1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */ 83 static DEFINE_SEQLOCK(mnt_ns_tree_lock); 84 85 #ifdef CONFIG_FSNOTIFY 86 LIST_HEAD(notify_list); /* protected by namespace_sem */ 87 #endif 88 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 89 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */ 90 91 enum mount_kattr_flags_t { 92 MOUNT_KATTR_RECURSE = (1 << 0), 93 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 94 }; 95 96 struct mount_kattr { 97 unsigned int attr_set; 98 unsigned int attr_clr; 99 unsigned int propagation; 100 unsigned int lookup_flags; 101 enum mount_kattr_flags_t kflags; 102 struct user_namespace *mnt_userns; 103 struct mnt_idmap *mnt_idmap; 104 }; 105 106 /* /sys/fs */ 107 struct kobject *fs_kobj __ro_after_init; 108 EXPORT_SYMBOL_GPL(fs_kobj); 109 110 /* 111 * vfsmount lock may be taken for read to prevent changes to the 112 * vfsmount hash, ie. during mountpoint lookups or walking back 113 * up the tree. 114 * 115 * It should be taken for write in all cases where the vfsmount 116 * tree or hash is modified or when a vfsmount structure is modified. 117 */ 118 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 119 120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 121 { 122 if (!node) 123 return NULL; 124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 125 } 126 127 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b) 128 { 129 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 130 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 131 u64 seq_a = ns_a->seq; 132 u64 seq_b = ns_b->seq; 133 134 if (seq_a < seq_b) 135 return -1; 136 if (seq_a > seq_b) 137 return 1; 138 return 0; 139 } 140 141 static inline void mnt_ns_tree_write_lock(void) 142 { 143 write_seqlock(&mnt_ns_tree_lock); 144 } 145 146 static inline void mnt_ns_tree_write_unlock(void) 147 { 148 write_sequnlock(&mnt_ns_tree_lock); 149 } 150 151 static void mnt_ns_tree_add(struct mnt_namespace *ns) 152 { 153 struct rb_node *node, *prev; 154 155 mnt_ns_tree_write_lock(); 156 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp); 157 /* 158 * If there's no previous entry simply add it after the 159 * head and if there is add it after the previous entry. 160 */ 161 prev = rb_prev(&ns->mnt_ns_tree_node); 162 if (!prev) 163 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list); 164 else 165 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list); 166 mnt_ns_tree_write_unlock(); 167 168 WARN_ON_ONCE(node); 169 } 170 171 static void mnt_ns_release(struct mnt_namespace *ns) 172 { 173 /* keep alive for {list,stat}mount() */ 174 if (refcount_dec_and_test(&ns->passive)) { 175 fsnotify_mntns_delete(ns); 176 put_user_ns(ns->user_ns); 177 kfree(ns); 178 } 179 } 180 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 181 182 static void mnt_ns_release_rcu(struct rcu_head *rcu) 183 { 184 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu)); 185 } 186 187 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 188 { 189 /* remove from global mount namespace list */ 190 if (!is_anon_ns(ns)) { 191 mnt_ns_tree_write_lock(); 192 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 193 list_bidir_del_rcu(&ns->mnt_ns_list); 194 mnt_ns_tree_write_unlock(); 195 } 196 197 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu); 198 } 199 200 static int mnt_ns_find(const void *key, const struct rb_node *node) 201 { 202 const u64 mnt_ns_id = *(u64 *)key; 203 const struct mnt_namespace *ns = node_to_mnt_ns(node); 204 205 if (mnt_ns_id < ns->seq) 206 return -1; 207 if (mnt_ns_id > ns->seq) 208 return 1; 209 return 0; 210 } 211 212 /* 213 * Lookup a mount namespace by id and take a passive reference count. Taking a 214 * passive reference means the mount namespace can be emptied if e.g., the last 215 * task holding an active reference exits. To access the mounts of the 216 * namespace the @namespace_sem must first be acquired. If the namespace has 217 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 218 * see that the mount rbtree of the namespace is empty. 219 * 220 * Note the lookup is lockless protected by a sequence counter. We only 221 * need to guard against false negatives as false positives aren't 222 * possible. So if we didn't find a mount namespace and the sequence 223 * counter has changed we need to retry. If the sequence counter is 224 * still the same we know the search actually failed. 225 */ 226 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 227 { 228 struct mnt_namespace *ns; 229 struct rb_node *node; 230 unsigned int seq; 231 232 guard(rcu)(); 233 do { 234 seq = read_seqbegin(&mnt_ns_tree_lock); 235 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find); 236 if (node) 237 break; 238 } while (read_seqretry(&mnt_ns_tree_lock, seq)); 239 240 if (!node) 241 return NULL; 242 243 /* 244 * The last reference count is put with RCU delay so we can 245 * unconditonally acquire a reference here. 246 */ 247 ns = node_to_mnt_ns(node); 248 refcount_inc(&ns->passive); 249 return ns; 250 } 251 252 static inline void lock_mount_hash(void) 253 { 254 write_seqlock(&mount_lock); 255 } 256 257 static inline void unlock_mount_hash(void) 258 { 259 write_sequnlock(&mount_lock); 260 } 261 262 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 263 { 264 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 265 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 266 tmp = tmp + (tmp >> m_hash_shift); 267 return &mount_hashtable[tmp & m_hash_mask]; 268 } 269 270 static inline struct hlist_head *mp_hash(struct dentry *dentry) 271 { 272 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 273 tmp = tmp + (tmp >> mp_hash_shift); 274 return &mountpoint_hashtable[tmp & mp_hash_mask]; 275 } 276 277 static int mnt_alloc_id(struct mount *mnt) 278 { 279 int res; 280 281 xa_lock(&mnt_id_xa); 282 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 283 if (!res) 284 mnt->mnt_id_unique = ++mnt_id_ctr; 285 xa_unlock(&mnt_id_xa); 286 return res; 287 } 288 289 static void mnt_free_id(struct mount *mnt) 290 { 291 xa_erase(&mnt_id_xa, mnt->mnt_id); 292 } 293 294 /* 295 * Allocate a new peer group ID 296 */ 297 static int mnt_alloc_group_id(struct mount *mnt) 298 { 299 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 300 301 if (res < 0) 302 return res; 303 mnt->mnt_group_id = res; 304 return 0; 305 } 306 307 /* 308 * Release a peer group ID 309 */ 310 void mnt_release_group_id(struct mount *mnt) 311 { 312 ida_free(&mnt_group_ida, mnt->mnt_group_id); 313 mnt->mnt_group_id = 0; 314 } 315 316 /* 317 * vfsmount lock must be held for read 318 */ 319 static inline void mnt_add_count(struct mount *mnt, int n) 320 { 321 #ifdef CONFIG_SMP 322 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 323 #else 324 preempt_disable(); 325 mnt->mnt_count += n; 326 preempt_enable(); 327 #endif 328 } 329 330 /* 331 * vfsmount lock must be held for write 332 */ 333 int mnt_get_count(struct mount *mnt) 334 { 335 #ifdef CONFIG_SMP 336 int count = 0; 337 int cpu; 338 339 for_each_possible_cpu(cpu) { 340 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 341 } 342 343 return count; 344 #else 345 return mnt->mnt_count; 346 #endif 347 } 348 349 static struct mount *alloc_vfsmnt(const char *name) 350 { 351 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 352 if (mnt) { 353 int err; 354 355 err = mnt_alloc_id(mnt); 356 if (err) 357 goto out_free_cache; 358 359 if (name) 360 mnt->mnt_devname = kstrdup_const(name, 361 GFP_KERNEL_ACCOUNT); 362 else 363 mnt->mnt_devname = "none"; 364 if (!mnt->mnt_devname) 365 goto out_free_id; 366 367 #ifdef CONFIG_SMP 368 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 369 if (!mnt->mnt_pcp) 370 goto out_free_devname; 371 372 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 373 #else 374 mnt->mnt_count = 1; 375 mnt->mnt_writers = 0; 376 #endif 377 378 INIT_HLIST_NODE(&mnt->mnt_hash); 379 INIT_LIST_HEAD(&mnt->mnt_child); 380 INIT_LIST_HEAD(&mnt->mnt_mounts); 381 INIT_LIST_HEAD(&mnt->mnt_list); 382 INIT_LIST_HEAD(&mnt->mnt_expire); 383 INIT_LIST_HEAD(&mnt->mnt_share); 384 INIT_HLIST_HEAD(&mnt->mnt_slave_list); 385 INIT_HLIST_NODE(&mnt->mnt_slave); 386 INIT_HLIST_NODE(&mnt->mnt_mp_list); 387 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 388 RB_CLEAR_NODE(&mnt->mnt_node); 389 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 390 } 391 return mnt; 392 393 #ifdef CONFIG_SMP 394 out_free_devname: 395 kfree_const(mnt->mnt_devname); 396 #endif 397 out_free_id: 398 mnt_free_id(mnt); 399 out_free_cache: 400 kmem_cache_free(mnt_cache, mnt); 401 return NULL; 402 } 403 404 /* 405 * Most r/o checks on a fs are for operations that take 406 * discrete amounts of time, like a write() or unlink(). 407 * We must keep track of when those operations start 408 * (for permission checks) and when they end, so that 409 * we can determine when writes are able to occur to 410 * a filesystem. 411 */ 412 /* 413 * __mnt_is_readonly: check whether a mount is read-only 414 * @mnt: the mount to check for its write status 415 * 416 * This shouldn't be used directly ouside of the VFS. 417 * It does not guarantee that the filesystem will stay 418 * r/w, just that it is right *now*. This can not and 419 * should not be used in place of IS_RDONLY(inode). 420 * mnt_want/drop_write() will _keep_ the filesystem 421 * r/w. 422 */ 423 bool __mnt_is_readonly(struct vfsmount *mnt) 424 { 425 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 426 } 427 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 428 429 static inline void mnt_inc_writers(struct mount *mnt) 430 { 431 #ifdef CONFIG_SMP 432 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 433 #else 434 mnt->mnt_writers++; 435 #endif 436 } 437 438 static inline void mnt_dec_writers(struct mount *mnt) 439 { 440 #ifdef CONFIG_SMP 441 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 442 #else 443 mnt->mnt_writers--; 444 #endif 445 } 446 447 static unsigned int mnt_get_writers(struct mount *mnt) 448 { 449 #ifdef CONFIG_SMP 450 unsigned int count = 0; 451 int cpu; 452 453 for_each_possible_cpu(cpu) { 454 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 455 } 456 457 return count; 458 #else 459 return mnt->mnt_writers; 460 #endif 461 } 462 463 static int mnt_is_readonly(struct vfsmount *mnt) 464 { 465 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 466 return 1; 467 /* 468 * The barrier pairs with the barrier in sb_start_ro_state_change() 469 * making sure if we don't see s_readonly_remount set yet, we also will 470 * not see any superblock / mount flag changes done by remount. 471 * It also pairs with the barrier in sb_end_ro_state_change() 472 * assuring that if we see s_readonly_remount already cleared, we will 473 * see the values of superblock / mount flags updated by remount. 474 */ 475 smp_rmb(); 476 return __mnt_is_readonly(mnt); 477 } 478 479 /* 480 * Most r/o & frozen checks on a fs are for operations that take discrete 481 * amounts of time, like a write() or unlink(). We must keep track of when 482 * those operations start (for permission checks) and when they end, so that we 483 * can determine when writes are able to occur to a filesystem. 484 */ 485 /** 486 * mnt_get_write_access - get write access to a mount without freeze protection 487 * @m: the mount on which to take a write 488 * 489 * This tells the low-level filesystem that a write is about to be performed to 490 * it, and makes sure that writes are allowed (mnt it read-write) before 491 * returning success. This operation does not protect against filesystem being 492 * frozen. When the write operation is finished, mnt_put_write_access() must be 493 * called. This is effectively a refcount. 494 */ 495 int mnt_get_write_access(struct vfsmount *m) 496 { 497 struct mount *mnt = real_mount(m); 498 int ret = 0; 499 500 preempt_disable(); 501 mnt_inc_writers(mnt); 502 /* 503 * The store to mnt_inc_writers must be visible before we pass 504 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 505 * incremented count after it has set MNT_WRITE_HOLD. 506 */ 507 smp_mb(); 508 might_lock(&mount_lock.lock); 509 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 510 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 511 cpu_relax(); 512 } else { 513 /* 514 * This prevents priority inversion, if the task 515 * setting MNT_WRITE_HOLD got preempted on a remote 516 * CPU, and it prevents life lock if the task setting 517 * MNT_WRITE_HOLD has a lower priority and is bound to 518 * the same CPU as the task that is spinning here. 519 */ 520 preempt_enable(); 521 lock_mount_hash(); 522 unlock_mount_hash(); 523 preempt_disable(); 524 } 525 } 526 /* 527 * The barrier pairs with the barrier sb_start_ro_state_change() making 528 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 529 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 530 * mnt_is_readonly() and bail in case we are racing with remount 531 * read-only. 532 */ 533 smp_rmb(); 534 if (mnt_is_readonly(m)) { 535 mnt_dec_writers(mnt); 536 ret = -EROFS; 537 } 538 preempt_enable(); 539 540 return ret; 541 } 542 EXPORT_SYMBOL_GPL(mnt_get_write_access); 543 544 /** 545 * mnt_want_write - get write access to a mount 546 * @m: the mount on which to take a write 547 * 548 * This tells the low-level filesystem that a write is about to be performed to 549 * it, and makes sure that writes are allowed (mount is read-write, filesystem 550 * is not frozen) before returning success. When the write operation is 551 * finished, mnt_drop_write() must be called. This is effectively a refcount. 552 */ 553 int mnt_want_write(struct vfsmount *m) 554 { 555 int ret; 556 557 sb_start_write(m->mnt_sb); 558 ret = mnt_get_write_access(m); 559 if (ret) 560 sb_end_write(m->mnt_sb); 561 return ret; 562 } 563 EXPORT_SYMBOL_GPL(mnt_want_write); 564 565 /** 566 * mnt_get_write_access_file - get write access to a file's mount 567 * @file: the file who's mount on which to take a write 568 * 569 * This is like mnt_get_write_access, but if @file is already open for write it 570 * skips incrementing mnt_writers (since the open file already has a reference) 571 * and instead only does the check for emergency r/o remounts. This must be 572 * paired with mnt_put_write_access_file. 573 */ 574 int mnt_get_write_access_file(struct file *file) 575 { 576 if (file->f_mode & FMODE_WRITER) { 577 /* 578 * Superblock may have become readonly while there are still 579 * writable fd's, e.g. due to a fs error with errors=remount-ro 580 */ 581 if (__mnt_is_readonly(file->f_path.mnt)) 582 return -EROFS; 583 return 0; 584 } 585 return mnt_get_write_access(file->f_path.mnt); 586 } 587 588 /** 589 * mnt_want_write_file - get write access to a file's mount 590 * @file: the file who's mount on which to take a write 591 * 592 * This is like mnt_want_write, but if the file is already open for writing it 593 * skips incrementing mnt_writers (since the open file already has a reference) 594 * and instead only does the freeze protection and the check for emergency r/o 595 * remounts. This must be paired with mnt_drop_write_file. 596 */ 597 int mnt_want_write_file(struct file *file) 598 { 599 int ret; 600 601 sb_start_write(file_inode(file)->i_sb); 602 ret = mnt_get_write_access_file(file); 603 if (ret) 604 sb_end_write(file_inode(file)->i_sb); 605 return ret; 606 } 607 EXPORT_SYMBOL_GPL(mnt_want_write_file); 608 609 /** 610 * mnt_put_write_access - give up write access to a mount 611 * @mnt: the mount on which to give up write access 612 * 613 * Tells the low-level filesystem that we are done 614 * performing writes to it. Must be matched with 615 * mnt_get_write_access() call above. 616 */ 617 void mnt_put_write_access(struct vfsmount *mnt) 618 { 619 preempt_disable(); 620 mnt_dec_writers(real_mount(mnt)); 621 preempt_enable(); 622 } 623 EXPORT_SYMBOL_GPL(mnt_put_write_access); 624 625 /** 626 * mnt_drop_write - give up write access to a mount 627 * @mnt: the mount on which to give up write access 628 * 629 * Tells the low-level filesystem that we are done performing writes to it and 630 * also allows filesystem to be frozen again. Must be matched with 631 * mnt_want_write() call above. 632 */ 633 void mnt_drop_write(struct vfsmount *mnt) 634 { 635 mnt_put_write_access(mnt); 636 sb_end_write(mnt->mnt_sb); 637 } 638 EXPORT_SYMBOL_GPL(mnt_drop_write); 639 640 void mnt_put_write_access_file(struct file *file) 641 { 642 if (!(file->f_mode & FMODE_WRITER)) 643 mnt_put_write_access(file->f_path.mnt); 644 } 645 646 void mnt_drop_write_file(struct file *file) 647 { 648 mnt_put_write_access_file(file); 649 sb_end_write(file_inode(file)->i_sb); 650 } 651 EXPORT_SYMBOL(mnt_drop_write_file); 652 653 /** 654 * mnt_hold_writers - prevent write access to the given mount 655 * @mnt: mnt to prevent write access to 656 * 657 * Prevents write access to @mnt if there are no active writers for @mnt. 658 * This function needs to be called and return successfully before changing 659 * properties of @mnt that need to remain stable for callers with write access 660 * to @mnt. 661 * 662 * After this functions has been called successfully callers must pair it with 663 * a call to mnt_unhold_writers() in order to stop preventing write access to 664 * @mnt. 665 * 666 * Context: This function expects lock_mount_hash() to be held serializing 667 * setting MNT_WRITE_HOLD. 668 * Return: On success 0 is returned. 669 * On error, -EBUSY is returned. 670 */ 671 static inline int mnt_hold_writers(struct mount *mnt) 672 { 673 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 674 /* 675 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 676 * should be visible before we do. 677 */ 678 smp_mb(); 679 680 /* 681 * With writers on hold, if this value is zero, then there are 682 * definitely no active writers (although held writers may subsequently 683 * increment the count, they'll have to wait, and decrement it after 684 * seeing MNT_READONLY). 685 * 686 * It is OK to have counter incremented on one CPU and decremented on 687 * another: the sum will add up correctly. The danger would be when we 688 * sum up each counter, if we read a counter before it is incremented, 689 * but then read another CPU's count which it has been subsequently 690 * decremented from -- we would see more decrements than we should. 691 * MNT_WRITE_HOLD protects against this scenario, because 692 * mnt_want_write first increments count, then smp_mb, then spins on 693 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 694 * we're counting up here. 695 */ 696 if (mnt_get_writers(mnt) > 0) 697 return -EBUSY; 698 699 return 0; 700 } 701 702 /** 703 * mnt_unhold_writers - stop preventing write access to the given mount 704 * @mnt: mnt to stop preventing write access to 705 * 706 * Stop preventing write access to @mnt allowing callers to gain write access 707 * to @mnt again. 708 * 709 * This function can only be called after a successful call to 710 * mnt_hold_writers(). 711 * 712 * Context: This function expects lock_mount_hash() to be held. 713 */ 714 static inline void mnt_unhold_writers(struct mount *mnt) 715 { 716 /* 717 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 718 * that become unheld will see MNT_READONLY. 719 */ 720 smp_wmb(); 721 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 722 } 723 724 static int mnt_make_readonly(struct mount *mnt) 725 { 726 int ret; 727 728 ret = mnt_hold_writers(mnt); 729 if (!ret) 730 mnt->mnt.mnt_flags |= MNT_READONLY; 731 mnt_unhold_writers(mnt); 732 return ret; 733 } 734 735 int sb_prepare_remount_readonly(struct super_block *sb) 736 { 737 struct mount *mnt; 738 int err = 0; 739 740 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 741 if (atomic_long_read(&sb->s_remove_count)) 742 return -EBUSY; 743 744 lock_mount_hash(); 745 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 746 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 747 err = mnt_hold_writers(mnt); 748 if (err) 749 break; 750 } 751 } 752 if (!err && atomic_long_read(&sb->s_remove_count)) 753 err = -EBUSY; 754 755 if (!err) 756 sb_start_ro_state_change(sb); 757 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 758 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 759 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 760 } 761 unlock_mount_hash(); 762 763 return err; 764 } 765 766 static void free_vfsmnt(struct mount *mnt) 767 { 768 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 769 kfree_const(mnt->mnt_devname); 770 #ifdef CONFIG_SMP 771 free_percpu(mnt->mnt_pcp); 772 #endif 773 kmem_cache_free(mnt_cache, mnt); 774 } 775 776 static void delayed_free_vfsmnt(struct rcu_head *head) 777 { 778 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 779 } 780 781 /* call under rcu_read_lock */ 782 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 783 { 784 struct mount *mnt; 785 if (read_seqretry(&mount_lock, seq)) 786 return 1; 787 if (bastard == NULL) 788 return 0; 789 mnt = real_mount(bastard); 790 mnt_add_count(mnt, 1); 791 smp_mb(); // see mntput_no_expire() and do_umount() 792 if (likely(!read_seqretry(&mount_lock, seq))) 793 return 0; 794 lock_mount_hash(); 795 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { 796 mnt_add_count(mnt, -1); 797 unlock_mount_hash(); 798 return 1; 799 } 800 unlock_mount_hash(); 801 /* caller will mntput() */ 802 return -1; 803 } 804 805 /* call under rcu_read_lock */ 806 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 807 { 808 int res = __legitimize_mnt(bastard, seq); 809 if (likely(!res)) 810 return true; 811 if (unlikely(res < 0)) { 812 rcu_read_unlock(); 813 mntput(bastard); 814 rcu_read_lock(); 815 } 816 return false; 817 } 818 819 /** 820 * __lookup_mnt - find first child mount 821 * @mnt: parent mount 822 * @dentry: mountpoint 823 * 824 * If @mnt has a child mount @c mounted @dentry find and return it. 825 * 826 * Note that the child mount @c need not be unique. There are cases 827 * where shadow mounts are created. For example, during mount 828 * propagation when a source mount @mnt whose root got overmounted by a 829 * mount @o after path lookup but before @namespace_sem could be 830 * acquired gets copied and propagated. So @mnt gets copied including 831 * @o. When @mnt is propagated to a destination mount @d that already 832 * has another mount @n mounted at the same mountpoint then the source 833 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 834 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 835 * on @dentry. 836 * 837 * Return: The first child of @mnt mounted @dentry or NULL. 838 */ 839 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 840 { 841 struct hlist_head *head = m_hash(mnt, dentry); 842 struct mount *p; 843 844 hlist_for_each_entry_rcu(p, head, mnt_hash) 845 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 846 return p; 847 return NULL; 848 } 849 850 /* 851 * lookup_mnt - Return the first child mount mounted at path 852 * 853 * "First" means first mounted chronologically. If you create the 854 * following mounts: 855 * 856 * mount /dev/sda1 /mnt 857 * mount /dev/sda2 /mnt 858 * mount /dev/sda3 /mnt 859 * 860 * Then lookup_mnt() on the base /mnt dentry in the root mount will 861 * return successively the root dentry and vfsmount of /dev/sda1, then 862 * /dev/sda2, then /dev/sda3, then NULL. 863 * 864 * lookup_mnt takes a reference to the found vfsmount. 865 */ 866 struct vfsmount *lookup_mnt(const struct path *path) 867 { 868 struct mount *child_mnt; 869 struct vfsmount *m; 870 unsigned seq; 871 872 rcu_read_lock(); 873 do { 874 seq = read_seqbegin(&mount_lock); 875 child_mnt = __lookup_mnt(path->mnt, path->dentry); 876 m = child_mnt ? &child_mnt->mnt : NULL; 877 } while (!legitimize_mnt(m, seq)); 878 rcu_read_unlock(); 879 return m; 880 } 881 882 /* 883 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 884 * current mount namespace. 885 * 886 * The common case is dentries are not mountpoints at all and that 887 * test is handled inline. For the slow case when we are actually 888 * dealing with a mountpoint of some kind, walk through all of the 889 * mounts in the current mount namespace and test to see if the dentry 890 * is a mountpoint. 891 * 892 * The mount_hashtable is not usable in the context because we 893 * need to identify all mounts that may be in the current mount 894 * namespace not just a mount that happens to have some specified 895 * parent mount. 896 */ 897 bool __is_local_mountpoint(const struct dentry *dentry) 898 { 899 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 900 struct mount *mnt, *n; 901 bool is_covered = false; 902 903 down_read(&namespace_sem); 904 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 905 is_covered = (mnt->mnt_mountpoint == dentry); 906 if (is_covered) 907 break; 908 } 909 up_read(&namespace_sem); 910 911 return is_covered; 912 } 913 914 struct pinned_mountpoint { 915 struct hlist_node node; 916 struct mountpoint *mp; 917 }; 918 919 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) 920 { 921 struct hlist_head *chain = mp_hash(dentry); 922 struct mountpoint *mp; 923 924 hlist_for_each_entry(mp, chain, m_hash) { 925 if (mp->m_dentry == dentry) { 926 hlist_add_head(&m->node, &mp->m_list); 927 m->mp = mp; 928 return true; 929 } 930 } 931 return false; 932 } 933 934 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) 935 { 936 struct mountpoint *mp __free(kfree) = NULL; 937 bool found; 938 int ret; 939 940 if (d_mountpoint(dentry)) { 941 /* might be worth a WARN_ON() */ 942 if (d_unlinked(dentry)) 943 return -ENOENT; 944 mountpoint: 945 read_seqlock_excl(&mount_lock); 946 found = lookup_mountpoint(dentry, m); 947 read_sequnlock_excl(&mount_lock); 948 if (found) 949 return 0; 950 } 951 952 if (!mp) 953 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 954 if (!mp) 955 return -ENOMEM; 956 957 /* Exactly one processes may set d_mounted */ 958 ret = d_set_mounted(dentry); 959 960 /* Someone else set d_mounted? */ 961 if (ret == -EBUSY) 962 goto mountpoint; 963 964 /* The dentry is not available as a mountpoint? */ 965 if (ret) 966 return ret; 967 968 /* Add the new mountpoint to the hash table */ 969 read_seqlock_excl(&mount_lock); 970 mp->m_dentry = dget(dentry); 971 hlist_add_head(&mp->m_hash, mp_hash(dentry)); 972 INIT_HLIST_HEAD(&mp->m_list); 973 hlist_add_head(&m->node, &mp->m_list); 974 m->mp = no_free_ptr(mp); 975 read_sequnlock_excl(&mount_lock); 976 return 0; 977 } 978 979 /* 980 * vfsmount lock must be held. Additionally, the caller is responsible 981 * for serializing calls for given disposal list. 982 */ 983 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list) 984 { 985 if (hlist_empty(&mp->m_list)) { 986 struct dentry *dentry = mp->m_dentry; 987 spin_lock(&dentry->d_lock); 988 dentry->d_flags &= ~DCACHE_MOUNTED; 989 spin_unlock(&dentry->d_lock); 990 dput_to_list(dentry, list); 991 hlist_del(&mp->m_hash); 992 kfree(mp); 993 } 994 } 995 996 /* 997 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl] 998 */ 999 static void unpin_mountpoint(struct pinned_mountpoint *m) 1000 { 1001 if (m->mp) { 1002 hlist_del(&m->node); 1003 maybe_free_mountpoint(m->mp, &ex_mountpoints); 1004 } 1005 } 1006 1007 static inline int check_mnt(struct mount *mnt) 1008 { 1009 return mnt->mnt_ns == current->nsproxy->mnt_ns; 1010 } 1011 1012 static inline bool check_anonymous_mnt(struct mount *mnt) 1013 { 1014 u64 seq; 1015 1016 if (!is_anon_ns(mnt->mnt_ns)) 1017 return false; 1018 1019 seq = mnt->mnt_ns->seq_origin; 1020 return !seq || (seq == current->nsproxy->mnt_ns->seq); 1021 } 1022 1023 /* 1024 * vfsmount lock must be held for write 1025 */ 1026 static void touch_mnt_namespace(struct mnt_namespace *ns) 1027 { 1028 if (ns) { 1029 ns->event = ++event; 1030 wake_up_interruptible(&ns->poll); 1031 } 1032 } 1033 1034 /* 1035 * vfsmount lock must be held for write 1036 */ 1037 static void __touch_mnt_namespace(struct mnt_namespace *ns) 1038 { 1039 if (ns && ns->event != event) { 1040 ns->event = event; 1041 wake_up_interruptible(&ns->poll); 1042 } 1043 } 1044 1045 /* 1046 * locks: mount_lock[write_seqlock] 1047 */ 1048 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list) 1049 { 1050 struct mountpoint *mp; 1051 struct mount *parent = mnt->mnt_parent; 1052 if (unlikely(parent->overmount == mnt)) 1053 parent->overmount = NULL; 1054 mnt->mnt_parent = mnt; 1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1056 list_del_init(&mnt->mnt_child); 1057 hlist_del_init_rcu(&mnt->mnt_hash); 1058 hlist_del_init(&mnt->mnt_mp_list); 1059 mp = mnt->mnt_mp; 1060 mnt->mnt_mp = NULL; 1061 maybe_free_mountpoint(mp, shrink_list); 1062 } 1063 1064 /* 1065 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints) 1066 */ 1067 static void umount_mnt(struct mount *mnt) 1068 { 1069 __umount_mnt(mnt, &ex_mountpoints); 1070 } 1071 1072 /* 1073 * vfsmount lock must be held for write 1074 */ 1075 void mnt_set_mountpoint(struct mount *mnt, 1076 struct mountpoint *mp, 1077 struct mount *child_mnt) 1078 { 1079 child_mnt->mnt_mountpoint = mp->m_dentry; 1080 child_mnt->mnt_parent = mnt; 1081 child_mnt->mnt_mp = mp; 1082 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1083 } 1084 1085 static void make_visible(struct mount *mnt) 1086 { 1087 struct mount *parent = mnt->mnt_parent; 1088 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root)) 1089 parent->overmount = mnt; 1090 hlist_add_head_rcu(&mnt->mnt_hash, 1091 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1092 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1093 } 1094 1095 /** 1096 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1097 * list of child mounts 1098 * @parent: the parent 1099 * @mnt: the new mount 1100 * @mp: the new mountpoint 1101 * 1102 * Mount @mnt at @mp on @parent. Then attach @mnt 1103 * to @parent's child mount list and to @mount_hashtable. 1104 * 1105 * Note, when make_visible() is called @mnt->mnt_parent already points 1106 * to the correct parent. 1107 * 1108 * Context: This function expects namespace_lock() and lock_mount_hash() 1109 * to have been acquired in that order. 1110 */ 1111 static void attach_mnt(struct mount *mnt, struct mount *parent, 1112 struct mountpoint *mp) 1113 { 1114 mnt_set_mountpoint(parent, mp, mnt); 1115 make_visible(mnt); 1116 } 1117 1118 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1119 { 1120 struct mountpoint *old_mp = mnt->mnt_mp; 1121 1122 list_del_init(&mnt->mnt_child); 1123 hlist_del_init(&mnt->mnt_mp_list); 1124 hlist_del_init_rcu(&mnt->mnt_hash); 1125 1126 attach_mnt(mnt, parent, mp); 1127 1128 maybe_free_mountpoint(old_mp, &ex_mountpoints); 1129 } 1130 1131 static inline struct mount *node_to_mount(struct rb_node *node) 1132 { 1133 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1134 } 1135 1136 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1137 { 1138 struct rb_node **link = &ns->mounts.rb_node; 1139 struct rb_node *parent = NULL; 1140 bool mnt_first_node = true, mnt_last_node = true; 1141 1142 WARN_ON(mnt_ns_attached(mnt)); 1143 mnt->mnt_ns = ns; 1144 while (*link) { 1145 parent = *link; 1146 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1147 link = &parent->rb_left; 1148 mnt_last_node = false; 1149 } else { 1150 link = &parent->rb_right; 1151 mnt_first_node = false; 1152 } 1153 } 1154 1155 if (mnt_last_node) 1156 ns->mnt_last_node = &mnt->mnt_node; 1157 if (mnt_first_node) 1158 ns->mnt_first_node = &mnt->mnt_node; 1159 rb_link_node(&mnt->mnt_node, parent, link); 1160 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1161 1162 mnt_notify_add(mnt); 1163 } 1164 1165 static struct mount *next_mnt(struct mount *p, struct mount *root) 1166 { 1167 struct list_head *next = p->mnt_mounts.next; 1168 if (next == &p->mnt_mounts) { 1169 while (1) { 1170 if (p == root) 1171 return NULL; 1172 next = p->mnt_child.next; 1173 if (next != &p->mnt_parent->mnt_mounts) 1174 break; 1175 p = p->mnt_parent; 1176 } 1177 } 1178 return list_entry(next, struct mount, mnt_child); 1179 } 1180 1181 static struct mount *skip_mnt_tree(struct mount *p) 1182 { 1183 struct list_head *prev = p->mnt_mounts.prev; 1184 while (prev != &p->mnt_mounts) { 1185 p = list_entry(prev, struct mount, mnt_child); 1186 prev = p->mnt_mounts.prev; 1187 } 1188 return p; 1189 } 1190 1191 /* 1192 * vfsmount lock must be held for write 1193 */ 1194 static void commit_tree(struct mount *mnt) 1195 { 1196 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns; 1197 1198 if (!mnt_ns_attached(mnt)) { 1199 for (struct mount *m = mnt; m; m = next_mnt(m, mnt)) 1200 if (unlikely(mnt_ns_attached(m))) 1201 m = skip_mnt_tree(m); 1202 else 1203 mnt_add_to_ns(n, m); 1204 n->nr_mounts += n->pending_mounts; 1205 n->pending_mounts = 0; 1206 } 1207 1208 make_visible(mnt); 1209 touch_mnt_namespace(n); 1210 } 1211 1212 /** 1213 * vfs_create_mount - Create a mount for a configured superblock 1214 * @fc: The configuration context with the superblock attached 1215 * 1216 * Create a mount to an already configured superblock. If necessary, the 1217 * caller should invoke vfs_get_tree() before calling this. 1218 * 1219 * Note that this does not attach the mount to anything. 1220 */ 1221 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1222 { 1223 struct mount *mnt; 1224 1225 if (!fc->root) 1226 return ERR_PTR(-EINVAL); 1227 1228 mnt = alloc_vfsmnt(fc->source); 1229 if (!mnt) 1230 return ERR_PTR(-ENOMEM); 1231 1232 if (fc->sb_flags & SB_KERNMOUNT) 1233 mnt->mnt.mnt_flags = MNT_INTERNAL; 1234 1235 atomic_inc(&fc->root->d_sb->s_active); 1236 mnt->mnt.mnt_sb = fc->root->d_sb; 1237 mnt->mnt.mnt_root = dget(fc->root); 1238 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1239 mnt->mnt_parent = mnt; 1240 1241 lock_mount_hash(); 1242 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1243 unlock_mount_hash(); 1244 return &mnt->mnt; 1245 } 1246 EXPORT_SYMBOL(vfs_create_mount); 1247 1248 struct vfsmount *fc_mount(struct fs_context *fc) 1249 { 1250 int err = vfs_get_tree(fc); 1251 if (!err) { 1252 up_write(&fc->root->d_sb->s_umount); 1253 return vfs_create_mount(fc); 1254 } 1255 return ERR_PTR(err); 1256 } 1257 EXPORT_SYMBOL(fc_mount); 1258 1259 struct vfsmount *fc_mount_longterm(struct fs_context *fc) 1260 { 1261 struct vfsmount *mnt = fc_mount(fc); 1262 if (!IS_ERR(mnt)) 1263 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 1264 return mnt; 1265 } 1266 EXPORT_SYMBOL(fc_mount_longterm); 1267 1268 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1269 int flags, const char *name, 1270 void *data) 1271 { 1272 struct fs_context *fc; 1273 struct vfsmount *mnt; 1274 int ret = 0; 1275 1276 if (!type) 1277 return ERR_PTR(-EINVAL); 1278 1279 fc = fs_context_for_mount(type, flags); 1280 if (IS_ERR(fc)) 1281 return ERR_CAST(fc); 1282 1283 if (name) 1284 ret = vfs_parse_fs_string(fc, "source", 1285 name, strlen(name)); 1286 if (!ret) 1287 ret = parse_monolithic_mount_data(fc, data); 1288 if (!ret) 1289 mnt = fc_mount(fc); 1290 else 1291 mnt = ERR_PTR(ret); 1292 1293 put_fs_context(fc); 1294 return mnt; 1295 } 1296 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1297 1298 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1299 int flag) 1300 { 1301 struct super_block *sb = old->mnt.mnt_sb; 1302 struct mount *mnt; 1303 int err; 1304 1305 mnt = alloc_vfsmnt(old->mnt_devname); 1306 if (!mnt) 1307 return ERR_PTR(-ENOMEM); 1308 1309 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) & 1310 ~MNT_INTERNAL_FLAGS; 1311 1312 if (flag & (CL_SLAVE | CL_PRIVATE)) 1313 mnt->mnt_group_id = 0; /* not a peer of original */ 1314 else 1315 mnt->mnt_group_id = old->mnt_group_id; 1316 1317 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1318 err = mnt_alloc_group_id(mnt); 1319 if (err) 1320 goto out_free; 1321 } 1322 1323 if (mnt->mnt_group_id) 1324 set_mnt_shared(mnt); 1325 1326 atomic_inc(&sb->s_active); 1327 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1328 1329 mnt->mnt.mnt_sb = sb; 1330 mnt->mnt.mnt_root = dget(root); 1331 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1332 mnt->mnt_parent = mnt; 1333 lock_mount_hash(); 1334 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1335 unlock_mount_hash(); 1336 1337 if (flag & CL_PRIVATE) // we are done with it 1338 return mnt; 1339 1340 if (peers(mnt, old)) 1341 list_add(&mnt->mnt_share, &old->mnt_share); 1342 1343 if ((flag & CL_SLAVE) && old->mnt_group_id) { 1344 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list); 1345 mnt->mnt_master = old; 1346 } else if (IS_MNT_SLAVE(old)) { 1347 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave); 1348 mnt->mnt_master = old->mnt_master; 1349 } 1350 return mnt; 1351 1352 out_free: 1353 mnt_free_id(mnt); 1354 free_vfsmnt(mnt); 1355 return ERR_PTR(err); 1356 } 1357 1358 static void cleanup_mnt(struct mount *mnt) 1359 { 1360 struct hlist_node *p; 1361 struct mount *m; 1362 /* 1363 * The warning here probably indicates that somebody messed 1364 * up a mnt_want/drop_write() pair. If this happens, the 1365 * filesystem was probably unable to make r/w->r/o transitions. 1366 * The locking used to deal with mnt_count decrement provides barriers, 1367 * so mnt_get_writers() below is safe. 1368 */ 1369 WARN_ON(mnt_get_writers(mnt)); 1370 if (unlikely(mnt->mnt_pins.first)) 1371 mnt_pin_kill(mnt); 1372 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1373 hlist_del(&m->mnt_umount); 1374 mntput(&m->mnt); 1375 } 1376 fsnotify_vfsmount_delete(&mnt->mnt); 1377 dput(mnt->mnt.mnt_root); 1378 deactivate_super(mnt->mnt.mnt_sb); 1379 mnt_free_id(mnt); 1380 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1381 } 1382 1383 static void __cleanup_mnt(struct rcu_head *head) 1384 { 1385 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1386 } 1387 1388 static LLIST_HEAD(delayed_mntput_list); 1389 static void delayed_mntput(struct work_struct *unused) 1390 { 1391 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1392 struct mount *m, *t; 1393 1394 llist_for_each_entry_safe(m, t, node, mnt_llist) 1395 cleanup_mnt(m); 1396 } 1397 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1398 1399 static void mntput_no_expire(struct mount *mnt) 1400 { 1401 LIST_HEAD(list); 1402 int count; 1403 1404 rcu_read_lock(); 1405 if (likely(READ_ONCE(mnt->mnt_ns))) { 1406 /* 1407 * Since we don't do lock_mount_hash() here, 1408 * ->mnt_ns can change under us. However, if it's 1409 * non-NULL, then there's a reference that won't 1410 * be dropped until after an RCU delay done after 1411 * turning ->mnt_ns NULL. So if we observe it 1412 * non-NULL under rcu_read_lock(), the reference 1413 * we are dropping is not the final one. 1414 */ 1415 mnt_add_count(mnt, -1); 1416 rcu_read_unlock(); 1417 return; 1418 } 1419 lock_mount_hash(); 1420 /* 1421 * make sure that if __legitimize_mnt() has not seen us grab 1422 * mount_lock, we'll see their refcount increment here. 1423 */ 1424 smp_mb(); 1425 mnt_add_count(mnt, -1); 1426 count = mnt_get_count(mnt); 1427 if (count != 0) { 1428 WARN_ON(count < 0); 1429 rcu_read_unlock(); 1430 unlock_mount_hash(); 1431 return; 1432 } 1433 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1434 rcu_read_unlock(); 1435 unlock_mount_hash(); 1436 return; 1437 } 1438 mnt->mnt.mnt_flags |= MNT_DOOMED; 1439 rcu_read_unlock(); 1440 1441 list_del(&mnt->mnt_instance); 1442 if (unlikely(!list_empty(&mnt->mnt_expire))) 1443 list_del(&mnt->mnt_expire); 1444 1445 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1446 struct mount *p, *tmp; 1447 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1448 __umount_mnt(p, &list); 1449 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1450 } 1451 } 1452 unlock_mount_hash(); 1453 shrink_dentry_list(&list); 1454 1455 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1456 struct task_struct *task = current; 1457 if (likely(!(task->flags & PF_KTHREAD))) { 1458 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1459 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1460 return; 1461 } 1462 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1463 schedule_delayed_work(&delayed_mntput_work, 1); 1464 return; 1465 } 1466 cleanup_mnt(mnt); 1467 } 1468 1469 void mntput(struct vfsmount *mnt) 1470 { 1471 if (mnt) { 1472 struct mount *m = real_mount(mnt); 1473 /* avoid cacheline pingpong */ 1474 if (unlikely(m->mnt_expiry_mark)) 1475 WRITE_ONCE(m->mnt_expiry_mark, 0); 1476 mntput_no_expire(m); 1477 } 1478 } 1479 EXPORT_SYMBOL(mntput); 1480 1481 struct vfsmount *mntget(struct vfsmount *mnt) 1482 { 1483 if (mnt) 1484 mnt_add_count(real_mount(mnt), 1); 1485 return mnt; 1486 } 1487 EXPORT_SYMBOL(mntget); 1488 1489 /* 1490 * Make a mount point inaccessible to new lookups. 1491 * Because there may still be current users, the caller MUST WAIT 1492 * for an RCU grace period before destroying the mount point. 1493 */ 1494 void mnt_make_shortterm(struct vfsmount *mnt) 1495 { 1496 if (mnt) 1497 real_mount(mnt)->mnt_ns = NULL; 1498 } 1499 1500 /** 1501 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1502 * @path: path to check 1503 * 1504 * d_mountpoint() can only be used reliably to establish if a dentry is 1505 * not mounted in any namespace and that common case is handled inline. 1506 * d_mountpoint() isn't aware of the possibility there may be multiple 1507 * mounts using a given dentry in a different namespace. This function 1508 * checks if the passed in path is a mountpoint rather than the dentry 1509 * alone. 1510 */ 1511 bool path_is_mountpoint(const struct path *path) 1512 { 1513 unsigned seq; 1514 bool res; 1515 1516 if (!d_mountpoint(path->dentry)) 1517 return false; 1518 1519 rcu_read_lock(); 1520 do { 1521 seq = read_seqbegin(&mount_lock); 1522 res = __path_is_mountpoint(path); 1523 } while (read_seqretry(&mount_lock, seq)); 1524 rcu_read_unlock(); 1525 1526 return res; 1527 } 1528 EXPORT_SYMBOL(path_is_mountpoint); 1529 1530 struct vfsmount *mnt_clone_internal(const struct path *path) 1531 { 1532 struct mount *p; 1533 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1534 if (IS_ERR(p)) 1535 return ERR_CAST(p); 1536 p->mnt.mnt_flags |= MNT_INTERNAL; 1537 return &p->mnt; 1538 } 1539 1540 /* 1541 * Returns the mount which either has the specified mnt_id, or has the next 1542 * smallest id afer the specified one. 1543 */ 1544 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1545 { 1546 struct rb_node *node = ns->mounts.rb_node; 1547 struct mount *ret = NULL; 1548 1549 while (node) { 1550 struct mount *m = node_to_mount(node); 1551 1552 if (mnt_id <= m->mnt_id_unique) { 1553 ret = node_to_mount(node); 1554 if (mnt_id == m->mnt_id_unique) 1555 break; 1556 node = node->rb_left; 1557 } else { 1558 node = node->rb_right; 1559 } 1560 } 1561 return ret; 1562 } 1563 1564 /* 1565 * Returns the mount which either has the specified mnt_id, or has the next 1566 * greater id before the specified one. 1567 */ 1568 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1569 { 1570 struct rb_node *node = ns->mounts.rb_node; 1571 struct mount *ret = NULL; 1572 1573 while (node) { 1574 struct mount *m = node_to_mount(node); 1575 1576 if (mnt_id >= m->mnt_id_unique) { 1577 ret = node_to_mount(node); 1578 if (mnt_id == m->mnt_id_unique) 1579 break; 1580 node = node->rb_right; 1581 } else { 1582 node = node->rb_left; 1583 } 1584 } 1585 return ret; 1586 } 1587 1588 #ifdef CONFIG_PROC_FS 1589 1590 /* iterator; we want it to have access to namespace_sem, thus here... */ 1591 static void *m_start(struct seq_file *m, loff_t *pos) 1592 { 1593 struct proc_mounts *p = m->private; 1594 1595 down_read(&namespace_sem); 1596 1597 return mnt_find_id_at(p->ns, *pos); 1598 } 1599 1600 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1601 { 1602 struct mount *next = NULL, *mnt = v; 1603 struct rb_node *node = rb_next(&mnt->mnt_node); 1604 1605 ++*pos; 1606 if (node) { 1607 next = node_to_mount(node); 1608 *pos = next->mnt_id_unique; 1609 } 1610 return next; 1611 } 1612 1613 static void m_stop(struct seq_file *m, void *v) 1614 { 1615 up_read(&namespace_sem); 1616 } 1617 1618 static int m_show(struct seq_file *m, void *v) 1619 { 1620 struct proc_mounts *p = m->private; 1621 struct mount *r = v; 1622 return p->show(m, &r->mnt); 1623 } 1624 1625 const struct seq_operations mounts_op = { 1626 .start = m_start, 1627 .next = m_next, 1628 .stop = m_stop, 1629 .show = m_show, 1630 }; 1631 1632 #endif /* CONFIG_PROC_FS */ 1633 1634 /** 1635 * may_umount_tree - check if a mount tree is busy 1636 * @m: root of mount tree 1637 * 1638 * This is called to check if a tree of mounts has any 1639 * open files, pwds, chroots or sub mounts that are 1640 * busy. 1641 */ 1642 int may_umount_tree(struct vfsmount *m) 1643 { 1644 struct mount *mnt = real_mount(m); 1645 bool busy = false; 1646 1647 /* write lock needed for mnt_get_count */ 1648 lock_mount_hash(); 1649 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) { 1650 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) { 1651 busy = true; 1652 break; 1653 } 1654 } 1655 unlock_mount_hash(); 1656 1657 return !busy; 1658 } 1659 1660 EXPORT_SYMBOL(may_umount_tree); 1661 1662 /** 1663 * may_umount - check if a mount point is busy 1664 * @mnt: root of mount 1665 * 1666 * This is called to check if a mount point has any 1667 * open files, pwds, chroots or sub mounts. If the 1668 * mount has sub mounts this will return busy 1669 * regardless of whether the sub mounts are busy. 1670 * 1671 * Doesn't take quota and stuff into account. IOW, in some cases it will 1672 * give false negatives. The main reason why it's here is that we need 1673 * a non-destructive way to look for easily umountable filesystems. 1674 */ 1675 int may_umount(struct vfsmount *mnt) 1676 { 1677 int ret = 1; 1678 down_read(&namespace_sem); 1679 lock_mount_hash(); 1680 if (propagate_mount_busy(real_mount(mnt), 2)) 1681 ret = 0; 1682 unlock_mount_hash(); 1683 up_read(&namespace_sem); 1684 return ret; 1685 } 1686 1687 EXPORT_SYMBOL(may_umount); 1688 1689 #ifdef CONFIG_FSNOTIFY 1690 static void mnt_notify(struct mount *p) 1691 { 1692 if (!p->prev_ns && p->mnt_ns) { 1693 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1694 } else if (p->prev_ns && !p->mnt_ns) { 1695 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1696 } else if (p->prev_ns == p->mnt_ns) { 1697 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1698 } else { 1699 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1700 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1701 } 1702 p->prev_ns = p->mnt_ns; 1703 } 1704 1705 static void notify_mnt_list(void) 1706 { 1707 struct mount *m, *tmp; 1708 /* 1709 * Notify about mounts that were added/reparented/detached/remain 1710 * connected after unmount. 1711 */ 1712 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1713 mnt_notify(m); 1714 list_del_init(&m->to_notify); 1715 } 1716 } 1717 1718 static bool need_notify_mnt_list(void) 1719 { 1720 return !list_empty(¬ify_list); 1721 } 1722 #else 1723 static void notify_mnt_list(void) 1724 { 1725 } 1726 1727 static bool need_notify_mnt_list(void) 1728 { 1729 return false; 1730 } 1731 #endif 1732 1733 static void free_mnt_ns(struct mnt_namespace *); 1734 static void namespace_unlock(void) 1735 { 1736 struct hlist_head head; 1737 struct hlist_node *p; 1738 struct mount *m; 1739 struct mnt_namespace *ns = emptied_ns; 1740 LIST_HEAD(list); 1741 1742 hlist_move_list(&unmounted, &head); 1743 list_splice_init(&ex_mountpoints, &list); 1744 emptied_ns = NULL; 1745 1746 if (need_notify_mnt_list()) { 1747 /* 1748 * No point blocking out concurrent readers while notifications 1749 * are sent. This will also allow statmount()/listmount() to run 1750 * concurrently. 1751 */ 1752 downgrade_write(&namespace_sem); 1753 notify_mnt_list(); 1754 up_read(&namespace_sem); 1755 } else { 1756 up_write(&namespace_sem); 1757 } 1758 if (unlikely(ns)) { 1759 /* Make sure we notice when we leak mounts. */ 1760 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 1761 free_mnt_ns(ns); 1762 } 1763 1764 shrink_dentry_list(&list); 1765 1766 if (likely(hlist_empty(&head))) 1767 return; 1768 1769 synchronize_rcu_expedited(); 1770 1771 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1772 hlist_del(&m->mnt_umount); 1773 mntput(&m->mnt); 1774 } 1775 } 1776 1777 static inline void namespace_lock(void) 1778 { 1779 down_write(&namespace_sem); 1780 } 1781 1782 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock()) 1783 1784 enum umount_tree_flags { 1785 UMOUNT_SYNC = 1, 1786 UMOUNT_PROPAGATE = 2, 1787 UMOUNT_CONNECTED = 4, 1788 }; 1789 1790 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1791 { 1792 /* Leaving mounts connected is only valid for lazy umounts */ 1793 if (how & UMOUNT_SYNC) 1794 return true; 1795 1796 /* A mount without a parent has nothing to be connected to */ 1797 if (!mnt_has_parent(mnt)) 1798 return true; 1799 1800 /* Because the reference counting rules change when mounts are 1801 * unmounted and connected, umounted mounts may not be 1802 * connected to mounted mounts. 1803 */ 1804 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1805 return true; 1806 1807 /* Has it been requested that the mount remain connected? */ 1808 if (how & UMOUNT_CONNECTED) 1809 return false; 1810 1811 /* Is the mount locked such that it needs to remain connected? */ 1812 if (IS_MNT_LOCKED(mnt)) 1813 return false; 1814 1815 /* By default disconnect the mount */ 1816 return true; 1817 } 1818 1819 /* 1820 * mount_lock must be held 1821 * namespace_sem must be held for write 1822 */ 1823 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1824 { 1825 LIST_HEAD(tmp_list); 1826 struct mount *p; 1827 1828 if (how & UMOUNT_PROPAGATE) 1829 propagate_mount_unlock(mnt); 1830 1831 /* Gather the mounts to umount */ 1832 for (p = mnt; p; p = next_mnt(p, mnt)) { 1833 p->mnt.mnt_flags |= MNT_UMOUNT; 1834 if (mnt_ns_attached(p)) 1835 move_from_ns(p); 1836 list_add_tail(&p->mnt_list, &tmp_list); 1837 } 1838 1839 /* Hide the mounts from mnt_mounts */ 1840 list_for_each_entry(p, &tmp_list, mnt_list) { 1841 list_del_init(&p->mnt_child); 1842 } 1843 1844 /* Add propagated mounts to the tmp_list */ 1845 if (how & UMOUNT_PROPAGATE) 1846 propagate_umount(&tmp_list); 1847 1848 while (!list_empty(&tmp_list)) { 1849 struct mnt_namespace *ns; 1850 bool disconnect; 1851 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1852 list_del_init(&p->mnt_expire); 1853 list_del_init(&p->mnt_list); 1854 ns = p->mnt_ns; 1855 if (ns) { 1856 ns->nr_mounts--; 1857 __touch_mnt_namespace(ns); 1858 } 1859 p->mnt_ns = NULL; 1860 if (how & UMOUNT_SYNC) 1861 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1862 1863 disconnect = disconnect_mount(p, how); 1864 if (mnt_has_parent(p)) { 1865 if (!disconnect) { 1866 /* Don't forget about p */ 1867 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1868 } else { 1869 umount_mnt(p); 1870 } 1871 } 1872 change_mnt_propagation(p, MS_PRIVATE); 1873 if (disconnect) 1874 hlist_add_head(&p->mnt_umount, &unmounted); 1875 1876 /* 1877 * At this point p->mnt_ns is NULL, notification will be queued 1878 * only if 1879 * 1880 * - p->prev_ns is non-NULL *and* 1881 * - p->prev_ns->n_fsnotify_marks is non-NULL 1882 * 1883 * This will preclude queuing the mount if this is a cleanup 1884 * after a failed copy_tree() or destruction of an anonymous 1885 * namespace, etc. 1886 */ 1887 mnt_notify_add(p); 1888 } 1889 } 1890 1891 static void shrink_submounts(struct mount *mnt); 1892 1893 static int do_umount_root(struct super_block *sb) 1894 { 1895 int ret = 0; 1896 1897 down_write(&sb->s_umount); 1898 if (!sb_rdonly(sb)) { 1899 struct fs_context *fc; 1900 1901 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1902 SB_RDONLY); 1903 if (IS_ERR(fc)) { 1904 ret = PTR_ERR(fc); 1905 } else { 1906 ret = parse_monolithic_mount_data(fc, NULL); 1907 if (!ret) 1908 ret = reconfigure_super(fc); 1909 put_fs_context(fc); 1910 } 1911 } 1912 up_write(&sb->s_umount); 1913 return ret; 1914 } 1915 1916 static int do_umount(struct mount *mnt, int flags) 1917 { 1918 struct super_block *sb = mnt->mnt.mnt_sb; 1919 int retval; 1920 1921 retval = security_sb_umount(&mnt->mnt, flags); 1922 if (retval) 1923 return retval; 1924 1925 /* 1926 * Allow userspace to request a mountpoint be expired rather than 1927 * unmounting unconditionally. Unmount only happens if: 1928 * (1) the mark is already set (the mark is cleared by mntput()) 1929 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1930 */ 1931 if (flags & MNT_EXPIRE) { 1932 if (&mnt->mnt == current->fs->root.mnt || 1933 flags & (MNT_FORCE | MNT_DETACH)) 1934 return -EINVAL; 1935 1936 /* 1937 * probably don't strictly need the lock here if we examined 1938 * all race cases, but it's a slowpath. 1939 */ 1940 lock_mount_hash(); 1941 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) { 1942 unlock_mount_hash(); 1943 return -EBUSY; 1944 } 1945 unlock_mount_hash(); 1946 1947 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1948 return -EAGAIN; 1949 } 1950 1951 /* 1952 * If we may have to abort operations to get out of this 1953 * mount, and they will themselves hold resources we must 1954 * allow the fs to do things. In the Unix tradition of 1955 * 'Gee thats tricky lets do it in userspace' the umount_begin 1956 * might fail to complete on the first run through as other tasks 1957 * must return, and the like. Thats for the mount program to worry 1958 * about for the moment. 1959 */ 1960 1961 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1962 sb->s_op->umount_begin(sb); 1963 } 1964 1965 /* 1966 * No sense to grab the lock for this test, but test itself looks 1967 * somewhat bogus. Suggestions for better replacement? 1968 * Ho-hum... In principle, we might treat that as umount + switch 1969 * to rootfs. GC would eventually take care of the old vfsmount. 1970 * Actually it makes sense, especially if rootfs would contain a 1971 * /reboot - static binary that would close all descriptors and 1972 * call reboot(9). Then init(8) could umount root and exec /reboot. 1973 */ 1974 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1975 /* 1976 * Special case for "unmounting" root ... 1977 * we just try to remount it readonly. 1978 */ 1979 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1980 return -EPERM; 1981 return do_umount_root(sb); 1982 } 1983 1984 namespace_lock(); 1985 lock_mount_hash(); 1986 1987 /* Repeat the earlier racy checks, now that we are holding the locks */ 1988 retval = -EINVAL; 1989 if (!check_mnt(mnt)) 1990 goto out; 1991 1992 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1993 goto out; 1994 1995 if (!mnt_has_parent(mnt)) /* not the absolute root */ 1996 goto out; 1997 1998 event++; 1999 if (flags & MNT_DETACH) { 2000 umount_tree(mnt, UMOUNT_PROPAGATE); 2001 retval = 0; 2002 } else { 2003 smp_mb(); // paired with __legitimize_mnt() 2004 shrink_submounts(mnt); 2005 retval = -EBUSY; 2006 if (!propagate_mount_busy(mnt, 2)) { 2007 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2008 retval = 0; 2009 } 2010 } 2011 out: 2012 unlock_mount_hash(); 2013 namespace_unlock(); 2014 return retval; 2015 } 2016 2017 /* 2018 * __detach_mounts - lazily unmount all mounts on the specified dentry 2019 * 2020 * During unlink, rmdir, and d_drop it is possible to loose the path 2021 * to an existing mountpoint, and wind up leaking the mount. 2022 * detach_mounts allows lazily unmounting those mounts instead of 2023 * leaking them. 2024 * 2025 * The caller may hold dentry->d_inode->i_rwsem. 2026 */ 2027 void __detach_mounts(struct dentry *dentry) 2028 { 2029 struct pinned_mountpoint mp = {}; 2030 struct mount *mnt; 2031 2032 namespace_lock(); 2033 lock_mount_hash(); 2034 if (!lookup_mountpoint(dentry, &mp)) 2035 goto out_unlock; 2036 2037 event++; 2038 while (mp.node.next) { 2039 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list); 2040 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 2041 umount_mnt(mnt); 2042 hlist_add_head(&mnt->mnt_umount, &unmounted); 2043 } 2044 else umount_tree(mnt, UMOUNT_CONNECTED); 2045 } 2046 unpin_mountpoint(&mp); 2047 out_unlock: 2048 unlock_mount_hash(); 2049 namespace_unlock(); 2050 } 2051 2052 /* 2053 * Is the caller allowed to modify his namespace? 2054 */ 2055 bool may_mount(void) 2056 { 2057 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 2058 } 2059 2060 static void warn_mandlock(void) 2061 { 2062 pr_warn_once("=======================================================\n" 2063 "WARNING: The mand mount option has been deprecated and\n" 2064 " and is ignored by this kernel. Remove the mand\n" 2065 " option from the mount to silence this warning.\n" 2066 "=======================================================\n"); 2067 } 2068 2069 static int can_umount(const struct path *path, int flags) 2070 { 2071 struct mount *mnt = real_mount(path->mnt); 2072 struct super_block *sb = path->dentry->d_sb; 2073 2074 if (!may_mount()) 2075 return -EPERM; 2076 if (!path_mounted(path)) 2077 return -EINVAL; 2078 if (!check_mnt(mnt)) 2079 return -EINVAL; 2080 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2081 return -EINVAL; 2082 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2083 return -EPERM; 2084 return 0; 2085 } 2086 2087 // caller is responsible for flags being sane 2088 int path_umount(struct path *path, int flags) 2089 { 2090 struct mount *mnt = real_mount(path->mnt); 2091 int ret; 2092 2093 ret = can_umount(path, flags); 2094 if (!ret) 2095 ret = do_umount(mnt, flags); 2096 2097 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2098 dput(path->dentry); 2099 mntput_no_expire(mnt); 2100 return ret; 2101 } 2102 2103 static int ksys_umount(char __user *name, int flags) 2104 { 2105 int lookup_flags = LOOKUP_MOUNTPOINT; 2106 struct path path; 2107 int ret; 2108 2109 // basic validity checks done first 2110 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2111 return -EINVAL; 2112 2113 if (!(flags & UMOUNT_NOFOLLOW)) 2114 lookup_flags |= LOOKUP_FOLLOW; 2115 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2116 if (ret) 2117 return ret; 2118 return path_umount(&path, flags); 2119 } 2120 2121 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2122 { 2123 return ksys_umount(name, flags); 2124 } 2125 2126 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2127 2128 /* 2129 * The 2.0 compatible umount. No flags. 2130 */ 2131 SYSCALL_DEFINE1(oldumount, char __user *, name) 2132 { 2133 return ksys_umount(name, 0); 2134 } 2135 2136 #endif 2137 2138 static bool is_mnt_ns_file(struct dentry *dentry) 2139 { 2140 struct ns_common *ns; 2141 2142 /* Is this a proxy for a mount namespace? */ 2143 if (dentry->d_op != &ns_dentry_operations) 2144 return false; 2145 2146 ns = d_inode(dentry)->i_private; 2147 2148 return ns->ops == &mntns_operations; 2149 } 2150 2151 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2152 { 2153 return &mnt->ns; 2154 } 2155 2156 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2157 { 2158 guard(rcu)(); 2159 2160 for (;;) { 2161 struct list_head *list; 2162 2163 if (previous) 2164 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list)); 2165 else 2166 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list)); 2167 if (list_is_head(list, &mnt_ns_list)) 2168 return ERR_PTR(-ENOENT); 2169 2170 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list); 2171 2172 /* 2173 * The last passive reference count is put with RCU 2174 * delay so accessing the mount namespace is not just 2175 * safe but all relevant members are still valid. 2176 */ 2177 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2178 continue; 2179 2180 /* 2181 * We need an active reference count as we're persisting 2182 * the mount namespace and it might already be on its 2183 * deathbed. 2184 */ 2185 if (!refcount_inc_not_zero(&mntns->ns.count)) 2186 continue; 2187 2188 return mntns; 2189 } 2190 } 2191 2192 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2193 { 2194 if (!is_mnt_ns_file(dentry)) 2195 return NULL; 2196 2197 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2198 } 2199 2200 static bool mnt_ns_loop(struct dentry *dentry) 2201 { 2202 /* Could bind mounting the mount namespace inode cause a 2203 * mount namespace loop? 2204 */ 2205 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2206 2207 if (!mnt_ns) 2208 return false; 2209 2210 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2211 } 2212 2213 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2214 int flag) 2215 { 2216 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2217 *dst_parent, *dst_mnt; 2218 2219 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2220 return ERR_PTR(-EINVAL); 2221 2222 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2223 return ERR_PTR(-EINVAL); 2224 2225 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2226 if (IS_ERR(dst_mnt)) 2227 return dst_mnt; 2228 2229 src_parent = src_root; 2230 2231 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2232 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2233 continue; 2234 2235 for (src_mnt = src_root_child; src_mnt; 2236 src_mnt = next_mnt(src_mnt, src_root_child)) { 2237 if (!(flag & CL_COPY_UNBINDABLE) && 2238 IS_MNT_UNBINDABLE(src_mnt)) { 2239 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2240 /* Both unbindable and locked. */ 2241 dst_mnt = ERR_PTR(-EPERM); 2242 goto out; 2243 } else { 2244 src_mnt = skip_mnt_tree(src_mnt); 2245 continue; 2246 } 2247 } 2248 if (!(flag & CL_COPY_MNT_NS_FILE) && 2249 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2250 src_mnt = skip_mnt_tree(src_mnt); 2251 continue; 2252 } 2253 while (src_parent != src_mnt->mnt_parent) { 2254 src_parent = src_parent->mnt_parent; 2255 dst_mnt = dst_mnt->mnt_parent; 2256 } 2257 2258 src_parent = src_mnt; 2259 dst_parent = dst_mnt; 2260 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2261 if (IS_ERR(dst_mnt)) 2262 goto out; 2263 lock_mount_hash(); 2264 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) 2265 dst_mnt->mnt.mnt_flags |= MNT_LOCKED; 2266 if (unlikely(flag & CL_EXPIRE)) { 2267 /* stick the duplicate mount on the same expiry 2268 * list as the original if that was on one */ 2269 if (!list_empty(&src_mnt->mnt_expire)) 2270 list_add(&dst_mnt->mnt_expire, 2271 &src_mnt->mnt_expire); 2272 } 2273 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp); 2274 unlock_mount_hash(); 2275 } 2276 } 2277 return res; 2278 2279 out: 2280 if (res) { 2281 lock_mount_hash(); 2282 umount_tree(res, UMOUNT_SYNC); 2283 unlock_mount_hash(); 2284 } 2285 return dst_mnt; 2286 } 2287 2288 static inline bool extend_array(struct path **res, struct path **to_free, 2289 unsigned n, unsigned *count, unsigned new_count) 2290 { 2291 struct path *p; 2292 2293 if (likely(n < *count)) 2294 return true; 2295 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL); 2296 if (p && *count) 2297 memcpy(p, *res, *count * sizeof(struct path)); 2298 *count = new_count; 2299 kfree(*to_free); 2300 *to_free = *res = p; 2301 return p; 2302 } 2303 2304 struct path *collect_paths(const struct path *path, 2305 struct path *prealloc, unsigned count) 2306 { 2307 struct mount *root = real_mount(path->mnt); 2308 struct mount *child; 2309 struct path *res = prealloc, *to_free = NULL; 2310 unsigned n = 0; 2311 2312 guard(rwsem_read)(&namespace_sem); 2313 2314 if (!check_mnt(root)) 2315 return ERR_PTR(-EINVAL); 2316 if (!extend_array(&res, &to_free, 0, &count, 32)) 2317 return ERR_PTR(-ENOMEM); 2318 res[n++] = *path; 2319 list_for_each_entry(child, &root->mnt_mounts, mnt_child) { 2320 if (!is_subdir(child->mnt_mountpoint, path->dentry)) 2321 continue; 2322 for (struct mount *m = child; m; m = next_mnt(m, child)) { 2323 if (!extend_array(&res, &to_free, n, &count, 2 * count)) 2324 return ERR_PTR(-ENOMEM); 2325 res[n].mnt = &m->mnt; 2326 res[n].dentry = m->mnt.mnt_root; 2327 n++; 2328 } 2329 } 2330 if (!extend_array(&res, &to_free, n, &count, count + 1)) 2331 return ERR_PTR(-ENOMEM); 2332 memset(res + n, 0, (count - n) * sizeof(struct path)); 2333 for (struct path *p = res; p->mnt; p++) 2334 path_get(p); 2335 return res; 2336 } 2337 2338 void drop_collected_paths(struct path *paths, struct path *prealloc) 2339 { 2340 for (struct path *p = paths; p->mnt; p++) 2341 path_put(p); 2342 if (paths != prealloc) 2343 kfree(paths); 2344 } 2345 2346 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2347 2348 void dissolve_on_fput(struct vfsmount *mnt) 2349 { 2350 struct mount *m = real_mount(mnt); 2351 2352 /* 2353 * m used to be the root of anon namespace; if it still is one, 2354 * we need to dissolve the mount tree and free that namespace. 2355 * Let's try to avoid taking namespace_sem if we can determine 2356 * that there's nothing to do without it - rcu_read_lock() is 2357 * enough to make anon_ns_root() memory-safe and once m has 2358 * left its namespace, it's no longer our concern, since it will 2359 * never become a root of anon ns again. 2360 */ 2361 2362 scoped_guard(rcu) { 2363 if (!anon_ns_root(m)) 2364 return; 2365 } 2366 2367 scoped_guard(namespace_lock, &namespace_sem) { 2368 if (!anon_ns_root(m)) 2369 return; 2370 2371 emptied_ns = m->mnt_ns; 2372 lock_mount_hash(); 2373 umount_tree(m, UMOUNT_CONNECTED); 2374 unlock_mount_hash(); 2375 } 2376 } 2377 2378 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry) 2379 { 2380 struct mount *child; 2381 2382 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2383 if (!is_subdir(child->mnt_mountpoint, dentry)) 2384 continue; 2385 2386 if (child->mnt.mnt_flags & MNT_LOCKED) 2387 return true; 2388 } 2389 return false; 2390 } 2391 2392 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2393 { 2394 bool res; 2395 2396 read_seqlock_excl(&mount_lock); 2397 res = __has_locked_children(mnt, dentry); 2398 read_sequnlock_excl(&mount_lock); 2399 return res; 2400 } 2401 2402 /* 2403 * Check that there aren't references to earlier/same mount namespaces in the 2404 * specified subtree. Such references can act as pins for mount namespaces 2405 * that aren't checked by the mount-cycle checking code, thereby allowing 2406 * cycles to be made. 2407 */ 2408 static bool check_for_nsfs_mounts(struct mount *subtree) 2409 { 2410 struct mount *p; 2411 bool ret = false; 2412 2413 lock_mount_hash(); 2414 for (p = subtree; p; p = next_mnt(p, subtree)) 2415 if (mnt_ns_loop(p->mnt.mnt_root)) 2416 goto out; 2417 2418 ret = true; 2419 out: 2420 unlock_mount_hash(); 2421 return ret; 2422 } 2423 2424 /** 2425 * clone_private_mount - create a private clone of a path 2426 * @path: path to clone 2427 * 2428 * This creates a new vfsmount, which will be the clone of @path. The new mount 2429 * will not be attached anywhere in the namespace and will be private (i.e. 2430 * changes to the originating mount won't be propagated into this). 2431 * 2432 * This assumes caller has called or done the equivalent of may_mount(). 2433 * 2434 * Release with mntput(). 2435 */ 2436 struct vfsmount *clone_private_mount(const struct path *path) 2437 { 2438 struct mount *old_mnt = real_mount(path->mnt); 2439 struct mount *new_mnt; 2440 2441 guard(rwsem_read)(&namespace_sem); 2442 2443 if (IS_MNT_UNBINDABLE(old_mnt)) 2444 return ERR_PTR(-EINVAL); 2445 2446 /* 2447 * Make sure the source mount is acceptable. 2448 * Anything mounted in our mount namespace is allowed. 2449 * Otherwise, it must be the root of an anonymous mount 2450 * namespace, and we need to make sure no namespace 2451 * loops get created. 2452 */ 2453 if (!check_mnt(old_mnt)) { 2454 if (!anon_ns_root(old_mnt)) 2455 return ERR_PTR(-EINVAL); 2456 2457 if (!check_for_nsfs_mounts(old_mnt)) 2458 return ERR_PTR(-EINVAL); 2459 } 2460 2461 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2462 return ERR_PTR(-EPERM); 2463 2464 if (__has_locked_children(old_mnt, path->dentry)) 2465 return ERR_PTR(-EINVAL); 2466 2467 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2468 if (IS_ERR(new_mnt)) 2469 return ERR_PTR(-EINVAL); 2470 2471 /* Longterm mount to be removed by kern_unmount*() */ 2472 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2473 return &new_mnt->mnt; 2474 } 2475 EXPORT_SYMBOL_GPL(clone_private_mount); 2476 2477 static void lock_mnt_tree(struct mount *mnt) 2478 { 2479 struct mount *p; 2480 2481 for (p = mnt; p; p = next_mnt(p, mnt)) { 2482 int flags = p->mnt.mnt_flags; 2483 /* Don't allow unprivileged users to change mount flags */ 2484 flags |= MNT_LOCK_ATIME; 2485 2486 if (flags & MNT_READONLY) 2487 flags |= MNT_LOCK_READONLY; 2488 2489 if (flags & MNT_NODEV) 2490 flags |= MNT_LOCK_NODEV; 2491 2492 if (flags & MNT_NOSUID) 2493 flags |= MNT_LOCK_NOSUID; 2494 2495 if (flags & MNT_NOEXEC) 2496 flags |= MNT_LOCK_NOEXEC; 2497 /* Don't allow unprivileged users to reveal what is under a mount */ 2498 if (list_empty(&p->mnt_expire) && p != mnt) 2499 flags |= MNT_LOCKED; 2500 p->mnt.mnt_flags = flags; 2501 } 2502 } 2503 2504 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2505 { 2506 struct mount *p; 2507 2508 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2509 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2510 mnt_release_group_id(p); 2511 } 2512 } 2513 2514 static int invent_group_ids(struct mount *mnt, bool recurse) 2515 { 2516 struct mount *p; 2517 2518 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2519 if (!p->mnt_group_id) { 2520 int err = mnt_alloc_group_id(p); 2521 if (err) { 2522 cleanup_group_ids(mnt, p); 2523 return err; 2524 } 2525 } 2526 } 2527 2528 return 0; 2529 } 2530 2531 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2532 { 2533 unsigned int max = READ_ONCE(sysctl_mount_max); 2534 unsigned int mounts = 0; 2535 struct mount *p; 2536 2537 if (ns->nr_mounts >= max) 2538 return -ENOSPC; 2539 max -= ns->nr_mounts; 2540 if (ns->pending_mounts >= max) 2541 return -ENOSPC; 2542 max -= ns->pending_mounts; 2543 2544 for (p = mnt; p; p = next_mnt(p, mnt)) 2545 mounts++; 2546 2547 if (mounts > max) 2548 return -ENOSPC; 2549 2550 ns->pending_mounts += mounts; 2551 return 0; 2552 } 2553 2554 enum mnt_tree_flags_t { 2555 MNT_TREE_BENEATH = BIT(0), 2556 MNT_TREE_PROPAGATION = BIT(1), 2557 }; 2558 2559 /** 2560 * attach_recursive_mnt - attach a source mount tree 2561 * @source_mnt: mount tree to be attached 2562 * @dest_mnt: mount that @source_mnt will be mounted on 2563 * @dest_mp: the mountpoint @source_mnt will be mounted at 2564 * 2565 * NOTE: in the table below explains the semantics when a source mount 2566 * of a given type is attached to a destination mount of a given type. 2567 * --------------------------------------------------------------------------- 2568 * | BIND MOUNT OPERATION | 2569 * |************************************************************************** 2570 * | source-->| shared | private | slave | unbindable | 2571 * | dest | | | | | 2572 * | | | | | | | 2573 * | v | | | | | 2574 * |************************************************************************** 2575 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2576 * | | | | | | 2577 * |non-shared| shared (+) | private | slave (*) | invalid | 2578 * *************************************************************************** 2579 * A bind operation clones the source mount and mounts the clone on the 2580 * destination mount. 2581 * 2582 * (++) the cloned mount is propagated to all the mounts in the propagation 2583 * tree of the destination mount and the cloned mount is added to 2584 * the peer group of the source mount. 2585 * (+) the cloned mount is created under the destination mount and is marked 2586 * as shared. The cloned mount is added to the peer group of the source 2587 * mount. 2588 * (+++) the mount is propagated to all the mounts in the propagation tree 2589 * of the destination mount and the cloned mount is made slave 2590 * of the same master as that of the source mount. The cloned mount 2591 * is marked as 'shared and slave'. 2592 * (*) the cloned mount is made a slave of the same master as that of the 2593 * source mount. 2594 * 2595 * --------------------------------------------------------------------------- 2596 * | MOVE MOUNT OPERATION | 2597 * |************************************************************************** 2598 * | source-->| shared | private | slave | unbindable | 2599 * | dest | | | | | 2600 * | | | | | | | 2601 * | v | | | | | 2602 * |************************************************************************** 2603 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2604 * | | | | | | 2605 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2606 * *************************************************************************** 2607 * 2608 * (+) the mount is moved to the destination. And is then propagated to 2609 * all the mounts in the propagation tree of the destination mount. 2610 * (+*) the mount is moved to the destination. 2611 * (+++) the mount is moved to the destination and is then propagated to 2612 * all the mounts belonging to the destination mount's propagation tree. 2613 * the mount is marked as 'shared and slave'. 2614 * (*) the mount continues to be a slave at the new location. 2615 * 2616 * if the source mount is a tree, the operations explained above is 2617 * applied to each mount in the tree. 2618 * Must be called without spinlocks held, since this function can sleep 2619 * in allocations. 2620 * 2621 * Context: The function expects namespace_lock() to be held. 2622 * Return: If @source_mnt was successfully attached 0 is returned. 2623 * Otherwise a negative error code is returned. 2624 */ 2625 static int attach_recursive_mnt(struct mount *source_mnt, 2626 struct mount *dest_mnt, 2627 struct mountpoint *dest_mp) 2628 { 2629 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2630 HLIST_HEAD(tree_list); 2631 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2632 struct pinned_mountpoint root = {}; 2633 struct mountpoint *shorter = NULL; 2634 struct mount *child, *p; 2635 struct mount *top; 2636 struct hlist_node *n; 2637 int err = 0; 2638 bool moving = mnt_has_parent(source_mnt); 2639 2640 /* 2641 * Preallocate a mountpoint in case the new mounts need to be 2642 * mounted beneath mounts on the same mountpoint. 2643 */ 2644 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) { 2645 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root)) 2646 shorter = top->mnt_mp; 2647 } 2648 err = get_mountpoint(top->mnt.mnt_root, &root); 2649 if (err) 2650 return err; 2651 2652 /* Is there space to add these mounts to the mount namespace? */ 2653 if (!moving) { 2654 err = count_mounts(ns, source_mnt); 2655 if (err) 2656 goto out; 2657 } 2658 2659 if (IS_MNT_SHARED(dest_mnt)) { 2660 err = invent_group_ids(source_mnt, true); 2661 if (err) 2662 goto out; 2663 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2664 } 2665 lock_mount_hash(); 2666 if (err) 2667 goto out_cleanup_ids; 2668 2669 if (IS_MNT_SHARED(dest_mnt)) { 2670 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2671 set_mnt_shared(p); 2672 } 2673 2674 if (moving) { 2675 umount_mnt(source_mnt); 2676 mnt_notify_add(source_mnt); 2677 /* if the mount is moved, it should no longer be expired 2678 * automatically */ 2679 list_del_init(&source_mnt->mnt_expire); 2680 } else { 2681 if (source_mnt->mnt_ns) { 2682 /* move from anon - the caller will destroy */ 2683 emptied_ns = source_mnt->mnt_ns; 2684 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2685 move_from_ns(p); 2686 } 2687 } 2688 2689 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2690 /* 2691 * Now the original copy is in the same state as the secondaries - 2692 * its root attached to mountpoint, but not hashed and all mounts 2693 * in it are either in our namespace or in no namespace at all. 2694 * Add the original to the list of copies and deal with the 2695 * rest of work for all of them uniformly. 2696 */ 2697 hlist_add_head(&source_mnt->mnt_hash, &tree_list); 2698 2699 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2700 struct mount *q; 2701 hlist_del_init(&child->mnt_hash); 2702 /* Notice when we are propagating across user namespaces */ 2703 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2704 lock_mnt_tree(child); 2705 q = __lookup_mnt(&child->mnt_parent->mnt, 2706 child->mnt_mountpoint); 2707 if (q) { 2708 struct mountpoint *mp = root.mp; 2709 struct mount *r = child; 2710 while (unlikely(r->overmount)) 2711 r = r->overmount; 2712 if (unlikely(shorter) && child != source_mnt) 2713 mp = shorter; 2714 mnt_change_mountpoint(r, mp, q); 2715 } 2716 commit_tree(child); 2717 } 2718 unpin_mountpoint(&root); 2719 unlock_mount_hash(); 2720 2721 return 0; 2722 2723 out_cleanup_ids: 2724 while (!hlist_empty(&tree_list)) { 2725 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2726 child->mnt_parent->mnt_ns->pending_mounts = 0; 2727 umount_tree(child, UMOUNT_SYNC); 2728 } 2729 unlock_mount_hash(); 2730 cleanup_group_ids(source_mnt, NULL); 2731 out: 2732 ns->pending_mounts = 0; 2733 2734 read_seqlock_excl(&mount_lock); 2735 unpin_mountpoint(&root); 2736 read_sequnlock_excl(&mount_lock); 2737 2738 return err; 2739 } 2740 2741 /** 2742 * do_lock_mount - lock mount and mountpoint 2743 * @path: target path 2744 * @beneath: whether the intention is to mount beneath @path 2745 * 2746 * Follow the mount stack on @path until the top mount @mnt is found. If 2747 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2748 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2749 * until nothing is stacked on top of it anymore. 2750 * 2751 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2752 * against concurrent removal of the new mountpoint from another mount 2753 * namespace. 2754 * 2755 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2756 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2757 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2758 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2759 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2760 * on top of it for @beneath. 2761 * 2762 * In addition, @beneath needs to make sure that @mnt hasn't been 2763 * unmounted or moved from its current mountpoint in between dropping 2764 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2765 * being unmounted would be detected later by e.g., calling 2766 * check_mnt(mnt) in the function it's called from. For the @beneath 2767 * case however, it's useful to detect it directly in do_lock_mount(). 2768 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2769 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2770 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2771 * 2772 * Return: Either the target mountpoint on the top mount or the top 2773 * mount's mountpoint. 2774 */ 2775 static int do_lock_mount(struct path *path, struct pinned_mountpoint *pinned, bool beneath) 2776 { 2777 struct vfsmount *mnt = path->mnt; 2778 struct dentry *dentry; 2779 struct path under = {}; 2780 int err = -ENOENT; 2781 2782 for (;;) { 2783 struct mount *m = real_mount(mnt); 2784 2785 if (beneath) { 2786 path_put(&under); 2787 read_seqlock_excl(&mount_lock); 2788 under.mnt = mntget(&m->mnt_parent->mnt); 2789 under.dentry = dget(m->mnt_mountpoint); 2790 read_sequnlock_excl(&mount_lock); 2791 dentry = under.dentry; 2792 } else { 2793 dentry = path->dentry; 2794 } 2795 2796 inode_lock(dentry->d_inode); 2797 namespace_lock(); 2798 2799 if (unlikely(cant_mount(dentry) || !is_mounted(mnt))) 2800 break; // not to be mounted on 2801 2802 if (beneath && unlikely(m->mnt_mountpoint != dentry || 2803 &m->mnt_parent->mnt != under.mnt)) { 2804 namespace_unlock(); 2805 inode_unlock(dentry->d_inode); 2806 continue; // got moved 2807 } 2808 2809 mnt = lookup_mnt(path); 2810 if (unlikely(mnt)) { 2811 namespace_unlock(); 2812 inode_unlock(dentry->d_inode); 2813 path_put(path); 2814 path->mnt = mnt; 2815 path->dentry = dget(mnt->mnt_root); 2816 continue; // got overmounted 2817 } 2818 err = get_mountpoint(dentry, pinned); 2819 if (err) 2820 break; 2821 if (beneath) { 2822 /* 2823 * @under duplicates the references that will stay 2824 * at least until namespace_unlock(), so the path_put() 2825 * below is safe (and OK to do under namespace_lock - 2826 * we are not dropping the final references here). 2827 */ 2828 path_put(&under); 2829 } 2830 return 0; 2831 } 2832 namespace_unlock(); 2833 inode_unlock(dentry->d_inode); 2834 if (beneath) 2835 path_put(&under); 2836 return err; 2837 } 2838 2839 static inline int lock_mount(struct path *path, struct pinned_mountpoint *m) 2840 { 2841 return do_lock_mount(path, m, false); 2842 } 2843 2844 static void unlock_mount(struct pinned_mountpoint *m) 2845 { 2846 inode_unlock(m->mp->m_dentry->d_inode); 2847 read_seqlock_excl(&mount_lock); 2848 unpin_mountpoint(m); 2849 read_sequnlock_excl(&mount_lock); 2850 namespace_unlock(); 2851 } 2852 2853 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2854 { 2855 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2856 return -EINVAL; 2857 2858 if (d_is_dir(mp->m_dentry) != 2859 d_is_dir(mnt->mnt.mnt_root)) 2860 return -ENOTDIR; 2861 2862 return attach_recursive_mnt(mnt, p, mp); 2863 } 2864 2865 /* 2866 * Sanity check the flags to change_mnt_propagation. 2867 */ 2868 2869 static int flags_to_propagation_type(int ms_flags) 2870 { 2871 int type = ms_flags & ~(MS_REC | MS_SILENT); 2872 2873 /* Fail if any non-propagation flags are set */ 2874 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2875 return 0; 2876 /* Only one propagation flag should be set */ 2877 if (!is_power_of_2(type)) 2878 return 0; 2879 return type; 2880 } 2881 2882 /* 2883 * recursively change the type of the mountpoint. 2884 */ 2885 static int do_change_type(struct path *path, int ms_flags) 2886 { 2887 struct mount *m; 2888 struct mount *mnt = real_mount(path->mnt); 2889 int recurse = ms_flags & MS_REC; 2890 int type; 2891 int err = 0; 2892 2893 if (!path_mounted(path)) 2894 return -EINVAL; 2895 2896 type = flags_to_propagation_type(ms_flags); 2897 if (!type) 2898 return -EINVAL; 2899 2900 namespace_lock(); 2901 if (!check_mnt(mnt)) { 2902 err = -EINVAL; 2903 goto out_unlock; 2904 } 2905 if (type == MS_SHARED) { 2906 err = invent_group_ids(mnt, recurse); 2907 if (err) 2908 goto out_unlock; 2909 } 2910 2911 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2912 change_mnt_propagation(m, type); 2913 2914 out_unlock: 2915 namespace_unlock(); 2916 return err; 2917 } 2918 2919 /* may_copy_tree() - check if a mount tree can be copied 2920 * @path: path to the mount tree to be copied 2921 * 2922 * This helper checks if the caller may copy the mount tree starting 2923 * from @path->mnt. The caller may copy the mount tree under the 2924 * following circumstances: 2925 * 2926 * (1) The caller is located in the mount namespace of the mount tree. 2927 * This also implies that the mount does not belong to an anonymous 2928 * mount namespace. 2929 * (2) The caller tries to copy an nfs mount referring to a mount 2930 * namespace, i.e., the caller is trying to copy a mount namespace 2931 * entry from nsfs. 2932 * (3) The caller tries to copy a pidfs mount referring to a pidfd. 2933 * (4) The caller is trying to copy a mount tree that belongs to an 2934 * anonymous mount namespace. 2935 * 2936 * For that to be safe, this helper enforces that the origin mount 2937 * namespace the anonymous mount namespace was created from is the 2938 * same as the caller's mount namespace by comparing the sequence 2939 * numbers. 2940 * 2941 * This is not strictly necessary. The current semantics of the new 2942 * mount api enforce that the caller must be located in the same 2943 * mount namespace as the mount tree it interacts with. Using the 2944 * origin sequence number preserves these semantics even for 2945 * anonymous mount namespaces. However, one could envision extending 2946 * the api to directly operate across mount namespace if needed. 2947 * 2948 * The ownership of a non-anonymous mount namespace such as the 2949 * caller's cannot change. 2950 * => We know that the caller's mount namespace is stable. 2951 * 2952 * If the origin sequence number of the anonymous mount namespace is 2953 * the same as the sequence number of the caller's mount namespace. 2954 * => The owning namespaces are the same. 2955 * 2956 * ==> The earlier capability check on the owning namespace of the 2957 * caller's mount namespace ensures that the caller has the 2958 * ability to copy the mount tree. 2959 * 2960 * Returns true if the mount tree can be copied, false otherwise. 2961 */ 2962 static inline bool may_copy_tree(struct path *path) 2963 { 2964 struct mount *mnt = real_mount(path->mnt); 2965 const struct dentry_operations *d_op; 2966 2967 if (check_mnt(mnt)) 2968 return true; 2969 2970 d_op = path->dentry->d_op; 2971 if (d_op == &ns_dentry_operations) 2972 return true; 2973 2974 if (d_op == &pidfs_dentry_operations) 2975 return true; 2976 2977 if (!is_mounted(path->mnt)) 2978 return false; 2979 2980 return check_anonymous_mnt(mnt); 2981 } 2982 2983 2984 static struct mount *__do_loopback(struct path *old_path, int recurse) 2985 { 2986 struct mount *old = real_mount(old_path->mnt); 2987 2988 if (IS_MNT_UNBINDABLE(old)) 2989 return ERR_PTR(-EINVAL); 2990 2991 if (!may_copy_tree(old_path)) 2992 return ERR_PTR(-EINVAL); 2993 2994 if (!recurse && __has_locked_children(old, old_path->dentry)) 2995 return ERR_PTR(-EINVAL); 2996 2997 if (recurse) 2998 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2999 else 3000 return clone_mnt(old, old_path->dentry, 0); 3001 } 3002 3003 /* 3004 * do loopback mount. 3005 */ 3006 static int do_loopback(struct path *path, const char *old_name, 3007 int recurse) 3008 { 3009 struct path old_path; 3010 struct mount *mnt = NULL, *parent; 3011 struct pinned_mountpoint mp = {}; 3012 int err; 3013 if (!old_name || !*old_name) 3014 return -EINVAL; 3015 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 3016 if (err) 3017 return err; 3018 3019 err = -EINVAL; 3020 if (mnt_ns_loop(old_path.dentry)) 3021 goto out; 3022 3023 err = lock_mount(path, &mp); 3024 if (err) 3025 goto out; 3026 3027 parent = real_mount(path->mnt); 3028 if (!check_mnt(parent)) 3029 goto out2; 3030 3031 mnt = __do_loopback(&old_path, recurse); 3032 if (IS_ERR(mnt)) { 3033 err = PTR_ERR(mnt); 3034 goto out2; 3035 } 3036 3037 err = graft_tree(mnt, parent, mp.mp); 3038 if (err) { 3039 lock_mount_hash(); 3040 umount_tree(mnt, UMOUNT_SYNC); 3041 unlock_mount_hash(); 3042 } 3043 out2: 3044 unlock_mount(&mp); 3045 out: 3046 path_put(&old_path); 3047 return err; 3048 } 3049 3050 static struct file *open_detached_copy(struct path *path, bool recursive) 3051 { 3052 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; 3053 struct user_namespace *user_ns = mnt_ns->user_ns; 3054 struct mount *mnt, *p; 3055 struct file *file; 3056 3057 ns = alloc_mnt_ns(user_ns, true); 3058 if (IS_ERR(ns)) 3059 return ERR_CAST(ns); 3060 3061 namespace_lock(); 3062 3063 /* 3064 * Record the sequence number of the source mount namespace. 3065 * This needs to hold namespace_sem to ensure that the mount 3066 * doesn't get attached. 3067 */ 3068 if (is_mounted(path->mnt)) { 3069 src_mnt_ns = real_mount(path->mnt)->mnt_ns; 3070 if (is_anon_ns(src_mnt_ns)) 3071 ns->seq_origin = src_mnt_ns->seq_origin; 3072 else 3073 ns->seq_origin = src_mnt_ns->seq; 3074 } 3075 3076 mnt = __do_loopback(path, recursive); 3077 if (IS_ERR(mnt)) { 3078 namespace_unlock(); 3079 free_mnt_ns(ns); 3080 return ERR_CAST(mnt); 3081 } 3082 3083 lock_mount_hash(); 3084 for (p = mnt; p; p = next_mnt(p, mnt)) { 3085 mnt_add_to_ns(ns, p); 3086 ns->nr_mounts++; 3087 } 3088 ns->root = mnt; 3089 mntget(&mnt->mnt); 3090 unlock_mount_hash(); 3091 namespace_unlock(); 3092 3093 mntput(path->mnt); 3094 path->mnt = &mnt->mnt; 3095 file = dentry_open(path, O_PATH, current_cred()); 3096 if (IS_ERR(file)) 3097 dissolve_on_fput(path->mnt); 3098 else 3099 file->f_mode |= FMODE_NEED_UNMOUNT; 3100 return file; 3101 } 3102 3103 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3104 { 3105 int ret; 3106 struct path path __free(path_put) = {}; 3107 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3108 bool detached = flags & OPEN_TREE_CLONE; 3109 3110 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3111 3112 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3113 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3114 OPEN_TREE_CLOEXEC)) 3115 return ERR_PTR(-EINVAL); 3116 3117 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3118 return ERR_PTR(-EINVAL); 3119 3120 if (flags & AT_NO_AUTOMOUNT) 3121 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3122 if (flags & AT_SYMLINK_NOFOLLOW) 3123 lookup_flags &= ~LOOKUP_FOLLOW; 3124 if (flags & AT_EMPTY_PATH) 3125 lookup_flags |= LOOKUP_EMPTY; 3126 3127 if (detached && !may_mount()) 3128 return ERR_PTR(-EPERM); 3129 3130 ret = user_path_at(dfd, filename, lookup_flags, &path); 3131 if (unlikely(ret)) 3132 return ERR_PTR(ret); 3133 3134 if (detached) 3135 return open_detached_copy(&path, flags & AT_RECURSIVE); 3136 3137 return dentry_open(&path, O_PATH, current_cred()); 3138 } 3139 3140 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3141 { 3142 int fd; 3143 struct file *file __free(fput) = NULL; 3144 3145 file = vfs_open_tree(dfd, filename, flags); 3146 if (IS_ERR(file)) 3147 return PTR_ERR(file); 3148 3149 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3150 if (fd < 0) 3151 return fd; 3152 3153 fd_install(fd, no_free_ptr(file)); 3154 return fd; 3155 } 3156 3157 /* 3158 * Don't allow locked mount flags to be cleared. 3159 * 3160 * No locks need to be held here while testing the various MNT_LOCK 3161 * flags because those flags can never be cleared once they are set. 3162 */ 3163 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3164 { 3165 unsigned int fl = mnt->mnt.mnt_flags; 3166 3167 if ((fl & MNT_LOCK_READONLY) && 3168 !(mnt_flags & MNT_READONLY)) 3169 return false; 3170 3171 if ((fl & MNT_LOCK_NODEV) && 3172 !(mnt_flags & MNT_NODEV)) 3173 return false; 3174 3175 if ((fl & MNT_LOCK_NOSUID) && 3176 !(mnt_flags & MNT_NOSUID)) 3177 return false; 3178 3179 if ((fl & MNT_LOCK_NOEXEC) && 3180 !(mnt_flags & MNT_NOEXEC)) 3181 return false; 3182 3183 if ((fl & MNT_LOCK_ATIME) && 3184 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3185 return false; 3186 3187 return true; 3188 } 3189 3190 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3191 { 3192 bool readonly_request = (mnt_flags & MNT_READONLY); 3193 3194 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3195 return 0; 3196 3197 if (readonly_request) 3198 return mnt_make_readonly(mnt); 3199 3200 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3201 return 0; 3202 } 3203 3204 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3205 { 3206 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3207 mnt->mnt.mnt_flags = mnt_flags; 3208 touch_mnt_namespace(mnt->mnt_ns); 3209 } 3210 3211 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 3212 { 3213 struct super_block *sb = mnt->mnt_sb; 3214 3215 if (!__mnt_is_readonly(mnt) && 3216 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3217 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3218 char *buf, *mntpath; 3219 3220 buf = (char *)__get_free_page(GFP_KERNEL); 3221 if (buf) 3222 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3223 else 3224 mntpath = ERR_PTR(-ENOMEM); 3225 if (IS_ERR(mntpath)) 3226 mntpath = "(unknown)"; 3227 3228 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3229 sb->s_type->name, 3230 is_mounted(mnt) ? "remounted" : "mounted", 3231 mntpath, &sb->s_time_max, 3232 (unsigned long long)sb->s_time_max); 3233 3234 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3235 if (buf) 3236 free_page((unsigned long)buf); 3237 } 3238 } 3239 3240 /* 3241 * Handle reconfiguration of the mountpoint only without alteration of the 3242 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3243 * to mount(2). 3244 */ 3245 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 3246 { 3247 struct super_block *sb = path->mnt->mnt_sb; 3248 struct mount *mnt = real_mount(path->mnt); 3249 int ret; 3250 3251 if (!check_mnt(mnt)) 3252 return -EINVAL; 3253 3254 if (!path_mounted(path)) 3255 return -EINVAL; 3256 3257 if (!can_change_locked_flags(mnt, mnt_flags)) 3258 return -EPERM; 3259 3260 /* 3261 * We're only checking whether the superblock is read-only not 3262 * changing it, so only take down_read(&sb->s_umount). 3263 */ 3264 down_read(&sb->s_umount); 3265 lock_mount_hash(); 3266 ret = change_mount_ro_state(mnt, mnt_flags); 3267 if (ret == 0) 3268 set_mount_attributes(mnt, mnt_flags); 3269 unlock_mount_hash(); 3270 up_read(&sb->s_umount); 3271 3272 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3273 3274 return ret; 3275 } 3276 3277 /* 3278 * change filesystem flags. dir should be a physical root of filesystem. 3279 * If you've mounted a non-root directory somewhere and want to do remount 3280 * on it - tough luck. 3281 */ 3282 static int do_remount(struct path *path, int ms_flags, int sb_flags, 3283 int mnt_flags, void *data) 3284 { 3285 int err; 3286 struct super_block *sb = path->mnt->mnt_sb; 3287 struct mount *mnt = real_mount(path->mnt); 3288 struct fs_context *fc; 3289 3290 if (!check_mnt(mnt)) 3291 return -EINVAL; 3292 3293 if (!path_mounted(path)) 3294 return -EINVAL; 3295 3296 if (!can_change_locked_flags(mnt, mnt_flags)) 3297 return -EPERM; 3298 3299 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3300 if (IS_ERR(fc)) 3301 return PTR_ERR(fc); 3302 3303 /* 3304 * Indicate to the filesystem that the remount request is coming 3305 * from the legacy mount system call. 3306 */ 3307 fc->oldapi = true; 3308 3309 err = parse_monolithic_mount_data(fc, data); 3310 if (!err) { 3311 down_write(&sb->s_umount); 3312 err = -EPERM; 3313 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3314 err = reconfigure_super(fc); 3315 if (!err) { 3316 lock_mount_hash(); 3317 set_mount_attributes(mnt, mnt_flags); 3318 unlock_mount_hash(); 3319 } 3320 } 3321 up_write(&sb->s_umount); 3322 } 3323 3324 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3325 3326 put_fs_context(fc); 3327 return err; 3328 } 3329 3330 static inline int tree_contains_unbindable(struct mount *mnt) 3331 { 3332 struct mount *p; 3333 for (p = mnt; p; p = next_mnt(p, mnt)) { 3334 if (IS_MNT_UNBINDABLE(p)) 3335 return 1; 3336 } 3337 return 0; 3338 } 3339 3340 static int do_set_group(struct path *from_path, struct path *to_path) 3341 { 3342 struct mount *from, *to; 3343 int err; 3344 3345 from = real_mount(from_path->mnt); 3346 to = real_mount(to_path->mnt); 3347 3348 namespace_lock(); 3349 3350 err = -EINVAL; 3351 /* To and From must be mounted */ 3352 if (!is_mounted(&from->mnt)) 3353 goto out; 3354 if (!is_mounted(&to->mnt)) 3355 goto out; 3356 3357 err = -EPERM; 3358 /* We should be allowed to modify mount namespaces of both mounts */ 3359 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3360 goto out; 3361 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3362 goto out; 3363 3364 err = -EINVAL; 3365 /* To and From paths should be mount roots */ 3366 if (!path_mounted(from_path)) 3367 goto out; 3368 if (!path_mounted(to_path)) 3369 goto out; 3370 3371 /* Setting sharing groups is only allowed across same superblock */ 3372 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3373 goto out; 3374 3375 /* From mount root should be wider than To mount root */ 3376 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3377 goto out; 3378 3379 /* From mount should not have locked children in place of To's root */ 3380 if (__has_locked_children(from, to->mnt.mnt_root)) 3381 goto out; 3382 3383 /* Setting sharing groups is only allowed on private mounts */ 3384 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3385 goto out; 3386 3387 /* From should not be private */ 3388 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3389 goto out; 3390 3391 if (IS_MNT_SLAVE(from)) { 3392 hlist_add_behind(&to->mnt_slave, &from->mnt_slave); 3393 to->mnt_master = from->mnt_master; 3394 } 3395 3396 if (IS_MNT_SHARED(from)) { 3397 to->mnt_group_id = from->mnt_group_id; 3398 list_add(&to->mnt_share, &from->mnt_share); 3399 set_mnt_shared(to); 3400 } 3401 3402 err = 0; 3403 out: 3404 namespace_unlock(); 3405 return err; 3406 } 3407 3408 /** 3409 * path_overmounted - check if path is overmounted 3410 * @path: path to check 3411 * 3412 * Check if path is overmounted, i.e., if there's a mount on top of 3413 * @path->mnt with @path->dentry as mountpoint. 3414 * 3415 * Context: namespace_sem must be held at least shared. 3416 * MUST NOT be called under lock_mount_hash() (there one should just 3417 * call __lookup_mnt() and check if it returns NULL). 3418 * Return: If path is overmounted true is returned, false if not. 3419 */ 3420 static inline bool path_overmounted(const struct path *path) 3421 { 3422 unsigned seq = read_seqbegin(&mount_lock); 3423 bool no_child; 3424 3425 rcu_read_lock(); 3426 no_child = !__lookup_mnt(path->mnt, path->dentry); 3427 rcu_read_unlock(); 3428 if (need_seqretry(&mount_lock, seq)) { 3429 read_seqlock_excl(&mount_lock); 3430 no_child = !__lookup_mnt(path->mnt, path->dentry); 3431 read_sequnlock_excl(&mount_lock); 3432 } 3433 return unlikely(!no_child); 3434 } 3435 3436 /* 3437 * Check if there is a possibly empty chain of descent from p1 to p2. 3438 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl). 3439 */ 3440 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2) 3441 { 3442 while (p2 != p1 && mnt_has_parent(p2)) 3443 p2 = p2->mnt_parent; 3444 return p2 == p1; 3445 } 3446 3447 /** 3448 * can_move_mount_beneath - check that we can mount beneath the top mount 3449 * @from: mount to mount beneath 3450 * @to: mount under which to mount 3451 * @mp: mountpoint of @to 3452 * 3453 * - Make sure that @to->dentry is actually the root of a mount under 3454 * which we can mount another mount. 3455 * - Make sure that nothing can be mounted beneath the caller's current 3456 * root or the rootfs of the namespace. 3457 * - Make sure that the caller can unmount the topmost mount ensuring 3458 * that the caller could reveal the underlying mountpoint. 3459 * - Ensure that nothing has been mounted on top of @from before we 3460 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3461 * - Prevent mounting beneath a mount if the propagation relationship 3462 * between the source mount, parent mount, and top mount would lead to 3463 * nonsensical mount trees. 3464 * 3465 * Context: This function expects namespace_lock() to be held. 3466 * Return: On success 0, and on error a negative error code is returned. 3467 */ 3468 static int can_move_mount_beneath(const struct path *from, 3469 const struct path *to, 3470 const struct mountpoint *mp) 3471 { 3472 struct mount *mnt_from = real_mount(from->mnt), 3473 *mnt_to = real_mount(to->mnt), 3474 *parent_mnt_to = mnt_to->mnt_parent; 3475 3476 if (!mnt_has_parent(mnt_to)) 3477 return -EINVAL; 3478 3479 if (!path_mounted(to)) 3480 return -EINVAL; 3481 3482 if (IS_MNT_LOCKED(mnt_to)) 3483 return -EINVAL; 3484 3485 /* Avoid creating shadow mounts during mount propagation. */ 3486 if (path_overmounted(from)) 3487 return -EINVAL; 3488 3489 /* 3490 * Mounting beneath the rootfs only makes sense when the 3491 * semantics of pivot_root(".", ".") are used. 3492 */ 3493 if (&mnt_to->mnt == current->fs->root.mnt) 3494 return -EINVAL; 3495 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3496 return -EINVAL; 3497 3498 if (mount_is_ancestor(mnt_to, mnt_from)) 3499 return -EINVAL; 3500 3501 /* 3502 * If the parent mount propagates to the child mount this would 3503 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3504 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3505 * defeats the whole purpose of mounting beneath another mount. 3506 */ 3507 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3508 return -EINVAL; 3509 3510 /* 3511 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3512 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3513 * Afterwards @mnt_from would be mounted on top of 3514 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3515 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3516 * already mounted on @mnt_from, @mnt_to would ultimately be 3517 * remounted on top of @c. Afterwards, @mnt_from would be 3518 * covered by a copy @c of @mnt_from and @c would be covered by 3519 * @mnt_from itself. This defeats the whole purpose of mounting 3520 * @mnt_from beneath @mnt_to. 3521 */ 3522 if (check_mnt(mnt_from) && 3523 propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3524 return -EINVAL; 3525 3526 return 0; 3527 } 3528 3529 /* may_use_mount() - check if a mount tree can be used 3530 * @mnt: vfsmount to be used 3531 * 3532 * This helper checks if the caller may use the mount tree starting 3533 * from @path->mnt. The caller may use the mount tree under the 3534 * following circumstances: 3535 * 3536 * (1) The caller is located in the mount namespace of the mount tree. 3537 * This also implies that the mount does not belong to an anonymous 3538 * mount namespace. 3539 * (2) The caller is trying to use a mount tree that belongs to an 3540 * anonymous mount namespace. 3541 * 3542 * For that to be safe, this helper enforces that the origin mount 3543 * namespace the anonymous mount namespace was created from is the 3544 * same as the caller's mount namespace by comparing the sequence 3545 * numbers. 3546 * 3547 * The ownership of a non-anonymous mount namespace such as the 3548 * caller's cannot change. 3549 * => We know that the caller's mount namespace is stable. 3550 * 3551 * If the origin sequence number of the anonymous mount namespace is 3552 * the same as the sequence number of the caller's mount namespace. 3553 * => The owning namespaces are the same. 3554 * 3555 * ==> The earlier capability check on the owning namespace of the 3556 * caller's mount namespace ensures that the caller has the 3557 * ability to use the mount tree. 3558 * 3559 * Returns true if the mount tree can be used, false otherwise. 3560 */ 3561 static inline bool may_use_mount(struct mount *mnt) 3562 { 3563 if (check_mnt(mnt)) 3564 return true; 3565 3566 /* 3567 * Make sure that noone unmounted the target path or somehow 3568 * managed to get their hands on something purely kernel 3569 * internal. 3570 */ 3571 if (!is_mounted(&mnt->mnt)) 3572 return false; 3573 3574 return check_anonymous_mnt(mnt); 3575 } 3576 3577 static int do_move_mount(struct path *old_path, 3578 struct path *new_path, enum mnt_tree_flags_t flags) 3579 { 3580 struct mnt_namespace *ns; 3581 struct mount *p; 3582 struct mount *old; 3583 struct mount *parent; 3584 struct pinned_mountpoint mp; 3585 int err; 3586 bool beneath = flags & MNT_TREE_BENEATH; 3587 3588 err = do_lock_mount(new_path, &mp, beneath); 3589 if (err) 3590 return err; 3591 3592 old = real_mount(old_path->mnt); 3593 p = real_mount(new_path->mnt); 3594 parent = old->mnt_parent; 3595 ns = old->mnt_ns; 3596 3597 err = -EINVAL; 3598 3599 if (check_mnt(old)) { 3600 /* if the source is in our namespace... */ 3601 /* ... it should be detachable from parent */ 3602 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old)) 3603 goto out; 3604 /* ... and the target should be in our namespace */ 3605 if (!check_mnt(p)) 3606 goto out; 3607 /* parent of the source should not be shared */ 3608 if (IS_MNT_SHARED(parent)) 3609 goto out; 3610 } else { 3611 /* 3612 * otherwise the source must be the root of some anon namespace. 3613 */ 3614 if (!anon_ns_root(old)) 3615 goto out; 3616 /* 3617 * Bail out early if the target is within the same namespace - 3618 * subsequent checks would've rejected that, but they lose 3619 * some corner cases if we check it early. 3620 */ 3621 if (ns == p->mnt_ns) 3622 goto out; 3623 /* 3624 * Target should be either in our namespace or in an acceptable 3625 * anon namespace, sensu check_anonymous_mnt(). 3626 */ 3627 if (!may_use_mount(p)) 3628 goto out; 3629 } 3630 3631 if (!path_mounted(old_path)) 3632 goto out; 3633 3634 if (d_is_dir(new_path->dentry) != 3635 d_is_dir(old_path->dentry)) 3636 goto out; 3637 3638 if (beneath) { 3639 err = can_move_mount_beneath(old_path, new_path, mp.mp); 3640 if (err) 3641 goto out; 3642 3643 err = -EINVAL; 3644 p = p->mnt_parent; 3645 } 3646 3647 /* 3648 * Don't move a mount tree containing unbindable mounts to a destination 3649 * mount which is shared. 3650 */ 3651 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3652 goto out; 3653 err = -ELOOP; 3654 if (!check_for_nsfs_mounts(old)) 3655 goto out; 3656 if (mount_is_ancestor(old, p)) 3657 goto out; 3658 3659 err = attach_recursive_mnt(old, p, mp.mp); 3660 out: 3661 unlock_mount(&mp); 3662 return err; 3663 } 3664 3665 static int do_move_mount_old(struct path *path, const char *old_name) 3666 { 3667 struct path old_path; 3668 int err; 3669 3670 if (!old_name || !*old_name) 3671 return -EINVAL; 3672 3673 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3674 if (err) 3675 return err; 3676 3677 err = do_move_mount(&old_path, path, 0); 3678 path_put(&old_path); 3679 return err; 3680 } 3681 3682 /* 3683 * add a mount into a namespace's mount tree 3684 */ 3685 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3686 const struct path *path, int mnt_flags) 3687 { 3688 struct mount *parent = real_mount(path->mnt); 3689 3690 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3691 3692 if (unlikely(!check_mnt(parent))) { 3693 /* that's acceptable only for automounts done in private ns */ 3694 if (!(mnt_flags & MNT_SHRINKABLE)) 3695 return -EINVAL; 3696 /* ... and for those we'd better have mountpoint still alive */ 3697 if (!parent->mnt_ns) 3698 return -EINVAL; 3699 } 3700 3701 /* Refuse the same filesystem on the same mount point */ 3702 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3703 return -EBUSY; 3704 3705 if (d_is_symlink(newmnt->mnt.mnt_root)) 3706 return -EINVAL; 3707 3708 newmnt->mnt.mnt_flags = mnt_flags; 3709 return graft_tree(newmnt, parent, mp); 3710 } 3711 3712 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3713 3714 /* 3715 * Create a new mount using a superblock configuration and request it 3716 * be added to the namespace tree. 3717 */ 3718 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3719 unsigned int mnt_flags) 3720 { 3721 struct vfsmount *mnt; 3722 struct pinned_mountpoint mp = {}; 3723 struct super_block *sb = fc->root->d_sb; 3724 int error; 3725 3726 error = security_sb_kern_mount(sb); 3727 if (!error && mount_too_revealing(sb, &mnt_flags)) 3728 error = -EPERM; 3729 3730 if (unlikely(error)) { 3731 fc_drop_locked(fc); 3732 return error; 3733 } 3734 3735 up_write(&sb->s_umount); 3736 3737 mnt = vfs_create_mount(fc); 3738 if (IS_ERR(mnt)) 3739 return PTR_ERR(mnt); 3740 3741 mnt_warn_timestamp_expiry(mountpoint, mnt); 3742 3743 error = lock_mount(mountpoint, &mp); 3744 if (!error) { 3745 error = do_add_mount(real_mount(mnt), mp.mp, 3746 mountpoint, mnt_flags); 3747 unlock_mount(&mp); 3748 } 3749 if (error < 0) 3750 mntput(mnt); 3751 return error; 3752 } 3753 3754 /* 3755 * create a new mount for userspace and request it to be added into the 3756 * namespace's tree 3757 */ 3758 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3759 int mnt_flags, const char *name, void *data) 3760 { 3761 struct file_system_type *type; 3762 struct fs_context *fc; 3763 const char *subtype = NULL; 3764 int err = 0; 3765 3766 if (!fstype) 3767 return -EINVAL; 3768 3769 type = get_fs_type(fstype); 3770 if (!type) 3771 return -ENODEV; 3772 3773 if (type->fs_flags & FS_HAS_SUBTYPE) { 3774 subtype = strchr(fstype, '.'); 3775 if (subtype) { 3776 subtype++; 3777 if (!*subtype) { 3778 put_filesystem(type); 3779 return -EINVAL; 3780 } 3781 } 3782 } 3783 3784 fc = fs_context_for_mount(type, sb_flags); 3785 put_filesystem(type); 3786 if (IS_ERR(fc)) 3787 return PTR_ERR(fc); 3788 3789 /* 3790 * Indicate to the filesystem that the mount request is coming 3791 * from the legacy mount system call. 3792 */ 3793 fc->oldapi = true; 3794 3795 if (subtype) 3796 err = vfs_parse_fs_string(fc, "subtype", 3797 subtype, strlen(subtype)); 3798 if (!err && name) 3799 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3800 if (!err) 3801 err = parse_monolithic_mount_data(fc, data); 3802 if (!err && !mount_capable(fc)) 3803 err = -EPERM; 3804 if (!err) 3805 err = vfs_get_tree(fc); 3806 if (!err) 3807 err = do_new_mount_fc(fc, path, mnt_flags); 3808 3809 put_fs_context(fc); 3810 return err; 3811 } 3812 3813 int finish_automount(struct vfsmount *m, const struct path *path) 3814 { 3815 struct dentry *dentry = path->dentry; 3816 struct pinned_mountpoint mp = {}; 3817 struct mount *mnt; 3818 int err; 3819 3820 if (!m) 3821 return 0; 3822 if (IS_ERR(m)) 3823 return PTR_ERR(m); 3824 3825 mnt = real_mount(m); 3826 3827 if (m->mnt_sb == path->mnt->mnt_sb && 3828 m->mnt_root == dentry) { 3829 err = -ELOOP; 3830 goto discard; 3831 } 3832 3833 /* 3834 * we don't want to use lock_mount() - in this case finding something 3835 * that overmounts our mountpoint to be means "quitely drop what we've 3836 * got", not "try to mount it on top". 3837 */ 3838 inode_lock(dentry->d_inode); 3839 namespace_lock(); 3840 if (unlikely(cant_mount(dentry))) { 3841 err = -ENOENT; 3842 goto discard_locked; 3843 } 3844 if (path_overmounted(path)) { 3845 err = 0; 3846 goto discard_locked; 3847 } 3848 err = get_mountpoint(dentry, &mp); 3849 if (err) 3850 goto discard_locked; 3851 3852 err = do_add_mount(mnt, mp.mp, path, 3853 path->mnt->mnt_flags | MNT_SHRINKABLE); 3854 unlock_mount(&mp); 3855 if (unlikely(err)) 3856 goto discard; 3857 return 0; 3858 3859 discard_locked: 3860 namespace_unlock(); 3861 inode_unlock(dentry->d_inode); 3862 discard: 3863 mntput(m); 3864 return err; 3865 } 3866 3867 /** 3868 * mnt_set_expiry - Put a mount on an expiration list 3869 * @mnt: The mount to list. 3870 * @expiry_list: The list to add the mount to. 3871 */ 3872 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3873 { 3874 read_seqlock_excl(&mount_lock); 3875 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3876 read_sequnlock_excl(&mount_lock); 3877 } 3878 EXPORT_SYMBOL(mnt_set_expiry); 3879 3880 /* 3881 * process a list of expirable mountpoints with the intent of discarding any 3882 * mountpoints that aren't in use and haven't been touched since last we came 3883 * here 3884 */ 3885 void mark_mounts_for_expiry(struct list_head *mounts) 3886 { 3887 struct mount *mnt, *next; 3888 LIST_HEAD(graveyard); 3889 3890 if (list_empty(mounts)) 3891 return; 3892 3893 namespace_lock(); 3894 lock_mount_hash(); 3895 3896 /* extract from the expiration list every vfsmount that matches the 3897 * following criteria: 3898 * - already mounted 3899 * - only referenced by its parent vfsmount 3900 * - still marked for expiry (marked on the last call here; marks are 3901 * cleared by mntput()) 3902 */ 3903 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3904 if (!is_mounted(&mnt->mnt)) 3905 continue; 3906 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3907 propagate_mount_busy(mnt, 1)) 3908 continue; 3909 list_move(&mnt->mnt_expire, &graveyard); 3910 } 3911 while (!list_empty(&graveyard)) { 3912 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3913 touch_mnt_namespace(mnt->mnt_ns); 3914 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3915 } 3916 unlock_mount_hash(); 3917 namespace_unlock(); 3918 } 3919 3920 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3921 3922 /* 3923 * Ripoff of 'select_parent()' 3924 * 3925 * search the list of submounts for a given mountpoint, and move any 3926 * shrinkable submounts to the 'graveyard' list. 3927 */ 3928 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3929 { 3930 struct mount *this_parent = parent; 3931 struct list_head *next; 3932 int found = 0; 3933 3934 repeat: 3935 next = this_parent->mnt_mounts.next; 3936 resume: 3937 while (next != &this_parent->mnt_mounts) { 3938 struct list_head *tmp = next; 3939 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3940 3941 next = tmp->next; 3942 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3943 continue; 3944 /* 3945 * Descend a level if the d_mounts list is non-empty. 3946 */ 3947 if (!list_empty(&mnt->mnt_mounts)) { 3948 this_parent = mnt; 3949 goto repeat; 3950 } 3951 3952 if (!propagate_mount_busy(mnt, 1)) { 3953 list_move_tail(&mnt->mnt_expire, graveyard); 3954 found++; 3955 } 3956 } 3957 /* 3958 * All done at this level ... ascend and resume the search 3959 */ 3960 if (this_parent != parent) { 3961 next = this_parent->mnt_child.next; 3962 this_parent = this_parent->mnt_parent; 3963 goto resume; 3964 } 3965 return found; 3966 } 3967 3968 /* 3969 * process a list of expirable mountpoints with the intent of discarding any 3970 * submounts of a specific parent mountpoint 3971 * 3972 * mount_lock must be held for write 3973 */ 3974 static void shrink_submounts(struct mount *mnt) 3975 { 3976 LIST_HEAD(graveyard); 3977 struct mount *m; 3978 3979 /* extract submounts of 'mountpoint' from the expiration list */ 3980 while (select_submounts(mnt, &graveyard)) { 3981 while (!list_empty(&graveyard)) { 3982 m = list_first_entry(&graveyard, struct mount, 3983 mnt_expire); 3984 touch_mnt_namespace(m->mnt_ns); 3985 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3986 } 3987 } 3988 } 3989 3990 static void *copy_mount_options(const void __user * data) 3991 { 3992 char *copy; 3993 unsigned left, offset; 3994 3995 if (!data) 3996 return NULL; 3997 3998 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3999 if (!copy) 4000 return ERR_PTR(-ENOMEM); 4001 4002 left = copy_from_user(copy, data, PAGE_SIZE); 4003 4004 /* 4005 * Not all architectures have an exact copy_from_user(). Resort to 4006 * byte at a time. 4007 */ 4008 offset = PAGE_SIZE - left; 4009 while (left) { 4010 char c; 4011 if (get_user(c, (const char __user *)data + offset)) 4012 break; 4013 copy[offset] = c; 4014 left--; 4015 offset++; 4016 } 4017 4018 if (left == PAGE_SIZE) { 4019 kfree(copy); 4020 return ERR_PTR(-EFAULT); 4021 } 4022 4023 return copy; 4024 } 4025 4026 static char *copy_mount_string(const void __user *data) 4027 { 4028 return data ? strndup_user(data, PATH_MAX) : NULL; 4029 } 4030 4031 /* 4032 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 4033 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 4034 * 4035 * data is a (void *) that can point to any structure up to 4036 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 4037 * information (or be NULL). 4038 * 4039 * Pre-0.97 versions of mount() didn't have a flags word. 4040 * When the flags word was introduced its top half was required 4041 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 4042 * Therefore, if this magic number is present, it carries no information 4043 * and must be discarded. 4044 */ 4045 int path_mount(const char *dev_name, struct path *path, 4046 const char *type_page, unsigned long flags, void *data_page) 4047 { 4048 unsigned int mnt_flags = 0, sb_flags; 4049 int ret; 4050 4051 /* Discard magic */ 4052 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 4053 flags &= ~MS_MGC_MSK; 4054 4055 /* Basic sanity checks */ 4056 if (data_page) 4057 ((char *)data_page)[PAGE_SIZE - 1] = 0; 4058 4059 if (flags & MS_NOUSER) 4060 return -EINVAL; 4061 4062 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 4063 if (ret) 4064 return ret; 4065 if (!may_mount()) 4066 return -EPERM; 4067 if (flags & SB_MANDLOCK) 4068 warn_mandlock(); 4069 4070 /* Default to relatime unless overriden */ 4071 if (!(flags & MS_NOATIME)) 4072 mnt_flags |= MNT_RELATIME; 4073 4074 /* Separate the per-mountpoint flags */ 4075 if (flags & MS_NOSUID) 4076 mnt_flags |= MNT_NOSUID; 4077 if (flags & MS_NODEV) 4078 mnt_flags |= MNT_NODEV; 4079 if (flags & MS_NOEXEC) 4080 mnt_flags |= MNT_NOEXEC; 4081 if (flags & MS_NOATIME) 4082 mnt_flags |= MNT_NOATIME; 4083 if (flags & MS_NODIRATIME) 4084 mnt_flags |= MNT_NODIRATIME; 4085 if (flags & MS_STRICTATIME) 4086 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 4087 if (flags & MS_RDONLY) 4088 mnt_flags |= MNT_READONLY; 4089 if (flags & MS_NOSYMFOLLOW) 4090 mnt_flags |= MNT_NOSYMFOLLOW; 4091 4092 /* The default atime for remount is preservation */ 4093 if ((flags & MS_REMOUNT) && 4094 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 4095 MS_STRICTATIME)) == 0)) { 4096 mnt_flags &= ~MNT_ATIME_MASK; 4097 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 4098 } 4099 4100 sb_flags = flags & (SB_RDONLY | 4101 SB_SYNCHRONOUS | 4102 SB_MANDLOCK | 4103 SB_DIRSYNC | 4104 SB_SILENT | 4105 SB_POSIXACL | 4106 SB_LAZYTIME | 4107 SB_I_VERSION); 4108 4109 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 4110 return do_reconfigure_mnt(path, mnt_flags); 4111 if (flags & MS_REMOUNT) 4112 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 4113 if (flags & MS_BIND) 4114 return do_loopback(path, dev_name, flags & MS_REC); 4115 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 4116 return do_change_type(path, flags); 4117 if (flags & MS_MOVE) 4118 return do_move_mount_old(path, dev_name); 4119 4120 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 4121 data_page); 4122 } 4123 4124 int do_mount(const char *dev_name, const char __user *dir_name, 4125 const char *type_page, unsigned long flags, void *data_page) 4126 { 4127 struct path path; 4128 int ret; 4129 4130 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 4131 if (ret) 4132 return ret; 4133 ret = path_mount(dev_name, &path, type_page, flags, data_page); 4134 path_put(&path); 4135 return ret; 4136 } 4137 4138 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4139 { 4140 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4141 } 4142 4143 static void dec_mnt_namespaces(struct ucounts *ucounts) 4144 { 4145 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4146 } 4147 4148 static void free_mnt_ns(struct mnt_namespace *ns) 4149 { 4150 if (!is_anon_ns(ns)) 4151 ns_free_inum(&ns->ns); 4152 dec_mnt_namespaces(ns->ucounts); 4153 mnt_ns_tree_remove(ns); 4154 } 4155 4156 /* 4157 * Assign a sequence number so we can detect when we attempt to bind 4158 * mount a reference to an older mount namespace into the current 4159 * mount namespace, preventing reference counting loops. A 64bit 4160 * number incrementing at 10Ghz will take 12,427 years to wrap which 4161 * is effectively never, so we can ignore the possibility. 4162 */ 4163 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 4164 4165 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4166 { 4167 struct mnt_namespace *new_ns; 4168 struct ucounts *ucounts; 4169 int ret; 4170 4171 ucounts = inc_mnt_namespaces(user_ns); 4172 if (!ucounts) 4173 return ERR_PTR(-ENOSPC); 4174 4175 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4176 if (!new_ns) { 4177 dec_mnt_namespaces(ucounts); 4178 return ERR_PTR(-ENOMEM); 4179 } 4180 if (!anon) { 4181 ret = ns_alloc_inum(&new_ns->ns); 4182 if (ret) { 4183 kfree(new_ns); 4184 dec_mnt_namespaces(ucounts); 4185 return ERR_PTR(ret); 4186 } 4187 } 4188 new_ns->ns.ops = &mntns_operations; 4189 if (!anon) 4190 new_ns->seq = atomic64_inc_return(&mnt_ns_seq); 4191 refcount_set(&new_ns->ns.count, 1); 4192 refcount_set(&new_ns->passive, 1); 4193 new_ns->mounts = RB_ROOT; 4194 INIT_LIST_HEAD(&new_ns->mnt_ns_list); 4195 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 4196 init_waitqueue_head(&new_ns->poll); 4197 new_ns->user_ns = get_user_ns(user_ns); 4198 new_ns->ucounts = ucounts; 4199 return new_ns; 4200 } 4201 4202 __latent_entropy 4203 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 4204 struct user_namespace *user_ns, struct fs_struct *new_fs) 4205 { 4206 struct mnt_namespace *new_ns; 4207 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 4208 struct mount *p, *q; 4209 struct mount *old; 4210 struct mount *new; 4211 int copy_flags; 4212 4213 BUG_ON(!ns); 4214 4215 if (likely(!(flags & CLONE_NEWNS))) { 4216 get_mnt_ns(ns); 4217 return ns; 4218 } 4219 4220 old = ns->root; 4221 4222 new_ns = alloc_mnt_ns(user_ns, false); 4223 if (IS_ERR(new_ns)) 4224 return new_ns; 4225 4226 namespace_lock(); 4227 /* First pass: copy the tree topology */ 4228 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4229 if (user_ns != ns->user_ns) 4230 copy_flags |= CL_SLAVE; 4231 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4232 if (IS_ERR(new)) { 4233 namespace_unlock(); 4234 ns_free_inum(&new_ns->ns); 4235 dec_mnt_namespaces(new_ns->ucounts); 4236 mnt_ns_release(new_ns); 4237 return ERR_CAST(new); 4238 } 4239 if (user_ns != ns->user_ns) { 4240 lock_mount_hash(); 4241 lock_mnt_tree(new); 4242 unlock_mount_hash(); 4243 } 4244 new_ns->root = new; 4245 4246 /* 4247 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4248 * as belonging to new namespace. We have already acquired a private 4249 * fs_struct, so tsk->fs->lock is not needed. 4250 */ 4251 p = old; 4252 q = new; 4253 while (p) { 4254 mnt_add_to_ns(new_ns, q); 4255 new_ns->nr_mounts++; 4256 if (new_fs) { 4257 if (&p->mnt == new_fs->root.mnt) { 4258 new_fs->root.mnt = mntget(&q->mnt); 4259 rootmnt = &p->mnt; 4260 } 4261 if (&p->mnt == new_fs->pwd.mnt) { 4262 new_fs->pwd.mnt = mntget(&q->mnt); 4263 pwdmnt = &p->mnt; 4264 } 4265 } 4266 p = next_mnt(p, old); 4267 q = next_mnt(q, new); 4268 if (!q) 4269 break; 4270 // an mntns binding we'd skipped? 4271 while (p->mnt.mnt_root != q->mnt.mnt_root) 4272 p = next_mnt(skip_mnt_tree(p), old); 4273 } 4274 namespace_unlock(); 4275 4276 if (rootmnt) 4277 mntput(rootmnt); 4278 if (pwdmnt) 4279 mntput(pwdmnt); 4280 4281 mnt_ns_tree_add(new_ns); 4282 return new_ns; 4283 } 4284 4285 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4286 { 4287 struct mount *mnt = real_mount(m); 4288 struct mnt_namespace *ns; 4289 struct super_block *s; 4290 struct path path; 4291 int err; 4292 4293 ns = alloc_mnt_ns(&init_user_ns, true); 4294 if (IS_ERR(ns)) { 4295 mntput(m); 4296 return ERR_CAST(ns); 4297 } 4298 ns->root = mnt; 4299 ns->nr_mounts++; 4300 mnt_add_to_ns(ns, mnt); 4301 4302 err = vfs_path_lookup(m->mnt_root, m, 4303 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4304 4305 put_mnt_ns(ns); 4306 4307 if (err) 4308 return ERR_PTR(err); 4309 4310 /* trade a vfsmount reference for active sb one */ 4311 s = path.mnt->mnt_sb; 4312 atomic_inc(&s->s_active); 4313 mntput(path.mnt); 4314 /* lock the sucker */ 4315 down_write(&s->s_umount); 4316 /* ... and return the root of (sub)tree on it */ 4317 return path.dentry; 4318 } 4319 EXPORT_SYMBOL(mount_subtree); 4320 4321 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4322 char __user *, type, unsigned long, flags, void __user *, data) 4323 { 4324 int ret; 4325 char *kernel_type; 4326 char *kernel_dev; 4327 void *options; 4328 4329 kernel_type = copy_mount_string(type); 4330 ret = PTR_ERR(kernel_type); 4331 if (IS_ERR(kernel_type)) 4332 goto out_type; 4333 4334 kernel_dev = copy_mount_string(dev_name); 4335 ret = PTR_ERR(kernel_dev); 4336 if (IS_ERR(kernel_dev)) 4337 goto out_dev; 4338 4339 options = copy_mount_options(data); 4340 ret = PTR_ERR(options); 4341 if (IS_ERR(options)) 4342 goto out_data; 4343 4344 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4345 4346 kfree(options); 4347 out_data: 4348 kfree(kernel_dev); 4349 out_dev: 4350 kfree(kernel_type); 4351 out_type: 4352 return ret; 4353 } 4354 4355 #define FSMOUNT_VALID_FLAGS \ 4356 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4357 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4358 MOUNT_ATTR_NOSYMFOLLOW) 4359 4360 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4361 4362 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4363 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4364 4365 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4366 { 4367 unsigned int mnt_flags = 0; 4368 4369 if (attr_flags & MOUNT_ATTR_RDONLY) 4370 mnt_flags |= MNT_READONLY; 4371 if (attr_flags & MOUNT_ATTR_NOSUID) 4372 mnt_flags |= MNT_NOSUID; 4373 if (attr_flags & MOUNT_ATTR_NODEV) 4374 mnt_flags |= MNT_NODEV; 4375 if (attr_flags & MOUNT_ATTR_NOEXEC) 4376 mnt_flags |= MNT_NOEXEC; 4377 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4378 mnt_flags |= MNT_NODIRATIME; 4379 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4380 mnt_flags |= MNT_NOSYMFOLLOW; 4381 4382 return mnt_flags; 4383 } 4384 4385 /* 4386 * Create a kernel mount representation for a new, prepared superblock 4387 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4388 */ 4389 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4390 unsigned int, attr_flags) 4391 { 4392 struct mnt_namespace *ns; 4393 struct fs_context *fc; 4394 struct file *file; 4395 struct path newmount; 4396 struct mount *mnt; 4397 unsigned int mnt_flags = 0; 4398 long ret; 4399 4400 if (!may_mount()) 4401 return -EPERM; 4402 4403 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4404 return -EINVAL; 4405 4406 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4407 return -EINVAL; 4408 4409 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4410 4411 switch (attr_flags & MOUNT_ATTR__ATIME) { 4412 case MOUNT_ATTR_STRICTATIME: 4413 break; 4414 case MOUNT_ATTR_NOATIME: 4415 mnt_flags |= MNT_NOATIME; 4416 break; 4417 case MOUNT_ATTR_RELATIME: 4418 mnt_flags |= MNT_RELATIME; 4419 break; 4420 default: 4421 return -EINVAL; 4422 } 4423 4424 CLASS(fd, f)(fs_fd); 4425 if (fd_empty(f)) 4426 return -EBADF; 4427 4428 if (fd_file(f)->f_op != &fscontext_fops) 4429 return -EINVAL; 4430 4431 fc = fd_file(f)->private_data; 4432 4433 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4434 if (ret < 0) 4435 return ret; 4436 4437 /* There must be a valid superblock or we can't mount it */ 4438 ret = -EINVAL; 4439 if (!fc->root) 4440 goto err_unlock; 4441 4442 ret = -EPERM; 4443 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4444 pr_warn("VFS: Mount too revealing\n"); 4445 goto err_unlock; 4446 } 4447 4448 ret = -EBUSY; 4449 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4450 goto err_unlock; 4451 4452 if (fc->sb_flags & SB_MANDLOCK) 4453 warn_mandlock(); 4454 4455 newmount.mnt = vfs_create_mount(fc); 4456 if (IS_ERR(newmount.mnt)) { 4457 ret = PTR_ERR(newmount.mnt); 4458 goto err_unlock; 4459 } 4460 newmount.dentry = dget(fc->root); 4461 newmount.mnt->mnt_flags = mnt_flags; 4462 4463 /* We've done the mount bit - now move the file context into more or 4464 * less the same state as if we'd done an fspick(). We don't want to 4465 * do any memory allocation or anything like that at this point as we 4466 * don't want to have to handle any errors incurred. 4467 */ 4468 vfs_clean_context(fc); 4469 4470 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4471 if (IS_ERR(ns)) { 4472 ret = PTR_ERR(ns); 4473 goto err_path; 4474 } 4475 mnt = real_mount(newmount.mnt); 4476 ns->root = mnt; 4477 ns->nr_mounts = 1; 4478 mnt_add_to_ns(ns, mnt); 4479 mntget(newmount.mnt); 4480 4481 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4482 * it, not just simply put it. 4483 */ 4484 file = dentry_open(&newmount, O_PATH, fc->cred); 4485 if (IS_ERR(file)) { 4486 dissolve_on_fput(newmount.mnt); 4487 ret = PTR_ERR(file); 4488 goto err_path; 4489 } 4490 file->f_mode |= FMODE_NEED_UNMOUNT; 4491 4492 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4493 if (ret >= 0) 4494 fd_install(ret, file); 4495 else 4496 fput(file); 4497 4498 err_path: 4499 path_put(&newmount); 4500 err_unlock: 4501 mutex_unlock(&fc->uapi_mutex); 4502 return ret; 4503 } 4504 4505 static inline int vfs_move_mount(struct path *from_path, struct path *to_path, 4506 enum mnt_tree_flags_t mflags) 4507 { 4508 int ret; 4509 4510 ret = security_move_mount(from_path, to_path); 4511 if (ret) 4512 return ret; 4513 4514 if (mflags & MNT_TREE_PROPAGATION) 4515 return do_set_group(from_path, to_path); 4516 4517 return do_move_mount(from_path, to_path, mflags); 4518 } 4519 4520 /* 4521 * Move a mount from one place to another. In combination with 4522 * fsopen()/fsmount() this is used to install a new mount and in combination 4523 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4524 * a mount subtree. 4525 * 4526 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4527 */ 4528 SYSCALL_DEFINE5(move_mount, 4529 int, from_dfd, const char __user *, from_pathname, 4530 int, to_dfd, const char __user *, to_pathname, 4531 unsigned int, flags) 4532 { 4533 struct path to_path __free(path_put) = {}; 4534 struct path from_path __free(path_put) = {}; 4535 struct filename *to_name __free(putname) = NULL; 4536 struct filename *from_name __free(putname) = NULL; 4537 unsigned int lflags, uflags; 4538 enum mnt_tree_flags_t mflags = 0; 4539 int ret = 0; 4540 4541 if (!may_mount()) 4542 return -EPERM; 4543 4544 if (flags & ~MOVE_MOUNT__MASK) 4545 return -EINVAL; 4546 4547 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4548 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4549 return -EINVAL; 4550 4551 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; 4552 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; 4553 4554 lflags = 0; 4555 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4556 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4557 uflags = 0; 4558 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4559 from_name = getname_maybe_null(from_pathname, uflags); 4560 if (IS_ERR(from_name)) 4561 return PTR_ERR(from_name); 4562 4563 lflags = 0; 4564 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4565 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4566 uflags = 0; 4567 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH; 4568 to_name = getname_maybe_null(to_pathname, uflags); 4569 if (IS_ERR(to_name)) 4570 return PTR_ERR(to_name); 4571 4572 if (!to_name && to_dfd >= 0) { 4573 CLASS(fd_raw, f_to)(to_dfd); 4574 if (fd_empty(f_to)) 4575 return -EBADF; 4576 4577 to_path = fd_file(f_to)->f_path; 4578 path_get(&to_path); 4579 } else { 4580 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); 4581 if (ret) 4582 return ret; 4583 } 4584 4585 if (!from_name && from_dfd >= 0) { 4586 CLASS(fd_raw, f_from)(from_dfd); 4587 if (fd_empty(f_from)) 4588 return -EBADF; 4589 4590 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); 4591 } 4592 4593 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); 4594 if (ret) 4595 return ret; 4596 4597 return vfs_move_mount(&from_path, &to_path, mflags); 4598 } 4599 4600 /* 4601 * Return true if path is reachable from root 4602 * 4603 * namespace_sem or mount_lock is held 4604 */ 4605 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4606 const struct path *root) 4607 { 4608 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4609 dentry = mnt->mnt_mountpoint; 4610 mnt = mnt->mnt_parent; 4611 } 4612 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4613 } 4614 4615 bool path_is_under(const struct path *path1, const struct path *path2) 4616 { 4617 bool res; 4618 read_seqlock_excl(&mount_lock); 4619 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4620 read_sequnlock_excl(&mount_lock); 4621 return res; 4622 } 4623 EXPORT_SYMBOL(path_is_under); 4624 4625 /* 4626 * pivot_root Semantics: 4627 * Moves the root file system of the current process to the directory put_old, 4628 * makes new_root as the new root file system of the current process, and sets 4629 * root/cwd of all processes which had them on the current root to new_root. 4630 * 4631 * Restrictions: 4632 * The new_root and put_old must be directories, and must not be on the 4633 * same file system as the current process root. The put_old must be 4634 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4635 * pointed to by put_old must yield the same directory as new_root. No other 4636 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4637 * 4638 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4639 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4640 * in this situation. 4641 * 4642 * Notes: 4643 * - we don't move root/cwd if they are not at the root (reason: if something 4644 * cared enough to change them, it's probably wrong to force them elsewhere) 4645 * - it's okay to pick a root that isn't the root of a file system, e.g. 4646 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4647 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4648 * first. 4649 */ 4650 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4651 const char __user *, put_old) 4652 { 4653 struct path new, old, root; 4654 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4655 struct pinned_mountpoint old_mp = {}; 4656 int error; 4657 4658 if (!may_mount()) 4659 return -EPERM; 4660 4661 error = user_path_at(AT_FDCWD, new_root, 4662 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4663 if (error) 4664 goto out0; 4665 4666 error = user_path_at(AT_FDCWD, put_old, 4667 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4668 if (error) 4669 goto out1; 4670 4671 error = security_sb_pivotroot(&old, &new); 4672 if (error) 4673 goto out2; 4674 4675 get_fs_root(current->fs, &root); 4676 error = lock_mount(&old, &old_mp); 4677 if (error) 4678 goto out3; 4679 4680 error = -EINVAL; 4681 new_mnt = real_mount(new.mnt); 4682 root_mnt = real_mount(root.mnt); 4683 old_mnt = real_mount(old.mnt); 4684 ex_parent = new_mnt->mnt_parent; 4685 root_parent = root_mnt->mnt_parent; 4686 if (IS_MNT_SHARED(old_mnt) || 4687 IS_MNT_SHARED(ex_parent) || 4688 IS_MNT_SHARED(root_parent)) 4689 goto out4; 4690 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4691 goto out4; 4692 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4693 goto out4; 4694 error = -ENOENT; 4695 if (d_unlinked(new.dentry)) 4696 goto out4; 4697 error = -EBUSY; 4698 if (new_mnt == root_mnt || old_mnt == root_mnt) 4699 goto out4; /* loop, on the same file system */ 4700 error = -EINVAL; 4701 if (!path_mounted(&root)) 4702 goto out4; /* not a mountpoint */ 4703 if (!mnt_has_parent(root_mnt)) 4704 goto out4; /* absolute root */ 4705 if (!path_mounted(&new)) 4706 goto out4; /* not a mountpoint */ 4707 if (!mnt_has_parent(new_mnt)) 4708 goto out4; /* absolute root */ 4709 /* make sure we can reach put_old from new_root */ 4710 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4711 goto out4; 4712 /* make certain new is below the root */ 4713 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4714 goto out4; 4715 lock_mount_hash(); 4716 umount_mnt(new_mnt); 4717 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4718 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4719 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4720 } 4721 /* mount new_root on / */ 4722 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp); 4723 umount_mnt(root_mnt); 4724 /* mount old root on put_old */ 4725 attach_mnt(root_mnt, old_mnt, old_mp.mp); 4726 touch_mnt_namespace(current->nsproxy->mnt_ns); 4727 /* A moved mount should not expire automatically */ 4728 list_del_init(&new_mnt->mnt_expire); 4729 unlock_mount_hash(); 4730 mnt_notify_add(root_mnt); 4731 mnt_notify_add(new_mnt); 4732 chroot_fs_refs(&root, &new); 4733 error = 0; 4734 out4: 4735 unlock_mount(&old_mp); 4736 out3: 4737 path_put(&root); 4738 out2: 4739 path_put(&old); 4740 out1: 4741 path_put(&new); 4742 out0: 4743 return error; 4744 } 4745 4746 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4747 { 4748 unsigned int flags = mnt->mnt.mnt_flags; 4749 4750 /* flags to clear */ 4751 flags &= ~kattr->attr_clr; 4752 /* flags to raise */ 4753 flags |= kattr->attr_set; 4754 4755 return flags; 4756 } 4757 4758 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4759 { 4760 struct vfsmount *m = &mnt->mnt; 4761 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4762 4763 if (!kattr->mnt_idmap) 4764 return 0; 4765 4766 /* 4767 * Creating an idmapped mount with the filesystem wide idmapping 4768 * doesn't make sense so block that. We don't allow mushy semantics. 4769 */ 4770 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4771 return -EINVAL; 4772 4773 /* 4774 * We only allow an mount to change it's idmapping if it has 4775 * never been accessible to userspace. 4776 */ 4777 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4778 return -EPERM; 4779 4780 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4781 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4782 return -EINVAL; 4783 4784 /* The filesystem has turned off idmapped mounts. */ 4785 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4786 return -EINVAL; 4787 4788 /* We're not controlling the superblock. */ 4789 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4790 return -EPERM; 4791 4792 /* Mount has already been visible in the filesystem hierarchy. */ 4793 if (!is_anon_ns(mnt->mnt_ns)) 4794 return -EINVAL; 4795 4796 return 0; 4797 } 4798 4799 /** 4800 * mnt_allow_writers() - check whether the attribute change allows writers 4801 * @kattr: the new mount attributes 4802 * @mnt: the mount to which @kattr will be applied 4803 * 4804 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4805 * 4806 * Return: true if writers need to be held, false if not 4807 */ 4808 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4809 const struct mount *mnt) 4810 { 4811 return (!(kattr->attr_set & MNT_READONLY) || 4812 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4813 !kattr->mnt_idmap; 4814 } 4815 4816 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4817 { 4818 struct mount *m; 4819 int err; 4820 4821 for (m = mnt; m; m = next_mnt(m, mnt)) { 4822 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4823 err = -EPERM; 4824 break; 4825 } 4826 4827 err = can_idmap_mount(kattr, m); 4828 if (err) 4829 break; 4830 4831 if (!mnt_allow_writers(kattr, m)) { 4832 err = mnt_hold_writers(m); 4833 if (err) 4834 break; 4835 } 4836 4837 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4838 return 0; 4839 } 4840 4841 if (err) { 4842 struct mount *p; 4843 4844 /* 4845 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4846 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4847 * mounts and needs to take care to include the first mount. 4848 */ 4849 for (p = mnt; p; p = next_mnt(p, mnt)) { 4850 /* If we had to hold writers unblock them. */ 4851 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4852 mnt_unhold_writers(p); 4853 4854 /* 4855 * We're done once the first mount we changed got 4856 * MNT_WRITE_HOLD unset. 4857 */ 4858 if (p == m) 4859 break; 4860 } 4861 } 4862 return err; 4863 } 4864 4865 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4866 { 4867 struct mnt_idmap *old_idmap; 4868 4869 if (!kattr->mnt_idmap) 4870 return; 4871 4872 old_idmap = mnt_idmap(&mnt->mnt); 4873 4874 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4875 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4876 mnt_idmap_put(old_idmap); 4877 } 4878 4879 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4880 { 4881 struct mount *m; 4882 4883 for (m = mnt; m; m = next_mnt(m, mnt)) { 4884 unsigned int flags; 4885 4886 do_idmap_mount(kattr, m); 4887 flags = recalc_flags(kattr, m); 4888 WRITE_ONCE(m->mnt.mnt_flags, flags); 4889 4890 /* If we had to hold writers unblock them. */ 4891 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4892 mnt_unhold_writers(m); 4893 4894 if (kattr->propagation) 4895 change_mnt_propagation(m, kattr->propagation); 4896 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4897 break; 4898 } 4899 touch_mnt_namespace(mnt->mnt_ns); 4900 } 4901 4902 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4903 { 4904 struct mount *mnt = real_mount(path->mnt); 4905 int err = 0; 4906 4907 if (!path_mounted(path)) 4908 return -EINVAL; 4909 4910 if (kattr->mnt_userns) { 4911 struct mnt_idmap *mnt_idmap; 4912 4913 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4914 if (IS_ERR(mnt_idmap)) 4915 return PTR_ERR(mnt_idmap); 4916 kattr->mnt_idmap = mnt_idmap; 4917 } 4918 4919 if (kattr->propagation) { 4920 /* 4921 * Only take namespace_lock() if we're actually changing 4922 * propagation. 4923 */ 4924 namespace_lock(); 4925 if (kattr->propagation == MS_SHARED) { 4926 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 4927 if (err) { 4928 namespace_unlock(); 4929 return err; 4930 } 4931 } 4932 } 4933 4934 err = -EINVAL; 4935 lock_mount_hash(); 4936 4937 if (!anon_ns_root(mnt) && !check_mnt(mnt)) 4938 goto out; 4939 4940 /* 4941 * First, we get the mount tree in a shape where we can change mount 4942 * properties without failure. If we succeeded to do so we commit all 4943 * changes and if we failed we clean up. 4944 */ 4945 err = mount_setattr_prepare(kattr, mnt); 4946 if (!err) 4947 mount_setattr_commit(kattr, mnt); 4948 4949 out: 4950 unlock_mount_hash(); 4951 4952 if (kattr->propagation) { 4953 if (err) 4954 cleanup_group_ids(mnt, NULL); 4955 namespace_unlock(); 4956 } 4957 4958 return err; 4959 } 4960 4961 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4962 struct mount_kattr *kattr) 4963 { 4964 struct ns_common *ns; 4965 struct user_namespace *mnt_userns; 4966 4967 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4968 return 0; 4969 4970 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 4971 /* 4972 * We can only remove an idmapping if it's never been 4973 * exposed to userspace. 4974 */ 4975 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 4976 return -EINVAL; 4977 4978 /* 4979 * Removal of idmappings is equivalent to setting 4980 * nop_mnt_idmap. 4981 */ 4982 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 4983 kattr->mnt_idmap = &nop_mnt_idmap; 4984 return 0; 4985 } 4986 } 4987 4988 if (attr->userns_fd > INT_MAX) 4989 return -EINVAL; 4990 4991 CLASS(fd, f)(attr->userns_fd); 4992 if (fd_empty(f)) 4993 return -EBADF; 4994 4995 if (!proc_ns_file(fd_file(f))) 4996 return -EINVAL; 4997 4998 ns = get_proc_ns(file_inode(fd_file(f))); 4999 if (ns->ops->type != CLONE_NEWUSER) 5000 return -EINVAL; 5001 5002 /* 5003 * The initial idmapping cannot be used to create an idmapped 5004 * mount. We use the initial idmapping as an indicator of a mount 5005 * that is not idmapped. It can simply be passed into helpers that 5006 * are aware of idmapped mounts as a convenient shortcut. A user 5007 * can just create a dedicated identity mapping to achieve the same 5008 * result. 5009 */ 5010 mnt_userns = container_of(ns, struct user_namespace, ns); 5011 if (mnt_userns == &init_user_ns) 5012 return -EPERM; 5013 5014 /* We're not controlling the target namespace. */ 5015 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 5016 return -EPERM; 5017 5018 kattr->mnt_userns = get_user_ns(mnt_userns); 5019 return 0; 5020 } 5021 5022 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 5023 struct mount_kattr *kattr) 5024 { 5025 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 5026 return -EINVAL; 5027 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 5028 return -EINVAL; 5029 kattr->propagation = attr->propagation; 5030 5031 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 5032 return -EINVAL; 5033 5034 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 5035 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 5036 5037 /* 5038 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 5039 * users wanting to transition to a different atime setting cannot 5040 * simply specify the atime setting in @attr_set, but must also 5041 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 5042 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 5043 * @attr_clr and that @attr_set can't have any atime bits set if 5044 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 5045 */ 5046 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 5047 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 5048 return -EINVAL; 5049 5050 /* 5051 * Clear all previous time settings as they are mutually 5052 * exclusive. 5053 */ 5054 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 5055 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 5056 case MOUNT_ATTR_RELATIME: 5057 kattr->attr_set |= MNT_RELATIME; 5058 break; 5059 case MOUNT_ATTR_NOATIME: 5060 kattr->attr_set |= MNT_NOATIME; 5061 break; 5062 case MOUNT_ATTR_STRICTATIME: 5063 break; 5064 default: 5065 return -EINVAL; 5066 } 5067 } else { 5068 if (attr->attr_set & MOUNT_ATTR__ATIME) 5069 return -EINVAL; 5070 } 5071 5072 return build_mount_idmapped(attr, usize, kattr); 5073 } 5074 5075 static void finish_mount_kattr(struct mount_kattr *kattr) 5076 { 5077 if (kattr->mnt_userns) { 5078 put_user_ns(kattr->mnt_userns); 5079 kattr->mnt_userns = NULL; 5080 } 5081 5082 if (kattr->mnt_idmap) 5083 mnt_idmap_put(kattr->mnt_idmap); 5084 } 5085 5086 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, 5087 struct mount_kattr *kattr) 5088 { 5089 int ret; 5090 struct mount_attr attr; 5091 5092 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 5093 5094 if (unlikely(usize > PAGE_SIZE)) 5095 return -E2BIG; 5096 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 5097 return -EINVAL; 5098 5099 if (!may_mount()) 5100 return -EPERM; 5101 5102 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 5103 if (ret) 5104 return ret; 5105 5106 /* Don't bother walking through the mounts if this is a nop. */ 5107 if (attr.attr_set == 0 && 5108 attr.attr_clr == 0 && 5109 attr.propagation == 0) 5110 return 0; /* Tell caller to not bother. */ 5111 5112 ret = build_mount_kattr(&attr, usize, kattr); 5113 if (ret < 0) 5114 return ret; 5115 5116 return 1; 5117 } 5118 5119 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 5120 unsigned int, flags, struct mount_attr __user *, uattr, 5121 size_t, usize) 5122 { 5123 int err; 5124 struct path target; 5125 struct mount_kattr kattr; 5126 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 5127 5128 if (flags & ~(AT_EMPTY_PATH | 5129 AT_RECURSIVE | 5130 AT_SYMLINK_NOFOLLOW | 5131 AT_NO_AUTOMOUNT)) 5132 return -EINVAL; 5133 5134 if (flags & AT_NO_AUTOMOUNT) 5135 lookup_flags &= ~LOOKUP_AUTOMOUNT; 5136 if (flags & AT_SYMLINK_NOFOLLOW) 5137 lookup_flags &= ~LOOKUP_FOLLOW; 5138 if (flags & AT_EMPTY_PATH) 5139 lookup_flags |= LOOKUP_EMPTY; 5140 5141 kattr = (struct mount_kattr) { 5142 .lookup_flags = lookup_flags, 5143 }; 5144 5145 if (flags & AT_RECURSIVE) 5146 kattr.kflags |= MOUNT_KATTR_RECURSE; 5147 5148 err = wants_mount_setattr(uattr, usize, &kattr); 5149 if (err <= 0) 5150 return err; 5151 5152 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5153 if (!err) { 5154 err = do_mount_setattr(&target, &kattr); 5155 path_put(&target); 5156 } 5157 finish_mount_kattr(&kattr); 5158 return err; 5159 } 5160 5161 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5162 unsigned, flags, struct mount_attr __user *, uattr, 5163 size_t, usize) 5164 { 5165 struct file __free(fput) *file = NULL; 5166 int fd; 5167 5168 if (!uattr && usize) 5169 return -EINVAL; 5170 5171 file = vfs_open_tree(dfd, filename, flags); 5172 if (IS_ERR(file)) 5173 return PTR_ERR(file); 5174 5175 if (uattr) { 5176 int ret; 5177 struct mount_kattr kattr = {}; 5178 5179 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5180 if (flags & AT_RECURSIVE) 5181 kattr.kflags |= MOUNT_KATTR_RECURSE; 5182 5183 ret = wants_mount_setattr(uattr, usize, &kattr); 5184 if (ret > 0) { 5185 ret = do_mount_setattr(&file->f_path, &kattr); 5186 finish_mount_kattr(&kattr); 5187 } 5188 if (ret) 5189 return ret; 5190 } 5191 5192 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5193 if (fd < 0) 5194 return fd; 5195 5196 fd_install(fd, no_free_ptr(file)); 5197 return fd; 5198 } 5199 5200 int show_path(struct seq_file *m, struct dentry *root) 5201 { 5202 if (root->d_sb->s_op->show_path) 5203 return root->d_sb->s_op->show_path(m, root); 5204 5205 seq_dentry(m, root, " \t\n\\"); 5206 return 0; 5207 } 5208 5209 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5210 { 5211 struct mount *mnt = mnt_find_id_at(ns, id); 5212 5213 if (!mnt || mnt->mnt_id_unique != id) 5214 return NULL; 5215 5216 return &mnt->mnt; 5217 } 5218 5219 struct kstatmount { 5220 struct statmount __user *buf; 5221 size_t bufsize; 5222 struct vfsmount *mnt; 5223 struct mnt_idmap *idmap; 5224 u64 mask; 5225 struct path root; 5226 struct seq_file seq; 5227 5228 /* Must be last --ends in a flexible-array member. */ 5229 struct statmount sm; 5230 }; 5231 5232 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5233 { 5234 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5235 u64 attr_flags = 0; 5236 5237 if (mnt_flags & MNT_READONLY) 5238 attr_flags |= MOUNT_ATTR_RDONLY; 5239 if (mnt_flags & MNT_NOSUID) 5240 attr_flags |= MOUNT_ATTR_NOSUID; 5241 if (mnt_flags & MNT_NODEV) 5242 attr_flags |= MOUNT_ATTR_NODEV; 5243 if (mnt_flags & MNT_NOEXEC) 5244 attr_flags |= MOUNT_ATTR_NOEXEC; 5245 if (mnt_flags & MNT_NODIRATIME) 5246 attr_flags |= MOUNT_ATTR_NODIRATIME; 5247 if (mnt_flags & MNT_NOSYMFOLLOW) 5248 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5249 5250 if (mnt_flags & MNT_NOATIME) 5251 attr_flags |= MOUNT_ATTR_NOATIME; 5252 else if (mnt_flags & MNT_RELATIME) 5253 attr_flags |= MOUNT_ATTR_RELATIME; 5254 else 5255 attr_flags |= MOUNT_ATTR_STRICTATIME; 5256 5257 if (is_idmapped_mnt(mnt)) 5258 attr_flags |= MOUNT_ATTR_IDMAP; 5259 5260 return attr_flags; 5261 } 5262 5263 static u64 mnt_to_propagation_flags(struct mount *m) 5264 { 5265 u64 propagation = 0; 5266 5267 if (IS_MNT_SHARED(m)) 5268 propagation |= MS_SHARED; 5269 if (IS_MNT_SLAVE(m)) 5270 propagation |= MS_SLAVE; 5271 if (IS_MNT_UNBINDABLE(m)) 5272 propagation |= MS_UNBINDABLE; 5273 if (!propagation) 5274 propagation |= MS_PRIVATE; 5275 5276 return propagation; 5277 } 5278 5279 static void statmount_sb_basic(struct kstatmount *s) 5280 { 5281 struct super_block *sb = s->mnt->mnt_sb; 5282 5283 s->sm.mask |= STATMOUNT_SB_BASIC; 5284 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5285 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5286 s->sm.sb_magic = sb->s_magic; 5287 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5288 } 5289 5290 static void statmount_mnt_basic(struct kstatmount *s) 5291 { 5292 struct mount *m = real_mount(s->mnt); 5293 5294 s->sm.mask |= STATMOUNT_MNT_BASIC; 5295 s->sm.mnt_id = m->mnt_id_unique; 5296 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5297 s->sm.mnt_id_old = m->mnt_id; 5298 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5299 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5300 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5301 s->sm.mnt_peer_group = m->mnt_group_id; 5302 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5303 } 5304 5305 static void statmount_propagate_from(struct kstatmount *s) 5306 { 5307 struct mount *m = real_mount(s->mnt); 5308 5309 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5310 if (IS_MNT_SLAVE(m)) 5311 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5312 } 5313 5314 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5315 { 5316 int ret; 5317 size_t start = seq->count; 5318 5319 ret = show_path(seq, s->mnt->mnt_root); 5320 if (ret) 5321 return ret; 5322 5323 if (unlikely(seq_has_overflowed(seq))) 5324 return -EAGAIN; 5325 5326 /* 5327 * Unescape the result. It would be better if supplied string was not 5328 * escaped in the first place, but that's a pretty invasive change. 5329 */ 5330 seq->buf[seq->count] = '\0'; 5331 seq->count = start; 5332 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5333 return 0; 5334 } 5335 5336 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5337 { 5338 struct vfsmount *mnt = s->mnt; 5339 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5340 int err; 5341 5342 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5343 return err == SEQ_SKIP ? 0 : err; 5344 } 5345 5346 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5347 { 5348 struct super_block *sb = s->mnt->mnt_sb; 5349 5350 seq_puts(seq, sb->s_type->name); 5351 return 0; 5352 } 5353 5354 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5355 { 5356 struct super_block *sb = s->mnt->mnt_sb; 5357 5358 if (sb->s_subtype) 5359 seq_puts(seq, sb->s_subtype); 5360 } 5361 5362 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5363 { 5364 struct super_block *sb = s->mnt->mnt_sb; 5365 struct mount *r = real_mount(s->mnt); 5366 5367 if (sb->s_op->show_devname) { 5368 size_t start = seq->count; 5369 int ret; 5370 5371 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5372 if (ret) 5373 return ret; 5374 5375 if (unlikely(seq_has_overflowed(seq))) 5376 return -EAGAIN; 5377 5378 /* Unescape the result */ 5379 seq->buf[seq->count] = '\0'; 5380 seq->count = start; 5381 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5382 } else { 5383 seq_puts(seq, r->mnt_devname); 5384 } 5385 return 0; 5386 } 5387 5388 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5389 { 5390 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5391 s->sm.mnt_ns_id = ns->seq; 5392 } 5393 5394 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5395 { 5396 struct vfsmount *mnt = s->mnt; 5397 struct super_block *sb = mnt->mnt_sb; 5398 size_t start = seq->count; 5399 int err; 5400 5401 err = security_sb_show_options(seq, sb); 5402 if (err) 5403 return err; 5404 5405 if (sb->s_op->show_options) { 5406 err = sb->s_op->show_options(seq, mnt->mnt_root); 5407 if (err) 5408 return err; 5409 } 5410 5411 if (unlikely(seq_has_overflowed(seq))) 5412 return -EAGAIN; 5413 5414 if (seq->count == start) 5415 return 0; 5416 5417 /* skip leading comma */ 5418 memmove(seq->buf + start, seq->buf + start + 1, 5419 seq->count - start - 1); 5420 seq->count--; 5421 5422 return 0; 5423 } 5424 5425 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5426 { 5427 char *buf_end, *opt_end, *src, *dst; 5428 int count = 0; 5429 5430 if (unlikely(seq_has_overflowed(seq))) 5431 return -EAGAIN; 5432 5433 buf_end = seq->buf + seq->count; 5434 dst = seq->buf + start; 5435 src = dst + 1; /* skip initial comma */ 5436 5437 if (src >= buf_end) { 5438 seq->count = start; 5439 return 0; 5440 } 5441 5442 *buf_end = '\0'; 5443 for (; src < buf_end; src = opt_end + 1) { 5444 opt_end = strchrnul(src, ','); 5445 *opt_end = '\0'; 5446 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5447 if (WARN_ON_ONCE(++count == INT_MAX)) 5448 return -EOVERFLOW; 5449 } 5450 seq->count = dst - 1 - seq->buf; 5451 return count; 5452 } 5453 5454 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5455 { 5456 struct vfsmount *mnt = s->mnt; 5457 struct super_block *sb = mnt->mnt_sb; 5458 size_t start = seq->count; 5459 int err; 5460 5461 if (!sb->s_op->show_options) 5462 return 0; 5463 5464 err = sb->s_op->show_options(seq, mnt->mnt_root); 5465 if (err) 5466 return err; 5467 5468 err = statmount_opt_process(seq, start); 5469 if (err < 0) 5470 return err; 5471 5472 s->sm.opt_num = err; 5473 return 0; 5474 } 5475 5476 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5477 { 5478 struct vfsmount *mnt = s->mnt; 5479 struct super_block *sb = mnt->mnt_sb; 5480 size_t start = seq->count; 5481 int err; 5482 5483 err = security_sb_show_options(seq, sb); 5484 if (err) 5485 return err; 5486 5487 err = statmount_opt_process(seq, start); 5488 if (err < 0) 5489 return err; 5490 5491 s->sm.opt_sec_num = err; 5492 return 0; 5493 } 5494 5495 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5496 { 5497 int ret; 5498 5499 ret = statmount_mnt_idmap(s->idmap, seq, true); 5500 if (ret < 0) 5501 return ret; 5502 5503 s->sm.mnt_uidmap_num = ret; 5504 /* 5505 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5506 * mappings. This allows userspace to distinguish between a 5507 * non-idmapped mount and an idmapped mount where none of the 5508 * individual mappings are valid in the caller's idmapping. 5509 */ 5510 if (is_valid_mnt_idmap(s->idmap)) 5511 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5512 return 0; 5513 } 5514 5515 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5516 { 5517 int ret; 5518 5519 ret = statmount_mnt_idmap(s->idmap, seq, false); 5520 if (ret < 0) 5521 return ret; 5522 5523 s->sm.mnt_gidmap_num = ret; 5524 /* 5525 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5526 * mappings. This allows userspace to distinguish between a 5527 * non-idmapped mount and an idmapped mount where none of the 5528 * individual mappings are valid in the caller's idmapping. 5529 */ 5530 if (is_valid_mnt_idmap(s->idmap)) 5531 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5532 return 0; 5533 } 5534 5535 static int statmount_string(struct kstatmount *s, u64 flag) 5536 { 5537 int ret = 0; 5538 size_t kbufsize; 5539 struct seq_file *seq = &s->seq; 5540 struct statmount *sm = &s->sm; 5541 u32 start, *offp; 5542 5543 /* Reserve an empty string at the beginning for any unset offsets */ 5544 if (!seq->count) 5545 seq_putc(seq, 0); 5546 5547 start = seq->count; 5548 5549 switch (flag) { 5550 case STATMOUNT_FS_TYPE: 5551 offp = &sm->fs_type; 5552 ret = statmount_fs_type(s, seq); 5553 break; 5554 case STATMOUNT_MNT_ROOT: 5555 offp = &sm->mnt_root; 5556 ret = statmount_mnt_root(s, seq); 5557 break; 5558 case STATMOUNT_MNT_POINT: 5559 offp = &sm->mnt_point; 5560 ret = statmount_mnt_point(s, seq); 5561 break; 5562 case STATMOUNT_MNT_OPTS: 5563 offp = &sm->mnt_opts; 5564 ret = statmount_mnt_opts(s, seq); 5565 break; 5566 case STATMOUNT_OPT_ARRAY: 5567 offp = &sm->opt_array; 5568 ret = statmount_opt_array(s, seq); 5569 break; 5570 case STATMOUNT_OPT_SEC_ARRAY: 5571 offp = &sm->opt_sec_array; 5572 ret = statmount_opt_sec_array(s, seq); 5573 break; 5574 case STATMOUNT_FS_SUBTYPE: 5575 offp = &sm->fs_subtype; 5576 statmount_fs_subtype(s, seq); 5577 break; 5578 case STATMOUNT_SB_SOURCE: 5579 offp = &sm->sb_source; 5580 ret = statmount_sb_source(s, seq); 5581 break; 5582 case STATMOUNT_MNT_UIDMAP: 5583 sm->mnt_uidmap = start; 5584 ret = statmount_mnt_uidmap(s, seq); 5585 break; 5586 case STATMOUNT_MNT_GIDMAP: 5587 sm->mnt_gidmap = start; 5588 ret = statmount_mnt_gidmap(s, seq); 5589 break; 5590 default: 5591 WARN_ON_ONCE(true); 5592 return -EINVAL; 5593 } 5594 5595 /* 5596 * If nothing was emitted, return to avoid setting the flag 5597 * and terminating the buffer. 5598 */ 5599 if (seq->count == start) 5600 return ret; 5601 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5602 return -EOVERFLOW; 5603 if (kbufsize >= s->bufsize) 5604 return -EOVERFLOW; 5605 5606 /* signal a retry */ 5607 if (unlikely(seq_has_overflowed(seq))) 5608 return -EAGAIN; 5609 5610 if (ret) 5611 return ret; 5612 5613 seq->buf[seq->count++] = '\0'; 5614 sm->mask |= flag; 5615 *offp = start; 5616 return 0; 5617 } 5618 5619 static int copy_statmount_to_user(struct kstatmount *s) 5620 { 5621 struct statmount *sm = &s->sm; 5622 struct seq_file *seq = &s->seq; 5623 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5624 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5625 5626 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5627 return -EFAULT; 5628 5629 /* Return the number of bytes copied to the buffer */ 5630 sm->size = copysize + seq->count; 5631 if (copy_to_user(s->buf, sm, copysize)) 5632 return -EFAULT; 5633 5634 return 0; 5635 } 5636 5637 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5638 { 5639 struct rb_node *node; 5640 5641 if (reverse) 5642 node = rb_prev(&curr->mnt_node); 5643 else 5644 node = rb_next(&curr->mnt_node); 5645 5646 return node_to_mount(node); 5647 } 5648 5649 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5650 { 5651 struct mount *first, *child; 5652 5653 rwsem_assert_held(&namespace_sem); 5654 5655 /* We're looking at our own ns, just use get_fs_root. */ 5656 if (ns == current->nsproxy->mnt_ns) { 5657 get_fs_root(current->fs, root); 5658 return 0; 5659 } 5660 5661 /* 5662 * We have to find the first mount in our ns and use that, however it 5663 * may not exist, so handle that properly. 5664 */ 5665 if (mnt_ns_empty(ns)) 5666 return -ENOENT; 5667 5668 first = child = ns->root; 5669 for (;;) { 5670 child = listmnt_next(child, false); 5671 if (!child) 5672 return -ENOENT; 5673 if (child->mnt_parent == first) 5674 break; 5675 } 5676 5677 root->mnt = mntget(&child->mnt); 5678 root->dentry = dget(root->mnt->mnt_root); 5679 return 0; 5680 } 5681 5682 /* This must be updated whenever a new flag is added */ 5683 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5684 STATMOUNT_MNT_BASIC | \ 5685 STATMOUNT_PROPAGATE_FROM | \ 5686 STATMOUNT_MNT_ROOT | \ 5687 STATMOUNT_MNT_POINT | \ 5688 STATMOUNT_FS_TYPE | \ 5689 STATMOUNT_MNT_NS_ID | \ 5690 STATMOUNT_MNT_OPTS | \ 5691 STATMOUNT_FS_SUBTYPE | \ 5692 STATMOUNT_SB_SOURCE | \ 5693 STATMOUNT_OPT_ARRAY | \ 5694 STATMOUNT_OPT_SEC_ARRAY | \ 5695 STATMOUNT_SUPPORTED_MASK | \ 5696 STATMOUNT_MNT_UIDMAP | \ 5697 STATMOUNT_MNT_GIDMAP) 5698 5699 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5700 struct mnt_namespace *ns) 5701 { 5702 struct path root __free(path_put) = {}; 5703 struct mount *m; 5704 int err; 5705 5706 /* Has the namespace already been emptied? */ 5707 if (mnt_ns_id && mnt_ns_empty(ns)) 5708 return -ENOENT; 5709 5710 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5711 if (!s->mnt) 5712 return -ENOENT; 5713 5714 err = grab_requested_root(ns, &root); 5715 if (err) 5716 return err; 5717 5718 /* 5719 * Don't trigger audit denials. We just want to determine what 5720 * mounts to show users. 5721 */ 5722 m = real_mount(s->mnt); 5723 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5724 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5725 return -EPERM; 5726 5727 err = security_sb_statfs(s->mnt->mnt_root); 5728 if (err) 5729 return err; 5730 5731 s->root = root; 5732 5733 /* 5734 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap 5735 * can change concurrently as we only hold the read-side of the 5736 * namespace semaphore and mount properties may change with only 5737 * the mount lock held. 5738 * 5739 * We could sample the mount lock sequence counter to detect 5740 * those changes and retry. But it's not worth it. Worst that 5741 * happens is that the mnt->mnt_idmap pointer is already changed 5742 * while mnt->mnt_flags isn't or vica versa. So what. 5743 * 5744 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved 5745 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical 5746 * torn read/write. That's all we care about right now. 5747 */ 5748 s->idmap = mnt_idmap(s->mnt); 5749 if (s->mask & STATMOUNT_MNT_BASIC) 5750 statmount_mnt_basic(s); 5751 5752 if (s->mask & STATMOUNT_SB_BASIC) 5753 statmount_sb_basic(s); 5754 5755 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5756 statmount_propagate_from(s); 5757 5758 if (s->mask & STATMOUNT_FS_TYPE) 5759 err = statmount_string(s, STATMOUNT_FS_TYPE); 5760 5761 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5762 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5763 5764 if (!err && s->mask & STATMOUNT_MNT_POINT) 5765 err = statmount_string(s, STATMOUNT_MNT_POINT); 5766 5767 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5768 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5769 5770 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5771 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5772 5773 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5774 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5775 5776 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5777 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5778 5779 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5780 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5781 5782 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5783 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5784 5785 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5786 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5787 5788 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5789 statmount_mnt_ns_id(s, ns); 5790 5791 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5792 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5793 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5794 } 5795 5796 if (err) 5797 return err; 5798 5799 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5800 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5801 5802 return 0; 5803 } 5804 5805 static inline bool retry_statmount(const long ret, size_t *seq_size) 5806 { 5807 if (likely(ret != -EAGAIN)) 5808 return false; 5809 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5810 return false; 5811 if (unlikely(*seq_size > MAX_RW_COUNT)) 5812 return false; 5813 return true; 5814 } 5815 5816 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5817 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5818 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5819 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5820 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5821 5822 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5823 struct statmount __user *buf, size_t bufsize, 5824 size_t seq_size) 5825 { 5826 if (!access_ok(buf, bufsize)) 5827 return -EFAULT; 5828 5829 memset(ks, 0, sizeof(*ks)); 5830 ks->mask = kreq->param; 5831 ks->buf = buf; 5832 ks->bufsize = bufsize; 5833 5834 if (ks->mask & STATMOUNT_STRING_REQ) { 5835 if (bufsize == sizeof(ks->sm)) 5836 return -EOVERFLOW; 5837 5838 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5839 if (!ks->seq.buf) 5840 return -ENOMEM; 5841 5842 ks->seq.size = seq_size; 5843 } 5844 5845 return 0; 5846 } 5847 5848 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5849 struct mnt_id_req *kreq) 5850 { 5851 int ret; 5852 size_t usize; 5853 5854 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5855 5856 ret = get_user(usize, &req->size); 5857 if (ret) 5858 return -EFAULT; 5859 if (unlikely(usize > PAGE_SIZE)) 5860 return -E2BIG; 5861 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5862 return -EINVAL; 5863 memset(kreq, 0, sizeof(*kreq)); 5864 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5865 if (ret) 5866 return ret; 5867 if (kreq->spare != 0) 5868 return -EINVAL; 5869 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5870 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5871 return -EINVAL; 5872 return 0; 5873 } 5874 5875 /* 5876 * If the user requested a specific mount namespace id, look that up and return 5877 * that, or if not simply grab a passive reference on our mount namespace and 5878 * return that. 5879 */ 5880 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5881 { 5882 struct mnt_namespace *mnt_ns; 5883 5884 if (kreq->mnt_ns_id && kreq->spare) 5885 return ERR_PTR(-EINVAL); 5886 5887 if (kreq->mnt_ns_id) 5888 return lookup_mnt_ns(kreq->mnt_ns_id); 5889 5890 if (kreq->spare) { 5891 struct ns_common *ns; 5892 5893 CLASS(fd, f)(kreq->spare); 5894 if (fd_empty(f)) 5895 return ERR_PTR(-EBADF); 5896 5897 if (!proc_ns_file(fd_file(f))) 5898 return ERR_PTR(-EINVAL); 5899 5900 ns = get_proc_ns(file_inode(fd_file(f))); 5901 if (ns->ops->type != CLONE_NEWNS) 5902 return ERR_PTR(-EINVAL); 5903 5904 mnt_ns = to_mnt_ns(ns); 5905 } else { 5906 mnt_ns = current->nsproxy->mnt_ns; 5907 } 5908 5909 refcount_inc(&mnt_ns->passive); 5910 return mnt_ns; 5911 } 5912 5913 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5914 struct statmount __user *, buf, size_t, bufsize, 5915 unsigned int, flags) 5916 { 5917 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5918 struct kstatmount *ks __free(kfree) = NULL; 5919 struct mnt_id_req kreq; 5920 /* We currently support retrieval of 3 strings. */ 5921 size_t seq_size = 3 * PATH_MAX; 5922 int ret; 5923 5924 if (flags) 5925 return -EINVAL; 5926 5927 ret = copy_mnt_id_req(req, &kreq); 5928 if (ret) 5929 return ret; 5930 5931 ns = grab_requested_mnt_ns(&kreq); 5932 if (!ns) 5933 return -ENOENT; 5934 5935 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5936 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5937 return -ENOENT; 5938 5939 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 5940 if (!ks) 5941 return -ENOMEM; 5942 5943 retry: 5944 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 5945 if (ret) 5946 return ret; 5947 5948 scoped_guard(rwsem_read, &namespace_sem) 5949 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 5950 5951 if (!ret) 5952 ret = copy_statmount_to_user(ks); 5953 kvfree(ks->seq.buf); 5954 if (retry_statmount(ret, &seq_size)) 5955 goto retry; 5956 return ret; 5957 } 5958 5959 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 5960 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 5961 bool reverse) 5962 { 5963 struct path root __free(path_put) = {}; 5964 struct path orig; 5965 struct mount *r, *first; 5966 ssize_t ret; 5967 5968 rwsem_assert_held(&namespace_sem); 5969 5970 ret = grab_requested_root(ns, &root); 5971 if (ret) 5972 return ret; 5973 5974 if (mnt_parent_id == LSMT_ROOT) { 5975 orig = root; 5976 } else { 5977 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5978 if (!orig.mnt) 5979 return -ENOENT; 5980 orig.dentry = orig.mnt->mnt_root; 5981 } 5982 5983 /* 5984 * Don't trigger audit denials. We just want to determine what 5985 * mounts to show users. 5986 */ 5987 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 5988 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5989 return -EPERM; 5990 5991 ret = security_sb_statfs(orig.dentry); 5992 if (ret) 5993 return ret; 5994 5995 if (!last_mnt_id) { 5996 if (reverse) 5997 first = node_to_mount(ns->mnt_last_node); 5998 else 5999 first = node_to_mount(ns->mnt_first_node); 6000 } else { 6001 if (reverse) 6002 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 6003 else 6004 first = mnt_find_id_at(ns, last_mnt_id + 1); 6005 } 6006 6007 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 6008 if (r->mnt_id_unique == mnt_parent_id) 6009 continue; 6010 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 6011 continue; 6012 *mnt_ids = r->mnt_id_unique; 6013 mnt_ids++; 6014 nr_mnt_ids--; 6015 ret++; 6016 } 6017 return ret; 6018 } 6019 6020 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 6021 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 6022 { 6023 u64 *kmnt_ids __free(kvfree) = NULL; 6024 const size_t maxcount = 1000000; 6025 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 6026 struct mnt_id_req kreq; 6027 u64 last_mnt_id; 6028 ssize_t ret; 6029 6030 if (flags & ~LISTMOUNT_REVERSE) 6031 return -EINVAL; 6032 6033 /* 6034 * If the mount namespace really has more than 1 million mounts the 6035 * caller must iterate over the mount namespace (and reconsider their 6036 * system design...). 6037 */ 6038 if (unlikely(nr_mnt_ids > maxcount)) 6039 return -EOVERFLOW; 6040 6041 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 6042 return -EFAULT; 6043 6044 ret = copy_mnt_id_req(req, &kreq); 6045 if (ret) 6046 return ret; 6047 6048 last_mnt_id = kreq.param; 6049 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 6050 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 6051 return -EINVAL; 6052 6053 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 6054 GFP_KERNEL_ACCOUNT); 6055 if (!kmnt_ids) 6056 return -ENOMEM; 6057 6058 ns = grab_requested_mnt_ns(&kreq); 6059 if (!ns) 6060 return -ENOENT; 6061 6062 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 6063 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 6064 return -ENOENT; 6065 6066 /* 6067 * We only need to guard against mount topology changes as 6068 * listmount() doesn't care about any mount properties. 6069 */ 6070 scoped_guard(rwsem_read, &namespace_sem) 6071 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 6072 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 6073 if (ret <= 0) 6074 return ret; 6075 6076 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 6077 return -EFAULT; 6078 6079 return ret; 6080 } 6081 6082 static void __init init_mount_tree(void) 6083 { 6084 struct vfsmount *mnt; 6085 struct mount *m; 6086 struct mnt_namespace *ns; 6087 struct path root; 6088 6089 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 6090 if (IS_ERR(mnt)) 6091 panic("Can't create rootfs"); 6092 6093 ns = alloc_mnt_ns(&init_user_ns, true); 6094 if (IS_ERR(ns)) 6095 panic("Can't allocate initial namespace"); 6096 ns->seq = atomic64_inc_return(&mnt_ns_seq); 6097 ns->ns.inum = PROC_MNT_INIT_INO; 6098 m = real_mount(mnt); 6099 ns->root = m; 6100 ns->nr_mounts = 1; 6101 mnt_add_to_ns(ns, m); 6102 init_task.nsproxy->mnt_ns = ns; 6103 get_mnt_ns(ns); 6104 6105 root.mnt = mnt; 6106 root.dentry = mnt->mnt_root; 6107 6108 set_fs_pwd(current->fs, &root); 6109 set_fs_root(current->fs, &root); 6110 6111 mnt_ns_tree_add(ns); 6112 } 6113 6114 void __init mnt_init(void) 6115 { 6116 int err; 6117 6118 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 6119 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 6120 6121 mount_hashtable = alloc_large_system_hash("Mount-cache", 6122 sizeof(struct hlist_head), 6123 mhash_entries, 19, 6124 HASH_ZERO, 6125 &m_hash_shift, &m_hash_mask, 0, 0); 6126 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 6127 sizeof(struct hlist_head), 6128 mphash_entries, 19, 6129 HASH_ZERO, 6130 &mp_hash_shift, &mp_hash_mask, 0, 0); 6131 6132 if (!mount_hashtable || !mountpoint_hashtable) 6133 panic("Failed to allocate mount hash table\n"); 6134 6135 kernfs_init(); 6136 6137 err = sysfs_init(); 6138 if (err) 6139 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 6140 __func__, err); 6141 fs_kobj = kobject_create_and_add("fs", NULL); 6142 if (!fs_kobj) 6143 printk(KERN_WARNING "%s: kobj create error\n", __func__); 6144 shmem_init(); 6145 init_rootfs(); 6146 init_mount_tree(); 6147 } 6148 6149 void put_mnt_ns(struct mnt_namespace *ns) 6150 { 6151 if (!refcount_dec_and_test(&ns->ns.count)) 6152 return; 6153 namespace_lock(); 6154 emptied_ns = ns; 6155 lock_mount_hash(); 6156 umount_tree(ns->root, 0); 6157 unlock_mount_hash(); 6158 namespace_unlock(); 6159 } 6160 6161 struct vfsmount *kern_mount(struct file_system_type *type) 6162 { 6163 struct vfsmount *mnt; 6164 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 6165 if (!IS_ERR(mnt)) { 6166 /* 6167 * it is a longterm mount, don't release mnt until 6168 * we unmount before file sys is unregistered 6169 */ 6170 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 6171 } 6172 return mnt; 6173 } 6174 EXPORT_SYMBOL_GPL(kern_mount); 6175 6176 void kern_unmount(struct vfsmount *mnt) 6177 { 6178 /* release long term mount so mount point can be released */ 6179 if (!IS_ERR(mnt)) { 6180 mnt_make_shortterm(mnt); 6181 synchronize_rcu(); /* yecchhh... */ 6182 mntput(mnt); 6183 } 6184 } 6185 EXPORT_SYMBOL(kern_unmount); 6186 6187 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6188 { 6189 unsigned int i; 6190 6191 for (i = 0; i < num; i++) 6192 mnt_make_shortterm(mnt[i]); 6193 synchronize_rcu_expedited(); 6194 for (i = 0; i < num; i++) 6195 mntput(mnt[i]); 6196 } 6197 EXPORT_SYMBOL(kern_unmount_array); 6198 6199 bool our_mnt(struct vfsmount *mnt) 6200 { 6201 return check_mnt(real_mount(mnt)); 6202 } 6203 6204 bool current_chrooted(void) 6205 { 6206 /* Does the current process have a non-standard root */ 6207 struct path ns_root; 6208 struct path fs_root; 6209 bool chrooted; 6210 6211 /* Find the namespace root */ 6212 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 6213 ns_root.dentry = ns_root.mnt->mnt_root; 6214 path_get(&ns_root); 6215 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 6216 ; 6217 6218 get_fs_root(current->fs, &fs_root); 6219 6220 chrooted = !path_equal(&fs_root, &ns_root); 6221 6222 path_put(&fs_root); 6223 path_put(&ns_root); 6224 6225 return chrooted; 6226 } 6227 6228 static bool mnt_already_visible(struct mnt_namespace *ns, 6229 const struct super_block *sb, 6230 int *new_mnt_flags) 6231 { 6232 int new_flags = *new_mnt_flags; 6233 struct mount *mnt, *n; 6234 bool visible = false; 6235 6236 down_read(&namespace_sem); 6237 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6238 struct mount *child; 6239 int mnt_flags; 6240 6241 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6242 continue; 6243 6244 /* This mount is not fully visible if it's root directory 6245 * is not the root directory of the filesystem. 6246 */ 6247 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6248 continue; 6249 6250 /* A local view of the mount flags */ 6251 mnt_flags = mnt->mnt.mnt_flags; 6252 6253 /* Don't miss readonly hidden in the superblock flags */ 6254 if (sb_rdonly(mnt->mnt.mnt_sb)) 6255 mnt_flags |= MNT_LOCK_READONLY; 6256 6257 /* Verify the mount flags are equal to or more permissive 6258 * than the proposed new mount. 6259 */ 6260 if ((mnt_flags & MNT_LOCK_READONLY) && 6261 !(new_flags & MNT_READONLY)) 6262 continue; 6263 if ((mnt_flags & MNT_LOCK_ATIME) && 6264 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6265 continue; 6266 6267 /* This mount is not fully visible if there are any 6268 * locked child mounts that cover anything except for 6269 * empty directories. 6270 */ 6271 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6272 struct inode *inode = child->mnt_mountpoint->d_inode; 6273 /* Only worry about locked mounts */ 6274 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6275 continue; 6276 /* Is the directory permanently empty? */ 6277 if (!is_empty_dir_inode(inode)) 6278 goto next; 6279 } 6280 /* Preserve the locked attributes */ 6281 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6282 MNT_LOCK_ATIME); 6283 visible = true; 6284 goto found; 6285 next: ; 6286 } 6287 found: 6288 up_read(&namespace_sem); 6289 return visible; 6290 } 6291 6292 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6293 { 6294 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6295 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6296 unsigned long s_iflags; 6297 6298 if (ns->user_ns == &init_user_ns) 6299 return false; 6300 6301 /* Can this filesystem be too revealing? */ 6302 s_iflags = sb->s_iflags; 6303 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6304 return false; 6305 6306 if ((s_iflags & required_iflags) != required_iflags) { 6307 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6308 required_iflags); 6309 return true; 6310 } 6311 6312 return !mnt_already_visible(ns, sb, new_mnt_flags); 6313 } 6314 6315 bool mnt_may_suid(struct vfsmount *mnt) 6316 { 6317 /* 6318 * Foreign mounts (accessed via fchdir or through /proc 6319 * symlinks) are always treated as if they are nosuid. This 6320 * prevents namespaces from trusting potentially unsafe 6321 * suid/sgid bits, file caps, or security labels that originate 6322 * in other namespaces. 6323 */ 6324 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6325 current_in_userns(mnt->mnt_sb->s_user_ns); 6326 } 6327 6328 static struct ns_common *mntns_get(struct task_struct *task) 6329 { 6330 struct ns_common *ns = NULL; 6331 struct nsproxy *nsproxy; 6332 6333 task_lock(task); 6334 nsproxy = task->nsproxy; 6335 if (nsproxy) { 6336 ns = &nsproxy->mnt_ns->ns; 6337 get_mnt_ns(to_mnt_ns(ns)); 6338 } 6339 task_unlock(task); 6340 6341 return ns; 6342 } 6343 6344 static void mntns_put(struct ns_common *ns) 6345 { 6346 put_mnt_ns(to_mnt_ns(ns)); 6347 } 6348 6349 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6350 { 6351 struct nsproxy *nsproxy = nsset->nsproxy; 6352 struct fs_struct *fs = nsset->fs; 6353 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6354 struct user_namespace *user_ns = nsset->cred->user_ns; 6355 struct path root; 6356 int err; 6357 6358 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6359 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6360 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6361 return -EPERM; 6362 6363 if (is_anon_ns(mnt_ns)) 6364 return -EINVAL; 6365 6366 if (fs->users != 1) 6367 return -EINVAL; 6368 6369 get_mnt_ns(mnt_ns); 6370 old_mnt_ns = nsproxy->mnt_ns; 6371 nsproxy->mnt_ns = mnt_ns; 6372 6373 /* Find the root */ 6374 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6375 "/", LOOKUP_DOWN, &root); 6376 if (err) { 6377 /* revert to old namespace */ 6378 nsproxy->mnt_ns = old_mnt_ns; 6379 put_mnt_ns(mnt_ns); 6380 return err; 6381 } 6382 6383 put_mnt_ns(old_mnt_ns); 6384 6385 /* Update the pwd and root */ 6386 set_fs_pwd(fs, &root); 6387 set_fs_root(fs, &root); 6388 6389 path_put(&root); 6390 return 0; 6391 } 6392 6393 static struct user_namespace *mntns_owner(struct ns_common *ns) 6394 { 6395 return to_mnt_ns(ns)->user_ns; 6396 } 6397 6398 const struct proc_ns_operations mntns_operations = { 6399 .name = "mnt", 6400 .type = CLONE_NEWNS, 6401 .get = mntns_get, 6402 .put = mntns_put, 6403 .install = mntns_install, 6404 .owner = mntns_owner, 6405 }; 6406 6407 #ifdef CONFIG_SYSCTL 6408 static const struct ctl_table fs_namespace_sysctls[] = { 6409 { 6410 .procname = "mount-max", 6411 .data = &sysctl_mount_max, 6412 .maxlen = sizeof(unsigned int), 6413 .mode = 0644, 6414 .proc_handler = proc_dointvec_minmax, 6415 .extra1 = SYSCTL_ONE, 6416 }, 6417 }; 6418 6419 static int __init init_fs_namespace_sysctls(void) 6420 { 6421 register_sysctl_init("fs", fs_namespace_sysctls); 6422 return 0; 6423 } 6424 fs_initcall(init_fs_namespace_sysctls); 6425 6426 #endif /* CONFIG_SYSCTL */ 6427