1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/namei.h> 16 #include <linux/security.h> 17 #include <linux/idr.h> 18 #include <linux/acct.h> /* acct_auto_close_mnt */ 19 #include <linux/ramfs.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include "pnode.h" 24 #include "internal.h" 25 26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 27 #define HASH_SIZE (1UL << HASH_SHIFT) 28 29 static int event; 30 static DEFINE_IDA(mnt_id_ida); 31 static DEFINE_IDA(mnt_group_ida); 32 static DEFINE_SPINLOCK(mnt_id_lock); 33 static int mnt_id_start = 0; 34 static int mnt_group_start = 1; 35 36 static struct list_head *mount_hashtable __read_mostly; 37 static struct kmem_cache *mnt_cache __read_mostly; 38 static struct rw_semaphore namespace_sem; 39 40 /* /sys/fs */ 41 struct kobject *fs_kobj; 42 EXPORT_SYMBOL_GPL(fs_kobj); 43 44 /* 45 * vfsmount lock may be taken for read to prevent changes to the 46 * vfsmount hash, ie. during mountpoint lookups or walking back 47 * up the tree. 48 * 49 * It should be taken for write in all cases where the vfsmount 50 * tree or hash is modified or when a vfsmount structure is modified. 51 */ 52 DEFINE_BRLOCK(vfsmount_lock); 53 54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 55 { 56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 58 tmp = tmp + (tmp >> HASH_SHIFT); 59 return tmp & (HASH_SIZE - 1); 60 } 61 62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 63 64 /* 65 * allocation is serialized by namespace_sem, but we need the spinlock to 66 * serialize with freeing. 67 */ 68 static int mnt_alloc_id(struct mount *mnt) 69 { 70 int res; 71 72 retry: 73 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 74 spin_lock(&mnt_id_lock); 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 76 if (!res) 77 mnt_id_start = mnt->mnt_id + 1; 78 spin_unlock(&mnt_id_lock); 79 if (res == -EAGAIN) 80 goto retry; 81 82 return res; 83 } 84 85 static void mnt_free_id(struct mount *mnt) 86 { 87 int id = mnt->mnt_id; 88 spin_lock(&mnt_id_lock); 89 ida_remove(&mnt_id_ida, id); 90 if (mnt_id_start > id) 91 mnt_id_start = id; 92 spin_unlock(&mnt_id_lock); 93 } 94 95 /* 96 * Allocate a new peer group ID 97 * 98 * mnt_group_ida is protected by namespace_sem 99 */ 100 static int mnt_alloc_group_id(struct mount *mnt) 101 { 102 int res; 103 104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 105 return -ENOMEM; 106 107 res = ida_get_new_above(&mnt_group_ida, 108 mnt_group_start, 109 &mnt->mnt_group_id); 110 if (!res) 111 mnt_group_start = mnt->mnt_group_id + 1; 112 113 return res; 114 } 115 116 /* 117 * Release a peer group ID 118 */ 119 void mnt_release_group_id(struct mount *mnt) 120 { 121 int id = mnt->mnt_group_id; 122 ida_remove(&mnt_group_ida, id); 123 if (mnt_group_start > id) 124 mnt_group_start = id; 125 mnt->mnt_group_id = 0; 126 } 127 128 /* 129 * vfsmount lock must be held for read 130 */ 131 static inline void mnt_add_count(struct mount *mnt, int n) 132 { 133 #ifdef CONFIG_SMP 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 135 #else 136 preempt_disable(); 137 mnt->mnt_count += n; 138 preempt_enable(); 139 #endif 140 } 141 142 /* 143 * vfsmount lock must be held for write 144 */ 145 unsigned int mnt_get_count(struct mount *mnt) 146 { 147 #ifdef CONFIG_SMP 148 unsigned int count = 0; 149 int cpu; 150 151 for_each_possible_cpu(cpu) { 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 153 } 154 155 return count; 156 #else 157 return mnt->mnt_count; 158 #endif 159 } 160 161 static struct mount *alloc_vfsmnt(const char *name) 162 { 163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 164 if (mnt) { 165 int err; 166 167 err = mnt_alloc_id(mnt); 168 if (err) 169 goto out_free_cache; 170 171 if (name) { 172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 173 if (!mnt->mnt_devname) 174 goto out_free_id; 175 } 176 177 #ifdef CONFIG_SMP 178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 179 if (!mnt->mnt_pcp) 180 goto out_free_devname; 181 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 183 #else 184 mnt->mnt_count = 1; 185 mnt->mnt_writers = 0; 186 #endif 187 188 INIT_LIST_HEAD(&mnt->mnt_hash); 189 INIT_LIST_HEAD(&mnt->mnt_child); 190 INIT_LIST_HEAD(&mnt->mnt_mounts); 191 INIT_LIST_HEAD(&mnt->mnt_list); 192 INIT_LIST_HEAD(&mnt->mnt_expire); 193 INIT_LIST_HEAD(&mnt->mnt_share); 194 INIT_LIST_HEAD(&mnt->mnt_slave_list); 195 INIT_LIST_HEAD(&mnt->mnt_slave); 196 #ifdef CONFIG_FSNOTIFY 197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 198 #endif 199 } 200 return mnt; 201 202 #ifdef CONFIG_SMP 203 out_free_devname: 204 kfree(mnt->mnt_devname); 205 #endif 206 out_free_id: 207 mnt_free_id(mnt); 208 out_free_cache: 209 kmem_cache_free(mnt_cache, mnt); 210 return NULL; 211 } 212 213 /* 214 * Most r/o checks on a fs are for operations that take 215 * discrete amounts of time, like a write() or unlink(). 216 * We must keep track of when those operations start 217 * (for permission checks) and when they end, so that 218 * we can determine when writes are able to occur to 219 * a filesystem. 220 */ 221 /* 222 * __mnt_is_readonly: check whether a mount is read-only 223 * @mnt: the mount to check for its write status 224 * 225 * This shouldn't be used directly ouside of the VFS. 226 * It does not guarantee that the filesystem will stay 227 * r/w, just that it is right *now*. This can not and 228 * should not be used in place of IS_RDONLY(inode). 229 * mnt_want/drop_write() will _keep_ the filesystem 230 * r/w. 231 */ 232 int __mnt_is_readonly(struct vfsmount *mnt) 233 { 234 if (mnt->mnt_flags & MNT_READONLY) 235 return 1; 236 if (mnt->mnt_sb->s_flags & MS_RDONLY) 237 return 1; 238 return 0; 239 } 240 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 241 242 static inline void mnt_inc_writers(struct mount *mnt) 243 { 244 #ifdef CONFIG_SMP 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 246 #else 247 mnt->mnt_writers++; 248 #endif 249 } 250 251 static inline void mnt_dec_writers(struct mount *mnt) 252 { 253 #ifdef CONFIG_SMP 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 255 #else 256 mnt->mnt_writers--; 257 #endif 258 } 259 260 static unsigned int mnt_get_writers(struct mount *mnt) 261 { 262 #ifdef CONFIG_SMP 263 unsigned int count = 0; 264 int cpu; 265 266 for_each_possible_cpu(cpu) { 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 268 } 269 270 return count; 271 #else 272 return mnt->mnt_writers; 273 #endif 274 } 275 276 static int mnt_is_readonly(struct vfsmount *mnt) 277 { 278 if (mnt->mnt_sb->s_readonly_remount) 279 return 1; 280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 281 smp_rmb(); 282 return __mnt_is_readonly(mnt); 283 } 284 285 /* 286 * Most r/o checks on a fs are for operations that take 287 * discrete amounts of time, like a write() or unlink(). 288 * We must keep track of when those operations start 289 * (for permission checks) and when they end, so that 290 * we can determine when writes are able to occur to 291 * a filesystem. 292 */ 293 /** 294 * mnt_want_write - get write access to a mount 295 * @m: the mount on which to take a write 296 * 297 * This tells the low-level filesystem that a write is 298 * about to be performed to it, and makes sure that 299 * writes are allowed before returning success. When 300 * the write operation is finished, mnt_drop_write() 301 * must be called. This is effectively a refcount. 302 */ 303 int mnt_want_write(struct vfsmount *m) 304 { 305 struct mount *mnt = real_mount(m); 306 int ret = 0; 307 308 preempt_disable(); 309 mnt_inc_writers(mnt); 310 /* 311 * The store to mnt_inc_writers must be visible before we pass 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 313 * incremented count after it has set MNT_WRITE_HOLD. 314 */ 315 smp_mb(); 316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 317 cpu_relax(); 318 /* 319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 320 * be set to match its requirements. So we must not load that until 321 * MNT_WRITE_HOLD is cleared. 322 */ 323 smp_rmb(); 324 if (mnt_is_readonly(m)) { 325 mnt_dec_writers(mnt); 326 ret = -EROFS; 327 } 328 preempt_enable(); 329 return ret; 330 } 331 EXPORT_SYMBOL_GPL(mnt_want_write); 332 333 /** 334 * mnt_clone_write - get write access to a mount 335 * @mnt: the mount on which to take a write 336 * 337 * This is effectively like mnt_want_write, except 338 * it must only be used to take an extra write reference 339 * on a mountpoint that we already know has a write reference 340 * on it. This allows some optimisation. 341 * 342 * After finished, mnt_drop_write must be called as usual to 343 * drop the reference. 344 */ 345 int mnt_clone_write(struct vfsmount *mnt) 346 { 347 /* superblock may be r/o */ 348 if (__mnt_is_readonly(mnt)) 349 return -EROFS; 350 preempt_disable(); 351 mnt_inc_writers(real_mount(mnt)); 352 preempt_enable(); 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(mnt_clone_write); 356 357 /** 358 * mnt_want_write_file - get write access to a file's mount 359 * @file: the file who's mount on which to take a write 360 * 361 * This is like mnt_want_write, but it takes a file and can 362 * do some optimisations if the file is open for write already 363 */ 364 int mnt_want_write_file(struct file *file) 365 { 366 struct inode *inode = file->f_dentry->d_inode; 367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) 368 return mnt_want_write(file->f_path.mnt); 369 else 370 return mnt_clone_write(file->f_path.mnt); 371 } 372 EXPORT_SYMBOL_GPL(mnt_want_write_file); 373 374 /** 375 * mnt_drop_write - give up write access to a mount 376 * @mnt: the mount on which to give up write access 377 * 378 * Tells the low-level filesystem that we are done 379 * performing writes to it. Must be matched with 380 * mnt_want_write() call above. 381 */ 382 void mnt_drop_write(struct vfsmount *mnt) 383 { 384 preempt_disable(); 385 mnt_dec_writers(real_mount(mnt)); 386 preempt_enable(); 387 } 388 EXPORT_SYMBOL_GPL(mnt_drop_write); 389 390 void mnt_drop_write_file(struct file *file) 391 { 392 mnt_drop_write(file->f_path.mnt); 393 } 394 EXPORT_SYMBOL(mnt_drop_write_file); 395 396 static int mnt_make_readonly(struct mount *mnt) 397 { 398 int ret = 0; 399 400 br_write_lock(&vfsmount_lock); 401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 402 /* 403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 404 * should be visible before we do. 405 */ 406 smp_mb(); 407 408 /* 409 * With writers on hold, if this value is zero, then there are 410 * definitely no active writers (although held writers may subsequently 411 * increment the count, they'll have to wait, and decrement it after 412 * seeing MNT_READONLY). 413 * 414 * It is OK to have counter incremented on one CPU and decremented on 415 * another: the sum will add up correctly. The danger would be when we 416 * sum up each counter, if we read a counter before it is incremented, 417 * but then read another CPU's count which it has been subsequently 418 * decremented from -- we would see more decrements than we should. 419 * MNT_WRITE_HOLD protects against this scenario, because 420 * mnt_want_write first increments count, then smp_mb, then spins on 421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 422 * we're counting up here. 423 */ 424 if (mnt_get_writers(mnt) > 0) 425 ret = -EBUSY; 426 else 427 mnt->mnt.mnt_flags |= MNT_READONLY; 428 /* 429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 430 * that become unheld will see MNT_READONLY. 431 */ 432 smp_wmb(); 433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 434 br_write_unlock(&vfsmount_lock); 435 return ret; 436 } 437 438 static void __mnt_unmake_readonly(struct mount *mnt) 439 { 440 br_write_lock(&vfsmount_lock); 441 mnt->mnt.mnt_flags &= ~MNT_READONLY; 442 br_write_unlock(&vfsmount_lock); 443 } 444 445 int sb_prepare_remount_readonly(struct super_block *sb) 446 { 447 struct mount *mnt; 448 int err = 0; 449 450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 451 if (atomic_long_read(&sb->s_remove_count)) 452 return -EBUSY; 453 454 br_write_lock(&vfsmount_lock); 455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 458 smp_mb(); 459 if (mnt_get_writers(mnt) > 0) { 460 err = -EBUSY; 461 break; 462 } 463 } 464 } 465 if (!err && atomic_long_read(&sb->s_remove_count)) 466 err = -EBUSY; 467 468 if (!err) { 469 sb->s_readonly_remount = 1; 470 smp_wmb(); 471 } 472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 475 } 476 br_write_unlock(&vfsmount_lock); 477 478 return err; 479 } 480 481 static void free_vfsmnt(struct mount *mnt) 482 { 483 kfree(mnt->mnt_devname); 484 mnt_free_id(mnt); 485 #ifdef CONFIG_SMP 486 free_percpu(mnt->mnt_pcp); 487 #endif 488 kmem_cache_free(mnt_cache, mnt); 489 } 490 491 /* 492 * find the first or last mount at @dentry on vfsmount @mnt depending on 493 * @dir. If @dir is set return the first mount else return the last mount. 494 * vfsmount_lock must be held for read or write. 495 */ 496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 497 int dir) 498 { 499 struct list_head *head = mount_hashtable + hash(mnt, dentry); 500 struct list_head *tmp = head; 501 struct mount *p, *found = NULL; 502 503 for (;;) { 504 tmp = dir ? tmp->next : tmp->prev; 505 p = NULL; 506 if (tmp == head) 507 break; 508 p = list_entry(tmp, struct mount, mnt_hash); 509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { 510 found = p; 511 break; 512 } 513 } 514 return found; 515 } 516 517 /* 518 * lookup_mnt increments the ref count before returning 519 * the vfsmount struct. 520 */ 521 struct vfsmount *lookup_mnt(struct path *path) 522 { 523 struct mount *child_mnt; 524 525 br_read_lock(&vfsmount_lock); 526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); 527 if (child_mnt) { 528 mnt_add_count(child_mnt, 1); 529 br_read_unlock(&vfsmount_lock); 530 return &child_mnt->mnt; 531 } else { 532 br_read_unlock(&vfsmount_lock); 533 return NULL; 534 } 535 } 536 537 static inline int check_mnt(struct mount *mnt) 538 { 539 return mnt->mnt_ns == current->nsproxy->mnt_ns; 540 } 541 542 /* 543 * vfsmount lock must be held for write 544 */ 545 static void touch_mnt_namespace(struct mnt_namespace *ns) 546 { 547 if (ns) { 548 ns->event = ++event; 549 wake_up_interruptible(&ns->poll); 550 } 551 } 552 553 /* 554 * vfsmount lock must be held for write 555 */ 556 static void __touch_mnt_namespace(struct mnt_namespace *ns) 557 { 558 if (ns && ns->event != event) { 559 ns->event = event; 560 wake_up_interruptible(&ns->poll); 561 } 562 } 563 564 /* 565 * Clear dentry's mounted state if it has no remaining mounts. 566 * vfsmount_lock must be held for write. 567 */ 568 static void dentry_reset_mounted(struct dentry *dentry) 569 { 570 unsigned u; 571 572 for (u = 0; u < HASH_SIZE; u++) { 573 struct mount *p; 574 575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { 576 if (p->mnt_mountpoint == dentry) 577 return; 578 } 579 } 580 spin_lock(&dentry->d_lock); 581 dentry->d_flags &= ~DCACHE_MOUNTED; 582 spin_unlock(&dentry->d_lock); 583 } 584 585 /* 586 * vfsmount lock must be held for write 587 */ 588 static void detach_mnt(struct mount *mnt, struct path *old_path) 589 { 590 old_path->dentry = mnt->mnt_mountpoint; 591 old_path->mnt = &mnt->mnt_parent->mnt; 592 mnt->mnt_parent = mnt; 593 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 594 list_del_init(&mnt->mnt_child); 595 list_del_init(&mnt->mnt_hash); 596 dentry_reset_mounted(old_path->dentry); 597 } 598 599 /* 600 * vfsmount lock must be held for write 601 */ 602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry, 603 struct mount *child_mnt) 604 { 605 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 606 child_mnt->mnt_mountpoint = dget(dentry); 607 child_mnt->mnt_parent = mnt; 608 spin_lock(&dentry->d_lock); 609 dentry->d_flags |= DCACHE_MOUNTED; 610 spin_unlock(&dentry->d_lock); 611 } 612 613 /* 614 * vfsmount lock must be held for write 615 */ 616 static void attach_mnt(struct mount *mnt, struct path *path) 617 { 618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt); 619 list_add_tail(&mnt->mnt_hash, mount_hashtable + 620 hash(path->mnt, path->dentry)); 621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts); 622 } 623 624 static inline void __mnt_make_longterm(struct mount *mnt) 625 { 626 #ifdef CONFIG_SMP 627 atomic_inc(&mnt->mnt_longterm); 628 #endif 629 } 630 631 /* needs vfsmount lock for write */ 632 static inline void __mnt_make_shortterm(struct mount *mnt) 633 { 634 #ifdef CONFIG_SMP 635 atomic_dec(&mnt->mnt_longterm); 636 #endif 637 } 638 639 /* 640 * vfsmount lock must be held for write 641 */ 642 static void commit_tree(struct mount *mnt) 643 { 644 struct mount *parent = mnt->mnt_parent; 645 struct mount *m; 646 LIST_HEAD(head); 647 struct mnt_namespace *n = parent->mnt_ns; 648 649 BUG_ON(parent == mnt); 650 651 list_add_tail(&head, &mnt->mnt_list); 652 list_for_each_entry(m, &head, mnt_list) { 653 m->mnt_ns = n; 654 __mnt_make_longterm(m); 655 } 656 657 list_splice(&head, n->list.prev); 658 659 list_add_tail(&mnt->mnt_hash, mount_hashtable + 660 hash(&parent->mnt, mnt->mnt_mountpoint)); 661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 662 touch_mnt_namespace(n); 663 } 664 665 static struct mount *next_mnt(struct mount *p, struct mount *root) 666 { 667 struct list_head *next = p->mnt_mounts.next; 668 if (next == &p->mnt_mounts) { 669 while (1) { 670 if (p == root) 671 return NULL; 672 next = p->mnt_child.next; 673 if (next != &p->mnt_parent->mnt_mounts) 674 break; 675 p = p->mnt_parent; 676 } 677 } 678 return list_entry(next, struct mount, mnt_child); 679 } 680 681 static struct mount *skip_mnt_tree(struct mount *p) 682 { 683 struct list_head *prev = p->mnt_mounts.prev; 684 while (prev != &p->mnt_mounts) { 685 p = list_entry(prev, struct mount, mnt_child); 686 prev = p->mnt_mounts.prev; 687 } 688 return p; 689 } 690 691 struct vfsmount * 692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 693 { 694 struct mount *mnt; 695 struct dentry *root; 696 697 if (!type) 698 return ERR_PTR(-ENODEV); 699 700 mnt = alloc_vfsmnt(name); 701 if (!mnt) 702 return ERR_PTR(-ENOMEM); 703 704 if (flags & MS_KERNMOUNT) 705 mnt->mnt.mnt_flags = MNT_INTERNAL; 706 707 root = mount_fs(type, flags, name, data); 708 if (IS_ERR(root)) { 709 free_vfsmnt(mnt); 710 return ERR_CAST(root); 711 } 712 713 mnt->mnt.mnt_root = root; 714 mnt->mnt.mnt_sb = root->d_sb; 715 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 716 mnt->mnt_parent = mnt; 717 br_write_lock(&vfsmount_lock); 718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 719 br_write_unlock(&vfsmount_lock); 720 return &mnt->mnt; 721 } 722 EXPORT_SYMBOL_GPL(vfs_kern_mount); 723 724 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 725 int flag) 726 { 727 struct super_block *sb = old->mnt.mnt_sb; 728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname); 729 730 if (mnt) { 731 if (flag & (CL_SLAVE | CL_PRIVATE)) 732 mnt->mnt_group_id = 0; /* not a peer of original */ 733 else 734 mnt->mnt_group_id = old->mnt_group_id; 735 736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 737 int err = mnt_alloc_group_id(mnt); 738 if (err) 739 goto out_free; 740 } 741 742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; 743 atomic_inc(&sb->s_active); 744 mnt->mnt.mnt_sb = sb; 745 mnt->mnt.mnt_root = dget(root); 746 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 747 mnt->mnt_parent = mnt; 748 br_write_lock(&vfsmount_lock); 749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 750 br_write_unlock(&vfsmount_lock); 751 752 if (flag & CL_SLAVE) { 753 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 754 mnt->mnt_master = old; 755 CLEAR_MNT_SHARED(mnt); 756 } else if (!(flag & CL_PRIVATE)) { 757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 758 list_add(&mnt->mnt_share, &old->mnt_share); 759 if (IS_MNT_SLAVE(old)) 760 list_add(&mnt->mnt_slave, &old->mnt_slave); 761 mnt->mnt_master = old->mnt_master; 762 } 763 if (flag & CL_MAKE_SHARED) 764 set_mnt_shared(mnt); 765 766 /* stick the duplicate mount on the same expiry list 767 * as the original if that was on one */ 768 if (flag & CL_EXPIRE) { 769 if (!list_empty(&old->mnt_expire)) 770 list_add(&mnt->mnt_expire, &old->mnt_expire); 771 } 772 } 773 return mnt; 774 775 out_free: 776 free_vfsmnt(mnt); 777 return NULL; 778 } 779 780 static inline void mntfree(struct mount *mnt) 781 { 782 struct vfsmount *m = &mnt->mnt; 783 struct super_block *sb = m->mnt_sb; 784 785 /* 786 * This probably indicates that somebody messed 787 * up a mnt_want/drop_write() pair. If this 788 * happens, the filesystem was probably unable 789 * to make r/w->r/o transitions. 790 */ 791 /* 792 * The locking used to deal with mnt_count decrement provides barriers, 793 * so mnt_get_writers() below is safe. 794 */ 795 WARN_ON(mnt_get_writers(mnt)); 796 fsnotify_vfsmount_delete(m); 797 dput(m->mnt_root); 798 free_vfsmnt(mnt); 799 deactivate_super(sb); 800 } 801 802 static void mntput_no_expire(struct mount *mnt) 803 { 804 put_again: 805 #ifdef CONFIG_SMP 806 br_read_lock(&vfsmount_lock); 807 if (likely(atomic_read(&mnt->mnt_longterm))) { 808 mnt_add_count(mnt, -1); 809 br_read_unlock(&vfsmount_lock); 810 return; 811 } 812 br_read_unlock(&vfsmount_lock); 813 814 br_write_lock(&vfsmount_lock); 815 mnt_add_count(mnt, -1); 816 if (mnt_get_count(mnt)) { 817 br_write_unlock(&vfsmount_lock); 818 return; 819 } 820 #else 821 mnt_add_count(mnt, -1); 822 if (likely(mnt_get_count(mnt))) 823 return; 824 br_write_lock(&vfsmount_lock); 825 #endif 826 if (unlikely(mnt->mnt_pinned)) { 827 mnt_add_count(mnt, mnt->mnt_pinned + 1); 828 mnt->mnt_pinned = 0; 829 br_write_unlock(&vfsmount_lock); 830 acct_auto_close_mnt(&mnt->mnt); 831 goto put_again; 832 } 833 834 list_del(&mnt->mnt_instance); 835 br_write_unlock(&vfsmount_lock); 836 mntfree(mnt); 837 } 838 839 void mntput(struct vfsmount *mnt) 840 { 841 if (mnt) { 842 struct mount *m = real_mount(mnt); 843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 844 if (unlikely(m->mnt_expiry_mark)) 845 m->mnt_expiry_mark = 0; 846 mntput_no_expire(m); 847 } 848 } 849 EXPORT_SYMBOL(mntput); 850 851 struct vfsmount *mntget(struct vfsmount *mnt) 852 { 853 if (mnt) 854 mnt_add_count(real_mount(mnt), 1); 855 return mnt; 856 } 857 EXPORT_SYMBOL(mntget); 858 859 void mnt_pin(struct vfsmount *mnt) 860 { 861 br_write_lock(&vfsmount_lock); 862 real_mount(mnt)->mnt_pinned++; 863 br_write_unlock(&vfsmount_lock); 864 } 865 EXPORT_SYMBOL(mnt_pin); 866 867 void mnt_unpin(struct vfsmount *m) 868 { 869 struct mount *mnt = real_mount(m); 870 br_write_lock(&vfsmount_lock); 871 if (mnt->mnt_pinned) { 872 mnt_add_count(mnt, 1); 873 mnt->mnt_pinned--; 874 } 875 br_write_unlock(&vfsmount_lock); 876 } 877 EXPORT_SYMBOL(mnt_unpin); 878 879 static inline void mangle(struct seq_file *m, const char *s) 880 { 881 seq_escape(m, s, " \t\n\\"); 882 } 883 884 /* 885 * Simple .show_options callback for filesystems which don't want to 886 * implement more complex mount option showing. 887 * 888 * See also save_mount_options(). 889 */ 890 int generic_show_options(struct seq_file *m, struct dentry *root) 891 { 892 const char *options; 893 894 rcu_read_lock(); 895 options = rcu_dereference(root->d_sb->s_options); 896 897 if (options != NULL && options[0]) { 898 seq_putc(m, ','); 899 mangle(m, options); 900 } 901 rcu_read_unlock(); 902 903 return 0; 904 } 905 EXPORT_SYMBOL(generic_show_options); 906 907 /* 908 * If filesystem uses generic_show_options(), this function should be 909 * called from the fill_super() callback. 910 * 911 * The .remount_fs callback usually needs to be handled in a special 912 * way, to make sure, that previous options are not overwritten if the 913 * remount fails. 914 * 915 * Also note, that if the filesystem's .remount_fs function doesn't 916 * reset all options to their default value, but changes only newly 917 * given options, then the displayed options will not reflect reality 918 * any more. 919 */ 920 void save_mount_options(struct super_block *sb, char *options) 921 { 922 BUG_ON(sb->s_options); 923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 924 } 925 EXPORT_SYMBOL(save_mount_options); 926 927 void replace_mount_options(struct super_block *sb, char *options) 928 { 929 char *old = sb->s_options; 930 rcu_assign_pointer(sb->s_options, options); 931 if (old) { 932 synchronize_rcu(); 933 kfree(old); 934 } 935 } 936 EXPORT_SYMBOL(replace_mount_options); 937 938 #ifdef CONFIG_PROC_FS 939 /* iterator; we want it to have access to namespace_sem, thus here... */ 940 static void *m_start(struct seq_file *m, loff_t *pos) 941 { 942 struct proc_mounts *p = container_of(m, struct proc_mounts, m); 943 944 down_read(&namespace_sem); 945 return seq_list_start(&p->ns->list, *pos); 946 } 947 948 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 949 { 950 struct proc_mounts *p = container_of(m, struct proc_mounts, m); 951 952 return seq_list_next(v, &p->ns->list, pos); 953 } 954 955 static void m_stop(struct seq_file *m, void *v) 956 { 957 up_read(&namespace_sem); 958 } 959 960 static int m_show(struct seq_file *m, void *v) 961 { 962 struct proc_mounts *p = container_of(m, struct proc_mounts, m); 963 struct mount *r = list_entry(v, struct mount, mnt_list); 964 return p->show(m, &r->mnt); 965 } 966 967 const struct seq_operations mounts_op = { 968 .start = m_start, 969 .next = m_next, 970 .stop = m_stop, 971 .show = m_show, 972 }; 973 #endif /* CONFIG_PROC_FS */ 974 975 /** 976 * may_umount_tree - check if a mount tree is busy 977 * @mnt: root of mount tree 978 * 979 * This is called to check if a tree of mounts has any 980 * open files, pwds, chroots or sub mounts that are 981 * busy. 982 */ 983 int may_umount_tree(struct vfsmount *m) 984 { 985 struct mount *mnt = real_mount(m); 986 int actual_refs = 0; 987 int minimum_refs = 0; 988 struct mount *p; 989 BUG_ON(!m); 990 991 /* write lock needed for mnt_get_count */ 992 br_write_lock(&vfsmount_lock); 993 for (p = mnt; p; p = next_mnt(p, mnt)) { 994 actual_refs += mnt_get_count(p); 995 minimum_refs += 2; 996 } 997 br_write_unlock(&vfsmount_lock); 998 999 if (actual_refs > minimum_refs) 1000 return 0; 1001 1002 return 1; 1003 } 1004 1005 EXPORT_SYMBOL(may_umount_tree); 1006 1007 /** 1008 * may_umount - check if a mount point is busy 1009 * @mnt: root of mount 1010 * 1011 * This is called to check if a mount point has any 1012 * open files, pwds, chroots or sub mounts. If the 1013 * mount has sub mounts this will return busy 1014 * regardless of whether the sub mounts are busy. 1015 * 1016 * Doesn't take quota and stuff into account. IOW, in some cases it will 1017 * give false negatives. The main reason why it's here is that we need 1018 * a non-destructive way to look for easily umountable filesystems. 1019 */ 1020 int may_umount(struct vfsmount *mnt) 1021 { 1022 int ret = 1; 1023 down_read(&namespace_sem); 1024 br_write_lock(&vfsmount_lock); 1025 if (propagate_mount_busy(real_mount(mnt), 2)) 1026 ret = 0; 1027 br_write_unlock(&vfsmount_lock); 1028 up_read(&namespace_sem); 1029 return ret; 1030 } 1031 1032 EXPORT_SYMBOL(may_umount); 1033 1034 void release_mounts(struct list_head *head) 1035 { 1036 struct mount *mnt; 1037 while (!list_empty(head)) { 1038 mnt = list_first_entry(head, struct mount, mnt_hash); 1039 list_del_init(&mnt->mnt_hash); 1040 if (mnt_has_parent(mnt)) { 1041 struct dentry *dentry; 1042 struct mount *m; 1043 1044 br_write_lock(&vfsmount_lock); 1045 dentry = mnt->mnt_mountpoint; 1046 m = mnt->mnt_parent; 1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1048 mnt->mnt_parent = mnt; 1049 m->mnt_ghosts--; 1050 br_write_unlock(&vfsmount_lock); 1051 dput(dentry); 1052 mntput(&m->mnt); 1053 } 1054 mntput(&mnt->mnt); 1055 } 1056 } 1057 1058 /* 1059 * vfsmount lock must be held for write 1060 * namespace_sem must be held for write 1061 */ 1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill) 1063 { 1064 LIST_HEAD(tmp_list); 1065 struct mount *p; 1066 1067 for (p = mnt; p; p = next_mnt(p, mnt)) 1068 list_move(&p->mnt_hash, &tmp_list); 1069 1070 if (propagate) 1071 propagate_umount(&tmp_list); 1072 1073 list_for_each_entry(p, &tmp_list, mnt_hash) { 1074 list_del_init(&p->mnt_expire); 1075 list_del_init(&p->mnt_list); 1076 __touch_mnt_namespace(p->mnt_ns); 1077 if (p->mnt_ns) 1078 __mnt_make_shortterm(p); 1079 p->mnt_ns = NULL; 1080 list_del_init(&p->mnt_child); 1081 if (mnt_has_parent(p)) { 1082 p->mnt_parent->mnt_ghosts++; 1083 dentry_reset_mounted(p->mnt_mountpoint); 1084 } 1085 change_mnt_propagation(p, MS_PRIVATE); 1086 } 1087 list_splice(&tmp_list, kill); 1088 } 1089 1090 static void shrink_submounts(struct mount *mnt, struct list_head *umounts); 1091 1092 static int do_umount(struct mount *mnt, int flags) 1093 { 1094 struct super_block *sb = mnt->mnt.mnt_sb; 1095 int retval; 1096 LIST_HEAD(umount_list); 1097 1098 retval = security_sb_umount(&mnt->mnt, flags); 1099 if (retval) 1100 return retval; 1101 1102 /* 1103 * Allow userspace to request a mountpoint be expired rather than 1104 * unmounting unconditionally. Unmount only happens if: 1105 * (1) the mark is already set (the mark is cleared by mntput()) 1106 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1107 */ 1108 if (flags & MNT_EXPIRE) { 1109 if (&mnt->mnt == current->fs->root.mnt || 1110 flags & (MNT_FORCE | MNT_DETACH)) 1111 return -EINVAL; 1112 1113 /* 1114 * probably don't strictly need the lock here if we examined 1115 * all race cases, but it's a slowpath. 1116 */ 1117 br_write_lock(&vfsmount_lock); 1118 if (mnt_get_count(mnt) != 2) { 1119 br_write_unlock(&vfsmount_lock); 1120 return -EBUSY; 1121 } 1122 br_write_unlock(&vfsmount_lock); 1123 1124 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1125 return -EAGAIN; 1126 } 1127 1128 /* 1129 * If we may have to abort operations to get out of this 1130 * mount, and they will themselves hold resources we must 1131 * allow the fs to do things. In the Unix tradition of 1132 * 'Gee thats tricky lets do it in userspace' the umount_begin 1133 * might fail to complete on the first run through as other tasks 1134 * must return, and the like. Thats for the mount program to worry 1135 * about for the moment. 1136 */ 1137 1138 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1139 sb->s_op->umount_begin(sb); 1140 } 1141 1142 /* 1143 * No sense to grab the lock for this test, but test itself looks 1144 * somewhat bogus. Suggestions for better replacement? 1145 * Ho-hum... In principle, we might treat that as umount + switch 1146 * to rootfs. GC would eventually take care of the old vfsmount. 1147 * Actually it makes sense, especially if rootfs would contain a 1148 * /reboot - static binary that would close all descriptors and 1149 * call reboot(9). Then init(8) could umount root and exec /reboot. 1150 */ 1151 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1152 /* 1153 * Special case for "unmounting" root ... 1154 * we just try to remount it readonly. 1155 */ 1156 down_write(&sb->s_umount); 1157 if (!(sb->s_flags & MS_RDONLY)) 1158 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1159 up_write(&sb->s_umount); 1160 return retval; 1161 } 1162 1163 down_write(&namespace_sem); 1164 br_write_lock(&vfsmount_lock); 1165 event++; 1166 1167 if (!(flags & MNT_DETACH)) 1168 shrink_submounts(mnt, &umount_list); 1169 1170 retval = -EBUSY; 1171 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1172 if (!list_empty(&mnt->mnt_list)) 1173 umount_tree(mnt, 1, &umount_list); 1174 retval = 0; 1175 } 1176 br_write_unlock(&vfsmount_lock); 1177 up_write(&namespace_sem); 1178 release_mounts(&umount_list); 1179 return retval; 1180 } 1181 1182 /* 1183 * Now umount can handle mount points as well as block devices. 1184 * This is important for filesystems which use unnamed block devices. 1185 * 1186 * We now support a flag for forced unmount like the other 'big iron' 1187 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1188 */ 1189 1190 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1191 { 1192 struct path path; 1193 struct mount *mnt; 1194 int retval; 1195 int lookup_flags = 0; 1196 1197 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1198 return -EINVAL; 1199 1200 if (!(flags & UMOUNT_NOFOLLOW)) 1201 lookup_flags |= LOOKUP_FOLLOW; 1202 1203 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1204 if (retval) 1205 goto out; 1206 mnt = real_mount(path.mnt); 1207 retval = -EINVAL; 1208 if (path.dentry != path.mnt->mnt_root) 1209 goto dput_and_out; 1210 if (!check_mnt(mnt)) 1211 goto dput_and_out; 1212 1213 retval = -EPERM; 1214 if (!capable(CAP_SYS_ADMIN)) 1215 goto dput_and_out; 1216 1217 retval = do_umount(mnt, flags); 1218 dput_and_out: 1219 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1220 dput(path.dentry); 1221 mntput_no_expire(mnt); 1222 out: 1223 return retval; 1224 } 1225 1226 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1227 1228 /* 1229 * The 2.0 compatible umount. No flags. 1230 */ 1231 SYSCALL_DEFINE1(oldumount, char __user *, name) 1232 { 1233 return sys_umount(name, 0); 1234 } 1235 1236 #endif 1237 1238 static int mount_is_safe(struct path *path) 1239 { 1240 if (capable(CAP_SYS_ADMIN)) 1241 return 0; 1242 return -EPERM; 1243 #ifdef notyet 1244 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1245 return -EPERM; 1246 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1247 if (current_uid() != path->dentry->d_inode->i_uid) 1248 return -EPERM; 1249 } 1250 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1251 return -EPERM; 1252 return 0; 1253 #endif 1254 } 1255 1256 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1257 int flag) 1258 { 1259 struct mount *res, *p, *q, *r; 1260 struct path path; 1261 1262 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1263 return NULL; 1264 1265 res = q = clone_mnt(mnt, dentry, flag); 1266 if (!q) 1267 goto Enomem; 1268 q->mnt_mountpoint = mnt->mnt_mountpoint; 1269 1270 p = mnt; 1271 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1272 struct mount *s; 1273 if (!is_subdir(r->mnt_mountpoint, dentry)) 1274 continue; 1275 1276 for (s = r; s; s = next_mnt(s, r)) { 1277 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1278 s = skip_mnt_tree(s); 1279 continue; 1280 } 1281 while (p != s->mnt_parent) { 1282 p = p->mnt_parent; 1283 q = q->mnt_parent; 1284 } 1285 p = s; 1286 path.mnt = &q->mnt; 1287 path.dentry = p->mnt_mountpoint; 1288 q = clone_mnt(p, p->mnt.mnt_root, flag); 1289 if (!q) 1290 goto Enomem; 1291 br_write_lock(&vfsmount_lock); 1292 list_add_tail(&q->mnt_list, &res->mnt_list); 1293 attach_mnt(q, &path); 1294 br_write_unlock(&vfsmount_lock); 1295 } 1296 } 1297 return res; 1298 Enomem: 1299 if (res) { 1300 LIST_HEAD(umount_list); 1301 br_write_lock(&vfsmount_lock); 1302 umount_tree(res, 0, &umount_list); 1303 br_write_unlock(&vfsmount_lock); 1304 release_mounts(&umount_list); 1305 } 1306 return NULL; 1307 } 1308 1309 struct vfsmount *collect_mounts(struct path *path) 1310 { 1311 struct mount *tree; 1312 down_write(&namespace_sem); 1313 tree = copy_tree(real_mount(path->mnt), path->dentry, 1314 CL_COPY_ALL | CL_PRIVATE); 1315 up_write(&namespace_sem); 1316 return tree ? &tree->mnt : NULL; 1317 } 1318 1319 void drop_collected_mounts(struct vfsmount *mnt) 1320 { 1321 LIST_HEAD(umount_list); 1322 down_write(&namespace_sem); 1323 br_write_lock(&vfsmount_lock); 1324 umount_tree(real_mount(mnt), 0, &umount_list); 1325 br_write_unlock(&vfsmount_lock); 1326 up_write(&namespace_sem); 1327 release_mounts(&umount_list); 1328 } 1329 1330 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1331 struct vfsmount *root) 1332 { 1333 struct mount *mnt; 1334 int res = f(root, arg); 1335 if (res) 1336 return res; 1337 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1338 res = f(&mnt->mnt, arg); 1339 if (res) 1340 return res; 1341 } 1342 return 0; 1343 } 1344 1345 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1346 { 1347 struct mount *p; 1348 1349 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1350 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1351 mnt_release_group_id(p); 1352 } 1353 } 1354 1355 static int invent_group_ids(struct mount *mnt, bool recurse) 1356 { 1357 struct mount *p; 1358 1359 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1360 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1361 int err = mnt_alloc_group_id(p); 1362 if (err) { 1363 cleanup_group_ids(mnt, p); 1364 return err; 1365 } 1366 } 1367 } 1368 1369 return 0; 1370 } 1371 1372 /* 1373 * @source_mnt : mount tree to be attached 1374 * @nd : place the mount tree @source_mnt is attached 1375 * @parent_nd : if non-null, detach the source_mnt from its parent and 1376 * store the parent mount and mountpoint dentry. 1377 * (done when source_mnt is moved) 1378 * 1379 * NOTE: in the table below explains the semantics when a source mount 1380 * of a given type is attached to a destination mount of a given type. 1381 * --------------------------------------------------------------------------- 1382 * | BIND MOUNT OPERATION | 1383 * |************************************************************************** 1384 * | source-->| shared | private | slave | unbindable | 1385 * | dest | | | | | 1386 * | | | | | | | 1387 * | v | | | | | 1388 * |************************************************************************** 1389 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1390 * | | | | | | 1391 * |non-shared| shared (+) | private | slave (*) | invalid | 1392 * *************************************************************************** 1393 * A bind operation clones the source mount and mounts the clone on the 1394 * destination mount. 1395 * 1396 * (++) the cloned mount is propagated to all the mounts in the propagation 1397 * tree of the destination mount and the cloned mount is added to 1398 * the peer group of the source mount. 1399 * (+) the cloned mount is created under the destination mount and is marked 1400 * as shared. The cloned mount is added to the peer group of the source 1401 * mount. 1402 * (+++) the mount is propagated to all the mounts in the propagation tree 1403 * of the destination mount and the cloned mount is made slave 1404 * of the same master as that of the source mount. The cloned mount 1405 * is marked as 'shared and slave'. 1406 * (*) the cloned mount is made a slave of the same master as that of the 1407 * source mount. 1408 * 1409 * --------------------------------------------------------------------------- 1410 * | MOVE MOUNT OPERATION | 1411 * |************************************************************************** 1412 * | source-->| shared | private | slave | unbindable | 1413 * | dest | | | | | 1414 * | | | | | | | 1415 * | v | | | | | 1416 * |************************************************************************** 1417 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1418 * | | | | | | 1419 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1420 * *************************************************************************** 1421 * 1422 * (+) the mount is moved to the destination. And is then propagated to 1423 * all the mounts in the propagation tree of the destination mount. 1424 * (+*) the mount is moved to the destination. 1425 * (+++) the mount is moved to the destination and is then propagated to 1426 * all the mounts belonging to the destination mount's propagation tree. 1427 * the mount is marked as 'shared and slave'. 1428 * (*) the mount continues to be a slave at the new location. 1429 * 1430 * if the source mount is a tree, the operations explained above is 1431 * applied to each mount in the tree. 1432 * Must be called without spinlocks held, since this function can sleep 1433 * in allocations. 1434 */ 1435 static int attach_recursive_mnt(struct mount *source_mnt, 1436 struct path *path, struct path *parent_path) 1437 { 1438 LIST_HEAD(tree_list); 1439 struct mount *dest_mnt = real_mount(path->mnt); 1440 struct dentry *dest_dentry = path->dentry; 1441 struct mount *child, *p; 1442 int err; 1443 1444 if (IS_MNT_SHARED(dest_mnt)) { 1445 err = invent_group_ids(source_mnt, true); 1446 if (err) 1447 goto out; 1448 } 1449 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1450 if (err) 1451 goto out_cleanup_ids; 1452 1453 br_write_lock(&vfsmount_lock); 1454 1455 if (IS_MNT_SHARED(dest_mnt)) { 1456 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1457 set_mnt_shared(p); 1458 } 1459 if (parent_path) { 1460 detach_mnt(source_mnt, parent_path); 1461 attach_mnt(source_mnt, path); 1462 touch_mnt_namespace(source_mnt->mnt_ns); 1463 } else { 1464 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1465 commit_tree(source_mnt); 1466 } 1467 1468 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1469 list_del_init(&child->mnt_hash); 1470 commit_tree(child); 1471 } 1472 br_write_unlock(&vfsmount_lock); 1473 1474 return 0; 1475 1476 out_cleanup_ids: 1477 if (IS_MNT_SHARED(dest_mnt)) 1478 cleanup_group_ids(source_mnt, NULL); 1479 out: 1480 return err; 1481 } 1482 1483 static int lock_mount(struct path *path) 1484 { 1485 struct vfsmount *mnt; 1486 retry: 1487 mutex_lock(&path->dentry->d_inode->i_mutex); 1488 if (unlikely(cant_mount(path->dentry))) { 1489 mutex_unlock(&path->dentry->d_inode->i_mutex); 1490 return -ENOENT; 1491 } 1492 down_write(&namespace_sem); 1493 mnt = lookup_mnt(path); 1494 if (likely(!mnt)) 1495 return 0; 1496 up_write(&namespace_sem); 1497 mutex_unlock(&path->dentry->d_inode->i_mutex); 1498 path_put(path); 1499 path->mnt = mnt; 1500 path->dentry = dget(mnt->mnt_root); 1501 goto retry; 1502 } 1503 1504 static void unlock_mount(struct path *path) 1505 { 1506 up_write(&namespace_sem); 1507 mutex_unlock(&path->dentry->d_inode->i_mutex); 1508 } 1509 1510 static int graft_tree(struct mount *mnt, struct path *path) 1511 { 1512 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1513 return -EINVAL; 1514 1515 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1516 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1517 return -ENOTDIR; 1518 1519 if (d_unlinked(path->dentry)) 1520 return -ENOENT; 1521 1522 return attach_recursive_mnt(mnt, path, NULL); 1523 } 1524 1525 /* 1526 * Sanity check the flags to change_mnt_propagation. 1527 */ 1528 1529 static int flags_to_propagation_type(int flags) 1530 { 1531 int type = flags & ~(MS_REC | MS_SILENT); 1532 1533 /* Fail if any non-propagation flags are set */ 1534 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1535 return 0; 1536 /* Only one propagation flag should be set */ 1537 if (!is_power_of_2(type)) 1538 return 0; 1539 return type; 1540 } 1541 1542 /* 1543 * recursively change the type of the mountpoint. 1544 */ 1545 static int do_change_type(struct path *path, int flag) 1546 { 1547 struct mount *m; 1548 struct mount *mnt = real_mount(path->mnt); 1549 int recurse = flag & MS_REC; 1550 int type; 1551 int err = 0; 1552 1553 if (!capable(CAP_SYS_ADMIN)) 1554 return -EPERM; 1555 1556 if (path->dentry != path->mnt->mnt_root) 1557 return -EINVAL; 1558 1559 type = flags_to_propagation_type(flag); 1560 if (!type) 1561 return -EINVAL; 1562 1563 down_write(&namespace_sem); 1564 if (type == MS_SHARED) { 1565 err = invent_group_ids(mnt, recurse); 1566 if (err) 1567 goto out_unlock; 1568 } 1569 1570 br_write_lock(&vfsmount_lock); 1571 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1572 change_mnt_propagation(m, type); 1573 br_write_unlock(&vfsmount_lock); 1574 1575 out_unlock: 1576 up_write(&namespace_sem); 1577 return err; 1578 } 1579 1580 /* 1581 * do loopback mount. 1582 */ 1583 static int do_loopback(struct path *path, char *old_name, 1584 int recurse) 1585 { 1586 LIST_HEAD(umount_list); 1587 struct path old_path; 1588 struct mount *mnt = NULL, *old; 1589 int err = mount_is_safe(path); 1590 if (err) 1591 return err; 1592 if (!old_name || !*old_name) 1593 return -EINVAL; 1594 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1595 if (err) 1596 return err; 1597 1598 err = lock_mount(path); 1599 if (err) 1600 goto out; 1601 1602 old = real_mount(old_path.mnt); 1603 1604 err = -EINVAL; 1605 if (IS_MNT_UNBINDABLE(old)) 1606 goto out2; 1607 1608 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old)) 1609 goto out2; 1610 1611 err = -ENOMEM; 1612 if (recurse) 1613 mnt = copy_tree(old, old_path.dentry, 0); 1614 else 1615 mnt = clone_mnt(old, old_path.dentry, 0); 1616 1617 if (!mnt) 1618 goto out2; 1619 1620 err = graft_tree(mnt, path); 1621 if (err) { 1622 br_write_lock(&vfsmount_lock); 1623 umount_tree(mnt, 0, &umount_list); 1624 br_write_unlock(&vfsmount_lock); 1625 } 1626 out2: 1627 unlock_mount(path); 1628 release_mounts(&umount_list); 1629 out: 1630 path_put(&old_path); 1631 return err; 1632 } 1633 1634 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1635 { 1636 int error = 0; 1637 int readonly_request = 0; 1638 1639 if (ms_flags & MS_RDONLY) 1640 readonly_request = 1; 1641 if (readonly_request == __mnt_is_readonly(mnt)) 1642 return 0; 1643 1644 if (readonly_request) 1645 error = mnt_make_readonly(real_mount(mnt)); 1646 else 1647 __mnt_unmake_readonly(real_mount(mnt)); 1648 return error; 1649 } 1650 1651 /* 1652 * change filesystem flags. dir should be a physical root of filesystem. 1653 * If you've mounted a non-root directory somewhere and want to do remount 1654 * on it - tough luck. 1655 */ 1656 static int do_remount(struct path *path, int flags, int mnt_flags, 1657 void *data) 1658 { 1659 int err; 1660 struct super_block *sb = path->mnt->mnt_sb; 1661 struct mount *mnt = real_mount(path->mnt); 1662 1663 if (!capable(CAP_SYS_ADMIN)) 1664 return -EPERM; 1665 1666 if (!check_mnt(mnt)) 1667 return -EINVAL; 1668 1669 if (path->dentry != path->mnt->mnt_root) 1670 return -EINVAL; 1671 1672 err = security_sb_remount(sb, data); 1673 if (err) 1674 return err; 1675 1676 down_write(&sb->s_umount); 1677 if (flags & MS_BIND) 1678 err = change_mount_flags(path->mnt, flags); 1679 else 1680 err = do_remount_sb(sb, flags, data, 0); 1681 if (!err) { 1682 br_write_lock(&vfsmount_lock); 1683 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; 1684 mnt->mnt.mnt_flags = mnt_flags; 1685 br_write_unlock(&vfsmount_lock); 1686 } 1687 up_write(&sb->s_umount); 1688 if (!err) { 1689 br_write_lock(&vfsmount_lock); 1690 touch_mnt_namespace(mnt->mnt_ns); 1691 br_write_unlock(&vfsmount_lock); 1692 } 1693 return err; 1694 } 1695 1696 static inline int tree_contains_unbindable(struct mount *mnt) 1697 { 1698 struct mount *p; 1699 for (p = mnt; p; p = next_mnt(p, mnt)) { 1700 if (IS_MNT_UNBINDABLE(p)) 1701 return 1; 1702 } 1703 return 0; 1704 } 1705 1706 static int do_move_mount(struct path *path, char *old_name) 1707 { 1708 struct path old_path, parent_path; 1709 struct mount *p; 1710 struct mount *old; 1711 int err = 0; 1712 if (!capable(CAP_SYS_ADMIN)) 1713 return -EPERM; 1714 if (!old_name || !*old_name) 1715 return -EINVAL; 1716 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1717 if (err) 1718 return err; 1719 1720 err = lock_mount(path); 1721 if (err < 0) 1722 goto out; 1723 1724 old = real_mount(old_path.mnt); 1725 p = real_mount(path->mnt); 1726 1727 err = -EINVAL; 1728 if (!check_mnt(p) || !check_mnt(old)) 1729 goto out1; 1730 1731 if (d_unlinked(path->dentry)) 1732 goto out1; 1733 1734 err = -EINVAL; 1735 if (old_path.dentry != old_path.mnt->mnt_root) 1736 goto out1; 1737 1738 if (!mnt_has_parent(old)) 1739 goto out1; 1740 1741 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1742 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1743 goto out1; 1744 /* 1745 * Don't move a mount residing in a shared parent. 1746 */ 1747 if (IS_MNT_SHARED(old->mnt_parent)) 1748 goto out1; 1749 /* 1750 * Don't move a mount tree containing unbindable mounts to a destination 1751 * mount which is shared. 1752 */ 1753 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 1754 goto out1; 1755 err = -ELOOP; 1756 for (; mnt_has_parent(p); p = p->mnt_parent) 1757 if (p == old) 1758 goto out1; 1759 1760 err = attach_recursive_mnt(old, path, &parent_path); 1761 if (err) 1762 goto out1; 1763 1764 /* if the mount is moved, it should no longer be expire 1765 * automatically */ 1766 list_del_init(&old->mnt_expire); 1767 out1: 1768 unlock_mount(path); 1769 out: 1770 if (!err) 1771 path_put(&parent_path); 1772 path_put(&old_path); 1773 return err; 1774 } 1775 1776 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 1777 { 1778 int err; 1779 const char *subtype = strchr(fstype, '.'); 1780 if (subtype) { 1781 subtype++; 1782 err = -EINVAL; 1783 if (!subtype[0]) 1784 goto err; 1785 } else 1786 subtype = ""; 1787 1788 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 1789 err = -ENOMEM; 1790 if (!mnt->mnt_sb->s_subtype) 1791 goto err; 1792 return mnt; 1793 1794 err: 1795 mntput(mnt); 1796 return ERR_PTR(err); 1797 } 1798 1799 static struct vfsmount * 1800 do_kern_mount(const char *fstype, int flags, const char *name, void *data) 1801 { 1802 struct file_system_type *type = get_fs_type(fstype); 1803 struct vfsmount *mnt; 1804 if (!type) 1805 return ERR_PTR(-ENODEV); 1806 mnt = vfs_kern_mount(type, flags, name, data); 1807 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 1808 !mnt->mnt_sb->s_subtype) 1809 mnt = fs_set_subtype(mnt, fstype); 1810 put_filesystem(type); 1811 return mnt; 1812 } 1813 1814 /* 1815 * add a mount into a namespace's mount tree 1816 */ 1817 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 1818 { 1819 int err; 1820 1821 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); 1822 1823 err = lock_mount(path); 1824 if (err) 1825 return err; 1826 1827 err = -EINVAL; 1828 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt))) 1829 goto unlock; 1830 1831 /* Refuse the same filesystem on the same mount point */ 1832 err = -EBUSY; 1833 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 1834 path->mnt->mnt_root == path->dentry) 1835 goto unlock; 1836 1837 err = -EINVAL; 1838 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 1839 goto unlock; 1840 1841 newmnt->mnt.mnt_flags = mnt_flags; 1842 err = graft_tree(newmnt, path); 1843 1844 unlock: 1845 unlock_mount(path); 1846 return err; 1847 } 1848 1849 /* 1850 * create a new mount for userspace and request it to be added into the 1851 * namespace's tree 1852 */ 1853 static int do_new_mount(struct path *path, char *type, int flags, 1854 int mnt_flags, char *name, void *data) 1855 { 1856 struct vfsmount *mnt; 1857 int err; 1858 1859 if (!type) 1860 return -EINVAL; 1861 1862 /* we need capabilities... */ 1863 if (!capable(CAP_SYS_ADMIN)) 1864 return -EPERM; 1865 1866 mnt = do_kern_mount(type, flags, name, data); 1867 if (IS_ERR(mnt)) 1868 return PTR_ERR(mnt); 1869 1870 err = do_add_mount(real_mount(mnt), path, mnt_flags); 1871 if (err) 1872 mntput(mnt); 1873 return err; 1874 } 1875 1876 int finish_automount(struct vfsmount *m, struct path *path) 1877 { 1878 struct mount *mnt = real_mount(m); 1879 int err; 1880 /* The new mount record should have at least 2 refs to prevent it being 1881 * expired before we get a chance to add it 1882 */ 1883 BUG_ON(mnt_get_count(mnt) < 2); 1884 1885 if (m->mnt_sb == path->mnt->mnt_sb && 1886 m->mnt_root == path->dentry) { 1887 err = -ELOOP; 1888 goto fail; 1889 } 1890 1891 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 1892 if (!err) 1893 return 0; 1894 fail: 1895 /* remove m from any expiration list it may be on */ 1896 if (!list_empty(&mnt->mnt_expire)) { 1897 down_write(&namespace_sem); 1898 br_write_lock(&vfsmount_lock); 1899 list_del_init(&mnt->mnt_expire); 1900 br_write_unlock(&vfsmount_lock); 1901 up_write(&namespace_sem); 1902 } 1903 mntput(m); 1904 mntput(m); 1905 return err; 1906 } 1907 1908 /** 1909 * mnt_set_expiry - Put a mount on an expiration list 1910 * @mnt: The mount to list. 1911 * @expiry_list: The list to add the mount to. 1912 */ 1913 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 1914 { 1915 down_write(&namespace_sem); 1916 br_write_lock(&vfsmount_lock); 1917 1918 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 1919 1920 br_write_unlock(&vfsmount_lock); 1921 up_write(&namespace_sem); 1922 } 1923 EXPORT_SYMBOL(mnt_set_expiry); 1924 1925 /* 1926 * process a list of expirable mountpoints with the intent of discarding any 1927 * mountpoints that aren't in use and haven't been touched since last we came 1928 * here 1929 */ 1930 void mark_mounts_for_expiry(struct list_head *mounts) 1931 { 1932 struct mount *mnt, *next; 1933 LIST_HEAD(graveyard); 1934 LIST_HEAD(umounts); 1935 1936 if (list_empty(mounts)) 1937 return; 1938 1939 down_write(&namespace_sem); 1940 br_write_lock(&vfsmount_lock); 1941 1942 /* extract from the expiration list every vfsmount that matches the 1943 * following criteria: 1944 * - only referenced by its parent vfsmount 1945 * - still marked for expiry (marked on the last call here; marks are 1946 * cleared by mntput()) 1947 */ 1948 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1949 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1950 propagate_mount_busy(mnt, 1)) 1951 continue; 1952 list_move(&mnt->mnt_expire, &graveyard); 1953 } 1954 while (!list_empty(&graveyard)) { 1955 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 1956 touch_mnt_namespace(mnt->mnt_ns); 1957 umount_tree(mnt, 1, &umounts); 1958 } 1959 br_write_unlock(&vfsmount_lock); 1960 up_write(&namespace_sem); 1961 1962 release_mounts(&umounts); 1963 } 1964 1965 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1966 1967 /* 1968 * Ripoff of 'select_parent()' 1969 * 1970 * search the list of submounts for a given mountpoint, and move any 1971 * shrinkable submounts to the 'graveyard' list. 1972 */ 1973 static int select_submounts(struct mount *parent, struct list_head *graveyard) 1974 { 1975 struct mount *this_parent = parent; 1976 struct list_head *next; 1977 int found = 0; 1978 1979 repeat: 1980 next = this_parent->mnt_mounts.next; 1981 resume: 1982 while (next != &this_parent->mnt_mounts) { 1983 struct list_head *tmp = next; 1984 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 1985 1986 next = tmp->next; 1987 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 1988 continue; 1989 /* 1990 * Descend a level if the d_mounts list is non-empty. 1991 */ 1992 if (!list_empty(&mnt->mnt_mounts)) { 1993 this_parent = mnt; 1994 goto repeat; 1995 } 1996 1997 if (!propagate_mount_busy(mnt, 1)) { 1998 list_move_tail(&mnt->mnt_expire, graveyard); 1999 found++; 2000 } 2001 } 2002 /* 2003 * All done at this level ... ascend and resume the search 2004 */ 2005 if (this_parent != parent) { 2006 next = this_parent->mnt_child.next; 2007 this_parent = this_parent->mnt_parent; 2008 goto resume; 2009 } 2010 return found; 2011 } 2012 2013 /* 2014 * process a list of expirable mountpoints with the intent of discarding any 2015 * submounts of a specific parent mountpoint 2016 * 2017 * vfsmount_lock must be held for write 2018 */ 2019 static void shrink_submounts(struct mount *mnt, struct list_head *umounts) 2020 { 2021 LIST_HEAD(graveyard); 2022 struct mount *m; 2023 2024 /* extract submounts of 'mountpoint' from the expiration list */ 2025 while (select_submounts(mnt, &graveyard)) { 2026 while (!list_empty(&graveyard)) { 2027 m = list_first_entry(&graveyard, struct mount, 2028 mnt_expire); 2029 touch_mnt_namespace(m->mnt_ns); 2030 umount_tree(m, 1, umounts); 2031 } 2032 } 2033 } 2034 2035 /* 2036 * Some copy_from_user() implementations do not return the exact number of 2037 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2038 * Note that this function differs from copy_from_user() in that it will oops 2039 * on bad values of `to', rather than returning a short copy. 2040 */ 2041 static long exact_copy_from_user(void *to, const void __user * from, 2042 unsigned long n) 2043 { 2044 char *t = to; 2045 const char __user *f = from; 2046 char c; 2047 2048 if (!access_ok(VERIFY_READ, from, n)) 2049 return n; 2050 2051 while (n) { 2052 if (__get_user(c, f)) { 2053 memset(t, 0, n); 2054 break; 2055 } 2056 *t++ = c; 2057 f++; 2058 n--; 2059 } 2060 return n; 2061 } 2062 2063 int copy_mount_options(const void __user * data, unsigned long *where) 2064 { 2065 int i; 2066 unsigned long page; 2067 unsigned long size; 2068 2069 *where = 0; 2070 if (!data) 2071 return 0; 2072 2073 if (!(page = __get_free_page(GFP_KERNEL))) 2074 return -ENOMEM; 2075 2076 /* We only care that *some* data at the address the user 2077 * gave us is valid. Just in case, we'll zero 2078 * the remainder of the page. 2079 */ 2080 /* copy_from_user cannot cross TASK_SIZE ! */ 2081 size = TASK_SIZE - (unsigned long)data; 2082 if (size > PAGE_SIZE) 2083 size = PAGE_SIZE; 2084 2085 i = size - exact_copy_from_user((void *)page, data, size); 2086 if (!i) { 2087 free_page(page); 2088 return -EFAULT; 2089 } 2090 if (i != PAGE_SIZE) 2091 memset((char *)page + i, 0, PAGE_SIZE - i); 2092 *where = page; 2093 return 0; 2094 } 2095 2096 int copy_mount_string(const void __user *data, char **where) 2097 { 2098 char *tmp; 2099 2100 if (!data) { 2101 *where = NULL; 2102 return 0; 2103 } 2104 2105 tmp = strndup_user(data, PAGE_SIZE); 2106 if (IS_ERR(tmp)) 2107 return PTR_ERR(tmp); 2108 2109 *where = tmp; 2110 return 0; 2111 } 2112 2113 /* 2114 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2115 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2116 * 2117 * data is a (void *) that can point to any structure up to 2118 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2119 * information (or be NULL). 2120 * 2121 * Pre-0.97 versions of mount() didn't have a flags word. 2122 * When the flags word was introduced its top half was required 2123 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2124 * Therefore, if this magic number is present, it carries no information 2125 * and must be discarded. 2126 */ 2127 long do_mount(char *dev_name, char *dir_name, char *type_page, 2128 unsigned long flags, void *data_page) 2129 { 2130 struct path path; 2131 int retval = 0; 2132 int mnt_flags = 0; 2133 2134 /* Discard magic */ 2135 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2136 flags &= ~MS_MGC_MSK; 2137 2138 /* Basic sanity checks */ 2139 2140 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 2141 return -EINVAL; 2142 2143 if (data_page) 2144 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2145 2146 /* ... and get the mountpoint */ 2147 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 2148 if (retval) 2149 return retval; 2150 2151 retval = security_sb_mount(dev_name, &path, 2152 type_page, flags, data_page); 2153 if (retval) 2154 goto dput_out; 2155 2156 /* Default to relatime unless overriden */ 2157 if (!(flags & MS_NOATIME)) 2158 mnt_flags |= MNT_RELATIME; 2159 2160 /* Separate the per-mountpoint flags */ 2161 if (flags & MS_NOSUID) 2162 mnt_flags |= MNT_NOSUID; 2163 if (flags & MS_NODEV) 2164 mnt_flags |= MNT_NODEV; 2165 if (flags & MS_NOEXEC) 2166 mnt_flags |= MNT_NOEXEC; 2167 if (flags & MS_NOATIME) 2168 mnt_flags |= MNT_NOATIME; 2169 if (flags & MS_NODIRATIME) 2170 mnt_flags |= MNT_NODIRATIME; 2171 if (flags & MS_STRICTATIME) 2172 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2173 if (flags & MS_RDONLY) 2174 mnt_flags |= MNT_READONLY; 2175 2176 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2177 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2178 MS_STRICTATIME); 2179 2180 if (flags & MS_REMOUNT) 2181 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2182 data_page); 2183 else if (flags & MS_BIND) 2184 retval = do_loopback(&path, dev_name, flags & MS_REC); 2185 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2186 retval = do_change_type(&path, flags); 2187 else if (flags & MS_MOVE) 2188 retval = do_move_mount(&path, dev_name); 2189 else 2190 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2191 dev_name, data_page); 2192 dput_out: 2193 path_put(&path); 2194 return retval; 2195 } 2196 2197 static struct mnt_namespace *alloc_mnt_ns(void) 2198 { 2199 struct mnt_namespace *new_ns; 2200 2201 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2202 if (!new_ns) 2203 return ERR_PTR(-ENOMEM); 2204 atomic_set(&new_ns->count, 1); 2205 new_ns->root = NULL; 2206 INIT_LIST_HEAD(&new_ns->list); 2207 init_waitqueue_head(&new_ns->poll); 2208 new_ns->event = 0; 2209 return new_ns; 2210 } 2211 2212 void mnt_make_longterm(struct vfsmount *mnt) 2213 { 2214 __mnt_make_longterm(real_mount(mnt)); 2215 } 2216 2217 void mnt_make_shortterm(struct vfsmount *m) 2218 { 2219 #ifdef CONFIG_SMP 2220 struct mount *mnt = real_mount(m); 2221 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) 2222 return; 2223 br_write_lock(&vfsmount_lock); 2224 atomic_dec(&mnt->mnt_longterm); 2225 br_write_unlock(&vfsmount_lock); 2226 #endif 2227 } 2228 2229 /* 2230 * Allocate a new namespace structure and populate it with contents 2231 * copied from the namespace of the passed in task structure. 2232 */ 2233 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 2234 struct fs_struct *fs) 2235 { 2236 struct mnt_namespace *new_ns; 2237 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2238 struct mount *p, *q; 2239 struct mount *old = mnt_ns->root; 2240 struct mount *new; 2241 2242 new_ns = alloc_mnt_ns(); 2243 if (IS_ERR(new_ns)) 2244 return new_ns; 2245 2246 down_write(&namespace_sem); 2247 /* First pass: copy the tree topology */ 2248 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE); 2249 if (!new) { 2250 up_write(&namespace_sem); 2251 kfree(new_ns); 2252 return ERR_PTR(-ENOMEM); 2253 } 2254 new_ns->root = new; 2255 br_write_lock(&vfsmount_lock); 2256 list_add_tail(&new_ns->list, &new->mnt_list); 2257 br_write_unlock(&vfsmount_lock); 2258 2259 /* 2260 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2261 * as belonging to new namespace. We have already acquired a private 2262 * fs_struct, so tsk->fs->lock is not needed. 2263 */ 2264 p = old; 2265 q = new; 2266 while (p) { 2267 q->mnt_ns = new_ns; 2268 __mnt_make_longterm(q); 2269 if (fs) { 2270 if (&p->mnt == fs->root.mnt) { 2271 fs->root.mnt = mntget(&q->mnt); 2272 __mnt_make_longterm(q); 2273 mnt_make_shortterm(&p->mnt); 2274 rootmnt = &p->mnt; 2275 } 2276 if (&p->mnt == fs->pwd.mnt) { 2277 fs->pwd.mnt = mntget(&q->mnt); 2278 __mnt_make_longterm(q); 2279 mnt_make_shortterm(&p->mnt); 2280 pwdmnt = &p->mnt; 2281 } 2282 } 2283 p = next_mnt(p, old); 2284 q = next_mnt(q, new); 2285 } 2286 up_write(&namespace_sem); 2287 2288 if (rootmnt) 2289 mntput(rootmnt); 2290 if (pwdmnt) 2291 mntput(pwdmnt); 2292 2293 return new_ns; 2294 } 2295 2296 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2297 struct fs_struct *new_fs) 2298 { 2299 struct mnt_namespace *new_ns; 2300 2301 BUG_ON(!ns); 2302 get_mnt_ns(ns); 2303 2304 if (!(flags & CLONE_NEWNS)) 2305 return ns; 2306 2307 new_ns = dup_mnt_ns(ns, new_fs); 2308 2309 put_mnt_ns(ns); 2310 return new_ns; 2311 } 2312 2313 /** 2314 * create_mnt_ns - creates a private namespace and adds a root filesystem 2315 * @mnt: pointer to the new root filesystem mountpoint 2316 */ 2317 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2318 { 2319 struct mnt_namespace *new_ns = alloc_mnt_ns(); 2320 if (!IS_ERR(new_ns)) { 2321 struct mount *mnt = real_mount(m); 2322 mnt->mnt_ns = new_ns; 2323 __mnt_make_longterm(mnt); 2324 new_ns->root = mnt; 2325 list_add(&new_ns->list, &mnt->mnt_list); 2326 } else { 2327 mntput(m); 2328 } 2329 return new_ns; 2330 } 2331 2332 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2333 { 2334 struct mnt_namespace *ns; 2335 struct super_block *s; 2336 struct path path; 2337 int err; 2338 2339 ns = create_mnt_ns(mnt); 2340 if (IS_ERR(ns)) 2341 return ERR_CAST(ns); 2342 2343 err = vfs_path_lookup(mnt->mnt_root, mnt, 2344 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2345 2346 put_mnt_ns(ns); 2347 2348 if (err) 2349 return ERR_PTR(err); 2350 2351 /* trade a vfsmount reference for active sb one */ 2352 s = path.mnt->mnt_sb; 2353 atomic_inc(&s->s_active); 2354 mntput(path.mnt); 2355 /* lock the sucker */ 2356 down_write(&s->s_umount); 2357 /* ... and return the root of (sub)tree on it */ 2358 return path.dentry; 2359 } 2360 EXPORT_SYMBOL(mount_subtree); 2361 2362 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2363 char __user *, type, unsigned long, flags, void __user *, data) 2364 { 2365 int ret; 2366 char *kernel_type; 2367 char *kernel_dir; 2368 char *kernel_dev; 2369 unsigned long data_page; 2370 2371 ret = copy_mount_string(type, &kernel_type); 2372 if (ret < 0) 2373 goto out_type; 2374 2375 kernel_dir = getname(dir_name); 2376 if (IS_ERR(kernel_dir)) { 2377 ret = PTR_ERR(kernel_dir); 2378 goto out_dir; 2379 } 2380 2381 ret = copy_mount_string(dev_name, &kernel_dev); 2382 if (ret < 0) 2383 goto out_dev; 2384 2385 ret = copy_mount_options(data, &data_page); 2386 if (ret < 0) 2387 goto out_data; 2388 2389 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, 2390 (void *) data_page); 2391 2392 free_page(data_page); 2393 out_data: 2394 kfree(kernel_dev); 2395 out_dev: 2396 putname(kernel_dir); 2397 out_dir: 2398 kfree(kernel_type); 2399 out_type: 2400 return ret; 2401 } 2402 2403 /* 2404 * Return true if path is reachable from root 2405 * 2406 * namespace_sem or vfsmount_lock is held 2407 */ 2408 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2409 const struct path *root) 2410 { 2411 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2412 dentry = mnt->mnt_mountpoint; 2413 mnt = mnt->mnt_parent; 2414 } 2415 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2416 } 2417 2418 int path_is_under(struct path *path1, struct path *path2) 2419 { 2420 int res; 2421 br_read_lock(&vfsmount_lock); 2422 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2423 br_read_unlock(&vfsmount_lock); 2424 return res; 2425 } 2426 EXPORT_SYMBOL(path_is_under); 2427 2428 /* 2429 * pivot_root Semantics: 2430 * Moves the root file system of the current process to the directory put_old, 2431 * makes new_root as the new root file system of the current process, and sets 2432 * root/cwd of all processes which had them on the current root to new_root. 2433 * 2434 * Restrictions: 2435 * The new_root and put_old must be directories, and must not be on the 2436 * same file system as the current process root. The put_old must be 2437 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2438 * pointed to by put_old must yield the same directory as new_root. No other 2439 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2440 * 2441 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2442 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2443 * in this situation. 2444 * 2445 * Notes: 2446 * - we don't move root/cwd if they are not at the root (reason: if something 2447 * cared enough to change them, it's probably wrong to force them elsewhere) 2448 * - it's okay to pick a root that isn't the root of a file system, e.g. 2449 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2450 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2451 * first. 2452 */ 2453 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2454 const char __user *, put_old) 2455 { 2456 struct path new, old, parent_path, root_parent, root; 2457 struct mount *new_mnt, *root_mnt; 2458 int error; 2459 2460 if (!capable(CAP_SYS_ADMIN)) 2461 return -EPERM; 2462 2463 error = user_path_dir(new_root, &new); 2464 if (error) 2465 goto out0; 2466 2467 error = user_path_dir(put_old, &old); 2468 if (error) 2469 goto out1; 2470 2471 error = security_sb_pivotroot(&old, &new); 2472 if (error) 2473 goto out2; 2474 2475 get_fs_root(current->fs, &root); 2476 error = lock_mount(&old); 2477 if (error) 2478 goto out3; 2479 2480 error = -EINVAL; 2481 new_mnt = real_mount(new.mnt); 2482 root_mnt = real_mount(root.mnt); 2483 if (IS_MNT_SHARED(real_mount(old.mnt)) || 2484 IS_MNT_SHARED(new_mnt->mnt_parent) || 2485 IS_MNT_SHARED(root_mnt->mnt_parent)) 2486 goto out4; 2487 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2488 goto out4; 2489 error = -ENOENT; 2490 if (d_unlinked(new.dentry)) 2491 goto out4; 2492 if (d_unlinked(old.dentry)) 2493 goto out4; 2494 error = -EBUSY; 2495 if (new.mnt == root.mnt || 2496 old.mnt == root.mnt) 2497 goto out4; /* loop, on the same file system */ 2498 error = -EINVAL; 2499 if (root.mnt->mnt_root != root.dentry) 2500 goto out4; /* not a mountpoint */ 2501 if (!mnt_has_parent(root_mnt)) 2502 goto out4; /* not attached */ 2503 if (new.mnt->mnt_root != new.dentry) 2504 goto out4; /* not a mountpoint */ 2505 if (!mnt_has_parent(new_mnt)) 2506 goto out4; /* not attached */ 2507 /* make sure we can reach put_old from new_root */ 2508 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new)) 2509 goto out4; 2510 br_write_lock(&vfsmount_lock); 2511 detach_mnt(new_mnt, &parent_path); 2512 detach_mnt(root_mnt, &root_parent); 2513 /* mount old root on put_old */ 2514 attach_mnt(root_mnt, &old); 2515 /* mount new_root on / */ 2516 attach_mnt(new_mnt, &root_parent); 2517 touch_mnt_namespace(current->nsproxy->mnt_ns); 2518 br_write_unlock(&vfsmount_lock); 2519 chroot_fs_refs(&root, &new); 2520 error = 0; 2521 out4: 2522 unlock_mount(&old); 2523 if (!error) { 2524 path_put(&root_parent); 2525 path_put(&parent_path); 2526 } 2527 out3: 2528 path_put(&root); 2529 out2: 2530 path_put(&old); 2531 out1: 2532 path_put(&new); 2533 out0: 2534 return error; 2535 } 2536 2537 static void __init init_mount_tree(void) 2538 { 2539 struct vfsmount *mnt; 2540 struct mnt_namespace *ns; 2541 struct path root; 2542 2543 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2544 if (IS_ERR(mnt)) 2545 panic("Can't create rootfs"); 2546 2547 ns = create_mnt_ns(mnt); 2548 if (IS_ERR(ns)) 2549 panic("Can't allocate initial namespace"); 2550 2551 init_task.nsproxy->mnt_ns = ns; 2552 get_mnt_ns(ns); 2553 2554 root.mnt = mnt; 2555 root.dentry = mnt->mnt_root; 2556 2557 set_fs_pwd(current->fs, &root); 2558 set_fs_root(current->fs, &root); 2559 } 2560 2561 void __init mnt_init(void) 2562 { 2563 unsigned u; 2564 int err; 2565 2566 init_rwsem(&namespace_sem); 2567 2568 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2569 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2570 2571 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2572 2573 if (!mount_hashtable) 2574 panic("Failed to allocate mount hash table\n"); 2575 2576 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); 2577 2578 for (u = 0; u < HASH_SIZE; u++) 2579 INIT_LIST_HEAD(&mount_hashtable[u]); 2580 2581 br_lock_init(&vfsmount_lock); 2582 2583 err = sysfs_init(); 2584 if (err) 2585 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2586 __func__, err); 2587 fs_kobj = kobject_create_and_add("fs", NULL); 2588 if (!fs_kobj) 2589 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2590 init_rootfs(); 2591 init_mount_tree(); 2592 } 2593 2594 void put_mnt_ns(struct mnt_namespace *ns) 2595 { 2596 LIST_HEAD(umount_list); 2597 2598 if (!atomic_dec_and_test(&ns->count)) 2599 return; 2600 down_write(&namespace_sem); 2601 br_write_lock(&vfsmount_lock); 2602 umount_tree(ns->root, 0, &umount_list); 2603 br_write_unlock(&vfsmount_lock); 2604 up_write(&namespace_sem); 2605 release_mounts(&umount_list); 2606 kfree(ns); 2607 } 2608 2609 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 2610 { 2611 struct vfsmount *mnt; 2612 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 2613 if (!IS_ERR(mnt)) { 2614 /* 2615 * it is a longterm mount, don't release mnt until 2616 * we unmount before file sys is unregistered 2617 */ 2618 mnt_make_longterm(mnt); 2619 } 2620 return mnt; 2621 } 2622 EXPORT_SYMBOL_GPL(kern_mount_data); 2623 2624 void kern_unmount(struct vfsmount *mnt) 2625 { 2626 /* release long term mount so mount point can be released */ 2627 if (!IS_ERR_OR_NULL(mnt)) { 2628 mnt_make_shortterm(mnt); 2629 mntput(mnt); 2630 } 2631 } 2632 EXPORT_SYMBOL(kern_unmount); 2633 2634 bool our_mnt(struct vfsmount *mnt) 2635 { 2636 return check_mnt(real_mount(mnt)); 2637 } 2638