xref: /linux/fs/namespace.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/module.h>
20 #include <linux/seq_file.h>
21 #include <linux/namespace.h>
22 #include <linux/namei.h>
23 #include <linux/security.h>
24 #include <linux/mount.h>
25 #include <asm/uaccess.h>
26 #include <asm/unistd.h>
27 
28 extern int __init init_rootfs(void);
29 
30 #ifdef CONFIG_SYSFS
31 extern int __init sysfs_init(void);
32 #else
33 static inline int sysfs_init(void)
34 {
35 	return 0;
36 }
37 #endif
38 
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40  __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41 
42 static struct list_head *mount_hashtable;
43 static int hash_mask __read_mostly, hash_bits __read_mostly;
44 static kmem_cache_t *mnt_cache;
45 
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
47 {
48 	unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES);
49 	tmp += ((unsigned long) dentry / L1_CACHE_BYTES);
50 	tmp = tmp + (tmp >> hash_bits);
51 	return tmp & hash_mask;
52 }
53 
54 struct vfsmount *alloc_vfsmnt(const char *name)
55 {
56 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
57 	if (mnt) {
58 		memset(mnt, 0, sizeof(struct vfsmount));
59 		atomic_set(&mnt->mnt_count,1);
60 		INIT_LIST_HEAD(&mnt->mnt_hash);
61 		INIT_LIST_HEAD(&mnt->mnt_child);
62 		INIT_LIST_HEAD(&mnt->mnt_mounts);
63 		INIT_LIST_HEAD(&mnt->mnt_list);
64 		INIT_LIST_HEAD(&mnt->mnt_expire);
65 		if (name) {
66 			int size = strlen(name)+1;
67 			char *newname = kmalloc(size, GFP_KERNEL);
68 			if (newname) {
69 				memcpy(newname, name, size);
70 				mnt->mnt_devname = newname;
71 			}
72 		}
73 	}
74 	return mnt;
75 }
76 
77 void free_vfsmnt(struct vfsmount *mnt)
78 {
79 	kfree(mnt->mnt_devname);
80 	kmem_cache_free(mnt_cache, mnt);
81 }
82 
83 /*
84  * Now, lookup_mnt increments the ref count before returning
85  * the vfsmount struct.
86  */
87 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 	struct list_head * head = mount_hashtable + hash(mnt, dentry);
90 	struct list_head * tmp = head;
91 	struct vfsmount *p, *found = NULL;
92 
93 	spin_lock(&vfsmount_lock);
94 	for (;;) {
95 		tmp = tmp->next;
96 		p = NULL;
97 		if (tmp == head)
98 			break;
99 		p = list_entry(tmp, struct vfsmount, mnt_hash);
100 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
101 			found = mntget(p);
102 			break;
103 		}
104 	}
105 	spin_unlock(&vfsmount_lock);
106 	return found;
107 }
108 
109 static inline int check_mnt(struct vfsmount *mnt)
110 {
111 	return mnt->mnt_namespace == current->namespace;
112 }
113 
114 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
115 {
116 	old_nd->dentry = mnt->mnt_mountpoint;
117 	old_nd->mnt = mnt->mnt_parent;
118 	mnt->mnt_parent = mnt;
119 	mnt->mnt_mountpoint = mnt->mnt_root;
120 	list_del_init(&mnt->mnt_child);
121 	list_del_init(&mnt->mnt_hash);
122 	old_nd->dentry->d_mounted--;
123 }
124 
125 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
126 {
127 	mnt->mnt_parent = mntget(nd->mnt);
128 	mnt->mnt_mountpoint = dget(nd->dentry);
129 	list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry));
130 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
131 	nd->dentry->d_mounted++;
132 }
133 
134 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
135 {
136 	struct list_head *next = p->mnt_mounts.next;
137 	if (next == &p->mnt_mounts) {
138 		while (1) {
139 			if (p == root)
140 				return NULL;
141 			next = p->mnt_child.next;
142 			if (next != &p->mnt_parent->mnt_mounts)
143 				break;
144 			p = p->mnt_parent;
145 		}
146 	}
147 	return list_entry(next, struct vfsmount, mnt_child);
148 }
149 
150 static struct vfsmount *
151 clone_mnt(struct vfsmount *old, struct dentry *root)
152 {
153 	struct super_block *sb = old->mnt_sb;
154 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
155 
156 	if (mnt) {
157 		mnt->mnt_flags = old->mnt_flags;
158 		atomic_inc(&sb->s_active);
159 		mnt->mnt_sb = sb;
160 		mnt->mnt_root = dget(root);
161 		mnt->mnt_mountpoint = mnt->mnt_root;
162 		mnt->mnt_parent = mnt;
163 		mnt->mnt_namespace = current->namespace;
164 
165 		/* stick the duplicate mount on the same expiry list
166 		 * as the original if that was on one */
167 		spin_lock(&vfsmount_lock);
168 		if (!list_empty(&old->mnt_expire))
169 			list_add(&mnt->mnt_expire, &old->mnt_expire);
170 		spin_unlock(&vfsmount_lock);
171 	}
172 	return mnt;
173 }
174 
175 void __mntput(struct vfsmount *mnt)
176 {
177 	struct super_block *sb = mnt->mnt_sb;
178 	dput(mnt->mnt_root);
179 	free_vfsmnt(mnt);
180 	deactivate_super(sb);
181 }
182 
183 EXPORT_SYMBOL(__mntput);
184 
185 /* iterator */
186 static void *m_start(struct seq_file *m, loff_t *pos)
187 {
188 	struct namespace *n = m->private;
189 	struct list_head *p;
190 	loff_t l = *pos;
191 
192 	down_read(&n->sem);
193 	list_for_each(p, &n->list)
194 		if (!l--)
195 			return list_entry(p, struct vfsmount, mnt_list);
196 	return NULL;
197 }
198 
199 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
200 {
201 	struct namespace *n = m->private;
202 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
203 	(*pos)++;
204 	return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
205 }
206 
207 static void m_stop(struct seq_file *m, void *v)
208 {
209 	struct namespace *n = m->private;
210 	up_read(&n->sem);
211 }
212 
213 static inline void mangle(struct seq_file *m, const char *s)
214 {
215 	seq_escape(m, s, " \t\n\\");
216 }
217 
218 static int show_vfsmnt(struct seq_file *m, void *v)
219 {
220 	struct vfsmount *mnt = v;
221 	int err = 0;
222 	static struct proc_fs_info {
223 		int flag;
224 		char *str;
225 	} fs_info[] = {
226 		{ MS_SYNCHRONOUS, ",sync" },
227 		{ MS_DIRSYNC, ",dirsync" },
228 		{ MS_MANDLOCK, ",mand" },
229 		{ MS_NOATIME, ",noatime" },
230 		{ MS_NODIRATIME, ",nodiratime" },
231 		{ 0, NULL }
232 	};
233 	static struct proc_fs_info mnt_info[] = {
234 		{ MNT_NOSUID, ",nosuid" },
235 		{ MNT_NODEV, ",nodev" },
236 		{ MNT_NOEXEC, ",noexec" },
237 		{ 0, NULL }
238 	};
239 	struct proc_fs_info *fs_infop;
240 
241 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
242 	seq_putc(m, ' ');
243 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
244 	seq_putc(m, ' ');
245 	mangle(m, mnt->mnt_sb->s_type->name);
246 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
247 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
248 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
249 			seq_puts(m, fs_infop->str);
250 	}
251 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
252 		if (mnt->mnt_flags & fs_infop->flag)
253 			seq_puts(m, fs_infop->str);
254 	}
255 	if (mnt->mnt_sb->s_op->show_options)
256 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
257 	seq_puts(m, " 0 0\n");
258 	return err;
259 }
260 
261 struct seq_operations mounts_op = {
262 	.start	= m_start,
263 	.next	= m_next,
264 	.stop	= m_stop,
265 	.show	= show_vfsmnt
266 };
267 
268 /**
269  * may_umount_tree - check if a mount tree is busy
270  * @mnt: root of mount tree
271  *
272  * This is called to check if a tree of mounts has any
273  * open files, pwds, chroots or sub mounts that are
274  * busy.
275  */
276 int may_umount_tree(struct vfsmount *mnt)
277 {
278 	struct list_head *next;
279 	struct vfsmount *this_parent = mnt;
280 	int actual_refs;
281 	int minimum_refs;
282 
283 	spin_lock(&vfsmount_lock);
284 	actual_refs = atomic_read(&mnt->mnt_count);
285 	minimum_refs = 2;
286 repeat:
287 	next = this_parent->mnt_mounts.next;
288 resume:
289 	while (next != &this_parent->mnt_mounts) {
290 		struct vfsmount *p = list_entry(next, struct vfsmount, mnt_child);
291 
292 		next = next->next;
293 
294 		actual_refs += atomic_read(&p->mnt_count);
295 		minimum_refs += 2;
296 
297 		if (!list_empty(&p->mnt_mounts)) {
298 			this_parent = p;
299 			goto repeat;
300 		}
301 	}
302 
303 	if (this_parent != mnt) {
304 		next = this_parent->mnt_child.next;
305 		this_parent = this_parent->mnt_parent;
306 		goto resume;
307 	}
308 	spin_unlock(&vfsmount_lock);
309 
310 	if (actual_refs > minimum_refs)
311 		return -EBUSY;
312 
313 	return 0;
314 }
315 
316 EXPORT_SYMBOL(may_umount_tree);
317 
318 /**
319  * may_umount - check if a mount point is busy
320  * @mnt: root of mount
321  *
322  * This is called to check if a mount point has any
323  * open files, pwds, chroots or sub mounts. If the
324  * mount has sub mounts this will return busy
325  * regardless of whether the sub mounts are busy.
326  *
327  * Doesn't take quota and stuff into account. IOW, in some cases it will
328  * give false negatives. The main reason why it's here is that we need
329  * a non-destructive way to look for easily umountable filesystems.
330  */
331 int may_umount(struct vfsmount *mnt)
332 {
333 	if (atomic_read(&mnt->mnt_count) > 2)
334 		return -EBUSY;
335 	return 0;
336 }
337 
338 EXPORT_SYMBOL(may_umount);
339 
340 static void umount_tree(struct vfsmount *mnt)
341 {
342 	struct vfsmount *p;
343 	LIST_HEAD(kill);
344 
345 	for (p = mnt; p; p = next_mnt(p, mnt)) {
346 		list_del(&p->mnt_list);
347 		list_add(&p->mnt_list, &kill);
348 		p->mnt_namespace = NULL;
349 	}
350 
351 	while (!list_empty(&kill)) {
352 		mnt = list_entry(kill.next, struct vfsmount, mnt_list);
353 		list_del_init(&mnt->mnt_list);
354 		list_del_init(&mnt->mnt_expire);
355 		if (mnt->mnt_parent == mnt) {
356 			spin_unlock(&vfsmount_lock);
357 		} else {
358 			struct nameidata old_nd;
359 			detach_mnt(mnt, &old_nd);
360 			spin_unlock(&vfsmount_lock);
361 			path_release(&old_nd);
362 		}
363 		mntput(mnt);
364 		spin_lock(&vfsmount_lock);
365 	}
366 }
367 
368 static int do_umount(struct vfsmount *mnt, int flags)
369 {
370 	struct super_block * sb = mnt->mnt_sb;
371 	int retval;
372 
373 	retval = security_sb_umount(mnt, flags);
374 	if (retval)
375 		return retval;
376 
377 	/*
378 	 * Allow userspace to request a mountpoint be expired rather than
379 	 * unmounting unconditionally. Unmount only happens if:
380 	 *  (1) the mark is already set (the mark is cleared by mntput())
381 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
382 	 */
383 	if (flags & MNT_EXPIRE) {
384 		if (mnt == current->fs->rootmnt ||
385 		    flags & (MNT_FORCE | MNT_DETACH))
386 			return -EINVAL;
387 
388 		if (atomic_read(&mnt->mnt_count) != 2)
389 			return -EBUSY;
390 
391 		if (!xchg(&mnt->mnt_expiry_mark, 1))
392 			return -EAGAIN;
393 	}
394 
395 	/*
396 	 * If we may have to abort operations to get out of this
397 	 * mount, and they will themselves hold resources we must
398 	 * allow the fs to do things. In the Unix tradition of
399 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
400 	 * might fail to complete on the first run through as other tasks
401 	 * must return, and the like. Thats for the mount program to worry
402 	 * about for the moment.
403 	 */
404 
405 	lock_kernel();
406 	if( (flags&MNT_FORCE) && sb->s_op->umount_begin)
407 		sb->s_op->umount_begin(sb);
408 	unlock_kernel();
409 
410 	/*
411 	 * No sense to grab the lock for this test, but test itself looks
412 	 * somewhat bogus. Suggestions for better replacement?
413 	 * Ho-hum... In principle, we might treat that as umount + switch
414 	 * to rootfs. GC would eventually take care of the old vfsmount.
415 	 * Actually it makes sense, especially if rootfs would contain a
416 	 * /reboot - static binary that would close all descriptors and
417 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
418 	 */
419 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
420 		/*
421 		 * Special case for "unmounting" root ...
422 		 * we just try to remount it readonly.
423 		 */
424 		down_write(&sb->s_umount);
425 		if (!(sb->s_flags & MS_RDONLY)) {
426 			lock_kernel();
427 			DQUOT_OFF(sb);
428 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
429 			unlock_kernel();
430 		}
431 		up_write(&sb->s_umount);
432 		return retval;
433 	}
434 
435 	down_write(&current->namespace->sem);
436 	spin_lock(&vfsmount_lock);
437 
438 	if (atomic_read(&sb->s_active) == 1) {
439 		/* last instance - try to be smart */
440 		spin_unlock(&vfsmount_lock);
441 		lock_kernel();
442 		DQUOT_OFF(sb);
443 		acct_auto_close(sb);
444 		unlock_kernel();
445 		security_sb_umount_close(mnt);
446 		spin_lock(&vfsmount_lock);
447 	}
448 	retval = -EBUSY;
449 	if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) {
450 		if (!list_empty(&mnt->mnt_list))
451 			umount_tree(mnt);
452 		retval = 0;
453 	}
454 	spin_unlock(&vfsmount_lock);
455 	if (retval)
456 		security_sb_umount_busy(mnt);
457 	up_write(&current->namespace->sem);
458 	return retval;
459 }
460 
461 /*
462  * Now umount can handle mount points as well as block devices.
463  * This is important for filesystems which use unnamed block devices.
464  *
465  * We now support a flag for forced unmount like the other 'big iron'
466  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
467  */
468 
469 asmlinkage long sys_umount(char __user * name, int flags)
470 {
471 	struct nameidata nd;
472 	int retval;
473 
474 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
475 	if (retval)
476 		goto out;
477 	retval = -EINVAL;
478 	if (nd.dentry != nd.mnt->mnt_root)
479 		goto dput_and_out;
480 	if (!check_mnt(nd.mnt))
481 		goto dput_and_out;
482 
483 	retval = -EPERM;
484 	if (!capable(CAP_SYS_ADMIN))
485 		goto dput_and_out;
486 
487 	retval = do_umount(nd.mnt, flags);
488 dput_and_out:
489 	path_release_on_umount(&nd);
490 out:
491 	return retval;
492 }
493 
494 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
495 
496 /*
497  *	The 2.0 compatible umount. No flags.
498  */
499 
500 asmlinkage long sys_oldumount(char __user * name)
501 {
502 	return sys_umount(name,0);
503 }
504 
505 #endif
506 
507 static int mount_is_safe(struct nameidata *nd)
508 {
509 	if (capable(CAP_SYS_ADMIN))
510 		return 0;
511 	return -EPERM;
512 #ifdef notyet
513 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
514 		return -EPERM;
515 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
516 		if (current->uid != nd->dentry->d_inode->i_uid)
517 			return -EPERM;
518 	}
519 	if (permission(nd->dentry->d_inode, MAY_WRITE, nd))
520 		return -EPERM;
521 	return 0;
522 #endif
523 }
524 
525 static int
526 lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
527 {
528 	while (1) {
529 		if (d == dentry)
530 			return 1;
531 		if (d == NULL || d == d->d_parent)
532 			return 0;
533 		d = d->d_parent;
534 	}
535 }
536 
537 static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry)
538 {
539 	struct vfsmount *res, *p, *q, *r, *s;
540 	struct list_head *h;
541 	struct nameidata nd;
542 
543 	res = q = clone_mnt(mnt, dentry);
544 	if (!q)
545 		goto Enomem;
546 	q->mnt_mountpoint = mnt->mnt_mountpoint;
547 
548 	p = mnt;
549 	for (h = mnt->mnt_mounts.next; h != &mnt->mnt_mounts; h = h->next) {
550 		r = list_entry(h, struct vfsmount, mnt_child);
551 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
552 			continue;
553 
554 		for (s = r; s; s = next_mnt(s, r)) {
555 			while (p != s->mnt_parent) {
556 				p = p->mnt_parent;
557 				q = q->mnt_parent;
558 			}
559 			p = s;
560 			nd.mnt = q;
561 			nd.dentry = p->mnt_mountpoint;
562 			q = clone_mnt(p, p->mnt_root);
563 			if (!q)
564 				goto Enomem;
565 			spin_lock(&vfsmount_lock);
566 			list_add_tail(&q->mnt_list, &res->mnt_list);
567 			attach_mnt(q, &nd);
568 			spin_unlock(&vfsmount_lock);
569 		}
570 	}
571 	return res;
572  Enomem:
573 	if (res) {
574 		spin_lock(&vfsmount_lock);
575 		umount_tree(res);
576 		spin_unlock(&vfsmount_lock);
577 	}
578 	return NULL;
579 }
580 
581 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
582 {
583 	int err;
584 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
585 		return -EINVAL;
586 
587 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
588 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
589 		return -ENOTDIR;
590 
591 	err = -ENOENT;
592 	down(&nd->dentry->d_inode->i_sem);
593 	if (IS_DEADDIR(nd->dentry->d_inode))
594 		goto out_unlock;
595 
596 	err = security_sb_check_sb(mnt, nd);
597 	if (err)
598 		goto out_unlock;
599 
600 	err = -ENOENT;
601 	spin_lock(&vfsmount_lock);
602 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) {
603 		struct list_head head;
604 
605 		attach_mnt(mnt, nd);
606 		list_add_tail(&head, &mnt->mnt_list);
607 		list_splice(&head, current->namespace->list.prev);
608 		mntget(mnt);
609 		err = 0;
610 	}
611 	spin_unlock(&vfsmount_lock);
612 out_unlock:
613 	up(&nd->dentry->d_inode->i_sem);
614 	if (!err)
615 		security_sb_post_addmount(mnt, nd);
616 	return err;
617 }
618 
619 /*
620  * do loopback mount.
621  */
622 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
623 {
624 	struct nameidata old_nd;
625 	struct vfsmount *mnt = NULL;
626 	int err = mount_is_safe(nd);
627 	if (err)
628 		return err;
629 	if (!old_name || !*old_name)
630 		return -EINVAL;
631 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
632 	if (err)
633 		return err;
634 
635 	down_write(&current->namespace->sem);
636 	err = -EINVAL;
637 	if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) {
638 		err = -ENOMEM;
639 		if (recurse)
640 			mnt = copy_tree(old_nd.mnt, old_nd.dentry);
641 		else
642 			mnt = clone_mnt(old_nd.mnt, old_nd.dentry);
643 	}
644 
645 	if (mnt) {
646 		/* stop bind mounts from expiring */
647 		spin_lock(&vfsmount_lock);
648 		list_del_init(&mnt->mnt_expire);
649 		spin_unlock(&vfsmount_lock);
650 
651 		err = graft_tree(mnt, nd);
652 		if (err) {
653 			spin_lock(&vfsmount_lock);
654 			umount_tree(mnt);
655 			spin_unlock(&vfsmount_lock);
656 		} else
657 			mntput(mnt);
658 	}
659 
660 	up_write(&current->namespace->sem);
661 	path_release(&old_nd);
662 	return err;
663 }
664 
665 /*
666  * change filesystem flags. dir should be a physical root of filesystem.
667  * If you've mounted a non-root directory somewhere and want to do remount
668  * on it - tough luck.
669  */
670 
671 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
672 		      void *data)
673 {
674 	int err;
675 	struct super_block * sb = nd->mnt->mnt_sb;
676 
677 	if (!capable(CAP_SYS_ADMIN))
678 		return -EPERM;
679 
680 	if (!check_mnt(nd->mnt))
681 		return -EINVAL;
682 
683 	if (nd->dentry != nd->mnt->mnt_root)
684 		return -EINVAL;
685 
686 	down_write(&sb->s_umount);
687 	err = do_remount_sb(sb, flags, data, 0);
688 	if (!err)
689 		nd->mnt->mnt_flags=mnt_flags;
690 	up_write(&sb->s_umount);
691 	if (!err)
692 		security_sb_post_remount(nd->mnt, flags, data);
693 	return err;
694 }
695 
696 static int do_move_mount(struct nameidata *nd, char *old_name)
697 {
698 	struct nameidata old_nd, parent_nd;
699 	struct vfsmount *p;
700 	int err = 0;
701 	if (!capable(CAP_SYS_ADMIN))
702 		return -EPERM;
703 	if (!old_name || !*old_name)
704 		return -EINVAL;
705 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
706 	if (err)
707 		return err;
708 
709 	down_write(&current->namespace->sem);
710 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
711 		;
712 	err = -EINVAL;
713 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
714 		goto out;
715 
716 	err = -ENOENT;
717 	down(&nd->dentry->d_inode->i_sem);
718 	if (IS_DEADDIR(nd->dentry->d_inode))
719 		goto out1;
720 
721 	spin_lock(&vfsmount_lock);
722 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
723 		goto out2;
724 
725 	err = -EINVAL;
726 	if (old_nd.dentry != old_nd.mnt->mnt_root)
727 		goto out2;
728 
729 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
730 		goto out2;
731 
732 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
733 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
734 		goto out2;
735 
736 	err = -ELOOP;
737 	for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent)
738 		if (p == old_nd.mnt)
739 			goto out2;
740 	err = 0;
741 
742 	detach_mnt(old_nd.mnt, &parent_nd);
743 	attach_mnt(old_nd.mnt, nd);
744 
745 	/* if the mount is moved, it should no longer be expire
746 	 * automatically */
747 	list_del_init(&old_nd.mnt->mnt_expire);
748 out2:
749 	spin_unlock(&vfsmount_lock);
750 out1:
751 	up(&nd->dentry->d_inode->i_sem);
752 out:
753 	up_write(&current->namespace->sem);
754 	if (!err)
755 		path_release(&parent_nd);
756 	path_release(&old_nd);
757 	return err;
758 }
759 
760 /*
761  * create a new mount for userspace and request it to be added into the
762  * namespace's tree
763  */
764 static int do_new_mount(struct nameidata *nd, char *type, int flags,
765 			int mnt_flags, char *name, void *data)
766 {
767 	struct vfsmount *mnt;
768 
769 	if (!type || !memchr(type, 0, PAGE_SIZE))
770 		return -EINVAL;
771 
772 	/* we need capabilities... */
773 	if (!capable(CAP_SYS_ADMIN))
774 		return -EPERM;
775 
776 	mnt = do_kern_mount(type, flags, name, data);
777 	if (IS_ERR(mnt))
778 		return PTR_ERR(mnt);
779 
780 	return do_add_mount(mnt, nd, mnt_flags, NULL);
781 }
782 
783 /*
784  * add a mount into a namespace's mount tree
785  * - provide the option of adding the new mount to an expiration list
786  */
787 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
788 		 int mnt_flags, struct list_head *fslist)
789 {
790 	int err;
791 
792 	down_write(&current->namespace->sem);
793 	/* Something was mounted here while we slept */
794 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
795 		;
796 	err = -EINVAL;
797 	if (!check_mnt(nd->mnt))
798 		goto unlock;
799 
800 	/* Refuse the same filesystem on the same mount point */
801 	err = -EBUSY;
802 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
803 	    nd->mnt->mnt_root == nd->dentry)
804 		goto unlock;
805 
806 	err = -EINVAL;
807 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
808 		goto unlock;
809 
810 	newmnt->mnt_flags = mnt_flags;
811 	newmnt->mnt_namespace = current->namespace;
812 	err = graft_tree(newmnt, nd);
813 
814 	if (err == 0 && fslist) {
815 		/* add to the specified expiration list */
816 		spin_lock(&vfsmount_lock);
817 		list_add_tail(&newmnt->mnt_expire, fslist);
818 		spin_unlock(&vfsmount_lock);
819 	}
820 
821 unlock:
822 	up_write(&current->namespace->sem);
823 	mntput(newmnt);
824 	return err;
825 }
826 
827 EXPORT_SYMBOL_GPL(do_add_mount);
828 
829 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts)
830 {
831 	spin_lock(&vfsmount_lock);
832 
833 	/*
834 	 * Check if mount is still attached, if not, let whoever holds it deal
835 	 * with the sucker
836 	 */
837 	if (mnt->mnt_parent == mnt) {
838 		spin_unlock(&vfsmount_lock);
839 		return;
840 	}
841 
842 	/*
843 	 * Check that it is still dead: the count should now be 2 - as
844 	 * contributed by the vfsmount parent and the mntget above
845 	 */
846 	if (atomic_read(&mnt->mnt_count) == 2) {
847 		struct nameidata old_nd;
848 
849 		/* delete from the namespace */
850 		list_del_init(&mnt->mnt_list);
851 		mnt->mnt_namespace = NULL;
852 		detach_mnt(mnt, &old_nd);
853 		spin_unlock(&vfsmount_lock);
854 		path_release(&old_nd);
855 
856 		/*
857 		 * Now lay it to rest if this was the last ref on the superblock
858 		 */
859 		if (atomic_read(&mnt->mnt_sb->s_active) == 1) {
860 			/* last instance - try to be smart */
861 			lock_kernel();
862 			DQUOT_OFF(mnt->mnt_sb);
863 			acct_auto_close(mnt->mnt_sb);
864 			unlock_kernel();
865 		}
866 		mntput(mnt);
867 	} else {
868 		/*
869 		 * Someone brought it back to life whilst we didn't have any
870 		 * locks held so return it to the expiration list
871 		 */
872 		list_add_tail(&mnt->mnt_expire, mounts);
873 		spin_unlock(&vfsmount_lock);
874 	}
875 }
876 
877 /*
878  * process a list of expirable mountpoints with the intent of discarding any
879  * mountpoints that aren't in use and haven't been touched since last we came
880  * here
881  */
882 void mark_mounts_for_expiry(struct list_head *mounts)
883 {
884 	struct namespace *namespace;
885 	struct vfsmount *mnt, *next;
886 	LIST_HEAD(graveyard);
887 
888 	if (list_empty(mounts))
889 		return;
890 
891 	spin_lock(&vfsmount_lock);
892 
893 	/* extract from the expiration list every vfsmount that matches the
894 	 * following criteria:
895 	 * - only referenced by its parent vfsmount
896 	 * - still marked for expiry (marked on the last call here; marks are
897 	 *   cleared by mntput())
898 	 */
899 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
900 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
901 		    atomic_read(&mnt->mnt_count) != 1)
902 			continue;
903 
904 		mntget(mnt);
905 		list_move(&mnt->mnt_expire, &graveyard);
906 	}
907 
908 	/*
909 	 * go through the vfsmounts we've just consigned to the graveyard to
910 	 * - check that they're still dead
911 	 * - delete the vfsmount from the appropriate namespace under lock
912 	 * - dispose of the corpse
913 	 */
914 	while (!list_empty(&graveyard)) {
915 		mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
916 		list_del_init(&mnt->mnt_expire);
917 
918 		/* don't do anything if the namespace is dead - all the
919 		 * vfsmounts from it are going away anyway */
920 		namespace = mnt->mnt_namespace;
921 		if (!namespace || !namespace->root)
922 			continue;
923 		get_namespace(namespace);
924 
925 		spin_unlock(&vfsmount_lock);
926 		down_write(&namespace->sem);
927 		expire_mount(mnt, mounts);
928 		up_write(&namespace->sem);
929 
930 		mntput(mnt);
931 		put_namespace(namespace);
932 
933 		spin_lock(&vfsmount_lock);
934 	}
935 
936 	spin_unlock(&vfsmount_lock);
937 }
938 
939 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
940 
941 /*
942  * Some copy_from_user() implementations do not return the exact number of
943  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
944  * Note that this function differs from copy_from_user() in that it will oops
945  * on bad values of `to', rather than returning a short copy.
946  */
947 static long
948 exact_copy_from_user(void *to, const void __user *from, unsigned long n)
949 {
950 	char *t = to;
951 	const char __user *f = from;
952 	char c;
953 
954 	if (!access_ok(VERIFY_READ, from, n))
955 		return n;
956 
957 	while (n) {
958 		if (__get_user(c, f)) {
959 			memset(t, 0, n);
960 			break;
961 		}
962 		*t++ = c;
963 		f++;
964 		n--;
965 	}
966 	return n;
967 }
968 
969 int copy_mount_options(const void __user *data, unsigned long *where)
970 {
971 	int i;
972 	unsigned long page;
973 	unsigned long size;
974 
975 	*where = 0;
976 	if (!data)
977 		return 0;
978 
979 	if (!(page = __get_free_page(GFP_KERNEL)))
980 		return -ENOMEM;
981 
982 	/* We only care that *some* data at the address the user
983 	 * gave us is valid.  Just in case, we'll zero
984 	 * the remainder of the page.
985 	 */
986 	/* copy_from_user cannot cross TASK_SIZE ! */
987 	size = TASK_SIZE - (unsigned long)data;
988 	if (size > PAGE_SIZE)
989 		size = PAGE_SIZE;
990 
991 	i = size - exact_copy_from_user((void *)page, data, size);
992 	if (!i) {
993 		free_page(page);
994 		return -EFAULT;
995 	}
996 	if (i != PAGE_SIZE)
997 		memset((char *)page + i, 0, PAGE_SIZE - i);
998 	*where = page;
999 	return 0;
1000 }
1001 
1002 /*
1003  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1004  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1005  *
1006  * data is a (void *) that can point to any structure up to
1007  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1008  * information (or be NULL).
1009  *
1010  * Pre-0.97 versions of mount() didn't have a flags word.
1011  * When the flags word was introduced its top half was required
1012  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1013  * Therefore, if this magic number is present, it carries no information
1014  * and must be discarded.
1015  */
1016 long do_mount(char * dev_name, char * dir_name, char *type_page,
1017 		  unsigned long flags, void *data_page)
1018 {
1019 	struct nameidata nd;
1020 	int retval = 0;
1021 	int mnt_flags = 0;
1022 
1023 	/* Discard magic */
1024 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1025 		flags &= ~MS_MGC_MSK;
1026 
1027 	/* Basic sanity checks */
1028 
1029 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1030 		return -EINVAL;
1031 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1032 		return -EINVAL;
1033 
1034 	if (data_page)
1035 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1036 
1037 	/* Separate the per-mountpoint flags */
1038 	if (flags & MS_NOSUID)
1039 		mnt_flags |= MNT_NOSUID;
1040 	if (flags & MS_NODEV)
1041 		mnt_flags |= MNT_NODEV;
1042 	if (flags & MS_NOEXEC)
1043 		mnt_flags |= MNT_NOEXEC;
1044 	flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_ACTIVE);
1045 
1046 	/* ... and get the mountpoint */
1047 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1048 	if (retval)
1049 		return retval;
1050 
1051 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1052 	if (retval)
1053 		goto dput_out;
1054 
1055 	if (flags & MS_REMOUNT)
1056 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1057 				    data_page);
1058 	else if (flags & MS_BIND)
1059 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1060 	else if (flags & MS_MOVE)
1061 		retval = do_move_mount(&nd, dev_name);
1062 	else
1063 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1064 				      dev_name, data_page);
1065 dput_out:
1066 	path_release(&nd);
1067 	return retval;
1068 }
1069 
1070 int copy_namespace(int flags, struct task_struct *tsk)
1071 {
1072 	struct namespace *namespace = tsk->namespace;
1073 	struct namespace *new_ns;
1074 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1075 	struct fs_struct *fs = tsk->fs;
1076 	struct vfsmount *p, *q;
1077 
1078 	if (!namespace)
1079 		return 0;
1080 
1081 	get_namespace(namespace);
1082 
1083 	if (!(flags & CLONE_NEWNS))
1084 		return 0;
1085 
1086 	if (!capable(CAP_SYS_ADMIN)) {
1087 		put_namespace(namespace);
1088 		return -EPERM;
1089 	}
1090 
1091 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1092 	if (!new_ns)
1093 		goto out;
1094 
1095 	atomic_set(&new_ns->count, 1);
1096 	init_rwsem(&new_ns->sem);
1097 	INIT_LIST_HEAD(&new_ns->list);
1098 
1099 	down_write(&tsk->namespace->sem);
1100 	/* First pass: copy the tree topology */
1101 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root);
1102 	if (!new_ns->root) {
1103 		up_write(&tsk->namespace->sem);
1104 		kfree(new_ns);
1105 		goto out;
1106 	}
1107 	spin_lock(&vfsmount_lock);
1108 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1109 	spin_unlock(&vfsmount_lock);
1110 
1111 	/*
1112 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1113 	 * as belonging to new namespace.  We have already acquired a private
1114 	 * fs_struct, so tsk->fs->lock is not needed.
1115 	 */
1116 	p = namespace->root;
1117 	q = new_ns->root;
1118 	while (p) {
1119 		q->mnt_namespace = new_ns;
1120 		if (fs) {
1121 			if (p == fs->rootmnt) {
1122 				rootmnt = p;
1123 				fs->rootmnt = mntget(q);
1124 			}
1125 			if (p == fs->pwdmnt) {
1126 				pwdmnt = p;
1127 				fs->pwdmnt = mntget(q);
1128 			}
1129 			if (p == fs->altrootmnt) {
1130 				altrootmnt = p;
1131 				fs->altrootmnt = mntget(q);
1132 			}
1133 		}
1134 		p = next_mnt(p, namespace->root);
1135 		q = next_mnt(q, new_ns->root);
1136 	}
1137 	up_write(&tsk->namespace->sem);
1138 
1139 	tsk->namespace = new_ns;
1140 
1141 	if (rootmnt)
1142 		mntput(rootmnt);
1143 	if (pwdmnt)
1144 		mntput(pwdmnt);
1145 	if (altrootmnt)
1146 		mntput(altrootmnt);
1147 
1148 	put_namespace(namespace);
1149 	return 0;
1150 
1151 out:
1152 	put_namespace(namespace);
1153 	return -ENOMEM;
1154 }
1155 
1156 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1157 			  char __user * type, unsigned long flags,
1158 			  void __user * data)
1159 {
1160 	int retval;
1161 	unsigned long data_page;
1162 	unsigned long type_page;
1163 	unsigned long dev_page;
1164 	char *dir_page;
1165 
1166 	retval = copy_mount_options (type, &type_page);
1167 	if (retval < 0)
1168 		return retval;
1169 
1170 	dir_page = getname(dir_name);
1171 	retval = PTR_ERR(dir_page);
1172 	if (IS_ERR(dir_page))
1173 		goto out1;
1174 
1175 	retval = copy_mount_options (dev_name, &dev_page);
1176 	if (retval < 0)
1177 		goto out2;
1178 
1179 	retval = copy_mount_options (data, &data_page);
1180 	if (retval < 0)
1181 		goto out3;
1182 
1183 	lock_kernel();
1184 	retval = do_mount((char*)dev_page, dir_page, (char*)type_page,
1185 			  flags, (void*)data_page);
1186 	unlock_kernel();
1187 	free_page(data_page);
1188 
1189 out3:
1190 	free_page(dev_page);
1191 out2:
1192 	putname(dir_page);
1193 out1:
1194 	free_page(type_page);
1195 	return retval;
1196 }
1197 
1198 /*
1199  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1200  * It can block. Requires the big lock held.
1201  */
1202 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1203 		 struct dentry *dentry)
1204 {
1205 	struct dentry *old_root;
1206 	struct vfsmount *old_rootmnt;
1207 	write_lock(&fs->lock);
1208 	old_root = fs->root;
1209 	old_rootmnt = fs->rootmnt;
1210 	fs->rootmnt = mntget(mnt);
1211 	fs->root = dget(dentry);
1212 	write_unlock(&fs->lock);
1213 	if (old_root) {
1214 		dput(old_root);
1215 		mntput(old_rootmnt);
1216 	}
1217 }
1218 
1219 /*
1220  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1221  * It can block. Requires the big lock held.
1222  */
1223 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1224 		struct dentry *dentry)
1225 {
1226 	struct dentry *old_pwd;
1227 	struct vfsmount *old_pwdmnt;
1228 
1229 	write_lock(&fs->lock);
1230 	old_pwd = fs->pwd;
1231 	old_pwdmnt = fs->pwdmnt;
1232 	fs->pwdmnt = mntget(mnt);
1233 	fs->pwd = dget(dentry);
1234 	write_unlock(&fs->lock);
1235 
1236 	if (old_pwd) {
1237 		dput(old_pwd);
1238 		mntput(old_pwdmnt);
1239 	}
1240 }
1241 
1242 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1243 {
1244 	struct task_struct *g, *p;
1245 	struct fs_struct *fs;
1246 
1247 	read_lock(&tasklist_lock);
1248 	do_each_thread(g, p) {
1249 		task_lock(p);
1250 		fs = p->fs;
1251 		if (fs) {
1252 			atomic_inc(&fs->count);
1253 			task_unlock(p);
1254 			if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt)
1255 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1256 			if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt)
1257 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1258 			put_fs_struct(fs);
1259 		} else
1260 			task_unlock(p);
1261 	} while_each_thread(g, p);
1262 	read_unlock(&tasklist_lock);
1263 }
1264 
1265 /*
1266  * pivot_root Semantics:
1267  * Moves the root file system of the current process to the directory put_old,
1268  * makes new_root as the new root file system of the current process, and sets
1269  * root/cwd of all processes which had them on the current root to new_root.
1270  *
1271  * Restrictions:
1272  * The new_root and put_old must be directories, and  must not be on the
1273  * same file  system as the current process root. The put_old  must  be
1274  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1275  * pointed to by put_old must yield the same directory as new_root. No other
1276  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1277  *
1278  * Notes:
1279  *  - we don't move root/cwd if they are not at the root (reason: if something
1280  *    cared enough to change them, it's probably wrong to force them elsewhere)
1281  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1282  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1283  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1284  *    first.
1285  */
1286 
1287 asmlinkage long sys_pivot_root(const char __user *new_root, const char __user *put_old)
1288 {
1289 	struct vfsmount *tmp;
1290 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1291 	int error;
1292 
1293 	if (!capable(CAP_SYS_ADMIN))
1294 		return -EPERM;
1295 
1296 	lock_kernel();
1297 
1298 	error = __user_walk(new_root, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd);
1299 	if (error)
1300 		goto out0;
1301 	error = -EINVAL;
1302 	if (!check_mnt(new_nd.mnt))
1303 		goto out1;
1304 
1305 	error = __user_walk(put_old, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd);
1306 	if (error)
1307 		goto out1;
1308 
1309 	error = security_sb_pivotroot(&old_nd, &new_nd);
1310 	if (error) {
1311 		path_release(&old_nd);
1312 		goto out1;
1313 	}
1314 
1315 	read_lock(&current->fs->lock);
1316 	user_nd.mnt = mntget(current->fs->rootmnt);
1317 	user_nd.dentry = dget(current->fs->root);
1318 	read_unlock(&current->fs->lock);
1319 	down_write(&current->namespace->sem);
1320 	down(&old_nd.dentry->d_inode->i_sem);
1321 	error = -EINVAL;
1322 	if (!check_mnt(user_nd.mnt))
1323 		goto out2;
1324 	error = -ENOENT;
1325 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1326 		goto out2;
1327 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1328 		goto out2;
1329 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1330 		goto out2;
1331 	error = -EBUSY;
1332 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1333 		goto out2; /* loop, on the same file system  */
1334 	error = -EINVAL;
1335 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1336 		goto out2; /* not a mountpoint */
1337 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1338 		goto out2; /* not attached */
1339 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1340 		goto out2; /* not a mountpoint */
1341 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1342 		goto out2; /* not attached */
1343 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1344 	spin_lock(&vfsmount_lock);
1345 	if (tmp != new_nd.mnt) {
1346 		for (;;) {
1347 			if (tmp->mnt_parent == tmp)
1348 				goto out3; /* already mounted on put_old */
1349 			if (tmp->mnt_parent == new_nd.mnt)
1350 				break;
1351 			tmp = tmp->mnt_parent;
1352 		}
1353 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1354 			goto out3;
1355 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1356 		goto out3;
1357 	detach_mnt(new_nd.mnt, &parent_nd);
1358 	detach_mnt(user_nd.mnt, &root_parent);
1359 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1360 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1361 	spin_unlock(&vfsmount_lock);
1362 	chroot_fs_refs(&user_nd, &new_nd);
1363 	security_sb_post_pivotroot(&user_nd, &new_nd);
1364 	error = 0;
1365 	path_release(&root_parent);
1366 	path_release(&parent_nd);
1367 out2:
1368 	up(&old_nd.dentry->d_inode->i_sem);
1369 	up_write(&current->namespace->sem);
1370 	path_release(&user_nd);
1371 	path_release(&old_nd);
1372 out1:
1373 	path_release(&new_nd);
1374 out0:
1375 	unlock_kernel();
1376 	return error;
1377 out3:
1378 	spin_unlock(&vfsmount_lock);
1379 	goto out2;
1380 }
1381 
1382 static void __init init_mount_tree(void)
1383 {
1384 	struct vfsmount *mnt;
1385 	struct namespace *namespace;
1386 	struct task_struct *g, *p;
1387 
1388 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1389 	if (IS_ERR(mnt))
1390 		panic("Can't create rootfs");
1391 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1392 	if (!namespace)
1393 		panic("Can't allocate initial namespace");
1394 	atomic_set(&namespace->count, 1);
1395 	INIT_LIST_HEAD(&namespace->list);
1396 	init_rwsem(&namespace->sem);
1397 	list_add(&mnt->mnt_list, &namespace->list);
1398 	namespace->root = mnt;
1399 	mnt->mnt_namespace = namespace;
1400 
1401 	init_task.namespace = namespace;
1402 	read_lock(&tasklist_lock);
1403 	do_each_thread(g, p) {
1404 		get_namespace(namespace);
1405 		p->namespace = namespace;
1406 	} while_each_thread(g, p);
1407 	read_unlock(&tasklist_lock);
1408 
1409 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1410 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1411 }
1412 
1413 void __init mnt_init(unsigned long mempages)
1414 {
1415 	struct list_head *d;
1416 	unsigned int nr_hash;
1417 	int i;
1418 
1419 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1420 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1421 
1422 	mount_hashtable = (struct list_head *)
1423 		__get_free_page(GFP_ATOMIC);
1424 
1425 	if (!mount_hashtable)
1426 		panic("Failed to allocate mount hash table\n");
1427 
1428 	/*
1429 	 * Find the power-of-two list-heads that can fit into the allocation..
1430 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1431 	 * a power-of-two.
1432 	 */
1433 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1434 	hash_bits = 0;
1435 	do {
1436 		hash_bits++;
1437 	} while ((nr_hash >> hash_bits) != 0);
1438 	hash_bits--;
1439 
1440 	/*
1441 	 * Re-calculate the actual number of entries and the mask
1442 	 * from the number of bits we can fit.
1443 	 */
1444 	nr_hash = 1UL << hash_bits;
1445 	hash_mask = nr_hash-1;
1446 
1447 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1448 
1449 	/* And initialize the newly allocated array */
1450 	d = mount_hashtable;
1451 	i = nr_hash;
1452 	do {
1453 		INIT_LIST_HEAD(d);
1454 		d++;
1455 		i--;
1456 	} while (i);
1457 	sysfs_init();
1458 	init_rootfs();
1459 	init_mount_tree();
1460 }
1461 
1462 void __put_namespace(struct namespace *namespace)
1463 {
1464 	struct vfsmount *root = namespace->root;
1465 	namespace->root = NULL;
1466 	spin_unlock(&vfsmount_lock);
1467 	down_write(&namespace->sem);
1468 	spin_lock(&vfsmount_lock);
1469 	umount_tree(root);
1470 	spin_unlock(&vfsmount_lock);
1471 	up_write(&namespace->sem);
1472 	kfree(namespace);
1473 }
1474