to make r/w->r/o transitions. 1063 */ 1064 /* 1065 * The locking used to deal with mnt_count decrement provides barriers, 1066 * so mnt_get_writers() below is safe. 1067 */ 1068 WARN_ON(mnt_get_writers(mnt)); 1069 if (unlikely(mnt->mnt_pins.first)) 1070 mnt_pin_kill(mnt); 1071 fsnotify_vfsmount_delete(&mnt->mnt); 1072 dput(mnt->mnt.mnt_root); 1073 deactivate_super(mnt->mnt.mnt_sb); 1074 mnt_free_id(mnt); 1075 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1076 } 1077 1078 static void __cleanup_mnt(struct rcu_head *head) 1079 { 1080 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1081 } 1082 1083 static LLIST_HEAD(delayed_mntput_list); 1084 static void delayed_mntput(struct work_struct *unused) 1085 { 1086 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1087 struct llist_node *next; 1088 1089 for (; node; node = next) { 1090 next = llist_next(node); 1091 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1092 } 1093 } 1094 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1095 1096 static void mntput_no_expire(struct mount *mnt) 1097 { 1098 rcu_read_lock(); 1099 mnt_add_count(mnt, -1); 1100 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1101 rcu_read_unlock(); 1102 return; 1103 } 1104 lock_mount_hash(); 1105 if (mnt_get_count(mnt)) { 1106 rcu_read_unlock(); 1107 unlock_mount_hash(); 1108 return; 1109 } 1110 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1111 rcu_read_unlock(); 1112 unlock_mount_hash(); 1113 return; 1114 } 1115 mnt->mnt.mnt_flags |= MNT_DOOMED; 1116 rcu_read_unlock(); 1117 1118 list_del(&mnt->mnt_instance); 1119 1120 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1121 struct mount *p, *tmp; 1122 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1123 umount_mnt(p); 1124 } 1125 } 1126 unlock_mount_hash(); 1127 1128 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1129 struct task_struct *task = current; 1130 if (likely(!(task->flags & PF_KTHREAD))) { 1131 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1132 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1133 return; 1134 } 1135 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1136 schedule_delayed_work(&delayed_mntput_work, 1); 1137 return; 1138 } 1139 cleanup_mnt(mnt); 1140 } 1141 1142 void mntput(struct vfsmount *mnt) 1143 { 1144 if (mnt) { 1145 struct mount *m = real_mount(mnt); 1146 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1147 if (unlikely(m->mnt_expiry_mark)) 1148 m->mnt_expiry_mark = 0; 1149 mntput_no_expire(m); 1150 } 1151 } 1152 EXPORT_SYMBOL(mntput); 1153 1154 struct vfsmount *mntget(struct vfsmount *mnt) 1155 { 1156 if (mnt) 1157 mnt_add_count(real_mount(mnt), 1); 1158 return mnt; 1159 } 1160 EXPORT_SYMBOL(mntget); 1161 1162 /* path_is_mountpoint() - Check if path is a mount in the current 1163 * namespace. 1164 * 1165 * d_mountpoint() can only be used reliably to establish if a dentry is 1166 * not mounted in any namespace and that common case is handled inline. 1167 * d_mountpoint() isn't aware of the possibility there may be multiple 1168 * mounts using a given dentry in a different namespace. This function 1169 * checks if the passed in path is a mountpoint rather than the dentry 1170 * alone. 1171 */ 1172 bool path_is_mountpoint(const struct path *path) 1173 { 1174 unsigned seq; 1175 bool res; 1176 1177 if (!d_mountpoint(path->dentry)) 1178 return false; 1179 1180 rcu_read_lock(); 1181 do { 1182 seq = read_seqbegin(&mount_lock); 1183 res = __path_is_mountpoint(path); 1184 } while (read_seqretry(&mount_lock, seq)); 1185 rcu_read_unlock(); 1186 1187 return res; 1188 } 1189 EXPORT_SYMBOL(path_is_mountpoint); 1190 1191 struct vfsmount *mnt_clone_internal(const struct path *path) 1192 { 1193 struct mount *p; 1194 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1195 if (IS_ERR(p)) 1196 return ERR_CAST(p); 1197 p->mnt.mnt_flags |= MNT_INTERNAL; 1198 return &p->mnt; 1199 } 1200 1201 static inline void mangle(struct seq_file *m, const char *s) 1202 { 1203 seq_escape(m, s, " \t\n\\"); 1204 } 1205 1206 /* 1207 * Simple .show_options callback for filesystems which don't want to 1208 * implement more complex mount option showing. 1209 * 1210 * See also save_mount_options(). 1211 */ 1212 int generic_show_options(struct seq_file *m, struct dentry *root) 1213 { 1214 const char *options; 1215 1216 rcu_read_lock(); 1217 options = rcu_dereference(root->d_sb->s_options); 1218 1219 if (options != NULL && options[0]) { 1220 seq_putc(m, ','); 1221 mangle(m, options); 1222 } 1223 rcu_read_unlock(); 1224 1225 return 0; 1226 } 1227 EXPORT_SYMBOL(generic_show_options); 1228 1229 /* 1230 * If filesystem uses generic_show_options(), this function should be 1231 * called from the fill_super() callback. 1232 * 1233 * The .remount_fs callback usually needs to be handled in a special 1234 * way, to make sure, that previous options are not overwritten if the 1235 * remount fails. 1236 * 1237 * Also note, that if the filesystem's .remount_fs function doesn't 1238 * reset all options to their default value, but changes only newly 1239 * given options, then the displayed options will not reflect reality 1240 * any more. 1241 */ 1242 void save_mount_options(struct super_block *sb, char *options) 1243 { 1244 BUG_ON(sb->s_options); 1245 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1246 } 1247 EXPORT_SYMBOL(save_mount_options); 1248 1249 void replace_mount_options(struct super_block *sb, char *options) 1250 { 1251 char *old = sb->s_options; 1252 rcu_assign_pointer(sb->s_options, options); 1253 if (old) { 1254 synchronize_rcu(); 1255 kfree(old); 1256 } 1257 } 1258 EXPORT_SYMBOL(replace_mount_options); 1259 1260 #ifdef CONFIG_PROC_FS 1261 /* iterator; we want it to have access to namespace_sem, thus here... */ 1262 static void *m_start(struct seq_file *m, loff_t *pos) 1263 { 1264 struct proc_mounts *p = m->private; 1265 1266 down_read(&namespace_sem); 1267 if (p->cached_event == p->ns->event) { 1268 void *v = p->cached_mount; 1269 if (*pos == p->cached_index) 1270 return v; 1271 if (*pos == p->cached_index + 1) { 1272 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1273 return p->cached_mount = v; 1274 } 1275 } 1276 1277 p->cached_event = p->ns->event; 1278 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1279 p->cached_index = *pos; 1280 return p->cached_mount; 1281 } 1282 1283 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1284 { 1285 struct proc_mounts *p = m->private; 1286 1287 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1288 p->cached_index = *pos; 1289 return p->cached_mount; 1290 } 1291 1292 static void m_stop(struct seq_file *m, void *v) 1293 { 1294 up_read(&namespace_sem); 1295 } 1296 1297 static int m_show(struct seq_file *m, void *v) 1298 { 1299 struct proc_mounts *p = m->private; 1300 struct mount *r = list_entry(v, struct mount, mnt_list); 1301 return p->show(m, &r->mnt); 1302 } 1303 1304 const struct seq_operations mounts_op = { 1305 .start = m_start, 1306 .next = m_next, 1307 .stop = m_stop, 1308 .show = m_show, 1309 }; 1310 #endif /* CONFIG_PROC_FS */ 1311 1312 /** 1313 * may_umount_tree - check if a mount tree is busy 1314 * @mnt: root of mount tree 1315 * 1316 * This is called to check if a tree of mounts has any 1317 * open files, pwds, chroots or sub mounts that are 1318 * busy. 1319 */ 1320 int may_umount_tree(struct vfsmount *m) 1321 { 1322 struct mount *mnt = real_mount(m); 1323 int actual_refs = 0; 1324 int minimum_refs = 0; 1325 struct mount *p; 1326 BUG_ON(!m); 1327 1328 /* write lock needed for mnt_get_count */ 1329 lock_mount_hash(); 1330 for (p = mnt; p; p = next_mnt(p, mnt)) { 1331 actual_refs += mnt_get_count(p); 1332 minimum_refs += 2; 1333 } 1334 unlock_mount_hash(); 1335 1336 if (actual_refs > minimum_refs) 1337 return 0; 1338 1339 return 1; 1340 } 1341 1342 EXPORT_SYMBOL(may_umount_tree); 1343 1344 /** 1345 * may_umount - check if a mount point is busy 1346 * @mnt: root of mount 1347 * 1348 * This is called to check if a mount point has any 1349 * open files, pwds, chroots or sub mounts. If the 1350 * mount has sub mounts this will return busy 1351 * regardless of whether the sub mounts are busy. 1352 * 1353 * Doesn't take quota and stuff into account. IOW, in some cases it will 1354 * give false negatives. The main reason why it's here is that we need 1355 * a non-destructive way to look for easily umountable filesystems. 1356 */ 1357 int may_umount(struct vfsmount *mnt) 1358 { 1359 int ret = 1; 1360 down_read(&namespace_sem); 1361 lock_mount_hash(); 1362 if (propagate_mount_busy(real_mount(mnt), 2)) 1363 ret = 0; 1364 unlock_mount_hash(); 1365 up_read(&namespace_sem); 1366 return ret; 1367 } 1368 1369 EXPORT_SYMBOL(may_umount); 1370 1371 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1372 1373 static void namespace_unlock(void) 1374 { 1375 struct hlist_head head; 1376 1377 hlist_move_list(&unmounted, &head); 1378 1379 up_write(&namespace_sem); 1380 1381 if (likely(hlist_empty(&head))) 1382 return; 1383 1384 synchronize_rcu(); 1385 1386 group_pin_kill(&head); 1387 } 1388 1389 static inline void namespace_lock(void) 1390 { 1391 down_write(&namespace_sem); 1392 } 1393 1394 enum umount_tree_flags { 1395 UMOUNT_SYNC = 1, 1396 UMOUNT_PROPAGATE = 2, 1397 UMOUNT_CONNECTED = 4, 1398 }; 1399 1400 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1401 { 1402 /* Leaving mounts connected is only valid for lazy umounts */ 1403 if (how & UMOUNT_SYNC) 1404 return true; 1405 1406 /* A mount without a parent has nothing to be connected to */ 1407 if (!mnt_has_parent(mnt)) 1408 return true; 1409 1410 /* Because the reference counting rules change when mounts are 1411 * unmounted and connected, umounted mounts may not be 1412 * connected to mounted mounts. 1413 */ 1414 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1415 return true; 1416 1417 /* Has it been requested that the mount remain connected? */ 1418 if (how & UMOUNT_CONNECTED) 1419 return false; 1420 1421 /* Is the mount locked such that it needs to remain connected? */ 1422 if (IS_MNT_LOCKED(mnt)) 1423 return false; 1424 1425 /* By default disconnect the mount */ 1426 return true; 1427 } 1428 1429 /* 1430 * mount_lock must be held 1431 * namespace_sem must be held for write 1432 */ 1433 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1434 { 1435 LIST_HEAD(tmp_list); 1436 struct mount *p; 1437 1438 if (how & UMOUNT_PROPAGATE) 1439 propagate_mount_unlock(mnt); 1440 1441 /* Gather the mounts to umount */ 1442 for (p = mnt; p; p = next_mnt(p, mnt)) { 1443 p->mnt.mnt_flags |= MNT_UMOUNT; 1444 list_move(&p->mnt_list, &tmp_list); 1445 } 1446 1447 /* Hide the mounts from mnt_mounts */ 1448 list_for_each_entry(p, &tmp_list, mnt_list) { 1449 list_del_init(&p->mnt_child); 1450 } 1451 1452 /* Add propogated mounts to the tmp_list */ 1453 if (how & UMOUNT_PROPAGATE) 1454 propagate_umount(&tmp_list); 1455 1456 while (!list_empty(&tmp_list)) { 1457 struct mnt_namespace *ns; 1458 bool disconnect; 1459 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1460 list_del_init(&p->mnt_expire); 1461 list_del_init(&p->mnt_list); 1462 ns = p->mnt_ns; 1463 if (ns) { 1464 ns->mounts--; 1465 __touch_mnt_namespace(ns); 1466 } 1467 p->mnt_ns = NULL; 1468 if (how & UMOUNT_SYNC) 1469 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1470 1471 disconnect = disconnect_mount(p, how); 1472 1473 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1474 disconnect ? &unmounted : NULL); 1475 if (mnt_has_parent(p)) { 1476 mnt_add_count(p->mnt_parent, -1); 1477 if (!disconnect) { 1478 /* Don't forget about p */ 1479 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1480 } else { 1481 umount_mnt(p); 1482 } 1483 } 1484 change_mnt_propagation(p, MS_PRIVATE); 1485 } 1486 } 1487 1488 static void shrink_submounts(struct mount *mnt); 1489 1490 static int do_umount(struct mount *mnt, int flags) 1491 { 1492 struct super_block *sb = mnt->mnt.mnt_sb; 1493 int retval; 1494 1495 retval = security_sb_umount(&mnt->mnt, flags); 1496 if (retval) 1497 return retval; 1498 1499 /* 1500 * Allow userspace to request a mountpoint be expired rather than 1501 * unmounting unconditionally. Unmount only happens if: 1502 * (1) the mark is already set (the mark is cleared by mntput()) 1503 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1504 */ 1505 if (flags & MNT_EXPIRE) { 1506 if (&mnt->mnt == current->fs->root.mnt || 1507 flags & (MNT_FORCE | MNT_DETACH)) 1508 return -EINVAL; 1509 1510 /* 1511 * probably don't strictly need the lock here if we examined 1512 * all race cases, but it's a slowpath. 1513 */ 1514 lock_mount_hash(); 1515 if (mnt_get_count(mnt) != 2) { 1516 unlock_mount_hash(); 1517 return -EBUSY; 1518 } 1519 unlock_mount_hash(); 1520 1521 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1522 return -EAGAIN; 1523 } 1524 1525 /* 1526 * If we may have to abort operations to get out of this 1527 * mount, and they will themselves hold resources we must 1528 * allow the fs to do things. In the Unix tradition of 1529 * 'Gee thats tricky lets do it in userspace' the umount_begin 1530 * might fail to complete on the first run through as other tasks 1531 * must return, and the like. Thats for the mount program to worry 1532 * about for the moment. 1533 */ 1534 1535 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1536 sb->s_op->umount_begin(sb); 1537 } 1538 1539 /* 1540 * No sense to grab the lock for this test, but test itself looks 1541 * somewhat bogus. Suggestions for better replacement? 1542 * Ho-hum... In principle, we might treat that as umount + switch 1543 * to rootfs. GC would eventually take care of the old vfsmount. 1544 * Actually it makes sense, especially if rootfs would contain a 1545 * /reboot - static binary that would close all descriptors and 1546 * call reboot(9). Then init(8) could umount root and exec /reboot. 1547 */ 1548 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1549 /* 1550 * Special case for "unmounting" root ... 1551 * we just try to remount it readonly. 1552 */ 1553 if (!capable(CAP_SYS_ADMIN)) 1554 return -EPERM; 1555 down_write(&sb->s_umount); 1556 if (!(sb->s_flags & MS_RDONLY)) 1557 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1558 up_write(&sb->s_umount); 1559 return retval; 1560 } 1561 1562 namespace_lock(); 1563 lock_mount_hash(); 1564 event++; 1565 1566 if (flags & MNT_DETACH) { 1567 if (!list_empty(&mnt->mnt_list)) 1568 umount_tree(mnt, UMOUNT_PROPAGATE); 1569 retval = 0; 1570 } else { 1571 shrink_submounts(mnt); 1572 retval = -EBUSY; 1573 if (!propagate_mount_busy(mnt, 2)) { 1574 if (!list_empty(&mnt->mnt_list)) 1575 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1576 retval = 0; 1577 } 1578 } 1579 unlock_mount_hash(); 1580 namespace_unlock(); 1581 return retval; 1582 } 1583 1584 /* 1585 * __detach_mounts - lazily unmount all mounts on the specified dentry 1586 * 1587 * During unlink, rmdir, and d_drop it is possible to loose the path 1588 * to an existing mountpoint, and wind up leaking the mount. 1589 * detach_mounts allows lazily unmounting those mounts instead of 1590 * leaking them. 1591 * 1592 * The caller may hold dentry->d_inode->i_mutex. 1593 */ 1594 void __detach_mounts(struct dentry *dentry) 1595 { 1596 struct mountpoint *mp; 1597 struct mount *mnt; 1598 1599 namespace_lock(); 1600 mp = lookup_mountpoint(dentry); 1601 if (IS_ERR_OR_NULL(mp)) 1602 goto out_unlock; 1603 1604 lock_mount_hash(); 1605 event++; 1606 while (!hlist_empty(&mp->m_list)) { 1607 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1608 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1609 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1610 umount_mnt(mnt); 1611 } 1612 else umount_tree(mnt, UMOUNT_CONNECTED); 1613 } 1614 unlock_mount_hash(); 1615 put_mountpoint(mp); 1616 out_unlock: 1617 namespace_unlock(); 1618 } 1619 1620 /* 1621 * Is the caller allowed to modify his namespace? 1622 */ 1623 static inline bool may_mount(void) 1624 { 1625 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1626 } 1627 1628 static inline bool may_mandlock(void) 1629 { 1630 #ifndef CONFIG_MANDATORY_FILE_LOCKING 1631 return false; 1632 #endif 1633 return capable(CAP_SYS_ADMIN); 1634 } 1635 1636 /* 1637 * Now umount can handle mount points as well as block devices. 1638 * This is important for filesystems which use unnamed block devices. 1639 * 1640 * We now support a flag for forced unmount like the other 'big iron' 1641 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1642 */ 1643 1644 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1645 { 1646 struct path path; 1647 struct mount *mnt; 1648 int retval; 1649 int lookup_flags = 0; 1650 1651 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1652 return -EINVAL; 1653 1654 if (!may_mount()) 1655 return -EPERM; 1656 1657 if (!(flags & UMOUNT_NOFOLLOW)) 1658 lookup_flags |= LOOKUP_FOLLOW; 1659 1660 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1661 if (retval) 1662 goto out; 1663 mnt = real_mount(path.mnt); 1664 retval = -EINVAL; 1665 if (path.dentry != path.mnt->mnt_root) 1666 goto dput_and_out; 1667 if (!check_mnt(mnt)) 1668 goto dput_and_out; 1669 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1670 goto dput_and_out; 1671 retval = -EPERM; 1672 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1673 goto dput_and_out; 1674 1675 retval = do_umount(mnt, flags); 1676 dput_and_out: 1677 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1678 dput(path.dentry); 1679 mntput_no_expire(mnt); 1680 out: 1681 return retval; 1682 } 1683 1684 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1685 1686 /* 1687 * The 2.0 compatible umount. No flags. 1688 */ 1689 SYSCALL_DEFINE1(oldumount, char __user *, name) 1690 { 1691 return sys_umount(name, 0); 1692 } 1693 1694 #endif 1695 1696 static bool is_mnt_ns_file(struct dentry *dentry) 1697 { 1698 /* Is this a proxy for a mount namespace? */ 1699 return dentry->d_op == &ns_dentry_operations && 1700 dentry->d_fsdata == &mntns_operations; 1701 } 1702 1703 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1704 { 1705 return container_of(ns, struct mnt_namespace, ns); 1706 } 1707 1708 static bool mnt_ns_loop(struct dentry *dentry) 1709 { 1710 /* Could bind mounting the mount namespace inode cause a 1711 * mount namespace loop? 1712 */ 1713 struct mnt_namespace *mnt_ns; 1714 if (!is_mnt_ns_file(dentry)) 1715 return false; 1716 1717 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1718 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1719 } 1720 1721 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1722 int flag) 1723 { 1724 struct mount *res, *p, *q, *r, *parent; 1725 1726 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1727 return ERR_PTR(-EINVAL); 1728 1729 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1730 return ERR_PTR(-EINVAL); 1731 1732 res = q = clone_mnt(mnt, dentry, flag); 1733 if (IS_ERR(q)) 1734 return q; 1735 1736 q->mnt_mountpoint = mnt->mnt_mountpoint; 1737 1738 p = mnt; 1739 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1740 struct mount *s; 1741 if (!is_subdir(r->mnt_mountpoint, dentry)) 1742 continue; 1743 1744 for (s = r; s; s = next_mnt(s, r)) { 1745 struct mount *t = NULL; 1746 if (!(flag & CL_COPY_UNBINDABLE) && 1747 IS_MNT_UNBINDABLE(s)) { 1748 s = skip_mnt_tree(s); 1749 continue; 1750 } 1751 if (!(flag & CL_COPY_MNT_NS_FILE) && 1752 is_mnt_ns_file(s->mnt.mnt_root)) { 1753 s = skip_mnt_tree(s); 1754 continue; 1755 } 1756 while (p != s->mnt_parent) { 1757 p = p->mnt_parent; 1758 q = q->mnt_parent; 1759 } 1760 p = s; 1761 parent = q; 1762 q = clone_mnt(p, p->mnt.mnt_root, flag); 1763 if (IS_ERR(q)) 1764 goto out; 1765 lock_mount_hash(); 1766 list_add_tail(&q->mnt_list, &res->mnt_list); 1767 mnt_set_mountpoint(parent, p->mnt_mp, q); 1768 if (!list_empty(&parent->mnt_mounts)) { 1769 t = list_last_entry(&parent->mnt_mounts, 1770 struct mount, mnt_child); 1771 if (t->mnt_mp != p->mnt_mp) 1772 t = NULL; 1773 } 1774 attach_shadowed(q, parent, t); 1775 unlock_mount_hash(); 1776 } 1777 } 1778 return res; 1779 out: 1780 if (res) { 1781 lock_mount_hash(); 1782 umount_tree(res, UMOUNT_SYNC); 1783 unlock_mount_hash(); 1784 } 1785 return q; 1786 } 1787 1788 /* Caller should check returned pointer for errors */ 1789 1790 struct vfsmount *collect_mounts(const struct path *path) 1791 { 1792 struct mount *tree; 1793 namespace_lock(); 1794 if (!check_mnt(real_mount(path->mnt))) 1795 tree = ERR_PTR(-EINVAL); 1796 else 1797 tree = copy_tree(real_mount(path->mnt), path->dentry, 1798 CL_COPY_ALL | CL_PRIVATE); 1799 namespace_unlock(); 1800 if (IS_ERR(tree)) 1801 return ERR_CAST(tree); 1802 return &tree->mnt; 1803 } 1804 1805 void drop_collected_mounts(struct vfsmount *mnt) 1806 { 1807 namespace_lock(); 1808 lock_mount_hash(); 1809 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1810 unlock_mount_hash(); 1811 namespace_unlock(); 1812 } 1813 1814 /** 1815 * clone_private_mount - create a private clone of a path 1816 * 1817 * This creates a new vfsmount, which will be the clone of @path. The new will 1818 * not be attached anywhere in the namespace and will be private (i.e. changes 1819 * to the originating mount won't be propagated into this). 1820 * 1821 * Release with mntput(). 1822 */ 1823 struct vfsmount *clone_private_mount(const struct path *path) 1824 { 1825 struct mount *old_mnt = real_mount(path->mnt); 1826 struct mount *new_mnt; 1827 1828 if (IS_MNT_UNBINDABLE(old_mnt)) 1829 return ERR_PTR(-EINVAL); 1830 1831 down_read(&namespace_sem); 1832 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1833 up_read(&namespace_sem); 1834 if (IS_ERR(new_mnt)) 1835 return ERR_CAST(new_mnt); 1836 1837 return &new_mnt->mnt; 1838 } 1839 EXPORT_SYMBOL_GPL(clone_private_mount); 1840 1841 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1842 struct vfsmount *root) 1843 { 1844 struct mount *mnt; 1845 int res = f(root, arg); 1846 if (res) 1847 return res; 1848 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1849 res = f(&mnt->mnt, arg); 1850 if (res) 1851 return res; 1852 } 1853 return 0; 1854 } 1855 1856 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1857 { 1858 struct mount *p; 1859 1860 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1861 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1862 mnt_release_group_id(p); 1863 } 1864 } 1865 1866 static int invent_group_ids(struct mount *mnt, bool recurse) 1867 { 1868 struct mount *p; 1869 1870 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1871 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1872 int err = mnt_alloc_group_id(p); 1873 if (err) { 1874 cleanup_group_ids(mnt, p); 1875 return err; 1876 } 1877 } 1878 } 1879 1880 return 0; 1881 } 1882 1883 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 1884 { 1885 unsigned int max = READ_ONCE(sysctl_mount_max); 1886 unsigned int mounts = 0, old, pending, sum; 1887 struct mount *p; 1888 1889 for (p = mnt; p; p = next_mnt(p, mnt)) 1890 mounts++; 1891 1892 old = ns->mounts; 1893 pending = ns->pending_mounts; 1894 sum = old + pending; 1895 if ((old > sum) || 1896 (pending > sum) || 1897 (max < sum) || 1898 (mounts > (max - sum))) 1899 return -ENOSPC; 1900 1901 ns->pending_mounts = pending + mounts; 1902 return 0; 1903 } 1904 1905 /* 1906 * @source_mnt : mount tree to be attached 1907 * @nd : place the mount tree @source_mnt is attached 1908 * @parent_nd : if non-null, detach the source_mnt from its parent and 1909 * store the parent mount and mountpoint dentry. 1910 * (done when source_mnt is moved) 1911 * 1912 * NOTE: in the table below explains the semantics when a source mount 1913 * of a given type is attached to a destination mount of a given type. 1914 * --------------------------------------------------------------------------- 1915 * | BIND MOUNT OPERATION | 1916 * |************************************************************************** 1917 * | source-->| shared | private | slave | unbindable | 1918 * | dest | | | | | 1919 * | | | | | | | 1920 * | v | | | | | 1921 * |************************************************************************** 1922 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1923 * | | | | | | 1924 * |non-shared| shared (+) | private | slave (*) | invalid | 1925 * *************************************************************************** 1926 * A bind operation clones the source mount and mounts the clone on the 1927 * destination mount. 1928 * 1929 * (++) the cloned mount is propagated to all the mounts in the propagation 1930 * tree of the destination mount and the cloned mount is added to 1931 * the peer group of the source mount. 1932 * (+) the cloned mount is created under the destination mount and is marked 1933 * as shared. The cloned mount is added to the peer group of the source 1934 * mount. 1935 * (+++) the mount is propagated to all the mounts in the propagation tree 1936 * of the destination mount and the cloned mount is made slave 1937 * of the same master as that of the source mount. The cloned mount 1938 * is marked as 'shared and slave'. 1939 * (*) the cloned mount is made a slave of the same master as that of the 1940 * source mount. 1941 * 1942 * --------------------------------------------------------------------------- 1943 * | MOVE MOUNT OPERATION | 1944 * |************************************************************************** 1945 * | source-->| shared | private | slave | unbindable | 1946 * | dest | | | | | 1947 * | | | | | | | 1948 * | v | | | | | 1949 * |************************************************************************** 1950 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1951 * | | | | | | 1952 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1953 * *************************************************************************** 1954 * 1955 * (+) the mount is moved to the destination. And is then propagated to 1956 * all the mounts in the propagation tree of the destination mount. 1957 * (+*) the mount is moved to the destination. 1958 * (+++) the mount is moved to the destination and is then propagated to 1959 * all the mounts belonging to the destination mount's propagation tree. 1960 * the mount is marked as 'shared and slave'. 1961 * (*) the mount continues to be a slave at the new location. 1962 * 1963 * if the source mount is a tree, the operations explained above is 1964 * applied to each mount in the tree. 1965 * Must be called without spinlocks held, since this function can sleep 1966 * in allocations. 1967 */ 1968 static int attach_recursive_mnt(struct mount *source_mnt, 1969 struct mount *dest_mnt, 1970 struct mountpoint *dest_mp, 1971 struct path *parent_path) 1972 { 1973 HLIST_HEAD(tree_list); 1974 struct mnt_namespace *ns = dest_mnt->mnt_ns; 1975 struct mount *child, *p; 1976 struct hlist_node *n; 1977 int err; 1978 1979 /* Is there space to add these mounts to the mount namespace? */ 1980 if (!parent_path) { 1981 err = count_mounts(ns, source_mnt); 1982 if (err) 1983 goto out; 1984 } 1985 1986 if (IS_MNT_SHARED(dest_mnt)) { 1987 err = invent_group_ids(source_mnt, true); 1988 if (err) 1989 goto out; 1990 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1991 lock_mount_hash(); 1992 if (err) 1993 goto out_cleanup_ids; 1994 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1995 set_mnt_shared(p); 1996 } else { 1997 lock_mount_hash(); 1998 } 1999 if (parent_path) { 2000 detach_mnt(source_mnt, parent_path); 2001 attach_mnt(source_mnt, dest_mnt, dest_mp); 2002 touch_mnt_namespace(source_mnt->mnt_ns); 2003 } else { 2004 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2005 commit_tree(source_mnt, NULL); 2006 } 2007 2008 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2009 struct mount *q; 2010 hlist_del_init(&child->mnt_hash); 2011 q = __lookup_mnt_last(&child->mnt_parent->mnt, 2012 child->mnt_mountpoint); 2013 commit_tree(child, q); 2014 } 2015 unlock_mount_hash(); 2016 2017 return 0; 2018 2019 out_cleanup_ids: 2020 while (!hlist_empty(&tree_list)) { 2021 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2022 child->mnt_parent->mnt_ns->pending_mounts = 0; 2023 umount_tree(child, UMOUNT_SYNC); 2024 } 2025 unlock_mount_hash(); 2026 cleanup_group_ids(source_mnt, NULL); 2027 out: 2028 ns->pending_mounts = 0; 2029 return err; 2030 } 2031 2032 static struct mountpoint *lock_mount(struct path *path) 2033 { 2034 struct vfsmount *mnt; 2035 struct dentry *dentry = path->dentry; 2036 retry: 2037 inode_lock(dentry->d_inode); 2038 if (unlikely(cant_mount(dentry))) { 2039 inode_unlock(dentry->d_inode); 2040 return ERR_PTR(-ENOENT); 2041 } 2042 namespace_lock(); 2043 mnt = lookup_mnt(path); 2044 if (likely(!mnt)) { 2045 struct mountpoint *mp = lookup_mountpoint(dentry); 2046 if (!mp) 2047 mp = new_mountpoint(dentry); 2048 if (IS_ERR(mp)) { 2049 namespace_unlock(); 2050 inode_unlock(dentry->d_inode); 2051 return mp; 2052 } 2053 return mp; 2054 } 2055 namespace_unlock(); 2056 inode_unlock(path->dentry->d_inode); 2057 path_put(path); 2058 path->mnt = mnt; 2059 dentry = path->dentry = dget(mnt->mnt_root); 2060 goto retry; 2061 } 2062 2063 static void unlock_mount(struct mountpoint *where) 2064 { 2065 struct dentry *dentry = where->m_dentry; 2066 put_mountpoint(where); 2067 namespace_unlock(); 2068 inode_unlock(dentry->d_inode); 2069 } 2070 2071 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2072 { 2073 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 2074 return -EINVAL; 2075 2076 if (d_is_dir(mp->m_dentry) != 2077 d_is_dir(mnt->mnt.mnt_root)) 2078 return -ENOTDIR; 2079 2080 return attach_recursive_mnt(mnt, p, mp, NULL); 2081 } 2082 2083 /* 2084 * Sanity check the flags to change_mnt_propagation. 2085 */ 2086 2087 static int flags_to_propagation_type(int flags) 2088 { 2089 int type = flags & ~(MS_REC | MS_SILENT); 2090 2091 /* Fail if any non-propagation flags are set */ 2092 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2093 return 0; 2094 /* Only one propagation flag should be set */ 2095 if (!is_power_of_2(type)) 2096 return 0; 2097 return type; 2098 } 2099 2100 /* 2101 * recursively change the type of the mountpoint. 2102 */ 2103 static int do_change_type(struct path *path, int flag) 2104 { 2105 struct mount *m; 2106 struct mount *mnt = real_mount(path->mnt); 2107 int recurse = flag & MS_REC; 2108 int type; 2109 int err = 0; 2110 2111 if (path->dentry != path->mnt->mnt_root) 2112 return -EINVAL; 2113 2114 type = flags_to_propagation_type(flag); 2115 if (!type) 2116 return -EINVAL; 2117 2118 namespace_lock(); 2119 if (type == MS_SHARED) { 2120 err = invent_group_ids(mnt, recurse); 2121 if (err) 2122 goto out_unlock; 2123 } 2124 2125 lock_mount_hash(); 2126 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2127 change_mnt_propagation(m, type); 2128 unlock_mount_hash(); 2129 2130 out_unlock: 2131 namespace_unlock(); 2132 return err; 2133 } 2134 2135 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2136 { 2137 struct mount *child; 2138 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2139 if (!is_subdir(child->mnt_mountpoint, dentry)) 2140 continue; 2141 2142 if (child->mnt.mnt_flags & MNT_LOCKED) 2143 return true; 2144 } 2145 return false; 2146 } 2147 2148 /* 2149 * do loopback mount. 2150 */ 2151 static int do_loopback(struct path *path, const char *old_name, 2152 int recurse) 2153 { 2154 struct path old_path; 2155 struct mount *mnt = NULL, *old, *parent; 2156 struct mountpoint *mp; 2157 int err; 2158 if (!old_name || !*old_name) 2159 return -EINVAL; 2160 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2161 if (err) 2162 return err; 2163 2164 err = -EINVAL; 2165 if (mnt_ns_loop(old_path.dentry)) 2166 goto out; 2167 2168 mp = lock_mount(path); 2169 err = PTR_ERR(mp); 2170 if (IS_ERR(mp)) 2171 goto out; 2172 2173 old = real_mount(old_path.mnt); 2174 parent = real_mount(path->mnt); 2175 2176 err = -EINVAL; 2177 if (IS_MNT_UNBINDABLE(old)) 2178 goto out2; 2179 2180 if (!check_mnt(parent)) 2181 goto out2; 2182 2183 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2184 goto out2; 2185 2186 if (!recurse && has_locked_children(old, old_path.dentry)) 2187 goto out2; 2188 2189 if (recurse) 2190 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2191 else 2192 mnt = clone_mnt(old, old_path.dentry, 0); 2193 2194 if (IS_ERR(mnt)) { 2195 err = PTR_ERR(mnt); 2196 goto out2; 2197 } 2198 2199 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2200 2201 err = graft_tree(mnt, parent, mp); 2202 if (err) { 2203 lock_mount_hash(); 2204 umount_tree(mnt, UMOUNT_SYNC); 2205 unlock_mount_hash(); 2206 } 2207 out2: 2208 unlock_mount(mp); 2209 out: 2210 path_put(&old_path); 2211 return err; 2212 } 2213 2214 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2215 { 2216 int error = 0; 2217 int readonly_request = 0; 2218 2219 if (ms_flags & MS_RDONLY) 2220 readonly_request = 1; 2221 if (readonly_request == __mnt_is_readonly(mnt)) 2222 return 0; 2223 2224 if (readonly_request) 2225 error = mnt_make_readonly(real_mount(mnt)); 2226 else 2227 __mnt_unmake_readonly(real_mount(mnt)); 2228 return error; 2229 } 2230 2231 /* 2232 * change filesystem flags. dir should be a physical root of filesystem. 2233 * If you've mounted a non-root directory somewhere and want to do remount 2234 * on it - tough luck. 2235 */ 2236 static int do_remount(struct path *path, int flags, int mnt_flags, 2237 void *data) 2238 { 2239 int err; 2240 struct super_block *sb = path->mnt->mnt_sb; 2241 struct mount *mnt = real_mount(path->mnt); 2242 2243 if (!check_mnt(mnt)) 2244 return -EINVAL; 2245 2246 if (path->dentry != path->mnt->mnt_root) 2247 return -EINVAL; 2248 2249 /* Don't allow changing of locked mnt flags. 2250 * 2251 * No locks need to be held here while testing the various 2252 * MNT_LOCK flags because those flags can never be cleared 2253 * once they are set. 2254 */ 2255 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2256 !(mnt_flags & MNT_READONLY)) { 2257 return -EPERM; 2258 } 2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2260 !(mnt_flags & MNT_NODEV)) { 2261 return -EPERM; 2262 } 2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2264 !(mnt_flags & MNT_NOSUID)) { 2265 return -EPERM; 2266 } 2267 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2268 !(mnt_flags & MNT_NOEXEC)) { 2269 return -EPERM; 2270 } 2271 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2272 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2273 return -EPERM; 2274 } 2275 2276 err = security_sb_remount(sb, data); 2277 if (err) 2278 return err; 2279 2280 down_write(&sb->s_umount); 2281 if (flags & MS_BIND) 2282 err = change_mount_flags(path->mnt, flags); 2283 else if (!capable(CAP_SYS_ADMIN)) 2284 err = -EPERM; 2285 else 2286 err = do_remount_sb(sb, flags, data, 0); 2287 if (!err) { 2288 lock_mount_hash(); 2289 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2290 mnt->mnt.mnt_flags = mnt_flags; 2291 touch_mnt_namespace(mnt->mnt_ns); 2292 unlock_mount_hash(); 2293 } 2294 up_write(&sb->s_umount); 2295 return err; 2296 } 2297 2298 static inline int tree_contains_unbindable(struct mount *mnt) 2299 { 2300 struct mount *p; 2301 for (p = mnt; p; p = next_mnt(p, mnt)) { 2302 if (IS_MNT_UNBINDABLE(p)) 2303 return 1; 2304 } 2305 return 0; 2306 } 2307 2308 static int do_move_mount(struct path *path, const char *old_name) 2309 { 2310 struct path old_path, parent_path; 2311 struct mount *p; 2312 struct mount *old; 2313 struct mountpoint *mp; 2314 int err; 2315 if (!old_name || !*old_name) 2316 return -EINVAL; 2317 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2318 if (err) 2319 return err; 2320 2321 mp = lock_mount(path); 2322 err = PTR_ERR(mp); 2323 if (IS_ERR(mp)) 2324 goto out; 2325 2326 old = real_mount(old_path.mnt); 2327 p = real_mount(path->mnt); 2328 2329 err = -EINVAL; 2330 if (!check_mnt(p) || !check_mnt(old)) 2331 goto out1; 2332 2333 if (old->mnt.mnt_flags & MNT_LOCKED) 2334 goto out1; 2335 2336 err = -EINVAL; 2337 if (old_path.dentry != old_path.mnt->mnt_root) 2338 goto out1; 2339 2340 if (!mnt_has_parent(old)) 2341 goto out1; 2342 2343 if (d_is_dir(path->dentry) != 2344 d_is_dir(old_path.dentry)) 2345 goto out1; 2346 /* 2347 * Don't move a mount residing in a shared parent. 2348 */ 2349 if (IS_MNT_SHARED(old->mnt_parent)) 2350 goto out1; 2351 /* 2352 * Don't move a mount tree containing unbindable mounts to a destination 2353 * mount which is shared. 2354 */ 2355 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2356 goto out1; 2357 err = -ELOOP; 2358 for (; mnt_has_parent(p); p = p->mnt_parent) 2359 if (p == old) 2360 goto out1; 2361 2362 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2363 if (err) 2364 goto out1; 2365 2366 /* if the mount is moved, it should no longer be expire 2367 * automatically */ 2368 list_del_init(&old->mnt_expire); 2369 out1: 2370 unlock_mount(mp); 2371 out: 2372 if (!err) 2373 path_put(&parent_path); 2374 path_put(&old_path); 2375 return err; 2376 } 2377 2378 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2379 { 2380 int err; 2381 const char *subtype = strchr(fstype, '.'); 2382 if (subtype) { 2383 subtype++; 2384 err = -EINVAL; 2385 if (!subtype[0]) 2386 goto err; 2387 } else 2388 subtype = ""; 2389 2390 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2391 err = -ENOMEM; 2392 if (!mnt->mnt_sb->s_subtype) 2393 goto err; 2394 return mnt; 2395 2396 err: 2397 mntput(mnt); 2398 return ERR_PTR(err); 2399 } 2400 2401 /* 2402 * add a mount into a namespace's mount tree 2403 */ 2404 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2405 { 2406 struct mountpoint *mp; 2407 struct mount *parent; 2408 int err; 2409 2410 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2411 2412 mp = lock_mount(path); 2413 if (IS_ERR(mp)) 2414 return PTR_ERR(mp); 2415 2416 parent = real_mount(path->mnt); 2417 err = -EINVAL; 2418 if (unlikely(!check_mnt(parent))) { 2419 /* that's acceptable only for automounts done in private ns */ 2420 if (!(mnt_flags & MNT_SHRINKABLE)) 2421 goto unlock; 2422 /* ... and for those we'd better have mountpoint still alive */ 2423 if (!parent->mnt_ns) 2424 goto unlock; 2425 } 2426 2427 /* Refuse the same filesystem on the same mount point */ 2428 err = -EBUSY; 2429 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2430 path->mnt->mnt_root == path->dentry) 2431 goto unlock; 2432 2433 err = -EINVAL; 2434 if (d_is_symlink(newmnt->mnt.mnt_root)) 2435 goto unlock; 2436 2437 newmnt->mnt.mnt_flags = mnt_flags; 2438 err = graft_tree(newmnt, parent, mp); 2439 2440 unlock: 2441 unlock_mount(mp); 2442 return err; 2443 } 2444 2445 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); 2446 2447 /* 2448 * create a new mount for userspace and request it to be added into the 2449 * namespace's tree 2450 */ 2451 static int do_new_mount(struct path *path, const char *fstype, int flags, 2452 int mnt_flags, const char *name, void *data) 2453 { 2454 struct file_system_type *type; 2455 struct vfsmount *mnt; 2456 int err; 2457 2458 if (!fstype) 2459 return -EINVAL; 2460 2461 type = get_fs_type(fstype); 2462 if (!type) 2463 return -ENODEV; 2464 2465 mnt = vfs_kern_mount(type, flags, name, data); 2466 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2467 !mnt->mnt_sb->s_subtype) 2468 mnt = fs_set_subtype(mnt, fstype); 2469 2470 put_filesystem(type); 2471 if (IS_ERR(mnt)) 2472 return PTR_ERR(mnt); 2473 2474 if (mount_too_revealing(mnt, &mnt_flags)) { 2475 mntput(mnt); 2476 return -EPERM; 2477 } 2478 2479 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2480 if (err) 2481 mntput(mnt); 2482 return err; 2483 } 2484 2485 int finish_automount(struct vfsmount *m, struct path *path) 2486 { 2487 struct mount *mnt = real_mount(m); 2488 int err; 2489 /* The new mount record should have at least 2 refs to prevent it being 2490 * expired before we get a chance to add it 2491 */ 2492 BUG_ON(mnt_get_count(mnt) < 2); 2493 2494 if (m->mnt_sb == path->mnt->mnt_sb && 2495 m->mnt_root == path->dentry) { 2496 err = -ELOOP; 2497 goto fail; 2498 } 2499 2500 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2501 if (!err) 2502 return 0; 2503 fail: 2504 /* remove m from any expiration list it may be on */ 2505 if (!list_empty(&mnt->mnt_expire)) { 2506 namespace_lock(); 2507 list_del_init(&mnt->mnt_expire); 2508 namespace_unlock(); 2509 } 2510 mntput(m); 2511 mntput(m); 2512 return err; 2513 } 2514 2515 /** 2516 * mnt_set_expiry - Put a mount on an expiration list 2517 * @mnt: The mount to list. 2518 * @expiry_list: The list to add the mount to. 2519 */ 2520 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2521 { 2522 namespace_lock(); 2523 2524 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2525 2526 namespace_unlock(); 2527 } 2528 EXPORT_SYMBOL(mnt_set_expiry); 2529 2530 /* 2531 * process a list of expirable mountpoints with the intent of discarding any 2532 * mountpoints that aren't in use and haven't been touched since last we came 2533 * here 2534 */ 2535 void mark_mounts_for_expiry(struct list_head *mounts) 2536 { 2537 struct mount *mnt, *next; 2538 LIST_HEAD(graveyard); 2539 2540 if (list_empty(mounts)) 2541 return; 2542 2543 namespace_lock(); 2544 lock_mount_hash(); 2545 2546 /* extract from the expiration list every vfsmount that matches the 2547 * following criteria: 2548 * - only referenced by its parent vfsmount 2549 * - still marked for expiry (marked on the last call here; marks are 2550 * cleared by mntput()) 2551 */ 2552 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2553 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2554 propagate_mount_busy(mnt, 1)) 2555 continue; 2556 list_move(&mnt->mnt_expire, &graveyard); 2557 } 2558 while (!list_empty(&graveyard)) { 2559 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2560 touch_mnt_namespace(mnt->mnt_ns); 2561 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2562 } 2563 unlock_mount_hash(); 2564 namespace_unlock(); 2565 } 2566 2567 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2568 2569 /* 2570 * Ripoff of 'select_parent()' 2571 * 2572 * search the list of submounts for a given mountpoint, and move any 2573 * shrinkable submounts to the 'graveyard' list. 2574 */ 2575 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2576 { 2577 struct mount *this_parent = parent; 2578 struct list_head *next; 2579 int found = 0; 2580 2581 repeat: 2582 next = this_parent->mnt_mounts.next; 2583 resume: 2584 while (next != &this_parent->mnt_mounts) { 2585 struct list_head *tmp = next; 2586 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2587 2588 next = tmp->next; 2589 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2590 continue; 2591 /* 2592 * Descend a level if the d_mounts list is non-empty. 2593 */ 2594 if (!list_empty(&mnt->mnt_mounts)) { 2595 this_parent = mnt; 2596 goto repeat; 2597 } 2598 2599 if (!propagate_mount_busy(mnt, 1)) { 2600 list_move_tail(&mnt->mnt_expire, graveyard); 2601 found++; 2602 } 2603 } 2604 /* 2605 * All done at this level ... ascend and resume the search 2606 */ 2607 if (this_parent != parent) { 2608 next = this_parent->mnt_child.next; 2609 this_parent = this_parent->mnt_parent; 2610 goto resume; 2611 } 2612 return found; 2613 } 2614 2615 /* 2616 * process a list of expirable mountpoints with the intent of discarding any 2617 * submounts of a specific parent mountpoint 2618 * 2619 * mount_lock must be held for write 2620 */ 2621 static void shrink_submounts(struct mount *mnt) 2622 { 2623 LIST_HEAD(graveyard); 2624 struct mount *m; 2625 2626 /* extract submounts of 'mountpoint' from the expiration list */ 2627 while (select_submounts(mnt, &graveyard)) { 2628 while (!list_empty(&graveyard)) { 2629 m = list_first_entry(&graveyard, struct mount, 2630 mnt_expire); 2631 touch_mnt_namespace(m->mnt_ns); 2632 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2633 } 2634 } 2635 } 2636 2637 /* 2638 * Some copy_from_user() implementations do not return the exact number of 2639 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2640 * Note that this function differs from copy_from_user() in that it will oops 2641 * on bad values of `to', rather than returning a short copy. 2642 */ 2643 static long exact_copy_from_user(void *to, const void __user * from, 2644 unsigned long n) 2645 { 2646 char *t = to; 2647 const char __user *f = from; 2648 char c; 2649 2650 if (!access_ok(VERIFY_READ, from, n)) 2651 return n; 2652 2653 while (n) { 2654 if (__get_user(c, f)) { 2655 memset(t, 0, n); 2656 break; 2657 } 2658 *t++ = c; 2659 f++; 2660 n--; 2661 } 2662 return n; 2663 } 2664 2665 void *copy_mount_options(const void __user * data) 2666 { 2667 int i; 2668 unsigned long size; 2669 char *copy; 2670 2671 if (!data) 2672 return NULL; 2673 2674 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 2675 if (!copy) 2676 return ERR_PTR(-ENOMEM); 2677 2678 /* We only care that *some* data at the address the user 2679 * gave us is valid. Just in case, we'll zero 2680 * the remainder of the page. 2681 */ 2682 /* copy_from_user cannot cross TASK_SIZE ! */ 2683 size = TASK_SIZE - (unsigned long)data; 2684 if (size > PAGE_SIZE) 2685 size = PAGE_SIZE; 2686 2687 i = size - exact_copy_from_user(copy, data, size); 2688 if (!i) { 2689 kfree(copy); 2690 return ERR_PTR(-EFAULT); 2691 } 2692 if (i != PAGE_SIZE) 2693 memset(copy + i, 0, PAGE_SIZE - i); 2694 return copy; 2695 } 2696 2697 char *copy_mount_string(const void __user *data) 2698 { 2699 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2700 } 2701 2702 /* 2703 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2704 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2705 * 2706 * data is a (void *) that can point to any structure up to 2707 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2708 * information (or be NULL). 2709 * 2710 * Pre-0.97 versions of mount() didn't have a flags word. 2711 * When the flags word was introduced its top half was required 2712 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2713 * Therefore, if this magic number is present, it carries no information 2714 * and must be discarded. 2715 */ 2716 long do_mount(const char *dev_name, const char __user *dir_name, 2717 const char *type_page, unsigned long flags, void *data_page) 2718 { 2719 struct path path; 2720 int retval = 0; 2721 int mnt_flags = 0; 2722 2723 /* Discard magic */ 2724 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2725 flags &= ~MS_MGC_MSK; 2726 2727 /* Basic sanity checks */ 2728 if (data_page) 2729 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2730 2731 /* ... and get the mountpoint */ 2732 retval = user_path(dir_name, &path); 2733 if (retval) 2734 return retval; 2735 2736 retval = security_sb_mount(dev_name, &path, 2737 type_page, flags, data_page); 2738 if (!retval && !may_mount()) 2739 retval = -EPERM; 2740 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock()) 2741 retval = -EPERM; 2742 if (retval) 2743 goto dput_out; 2744 2745 /* Default to relatime unless overriden */ 2746 if (!(flags & MS_NOATIME)) 2747 mnt_flags |= MNT_RELATIME; 2748 2749 /* Separate the per-mountpoint flags */ 2750 if (flags & MS_NOSUID) 2751 mnt_flags |= MNT_NOSUID; 2752 if (flags & MS_NODEV) 2753 mnt_flags |= MNT_NODEV; 2754 if (flags & MS_NOEXEC) 2755 mnt_flags |= MNT_NOEXEC; 2756 if (flags & MS_NOATIME) 2757 mnt_flags |= MNT_NOATIME; 2758 if (flags & MS_NODIRATIME) 2759 mnt_flags |= MNT_NODIRATIME; 2760 if (flags & MS_STRICTATIME) 2761 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2762 if (flags & MS_RDONLY) 2763 mnt_flags |= MNT_READONLY; 2764 2765 /* The default atime for remount is preservation */ 2766 if ((flags & MS_REMOUNT) && 2767 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2768 MS_STRICTATIME)) == 0)) { 2769 mnt_flags &= ~MNT_ATIME_MASK; 2770 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2771 } 2772 2773 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2774 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2775 MS_STRICTATIME | MS_NOREMOTELOCK); 2776 2777 if (flags & MS_REMOUNT) 2778 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2779 data_page); 2780 else if (flags & MS_BIND) 2781 retval = do_loopback(&path, dev_name, flags & MS_REC); 2782 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2783 retval = do_change_type(&path, flags); 2784 else if (flags & MS_MOVE) 2785 retval = do_move_mount(&path, dev_name); 2786 else 2787 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2788 dev_name, data_page); 2789 dput_out: 2790 path_put(&path); 2791 return retval; 2792 } 2793 2794 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 2795 { 2796 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 2797 } 2798 2799 static void dec_mnt_namespaces(struct ucounts *ucounts) 2800 { 2801 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 2802 } 2803 2804 static void free_mnt_ns(struct mnt_namespace *ns) 2805 { 2806 ns_free_inum(&ns->ns); 2807 dec_mnt_namespaces(ns->ucounts); 2808 put_user_ns(ns->user_ns); 2809 kfree(ns); 2810 } 2811 2812 /* 2813 * Assign a sequence number so we can detect when we attempt to bind 2814 * mount a reference to an older mount namespace into the current 2815 * mount namespace, preventing reference counting loops. A 64bit 2816 * number incrementing at 10Ghz will take 12,427 years to wrap which 2817 * is effectively never, so we can ignore the possibility. 2818 */ 2819 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2820 2821 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2822 { 2823 struct mnt_namespace *new_ns; 2824 struct ucounts *ucounts; 2825 int ret; 2826 2827 ucounts = inc_mnt_namespaces(user_ns); 2828 if (!ucounts) 2829 return ERR_PTR(-ENOSPC); 2830 2831 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2832 if (!new_ns) { 2833 dec_mnt_namespaces(ucounts); 2834 return ERR_PTR(-ENOMEM); 2835 } 2836 ret = ns_alloc_inum(&new_ns->ns); 2837 if (ret) { 2838 kfree(new_ns); 2839 dec_mnt_namespaces(ucounts); 2840 return ERR_PTR(ret); 2841 } 2842 new_ns->ns.ops = &mntns_operations; 2843 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2844 atomic_set(&new_ns->count, 1); 2845 new_ns->root = NULL; 2846 INIT_LIST_HEAD(&new_ns->list); 2847 init_waitqueue_head(&new_ns->poll); 2848 new_ns->event = 0; 2849 new_ns->user_ns = get_user_ns(user_ns); 2850 new_ns->ucounts = ucounts; 2851 new_ns->mounts = 0; 2852 new_ns->pending_mounts = 0; 2853 return new_ns; 2854 } 2855 2856 __latent_entropy 2857 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2858 struct user_namespace *user_ns, struct fs_struct *new_fs) 2859 { 2860 struct mnt_namespace *new_ns; 2861 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2862 struct mount *p, *q; 2863 struct mount *old; 2864 struct mount *new; 2865 int copy_flags; 2866 2867 BUG_ON(!ns); 2868 2869 if (likely(!(flags & CLONE_NEWNS))) { 2870 get_mnt_ns(ns); 2871 return ns; 2872 } 2873 2874 old = ns->root; 2875 2876 new_ns = alloc_mnt_ns(user_ns); 2877 if (IS_ERR(new_ns)) 2878 return new_ns; 2879 2880 namespace_lock(); 2881 /* First pass: copy the tree topology */ 2882 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2883 if (user_ns != ns->user_ns) 2884 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2885 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2886 if (IS_ERR(new)) { 2887 namespace_unlock(); 2888 free_mnt_ns(new_ns); 2889 return ERR_CAST(new); 2890 } 2891 new_ns->root = new; 2892 list_add_tail(&new_ns->list, &new->mnt_list); 2893 2894 /* 2895 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2896 * as belonging to new namespace. We have already acquired a private 2897 * fs_struct, so tsk->fs->lock is not needed. 2898 */ 2899 p = old; 2900 q = new; 2901 while (p) { 2902 q->mnt_ns = new_ns; 2903 new_ns->mounts++; 2904 if (new_fs) { 2905 if (&p->mnt == new_fs->root.mnt) { 2906 new_fs->root.mnt = mntget(&q->mnt); 2907 rootmnt = &p->mnt; 2908 } 2909 if (&p->mnt == new_fs->pwd.mnt) { 2910 new_fs->pwd.mnt = mntget(&q->mnt); 2911 pwdmnt = &p->mnt; 2912 } 2913 } 2914 p = next_mnt(p, old); 2915 q = next_mnt(q, new); 2916 if (!q) 2917 break; 2918 while (p->mnt.mnt_root != q->mnt.mnt_root) 2919 p = next_mnt(p, old); 2920 } 2921 namespace_unlock(); 2922 2923 if (rootmnt) 2924 mntput(rootmnt); 2925 if (pwdmnt) 2926 mntput(pwdmnt); 2927 2928 return new_ns; 2929 } 2930 2931 /** 2932 * create_mnt_ns - creates a private namespace and adds a root filesystem 2933 * @mnt: pointer to the new root filesystem mountpoint 2934 */ 2935 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2936 { 2937 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2938 if (!IS_ERR(new_ns)) { 2939 struct mount *mnt = real_mount(m); 2940 mnt->mnt_ns = new_ns; 2941 new_ns->root = mnt; 2942 new_ns->mounts++; 2943 list_add(&mnt->mnt_list, &new_ns->list); 2944 } else { 2945 mntput(m); 2946 } 2947 return new_ns; 2948 } 2949 2950 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2951 { 2952 struct mnt_namespace *ns; 2953 struct super_block *s; 2954 struct path path; 2955 int err; 2956 2957 ns = create_mnt_ns(mnt); 2958 if (IS_ERR(ns)) 2959 return ERR_CAST(ns); 2960 2961 err = vfs_path_lookup(mnt->mnt_root, mnt, 2962 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2963 2964 put_mnt_ns(ns); 2965 2966 if (err) 2967 return ERR_PTR(err); 2968 2969 /* trade a vfsmount reference for active sb one */ 2970 s = path.mnt->mnt_sb; 2971 atomic_inc(&s->s_active); 2972 mntput(path.mnt); 2973 /* lock the sucker */ 2974 down_write(&s->s_umount); 2975 /* ... and return the root of (sub)tree on it */ 2976 return path.dentry; 2977 } 2978 EXPORT_SYMBOL(mount_subtree); 2979 2980 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2981 char __user *, type, unsigned long, flags, void __user *, data) 2982 { 2983 int ret; 2984 char *kernel_type; 2985 char *kernel_dev; 2986 void *options; 2987 2988 kernel_type = copy_mount_string(type); 2989 ret = PTR_ERR(kernel_type); 2990 if (IS_ERR(kernel_type)) 2991 goto out_type; 2992 2993 kernel_dev = copy_mount_string(dev_name); 2994 ret = PTR_ERR(kernel_dev); 2995 if (IS_ERR(kernel_dev)) 2996 goto out_dev; 2997 2998 options = copy_mount_options(data); 2999 ret = PTR_ERR(options); 3000 if (IS_ERR(options)) 3001 goto out_data; 3002 3003 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3004 3005 kfree(options); 3006 out_data: 3007 kfree(kernel_dev); 3008 out_dev: 3009 kfree(kernel_type); 3010 out_type: 3011 return ret; 3012 } 3013 3014 /* 3015 * Return true if path is reachable from root 3016 * 3017 * namespace_sem or mount_lock is held 3018 */ 3019 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3020 const struct path *root) 3021 { 3022 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3023 dentry = mnt->mnt_mountpoint; 3024 mnt = mnt->mnt_parent; 3025 } 3026 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3027 } 3028 3029 bool path_is_under(const struct path *path1, const struct path *path2) 3030 { 3031 bool res; 3032 read_seqlock_excl(&mount_lock); 3033 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3034 read_sequnlock_excl(&mount_lock); 3035 return res; 3036 } 3037 EXPORT_SYMBOL(path_is_under); 3038 3039 /* 3040 * pivot_root Semantics: 3041 * Moves the root file system of the current process to the directory put_old, 3042 * makes new_root as the new root file system of the current process, and sets 3043 * root/cwd of all processes which had them on the current root to new_root. 3044 * 3045 * Restrictions: 3046 * The new_root and put_old must be directories, and must not be on the 3047 * same file system as the current process root. The put_old must be 3048 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3049 * pointed to by put_old must yield the same directory as new_root. No other 3050 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3051 * 3052 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3053 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 3054 * in this situation. 3055 * 3056 * Notes: 3057 * - we don't move root/cwd if they are not at the root (reason: if something 3058 * cared enough to change them, it's probably wrong to force them elsewhere) 3059 * - it's okay to pick a root that isn't the root of a file system, e.g. 3060 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3061 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3062 * first. 3063 */ 3064 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3065 const char __user *, put_old) 3066 { 3067 struct path new, old, parent_path, root_parent, root; 3068 struct mount *new_mnt, *root_mnt, *old_mnt; 3069 struct mountpoint *old_mp, *root_mp; 3070 int error; 3071 3072 if (!may_mount()) 3073 return -EPERM; 3074 3075 error = user_path_dir(new_root, &new); 3076 if (error) 3077 goto out0; 3078 3079 error = user_path_dir(put_old, &old); 3080 if (error) 3081 goto out1; 3082 3083 error = security_sb_pivotroot(&old, &new); 3084 if (error) 3085 goto out2; 3086 3087 get_fs_root(current->fs, &root); 3088 old_mp = lock_mount(&old); 3089 error = PTR_ERR(old_mp); 3090 if (IS_ERR(old_mp)) 3091 goto out3; 3092 3093 error = -EINVAL; 3094 new_mnt = real_mount(new.mnt); 3095 root_mnt = real_mount(root.mnt); 3096 old_mnt = real_mount(old.mnt); 3097 if (IS_MNT_SHARED(old_mnt) || 3098 IS_MNT_SHARED(new_mnt->mnt_parent) || 3099 IS_MNT_SHARED(root_mnt->mnt_parent)) 3100 goto out4; 3101 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3102 goto out4; 3103 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3104 goto out4; 3105 error = -ENOENT; 3106 if (d_unlinked(new.dentry)) 3107 goto out4; 3108 error = -EBUSY; 3109 if (new_mnt == root_mnt || old_mnt == root_mnt) 3110 goto out4; /* loop, on the same file system */ 3111 error = -EINVAL; 3112 if (root.mnt->mnt_root != root.dentry) 3113 goto out4; /* not a mountpoint */ 3114 if (!mnt_has_parent(root_mnt)) 3115 goto out4; /* not attached */ 3116 root_mp = root_mnt->mnt_mp; 3117 if (new.mnt->mnt_root != new.dentry) 3118 goto out4; /* not a mountpoint */ 3119 if (!mnt_has_parent(new_mnt)) 3120 goto out4; /* not attached */ 3121 /* make sure we can reach put_old from new_root */ 3122 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3123 goto out4; 3124 /* make certain new is below the root */ 3125 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3126 goto out4; 3127 root_mp->m_count++; /* pin it so it won't go away */ 3128 lock_mount_hash(); 3129 detach_mnt(new_mnt, &parent_path); 3130 detach_mnt(root_mnt, &root_parent); 3131 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3132 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3133 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3134 } 3135 /* mount old root on put_old */ 3136 attach_mnt(root_mnt, old_mnt, old_mp); 3137 /* mount new_root on / */ 3138 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3139 touch_mnt_namespace(current->nsproxy->mnt_ns); 3140 /* A moved mount should not expire automatically */ 3141 list_del_init(&new_mnt->mnt_expire); 3142 unlock_mount_hash(); 3143 chroot_fs_refs(&root, &new); 3144 put_mountpoint(root_mp); 3145 error = 0; 3146 out4: 3147 unlock_mount(old_mp); 3148 if (!error) { 3149 path_put(&root_parent); 3150 path_put(&parent_path); 3151 } 3152 out3: 3153 path_put(&root); 3154 out2: 3155 path_put(&old); 3156 out1: 3157 path_put(&new); 3158 out0: 3159 return error; 3160 } 3161 3162 static void __init init_mount_tree(void) 3163 { 3164 struct vfsmount *mnt; 3165 struct mnt_namespace *ns; 3166 struct path root; 3167 struct file_system_type *type; 3168 3169 type = get_fs_type("rootfs"); 3170 if (!type) 3171 panic("Can't find rootfs type"); 3172 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3173 put_filesystem(type); 3174 if (IS_ERR(mnt)) 3175 panic("Can't create rootfs"); 3176 3177 ns = create_mnt_ns(mnt); 3178 if (IS_ERR(ns)) 3179 panic("Can't allocate initial namespace"); 3180 3181 init_task.nsproxy->mnt_ns = ns; 3182 get_mnt_ns(ns); 3183 3184 root.mnt = mnt; 3185 root.dentry = mnt->mnt_root; 3186 mnt->mnt_flags |= MNT_LOCKED; 3187 3188 set_fs_pwd(current->fs, &root); 3189 set_fs_root(current->fs, &root); 3190 } 3191 3192 void __init mnt_init(void) 3193 { 3194 unsigned u; 3195 int err; 3196 3197 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3198 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3199 3200 mount_hashtable = alloc_large_system_hash("Mount-cache", 3201 sizeof(struct hlist_head), 3202 mhash_entries, 19, 3203 0, 3204 &m_hash_shift, &m_hash_mask, 0, 0); 3205 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3206 sizeof(struct hlist_head), 3207 mphash_entries, 19, 3208 0, 3209 &mp_hash_shift, &mp_hash_mask, 0, 0); 3210 3211 if (!mount_hashtable || !mountpoint_hashtable) 3212 panic("Failed to allocate mount hash table\n"); 3213 3214 for (u = 0; u <= m_hash_mask; u++) 3215 INIT_HLIST_HEAD(&mount_hashtable[u]); 3216 for (u = 0; u <= mp_hash_mask; u++) 3217 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3218 3219 kernfs_init(); 3220 3221 err = sysfs_init(); 3222 if (err) 3223 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3224 __func__, err); 3225 fs_kobj = kobject_create_and_add("fs", NULL); 3226 if (!fs_kobj) 3227 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3228 init_rootfs(); 3229 init_mount_tree(); 3230 } 3231 3232 void put_mnt_ns(struct mnt_namespace *ns) 3233 { 3234 if (!atomic_dec_and_test(&ns->count)) 3235 return; 3236 drop_collected_mounts(&ns->root->mnt); 3237 free_mnt_ns(ns); 3238 } 3239 3240 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3241 { 3242 struct vfsmount *mnt; 3243 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3244 if (!IS_ERR(mnt)) { 3245 /* 3246 * it is a longterm mount, don't release mnt until 3247 * we unmount before file sys is unregistered 3248 */ 3249 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3250 } 3251 return mnt; 3252 } 3253 EXPORT_SYMBOL_GPL(kern_mount_data); 3254 3255 void kern_unmount(struct vfsmount *mnt) 3256 { 3257 /* release long term mount so mount point can be released */ 3258 if (!IS_ERR_OR_NULL(mnt)) { 3259 real_mount(mnt)->mnt_ns = NULL; 3260 synchronize_rcu(); /* yecchhh... */ 3261 mntput(mnt); 3262 } 3263 } 3264 EXPORT_SYMBOL(kern_unmount); 3265 3266 bool our_mnt(struct vfsmount *mnt) 3267 { 3268 return check_mnt(real_mount(mnt)); 3269 } 3270 3271 bool current_chrooted(void) 3272 { 3273 /* Does the current process have a non-standard root */ 3274 struct path ns_root; 3275 struct path fs_root; 3276 bool chrooted; 3277 3278 /* Find the namespace root */ 3279 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3280 ns_root.dentry = ns_root.mnt->mnt_root; 3281 path_get(&ns_root); 3282 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3283 ; 3284 3285 get_fs_root(current->fs, &fs_root); 3286 3287 chrooted = !path_equal(&fs_root, &ns_root); 3288 3289 path_put(&fs_root); 3290 path_put(&ns_root); 3291 3292 return chrooted; 3293 } 3294 3295 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, 3296 int *new_mnt_flags) 3297 { 3298 int new_flags = *new_mnt_flags; 3299 struct mount *mnt; 3300 bool visible = false; 3301 3302 down_read(&namespace_sem); 3303 list_for_each_entry(mnt, &ns->list, mnt_list) { 3304 struct mount *child; 3305 int mnt_flags; 3306 3307 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) 3308 continue; 3309 3310 /* This mount is not fully visible if it's root directory 3311 * is not the root directory of the filesystem. 3312 */ 3313 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3314 continue; 3315 3316 /* A local view of the mount flags */ 3317 mnt_flags = mnt->mnt.mnt_flags; 3318 3319 /* Don't miss readonly hidden in the superblock flags */ 3320 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY) 3321 mnt_flags |= MNT_LOCK_READONLY; 3322 3323 /* Verify the mount flags are equal to or more permissive 3324 * than the proposed new mount. 3325 */ 3326 if ((mnt_flags & MNT_LOCK_READONLY) && 3327 !(new_flags & MNT_READONLY)) 3328 continue; 3329 if ((mnt_flags & MNT_LOCK_ATIME) && 3330 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3331 continue; 3332 3333 /* This mount is not fully visible if there are any 3334 * locked child mounts that cover anything except for 3335 * empty directories. 3336 */ 3337 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3338 struct inode *inode = child->mnt_mountpoint->d_inode; 3339 /* Only worry about locked mounts */ 3340 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3341 continue; 3342 /* Is the directory permanetly empty? */ 3343 if (!is_empty_dir_inode(inode)) 3344 goto next; 3345 } 3346 /* Preserve the locked attributes */ 3347 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 3348 MNT_LOCK_ATIME); 3349 visible = true; 3350 goto found; 3351 next: ; 3352 } 3353 found: 3354 up_read(&namespace_sem); 3355 return visible; 3356 } 3357 3358 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) 3359 { 3360 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 3361 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3362 unsigned long s_iflags; 3363 3364 if (ns->user_ns == &init_user_ns) 3365 return false; 3366 3367 /* Can this filesystem be too revealing? */ 3368 s_iflags = mnt->mnt_sb->s_iflags; 3369 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 3370 return false; 3371 3372 if ((s_iflags & required_iflags) != required_iflags) { 3373 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 3374 required_iflags); 3375 return true; 3376 } 3377 3378 return !mnt_already_visible(ns, mnt, new_mnt_flags); 3379 } 3380 3381 bool mnt_may_suid(struct vfsmount *mnt) 3382 { 3383 /* 3384 * Foreign mounts (accessed via fchdir or through /proc 3385 * symlinks) are always treated as if they are nosuid. This 3386 * prevents namespaces from trusting potentially unsafe 3387 * suid/sgid bits, file caps, or security labels that originate 3388 * in other namespaces. 3389 */ 3390 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 3391 current_in_userns(mnt->mnt_sb->s_user_ns); 3392 } 3393 3394 static struct ns_common *mntns_get(struct task_struct *task) 3395 { 3396 struct ns_common *ns = NULL; 3397 struct nsproxy *nsproxy; 3398 3399 task_lock(task); 3400 nsproxy = task->nsproxy; 3401 if (nsproxy) { 3402 ns = &nsproxy->mnt_ns->ns; 3403 get_mnt_ns(to_mnt_ns(ns)); 3404 } 3405 task_unlock(task); 3406 3407 return ns; 3408 } 3409 3410 static void mntns_put(struct ns_common *ns) 3411 { 3412 put_mnt_ns(to_mnt_ns(ns)); 3413 } 3414 3415 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3416 { 3417 struct fs_struct *fs = current->fs; 3418 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3419 struct path root; 3420 3421 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3422 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3423 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3424 return -EPERM; 3425 3426 if (fs->users != 1) 3427 return -EINVAL; 3428 3429 get_mnt_ns(mnt_ns); 3430 put_mnt_ns(nsproxy->mnt_ns); 3431 nsproxy->mnt_ns = mnt_ns; 3432 3433 /* Find the root */ 3434 root.mnt = &mnt_ns->root->mnt; 3435 root.dentry = mnt_ns->root->mnt.mnt_root; 3436 path_get(&root); 3437 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3438 ; 3439 3440 /* Update the pwd and root */ 3441 set_fs_pwd(fs, &root); 3442 set_fs_root(fs, &root); 3443 3444 path_put(&root); 3445 return 0; 3446 } 3447 3448 static struct user_namespace *mntns_owner(struct ns_common *ns) 3449 { 3450 return to_mnt_ns(ns)->user_ns; 3451 } 3452 3453 const struct proc_ns_operations mntns_operations = { 3454 .name = "mnt", 3455 .type = CLONE_NEWNS, 3456 .get = mntns_get, 3457 .put = mntns_put, 3458 .install = mntns_install, 3459 .owner = mntns_owner, 3460 }; 3461