xref: /linux/fs/namespace.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h>		/* acct_auto_close_mnt */
19 #include <linux/ramfs.h>	/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25 
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28 
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35 
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39 
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43 
44 /*
45  * vfsmount lock may be taken for read to prevent changes to the
46  * vfsmount hash, ie. during mountpoint lookups or walking back
47  * up the tree.
48  *
49  * It should be taken for write in all cases where the vfsmount
50  * tree or hash is modified or when a vfsmount structure is modified.
51  */
52 DEFINE_BRLOCK(vfsmount_lock);
53 
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 	tmp = tmp + (tmp >> HASH_SHIFT);
59 	return tmp & (HASH_SIZE - 1);
60 }
61 
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 
64 /*
65  * allocation is serialized by namespace_sem, but we need the spinlock to
66  * serialize with freeing.
67  */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&mnt_id_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&mnt_id_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct mount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&mnt_id_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&mnt_id_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 /*
129  * vfsmount lock must be held for read
130  */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 	preempt_disable();
137 	mnt->mnt_count += n;
138 	preempt_enable();
139 #endif
140 }
141 
142 /*
143  * vfsmount lock must be held for write
144  */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 	unsigned int count = 0;
149 	int cpu;
150 
151 	for_each_possible_cpu(cpu) {
152 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 	}
154 
155 	return count;
156 #else
157 	return mnt->mnt_count;
158 #endif
159 }
160 
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 	if (mnt) {
165 		int err;
166 
167 		err = mnt_alloc_id(mnt);
168 		if (err)
169 			goto out_free_cache;
170 
171 		if (name) {
172 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 			if (!mnt->mnt_devname)
174 				goto out_free_id;
175 		}
176 
177 #ifdef CONFIG_SMP
178 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 		if (!mnt->mnt_pcp)
180 			goto out_free_devname;
181 
182 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 		mnt->mnt_count = 1;
185 		mnt->mnt_writers = 0;
186 #endif
187 
188 		INIT_LIST_HEAD(&mnt->mnt_hash);
189 		INIT_LIST_HEAD(&mnt->mnt_child);
190 		INIT_LIST_HEAD(&mnt->mnt_mounts);
191 		INIT_LIST_HEAD(&mnt->mnt_list);
192 		INIT_LIST_HEAD(&mnt->mnt_expire);
193 		INIT_LIST_HEAD(&mnt->mnt_share);
194 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 		INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 	}
200 	return mnt;
201 
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 	kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 	mnt_free_id(mnt);
208 out_free_cache:
209 	kmem_cache_free(mnt_cache, mnt);
210 	return NULL;
211 }
212 
213 /*
214  * Most r/o checks on a fs are for operations that take
215  * discrete amounts of time, like a write() or unlink().
216  * We must keep track of when those operations start
217  * (for permission checks) and when they end, so that
218  * we can determine when writes are able to occur to
219  * a filesystem.
220  */
221 /*
222  * __mnt_is_readonly: check whether a mount is read-only
223  * @mnt: the mount to check for its write status
224  *
225  * This shouldn't be used directly ouside of the VFS.
226  * It does not guarantee that the filesystem will stay
227  * r/w, just that it is right *now*.  This can not and
228  * should not be used in place of IS_RDONLY(inode).
229  * mnt_want/drop_write() will _keep_ the filesystem
230  * r/w.
231  */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 	if (mnt->mnt_flags & MNT_READONLY)
235 		return 1;
236 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 		return 1;
238 	return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241 
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 	mnt->mnt_writers++;
248 #endif
249 }
250 
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 	mnt->mnt_writers--;
257 #endif
258 }
259 
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 	unsigned int count = 0;
264 	int cpu;
265 
266 	for_each_possible_cpu(cpu) {
267 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 	}
269 
270 	return count;
271 #else
272 	return mnt->mnt_writers;
273 #endif
274 }
275 
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 	if (mnt->mnt_sb->s_readonly_remount)
279 		return 1;
280 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 	smp_rmb();
282 	return __mnt_is_readonly(mnt);
283 }
284 
285 /*
286  * Most r/o checks on a fs are for operations that take
287  * discrete amounts of time, like a write() or unlink().
288  * We must keep track of when those operations start
289  * (for permission checks) and when they end, so that
290  * we can determine when writes are able to occur to
291  * a filesystem.
292  */
293 /**
294  * mnt_want_write - get write access to a mount
295  * @m: the mount on which to take a write
296  *
297  * This tells the low-level filesystem that a write is
298  * about to be performed to it, and makes sure that
299  * writes are allowed before returning success.  When
300  * the write operation is finished, mnt_drop_write()
301  * must be called.  This is effectively a refcount.
302  */
303 int mnt_want_write(struct vfsmount *m)
304 {
305 	struct mount *mnt = real_mount(m);
306 	int ret = 0;
307 
308 	preempt_disable();
309 	mnt_inc_writers(mnt);
310 	/*
311 	 * The store to mnt_inc_writers must be visible before we pass
312 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 	 * incremented count after it has set MNT_WRITE_HOLD.
314 	 */
315 	smp_mb();
316 	while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 		cpu_relax();
318 	/*
319 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 	 * be set to match its requirements. So we must not load that until
321 	 * MNT_WRITE_HOLD is cleared.
322 	 */
323 	smp_rmb();
324 	if (mnt_is_readonly(m)) {
325 		mnt_dec_writers(mnt);
326 		ret = -EROFS;
327 	}
328 	preempt_enable();
329 	return ret;
330 }
331 EXPORT_SYMBOL_GPL(mnt_want_write);
332 
333 /**
334  * mnt_clone_write - get write access to a mount
335  * @mnt: the mount on which to take a write
336  *
337  * This is effectively like mnt_want_write, except
338  * it must only be used to take an extra write reference
339  * on a mountpoint that we already know has a write reference
340  * on it. This allows some optimisation.
341  *
342  * After finished, mnt_drop_write must be called as usual to
343  * drop the reference.
344  */
345 int mnt_clone_write(struct vfsmount *mnt)
346 {
347 	/* superblock may be r/o */
348 	if (__mnt_is_readonly(mnt))
349 		return -EROFS;
350 	preempt_disable();
351 	mnt_inc_writers(real_mount(mnt));
352 	preempt_enable();
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
356 
357 /**
358  * mnt_want_write_file - get write access to a file's mount
359  * @file: the file who's mount on which to take a write
360  *
361  * This is like mnt_want_write, but it takes a file and can
362  * do some optimisations if the file is open for write already
363  */
364 int mnt_want_write_file(struct file *file)
365 {
366 	struct inode *inode = file->f_dentry->d_inode;
367 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 		return mnt_want_write(file->f_path.mnt);
369 	else
370 		return mnt_clone_write(file->f_path.mnt);
371 }
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
373 
374 /**
375  * mnt_drop_write - give up write access to a mount
376  * @mnt: the mount on which to give up write access
377  *
378  * Tells the low-level filesystem that we are done
379  * performing writes to it.  Must be matched with
380  * mnt_want_write() call above.
381  */
382 void mnt_drop_write(struct vfsmount *mnt)
383 {
384 	preempt_disable();
385 	mnt_dec_writers(real_mount(mnt));
386 	preempt_enable();
387 }
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
389 
390 void mnt_drop_write_file(struct file *file)
391 {
392 	mnt_drop_write(file->f_path.mnt);
393 }
394 EXPORT_SYMBOL(mnt_drop_write_file);
395 
396 static int mnt_make_readonly(struct mount *mnt)
397 {
398 	int ret = 0;
399 
400 	br_write_lock(&vfsmount_lock);
401 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
402 	/*
403 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 	 * should be visible before we do.
405 	 */
406 	smp_mb();
407 
408 	/*
409 	 * With writers on hold, if this value is zero, then there are
410 	 * definitely no active writers (although held writers may subsequently
411 	 * increment the count, they'll have to wait, and decrement it after
412 	 * seeing MNT_READONLY).
413 	 *
414 	 * It is OK to have counter incremented on one CPU and decremented on
415 	 * another: the sum will add up correctly. The danger would be when we
416 	 * sum up each counter, if we read a counter before it is incremented,
417 	 * but then read another CPU's count which it has been subsequently
418 	 * decremented from -- we would see more decrements than we should.
419 	 * MNT_WRITE_HOLD protects against this scenario, because
420 	 * mnt_want_write first increments count, then smp_mb, then spins on
421 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 	 * we're counting up here.
423 	 */
424 	if (mnt_get_writers(mnt) > 0)
425 		ret = -EBUSY;
426 	else
427 		mnt->mnt.mnt_flags |= MNT_READONLY;
428 	/*
429 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 	 * that become unheld will see MNT_READONLY.
431 	 */
432 	smp_wmb();
433 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 	br_write_unlock(&vfsmount_lock);
435 	return ret;
436 }
437 
438 static void __mnt_unmake_readonly(struct mount *mnt)
439 {
440 	br_write_lock(&vfsmount_lock);
441 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 	br_write_unlock(&vfsmount_lock);
443 }
444 
445 int sb_prepare_remount_readonly(struct super_block *sb)
446 {
447 	struct mount *mnt;
448 	int err = 0;
449 
450 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
451 	if (atomic_long_read(&sb->s_remove_count))
452 		return -EBUSY;
453 
454 	br_write_lock(&vfsmount_lock);
455 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 			smp_mb();
459 			if (mnt_get_writers(mnt) > 0) {
460 				err = -EBUSY;
461 				break;
462 			}
463 		}
464 	}
465 	if (!err && atomic_long_read(&sb->s_remove_count))
466 		err = -EBUSY;
467 
468 	if (!err) {
469 		sb->s_readonly_remount = 1;
470 		smp_wmb();
471 	}
472 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 	}
476 	br_write_unlock(&vfsmount_lock);
477 
478 	return err;
479 }
480 
481 static void free_vfsmnt(struct mount *mnt)
482 {
483 	kfree(mnt->mnt_devname);
484 	mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 	free_percpu(mnt->mnt_pcp);
487 #endif
488 	kmem_cache_free(mnt_cache, mnt);
489 }
490 
491 /*
492  * find the first or last mount at @dentry on vfsmount @mnt depending on
493  * @dir. If @dir is set return the first mount else return the last mount.
494  * vfsmount_lock must be held for read or write.
495  */
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 			      int dir)
498 {
499 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 	struct list_head *tmp = head;
501 	struct mount *p, *found = NULL;
502 
503 	for (;;) {
504 		tmp = dir ? tmp->next : tmp->prev;
505 		p = NULL;
506 		if (tmp == head)
507 			break;
508 		p = list_entry(tmp, struct mount, mnt_hash);
509 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 			found = p;
511 			break;
512 		}
513 	}
514 	return found;
515 }
516 
517 /*
518  * lookup_mnt increments the ref count before returning
519  * the vfsmount struct.
520  */
521 struct vfsmount *lookup_mnt(struct path *path)
522 {
523 	struct mount *child_mnt;
524 
525 	br_read_lock(&vfsmount_lock);
526 	child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 	if (child_mnt) {
528 		mnt_add_count(child_mnt, 1);
529 		br_read_unlock(&vfsmount_lock);
530 		return &child_mnt->mnt;
531 	} else {
532 		br_read_unlock(&vfsmount_lock);
533 		return NULL;
534 	}
535 }
536 
537 static inline int check_mnt(struct mount *mnt)
538 {
539 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
540 }
541 
542 /*
543  * vfsmount lock must be held for write
544  */
545 static void touch_mnt_namespace(struct mnt_namespace *ns)
546 {
547 	if (ns) {
548 		ns->event = ++event;
549 		wake_up_interruptible(&ns->poll);
550 	}
551 }
552 
553 /*
554  * vfsmount lock must be held for write
555  */
556 static void __touch_mnt_namespace(struct mnt_namespace *ns)
557 {
558 	if (ns && ns->event != event) {
559 		ns->event = event;
560 		wake_up_interruptible(&ns->poll);
561 	}
562 }
563 
564 /*
565  * Clear dentry's mounted state if it has no remaining mounts.
566  * vfsmount_lock must be held for write.
567  */
568 static void dentry_reset_mounted(struct dentry *dentry)
569 {
570 	unsigned u;
571 
572 	for (u = 0; u < HASH_SIZE; u++) {
573 		struct mount *p;
574 
575 		list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
576 			if (p->mnt_mountpoint == dentry)
577 				return;
578 		}
579 	}
580 	spin_lock(&dentry->d_lock);
581 	dentry->d_flags &= ~DCACHE_MOUNTED;
582 	spin_unlock(&dentry->d_lock);
583 }
584 
585 /*
586  * vfsmount lock must be held for write
587  */
588 static void detach_mnt(struct mount *mnt, struct path *old_path)
589 {
590 	old_path->dentry = mnt->mnt_mountpoint;
591 	old_path->mnt = &mnt->mnt_parent->mnt;
592 	mnt->mnt_parent = mnt;
593 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
594 	list_del_init(&mnt->mnt_child);
595 	list_del_init(&mnt->mnt_hash);
596 	dentry_reset_mounted(old_path->dentry);
597 }
598 
599 /*
600  * vfsmount lock must be held for write
601  */
602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
603 			struct mount *child_mnt)
604 {
605 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
606 	child_mnt->mnt_mountpoint = dget(dentry);
607 	child_mnt->mnt_parent = mnt;
608 	spin_lock(&dentry->d_lock);
609 	dentry->d_flags |= DCACHE_MOUNTED;
610 	spin_unlock(&dentry->d_lock);
611 }
612 
613 /*
614  * vfsmount lock must be held for write
615  */
616 static void attach_mnt(struct mount *mnt, struct path *path)
617 {
618 	mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
619 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
620 			hash(path->mnt, path->dentry));
621 	list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
622 }
623 
624 static inline void __mnt_make_longterm(struct mount *mnt)
625 {
626 #ifdef CONFIG_SMP
627 	atomic_inc(&mnt->mnt_longterm);
628 #endif
629 }
630 
631 /* needs vfsmount lock for write */
632 static inline void __mnt_make_shortterm(struct mount *mnt)
633 {
634 #ifdef CONFIG_SMP
635 	atomic_dec(&mnt->mnt_longterm);
636 #endif
637 }
638 
639 /*
640  * vfsmount lock must be held for write
641  */
642 static void commit_tree(struct mount *mnt)
643 {
644 	struct mount *parent = mnt->mnt_parent;
645 	struct mount *m;
646 	LIST_HEAD(head);
647 	struct mnt_namespace *n = parent->mnt_ns;
648 
649 	BUG_ON(parent == mnt);
650 
651 	list_add_tail(&head, &mnt->mnt_list);
652 	list_for_each_entry(m, &head, mnt_list) {
653 		m->mnt_ns = n;
654 		__mnt_make_longterm(m);
655 	}
656 
657 	list_splice(&head, n->list.prev);
658 
659 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
660 				hash(&parent->mnt, mnt->mnt_mountpoint));
661 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
662 	touch_mnt_namespace(n);
663 }
664 
665 static struct mount *next_mnt(struct mount *p, struct mount *root)
666 {
667 	struct list_head *next = p->mnt_mounts.next;
668 	if (next == &p->mnt_mounts) {
669 		while (1) {
670 			if (p == root)
671 				return NULL;
672 			next = p->mnt_child.next;
673 			if (next != &p->mnt_parent->mnt_mounts)
674 				break;
675 			p = p->mnt_parent;
676 		}
677 	}
678 	return list_entry(next, struct mount, mnt_child);
679 }
680 
681 static struct mount *skip_mnt_tree(struct mount *p)
682 {
683 	struct list_head *prev = p->mnt_mounts.prev;
684 	while (prev != &p->mnt_mounts) {
685 		p = list_entry(prev, struct mount, mnt_child);
686 		prev = p->mnt_mounts.prev;
687 	}
688 	return p;
689 }
690 
691 struct vfsmount *
692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693 {
694 	struct mount *mnt;
695 	struct dentry *root;
696 
697 	if (!type)
698 		return ERR_PTR(-ENODEV);
699 
700 	mnt = alloc_vfsmnt(name);
701 	if (!mnt)
702 		return ERR_PTR(-ENOMEM);
703 
704 	if (flags & MS_KERNMOUNT)
705 		mnt->mnt.mnt_flags = MNT_INTERNAL;
706 
707 	root = mount_fs(type, flags, name, data);
708 	if (IS_ERR(root)) {
709 		free_vfsmnt(mnt);
710 		return ERR_CAST(root);
711 	}
712 
713 	mnt->mnt.mnt_root = root;
714 	mnt->mnt.mnt_sb = root->d_sb;
715 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
716 	mnt->mnt_parent = mnt;
717 	br_write_lock(&vfsmount_lock);
718 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719 	br_write_unlock(&vfsmount_lock);
720 	return &mnt->mnt;
721 }
722 EXPORT_SYMBOL_GPL(vfs_kern_mount);
723 
724 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
725 					int flag)
726 {
727 	struct super_block *sb = old->mnt.mnt_sb;
728 	struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
729 
730 	if (mnt) {
731 		if (flag & (CL_SLAVE | CL_PRIVATE))
732 			mnt->mnt_group_id = 0; /* not a peer of original */
733 		else
734 			mnt->mnt_group_id = old->mnt_group_id;
735 
736 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
737 			int err = mnt_alloc_group_id(mnt);
738 			if (err)
739 				goto out_free;
740 		}
741 
742 		mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
743 		atomic_inc(&sb->s_active);
744 		mnt->mnt.mnt_sb = sb;
745 		mnt->mnt.mnt_root = dget(root);
746 		mnt->mnt_mountpoint = mnt->mnt.mnt_root;
747 		mnt->mnt_parent = mnt;
748 		br_write_lock(&vfsmount_lock);
749 		list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
750 		br_write_unlock(&vfsmount_lock);
751 
752 		if (flag & CL_SLAVE) {
753 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
754 			mnt->mnt_master = old;
755 			CLEAR_MNT_SHARED(mnt);
756 		} else if (!(flag & CL_PRIVATE)) {
757 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
758 				list_add(&mnt->mnt_share, &old->mnt_share);
759 			if (IS_MNT_SLAVE(old))
760 				list_add(&mnt->mnt_slave, &old->mnt_slave);
761 			mnt->mnt_master = old->mnt_master;
762 		}
763 		if (flag & CL_MAKE_SHARED)
764 			set_mnt_shared(mnt);
765 
766 		/* stick the duplicate mount on the same expiry list
767 		 * as the original if that was on one */
768 		if (flag & CL_EXPIRE) {
769 			if (!list_empty(&old->mnt_expire))
770 				list_add(&mnt->mnt_expire, &old->mnt_expire);
771 		}
772 	}
773 	return mnt;
774 
775  out_free:
776 	free_vfsmnt(mnt);
777 	return NULL;
778 }
779 
780 static inline void mntfree(struct mount *mnt)
781 {
782 	struct vfsmount *m = &mnt->mnt;
783 	struct super_block *sb = m->mnt_sb;
784 
785 	/*
786 	 * This probably indicates that somebody messed
787 	 * up a mnt_want/drop_write() pair.  If this
788 	 * happens, the filesystem was probably unable
789 	 * to make r/w->r/o transitions.
790 	 */
791 	/*
792 	 * The locking used to deal with mnt_count decrement provides barriers,
793 	 * so mnt_get_writers() below is safe.
794 	 */
795 	WARN_ON(mnt_get_writers(mnt));
796 	fsnotify_vfsmount_delete(m);
797 	dput(m->mnt_root);
798 	free_vfsmnt(mnt);
799 	deactivate_super(sb);
800 }
801 
802 static void mntput_no_expire(struct mount *mnt)
803 {
804 put_again:
805 #ifdef CONFIG_SMP
806 	br_read_lock(&vfsmount_lock);
807 	if (likely(atomic_read(&mnt->mnt_longterm))) {
808 		mnt_add_count(mnt, -1);
809 		br_read_unlock(&vfsmount_lock);
810 		return;
811 	}
812 	br_read_unlock(&vfsmount_lock);
813 
814 	br_write_lock(&vfsmount_lock);
815 	mnt_add_count(mnt, -1);
816 	if (mnt_get_count(mnt)) {
817 		br_write_unlock(&vfsmount_lock);
818 		return;
819 	}
820 #else
821 	mnt_add_count(mnt, -1);
822 	if (likely(mnt_get_count(mnt)))
823 		return;
824 	br_write_lock(&vfsmount_lock);
825 #endif
826 	if (unlikely(mnt->mnt_pinned)) {
827 		mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 		mnt->mnt_pinned = 0;
829 		br_write_unlock(&vfsmount_lock);
830 		acct_auto_close_mnt(&mnt->mnt);
831 		goto put_again;
832 	}
833 
834 	list_del(&mnt->mnt_instance);
835 	br_write_unlock(&vfsmount_lock);
836 	mntfree(mnt);
837 }
838 
839 void mntput(struct vfsmount *mnt)
840 {
841 	if (mnt) {
842 		struct mount *m = real_mount(mnt);
843 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 		if (unlikely(m->mnt_expiry_mark))
845 			m->mnt_expiry_mark = 0;
846 		mntput_no_expire(m);
847 	}
848 }
849 EXPORT_SYMBOL(mntput);
850 
851 struct vfsmount *mntget(struct vfsmount *mnt)
852 {
853 	if (mnt)
854 		mnt_add_count(real_mount(mnt), 1);
855 	return mnt;
856 }
857 EXPORT_SYMBOL(mntget);
858 
859 void mnt_pin(struct vfsmount *mnt)
860 {
861 	br_write_lock(&vfsmount_lock);
862 	real_mount(mnt)->mnt_pinned++;
863 	br_write_unlock(&vfsmount_lock);
864 }
865 EXPORT_SYMBOL(mnt_pin);
866 
867 void mnt_unpin(struct vfsmount *m)
868 {
869 	struct mount *mnt = real_mount(m);
870 	br_write_lock(&vfsmount_lock);
871 	if (mnt->mnt_pinned) {
872 		mnt_add_count(mnt, 1);
873 		mnt->mnt_pinned--;
874 	}
875 	br_write_unlock(&vfsmount_lock);
876 }
877 EXPORT_SYMBOL(mnt_unpin);
878 
879 static inline void mangle(struct seq_file *m, const char *s)
880 {
881 	seq_escape(m, s, " \t\n\\");
882 }
883 
884 /*
885  * Simple .show_options callback for filesystems which don't want to
886  * implement more complex mount option showing.
887  *
888  * See also save_mount_options().
889  */
890 int generic_show_options(struct seq_file *m, struct dentry *root)
891 {
892 	const char *options;
893 
894 	rcu_read_lock();
895 	options = rcu_dereference(root->d_sb->s_options);
896 
897 	if (options != NULL && options[0]) {
898 		seq_putc(m, ',');
899 		mangle(m, options);
900 	}
901 	rcu_read_unlock();
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL(generic_show_options);
906 
907 /*
908  * If filesystem uses generic_show_options(), this function should be
909  * called from the fill_super() callback.
910  *
911  * The .remount_fs callback usually needs to be handled in a special
912  * way, to make sure, that previous options are not overwritten if the
913  * remount fails.
914  *
915  * Also note, that if the filesystem's .remount_fs function doesn't
916  * reset all options to their default value, but changes only newly
917  * given options, then the displayed options will not reflect reality
918  * any more.
919  */
920 void save_mount_options(struct super_block *sb, char *options)
921 {
922 	BUG_ON(sb->s_options);
923 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
924 }
925 EXPORT_SYMBOL(save_mount_options);
926 
927 void replace_mount_options(struct super_block *sb, char *options)
928 {
929 	char *old = sb->s_options;
930 	rcu_assign_pointer(sb->s_options, options);
931 	if (old) {
932 		synchronize_rcu();
933 		kfree(old);
934 	}
935 }
936 EXPORT_SYMBOL(replace_mount_options);
937 
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file *m, loff_t *pos)
941 {
942 	struct proc_mounts *p = container_of(m, struct proc_mounts, m);
943 
944 	down_read(&namespace_sem);
945 	return seq_list_start(&p->ns->list, *pos);
946 }
947 
948 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949 {
950 	struct proc_mounts *p = container_of(m, struct proc_mounts, m);
951 
952 	return seq_list_next(v, &p->ns->list, pos);
953 }
954 
955 static void m_stop(struct seq_file *m, void *v)
956 {
957 	up_read(&namespace_sem);
958 }
959 
960 static int m_show(struct seq_file *m, void *v)
961 {
962 	struct proc_mounts *p = container_of(m, struct proc_mounts, m);
963 	struct mount *r = list_entry(v, struct mount, mnt_list);
964 	return p->show(m, &r->mnt);
965 }
966 
967 const struct seq_operations mounts_op = {
968 	.start	= m_start,
969 	.next	= m_next,
970 	.stop	= m_stop,
971 	.show	= m_show,
972 };
973 #endif  /* CONFIG_PROC_FS */
974 
975 /**
976  * may_umount_tree - check if a mount tree is busy
977  * @mnt: root of mount tree
978  *
979  * This is called to check if a tree of mounts has any
980  * open files, pwds, chroots or sub mounts that are
981  * busy.
982  */
983 int may_umount_tree(struct vfsmount *m)
984 {
985 	struct mount *mnt = real_mount(m);
986 	int actual_refs = 0;
987 	int minimum_refs = 0;
988 	struct mount *p;
989 	BUG_ON(!m);
990 
991 	/* write lock needed for mnt_get_count */
992 	br_write_lock(&vfsmount_lock);
993 	for (p = mnt; p; p = next_mnt(p, mnt)) {
994 		actual_refs += mnt_get_count(p);
995 		minimum_refs += 2;
996 	}
997 	br_write_unlock(&vfsmount_lock);
998 
999 	if (actual_refs > minimum_refs)
1000 		return 0;
1001 
1002 	return 1;
1003 }
1004 
1005 EXPORT_SYMBOL(may_umount_tree);
1006 
1007 /**
1008  * may_umount - check if a mount point is busy
1009  * @mnt: root of mount
1010  *
1011  * This is called to check if a mount point has any
1012  * open files, pwds, chroots or sub mounts. If the
1013  * mount has sub mounts this will return busy
1014  * regardless of whether the sub mounts are busy.
1015  *
1016  * Doesn't take quota and stuff into account. IOW, in some cases it will
1017  * give false negatives. The main reason why it's here is that we need
1018  * a non-destructive way to look for easily umountable filesystems.
1019  */
1020 int may_umount(struct vfsmount *mnt)
1021 {
1022 	int ret = 1;
1023 	down_read(&namespace_sem);
1024 	br_write_lock(&vfsmount_lock);
1025 	if (propagate_mount_busy(real_mount(mnt), 2))
1026 		ret = 0;
1027 	br_write_unlock(&vfsmount_lock);
1028 	up_read(&namespace_sem);
1029 	return ret;
1030 }
1031 
1032 EXPORT_SYMBOL(may_umount);
1033 
1034 void release_mounts(struct list_head *head)
1035 {
1036 	struct mount *mnt;
1037 	while (!list_empty(head)) {
1038 		mnt = list_first_entry(head, struct mount, mnt_hash);
1039 		list_del_init(&mnt->mnt_hash);
1040 		if (mnt_has_parent(mnt)) {
1041 			struct dentry *dentry;
1042 			struct mount *m;
1043 
1044 			br_write_lock(&vfsmount_lock);
1045 			dentry = mnt->mnt_mountpoint;
1046 			m = mnt->mnt_parent;
1047 			mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 			mnt->mnt_parent = mnt;
1049 			m->mnt_ghosts--;
1050 			br_write_unlock(&vfsmount_lock);
1051 			dput(dentry);
1052 			mntput(&m->mnt);
1053 		}
1054 		mntput(&mnt->mnt);
1055 	}
1056 }
1057 
1058 /*
1059  * vfsmount lock must be held for write
1060  * namespace_sem must be held for write
1061  */
1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1063 {
1064 	LIST_HEAD(tmp_list);
1065 	struct mount *p;
1066 
1067 	for (p = mnt; p; p = next_mnt(p, mnt))
1068 		list_move(&p->mnt_hash, &tmp_list);
1069 
1070 	if (propagate)
1071 		propagate_umount(&tmp_list);
1072 
1073 	list_for_each_entry(p, &tmp_list, mnt_hash) {
1074 		list_del_init(&p->mnt_expire);
1075 		list_del_init(&p->mnt_list);
1076 		__touch_mnt_namespace(p->mnt_ns);
1077 		if (p->mnt_ns)
1078 			__mnt_make_shortterm(p);
1079 		p->mnt_ns = NULL;
1080 		list_del_init(&p->mnt_child);
1081 		if (mnt_has_parent(p)) {
1082 			p->mnt_parent->mnt_ghosts++;
1083 			dentry_reset_mounted(p->mnt_mountpoint);
1084 		}
1085 		change_mnt_propagation(p, MS_PRIVATE);
1086 	}
1087 	list_splice(&tmp_list, kill);
1088 }
1089 
1090 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1091 
1092 static int do_umount(struct mount *mnt, int flags)
1093 {
1094 	struct super_block *sb = mnt->mnt.mnt_sb;
1095 	int retval;
1096 	LIST_HEAD(umount_list);
1097 
1098 	retval = security_sb_umount(&mnt->mnt, flags);
1099 	if (retval)
1100 		return retval;
1101 
1102 	/*
1103 	 * Allow userspace to request a mountpoint be expired rather than
1104 	 * unmounting unconditionally. Unmount only happens if:
1105 	 *  (1) the mark is already set (the mark is cleared by mntput())
1106 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1107 	 */
1108 	if (flags & MNT_EXPIRE) {
1109 		if (&mnt->mnt == current->fs->root.mnt ||
1110 		    flags & (MNT_FORCE | MNT_DETACH))
1111 			return -EINVAL;
1112 
1113 		/*
1114 		 * probably don't strictly need the lock here if we examined
1115 		 * all race cases, but it's a slowpath.
1116 		 */
1117 		br_write_lock(&vfsmount_lock);
1118 		if (mnt_get_count(mnt) != 2) {
1119 			br_write_unlock(&vfsmount_lock);
1120 			return -EBUSY;
1121 		}
1122 		br_write_unlock(&vfsmount_lock);
1123 
1124 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1125 			return -EAGAIN;
1126 	}
1127 
1128 	/*
1129 	 * If we may have to abort operations to get out of this
1130 	 * mount, and they will themselves hold resources we must
1131 	 * allow the fs to do things. In the Unix tradition of
1132 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1133 	 * might fail to complete on the first run through as other tasks
1134 	 * must return, and the like. Thats for the mount program to worry
1135 	 * about for the moment.
1136 	 */
1137 
1138 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1139 		sb->s_op->umount_begin(sb);
1140 	}
1141 
1142 	/*
1143 	 * No sense to grab the lock for this test, but test itself looks
1144 	 * somewhat bogus. Suggestions for better replacement?
1145 	 * Ho-hum... In principle, we might treat that as umount + switch
1146 	 * to rootfs. GC would eventually take care of the old vfsmount.
1147 	 * Actually it makes sense, especially if rootfs would contain a
1148 	 * /reboot - static binary that would close all descriptors and
1149 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1150 	 */
1151 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1152 		/*
1153 		 * Special case for "unmounting" root ...
1154 		 * we just try to remount it readonly.
1155 		 */
1156 		down_write(&sb->s_umount);
1157 		if (!(sb->s_flags & MS_RDONLY))
1158 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1159 		up_write(&sb->s_umount);
1160 		return retval;
1161 	}
1162 
1163 	down_write(&namespace_sem);
1164 	br_write_lock(&vfsmount_lock);
1165 	event++;
1166 
1167 	if (!(flags & MNT_DETACH))
1168 		shrink_submounts(mnt, &umount_list);
1169 
1170 	retval = -EBUSY;
1171 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1172 		if (!list_empty(&mnt->mnt_list))
1173 			umount_tree(mnt, 1, &umount_list);
1174 		retval = 0;
1175 	}
1176 	br_write_unlock(&vfsmount_lock);
1177 	up_write(&namespace_sem);
1178 	release_mounts(&umount_list);
1179 	return retval;
1180 }
1181 
1182 /*
1183  * Now umount can handle mount points as well as block devices.
1184  * This is important for filesystems which use unnamed block devices.
1185  *
1186  * We now support a flag for forced unmount like the other 'big iron'
1187  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1188  */
1189 
1190 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1191 {
1192 	struct path path;
1193 	struct mount *mnt;
1194 	int retval;
1195 	int lookup_flags = 0;
1196 
1197 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1198 		return -EINVAL;
1199 
1200 	if (!(flags & UMOUNT_NOFOLLOW))
1201 		lookup_flags |= LOOKUP_FOLLOW;
1202 
1203 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1204 	if (retval)
1205 		goto out;
1206 	mnt = real_mount(path.mnt);
1207 	retval = -EINVAL;
1208 	if (path.dentry != path.mnt->mnt_root)
1209 		goto dput_and_out;
1210 	if (!check_mnt(mnt))
1211 		goto dput_and_out;
1212 
1213 	retval = -EPERM;
1214 	if (!capable(CAP_SYS_ADMIN))
1215 		goto dput_and_out;
1216 
1217 	retval = do_umount(mnt, flags);
1218 dput_and_out:
1219 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1220 	dput(path.dentry);
1221 	mntput_no_expire(mnt);
1222 out:
1223 	return retval;
1224 }
1225 
1226 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1227 
1228 /*
1229  *	The 2.0 compatible umount. No flags.
1230  */
1231 SYSCALL_DEFINE1(oldumount, char __user *, name)
1232 {
1233 	return sys_umount(name, 0);
1234 }
1235 
1236 #endif
1237 
1238 static int mount_is_safe(struct path *path)
1239 {
1240 	if (capable(CAP_SYS_ADMIN))
1241 		return 0;
1242 	return -EPERM;
1243 #ifdef notyet
1244 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1245 		return -EPERM;
1246 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1247 		if (current_uid() != path->dentry->d_inode->i_uid)
1248 			return -EPERM;
1249 	}
1250 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1251 		return -EPERM;
1252 	return 0;
1253 #endif
1254 }
1255 
1256 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1257 					int flag)
1258 {
1259 	struct mount *res, *p, *q, *r;
1260 	struct path path;
1261 
1262 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1263 		return NULL;
1264 
1265 	res = q = clone_mnt(mnt, dentry, flag);
1266 	if (!q)
1267 		goto Enomem;
1268 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1269 
1270 	p = mnt;
1271 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1272 		struct mount *s;
1273 		if (!is_subdir(r->mnt_mountpoint, dentry))
1274 			continue;
1275 
1276 		for (s = r; s; s = next_mnt(s, r)) {
1277 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1278 				s = skip_mnt_tree(s);
1279 				continue;
1280 			}
1281 			while (p != s->mnt_parent) {
1282 				p = p->mnt_parent;
1283 				q = q->mnt_parent;
1284 			}
1285 			p = s;
1286 			path.mnt = &q->mnt;
1287 			path.dentry = p->mnt_mountpoint;
1288 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1289 			if (!q)
1290 				goto Enomem;
1291 			br_write_lock(&vfsmount_lock);
1292 			list_add_tail(&q->mnt_list, &res->mnt_list);
1293 			attach_mnt(q, &path);
1294 			br_write_unlock(&vfsmount_lock);
1295 		}
1296 	}
1297 	return res;
1298 Enomem:
1299 	if (res) {
1300 		LIST_HEAD(umount_list);
1301 		br_write_lock(&vfsmount_lock);
1302 		umount_tree(res, 0, &umount_list);
1303 		br_write_unlock(&vfsmount_lock);
1304 		release_mounts(&umount_list);
1305 	}
1306 	return NULL;
1307 }
1308 
1309 struct vfsmount *collect_mounts(struct path *path)
1310 {
1311 	struct mount *tree;
1312 	down_write(&namespace_sem);
1313 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1314 			 CL_COPY_ALL | CL_PRIVATE);
1315 	up_write(&namespace_sem);
1316 	return tree ? &tree->mnt : NULL;
1317 }
1318 
1319 void drop_collected_mounts(struct vfsmount *mnt)
1320 {
1321 	LIST_HEAD(umount_list);
1322 	down_write(&namespace_sem);
1323 	br_write_lock(&vfsmount_lock);
1324 	umount_tree(real_mount(mnt), 0, &umount_list);
1325 	br_write_unlock(&vfsmount_lock);
1326 	up_write(&namespace_sem);
1327 	release_mounts(&umount_list);
1328 }
1329 
1330 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1331 		   struct vfsmount *root)
1332 {
1333 	struct mount *mnt;
1334 	int res = f(root, arg);
1335 	if (res)
1336 		return res;
1337 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1338 		res = f(&mnt->mnt, arg);
1339 		if (res)
1340 			return res;
1341 	}
1342 	return 0;
1343 }
1344 
1345 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1346 {
1347 	struct mount *p;
1348 
1349 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1350 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1351 			mnt_release_group_id(p);
1352 	}
1353 }
1354 
1355 static int invent_group_ids(struct mount *mnt, bool recurse)
1356 {
1357 	struct mount *p;
1358 
1359 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1360 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1361 			int err = mnt_alloc_group_id(p);
1362 			if (err) {
1363 				cleanup_group_ids(mnt, p);
1364 				return err;
1365 			}
1366 		}
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 /*
1373  *  @source_mnt : mount tree to be attached
1374  *  @nd         : place the mount tree @source_mnt is attached
1375  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1376  *  		   store the parent mount and mountpoint dentry.
1377  *  		   (done when source_mnt is moved)
1378  *
1379  *  NOTE: in the table below explains the semantics when a source mount
1380  *  of a given type is attached to a destination mount of a given type.
1381  * ---------------------------------------------------------------------------
1382  * |         BIND MOUNT OPERATION                                            |
1383  * |**************************************************************************
1384  * | source-->| shared        |       private  |       slave    | unbindable |
1385  * | dest     |               |                |                |            |
1386  * |   |      |               |                |                |            |
1387  * |   v      |               |                |                |            |
1388  * |**************************************************************************
1389  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1390  * |          |               |                |                |            |
1391  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1392  * ***************************************************************************
1393  * A bind operation clones the source mount and mounts the clone on the
1394  * destination mount.
1395  *
1396  * (++)  the cloned mount is propagated to all the mounts in the propagation
1397  * 	 tree of the destination mount and the cloned mount is added to
1398  * 	 the peer group of the source mount.
1399  * (+)   the cloned mount is created under the destination mount and is marked
1400  *       as shared. The cloned mount is added to the peer group of the source
1401  *       mount.
1402  * (+++) the mount is propagated to all the mounts in the propagation tree
1403  *       of the destination mount and the cloned mount is made slave
1404  *       of the same master as that of the source mount. The cloned mount
1405  *       is marked as 'shared and slave'.
1406  * (*)   the cloned mount is made a slave of the same master as that of the
1407  * 	 source mount.
1408  *
1409  * ---------------------------------------------------------------------------
1410  * |         		MOVE MOUNT OPERATION                                 |
1411  * |**************************************************************************
1412  * | source-->| shared        |       private  |       slave    | unbindable |
1413  * | dest     |               |                |                |            |
1414  * |   |      |               |                |                |            |
1415  * |   v      |               |                |                |            |
1416  * |**************************************************************************
1417  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1418  * |          |               |                |                |            |
1419  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1420  * ***************************************************************************
1421  *
1422  * (+)  the mount is moved to the destination. And is then propagated to
1423  * 	all the mounts in the propagation tree of the destination mount.
1424  * (+*)  the mount is moved to the destination.
1425  * (+++)  the mount is moved to the destination and is then propagated to
1426  * 	all the mounts belonging to the destination mount's propagation tree.
1427  * 	the mount is marked as 'shared and slave'.
1428  * (*)	the mount continues to be a slave at the new location.
1429  *
1430  * if the source mount is a tree, the operations explained above is
1431  * applied to each mount in the tree.
1432  * Must be called without spinlocks held, since this function can sleep
1433  * in allocations.
1434  */
1435 static int attach_recursive_mnt(struct mount *source_mnt,
1436 			struct path *path, struct path *parent_path)
1437 {
1438 	LIST_HEAD(tree_list);
1439 	struct mount *dest_mnt = real_mount(path->mnt);
1440 	struct dentry *dest_dentry = path->dentry;
1441 	struct mount *child, *p;
1442 	int err;
1443 
1444 	if (IS_MNT_SHARED(dest_mnt)) {
1445 		err = invent_group_ids(source_mnt, true);
1446 		if (err)
1447 			goto out;
1448 	}
1449 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1450 	if (err)
1451 		goto out_cleanup_ids;
1452 
1453 	br_write_lock(&vfsmount_lock);
1454 
1455 	if (IS_MNT_SHARED(dest_mnt)) {
1456 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1457 			set_mnt_shared(p);
1458 	}
1459 	if (parent_path) {
1460 		detach_mnt(source_mnt, parent_path);
1461 		attach_mnt(source_mnt, path);
1462 		touch_mnt_namespace(source_mnt->mnt_ns);
1463 	} else {
1464 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1465 		commit_tree(source_mnt);
1466 	}
1467 
1468 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1469 		list_del_init(&child->mnt_hash);
1470 		commit_tree(child);
1471 	}
1472 	br_write_unlock(&vfsmount_lock);
1473 
1474 	return 0;
1475 
1476  out_cleanup_ids:
1477 	if (IS_MNT_SHARED(dest_mnt))
1478 		cleanup_group_ids(source_mnt, NULL);
1479  out:
1480 	return err;
1481 }
1482 
1483 static int lock_mount(struct path *path)
1484 {
1485 	struct vfsmount *mnt;
1486 retry:
1487 	mutex_lock(&path->dentry->d_inode->i_mutex);
1488 	if (unlikely(cant_mount(path->dentry))) {
1489 		mutex_unlock(&path->dentry->d_inode->i_mutex);
1490 		return -ENOENT;
1491 	}
1492 	down_write(&namespace_sem);
1493 	mnt = lookup_mnt(path);
1494 	if (likely(!mnt))
1495 		return 0;
1496 	up_write(&namespace_sem);
1497 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1498 	path_put(path);
1499 	path->mnt = mnt;
1500 	path->dentry = dget(mnt->mnt_root);
1501 	goto retry;
1502 }
1503 
1504 static void unlock_mount(struct path *path)
1505 {
1506 	up_write(&namespace_sem);
1507 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1508 }
1509 
1510 static int graft_tree(struct mount *mnt, struct path *path)
1511 {
1512 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1513 		return -EINVAL;
1514 
1515 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1516 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1517 		return -ENOTDIR;
1518 
1519 	if (d_unlinked(path->dentry))
1520 		return -ENOENT;
1521 
1522 	return attach_recursive_mnt(mnt, path, NULL);
1523 }
1524 
1525 /*
1526  * Sanity check the flags to change_mnt_propagation.
1527  */
1528 
1529 static int flags_to_propagation_type(int flags)
1530 {
1531 	int type = flags & ~(MS_REC | MS_SILENT);
1532 
1533 	/* Fail if any non-propagation flags are set */
1534 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1535 		return 0;
1536 	/* Only one propagation flag should be set */
1537 	if (!is_power_of_2(type))
1538 		return 0;
1539 	return type;
1540 }
1541 
1542 /*
1543  * recursively change the type of the mountpoint.
1544  */
1545 static int do_change_type(struct path *path, int flag)
1546 {
1547 	struct mount *m;
1548 	struct mount *mnt = real_mount(path->mnt);
1549 	int recurse = flag & MS_REC;
1550 	int type;
1551 	int err = 0;
1552 
1553 	if (!capable(CAP_SYS_ADMIN))
1554 		return -EPERM;
1555 
1556 	if (path->dentry != path->mnt->mnt_root)
1557 		return -EINVAL;
1558 
1559 	type = flags_to_propagation_type(flag);
1560 	if (!type)
1561 		return -EINVAL;
1562 
1563 	down_write(&namespace_sem);
1564 	if (type == MS_SHARED) {
1565 		err = invent_group_ids(mnt, recurse);
1566 		if (err)
1567 			goto out_unlock;
1568 	}
1569 
1570 	br_write_lock(&vfsmount_lock);
1571 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1572 		change_mnt_propagation(m, type);
1573 	br_write_unlock(&vfsmount_lock);
1574 
1575  out_unlock:
1576 	up_write(&namespace_sem);
1577 	return err;
1578 }
1579 
1580 /*
1581  * do loopback mount.
1582  */
1583 static int do_loopback(struct path *path, char *old_name,
1584 				int recurse)
1585 {
1586 	LIST_HEAD(umount_list);
1587 	struct path old_path;
1588 	struct mount *mnt = NULL, *old;
1589 	int err = mount_is_safe(path);
1590 	if (err)
1591 		return err;
1592 	if (!old_name || !*old_name)
1593 		return -EINVAL;
1594 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1595 	if (err)
1596 		return err;
1597 
1598 	err = lock_mount(path);
1599 	if (err)
1600 		goto out;
1601 
1602 	old = real_mount(old_path.mnt);
1603 
1604 	err = -EINVAL;
1605 	if (IS_MNT_UNBINDABLE(old))
1606 		goto out2;
1607 
1608 	if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1609 		goto out2;
1610 
1611 	err = -ENOMEM;
1612 	if (recurse)
1613 		mnt = copy_tree(old, old_path.dentry, 0);
1614 	else
1615 		mnt = clone_mnt(old, old_path.dentry, 0);
1616 
1617 	if (!mnt)
1618 		goto out2;
1619 
1620 	err = graft_tree(mnt, path);
1621 	if (err) {
1622 		br_write_lock(&vfsmount_lock);
1623 		umount_tree(mnt, 0, &umount_list);
1624 		br_write_unlock(&vfsmount_lock);
1625 	}
1626 out2:
1627 	unlock_mount(path);
1628 	release_mounts(&umount_list);
1629 out:
1630 	path_put(&old_path);
1631 	return err;
1632 }
1633 
1634 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1635 {
1636 	int error = 0;
1637 	int readonly_request = 0;
1638 
1639 	if (ms_flags & MS_RDONLY)
1640 		readonly_request = 1;
1641 	if (readonly_request == __mnt_is_readonly(mnt))
1642 		return 0;
1643 
1644 	if (readonly_request)
1645 		error = mnt_make_readonly(real_mount(mnt));
1646 	else
1647 		__mnt_unmake_readonly(real_mount(mnt));
1648 	return error;
1649 }
1650 
1651 /*
1652  * change filesystem flags. dir should be a physical root of filesystem.
1653  * If you've mounted a non-root directory somewhere and want to do remount
1654  * on it - tough luck.
1655  */
1656 static int do_remount(struct path *path, int flags, int mnt_flags,
1657 		      void *data)
1658 {
1659 	int err;
1660 	struct super_block *sb = path->mnt->mnt_sb;
1661 	struct mount *mnt = real_mount(path->mnt);
1662 
1663 	if (!capable(CAP_SYS_ADMIN))
1664 		return -EPERM;
1665 
1666 	if (!check_mnt(mnt))
1667 		return -EINVAL;
1668 
1669 	if (path->dentry != path->mnt->mnt_root)
1670 		return -EINVAL;
1671 
1672 	err = security_sb_remount(sb, data);
1673 	if (err)
1674 		return err;
1675 
1676 	down_write(&sb->s_umount);
1677 	if (flags & MS_BIND)
1678 		err = change_mount_flags(path->mnt, flags);
1679 	else
1680 		err = do_remount_sb(sb, flags, data, 0);
1681 	if (!err) {
1682 		br_write_lock(&vfsmount_lock);
1683 		mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1684 		mnt->mnt.mnt_flags = mnt_flags;
1685 		br_write_unlock(&vfsmount_lock);
1686 	}
1687 	up_write(&sb->s_umount);
1688 	if (!err) {
1689 		br_write_lock(&vfsmount_lock);
1690 		touch_mnt_namespace(mnt->mnt_ns);
1691 		br_write_unlock(&vfsmount_lock);
1692 	}
1693 	return err;
1694 }
1695 
1696 static inline int tree_contains_unbindable(struct mount *mnt)
1697 {
1698 	struct mount *p;
1699 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1700 		if (IS_MNT_UNBINDABLE(p))
1701 			return 1;
1702 	}
1703 	return 0;
1704 }
1705 
1706 static int do_move_mount(struct path *path, char *old_name)
1707 {
1708 	struct path old_path, parent_path;
1709 	struct mount *p;
1710 	struct mount *old;
1711 	int err = 0;
1712 	if (!capable(CAP_SYS_ADMIN))
1713 		return -EPERM;
1714 	if (!old_name || !*old_name)
1715 		return -EINVAL;
1716 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1717 	if (err)
1718 		return err;
1719 
1720 	err = lock_mount(path);
1721 	if (err < 0)
1722 		goto out;
1723 
1724 	old = real_mount(old_path.mnt);
1725 	p = real_mount(path->mnt);
1726 
1727 	err = -EINVAL;
1728 	if (!check_mnt(p) || !check_mnt(old))
1729 		goto out1;
1730 
1731 	if (d_unlinked(path->dentry))
1732 		goto out1;
1733 
1734 	err = -EINVAL;
1735 	if (old_path.dentry != old_path.mnt->mnt_root)
1736 		goto out1;
1737 
1738 	if (!mnt_has_parent(old))
1739 		goto out1;
1740 
1741 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1742 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1743 		goto out1;
1744 	/*
1745 	 * Don't move a mount residing in a shared parent.
1746 	 */
1747 	if (IS_MNT_SHARED(old->mnt_parent))
1748 		goto out1;
1749 	/*
1750 	 * Don't move a mount tree containing unbindable mounts to a destination
1751 	 * mount which is shared.
1752 	 */
1753 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1754 		goto out1;
1755 	err = -ELOOP;
1756 	for (; mnt_has_parent(p); p = p->mnt_parent)
1757 		if (p == old)
1758 			goto out1;
1759 
1760 	err = attach_recursive_mnt(old, path, &parent_path);
1761 	if (err)
1762 		goto out1;
1763 
1764 	/* if the mount is moved, it should no longer be expire
1765 	 * automatically */
1766 	list_del_init(&old->mnt_expire);
1767 out1:
1768 	unlock_mount(path);
1769 out:
1770 	if (!err)
1771 		path_put(&parent_path);
1772 	path_put(&old_path);
1773 	return err;
1774 }
1775 
1776 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1777 {
1778 	int err;
1779 	const char *subtype = strchr(fstype, '.');
1780 	if (subtype) {
1781 		subtype++;
1782 		err = -EINVAL;
1783 		if (!subtype[0])
1784 			goto err;
1785 	} else
1786 		subtype = "";
1787 
1788 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1789 	err = -ENOMEM;
1790 	if (!mnt->mnt_sb->s_subtype)
1791 		goto err;
1792 	return mnt;
1793 
1794  err:
1795 	mntput(mnt);
1796 	return ERR_PTR(err);
1797 }
1798 
1799 static struct vfsmount *
1800 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1801 {
1802 	struct file_system_type *type = get_fs_type(fstype);
1803 	struct vfsmount *mnt;
1804 	if (!type)
1805 		return ERR_PTR(-ENODEV);
1806 	mnt = vfs_kern_mount(type, flags, name, data);
1807 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1808 	    !mnt->mnt_sb->s_subtype)
1809 		mnt = fs_set_subtype(mnt, fstype);
1810 	put_filesystem(type);
1811 	return mnt;
1812 }
1813 
1814 /*
1815  * add a mount into a namespace's mount tree
1816  */
1817 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1818 {
1819 	int err;
1820 
1821 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1822 
1823 	err = lock_mount(path);
1824 	if (err)
1825 		return err;
1826 
1827 	err = -EINVAL;
1828 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1829 		goto unlock;
1830 
1831 	/* Refuse the same filesystem on the same mount point */
1832 	err = -EBUSY;
1833 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1834 	    path->mnt->mnt_root == path->dentry)
1835 		goto unlock;
1836 
1837 	err = -EINVAL;
1838 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1839 		goto unlock;
1840 
1841 	newmnt->mnt.mnt_flags = mnt_flags;
1842 	err = graft_tree(newmnt, path);
1843 
1844 unlock:
1845 	unlock_mount(path);
1846 	return err;
1847 }
1848 
1849 /*
1850  * create a new mount for userspace and request it to be added into the
1851  * namespace's tree
1852  */
1853 static int do_new_mount(struct path *path, char *type, int flags,
1854 			int mnt_flags, char *name, void *data)
1855 {
1856 	struct vfsmount *mnt;
1857 	int err;
1858 
1859 	if (!type)
1860 		return -EINVAL;
1861 
1862 	/* we need capabilities... */
1863 	if (!capable(CAP_SYS_ADMIN))
1864 		return -EPERM;
1865 
1866 	mnt = do_kern_mount(type, flags, name, data);
1867 	if (IS_ERR(mnt))
1868 		return PTR_ERR(mnt);
1869 
1870 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
1871 	if (err)
1872 		mntput(mnt);
1873 	return err;
1874 }
1875 
1876 int finish_automount(struct vfsmount *m, struct path *path)
1877 {
1878 	struct mount *mnt = real_mount(m);
1879 	int err;
1880 	/* The new mount record should have at least 2 refs to prevent it being
1881 	 * expired before we get a chance to add it
1882 	 */
1883 	BUG_ON(mnt_get_count(mnt) < 2);
1884 
1885 	if (m->mnt_sb == path->mnt->mnt_sb &&
1886 	    m->mnt_root == path->dentry) {
1887 		err = -ELOOP;
1888 		goto fail;
1889 	}
1890 
1891 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1892 	if (!err)
1893 		return 0;
1894 fail:
1895 	/* remove m from any expiration list it may be on */
1896 	if (!list_empty(&mnt->mnt_expire)) {
1897 		down_write(&namespace_sem);
1898 		br_write_lock(&vfsmount_lock);
1899 		list_del_init(&mnt->mnt_expire);
1900 		br_write_unlock(&vfsmount_lock);
1901 		up_write(&namespace_sem);
1902 	}
1903 	mntput(m);
1904 	mntput(m);
1905 	return err;
1906 }
1907 
1908 /**
1909  * mnt_set_expiry - Put a mount on an expiration list
1910  * @mnt: The mount to list.
1911  * @expiry_list: The list to add the mount to.
1912  */
1913 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1914 {
1915 	down_write(&namespace_sem);
1916 	br_write_lock(&vfsmount_lock);
1917 
1918 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1919 
1920 	br_write_unlock(&vfsmount_lock);
1921 	up_write(&namespace_sem);
1922 }
1923 EXPORT_SYMBOL(mnt_set_expiry);
1924 
1925 /*
1926  * process a list of expirable mountpoints with the intent of discarding any
1927  * mountpoints that aren't in use and haven't been touched since last we came
1928  * here
1929  */
1930 void mark_mounts_for_expiry(struct list_head *mounts)
1931 {
1932 	struct mount *mnt, *next;
1933 	LIST_HEAD(graveyard);
1934 	LIST_HEAD(umounts);
1935 
1936 	if (list_empty(mounts))
1937 		return;
1938 
1939 	down_write(&namespace_sem);
1940 	br_write_lock(&vfsmount_lock);
1941 
1942 	/* extract from the expiration list every vfsmount that matches the
1943 	 * following criteria:
1944 	 * - only referenced by its parent vfsmount
1945 	 * - still marked for expiry (marked on the last call here; marks are
1946 	 *   cleared by mntput())
1947 	 */
1948 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1949 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1950 			propagate_mount_busy(mnt, 1))
1951 			continue;
1952 		list_move(&mnt->mnt_expire, &graveyard);
1953 	}
1954 	while (!list_empty(&graveyard)) {
1955 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1956 		touch_mnt_namespace(mnt->mnt_ns);
1957 		umount_tree(mnt, 1, &umounts);
1958 	}
1959 	br_write_unlock(&vfsmount_lock);
1960 	up_write(&namespace_sem);
1961 
1962 	release_mounts(&umounts);
1963 }
1964 
1965 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1966 
1967 /*
1968  * Ripoff of 'select_parent()'
1969  *
1970  * search the list of submounts for a given mountpoint, and move any
1971  * shrinkable submounts to the 'graveyard' list.
1972  */
1973 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1974 {
1975 	struct mount *this_parent = parent;
1976 	struct list_head *next;
1977 	int found = 0;
1978 
1979 repeat:
1980 	next = this_parent->mnt_mounts.next;
1981 resume:
1982 	while (next != &this_parent->mnt_mounts) {
1983 		struct list_head *tmp = next;
1984 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1985 
1986 		next = tmp->next;
1987 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1988 			continue;
1989 		/*
1990 		 * Descend a level if the d_mounts list is non-empty.
1991 		 */
1992 		if (!list_empty(&mnt->mnt_mounts)) {
1993 			this_parent = mnt;
1994 			goto repeat;
1995 		}
1996 
1997 		if (!propagate_mount_busy(mnt, 1)) {
1998 			list_move_tail(&mnt->mnt_expire, graveyard);
1999 			found++;
2000 		}
2001 	}
2002 	/*
2003 	 * All done at this level ... ascend and resume the search
2004 	 */
2005 	if (this_parent != parent) {
2006 		next = this_parent->mnt_child.next;
2007 		this_parent = this_parent->mnt_parent;
2008 		goto resume;
2009 	}
2010 	return found;
2011 }
2012 
2013 /*
2014  * process a list of expirable mountpoints with the intent of discarding any
2015  * submounts of a specific parent mountpoint
2016  *
2017  * vfsmount_lock must be held for write
2018  */
2019 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2020 {
2021 	LIST_HEAD(graveyard);
2022 	struct mount *m;
2023 
2024 	/* extract submounts of 'mountpoint' from the expiration list */
2025 	while (select_submounts(mnt, &graveyard)) {
2026 		while (!list_empty(&graveyard)) {
2027 			m = list_first_entry(&graveyard, struct mount,
2028 						mnt_expire);
2029 			touch_mnt_namespace(m->mnt_ns);
2030 			umount_tree(m, 1, umounts);
2031 		}
2032 	}
2033 }
2034 
2035 /*
2036  * Some copy_from_user() implementations do not return the exact number of
2037  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2038  * Note that this function differs from copy_from_user() in that it will oops
2039  * on bad values of `to', rather than returning a short copy.
2040  */
2041 static long exact_copy_from_user(void *to, const void __user * from,
2042 				 unsigned long n)
2043 {
2044 	char *t = to;
2045 	const char __user *f = from;
2046 	char c;
2047 
2048 	if (!access_ok(VERIFY_READ, from, n))
2049 		return n;
2050 
2051 	while (n) {
2052 		if (__get_user(c, f)) {
2053 			memset(t, 0, n);
2054 			break;
2055 		}
2056 		*t++ = c;
2057 		f++;
2058 		n--;
2059 	}
2060 	return n;
2061 }
2062 
2063 int copy_mount_options(const void __user * data, unsigned long *where)
2064 {
2065 	int i;
2066 	unsigned long page;
2067 	unsigned long size;
2068 
2069 	*where = 0;
2070 	if (!data)
2071 		return 0;
2072 
2073 	if (!(page = __get_free_page(GFP_KERNEL)))
2074 		return -ENOMEM;
2075 
2076 	/* We only care that *some* data at the address the user
2077 	 * gave us is valid.  Just in case, we'll zero
2078 	 * the remainder of the page.
2079 	 */
2080 	/* copy_from_user cannot cross TASK_SIZE ! */
2081 	size = TASK_SIZE - (unsigned long)data;
2082 	if (size > PAGE_SIZE)
2083 		size = PAGE_SIZE;
2084 
2085 	i = size - exact_copy_from_user((void *)page, data, size);
2086 	if (!i) {
2087 		free_page(page);
2088 		return -EFAULT;
2089 	}
2090 	if (i != PAGE_SIZE)
2091 		memset((char *)page + i, 0, PAGE_SIZE - i);
2092 	*where = page;
2093 	return 0;
2094 }
2095 
2096 int copy_mount_string(const void __user *data, char **where)
2097 {
2098 	char *tmp;
2099 
2100 	if (!data) {
2101 		*where = NULL;
2102 		return 0;
2103 	}
2104 
2105 	tmp = strndup_user(data, PAGE_SIZE);
2106 	if (IS_ERR(tmp))
2107 		return PTR_ERR(tmp);
2108 
2109 	*where = tmp;
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2115  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2116  *
2117  * data is a (void *) that can point to any structure up to
2118  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2119  * information (or be NULL).
2120  *
2121  * Pre-0.97 versions of mount() didn't have a flags word.
2122  * When the flags word was introduced its top half was required
2123  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2124  * Therefore, if this magic number is present, it carries no information
2125  * and must be discarded.
2126  */
2127 long do_mount(char *dev_name, char *dir_name, char *type_page,
2128 		  unsigned long flags, void *data_page)
2129 {
2130 	struct path path;
2131 	int retval = 0;
2132 	int mnt_flags = 0;
2133 
2134 	/* Discard magic */
2135 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2136 		flags &= ~MS_MGC_MSK;
2137 
2138 	/* Basic sanity checks */
2139 
2140 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2141 		return -EINVAL;
2142 
2143 	if (data_page)
2144 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2145 
2146 	/* ... and get the mountpoint */
2147 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2148 	if (retval)
2149 		return retval;
2150 
2151 	retval = security_sb_mount(dev_name, &path,
2152 				   type_page, flags, data_page);
2153 	if (retval)
2154 		goto dput_out;
2155 
2156 	/* Default to relatime unless overriden */
2157 	if (!(flags & MS_NOATIME))
2158 		mnt_flags |= MNT_RELATIME;
2159 
2160 	/* Separate the per-mountpoint flags */
2161 	if (flags & MS_NOSUID)
2162 		mnt_flags |= MNT_NOSUID;
2163 	if (flags & MS_NODEV)
2164 		mnt_flags |= MNT_NODEV;
2165 	if (flags & MS_NOEXEC)
2166 		mnt_flags |= MNT_NOEXEC;
2167 	if (flags & MS_NOATIME)
2168 		mnt_flags |= MNT_NOATIME;
2169 	if (flags & MS_NODIRATIME)
2170 		mnt_flags |= MNT_NODIRATIME;
2171 	if (flags & MS_STRICTATIME)
2172 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2173 	if (flags & MS_RDONLY)
2174 		mnt_flags |= MNT_READONLY;
2175 
2176 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2177 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2178 		   MS_STRICTATIME);
2179 
2180 	if (flags & MS_REMOUNT)
2181 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2182 				    data_page);
2183 	else if (flags & MS_BIND)
2184 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2185 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2186 		retval = do_change_type(&path, flags);
2187 	else if (flags & MS_MOVE)
2188 		retval = do_move_mount(&path, dev_name);
2189 	else
2190 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2191 				      dev_name, data_page);
2192 dput_out:
2193 	path_put(&path);
2194 	return retval;
2195 }
2196 
2197 static struct mnt_namespace *alloc_mnt_ns(void)
2198 {
2199 	struct mnt_namespace *new_ns;
2200 
2201 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2202 	if (!new_ns)
2203 		return ERR_PTR(-ENOMEM);
2204 	atomic_set(&new_ns->count, 1);
2205 	new_ns->root = NULL;
2206 	INIT_LIST_HEAD(&new_ns->list);
2207 	init_waitqueue_head(&new_ns->poll);
2208 	new_ns->event = 0;
2209 	return new_ns;
2210 }
2211 
2212 void mnt_make_longterm(struct vfsmount *mnt)
2213 {
2214 	__mnt_make_longterm(real_mount(mnt));
2215 }
2216 
2217 void mnt_make_shortterm(struct vfsmount *m)
2218 {
2219 #ifdef CONFIG_SMP
2220 	struct mount *mnt = real_mount(m);
2221 	if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2222 		return;
2223 	br_write_lock(&vfsmount_lock);
2224 	atomic_dec(&mnt->mnt_longterm);
2225 	br_write_unlock(&vfsmount_lock);
2226 #endif
2227 }
2228 
2229 /*
2230  * Allocate a new namespace structure and populate it with contents
2231  * copied from the namespace of the passed in task structure.
2232  */
2233 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2234 		struct fs_struct *fs)
2235 {
2236 	struct mnt_namespace *new_ns;
2237 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2238 	struct mount *p, *q;
2239 	struct mount *old = mnt_ns->root;
2240 	struct mount *new;
2241 
2242 	new_ns = alloc_mnt_ns();
2243 	if (IS_ERR(new_ns))
2244 		return new_ns;
2245 
2246 	down_write(&namespace_sem);
2247 	/* First pass: copy the tree topology */
2248 	new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2249 	if (!new) {
2250 		up_write(&namespace_sem);
2251 		kfree(new_ns);
2252 		return ERR_PTR(-ENOMEM);
2253 	}
2254 	new_ns->root = new;
2255 	br_write_lock(&vfsmount_lock);
2256 	list_add_tail(&new_ns->list, &new->mnt_list);
2257 	br_write_unlock(&vfsmount_lock);
2258 
2259 	/*
2260 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2261 	 * as belonging to new namespace.  We have already acquired a private
2262 	 * fs_struct, so tsk->fs->lock is not needed.
2263 	 */
2264 	p = old;
2265 	q = new;
2266 	while (p) {
2267 		q->mnt_ns = new_ns;
2268 		__mnt_make_longterm(q);
2269 		if (fs) {
2270 			if (&p->mnt == fs->root.mnt) {
2271 				fs->root.mnt = mntget(&q->mnt);
2272 				__mnt_make_longterm(q);
2273 				mnt_make_shortterm(&p->mnt);
2274 				rootmnt = &p->mnt;
2275 			}
2276 			if (&p->mnt == fs->pwd.mnt) {
2277 				fs->pwd.mnt = mntget(&q->mnt);
2278 				__mnt_make_longterm(q);
2279 				mnt_make_shortterm(&p->mnt);
2280 				pwdmnt = &p->mnt;
2281 			}
2282 		}
2283 		p = next_mnt(p, old);
2284 		q = next_mnt(q, new);
2285 	}
2286 	up_write(&namespace_sem);
2287 
2288 	if (rootmnt)
2289 		mntput(rootmnt);
2290 	if (pwdmnt)
2291 		mntput(pwdmnt);
2292 
2293 	return new_ns;
2294 }
2295 
2296 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2297 		struct fs_struct *new_fs)
2298 {
2299 	struct mnt_namespace *new_ns;
2300 
2301 	BUG_ON(!ns);
2302 	get_mnt_ns(ns);
2303 
2304 	if (!(flags & CLONE_NEWNS))
2305 		return ns;
2306 
2307 	new_ns = dup_mnt_ns(ns, new_fs);
2308 
2309 	put_mnt_ns(ns);
2310 	return new_ns;
2311 }
2312 
2313 /**
2314  * create_mnt_ns - creates a private namespace and adds a root filesystem
2315  * @mnt: pointer to the new root filesystem mountpoint
2316  */
2317 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2318 {
2319 	struct mnt_namespace *new_ns = alloc_mnt_ns();
2320 	if (!IS_ERR(new_ns)) {
2321 		struct mount *mnt = real_mount(m);
2322 		mnt->mnt_ns = new_ns;
2323 		__mnt_make_longterm(mnt);
2324 		new_ns->root = mnt;
2325 		list_add(&new_ns->list, &mnt->mnt_list);
2326 	} else {
2327 		mntput(m);
2328 	}
2329 	return new_ns;
2330 }
2331 
2332 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2333 {
2334 	struct mnt_namespace *ns;
2335 	struct super_block *s;
2336 	struct path path;
2337 	int err;
2338 
2339 	ns = create_mnt_ns(mnt);
2340 	if (IS_ERR(ns))
2341 		return ERR_CAST(ns);
2342 
2343 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2344 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2345 
2346 	put_mnt_ns(ns);
2347 
2348 	if (err)
2349 		return ERR_PTR(err);
2350 
2351 	/* trade a vfsmount reference for active sb one */
2352 	s = path.mnt->mnt_sb;
2353 	atomic_inc(&s->s_active);
2354 	mntput(path.mnt);
2355 	/* lock the sucker */
2356 	down_write(&s->s_umount);
2357 	/* ... and return the root of (sub)tree on it */
2358 	return path.dentry;
2359 }
2360 EXPORT_SYMBOL(mount_subtree);
2361 
2362 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2363 		char __user *, type, unsigned long, flags, void __user *, data)
2364 {
2365 	int ret;
2366 	char *kernel_type;
2367 	char *kernel_dir;
2368 	char *kernel_dev;
2369 	unsigned long data_page;
2370 
2371 	ret = copy_mount_string(type, &kernel_type);
2372 	if (ret < 0)
2373 		goto out_type;
2374 
2375 	kernel_dir = getname(dir_name);
2376 	if (IS_ERR(kernel_dir)) {
2377 		ret = PTR_ERR(kernel_dir);
2378 		goto out_dir;
2379 	}
2380 
2381 	ret = copy_mount_string(dev_name, &kernel_dev);
2382 	if (ret < 0)
2383 		goto out_dev;
2384 
2385 	ret = copy_mount_options(data, &data_page);
2386 	if (ret < 0)
2387 		goto out_data;
2388 
2389 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2390 		(void *) data_page);
2391 
2392 	free_page(data_page);
2393 out_data:
2394 	kfree(kernel_dev);
2395 out_dev:
2396 	putname(kernel_dir);
2397 out_dir:
2398 	kfree(kernel_type);
2399 out_type:
2400 	return ret;
2401 }
2402 
2403 /*
2404  * Return true if path is reachable from root
2405  *
2406  * namespace_sem or vfsmount_lock is held
2407  */
2408 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2409 			 const struct path *root)
2410 {
2411 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2412 		dentry = mnt->mnt_mountpoint;
2413 		mnt = mnt->mnt_parent;
2414 	}
2415 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2416 }
2417 
2418 int path_is_under(struct path *path1, struct path *path2)
2419 {
2420 	int res;
2421 	br_read_lock(&vfsmount_lock);
2422 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2423 	br_read_unlock(&vfsmount_lock);
2424 	return res;
2425 }
2426 EXPORT_SYMBOL(path_is_under);
2427 
2428 /*
2429  * pivot_root Semantics:
2430  * Moves the root file system of the current process to the directory put_old,
2431  * makes new_root as the new root file system of the current process, and sets
2432  * root/cwd of all processes which had them on the current root to new_root.
2433  *
2434  * Restrictions:
2435  * The new_root and put_old must be directories, and  must not be on the
2436  * same file  system as the current process root. The put_old  must  be
2437  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2438  * pointed to by put_old must yield the same directory as new_root. No other
2439  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2440  *
2441  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2442  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2443  * in this situation.
2444  *
2445  * Notes:
2446  *  - we don't move root/cwd if they are not at the root (reason: if something
2447  *    cared enough to change them, it's probably wrong to force them elsewhere)
2448  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2449  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2450  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2451  *    first.
2452  */
2453 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2454 		const char __user *, put_old)
2455 {
2456 	struct path new, old, parent_path, root_parent, root;
2457 	struct mount *new_mnt, *root_mnt;
2458 	int error;
2459 
2460 	if (!capable(CAP_SYS_ADMIN))
2461 		return -EPERM;
2462 
2463 	error = user_path_dir(new_root, &new);
2464 	if (error)
2465 		goto out0;
2466 
2467 	error = user_path_dir(put_old, &old);
2468 	if (error)
2469 		goto out1;
2470 
2471 	error = security_sb_pivotroot(&old, &new);
2472 	if (error)
2473 		goto out2;
2474 
2475 	get_fs_root(current->fs, &root);
2476 	error = lock_mount(&old);
2477 	if (error)
2478 		goto out3;
2479 
2480 	error = -EINVAL;
2481 	new_mnt = real_mount(new.mnt);
2482 	root_mnt = real_mount(root.mnt);
2483 	if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2484 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2485 		IS_MNT_SHARED(root_mnt->mnt_parent))
2486 		goto out4;
2487 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2488 		goto out4;
2489 	error = -ENOENT;
2490 	if (d_unlinked(new.dentry))
2491 		goto out4;
2492 	if (d_unlinked(old.dentry))
2493 		goto out4;
2494 	error = -EBUSY;
2495 	if (new.mnt == root.mnt ||
2496 	    old.mnt == root.mnt)
2497 		goto out4; /* loop, on the same file system  */
2498 	error = -EINVAL;
2499 	if (root.mnt->mnt_root != root.dentry)
2500 		goto out4; /* not a mountpoint */
2501 	if (!mnt_has_parent(root_mnt))
2502 		goto out4; /* not attached */
2503 	if (new.mnt->mnt_root != new.dentry)
2504 		goto out4; /* not a mountpoint */
2505 	if (!mnt_has_parent(new_mnt))
2506 		goto out4; /* not attached */
2507 	/* make sure we can reach put_old from new_root */
2508 	if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2509 		goto out4;
2510 	br_write_lock(&vfsmount_lock);
2511 	detach_mnt(new_mnt, &parent_path);
2512 	detach_mnt(root_mnt, &root_parent);
2513 	/* mount old root on put_old */
2514 	attach_mnt(root_mnt, &old);
2515 	/* mount new_root on / */
2516 	attach_mnt(new_mnt, &root_parent);
2517 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2518 	br_write_unlock(&vfsmount_lock);
2519 	chroot_fs_refs(&root, &new);
2520 	error = 0;
2521 out4:
2522 	unlock_mount(&old);
2523 	if (!error) {
2524 		path_put(&root_parent);
2525 		path_put(&parent_path);
2526 	}
2527 out3:
2528 	path_put(&root);
2529 out2:
2530 	path_put(&old);
2531 out1:
2532 	path_put(&new);
2533 out0:
2534 	return error;
2535 }
2536 
2537 static void __init init_mount_tree(void)
2538 {
2539 	struct vfsmount *mnt;
2540 	struct mnt_namespace *ns;
2541 	struct path root;
2542 
2543 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2544 	if (IS_ERR(mnt))
2545 		panic("Can't create rootfs");
2546 
2547 	ns = create_mnt_ns(mnt);
2548 	if (IS_ERR(ns))
2549 		panic("Can't allocate initial namespace");
2550 
2551 	init_task.nsproxy->mnt_ns = ns;
2552 	get_mnt_ns(ns);
2553 
2554 	root.mnt = mnt;
2555 	root.dentry = mnt->mnt_root;
2556 
2557 	set_fs_pwd(current->fs, &root);
2558 	set_fs_root(current->fs, &root);
2559 }
2560 
2561 void __init mnt_init(void)
2562 {
2563 	unsigned u;
2564 	int err;
2565 
2566 	init_rwsem(&namespace_sem);
2567 
2568 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2569 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2570 
2571 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2572 
2573 	if (!mount_hashtable)
2574 		panic("Failed to allocate mount hash table\n");
2575 
2576 	printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2577 
2578 	for (u = 0; u < HASH_SIZE; u++)
2579 		INIT_LIST_HEAD(&mount_hashtable[u]);
2580 
2581 	br_lock_init(&vfsmount_lock);
2582 
2583 	err = sysfs_init();
2584 	if (err)
2585 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2586 			__func__, err);
2587 	fs_kobj = kobject_create_and_add("fs", NULL);
2588 	if (!fs_kobj)
2589 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2590 	init_rootfs();
2591 	init_mount_tree();
2592 }
2593 
2594 void put_mnt_ns(struct mnt_namespace *ns)
2595 {
2596 	LIST_HEAD(umount_list);
2597 
2598 	if (!atomic_dec_and_test(&ns->count))
2599 		return;
2600 	down_write(&namespace_sem);
2601 	br_write_lock(&vfsmount_lock);
2602 	umount_tree(ns->root, 0, &umount_list);
2603 	br_write_unlock(&vfsmount_lock);
2604 	up_write(&namespace_sem);
2605 	release_mounts(&umount_list);
2606 	kfree(ns);
2607 }
2608 
2609 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2610 {
2611 	struct vfsmount *mnt;
2612 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2613 	if (!IS_ERR(mnt)) {
2614 		/*
2615 		 * it is a longterm mount, don't release mnt until
2616 		 * we unmount before file sys is unregistered
2617 		*/
2618 		mnt_make_longterm(mnt);
2619 	}
2620 	return mnt;
2621 }
2622 EXPORT_SYMBOL_GPL(kern_mount_data);
2623 
2624 void kern_unmount(struct vfsmount *mnt)
2625 {
2626 	/* release long term mount so mount point can be released */
2627 	if (!IS_ERR_OR_NULL(mnt)) {
2628 		mnt_make_shortterm(mnt);
2629 		mntput(mnt);
2630 	}
2631 }
2632 EXPORT_SYMBOL(kern_unmount);
2633 
2634 bool our_mnt(struct vfsmount *mnt)
2635 {
2636 	return check_mnt(real_mount(mnt));
2637 }
2638