xref: /linux/fs/namespace.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32 
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37 
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 	if (!str)
42 		return 0;
43 	mhash_entries = simple_strtoul(str, &str, 0);
44 	return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47 
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mphash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57 
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 /*
100  * allocation is serialized by namespace_sem, but we need the spinlock to
101  * serialize with freeing.
102  */
103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 	int res;
106 
107 retry:
108 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 	spin_lock(&mnt_id_lock);
110 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 	if (!res)
112 		mnt_id_start = mnt->mnt_id + 1;
113 	spin_unlock(&mnt_id_lock);
114 	if (res == -EAGAIN)
115 		goto retry;
116 
117 	return res;
118 }
119 
120 static void mnt_free_id(struct mount *mnt)
121 {
122 	int id = mnt->mnt_id;
123 	spin_lock(&mnt_id_lock);
124 	ida_remove(&mnt_id_ida, id);
125 	if (mnt_id_start > id)
126 		mnt_id_start = id;
127 	spin_unlock(&mnt_id_lock);
128 }
129 
130 /*
131  * Allocate a new peer group ID
132  *
133  * mnt_group_ida is protected by namespace_sem
134  */
135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 	int res;
138 
139 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 		return -ENOMEM;
141 
142 	res = ida_get_new_above(&mnt_group_ida,
143 				mnt_group_start,
144 				&mnt->mnt_group_id);
145 	if (!res)
146 		mnt_group_start = mnt->mnt_group_id + 1;
147 
148 	return res;
149 }
150 
151 /*
152  * Release a peer group ID
153  */
154 void mnt_release_group_id(struct mount *mnt)
155 {
156 	int id = mnt->mnt_group_id;
157 	ida_remove(&mnt_group_ida, id);
158 	if (mnt_group_start > id)
159 		mnt_group_start = id;
160 	mnt->mnt_group_id = 0;
161 }
162 
163 /*
164  * vfsmount lock must be held for read
165  */
166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 	preempt_disable();
172 	mnt->mnt_count += n;
173 	preempt_enable();
174 #endif
175 }
176 
177 /*
178  * vfsmount lock must be held for write
179  */
180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 	unsigned int count = 0;
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu) {
187 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 	}
189 
190 	return count;
191 #else
192 	return mnt->mnt_count;
193 #endif
194 }
195 
196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 	struct mount *m = container_of(p, struct mount, mnt_umount);
199 	dput(m->mnt_ex_mountpoint);
200 	pin_remove(p);
201 	mntput(&m->mnt);
202 }
203 
204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 	if (mnt) {
208 		int err;
209 
210 		err = mnt_alloc_id(mnt);
211 		if (err)
212 			goto out_free_cache;
213 
214 		if (name) {
215 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 			if (!mnt->mnt_devname)
217 				goto out_free_id;
218 		}
219 
220 #ifdef CONFIG_SMP
221 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 		if (!mnt->mnt_pcp)
223 			goto out_free_devname;
224 
225 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 		mnt->mnt_count = 1;
228 		mnt->mnt_writers = 0;
229 #endif
230 
231 		INIT_HLIST_NODE(&mnt->mnt_hash);
232 		INIT_LIST_HEAD(&mnt->mnt_child);
233 		INIT_LIST_HEAD(&mnt->mnt_mounts);
234 		INIT_LIST_HEAD(&mnt->mnt_list);
235 		INIT_LIST_HEAD(&mnt->mnt_expire);
236 		INIT_LIST_HEAD(&mnt->mnt_share);
237 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 		INIT_LIST_HEAD(&mnt->mnt_slave);
239 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
244 	}
245 	return mnt;
246 
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 	kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 	mnt_free_id(mnt);
253 out_free_cache:
254 	kmem_cache_free(mnt_cache, mnt);
255 	return NULL;
256 }
257 
258 /*
259  * Most r/o checks on a fs are for operations that take
260  * discrete amounts of time, like a write() or unlink().
261  * We must keep track of when those operations start
262  * (for permission checks) and when they end, so that
263  * we can determine when writes are able to occur to
264  * a filesystem.
265  */
266 /*
267  * __mnt_is_readonly: check whether a mount is read-only
268  * @mnt: the mount to check for its write status
269  *
270  * This shouldn't be used directly ouside of the VFS.
271  * It does not guarantee that the filesystem will stay
272  * r/w, just that it is right *now*.  This can not and
273  * should not be used in place of IS_RDONLY(inode).
274  * mnt_want/drop_write() will _keep_ the filesystem
275  * r/w.
276  */
277 int __mnt_is_readonly(struct vfsmount *mnt)
278 {
279 	if (mnt->mnt_flags & MNT_READONLY)
280 		return 1;
281 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 		return 1;
283 	return 0;
284 }
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
286 
287 static inline void mnt_inc_writers(struct mount *mnt)
288 {
289 #ifdef CONFIG_SMP
290 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 	mnt->mnt_writers++;
293 #endif
294 }
295 
296 static inline void mnt_dec_writers(struct mount *mnt)
297 {
298 #ifdef CONFIG_SMP
299 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 	mnt->mnt_writers--;
302 #endif
303 }
304 
305 static unsigned int mnt_get_writers(struct mount *mnt)
306 {
307 #ifdef CONFIG_SMP
308 	unsigned int count = 0;
309 	int cpu;
310 
311 	for_each_possible_cpu(cpu) {
312 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
313 	}
314 
315 	return count;
316 #else
317 	return mnt->mnt_writers;
318 #endif
319 }
320 
321 static int mnt_is_readonly(struct vfsmount *mnt)
322 {
323 	if (mnt->mnt_sb->s_readonly_remount)
324 		return 1;
325 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 	smp_rmb();
327 	return __mnt_is_readonly(mnt);
328 }
329 
330 /*
331  * Most r/o & frozen checks on a fs are for operations that take discrete
332  * amounts of time, like a write() or unlink().  We must keep track of when
333  * those operations start (for permission checks) and when they end, so that we
334  * can determine when writes are able to occur to a filesystem.
335  */
336 /**
337  * __mnt_want_write - get write access to a mount without freeze protection
338  * @m: the mount on which to take a write
339  *
340  * This tells the low-level filesystem that a write is about to be performed to
341  * it, and makes sure that writes are allowed (mnt it read-write) before
342  * returning success. This operation does not protect against filesystem being
343  * frozen. When the write operation is finished, __mnt_drop_write() must be
344  * called. This is effectively a refcount.
345  */
346 int __mnt_want_write(struct vfsmount *m)
347 {
348 	struct mount *mnt = real_mount(m);
349 	int ret = 0;
350 
351 	preempt_disable();
352 	mnt_inc_writers(mnt);
353 	/*
354 	 * The store to mnt_inc_writers must be visible before we pass
355 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 	 * incremented count after it has set MNT_WRITE_HOLD.
357 	 */
358 	smp_mb();
359 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 		cpu_relax();
361 	/*
362 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 	 * be set to match its requirements. So we must not load that until
364 	 * MNT_WRITE_HOLD is cleared.
365 	 */
366 	smp_rmb();
367 	if (mnt_is_readonly(m)) {
368 		mnt_dec_writers(mnt);
369 		ret = -EROFS;
370 	}
371 	preempt_enable();
372 
373 	return ret;
374 }
375 
376 /**
377  * mnt_want_write - get write access to a mount
378  * @m: the mount on which to take a write
379  *
380  * This tells the low-level filesystem that a write is about to be performed to
381  * it, and makes sure that writes are allowed (mount is read-write, filesystem
382  * is not frozen) before returning success.  When the write operation is
383  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
384  */
385 int mnt_want_write(struct vfsmount *m)
386 {
387 	int ret;
388 
389 	sb_start_write(m->mnt_sb);
390 	ret = __mnt_want_write(m);
391 	if (ret)
392 		sb_end_write(m->mnt_sb);
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(mnt_want_write);
396 
397 /**
398  * mnt_clone_write - get write access to a mount
399  * @mnt: the mount on which to take a write
400  *
401  * This is effectively like mnt_want_write, except
402  * it must only be used to take an extra write reference
403  * on a mountpoint that we already know has a write reference
404  * on it. This allows some optimisation.
405  *
406  * After finished, mnt_drop_write must be called as usual to
407  * drop the reference.
408  */
409 int mnt_clone_write(struct vfsmount *mnt)
410 {
411 	/* superblock may be r/o */
412 	if (__mnt_is_readonly(mnt))
413 		return -EROFS;
414 	preempt_disable();
415 	mnt_inc_writers(real_mount(mnt));
416 	preempt_enable();
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
420 
421 /**
422  * __mnt_want_write_file - get write access to a file's mount
423  * @file: the file who's mount on which to take a write
424  *
425  * This is like __mnt_want_write, but it takes a file and can
426  * do some optimisations if the file is open for write already
427  */
428 int __mnt_want_write_file(struct file *file)
429 {
430 	if (!(file->f_mode & FMODE_WRITER))
431 		return __mnt_want_write(file->f_path.mnt);
432 	else
433 		return mnt_clone_write(file->f_path.mnt);
434 }
435 
436 /**
437  * mnt_want_write_file - get write access to a file's mount
438  * @file: the file who's mount on which to take a write
439  *
440  * This is like mnt_want_write, but it takes a file and can
441  * do some optimisations if the file is open for write already
442  */
443 int mnt_want_write_file(struct file *file)
444 {
445 	int ret;
446 
447 	sb_start_write(file->f_path.mnt->mnt_sb);
448 	ret = __mnt_want_write_file(file);
449 	if (ret)
450 		sb_end_write(file->f_path.mnt->mnt_sb);
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
454 
455 /**
456  * __mnt_drop_write - give up write access to a mount
457  * @mnt: the mount on which to give up write access
458  *
459  * Tells the low-level filesystem that we are done
460  * performing writes to it.  Must be matched with
461  * __mnt_want_write() call above.
462  */
463 void __mnt_drop_write(struct vfsmount *mnt)
464 {
465 	preempt_disable();
466 	mnt_dec_writers(real_mount(mnt));
467 	preempt_enable();
468 }
469 
470 /**
471  * mnt_drop_write - give up write access to a mount
472  * @mnt: the mount on which to give up write access
473  *
474  * Tells the low-level filesystem that we are done performing writes to it and
475  * also allows filesystem to be frozen again.  Must be matched with
476  * mnt_want_write() call above.
477  */
478 void mnt_drop_write(struct vfsmount *mnt)
479 {
480 	__mnt_drop_write(mnt);
481 	sb_end_write(mnt->mnt_sb);
482 }
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
484 
485 void __mnt_drop_write_file(struct file *file)
486 {
487 	__mnt_drop_write(file->f_path.mnt);
488 }
489 
490 void mnt_drop_write_file(struct file *file)
491 {
492 	mnt_drop_write(file->f_path.mnt);
493 }
494 EXPORT_SYMBOL(mnt_drop_write_file);
495 
496 static int mnt_make_readonly(struct mount *mnt)
497 {
498 	int ret = 0;
499 
500 	lock_mount_hash();
501 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
502 	/*
503 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 	 * should be visible before we do.
505 	 */
506 	smp_mb();
507 
508 	/*
509 	 * With writers on hold, if this value is zero, then there are
510 	 * definitely no active writers (although held writers may subsequently
511 	 * increment the count, they'll have to wait, and decrement it after
512 	 * seeing MNT_READONLY).
513 	 *
514 	 * It is OK to have counter incremented on one CPU and decremented on
515 	 * another: the sum will add up correctly. The danger would be when we
516 	 * sum up each counter, if we read a counter before it is incremented,
517 	 * but then read another CPU's count which it has been subsequently
518 	 * decremented from -- we would see more decrements than we should.
519 	 * MNT_WRITE_HOLD protects against this scenario, because
520 	 * mnt_want_write first increments count, then smp_mb, then spins on
521 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 	 * we're counting up here.
523 	 */
524 	if (mnt_get_writers(mnt) > 0)
525 		ret = -EBUSY;
526 	else
527 		mnt->mnt.mnt_flags |= MNT_READONLY;
528 	/*
529 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 	 * that become unheld will see MNT_READONLY.
531 	 */
532 	smp_wmb();
533 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 	unlock_mount_hash();
535 	return ret;
536 }
537 
538 static void __mnt_unmake_readonly(struct mount *mnt)
539 {
540 	lock_mount_hash();
541 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 	unlock_mount_hash();
543 }
544 
545 int sb_prepare_remount_readonly(struct super_block *sb)
546 {
547 	struct mount *mnt;
548 	int err = 0;
549 
550 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
551 	if (atomic_long_read(&sb->s_remove_count))
552 		return -EBUSY;
553 
554 	lock_mount_hash();
555 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 			smp_mb();
559 			if (mnt_get_writers(mnt) > 0) {
560 				err = -EBUSY;
561 				break;
562 			}
563 		}
564 	}
565 	if (!err && atomic_long_read(&sb->s_remove_count))
566 		err = -EBUSY;
567 
568 	if (!err) {
569 		sb->s_readonly_remount = 1;
570 		smp_wmb();
571 	}
572 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
575 	}
576 	unlock_mount_hash();
577 
578 	return err;
579 }
580 
581 static void free_vfsmnt(struct mount *mnt)
582 {
583 	kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 	free_percpu(mnt->mnt_pcp);
586 #endif
587 	kmem_cache_free(mnt_cache, mnt);
588 }
589 
590 static void delayed_free_vfsmnt(struct rcu_head *head)
591 {
592 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
593 }
594 
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 	struct mount *mnt;
599 	if (read_seqretry(&mount_lock, seq))
600 		return 1;
601 	if (bastard == NULL)
602 		return 0;
603 	mnt = real_mount(bastard);
604 	mnt_add_count(mnt, 1);
605 	if (likely(!read_seqretry(&mount_lock, seq)))
606 		return 0;
607 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 		mnt_add_count(mnt, -1);
609 		return 1;
610 	}
611 	return -1;
612 }
613 
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
616 {
617 	int res = __legitimize_mnt(bastard, seq);
618 	if (likely(!res))
619 		return true;
620 	if (unlikely(res < 0)) {
621 		rcu_read_unlock();
622 		mntput(bastard);
623 		rcu_read_lock();
624 	}
625 	return false;
626 }
627 
628 /*
629  * find the first mount at @dentry on vfsmount @mnt.
630  * call under rcu_read_lock()
631  */
632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
633 {
634 	struct hlist_head *head = m_hash(mnt, dentry);
635 	struct mount *p;
636 
637 	hlist_for_each_entry_rcu(p, head, mnt_hash)
638 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
639 			return p;
640 	return NULL;
641 }
642 
643 /*
644  * find the last mount at @dentry on vfsmount @mnt.
645  * mount_lock must be held.
646  */
647 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 	struct mount *p, *res = NULL;
650 	p = __lookup_mnt(mnt, dentry);
651 	if (!p)
652 		goto out;
653 	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
654 		res = p;
655 	hlist_for_each_entry_continue(p, mnt_hash) {
656 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
657 			break;
658 		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
659 			res = p;
660 	}
661 out:
662 	return res;
663 }
664 
665 /*
666  * lookup_mnt - Return the first child mount mounted at path
667  *
668  * "First" means first mounted chronologically.  If you create the
669  * following mounts:
670  *
671  * mount /dev/sda1 /mnt
672  * mount /dev/sda2 /mnt
673  * mount /dev/sda3 /mnt
674  *
675  * Then lookup_mnt() on the base /mnt dentry in the root mount will
676  * return successively the root dentry and vfsmount of /dev/sda1, then
677  * /dev/sda2, then /dev/sda3, then NULL.
678  *
679  * lookup_mnt takes a reference to the found vfsmount.
680  */
681 struct vfsmount *lookup_mnt(const struct path *path)
682 {
683 	struct mount *child_mnt;
684 	struct vfsmount *m;
685 	unsigned seq;
686 
687 	rcu_read_lock();
688 	do {
689 		seq = read_seqbegin(&mount_lock);
690 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
691 		m = child_mnt ? &child_mnt->mnt : NULL;
692 	} while (!legitimize_mnt(m, seq));
693 	rcu_read_unlock();
694 	return m;
695 }
696 
697 /*
698  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
699  *                         current mount namespace.
700  *
701  * The common case is dentries are not mountpoints at all and that
702  * test is handled inline.  For the slow case when we are actually
703  * dealing with a mountpoint of some kind, walk through all of the
704  * mounts in the current mount namespace and test to see if the dentry
705  * is a mountpoint.
706  *
707  * The mount_hashtable is not usable in the context because we
708  * need to identify all mounts that may be in the current mount
709  * namespace not just a mount that happens to have some specified
710  * parent mount.
711  */
712 bool __is_local_mountpoint(struct dentry *dentry)
713 {
714 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
715 	struct mount *mnt;
716 	bool is_covered = false;
717 
718 	if (!d_mountpoint(dentry))
719 		goto out;
720 
721 	down_read(&namespace_sem);
722 	list_for_each_entry(mnt, &ns->list, mnt_list) {
723 		is_covered = (mnt->mnt_mountpoint == dentry);
724 		if (is_covered)
725 			break;
726 	}
727 	up_read(&namespace_sem);
728 out:
729 	return is_covered;
730 }
731 
732 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
733 {
734 	struct hlist_head *chain = mp_hash(dentry);
735 	struct mountpoint *mp;
736 
737 	hlist_for_each_entry(mp, chain, m_hash) {
738 		if (mp->m_dentry == dentry) {
739 			/* might be worth a WARN_ON() */
740 			if (d_unlinked(dentry))
741 				return ERR_PTR(-ENOENT);
742 			mp->m_count++;
743 			return mp;
744 		}
745 	}
746 	return NULL;
747 }
748 
749 static struct mountpoint *new_mountpoint(struct dentry *dentry)
750 {
751 	struct hlist_head *chain = mp_hash(dentry);
752 	struct mountpoint *mp;
753 	int ret;
754 
755 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
756 	if (!mp)
757 		return ERR_PTR(-ENOMEM);
758 
759 	ret = d_set_mounted(dentry);
760 	if (ret) {
761 		kfree(mp);
762 		return ERR_PTR(ret);
763 	}
764 
765 	mp->m_dentry = dentry;
766 	mp->m_count = 1;
767 	hlist_add_head(&mp->m_hash, chain);
768 	INIT_HLIST_HEAD(&mp->m_list);
769 	return mp;
770 }
771 
772 static void put_mountpoint(struct mountpoint *mp)
773 {
774 	if (!--mp->m_count) {
775 		struct dentry *dentry = mp->m_dentry;
776 		BUG_ON(!hlist_empty(&mp->m_list));
777 		spin_lock(&dentry->d_lock);
778 		dentry->d_flags &= ~DCACHE_MOUNTED;
779 		spin_unlock(&dentry->d_lock);
780 		hlist_del(&mp->m_hash);
781 		kfree(mp);
782 	}
783 }
784 
785 static inline int check_mnt(struct mount *mnt)
786 {
787 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
788 }
789 
790 /*
791  * vfsmount lock must be held for write
792  */
793 static void touch_mnt_namespace(struct mnt_namespace *ns)
794 {
795 	if (ns) {
796 		ns->event = ++event;
797 		wake_up_interruptible(&ns->poll);
798 	}
799 }
800 
801 /*
802  * vfsmount lock must be held for write
803  */
804 static void __touch_mnt_namespace(struct mnt_namespace *ns)
805 {
806 	if (ns && ns->event != event) {
807 		ns->event = event;
808 		wake_up_interruptible(&ns->poll);
809 	}
810 }
811 
812 /*
813  * vfsmount lock must be held for write
814  */
815 static void unhash_mnt(struct mount *mnt)
816 {
817 	mnt->mnt_parent = mnt;
818 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
819 	list_del_init(&mnt->mnt_child);
820 	hlist_del_init_rcu(&mnt->mnt_hash);
821 	hlist_del_init(&mnt->mnt_mp_list);
822 	put_mountpoint(mnt->mnt_mp);
823 	mnt->mnt_mp = NULL;
824 }
825 
826 /*
827  * vfsmount lock must be held for write
828  */
829 static void detach_mnt(struct mount *mnt, struct path *old_path)
830 {
831 	old_path->dentry = mnt->mnt_mountpoint;
832 	old_path->mnt = &mnt->mnt_parent->mnt;
833 	unhash_mnt(mnt);
834 }
835 
836 /*
837  * vfsmount lock must be held for write
838  */
839 static void umount_mnt(struct mount *mnt)
840 {
841 	/* old mountpoint will be dropped when we can do that */
842 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
843 	unhash_mnt(mnt);
844 }
845 
846 /*
847  * vfsmount lock must be held for write
848  */
849 void mnt_set_mountpoint(struct mount *mnt,
850 			struct mountpoint *mp,
851 			struct mount *child_mnt)
852 {
853 	mp->m_count++;
854 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
855 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
856 	child_mnt->mnt_parent = mnt;
857 	child_mnt->mnt_mp = mp;
858 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
859 }
860 
861 /*
862  * vfsmount lock must be held for write
863  */
864 static void attach_mnt(struct mount *mnt,
865 			struct mount *parent,
866 			struct mountpoint *mp)
867 {
868 	mnt_set_mountpoint(parent, mp, mnt);
869 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
870 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 }
872 
873 static void attach_shadowed(struct mount *mnt,
874 			struct mount *parent,
875 			struct mount *shadows)
876 {
877 	if (shadows) {
878 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
879 		list_add(&mnt->mnt_child, &shadows->mnt_child);
880 	} else {
881 		hlist_add_head_rcu(&mnt->mnt_hash,
882 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
883 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
884 	}
885 }
886 
887 /*
888  * vfsmount lock must be held for write
889  */
890 static void commit_tree(struct mount *mnt, struct mount *shadows)
891 {
892 	struct mount *parent = mnt->mnt_parent;
893 	struct mount *m;
894 	LIST_HEAD(head);
895 	struct mnt_namespace *n = parent->mnt_ns;
896 
897 	BUG_ON(parent == mnt);
898 
899 	list_add_tail(&head, &mnt->mnt_list);
900 	list_for_each_entry(m, &head, mnt_list)
901 		m->mnt_ns = n;
902 
903 	list_splice(&head, n->list.prev);
904 
905 	n->mounts += n->pending_mounts;
906 	n->pending_mounts = 0;
907 
908 	attach_shadowed(mnt, parent, shadows);
909 	touch_mnt_namespace(n);
910 }
911 
912 static struct mount *next_mnt(struct mount *p, struct mount *root)
913 {
914 	struct list_head *next = p->mnt_mounts.next;
915 	if (next == &p->mnt_mounts) {
916 		while (1) {
917 			if (p == root)
918 				return NULL;
919 			next = p->mnt_child.next;
920 			if (next != &p->mnt_parent->mnt_mounts)
921 				break;
922 			p = p->mnt_parent;
923 		}
924 	}
925 	return list_entry(next, struct mount, mnt_child);
926 }
927 
928 static struct mount *skip_mnt_tree(struct mount *p)
929 {
930 	struct list_head *prev = p->mnt_mounts.prev;
931 	while (prev != &p->mnt_mounts) {
932 		p = list_entry(prev, struct mount, mnt_child);
933 		prev = p->mnt_mounts.prev;
934 	}
935 	return p;
936 }
937 
938 struct vfsmount *
939 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
940 {
941 	struct mount *mnt;
942 	struct dentry *root;
943 
944 	if (!type)
945 		return ERR_PTR(-ENODEV);
946 
947 	mnt = alloc_vfsmnt(name);
948 	if (!mnt)
949 		return ERR_PTR(-ENOMEM);
950 
951 	if (flags & MS_KERNMOUNT)
952 		mnt->mnt.mnt_flags = MNT_INTERNAL;
953 
954 	root = mount_fs(type, flags, name, data);
955 	if (IS_ERR(root)) {
956 		mnt_free_id(mnt);
957 		free_vfsmnt(mnt);
958 		return ERR_CAST(root);
959 	}
960 
961 	mnt->mnt.mnt_root = root;
962 	mnt->mnt.mnt_sb = root->d_sb;
963 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
964 	mnt->mnt_parent = mnt;
965 	lock_mount_hash();
966 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
967 	unlock_mount_hash();
968 	return &mnt->mnt;
969 }
970 EXPORT_SYMBOL_GPL(vfs_kern_mount);
971 
972 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
973 					int flag)
974 {
975 	struct super_block *sb = old->mnt.mnt_sb;
976 	struct mount *mnt;
977 	int err;
978 
979 	mnt = alloc_vfsmnt(old->mnt_devname);
980 	if (!mnt)
981 		return ERR_PTR(-ENOMEM);
982 
983 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
984 		mnt->mnt_group_id = 0; /* not a peer of original */
985 	else
986 		mnt->mnt_group_id = old->mnt_group_id;
987 
988 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
989 		err = mnt_alloc_group_id(mnt);
990 		if (err)
991 			goto out_free;
992 	}
993 
994 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
995 	/* Don't allow unprivileged users to change mount flags */
996 	if (flag & CL_UNPRIVILEGED) {
997 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
998 
999 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1000 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1001 
1002 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1003 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1004 
1005 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1006 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1007 
1008 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1009 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1010 	}
1011 
1012 	/* Don't allow unprivileged users to reveal what is under a mount */
1013 	if ((flag & CL_UNPRIVILEGED) &&
1014 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1015 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1016 
1017 	atomic_inc(&sb->s_active);
1018 	mnt->mnt.mnt_sb = sb;
1019 	mnt->mnt.mnt_root = dget(root);
1020 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1021 	mnt->mnt_parent = mnt;
1022 	lock_mount_hash();
1023 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1024 	unlock_mount_hash();
1025 
1026 	if ((flag & CL_SLAVE) ||
1027 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1028 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1029 		mnt->mnt_master = old;
1030 		CLEAR_MNT_SHARED(mnt);
1031 	} else if (!(flag & CL_PRIVATE)) {
1032 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1033 			list_add(&mnt->mnt_share, &old->mnt_share);
1034 		if (IS_MNT_SLAVE(old))
1035 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1036 		mnt->mnt_master = old->mnt_master;
1037 	}
1038 	if (flag & CL_MAKE_SHARED)
1039 		set_mnt_shared(mnt);
1040 
1041 	/* stick the duplicate mount on the same expiry list
1042 	 * as the original if that was on one */
1043 	if (flag & CL_EXPIRE) {
1044 		if (!list_empty(&old->mnt_expire))
1045 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1046 	}
1047 
1048 	return mnt;
1049 
1050  out_free:
1051 	mnt_free_id(mnt);
1052 	free_vfsmnt(mnt);
1053 	return ERR_PTR(err);
1054 }
1055 
1056 static void cleanup_mnt(struct mount *mnt)
1057 {
1058 	/*
1059 	 * This probably indicates that somebody messed
1060 	 * up a mnt_want/drop_write() pair.  If this
1061 	 * happens, the filesystem was probably unable
1062 	 * to make r/w->r/o transitions.
1063 	 */
1064 	/*
1065 	 * The locking used to deal with mnt_count decrement provides barriers,
1066 	 * so mnt_get_writers() below is safe.
1067 	 */
1068 	WARN_ON(mnt_get_writers(mnt));
1069 	if (unlikely(mnt->mnt_pins.first))
1070 		mnt_pin_kill(mnt);
1071 	fsnotify_vfsmount_delete(&mnt->mnt);
1072 	dput(mnt->mnt.mnt_root);
1073 	deactivate_super(mnt->mnt.mnt_sb);
1074 	mnt_free_id(mnt);
1075 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1076 }
1077 
1078 static void __cleanup_mnt(struct rcu_head *head)
1079 {
1080 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1081 }
1082 
1083 static LLIST_HEAD(delayed_mntput_list);
1084 static void delayed_mntput(struct work_struct *unused)
1085 {
1086 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1087 	struct llist_node *next;
1088 
1089 	for (; node; node = next) {
1090 		next = llist_next(node);
1091 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1092 	}
1093 }
1094 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1095 
1096 static void mntput_no_expire(struct mount *mnt)
1097 {
1098 	rcu_read_lock();
1099 	mnt_add_count(mnt, -1);
1100 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1101 		rcu_read_unlock();
1102 		return;
1103 	}
1104 	lock_mount_hash();
1105 	if (mnt_get_count(mnt)) {
1106 		rcu_read_unlock();
1107 		unlock_mount_hash();
1108 		return;
1109 	}
1110 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1111 		rcu_read_unlock();
1112 		unlock_mount_hash();
1113 		return;
1114 	}
1115 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1116 	rcu_read_unlock();
1117 
1118 	list_del(&mnt->mnt_instance);
1119 
1120 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1121 		struct mount *p, *tmp;
1122 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1123 			umount_mnt(p);
1124 		}
1125 	}
1126 	unlock_mount_hash();
1127 
1128 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1129 		struct task_struct *task = current;
1130 		if (likely(!(task->flags & PF_KTHREAD))) {
1131 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1132 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1133 				return;
1134 		}
1135 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1136 			schedule_delayed_work(&delayed_mntput_work, 1);
1137 		return;
1138 	}
1139 	cleanup_mnt(mnt);
1140 }
1141 
1142 void mntput(struct vfsmount *mnt)
1143 {
1144 	if (mnt) {
1145 		struct mount *m = real_mount(mnt);
1146 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1147 		if (unlikely(m->mnt_expiry_mark))
1148 			m->mnt_expiry_mark = 0;
1149 		mntput_no_expire(m);
1150 	}
1151 }
1152 EXPORT_SYMBOL(mntput);
1153 
1154 struct vfsmount *mntget(struct vfsmount *mnt)
1155 {
1156 	if (mnt)
1157 		mnt_add_count(real_mount(mnt), 1);
1158 	return mnt;
1159 }
1160 EXPORT_SYMBOL(mntget);
1161 
1162 /* path_is_mountpoint() - Check if path is a mount in the current
1163  *                          namespace.
1164  *
1165  *  d_mountpoint() can only be used reliably to establish if a dentry is
1166  *  not mounted in any namespace and that common case is handled inline.
1167  *  d_mountpoint() isn't aware of the possibility there may be multiple
1168  *  mounts using a given dentry in a different namespace. This function
1169  *  checks if the passed in path is a mountpoint rather than the dentry
1170  *  alone.
1171  */
1172 bool path_is_mountpoint(const struct path *path)
1173 {
1174 	unsigned seq;
1175 	bool res;
1176 
1177 	if (!d_mountpoint(path->dentry))
1178 		return false;
1179 
1180 	rcu_read_lock();
1181 	do {
1182 		seq = read_seqbegin(&mount_lock);
1183 		res = __path_is_mountpoint(path);
1184 	} while (read_seqretry(&mount_lock, seq));
1185 	rcu_read_unlock();
1186 
1187 	return res;
1188 }
1189 EXPORT_SYMBOL(path_is_mountpoint);
1190 
1191 struct vfsmount *mnt_clone_internal(const struct path *path)
1192 {
1193 	struct mount *p;
1194 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1195 	if (IS_ERR(p))
1196 		return ERR_CAST(p);
1197 	p->mnt.mnt_flags |= MNT_INTERNAL;
1198 	return &p->mnt;
1199 }
1200 
1201 static inline void mangle(struct seq_file *m, const char *s)
1202 {
1203 	seq_escape(m, s, " \t\n\\");
1204 }
1205 
1206 /*
1207  * Simple .show_options callback for filesystems which don't want to
1208  * implement more complex mount option showing.
1209  *
1210  * See also save_mount_options().
1211  */
1212 int generic_show_options(struct seq_file *m, struct dentry *root)
1213 {
1214 	const char *options;
1215 
1216 	rcu_read_lock();
1217 	options = rcu_dereference(root->d_sb->s_options);
1218 
1219 	if (options != NULL && options[0]) {
1220 		seq_putc(m, ',');
1221 		mangle(m, options);
1222 	}
1223 	rcu_read_unlock();
1224 
1225 	return 0;
1226 }
1227 EXPORT_SYMBOL(generic_show_options);
1228 
1229 /*
1230  * If filesystem uses generic_show_options(), this function should be
1231  * called from the fill_super() callback.
1232  *
1233  * The .remount_fs callback usually needs to be handled in a special
1234  * way, to make sure, that previous options are not overwritten if the
1235  * remount fails.
1236  *
1237  * Also note, that if the filesystem's .remount_fs function doesn't
1238  * reset all options to their default value, but changes only newly
1239  * given options, then the displayed options will not reflect reality
1240  * any more.
1241  */
1242 void save_mount_options(struct super_block *sb, char *options)
1243 {
1244 	BUG_ON(sb->s_options);
1245 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1246 }
1247 EXPORT_SYMBOL(save_mount_options);
1248 
1249 void replace_mount_options(struct super_block *sb, char *options)
1250 {
1251 	char *old = sb->s_options;
1252 	rcu_assign_pointer(sb->s_options, options);
1253 	if (old) {
1254 		synchronize_rcu();
1255 		kfree(old);
1256 	}
1257 }
1258 EXPORT_SYMBOL(replace_mount_options);
1259 
1260 #ifdef CONFIG_PROC_FS
1261 /* iterator; we want it to have access to namespace_sem, thus here... */
1262 static void *m_start(struct seq_file *m, loff_t *pos)
1263 {
1264 	struct proc_mounts *p = m->private;
1265 
1266 	down_read(&namespace_sem);
1267 	if (p->cached_event == p->ns->event) {
1268 		void *v = p->cached_mount;
1269 		if (*pos == p->cached_index)
1270 			return v;
1271 		if (*pos == p->cached_index + 1) {
1272 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1273 			return p->cached_mount = v;
1274 		}
1275 	}
1276 
1277 	p->cached_event = p->ns->event;
1278 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1279 	p->cached_index = *pos;
1280 	return p->cached_mount;
1281 }
1282 
1283 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1284 {
1285 	struct proc_mounts *p = m->private;
1286 
1287 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1288 	p->cached_index = *pos;
1289 	return p->cached_mount;
1290 }
1291 
1292 static void m_stop(struct seq_file *m, void *v)
1293 {
1294 	up_read(&namespace_sem);
1295 }
1296 
1297 static int m_show(struct seq_file *m, void *v)
1298 {
1299 	struct proc_mounts *p = m->private;
1300 	struct mount *r = list_entry(v, struct mount, mnt_list);
1301 	return p->show(m, &r->mnt);
1302 }
1303 
1304 const struct seq_operations mounts_op = {
1305 	.start	= m_start,
1306 	.next	= m_next,
1307 	.stop	= m_stop,
1308 	.show	= m_show,
1309 };
1310 #endif  /* CONFIG_PROC_FS */
1311 
1312 /**
1313  * may_umount_tree - check if a mount tree is busy
1314  * @mnt: root of mount tree
1315  *
1316  * This is called to check if a tree of mounts has any
1317  * open files, pwds, chroots or sub mounts that are
1318  * busy.
1319  */
1320 int may_umount_tree(struct vfsmount *m)
1321 {
1322 	struct mount *mnt = real_mount(m);
1323 	int actual_refs = 0;
1324 	int minimum_refs = 0;
1325 	struct mount *p;
1326 	BUG_ON(!m);
1327 
1328 	/* write lock needed for mnt_get_count */
1329 	lock_mount_hash();
1330 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1331 		actual_refs += mnt_get_count(p);
1332 		minimum_refs += 2;
1333 	}
1334 	unlock_mount_hash();
1335 
1336 	if (actual_refs > minimum_refs)
1337 		return 0;
1338 
1339 	return 1;
1340 }
1341 
1342 EXPORT_SYMBOL(may_umount_tree);
1343 
1344 /**
1345  * may_umount - check if a mount point is busy
1346  * @mnt: root of mount
1347  *
1348  * This is called to check if a mount point has any
1349  * open files, pwds, chroots or sub mounts. If the
1350  * mount has sub mounts this will return busy
1351  * regardless of whether the sub mounts are busy.
1352  *
1353  * Doesn't take quota and stuff into account. IOW, in some cases it will
1354  * give false negatives. The main reason why it's here is that we need
1355  * a non-destructive way to look for easily umountable filesystems.
1356  */
1357 int may_umount(struct vfsmount *mnt)
1358 {
1359 	int ret = 1;
1360 	down_read(&namespace_sem);
1361 	lock_mount_hash();
1362 	if (propagate_mount_busy(real_mount(mnt), 2))
1363 		ret = 0;
1364 	unlock_mount_hash();
1365 	up_read(&namespace_sem);
1366 	return ret;
1367 }
1368 
1369 EXPORT_SYMBOL(may_umount);
1370 
1371 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1372 
1373 static void namespace_unlock(void)
1374 {
1375 	struct hlist_head head;
1376 
1377 	hlist_move_list(&unmounted, &head);
1378 
1379 	up_write(&namespace_sem);
1380 
1381 	if (likely(hlist_empty(&head)))
1382 		return;
1383 
1384 	synchronize_rcu();
1385 
1386 	group_pin_kill(&head);
1387 }
1388 
1389 static inline void namespace_lock(void)
1390 {
1391 	down_write(&namespace_sem);
1392 }
1393 
1394 enum umount_tree_flags {
1395 	UMOUNT_SYNC = 1,
1396 	UMOUNT_PROPAGATE = 2,
1397 	UMOUNT_CONNECTED = 4,
1398 };
1399 
1400 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1401 {
1402 	/* Leaving mounts connected is only valid for lazy umounts */
1403 	if (how & UMOUNT_SYNC)
1404 		return true;
1405 
1406 	/* A mount without a parent has nothing to be connected to */
1407 	if (!mnt_has_parent(mnt))
1408 		return true;
1409 
1410 	/* Because the reference counting rules change when mounts are
1411 	 * unmounted and connected, umounted mounts may not be
1412 	 * connected to mounted mounts.
1413 	 */
1414 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1415 		return true;
1416 
1417 	/* Has it been requested that the mount remain connected? */
1418 	if (how & UMOUNT_CONNECTED)
1419 		return false;
1420 
1421 	/* Is the mount locked such that it needs to remain connected? */
1422 	if (IS_MNT_LOCKED(mnt))
1423 		return false;
1424 
1425 	/* By default disconnect the mount */
1426 	return true;
1427 }
1428 
1429 /*
1430  * mount_lock must be held
1431  * namespace_sem must be held for write
1432  */
1433 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1434 {
1435 	LIST_HEAD(tmp_list);
1436 	struct mount *p;
1437 
1438 	if (how & UMOUNT_PROPAGATE)
1439 		propagate_mount_unlock(mnt);
1440 
1441 	/* Gather the mounts to umount */
1442 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1443 		p->mnt.mnt_flags |= MNT_UMOUNT;
1444 		list_move(&p->mnt_list, &tmp_list);
1445 	}
1446 
1447 	/* Hide the mounts from mnt_mounts */
1448 	list_for_each_entry(p, &tmp_list, mnt_list) {
1449 		list_del_init(&p->mnt_child);
1450 	}
1451 
1452 	/* Add propogated mounts to the tmp_list */
1453 	if (how & UMOUNT_PROPAGATE)
1454 		propagate_umount(&tmp_list);
1455 
1456 	while (!list_empty(&tmp_list)) {
1457 		struct mnt_namespace *ns;
1458 		bool disconnect;
1459 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1460 		list_del_init(&p->mnt_expire);
1461 		list_del_init(&p->mnt_list);
1462 		ns = p->mnt_ns;
1463 		if (ns) {
1464 			ns->mounts--;
1465 			__touch_mnt_namespace(ns);
1466 		}
1467 		p->mnt_ns = NULL;
1468 		if (how & UMOUNT_SYNC)
1469 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1470 
1471 		disconnect = disconnect_mount(p, how);
1472 
1473 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1474 				 disconnect ? &unmounted : NULL);
1475 		if (mnt_has_parent(p)) {
1476 			mnt_add_count(p->mnt_parent, -1);
1477 			if (!disconnect) {
1478 				/* Don't forget about p */
1479 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1480 			} else {
1481 				umount_mnt(p);
1482 			}
1483 		}
1484 		change_mnt_propagation(p, MS_PRIVATE);
1485 	}
1486 }
1487 
1488 static void shrink_submounts(struct mount *mnt);
1489 
1490 static int do_umount(struct mount *mnt, int flags)
1491 {
1492 	struct super_block *sb = mnt->mnt.mnt_sb;
1493 	int retval;
1494 
1495 	retval = security_sb_umount(&mnt->mnt, flags);
1496 	if (retval)
1497 		return retval;
1498 
1499 	/*
1500 	 * Allow userspace to request a mountpoint be expired rather than
1501 	 * unmounting unconditionally. Unmount only happens if:
1502 	 *  (1) the mark is already set (the mark is cleared by mntput())
1503 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1504 	 */
1505 	if (flags & MNT_EXPIRE) {
1506 		if (&mnt->mnt == current->fs->root.mnt ||
1507 		    flags & (MNT_FORCE | MNT_DETACH))
1508 			return -EINVAL;
1509 
1510 		/*
1511 		 * probably don't strictly need the lock here if we examined
1512 		 * all race cases, but it's a slowpath.
1513 		 */
1514 		lock_mount_hash();
1515 		if (mnt_get_count(mnt) != 2) {
1516 			unlock_mount_hash();
1517 			return -EBUSY;
1518 		}
1519 		unlock_mount_hash();
1520 
1521 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1522 			return -EAGAIN;
1523 	}
1524 
1525 	/*
1526 	 * If we may have to abort operations to get out of this
1527 	 * mount, and they will themselves hold resources we must
1528 	 * allow the fs to do things. In the Unix tradition of
1529 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1530 	 * might fail to complete on the first run through as other tasks
1531 	 * must return, and the like. Thats for the mount program to worry
1532 	 * about for the moment.
1533 	 */
1534 
1535 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1536 		sb->s_op->umount_begin(sb);
1537 	}
1538 
1539 	/*
1540 	 * No sense to grab the lock for this test, but test itself looks
1541 	 * somewhat bogus. Suggestions for better replacement?
1542 	 * Ho-hum... In principle, we might treat that as umount + switch
1543 	 * to rootfs. GC would eventually take care of the old vfsmount.
1544 	 * Actually it makes sense, especially if rootfs would contain a
1545 	 * /reboot - static binary that would close all descriptors and
1546 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1547 	 */
1548 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1549 		/*
1550 		 * Special case for "unmounting" root ...
1551 		 * we just try to remount it readonly.
1552 		 */
1553 		if (!capable(CAP_SYS_ADMIN))
1554 			return -EPERM;
1555 		down_write(&sb->s_umount);
1556 		if (!(sb->s_flags & MS_RDONLY))
1557 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1558 		up_write(&sb->s_umount);
1559 		return retval;
1560 	}
1561 
1562 	namespace_lock();
1563 	lock_mount_hash();
1564 	event++;
1565 
1566 	if (flags & MNT_DETACH) {
1567 		if (!list_empty(&mnt->mnt_list))
1568 			umount_tree(mnt, UMOUNT_PROPAGATE);
1569 		retval = 0;
1570 	} else {
1571 		shrink_submounts(mnt);
1572 		retval = -EBUSY;
1573 		if (!propagate_mount_busy(mnt, 2)) {
1574 			if (!list_empty(&mnt->mnt_list))
1575 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1576 			retval = 0;
1577 		}
1578 	}
1579 	unlock_mount_hash();
1580 	namespace_unlock();
1581 	return retval;
1582 }
1583 
1584 /*
1585  * __detach_mounts - lazily unmount all mounts on the specified dentry
1586  *
1587  * During unlink, rmdir, and d_drop it is possible to loose the path
1588  * to an existing mountpoint, and wind up leaking the mount.
1589  * detach_mounts allows lazily unmounting those mounts instead of
1590  * leaking them.
1591  *
1592  * The caller may hold dentry->d_inode->i_mutex.
1593  */
1594 void __detach_mounts(struct dentry *dentry)
1595 {
1596 	struct mountpoint *mp;
1597 	struct mount *mnt;
1598 
1599 	namespace_lock();
1600 	mp = lookup_mountpoint(dentry);
1601 	if (IS_ERR_OR_NULL(mp))
1602 		goto out_unlock;
1603 
1604 	lock_mount_hash();
1605 	event++;
1606 	while (!hlist_empty(&mp->m_list)) {
1607 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1608 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1609 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1610 			umount_mnt(mnt);
1611 		}
1612 		else umount_tree(mnt, UMOUNT_CONNECTED);
1613 	}
1614 	unlock_mount_hash();
1615 	put_mountpoint(mp);
1616 out_unlock:
1617 	namespace_unlock();
1618 }
1619 
1620 /*
1621  * Is the caller allowed to modify his namespace?
1622  */
1623 static inline bool may_mount(void)
1624 {
1625 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1626 }
1627 
1628 static inline bool may_mandlock(void)
1629 {
1630 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1631 	return false;
1632 #endif
1633 	return capable(CAP_SYS_ADMIN);
1634 }
1635 
1636 /*
1637  * Now umount can handle mount points as well as block devices.
1638  * This is important for filesystems which use unnamed block devices.
1639  *
1640  * We now support a flag for forced unmount like the other 'big iron'
1641  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1642  */
1643 
1644 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1645 {
1646 	struct path path;
1647 	struct mount *mnt;
1648 	int retval;
1649 	int lookup_flags = 0;
1650 
1651 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1652 		return -EINVAL;
1653 
1654 	if (!may_mount())
1655 		return -EPERM;
1656 
1657 	if (!(flags & UMOUNT_NOFOLLOW))
1658 		lookup_flags |= LOOKUP_FOLLOW;
1659 
1660 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1661 	if (retval)
1662 		goto out;
1663 	mnt = real_mount(path.mnt);
1664 	retval = -EINVAL;
1665 	if (path.dentry != path.mnt->mnt_root)
1666 		goto dput_and_out;
1667 	if (!check_mnt(mnt))
1668 		goto dput_and_out;
1669 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1670 		goto dput_and_out;
1671 	retval = -EPERM;
1672 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1673 		goto dput_and_out;
1674 
1675 	retval = do_umount(mnt, flags);
1676 dput_and_out:
1677 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1678 	dput(path.dentry);
1679 	mntput_no_expire(mnt);
1680 out:
1681 	return retval;
1682 }
1683 
1684 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1685 
1686 /*
1687  *	The 2.0 compatible umount. No flags.
1688  */
1689 SYSCALL_DEFINE1(oldumount, char __user *, name)
1690 {
1691 	return sys_umount(name, 0);
1692 }
1693 
1694 #endif
1695 
1696 static bool is_mnt_ns_file(struct dentry *dentry)
1697 {
1698 	/* Is this a proxy for a mount namespace? */
1699 	return dentry->d_op == &ns_dentry_operations &&
1700 	       dentry->d_fsdata == &mntns_operations;
1701 }
1702 
1703 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1704 {
1705 	return container_of(ns, struct mnt_namespace, ns);
1706 }
1707 
1708 static bool mnt_ns_loop(struct dentry *dentry)
1709 {
1710 	/* Could bind mounting the mount namespace inode cause a
1711 	 * mount namespace loop?
1712 	 */
1713 	struct mnt_namespace *mnt_ns;
1714 	if (!is_mnt_ns_file(dentry))
1715 		return false;
1716 
1717 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1718 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1719 }
1720 
1721 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1722 					int flag)
1723 {
1724 	struct mount *res, *p, *q, *r, *parent;
1725 
1726 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1727 		return ERR_PTR(-EINVAL);
1728 
1729 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1730 		return ERR_PTR(-EINVAL);
1731 
1732 	res = q = clone_mnt(mnt, dentry, flag);
1733 	if (IS_ERR(q))
1734 		return q;
1735 
1736 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1737 
1738 	p = mnt;
1739 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1740 		struct mount *s;
1741 		if (!is_subdir(r->mnt_mountpoint, dentry))
1742 			continue;
1743 
1744 		for (s = r; s; s = next_mnt(s, r)) {
1745 			struct mount *t = NULL;
1746 			if (!(flag & CL_COPY_UNBINDABLE) &&
1747 			    IS_MNT_UNBINDABLE(s)) {
1748 				s = skip_mnt_tree(s);
1749 				continue;
1750 			}
1751 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1752 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1753 				s = skip_mnt_tree(s);
1754 				continue;
1755 			}
1756 			while (p != s->mnt_parent) {
1757 				p = p->mnt_parent;
1758 				q = q->mnt_parent;
1759 			}
1760 			p = s;
1761 			parent = q;
1762 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1763 			if (IS_ERR(q))
1764 				goto out;
1765 			lock_mount_hash();
1766 			list_add_tail(&q->mnt_list, &res->mnt_list);
1767 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1768 			if (!list_empty(&parent->mnt_mounts)) {
1769 				t = list_last_entry(&parent->mnt_mounts,
1770 					struct mount, mnt_child);
1771 				if (t->mnt_mp != p->mnt_mp)
1772 					t = NULL;
1773 			}
1774 			attach_shadowed(q, parent, t);
1775 			unlock_mount_hash();
1776 		}
1777 	}
1778 	return res;
1779 out:
1780 	if (res) {
1781 		lock_mount_hash();
1782 		umount_tree(res, UMOUNT_SYNC);
1783 		unlock_mount_hash();
1784 	}
1785 	return q;
1786 }
1787 
1788 /* Caller should check returned pointer for errors */
1789 
1790 struct vfsmount *collect_mounts(const struct path *path)
1791 {
1792 	struct mount *tree;
1793 	namespace_lock();
1794 	if (!check_mnt(real_mount(path->mnt)))
1795 		tree = ERR_PTR(-EINVAL);
1796 	else
1797 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1798 				 CL_COPY_ALL | CL_PRIVATE);
1799 	namespace_unlock();
1800 	if (IS_ERR(tree))
1801 		return ERR_CAST(tree);
1802 	return &tree->mnt;
1803 }
1804 
1805 void drop_collected_mounts(struct vfsmount *mnt)
1806 {
1807 	namespace_lock();
1808 	lock_mount_hash();
1809 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1810 	unlock_mount_hash();
1811 	namespace_unlock();
1812 }
1813 
1814 /**
1815  * clone_private_mount - create a private clone of a path
1816  *
1817  * This creates a new vfsmount, which will be the clone of @path.  The new will
1818  * not be attached anywhere in the namespace and will be private (i.e. changes
1819  * to the originating mount won't be propagated into this).
1820  *
1821  * Release with mntput().
1822  */
1823 struct vfsmount *clone_private_mount(const struct path *path)
1824 {
1825 	struct mount *old_mnt = real_mount(path->mnt);
1826 	struct mount *new_mnt;
1827 
1828 	if (IS_MNT_UNBINDABLE(old_mnt))
1829 		return ERR_PTR(-EINVAL);
1830 
1831 	down_read(&namespace_sem);
1832 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1833 	up_read(&namespace_sem);
1834 	if (IS_ERR(new_mnt))
1835 		return ERR_CAST(new_mnt);
1836 
1837 	return &new_mnt->mnt;
1838 }
1839 EXPORT_SYMBOL_GPL(clone_private_mount);
1840 
1841 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1842 		   struct vfsmount *root)
1843 {
1844 	struct mount *mnt;
1845 	int res = f(root, arg);
1846 	if (res)
1847 		return res;
1848 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1849 		res = f(&mnt->mnt, arg);
1850 		if (res)
1851 			return res;
1852 	}
1853 	return 0;
1854 }
1855 
1856 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1857 {
1858 	struct mount *p;
1859 
1860 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1861 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1862 			mnt_release_group_id(p);
1863 	}
1864 }
1865 
1866 static int invent_group_ids(struct mount *mnt, bool recurse)
1867 {
1868 	struct mount *p;
1869 
1870 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1871 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1872 			int err = mnt_alloc_group_id(p);
1873 			if (err) {
1874 				cleanup_group_ids(mnt, p);
1875 				return err;
1876 			}
1877 		}
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1884 {
1885 	unsigned int max = READ_ONCE(sysctl_mount_max);
1886 	unsigned int mounts = 0, old, pending, sum;
1887 	struct mount *p;
1888 
1889 	for (p = mnt; p; p = next_mnt(p, mnt))
1890 		mounts++;
1891 
1892 	old = ns->mounts;
1893 	pending = ns->pending_mounts;
1894 	sum = old + pending;
1895 	if ((old > sum) ||
1896 	    (pending > sum) ||
1897 	    (max < sum) ||
1898 	    (mounts > (max - sum)))
1899 		return -ENOSPC;
1900 
1901 	ns->pending_mounts = pending + mounts;
1902 	return 0;
1903 }
1904 
1905 /*
1906  *  @source_mnt : mount tree to be attached
1907  *  @nd         : place the mount tree @source_mnt is attached
1908  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1909  *  		   store the parent mount and mountpoint dentry.
1910  *  		   (done when source_mnt is moved)
1911  *
1912  *  NOTE: in the table below explains the semantics when a source mount
1913  *  of a given type is attached to a destination mount of a given type.
1914  * ---------------------------------------------------------------------------
1915  * |         BIND MOUNT OPERATION                                            |
1916  * |**************************************************************************
1917  * | source-->| shared        |       private  |       slave    | unbindable |
1918  * | dest     |               |                |                |            |
1919  * |   |      |               |                |                |            |
1920  * |   v      |               |                |                |            |
1921  * |**************************************************************************
1922  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1923  * |          |               |                |                |            |
1924  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1925  * ***************************************************************************
1926  * A bind operation clones the source mount and mounts the clone on the
1927  * destination mount.
1928  *
1929  * (++)  the cloned mount is propagated to all the mounts in the propagation
1930  * 	 tree of the destination mount and the cloned mount is added to
1931  * 	 the peer group of the source mount.
1932  * (+)   the cloned mount is created under the destination mount and is marked
1933  *       as shared. The cloned mount is added to the peer group of the source
1934  *       mount.
1935  * (+++) the mount is propagated to all the mounts in the propagation tree
1936  *       of the destination mount and the cloned mount is made slave
1937  *       of the same master as that of the source mount. The cloned mount
1938  *       is marked as 'shared and slave'.
1939  * (*)   the cloned mount is made a slave of the same master as that of the
1940  * 	 source mount.
1941  *
1942  * ---------------------------------------------------------------------------
1943  * |         		MOVE MOUNT OPERATION                                 |
1944  * |**************************************************************************
1945  * | source-->| shared        |       private  |       slave    | unbindable |
1946  * | dest     |               |                |                |            |
1947  * |   |      |               |                |                |            |
1948  * |   v      |               |                |                |            |
1949  * |**************************************************************************
1950  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1951  * |          |               |                |                |            |
1952  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1953  * ***************************************************************************
1954  *
1955  * (+)  the mount is moved to the destination. And is then propagated to
1956  * 	all the mounts in the propagation tree of the destination mount.
1957  * (+*)  the mount is moved to the destination.
1958  * (+++)  the mount is moved to the destination and is then propagated to
1959  * 	all the mounts belonging to the destination mount's propagation tree.
1960  * 	the mount is marked as 'shared and slave'.
1961  * (*)	the mount continues to be a slave at the new location.
1962  *
1963  * if the source mount is a tree, the operations explained above is
1964  * applied to each mount in the tree.
1965  * Must be called without spinlocks held, since this function can sleep
1966  * in allocations.
1967  */
1968 static int attach_recursive_mnt(struct mount *source_mnt,
1969 			struct mount *dest_mnt,
1970 			struct mountpoint *dest_mp,
1971 			struct path *parent_path)
1972 {
1973 	HLIST_HEAD(tree_list);
1974 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1975 	struct mount *child, *p;
1976 	struct hlist_node *n;
1977 	int err;
1978 
1979 	/* Is there space to add these mounts to the mount namespace? */
1980 	if (!parent_path) {
1981 		err = count_mounts(ns, source_mnt);
1982 		if (err)
1983 			goto out;
1984 	}
1985 
1986 	if (IS_MNT_SHARED(dest_mnt)) {
1987 		err = invent_group_ids(source_mnt, true);
1988 		if (err)
1989 			goto out;
1990 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1991 		lock_mount_hash();
1992 		if (err)
1993 			goto out_cleanup_ids;
1994 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1995 			set_mnt_shared(p);
1996 	} else {
1997 		lock_mount_hash();
1998 	}
1999 	if (parent_path) {
2000 		detach_mnt(source_mnt, parent_path);
2001 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2002 		touch_mnt_namespace(source_mnt->mnt_ns);
2003 	} else {
2004 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2005 		commit_tree(source_mnt, NULL);
2006 	}
2007 
2008 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2009 		struct mount *q;
2010 		hlist_del_init(&child->mnt_hash);
2011 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
2012 				      child->mnt_mountpoint);
2013 		commit_tree(child, q);
2014 	}
2015 	unlock_mount_hash();
2016 
2017 	return 0;
2018 
2019  out_cleanup_ids:
2020 	while (!hlist_empty(&tree_list)) {
2021 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2022 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2023 		umount_tree(child, UMOUNT_SYNC);
2024 	}
2025 	unlock_mount_hash();
2026 	cleanup_group_ids(source_mnt, NULL);
2027  out:
2028 	ns->pending_mounts = 0;
2029 	return err;
2030 }
2031 
2032 static struct mountpoint *lock_mount(struct path *path)
2033 {
2034 	struct vfsmount *mnt;
2035 	struct dentry *dentry = path->dentry;
2036 retry:
2037 	inode_lock(dentry->d_inode);
2038 	if (unlikely(cant_mount(dentry))) {
2039 		inode_unlock(dentry->d_inode);
2040 		return ERR_PTR(-ENOENT);
2041 	}
2042 	namespace_lock();
2043 	mnt = lookup_mnt(path);
2044 	if (likely(!mnt)) {
2045 		struct mountpoint *mp = lookup_mountpoint(dentry);
2046 		if (!mp)
2047 			mp = new_mountpoint(dentry);
2048 		if (IS_ERR(mp)) {
2049 			namespace_unlock();
2050 			inode_unlock(dentry->d_inode);
2051 			return mp;
2052 		}
2053 		return mp;
2054 	}
2055 	namespace_unlock();
2056 	inode_unlock(path->dentry->d_inode);
2057 	path_put(path);
2058 	path->mnt = mnt;
2059 	dentry = path->dentry = dget(mnt->mnt_root);
2060 	goto retry;
2061 }
2062 
2063 static void unlock_mount(struct mountpoint *where)
2064 {
2065 	struct dentry *dentry = where->m_dentry;
2066 	put_mountpoint(where);
2067 	namespace_unlock();
2068 	inode_unlock(dentry->d_inode);
2069 }
2070 
2071 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2072 {
2073 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2074 		return -EINVAL;
2075 
2076 	if (d_is_dir(mp->m_dentry) !=
2077 	      d_is_dir(mnt->mnt.mnt_root))
2078 		return -ENOTDIR;
2079 
2080 	return attach_recursive_mnt(mnt, p, mp, NULL);
2081 }
2082 
2083 /*
2084  * Sanity check the flags to change_mnt_propagation.
2085  */
2086 
2087 static int flags_to_propagation_type(int flags)
2088 {
2089 	int type = flags & ~(MS_REC | MS_SILENT);
2090 
2091 	/* Fail if any non-propagation flags are set */
2092 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2093 		return 0;
2094 	/* Only one propagation flag should be set */
2095 	if (!is_power_of_2(type))
2096 		return 0;
2097 	return type;
2098 }
2099 
2100 /*
2101  * recursively change the type of the mountpoint.
2102  */
2103 static int do_change_type(struct path *path, int flag)
2104 {
2105 	struct mount *m;
2106 	struct mount *mnt = real_mount(path->mnt);
2107 	int recurse = flag & MS_REC;
2108 	int type;
2109 	int err = 0;
2110 
2111 	if (path->dentry != path->mnt->mnt_root)
2112 		return -EINVAL;
2113 
2114 	type = flags_to_propagation_type(flag);
2115 	if (!type)
2116 		return -EINVAL;
2117 
2118 	namespace_lock();
2119 	if (type == MS_SHARED) {
2120 		err = invent_group_ids(mnt, recurse);
2121 		if (err)
2122 			goto out_unlock;
2123 	}
2124 
2125 	lock_mount_hash();
2126 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2127 		change_mnt_propagation(m, type);
2128 	unlock_mount_hash();
2129 
2130  out_unlock:
2131 	namespace_unlock();
2132 	return err;
2133 }
2134 
2135 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2136 {
2137 	struct mount *child;
2138 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2139 		if (!is_subdir(child->mnt_mountpoint, dentry))
2140 			continue;
2141 
2142 		if (child->mnt.mnt_flags & MNT_LOCKED)
2143 			return true;
2144 	}
2145 	return false;
2146 }
2147 
2148 /*
2149  * do loopback mount.
2150  */
2151 static int do_loopback(struct path *path, const char *old_name,
2152 				int recurse)
2153 {
2154 	struct path old_path;
2155 	struct mount *mnt = NULL, *old, *parent;
2156 	struct mountpoint *mp;
2157 	int err;
2158 	if (!old_name || !*old_name)
2159 		return -EINVAL;
2160 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2161 	if (err)
2162 		return err;
2163 
2164 	err = -EINVAL;
2165 	if (mnt_ns_loop(old_path.dentry))
2166 		goto out;
2167 
2168 	mp = lock_mount(path);
2169 	err = PTR_ERR(mp);
2170 	if (IS_ERR(mp))
2171 		goto out;
2172 
2173 	old = real_mount(old_path.mnt);
2174 	parent = real_mount(path->mnt);
2175 
2176 	err = -EINVAL;
2177 	if (IS_MNT_UNBINDABLE(old))
2178 		goto out2;
2179 
2180 	if (!check_mnt(parent))
2181 		goto out2;
2182 
2183 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2184 		goto out2;
2185 
2186 	if (!recurse && has_locked_children(old, old_path.dentry))
2187 		goto out2;
2188 
2189 	if (recurse)
2190 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2191 	else
2192 		mnt = clone_mnt(old, old_path.dentry, 0);
2193 
2194 	if (IS_ERR(mnt)) {
2195 		err = PTR_ERR(mnt);
2196 		goto out2;
2197 	}
2198 
2199 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2200 
2201 	err = graft_tree(mnt, parent, mp);
2202 	if (err) {
2203 		lock_mount_hash();
2204 		umount_tree(mnt, UMOUNT_SYNC);
2205 		unlock_mount_hash();
2206 	}
2207 out2:
2208 	unlock_mount(mp);
2209 out:
2210 	path_put(&old_path);
2211 	return err;
2212 }
2213 
2214 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2215 {
2216 	int error = 0;
2217 	int readonly_request = 0;
2218 
2219 	if (ms_flags & MS_RDONLY)
2220 		readonly_request = 1;
2221 	if (readonly_request == __mnt_is_readonly(mnt))
2222 		return 0;
2223 
2224 	if (readonly_request)
2225 		error = mnt_make_readonly(real_mount(mnt));
2226 	else
2227 		__mnt_unmake_readonly(real_mount(mnt));
2228 	return error;
2229 }
2230 
2231 /*
2232  * change filesystem flags. dir should be a physical root of filesystem.
2233  * If you've mounted a non-root directory somewhere and want to do remount
2234  * on it - tough luck.
2235  */
2236 static int do_remount(struct path *path, int flags, int mnt_flags,
2237 		      void *data)
2238 {
2239 	int err;
2240 	struct super_block *sb = path->mnt->mnt_sb;
2241 	struct mount *mnt = real_mount(path->mnt);
2242 
2243 	if (!check_mnt(mnt))
2244 		return -EINVAL;
2245 
2246 	if (path->dentry != path->mnt->mnt_root)
2247 		return -EINVAL;
2248 
2249 	/* Don't allow changing of locked mnt flags.
2250 	 *
2251 	 * No locks need to be held here while testing the various
2252 	 * MNT_LOCK flags because those flags can never be cleared
2253 	 * once they are set.
2254 	 */
2255 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2256 	    !(mnt_flags & MNT_READONLY)) {
2257 		return -EPERM;
2258 	}
2259 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2260 	    !(mnt_flags & MNT_NODEV)) {
2261 		return -EPERM;
2262 	}
2263 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2264 	    !(mnt_flags & MNT_NOSUID)) {
2265 		return -EPERM;
2266 	}
2267 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2268 	    !(mnt_flags & MNT_NOEXEC)) {
2269 		return -EPERM;
2270 	}
2271 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2272 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2273 		return -EPERM;
2274 	}
2275 
2276 	err = security_sb_remount(sb, data);
2277 	if (err)
2278 		return err;
2279 
2280 	down_write(&sb->s_umount);
2281 	if (flags & MS_BIND)
2282 		err = change_mount_flags(path->mnt, flags);
2283 	else if (!capable(CAP_SYS_ADMIN))
2284 		err = -EPERM;
2285 	else
2286 		err = do_remount_sb(sb, flags, data, 0);
2287 	if (!err) {
2288 		lock_mount_hash();
2289 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2290 		mnt->mnt.mnt_flags = mnt_flags;
2291 		touch_mnt_namespace(mnt->mnt_ns);
2292 		unlock_mount_hash();
2293 	}
2294 	up_write(&sb->s_umount);
2295 	return err;
2296 }
2297 
2298 static inline int tree_contains_unbindable(struct mount *mnt)
2299 {
2300 	struct mount *p;
2301 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2302 		if (IS_MNT_UNBINDABLE(p))
2303 			return 1;
2304 	}
2305 	return 0;
2306 }
2307 
2308 static int do_move_mount(struct path *path, const char *old_name)
2309 {
2310 	struct path old_path, parent_path;
2311 	struct mount *p;
2312 	struct mount *old;
2313 	struct mountpoint *mp;
2314 	int err;
2315 	if (!old_name || !*old_name)
2316 		return -EINVAL;
2317 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2318 	if (err)
2319 		return err;
2320 
2321 	mp = lock_mount(path);
2322 	err = PTR_ERR(mp);
2323 	if (IS_ERR(mp))
2324 		goto out;
2325 
2326 	old = real_mount(old_path.mnt);
2327 	p = real_mount(path->mnt);
2328 
2329 	err = -EINVAL;
2330 	if (!check_mnt(p) || !check_mnt(old))
2331 		goto out1;
2332 
2333 	if (old->mnt.mnt_flags & MNT_LOCKED)
2334 		goto out1;
2335 
2336 	err = -EINVAL;
2337 	if (old_path.dentry != old_path.mnt->mnt_root)
2338 		goto out1;
2339 
2340 	if (!mnt_has_parent(old))
2341 		goto out1;
2342 
2343 	if (d_is_dir(path->dentry) !=
2344 	      d_is_dir(old_path.dentry))
2345 		goto out1;
2346 	/*
2347 	 * Don't move a mount residing in a shared parent.
2348 	 */
2349 	if (IS_MNT_SHARED(old->mnt_parent))
2350 		goto out1;
2351 	/*
2352 	 * Don't move a mount tree containing unbindable mounts to a destination
2353 	 * mount which is shared.
2354 	 */
2355 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2356 		goto out1;
2357 	err = -ELOOP;
2358 	for (; mnt_has_parent(p); p = p->mnt_parent)
2359 		if (p == old)
2360 			goto out1;
2361 
2362 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2363 	if (err)
2364 		goto out1;
2365 
2366 	/* if the mount is moved, it should no longer be expire
2367 	 * automatically */
2368 	list_del_init(&old->mnt_expire);
2369 out1:
2370 	unlock_mount(mp);
2371 out:
2372 	if (!err)
2373 		path_put(&parent_path);
2374 	path_put(&old_path);
2375 	return err;
2376 }
2377 
2378 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2379 {
2380 	int err;
2381 	const char *subtype = strchr(fstype, '.');
2382 	if (subtype) {
2383 		subtype++;
2384 		err = -EINVAL;
2385 		if (!subtype[0])
2386 			goto err;
2387 	} else
2388 		subtype = "";
2389 
2390 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2391 	err = -ENOMEM;
2392 	if (!mnt->mnt_sb->s_subtype)
2393 		goto err;
2394 	return mnt;
2395 
2396  err:
2397 	mntput(mnt);
2398 	return ERR_PTR(err);
2399 }
2400 
2401 /*
2402  * add a mount into a namespace's mount tree
2403  */
2404 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2405 {
2406 	struct mountpoint *mp;
2407 	struct mount *parent;
2408 	int err;
2409 
2410 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2411 
2412 	mp = lock_mount(path);
2413 	if (IS_ERR(mp))
2414 		return PTR_ERR(mp);
2415 
2416 	parent = real_mount(path->mnt);
2417 	err = -EINVAL;
2418 	if (unlikely(!check_mnt(parent))) {
2419 		/* that's acceptable only for automounts done in private ns */
2420 		if (!(mnt_flags & MNT_SHRINKABLE))
2421 			goto unlock;
2422 		/* ... and for those we'd better have mountpoint still alive */
2423 		if (!parent->mnt_ns)
2424 			goto unlock;
2425 	}
2426 
2427 	/* Refuse the same filesystem on the same mount point */
2428 	err = -EBUSY;
2429 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2430 	    path->mnt->mnt_root == path->dentry)
2431 		goto unlock;
2432 
2433 	err = -EINVAL;
2434 	if (d_is_symlink(newmnt->mnt.mnt_root))
2435 		goto unlock;
2436 
2437 	newmnt->mnt.mnt_flags = mnt_flags;
2438 	err = graft_tree(newmnt, parent, mp);
2439 
2440 unlock:
2441 	unlock_mount(mp);
2442 	return err;
2443 }
2444 
2445 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2446 
2447 /*
2448  * create a new mount for userspace and request it to be added into the
2449  * namespace's tree
2450  */
2451 static int do_new_mount(struct path *path, const char *fstype, int flags,
2452 			int mnt_flags, const char *name, void *data)
2453 {
2454 	struct file_system_type *type;
2455 	struct vfsmount *mnt;
2456 	int err;
2457 
2458 	if (!fstype)
2459 		return -EINVAL;
2460 
2461 	type = get_fs_type(fstype);
2462 	if (!type)
2463 		return -ENODEV;
2464 
2465 	mnt = vfs_kern_mount(type, flags, name, data);
2466 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2467 	    !mnt->mnt_sb->s_subtype)
2468 		mnt = fs_set_subtype(mnt, fstype);
2469 
2470 	put_filesystem(type);
2471 	if (IS_ERR(mnt))
2472 		return PTR_ERR(mnt);
2473 
2474 	if (mount_too_revealing(mnt, &mnt_flags)) {
2475 		mntput(mnt);
2476 		return -EPERM;
2477 	}
2478 
2479 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2480 	if (err)
2481 		mntput(mnt);
2482 	return err;
2483 }
2484 
2485 int finish_automount(struct vfsmount *m, struct path *path)
2486 {
2487 	struct mount *mnt = real_mount(m);
2488 	int err;
2489 	/* The new mount record should have at least 2 refs to prevent it being
2490 	 * expired before we get a chance to add it
2491 	 */
2492 	BUG_ON(mnt_get_count(mnt) < 2);
2493 
2494 	if (m->mnt_sb == path->mnt->mnt_sb &&
2495 	    m->mnt_root == path->dentry) {
2496 		err = -ELOOP;
2497 		goto fail;
2498 	}
2499 
2500 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2501 	if (!err)
2502 		return 0;
2503 fail:
2504 	/* remove m from any expiration list it may be on */
2505 	if (!list_empty(&mnt->mnt_expire)) {
2506 		namespace_lock();
2507 		list_del_init(&mnt->mnt_expire);
2508 		namespace_unlock();
2509 	}
2510 	mntput(m);
2511 	mntput(m);
2512 	return err;
2513 }
2514 
2515 /**
2516  * mnt_set_expiry - Put a mount on an expiration list
2517  * @mnt: The mount to list.
2518  * @expiry_list: The list to add the mount to.
2519  */
2520 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2521 {
2522 	namespace_lock();
2523 
2524 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2525 
2526 	namespace_unlock();
2527 }
2528 EXPORT_SYMBOL(mnt_set_expiry);
2529 
2530 /*
2531  * process a list of expirable mountpoints with the intent of discarding any
2532  * mountpoints that aren't in use and haven't been touched since last we came
2533  * here
2534  */
2535 void mark_mounts_for_expiry(struct list_head *mounts)
2536 {
2537 	struct mount *mnt, *next;
2538 	LIST_HEAD(graveyard);
2539 
2540 	if (list_empty(mounts))
2541 		return;
2542 
2543 	namespace_lock();
2544 	lock_mount_hash();
2545 
2546 	/* extract from the expiration list every vfsmount that matches the
2547 	 * following criteria:
2548 	 * - only referenced by its parent vfsmount
2549 	 * - still marked for expiry (marked on the last call here; marks are
2550 	 *   cleared by mntput())
2551 	 */
2552 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2553 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2554 			propagate_mount_busy(mnt, 1))
2555 			continue;
2556 		list_move(&mnt->mnt_expire, &graveyard);
2557 	}
2558 	while (!list_empty(&graveyard)) {
2559 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2560 		touch_mnt_namespace(mnt->mnt_ns);
2561 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2562 	}
2563 	unlock_mount_hash();
2564 	namespace_unlock();
2565 }
2566 
2567 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2568 
2569 /*
2570  * Ripoff of 'select_parent()'
2571  *
2572  * search the list of submounts for a given mountpoint, and move any
2573  * shrinkable submounts to the 'graveyard' list.
2574  */
2575 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2576 {
2577 	struct mount *this_parent = parent;
2578 	struct list_head *next;
2579 	int found = 0;
2580 
2581 repeat:
2582 	next = this_parent->mnt_mounts.next;
2583 resume:
2584 	while (next != &this_parent->mnt_mounts) {
2585 		struct list_head *tmp = next;
2586 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2587 
2588 		next = tmp->next;
2589 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2590 			continue;
2591 		/*
2592 		 * Descend a level if the d_mounts list is non-empty.
2593 		 */
2594 		if (!list_empty(&mnt->mnt_mounts)) {
2595 			this_parent = mnt;
2596 			goto repeat;
2597 		}
2598 
2599 		if (!propagate_mount_busy(mnt, 1)) {
2600 			list_move_tail(&mnt->mnt_expire, graveyard);
2601 			found++;
2602 		}
2603 	}
2604 	/*
2605 	 * All done at this level ... ascend and resume the search
2606 	 */
2607 	if (this_parent != parent) {
2608 		next = this_parent->mnt_child.next;
2609 		this_parent = this_parent->mnt_parent;
2610 		goto resume;
2611 	}
2612 	return found;
2613 }
2614 
2615 /*
2616  * process a list of expirable mountpoints with the intent of discarding any
2617  * submounts of a specific parent mountpoint
2618  *
2619  * mount_lock must be held for write
2620  */
2621 static void shrink_submounts(struct mount *mnt)
2622 {
2623 	LIST_HEAD(graveyard);
2624 	struct mount *m;
2625 
2626 	/* extract submounts of 'mountpoint' from the expiration list */
2627 	while (select_submounts(mnt, &graveyard)) {
2628 		while (!list_empty(&graveyard)) {
2629 			m = list_first_entry(&graveyard, struct mount,
2630 						mnt_expire);
2631 			touch_mnt_namespace(m->mnt_ns);
2632 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2633 		}
2634 	}
2635 }
2636 
2637 /*
2638  * Some copy_from_user() implementations do not return the exact number of
2639  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2640  * Note that this function differs from copy_from_user() in that it will oops
2641  * on bad values of `to', rather than returning a short copy.
2642  */
2643 static long exact_copy_from_user(void *to, const void __user * from,
2644 				 unsigned long n)
2645 {
2646 	char *t = to;
2647 	const char __user *f = from;
2648 	char c;
2649 
2650 	if (!access_ok(VERIFY_READ, from, n))
2651 		return n;
2652 
2653 	while (n) {
2654 		if (__get_user(c, f)) {
2655 			memset(t, 0, n);
2656 			break;
2657 		}
2658 		*t++ = c;
2659 		f++;
2660 		n--;
2661 	}
2662 	return n;
2663 }
2664 
2665 void *copy_mount_options(const void __user * data)
2666 {
2667 	int i;
2668 	unsigned long size;
2669 	char *copy;
2670 
2671 	if (!data)
2672 		return NULL;
2673 
2674 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2675 	if (!copy)
2676 		return ERR_PTR(-ENOMEM);
2677 
2678 	/* We only care that *some* data at the address the user
2679 	 * gave us is valid.  Just in case, we'll zero
2680 	 * the remainder of the page.
2681 	 */
2682 	/* copy_from_user cannot cross TASK_SIZE ! */
2683 	size = TASK_SIZE - (unsigned long)data;
2684 	if (size > PAGE_SIZE)
2685 		size = PAGE_SIZE;
2686 
2687 	i = size - exact_copy_from_user(copy, data, size);
2688 	if (!i) {
2689 		kfree(copy);
2690 		return ERR_PTR(-EFAULT);
2691 	}
2692 	if (i != PAGE_SIZE)
2693 		memset(copy + i, 0, PAGE_SIZE - i);
2694 	return copy;
2695 }
2696 
2697 char *copy_mount_string(const void __user *data)
2698 {
2699 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2700 }
2701 
2702 /*
2703  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2704  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2705  *
2706  * data is a (void *) that can point to any structure up to
2707  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2708  * information (or be NULL).
2709  *
2710  * Pre-0.97 versions of mount() didn't have a flags word.
2711  * When the flags word was introduced its top half was required
2712  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2713  * Therefore, if this magic number is present, it carries no information
2714  * and must be discarded.
2715  */
2716 long do_mount(const char *dev_name, const char __user *dir_name,
2717 		const char *type_page, unsigned long flags, void *data_page)
2718 {
2719 	struct path path;
2720 	int retval = 0;
2721 	int mnt_flags = 0;
2722 
2723 	/* Discard magic */
2724 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2725 		flags &= ~MS_MGC_MSK;
2726 
2727 	/* Basic sanity checks */
2728 	if (data_page)
2729 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2730 
2731 	/* ... and get the mountpoint */
2732 	retval = user_path(dir_name, &path);
2733 	if (retval)
2734 		return retval;
2735 
2736 	retval = security_sb_mount(dev_name, &path,
2737 				   type_page, flags, data_page);
2738 	if (!retval && !may_mount())
2739 		retval = -EPERM;
2740 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2741 		retval = -EPERM;
2742 	if (retval)
2743 		goto dput_out;
2744 
2745 	/* Default to relatime unless overriden */
2746 	if (!(flags & MS_NOATIME))
2747 		mnt_flags |= MNT_RELATIME;
2748 
2749 	/* Separate the per-mountpoint flags */
2750 	if (flags & MS_NOSUID)
2751 		mnt_flags |= MNT_NOSUID;
2752 	if (flags & MS_NODEV)
2753 		mnt_flags |= MNT_NODEV;
2754 	if (flags & MS_NOEXEC)
2755 		mnt_flags |= MNT_NOEXEC;
2756 	if (flags & MS_NOATIME)
2757 		mnt_flags |= MNT_NOATIME;
2758 	if (flags & MS_NODIRATIME)
2759 		mnt_flags |= MNT_NODIRATIME;
2760 	if (flags & MS_STRICTATIME)
2761 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2762 	if (flags & MS_RDONLY)
2763 		mnt_flags |= MNT_READONLY;
2764 
2765 	/* The default atime for remount is preservation */
2766 	if ((flags & MS_REMOUNT) &&
2767 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2768 		       MS_STRICTATIME)) == 0)) {
2769 		mnt_flags &= ~MNT_ATIME_MASK;
2770 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2771 	}
2772 
2773 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2774 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2775 		   MS_STRICTATIME | MS_NOREMOTELOCK);
2776 
2777 	if (flags & MS_REMOUNT)
2778 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2779 				    data_page);
2780 	else if (flags & MS_BIND)
2781 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2782 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2783 		retval = do_change_type(&path, flags);
2784 	else if (flags & MS_MOVE)
2785 		retval = do_move_mount(&path, dev_name);
2786 	else
2787 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2788 				      dev_name, data_page);
2789 dput_out:
2790 	path_put(&path);
2791 	return retval;
2792 }
2793 
2794 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2795 {
2796 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2797 }
2798 
2799 static void dec_mnt_namespaces(struct ucounts *ucounts)
2800 {
2801 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2802 }
2803 
2804 static void free_mnt_ns(struct mnt_namespace *ns)
2805 {
2806 	ns_free_inum(&ns->ns);
2807 	dec_mnt_namespaces(ns->ucounts);
2808 	put_user_ns(ns->user_ns);
2809 	kfree(ns);
2810 }
2811 
2812 /*
2813  * Assign a sequence number so we can detect when we attempt to bind
2814  * mount a reference to an older mount namespace into the current
2815  * mount namespace, preventing reference counting loops.  A 64bit
2816  * number incrementing at 10Ghz will take 12,427 years to wrap which
2817  * is effectively never, so we can ignore the possibility.
2818  */
2819 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2820 
2821 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2822 {
2823 	struct mnt_namespace *new_ns;
2824 	struct ucounts *ucounts;
2825 	int ret;
2826 
2827 	ucounts = inc_mnt_namespaces(user_ns);
2828 	if (!ucounts)
2829 		return ERR_PTR(-ENOSPC);
2830 
2831 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2832 	if (!new_ns) {
2833 		dec_mnt_namespaces(ucounts);
2834 		return ERR_PTR(-ENOMEM);
2835 	}
2836 	ret = ns_alloc_inum(&new_ns->ns);
2837 	if (ret) {
2838 		kfree(new_ns);
2839 		dec_mnt_namespaces(ucounts);
2840 		return ERR_PTR(ret);
2841 	}
2842 	new_ns->ns.ops = &mntns_operations;
2843 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2844 	atomic_set(&new_ns->count, 1);
2845 	new_ns->root = NULL;
2846 	INIT_LIST_HEAD(&new_ns->list);
2847 	init_waitqueue_head(&new_ns->poll);
2848 	new_ns->event = 0;
2849 	new_ns->user_ns = get_user_ns(user_ns);
2850 	new_ns->ucounts = ucounts;
2851 	new_ns->mounts = 0;
2852 	new_ns->pending_mounts = 0;
2853 	return new_ns;
2854 }
2855 
2856 __latent_entropy
2857 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2858 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2859 {
2860 	struct mnt_namespace *new_ns;
2861 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2862 	struct mount *p, *q;
2863 	struct mount *old;
2864 	struct mount *new;
2865 	int copy_flags;
2866 
2867 	BUG_ON(!ns);
2868 
2869 	if (likely(!(flags & CLONE_NEWNS))) {
2870 		get_mnt_ns(ns);
2871 		return ns;
2872 	}
2873 
2874 	old = ns->root;
2875 
2876 	new_ns = alloc_mnt_ns(user_ns);
2877 	if (IS_ERR(new_ns))
2878 		return new_ns;
2879 
2880 	namespace_lock();
2881 	/* First pass: copy the tree topology */
2882 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2883 	if (user_ns != ns->user_ns)
2884 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2885 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2886 	if (IS_ERR(new)) {
2887 		namespace_unlock();
2888 		free_mnt_ns(new_ns);
2889 		return ERR_CAST(new);
2890 	}
2891 	new_ns->root = new;
2892 	list_add_tail(&new_ns->list, &new->mnt_list);
2893 
2894 	/*
2895 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2896 	 * as belonging to new namespace.  We have already acquired a private
2897 	 * fs_struct, so tsk->fs->lock is not needed.
2898 	 */
2899 	p = old;
2900 	q = new;
2901 	while (p) {
2902 		q->mnt_ns = new_ns;
2903 		new_ns->mounts++;
2904 		if (new_fs) {
2905 			if (&p->mnt == new_fs->root.mnt) {
2906 				new_fs->root.mnt = mntget(&q->mnt);
2907 				rootmnt = &p->mnt;
2908 			}
2909 			if (&p->mnt == new_fs->pwd.mnt) {
2910 				new_fs->pwd.mnt = mntget(&q->mnt);
2911 				pwdmnt = &p->mnt;
2912 			}
2913 		}
2914 		p = next_mnt(p, old);
2915 		q = next_mnt(q, new);
2916 		if (!q)
2917 			break;
2918 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2919 			p = next_mnt(p, old);
2920 	}
2921 	namespace_unlock();
2922 
2923 	if (rootmnt)
2924 		mntput(rootmnt);
2925 	if (pwdmnt)
2926 		mntput(pwdmnt);
2927 
2928 	return new_ns;
2929 }
2930 
2931 /**
2932  * create_mnt_ns - creates a private namespace and adds a root filesystem
2933  * @mnt: pointer to the new root filesystem mountpoint
2934  */
2935 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2936 {
2937 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2938 	if (!IS_ERR(new_ns)) {
2939 		struct mount *mnt = real_mount(m);
2940 		mnt->mnt_ns = new_ns;
2941 		new_ns->root = mnt;
2942 		new_ns->mounts++;
2943 		list_add(&mnt->mnt_list, &new_ns->list);
2944 	} else {
2945 		mntput(m);
2946 	}
2947 	return new_ns;
2948 }
2949 
2950 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2951 {
2952 	struct mnt_namespace *ns;
2953 	struct super_block *s;
2954 	struct path path;
2955 	int err;
2956 
2957 	ns = create_mnt_ns(mnt);
2958 	if (IS_ERR(ns))
2959 		return ERR_CAST(ns);
2960 
2961 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2962 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2963 
2964 	put_mnt_ns(ns);
2965 
2966 	if (err)
2967 		return ERR_PTR(err);
2968 
2969 	/* trade a vfsmount reference for active sb one */
2970 	s = path.mnt->mnt_sb;
2971 	atomic_inc(&s->s_active);
2972 	mntput(path.mnt);
2973 	/* lock the sucker */
2974 	down_write(&s->s_umount);
2975 	/* ... and return the root of (sub)tree on it */
2976 	return path.dentry;
2977 }
2978 EXPORT_SYMBOL(mount_subtree);
2979 
2980 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2981 		char __user *, type, unsigned long, flags, void __user *, data)
2982 {
2983 	int ret;
2984 	char *kernel_type;
2985 	char *kernel_dev;
2986 	void *options;
2987 
2988 	kernel_type = copy_mount_string(type);
2989 	ret = PTR_ERR(kernel_type);
2990 	if (IS_ERR(kernel_type))
2991 		goto out_type;
2992 
2993 	kernel_dev = copy_mount_string(dev_name);
2994 	ret = PTR_ERR(kernel_dev);
2995 	if (IS_ERR(kernel_dev))
2996 		goto out_dev;
2997 
2998 	options = copy_mount_options(data);
2999 	ret = PTR_ERR(options);
3000 	if (IS_ERR(options))
3001 		goto out_data;
3002 
3003 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3004 
3005 	kfree(options);
3006 out_data:
3007 	kfree(kernel_dev);
3008 out_dev:
3009 	kfree(kernel_type);
3010 out_type:
3011 	return ret;
3012 }
3013 
3014 /*
3015  * Return true if path is reachable from root
3016  *
3017  * namespace_sem or mount_lock is held
3018  */
3019 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3020 			 const struct path *root)
3021 {
3022 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3023 		dentry = mnt->mnt_mountpoint;
3024 		mnt = mnt->mnt_parent;
3025 	}
3026 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3027 }
3028 
3029 bool path_is_under(const struct path *path1, const struct path *path2)
3030 {
3031 	bool res;
3032 	read_seqlock_excl(&mount_lock);
3033 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3034 	read_sequnlock_excl(&mount_lock);
3035 	return res;
3036 }
3037 EXPORT_SYMBOL(path_is_under);
3038 
3039 /*
3040  * pivot_root Semantics:
3041  * Moves the root file system of the current process to the directory put_old,
3042  * makes new_root as the new root file system of the current process, and sets
3043  * root/cwd of all processes which had them on the current root to new_root.
3044  *
3045  * Restrictions:
3046  * The new_root and put_old must be directories, and  must not be on the
3047  * same file  system as the current process root. The put_old  must  be
3048  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3049  * pointed to by put_old must yield the same directory as new_root. No other
3050  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3051  *
3052  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3053  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3054  * in this situation.
3055  *
3056  * Notes:
3057  *  - we don't move root/cwd if they are not at the root (reason: if something
3058  *    cared enough to change them, it's probably wrong to force them elsewhere)
3059  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3060  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3061  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3062  *    first.
3063  */
3064 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3065 		const char __user *, put_old)
3066 {
3067 	struct path new, old, parent_path, root_parent, root;
3068 	struct mount *new_mnt, *root_mnt, *old_mnt;
3069 	struct mountpoint *old_mp, *root_mp;
3070 	int error;
3071 
3072 	if (!may_mount())
3073 		return -EPERM;
3074 
3075 	error = user_path_dir(new_root, &new);
3076 	if (error)
3077 		goto out0;
3078 
3079 	error = user_path_dir(put_old, &old);
3080 	if (error)
3081 		goto out1;
3082 
3083 	error = security_sb_pivotroot(&old, &new);
3084 	if (error)
3085 		goto out2;
3086 
3087 	get_fs_root(current->fs, &root);
3088 	old_mp = lock_mount(&old);
3089 	error = PTR_ERR(old_mp);
3090 	if (IS_ERR(old_mp))
3091 		goto out3;
3092 
3093 	error = -EINVAL;
3094 	new_mnt = real_mount(new.mnt);
3095 	root_mnt = real_mount(root.mnt);
3096 	old_mnt = real_mount(old.mnt);
3097 	if (IS_MNT_SHARED(old_mnt) ||
3098 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3099 		IS_MNT_SHARED(root_mnt->mnt_parent))
3100 		goto out4;
3101 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3102 		goto out4;
3103 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3104 		goto out4;
3105 	error = -ENOENT;
3106 	if (d_unlinked(new.dentry))
3107 		goto out4;
3108 	error = -EBUSY;
3109 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3110 		goto out4; /* loop, on the same file system  */
3111 	error = -EINVAL;
3112 	if (root.mnt->mnt_root != root.dentry)
3113 		goto out4; /* not a mountpoint */
3114 	if (!mnt_has_parent(root_mnt))
3115 		goto out4; /* not attached */
3116 	root_mp = root_mnt->mnt_mp;
3117 	if (new.mnt->mnt_root != new.dentry)
3118 		goto out4; /* not a mountpoint */
3119 	if (!mnt_has_parent(new_mnt))
3120 		goto out4; /* not attached */
3121 	/* make sure we can reach put_old from new_root */
3122 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3123 		goto out4;
3124 	/* make certain new is below the root */
3125 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3126 		goto out4;
3127 	root_mp->m_count++; /* pin it so it won't go away */
3128 	lock_mount_hash();
3129 	detach_mnt(new_mnt, &parent_path);
3130 	detach_mnt(root_mnt, &root_parent);
3131 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3132 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3133 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3134 	}
3135 	/* mount old root on put_old */
3136 	attach_mnt(root_mnt, old_mnt, old_mp);
3137 	/* mount new_root on / */
3138 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3139 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3140 	/* A moved mount should not expire automatically */
3141 	list_del_init(&new_mnt->mnt_expire);
3142 	unlock_mount_hash();
3143 	chroot_fs_refs(&root, &new);
3144 	put_mountpoint(root_mp);
3145 	error = 0;
3146 out4:
3147 	unlock_mount(old_mp);
3148 	if (!error) {
3149 		path_put(&root_parent);
3150 		path_put(&parent_path);
3151 	}
3152 out3:
3153 	path_put(&root);
3154 out2:
3155 	path_put(&old);
3156 out1:
3157 	path_put(&new);
3158 out0:
3159 	return error;
3160 }
3161 
3162 static void __init init_mount_tree(void)
3163 {
3164 	struct vfsmount *mnt;
3165 	struct mnt_namespace *ns;
3166 	struct path root;
3167 	struct file_system_type *type;
3168 
3169 	type = get_fs_type("rootfs");
3170 	if (!type)
3171 		panic("Can't find rootfs type");
3172 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3173 	put_filesystem(type);
3174 	if (IS_ERR(mnt))
3175 		panic("Can't create rootfs");
3176 
3177 	ns = create_mnt_ns(mnt);
3178 	if (IS_ERR(ns))
3179 		panic("Can't allocate initial namespace");
3180 
3181 	init_task.nsproxy->mnt_ns = ns;
3182 	get_mnt_ns(ns);
3183 
3184 	root.mnt = mnt;
3185 	root.dentry = mnt->mnt_root;
3186 	mnt->mnt_flags |= MNT_LOCKED;
3187 
3188 	set_fs_pwd(current->fs, &root);
3189 	set_fs_root(current->fs, &root);
3190 }
3191 
3192 void __init mnt_init(void)
3193 {
3194 	unsigned u;
3195 	int err;
3196 
3197 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3198 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3199 
3200 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3201 				sizeof(struct hlist_head),
3202 				mhash_entries, 19,
3203 				0,
3204 				&m_hash_shift, &m_hash_mask, 0, 0);
3205 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3206 				sizeof(struct hlist_head),
3207 				mphash_entries, 19,
3208 				0,
3209 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3210 
3211 	if (!mount_hashtable || !mountpoint_hashtable)
3212 		panic("Failed to allocate mount hash table\n");
3213 
3214 	for (u = 0; u <= m_hash_mask; u++)
3215 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3216 	for (u = 0; u <= mp_hash_mask; u++)
3217 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3218 
3219 	kernfs_init();
3220 
3221 	err = sysfs_init();
3222 	if (err)
3223 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3224 			__func__, err);
3225 	fs_kobj = kobject_create_and_add("fs", NULL);
3226 	if (!fs_kobj)
3227 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3228 	init_rootfs();
3229 	init_mount_tree();
3230 }
3231 
3232 void put_mnt_ns(struct mnt_namespace *ns)
3233 {
3234 	if (!atomic_dec_and_test(&ns->count))
3235 		return;
3236 	drop_collected_mounts(&ns->root->mnt);
3237 	free_mnt_ns(ns);
3238 }
3239 
3240 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3241 {
3242 	struct vfsmount *mnt;
3243 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3244 	if (!IS_ERR(mnt)) {
3245 		/*
3246 		 * it is a longterm mount, don't release mnt until
3247 		 * we unmount before file sys is unregistered
3248 		*/
3249 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3250 	}
3251 	return mnt;
3252 }
3253 EXPORT_SYMBOL_GPL(kern_mount_data);
3254 
3255 void kern_unmount(struct vfsmount *mnt)
3256 {
3257 	/* release long term mount so mount point can be released */
3258 	if (!IS_ERR_OR_NULL(mnt)) {
3259 		real_mount(mnt)->mnt_ns = NULL;
3260 		synchronize_rcu();	/* yecchhh... */
3261 		mntput(mnt);
3262 	}
3263 }
3264 EXPORT_SYMBOL(kern_unmount);
3265 
3266 bool our_mnt(struct vfsmount *mnt)
3267 {
3268 	return check_mnt(real_mount(mnt));
3269 }
3270 
3271 bool current_chrooted(void)
3272 {
3273 	/* Does the current process have a non-standard root */
3274 	struct path ns_root;
3275 	struct path fs_root;
3276 	bool chrooted;
3277 
3278 	/* Find the namespace root */
3279 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3280 	ns_root.dentry = ns_root.mnt->mnt_root;
3281 	path_get(&ns_root);
3282 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3283 		;
3284 
3285 	get_fs_root(current->fs, &fs_root);
3286 
3287 	chrooted = !path_equal(&fs_root, &ns_root);
3288 
3289 	path_put(&fs_root);
3290 	path_put(&ns_root);
3291 
3292 	return chrooted;
3293 }
3294 
3295 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3296 				int *new_mnt_flags)
3297 {
3298 	int new_flags = *new_mnt_flags;
3299 	struct mount *mnt;
3300 	bool visible = false;
3301 
3302 	down_read(&namespace_sem);
3303 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3304 		struct mount *child;
3305 		int mnt_flags;
3306 
3307 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3308 			continue;
3309 
3310 		/* This mount is not fully visible if it's root directory
3311 		 * is not the root directory of the filesystem.
3312 		 */
3313 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3314 			continue;
3315 
3316 		/* A local view of the mount flags */
3317 		mnt_flags = mnt->mnt.mnt_flags;
3318 
3319 		/* Don't miss readonly hidden in the superblock flags */
3320 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3321 			mnt_flags |= MNT_LOCK_READONLY;
3322 
3323 		/* Verify the mount flags are equal to or more permissive
3324 		 * than the proposed new mount.
3325 		 */
3326 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3327 		    !(new_flags & MNT_READONLY))
3328 			continue;
3329 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3330 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3331 			continue;
3332 
3333 		/* This mount is not fully visible if there are any
3334 		 * locked child mounts that cover anything except for
3335 		 * empty directories.
3336 		 */
3337 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3338 			struct inode *inode = child->mnt_mountpoint->d_inode;
3339 			/* Only worry about locked mounts */
3340 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3341 				continue;
3342 			/* Is the directory permanetly empty? */
3343 			if (!is_empty_dir_inode(inode))
3344 				goto next;
3345 		}
3346 		/* Preserve the locked attributes */
3347 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3348 					       MNT_LOCK_ATIME);
3349 		visible = true;
3350 		goto found;
3351 	next:	;
3352 	}
3353 found:
3354 	up_read(&namespace_sem);
3355 	return visible;
3356 }
3357 
3358 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3359 {
3360 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3361 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3362 	unsigned long s_iflags;
3363 
3364 	if (ns->user_ns == &init_user_ns)
3365 		return false;
3366 
3367 	/* Can this filesystem be too revealing? */
3368 	s_iflags = mnt->mnt_sb->s_iflags;
3369 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3370 		return false;
3371 
3372 	if ((s_iflags & required_iflags) != required_iflags) {
3373 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3374 			  required_iflags);
3375 		return true;
3376 	}
3377 
3378 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3379 }
3380 
3381 bool mnt_may_suid(struct vfsmount *mnt)
3382 {
3383 	/*
3384 	 * Foreign mounts (accessed via fchdir or through /proc
3385 	 * symlinks) are always treated as if they are nosuid.  This
3386 	 * prevents namespaces from trusting potentially unsafe
3387 	 * suid/sgid bits, file caps, or security labels that originate
3388 	 * in other namespaces.
3389 	 */
3390 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3391 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3392 }
3393 
3394 static struct ns_common *mntns_get(struct task_struct *task)
3395 {
3396 	struct ns_common *ns = NULL;
3397 	struct nsproxy *nsproxy;
3398 
3399 	task_lock(task);
3400 	nsproxy = task->nsproxy;
3401 	if (nsproxy) {
3402 		ns = &nsproxy->mnt_ns->ns;
3403 		get_mnt_ns(to_mnt_ns(ns));
3404 	}
3405 	task_unlock(task);
3406 
3407 	return ns;
3408 }
3409 
3410 static void mntns_put(struct ns_common *ns)
3411 {
3412 	put_mnt_ns(to_mnt_ns(ns));
3413 }
3414 
3415 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3416 {
3417 	struct fs_struct *fs = current->fs;
3418 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3419 	struct path root;
3420 
3421 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3422 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3423 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3424 		return -EPERM;
3425 
3426 	if (fs->users != 1)
3427 		return -EINVAL;
3428 
3429 	get_mnt_ns(mnt_ns);
3430 	put_mnt_ns(nsproxy->mnt_ns);
3431 	nsproxy->mnt_ns = mnt_ns;
3432 
3433 	/* Find the root */
3434 	root.mnt    = &mnt_ns->root->mnt;
3435 	root.dentry = mnt_ns->root->mnt.mnt_root;
3436 	path_get(&root);
3437 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3438 		;
3439 
3440 	/* Update the pwd and root */
3441 	set_fs_pwd(fs, &root);
3442 	set_fs_root(fs, &root);
3443 
3444 	path_put(&root);
3445 	return 0;
3446 }
3447 
3448 static struct user_namespace *mntns_owner(struct ns_common *ns)
3449 {
3450 	return to_mnt_ns(ns)->user_ns;
3451 }
3452 
3453 const struct proc_ns_operations mntns_operations = {
3454 	.name		= "mnt",
3455 	.type		= CLONE_NEWNS,
3456 	.get		= mntns_get,
3457 	.put		= mntns_put,
3458 	.install	= mntns_install,
3459 	.owner		= mntns_owner,
3460 };
3461