xref: /linux/fs/namespace.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37 
38 #include "pnode.h"
39 #include "internal.h"
40 
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48 
49 static __initdata unsigned long mhash_entries;
50 static int __init set_mhash_entries(char *str)
51 {
52 	return kstrtoul(str, 0, &mhash_entries) == 0;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55 
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 	return kstrtoul(str, 0, &mphash_entries) == 0;
60 }
61 __setup("mphash_entries=", set_mphash_entries);
62 
63 static char * __initdata initramfs_options;
64 static int __init initramfs_options_setup(char *str)
65 {
66 	initramfs_options = str;
67 	return 1;
68 }
69 
70 __setup("initramfs_options=", initramfs_options_setup);
71 
72 static u64 event;
73 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
74 static DEFINE_IDA(mnt_group_ida);
75 
76 /* Don't allow confusion with old 32bit mount ID */
77 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
78 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
79 
80 static struct hlist_head *mount_hashtable __ro_after_init;
81 static struct hlist_head *mountpoint_hashtable __ro_after_init;
82 static struct kmem_cache *mnt_cache __ro_after_init;
83 static DECLARE_RWSEM(namespace_sem);
84 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
85 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
86 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
87 
88 static inline void namespace_lock(void);
89 static void namespace_unlock(void);
90 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
91 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
92 				      up_read(&namespace_sem))
93 
94 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
95 
96 #ifdef CONFIG_FSNOTIFY
97 LIST_HEAD(notify_list); /* protected by namespace_sem */
98 #endif
99 
100 enum mount_kattr_flags_t {
101 	MOUNT_KATTR_RECURSE		= (1 << 0),
102 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
103 };
104 
105 struct mount_kattr {
106 	unsigned int attr_set;
107 	unsigned int attr_clr;
108 	unsigned int propagation;
109 	unsigned int lookup_flags;
110 	enum mount_kattr_flags_t kflags;
111 	struct user_namespace *mnt_userns;
112 	struct mnt_idmap *mnt_idmap;
113 };
114 
115 /* /sys/fs */
116 struct kobject *fs_kobj __ro_after_init;
117 EXPORT_SYMBOL_GPL(fs_kobj);
118 
119 /*
120  * vfsmount lock may be taken for read to prevent changes to the
121  * vfsmount hash, ie. during mountpoint lookups or walking back
122  * up the tree.
123  *
124  * It should be taken for write in all cases where the vfsmount
125  * tree or hash is modified or when a vfsmount structure is modified.
126  */
127 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
128 
129 static void mnt_ns_release(struct mnt_namespace *ns)
130 {
131 	/* keep alive for {list,stat}mount() */
132 	if (ns && refcount_dec_and_test(&ns->passive)) {
133 		fsnotify_mntns_delete(ns);
134 		put_user_ns(ns->user_ns);
135 		kfree(ns);
136 	}
137 }
138 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
139 	    if (!IS_ERR(_T)) mnt_ns_release(_T))
140 
141 static void mnt_ns_release_rcu(struct rcu_head *rcu)
142 {
143 	mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
144 }
145 
146 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
147 {
148 	/* remove from global mount namespace list */
149 	if (ns_tree_active(ns))
150 		ns_tree_remove(ns);
151 
152 	call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
153 }
154 
155 /*
156  * Lookup a mount namespace by id and take a passive reference count. Taking a
157  * passive reference means the mount namespace can be emptied if e.g., the last
158  * task holding an active reference exits. To access the mounts of the
159  * namespace the @namespace_sem must first be acquired. If the namespace has
160  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
161  * see that the mount rbtree of the namespace is empty.
162  *
163  * Note the lookup is lockless protected by a sequence counter. We only
164  * need to guard against false negatives as false positives aren't
165  * possible. So if we didn't find a mount namespace and the sequence
166  * counter has changed we need to retry. If the sequence counter is
167  * still the same we know the search actually failed.
168  */
169 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
170 {
171 	struct mnt_namespace *mnt_ns;
172 	struct ns_common *ns;
173 
174 	guard(rcu)();
175 	ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
176 	if (!ns)
177 		return NULL;
178 
179 	/*
180 	 * The last reference count is put with RCU delay so we can
181 	 * unconditonally acquire a reference here.
182 	 */
183 	mnt_ns = container_of(ns, struct mnt_namespace, ns);
184 	refcount_inc(&mnt_ns->passive);
185 	return mnt_ns;
186 }
187 
188 static inline void lock_mount_hash(void)
189 {
190 	write_seqlock(&mount_lock);
191 }
192 
193 static inline void unlock_mount_hash(void)
194 {
195 	write_sequnlock(&mount_lock);
196 }
197 
198 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
199 {
200 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
201 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
202 	tmp = tmp + (tmp >> m_hash_shift);
203 	return &mount_hashtable[tmp & m_hash_mask];
204 }
205 
206 static inline struct hlist_head *mp_hash(struct dentry *dentry)
207 {
208 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
209 	tmp = tmp + (tmp >> mp_hash_shift);
210 	return &mountpoint_hashtable[tmp & mp_hash_mask];
211 }
212 
213 static int mnt_alloc_id(struct mount *mnt)
214 {
215 	int res;
216 
217 	xa_lock(&mnt_id_xa);
218 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, xa_limit_31b, GFP_KERNEL);
219 	if (!res)
220 		mnt->mnt_id_unique = ++mnt_id_ctr;
221 	xa_unlock(&mnt_id_xa);
222 	return res;
223 }
224 
225 static void mnt_free_id(struct mount *mnt)
226 {
227 	xa_erase(&mnt_id_xa, mnt->mnt_id);
228 }
229 
230 /*
231  * Allocate a new peer group ID
232  */
233 static int mnt_alloc_group_id(struct mount *mnt)
234 {
235 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
236 
237 	if (res < 0)
238 		return res;
239 	mnt->mnt_group_id = res;
240 	return 0;
241 }
242 
243 /*
244  * Release a peer group ID
245  */
246 void mnt_release_group_id(struct mount *mnt)
247 {
248 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
249 	mnt->mnt_group_id = 0;
250 }
251 
252 /*
253  * vfsmount lock must be held for read
254  */
255 static inline void mnt_add_count(struct mount *mnt, int n)
256 {
257 #ifdef CONFIG_SMP
258 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
259 #else
260 	preempt_disable();
261 	mnt->mnt_count += n;
262 	preempt_enable();
263 #endif
264 }
265 
266 /*
267  * vfsmount lock must be held for write
268  */
269 int mnt_get_count(struct mount *mnt)
270 {
271 #ifdef CONFIG_SMP
272 	int count = 0;
273 	int cpu;
274 
275 	for_each_possible_cpu(cpu) {
276 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
277 	}
278 
279 	return count;
280 #else
281 	return mnt->mnt_count;
282 #endif
283 }
284 
285 static struct mount *alloc_vfsmnt(const char *name)
286 {
287 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
288 	if (mnt) {
289 		int err;
290 
291 		err = mnt_alloc_id(mnt);
292 		if (err)
293 			goto out_free_cache;
294 
295 		if (name)
296 			mnt->mnt_devname = kstrdup_const(name,
297 							 GFP_KERNEL_ACCOUNT);
298 		else
299 			mnt->mnt_devname = "none";
300 		if (!mnt->mnt_devname)
301 			goto out_free_id;
302 
303 #ifdef CONFIG_SMP
304 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
305 		if (!mnt->mnt_pcp)
306 			goto out_free_devname;
307 
308 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
309 #else
310 		mnt->mnt_count = 1;
311 		mnt->mnt_writers = 0;
312 #endif
313 
314 		INIT_HLIST_NODE(&mnt->mnt_hash);
315 		INIT_LIST_HEAD(&mnt->mnt_child);
316 		INIT_LIST_HEAD(&mnt->mnt_mounts);
317 		INIT_LIST_HEAD(&mnt->mnt_list);
318 		INIT_LIST_HEAD(&mnt->mnt_expire);
319 		INIT_LIST_HEAD(&mnt->mnt_share);
320 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
321 		INIT_HLIST_NODE(&mnt->mnt_slave);
322 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
323 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
324 		RB_CLEAR_NODE(&mnt->mnt_node);
325 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
326 	}
327 	return mnt;
328 
329 #ifdef CONFIG_SMP
330 out_free_devname:
331 	kfree_const(mnt->mnt_devname);
332 #endif
333 out_free_id:
334 	mnt_free_id(mnt);
335 out_free_cache:
336 	kmem_cache_free(mnt_cache, mnt);
337 	return NULL;
338 }
339 
340 /*
341  * Most r/o checks on a fs are for operations that take
342  * discrete amounts of time, like a write() or unlink().
343  * We must keep track of when those operations start
344  * (for permission checks) and when they end, so that
345  * we can determine when writes are able to occur to
346  * a filesystem.
347  */
348 /*
349  * __mnt_is_readonly: check whether a mount is read-only
350  * @mnt: the mount to check for its write status
351  *
352  * This shouldn't be used directly ouside of the VFS.
353  * It does not guarantee that the filesystem will stay
354  * r/w, just that it is right *now*.  This can not and
355  * should not be used in place of IS_RDONLY(inode).
356  * mnt_want/drop_write() will _keep_ the filesystem
357  * r/w.
358  */
359 bool __mnt_is_readonly(const struct vfsmount *mnt)
360 {
361 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
362 }
363 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
364 
365 static inline void mnt_inc_writers(struct mount *mnt)
366 {
367 #ifdef CONFIG_SMP
368 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
369 #else
370 	mnt->mnt_writers++;
371 #endif
372 }
373 
374 static inline void mnt_dec_writers(struct mount *mnt)
375 {
376 #ifdef CONFIG_SMP
377 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
378 #else
379 	mnt->mnt_writers--;
380 #endif
381 }
382 
383 static unsigned int mnt_get_writers(struct mount *mnt)
384 {
385 #ifdef CONFIG_SMP
386 	unsigned int count = 0;
387 	int cpu;
388 
389 	for_each_possible_cpu(cpu) {
390 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
391 	}
392 
393 	return count;
394 #else
395 	return mnt->mnt_writers;
396 #endif
397 }
398 
399 static int mnt_is_readonly(const struct vfsmount *mnt)
400 {
401 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
402 		return 1;
403 	/*
404 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
405 	 * making sure if we don't see s_readonly_remount set yet, we also will
406 	 * not see any superblock / mount flag changes done by remount.
407 	 * It also pairs with the barrier in sb_end_ro_state_change()
408 	 * assuring that if we see s_readonly_remount already cleared, we will
409 	 * see the values of superblock / mount flags updated by remount.
410 	 */
411 	smp_rmb();
412 	return __mnt_is_readonly(mnt);
413 }
414 
415 /*
416  * Most r/o & frozen checks on a fs are for operations that take discrete
417  * amounts of time, like a write() or unlink().  We must keep track of when
418  * those operations start (for permission checks) and when they end, so that we
419  * can determine when writes are able to occur to a filesystem.
420  */
421 /**
422  * mnt_get_write_access - get write access to a mount without freeze protection
423  * @m: the mount on which to take a write
424  *
425  * This tells the low-level filesystem that a write is about to be performed to
426  * it, and makes sure that writes are allowed (mnt it read-write) before
427  * returning success. This operation does not protect against filesystem being
428  * frozen. When the write operation is finished, mnt_put_write_access() must be
429  * called. This is effectively a refcount.
430  */
431 int mnt_get_write_access(struct vfsmount *m)
432 {
433 	struct mount *mnt = real_mount(m);
434 	int ret = 0;
435 
436 	preempt_disable();
437 	mnt_inc_writers(mnt);
438 	/*
439 	 * The store to mnt_inc_writers must be visible before we pass
440 	 * WRITE_HOLD loop below, so that the slowpath can see our
441 	 * incremented count after it has set WRITE_HOLD.
442 	 */
443 	smp_mb();
444 	might_lock(&mount_lock.lock);
445 	while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
446 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
447 			cpu_relax();
448 		} else {
449 			/*
450 			 * This prevents priority inversion, if the task
451 			 * setting WRITE_HOLD got preempted on a remote
452 			 * CPU, and it prevents life lock if the task setting
453 			 * WRITE_HOLD has a lower priority and is bound to
454 			 * the same CPU as the task that is spinning here.
455 			 */
456 			preempt_enable();
457 			read_seqlock_excl(&mount_lock);
458 			read_sequnlock_excl(&mount_lock);
459 			preempt_disable();
460 		}
461 	}
462 	/*
463 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
464 	 * sure that if we see WRITE_HOLD cleared, we will also see
465 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
466 	 * mnt_is_readonly() and bail in case we are racing with remount
467 	 * read-only.
468 	 */
469 	smp_rmb();
470 	if (mnt_is_readonly(m)) {
471 		mnt_dec_writers(mnt);
472 		ret = -EROFS;
473 	}
474 	preempt_enable();
475 
476 	return ret;
477 }
478 EXPORT_SYMBOL_GPL(mnt_get_write_access);
479 
480 /**
481  * mnt_want_write - get write access to a mount
482  * @m: the mount on which to take a write
483  *
484  * This tells the low-level filesystem that a write is about to be performed to
485  * it, and makes sure that writes are allowed (mount is read-write, filesystem
486  * is not frozen) before returning success.  When the write operation is
487  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
488  */
489 int mnt_want_write(struct vfsmount *m)
490 {
491 	int ret;
492 
493 	sb_start_write(m->mnt_sb);
494 	ret = mnt_get_write_access(m);
495 	if (ret)
496 		sb_end_write(m->mnt_sb);
497 	return ret;
498 }
499 EXPORT_SYMBOL_GPL(mnt_want_write);
500 
501 /**
502  * mnt_get_write_access_file - get write access to a file's mount
503  * @file: the file who's mount on which to take a write
504  *
505  * This is like mnt_get_write_access, but if @file is already open for write it
506  * skips incrementing mnt_writers (since the open file already has a reference)
507  * and instead only does the check for emergency r/o remounts.  This must be
508  * paired with mnt_put_write_access_file.
509  */
510 int mnt_get_write_access_file(struct file *file)
511 {
512 	if (file->f_mode & FMODE_WRITER) {
513 		/*
514 		 * Superblock may have become readonly while there are still
515 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
516 		 */
517 		if (__mnt_is_readonly(file->f_path.mnt))
518 			return -EROFS;
519 		return 0;
520 	}
521 	return mnt_get_write_access(file->f_path.mnt);
522 }
523 
524 /**
525  * mnt_want_write_file - get write access to a file's mount
526  * @file: the file who's mount on which to take a write
527  *
528  * This is like mnt_want_write, but if the file is already open for writing it
529  * skips incrementing mnt_writers (since the open file already has a reference)
530  * and instead only does the freeze protection and the check for emergency r/o
531  * remounts.  This must be paired with mnt_drop_write_file.
532  */
533 int mnt_want_write_file(struct file *file)
534 {
535 	int ret;
536 
537 	sb_start_write(file_inode(file)->i_sb);
538 	ret = mnt_get_write_access_file(file);
539 	if (ret)
540 		sb_end_write(file_inode(file)->i_sb);
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(mnt_want_write_file);
544 
545 /**
546  * mnt_put_write_access - give up write access to a mount
547  * @mnt: the mount on which to give up write access
548  *
549  * Tells the low-level filesystem that we are done
550  * performing writes to it.  Must be matched with
551  * mnt_get_write_access() call above.
552  */
553 void mnt_put_write_access(struct vfsmount *mnt)
554 {
555 	preempt_disable();
556 	mnt_dec_writers(real_mount(mnt));
557 	preempt_enable();
558 }
559 EXPORT_SYMBOL_GPL(mnt_put_write_access);
560 
561 /**
562  * mnt_drop_write - give up write access to a mount
563  * @mnt: the mount on which to give up write access
564  *
565  * Tells the low-level filesystem that we are done performing writes to it and
566  * also allows filesystem to be frozen again.  Must be matched with
567  * mnt_want_write() call above.
568  */
569 void mnt_drop_write(struct vfsmount *mnt)
570 {
571 	mnt_put_write_access(mnt);
572 	sb_end_write(mnt->mnt_sb);
573 }
574 EXPORT_SYMBOL_GPL(mnt_drop_write);
575 
576 void mnt_put_write_access_file(struct file *file)
577 {
578 	if (!(file->f_mode & FMODE_WRITER))
579 		mnt_put_write_access(file->f_path.mnt);
580 }
581 
582 void mnt_drop_write_file(struct file *file)
583 {
584 	mnt_put_write_access_file(file);
585 	sb_end_write(file_inode(file)->i_sb);
586 }
587 EXPORT_SYMBOL(mnt_drop_write_file);
588 
589 /**
590  * mnt_hold_writers - prevent write access to the given mount
591  * @mnt: mnt to prevent write access to
592  *
593  * Prevents write access to @mnt if there are no active writers for @mnt.
594  * This function needs to be called and return successfully before changing
595  * properties of @mnt that need to remain stable for callers with write access
596  * to @mnt.
597  *
598  * After this functions has been called successfully callers must pair it with
599  * a call to mnt_unhold_writers() in order to stop preventing write access to
600  * @mnt.
601  *
602  * Context: This function expects to be in mount_locked_reader scope serializing
603  *          setting WRITE_HOLD.
604  * Return: On success 0 is returned.
605  *	   On error, -EBUSY is returned.
606  */
607 static inline int mnt_hold_writers(struct mount *mnt)
608 {
609 	set_write_hold(mnt);
610 	/*
611 	 * After storing WRITE_HOLD, we'll read the counters. This store
612 	 * should be visible before we do.
613 	 */
614 	smp_mb();
615 
616 	/*
617 	 * With writers on hold, if this value is zero, then there are
618 	 * definitely no active writers (although held writers may subsequently
619 	 * increment the count, they'll have to wait, and decrement it after
620 	 * seeing MNT_READONLY).
621 	 *
622 	 * It is OK to have counter incremented on one CPU and decremented on
623 	 * another: the sum will add up correctly. The danger would be when we
624 	 * sum up each counter, if we read a counter before it is incremented,
625 	 * but then read another CPU's count which it has been subsequently
626 	 * decremented from -- we would see more decrements than we should.
627 	 * WRITE_HOLD protects against this scenario, because
628 	 * mnt_want_write first increments count, then smp_mb, then spins on
629 	 * WRITE_HOLD, so it can't be decremented by another CPU while
630 	 * we're counting up here.
631 	 */
632 	if (mnt_get_writers(mnt) > 0)
633 		return -EBUSY;
634 
635 	return 0;
636 }
637 
638 /**
639  * mnt_unhold_writers - stop preventing write access to the given mount
640  * @mnt: mnt to stop preventing write access to
641  *
642  * Stop preventing write access to @mnt allowing callers to gain write access
643  * to @mnt again.
644  *
645  * This function can only be called after a call to mnt_hold_writers().
646  *
647  * Context: This function expects to be in the same mount_locked_reader scope
648  * as the matching mnt_hold_writers().
649  */
650 static inline void mnt_unhold_writers(struct mount *mnt)
651 {
652 	if (!test_write_hold(mnt))
653 		return;
654 	/*
655 	 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
656 	 * that become unheld will see MNT_READONLY.
657 	 */
658 	smp_wmb();
659 	clear_write_hold(mnt);
660 }
661 
662 static inline void mnt_del_instance(struct mount *m)
663 {
664 	struct mount **p = m->mnt_pprev_for_sb;
665 	struct mount *next = m->mnt_next_for_sb;
666 
667 	if (next)
668 		next->mnt_pprev_for_sb = p;
669 	*p = next;
670 }
671 
672 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
673 {
674 	struct mount *first = s->s_mounts;
675 
676 	if (first)
677 		first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
678 	m->mnt_next_for_sb = first;
679 	m->mnt_pprev_for_sb = &s->s_mounts;
680 	s->s_mounts = m;
681 }
682 
683 static int mnt_make_readonly(struct mount *mnt)
684 {
685 	int ret;
686 
687 	ret = mnt_hold_writers(mnt);
688 	if (!ret)
689 		mnt->mnt.mnt_flags |= MNT_READONLY;
690 	mnt_unhold_writers(mnt);
691 	return ret;
692 }
693 
694 int sb_prepare_remount_readonly(struct super_block *sb)
695 {
696 	int err = 0;
697 
698 	/* Racy optimization.  Recheck the counter under WRITE_HOLD */
699 	if (atomic_long_read(&sb->s_remove_count))
700 		return -EBUSY;
701 
702 	guard(mount_locked_reader)();
703 
704 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
705 		if (!(m->mnt.mnt_flags & MNT_READONLY)) {
706 			err = mnt_hold_writers(m);
707 			if (err)
708 				break;
709 		}
710 	}
711 	if (!err && atomic_long_read(&sb->s_remove_count))
712 		err = -EBUSY;
713 
714 	if (!err)
715 		sb_start_ro_state_change(sb);
716 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
717 		if (test_write_hold(m))
718 			clear_write_hold(m);
719 	}
720 
721 	return err;
722 }
723 
724 static void free_vfsmnt(struct mount *mnt)
725 {
726 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
727 	kfree_const(mnt->mnt_devname);
728 #ifdef CONFIG_SMP
729 	free_percpu(mnt->mnt_pcp);
730 #endif
731 	kmem_cache_free(mnt_cache, mnt);
732 }
733 
734 static void delayed_free_vfsmnt(struct rcu_head *head)
735 {
736 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
737 }
738 
739 /* call under rcu_read_lock */
740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
741 {
742 	struct mount *mnt;
743 	if (read_seqretry(&mount_lock, seq))
744 		return 1;
745 	if (bastard == NULL)
746 		return 0;
747 	mnt = real_mount(bastard);
748 	mnt_add_count(mnt, 1);
749 	smp_mb();		// see mntput_no_expire() and do_umount()
750 	if (likely(!read_seqretry(&mount_lock, seq)))
751 		return 0;
752 	lock_mount_hash();
753 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
754 		mnt_add_count(mnt, -1);
755 		unlock_mount_hash();
756 		return 1;
757 	}
758 	unlock_mount_hash();
759 	/* caller will mntput() */
760 	return -1;
761 }
762 
763 /* call under rcu_read_lock */
764 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
765 {
766 	int res = __legitimize_mnt(bastard, seq);
767 	if (likely(!res))
768 		return true;
769 	if (unlikely(res < 0)) {
770 		rcu_read_unlock();
771 		mntput(bastard);
772 		rcu_read_lock();
773 	}
774 	return false;
775 }
776 
777 /**
778  * __lookup_mnt - mount hash lookup
779  * @mnt:	parent mount
780  * @dentry:	dentry of mountpoint
781  *
782  * If @mnt has a child mount @c mounted on @dentry find and return it.
783  * Caller must either hold the spinlock component of @mount_lock or
784  * hold rcu_read_lock(), sample the seqcount component before the call
785  * and recheck it afterwards.
786  *
787  * Return: The child of @mnt mounted on @dentry or %NULL.
788  */
789 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
790 {
791 	struct hlist_head *head = m_hash(mnt, dentry);
792 	struct mount *p;
793 
794 	hlist_for_each_entry_rcu(p, head, mnt_hash)
795 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
796 			return p;
797 	return NULL;
798 }
799 
800 /**
801  * lookup_mnt - Return the child mount mounted at given location
802  * @path:	location in the namespace
803  *
804  * Acquires and returns a new reference to mount at given location
805  * or %NULL if nothing is mounted there.
806  */
807 struct vfsmount *lookup_mnt(const struct path *path)
808 {
809 	struct mount *child_mnt;
810 	struct vfsmount *m;
811 	unsigned seq;
812 
813 	rcu_read_lock();
814 	do {
815 		seq = read_seqbegin(&mount_lock);
816 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
817 		m = child_mnt ? &child_mnt->mnt : NULL;
818 	} while (!legitimize_mnt(m, seq));
819 	rcu_read_unlock();
820 	return m;
821 }
822 
823 /*
824  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
825  *                         current mount namespace.
826  *
827  * The common case is dentries are not mountpoints at all and that
828  * test is handled inline.  For the slow case when we are actually
829  * dealing with a mountpoint of some kind, walk through all of the
830  * mounts in the current mount namespace and test to see if the dentry
831  * is a mountpoint.
832  *
833  * The mount_hashtable is not usable in the context because we
834  * need to identify all mounts that may be in the current mount
835  * namespace not just a mount that happens to have some specified
836  * parent mount.
837  */
838 bool __is_local_mountpoint(const struct dentry *dentry)
839 {
840 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
841 	struct mount *mnt, *n;
842 
843 	guard(namespace_shared)();
844 
845 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
846 		if (mnt->mnt_mountpoint == dentry)
847 			return true;
848 
849 	return false;
850 }
851 
852 struct pinned_mountpoint {
853 	struct hlist_node node;
854 	struct mountpoint *mp;
855 	struct mount *parent;
856 };
857 
858 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
859 {
860 	struct hlist_head *chain = mp_hash(dentry);
861 	struct mountpoint *mp;
862 
863 	hlist_for_each_entry(mp, chain, m_hash) {
864 		if (mp->m_dentry == dentry) {
865 			hlist_add_head(&m->node, &mp->m_list);
866 			m->mp = mp;
867 			return true;
868 		}
869 	}
870 	return false;
871 }
872 
873 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
874 {
875 	struct mountpoint *mp __free(kfree) = NULL;
876 	bool found;
877 	int ret;
878 
879 	if (d_mountpoint(dentry)) {
880 		/* might be worth a WARN_ON() */
881 		if (d_unlinked(dentry))
882 			return -ENOENT;
883 mountpoint:
884 		read_seqlock_excl(&mount_lock);
885 		found = lookup_mountpoint(dentry, m);
886 		read_sequnlock_excl(&mount_lock);
887 		if (found)
888 			return 0;
889 	}
890 
891 	if (!mp)
892 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
893 	if (!mp)
894 		return -ENOMEM;
895 
896 	/* Exactly one processes may set d_mounted */
897 	ret = d_set_mounted(dentry);
898 
899 	/* Someone else set d_mounted? */
900 	if (ret == -EBUSY)
901 		goto mountpoint;
902 
903 	/* The dentry is not available as a mountpoint? */
904 	if (ret)
905 		return ret;
906 
907 	/* Add the new mountpoint to the hash table */
908 	read_seqlock_excl(&mount_lock);
909 	mp->m_dentry = dget(dentry);
910 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
911 	INIT_HLIST_HEAD(&mp->m_list);
912 	hlist_add_head(&m->node, &mp->m_list);
913 	m->mp = no_free_ptr(mp);
914 	read_sequnlock_excl(&mount_lock);
915 	return 0;
916 }
917 
918 /*
919  * vfsmount lock must be held.  Additionally, the caller is responsible
920  * for serializing calls for given disposal list.
921  */
922 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
923 {
924 	if (hlist_empty(&mp->m_list)) {
925 		struct dentry *dentry = mp->m_dentry;
926 		spin_lock(&dentry->d_lock);
927 		dentry->d_flags &= ~DCACHE_MOUNTED;
928 		spin_unlock(&dentry->d_lock);
929 		dput_to_list(dentry, list);
930 		hlist_del(&mp->m_hash);
931 		kfree(mp);
932 	}
933 }
934 
935 /*
936  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
937  */
938 static void unpin_mountpoint(struct pinned_mountpoint *m)
939 {
940 	if (m->mp) {
941 		hlist_del(&m->node);
942 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
943 	}
944 }
945 
946 static inline int check_mnt(const struct mount *mnt)
947 {
948 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
949 }
950 
951 static inline bool check_anonymous_mnt(struct mount *mnt)
952 {
953 	u64 seq;
954 
955 	if (!is_anon_ns(mnt->mnt_ns))
956 		return false;
957 
958 	seq = mnt->mnt_ns->seq_origin;
959 	return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
960 }
961 
962 /*
963  * vfsmount lock must be held for write
964  */
965 static void touch_mnt_namespace(struct mnt_namespace *ns)
966 {
967 	if (ns) {
968 		ns->event = ++event;
969 		wake_up_interruptible(&ns->poll);
970 	}
971 }
972 
973 /*
974  * vfsmount lock must be held for write
975  */
976 static void __touch_mnt_namespace(struct mnt_namespace *ns)
977 {
978 	if (ns && ns->event != event) {
979 		ns->event = event;
980 		wake_up_interruptible(&ns->poll);
981 	}
982 }
983 
984 /*
985  * locks: mount_lock[write_seqlock]
986  */
987 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
988 {
989 	struct mountpoint *mp;
990 	struct mount *parent = mnt->mnt_parent;
991 	if (unlikely(parent->overmount == mnt))
992 		parent->overmount = NULL;
993 	mnt->mnt_parent = mnt;
994 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
995 	list_del_init(&mnt->mnt_child);
996 	hlist_del_init_rcu(&mnt->mnt_hash);
997 	hlist_del_init(&mnt->mnt_mp_list);
998 	mp = mnt->mnt_mp;
999 	mnt->mnt_mp = NULL;
1000 	maybe_free_mountpoint(mp, shrink_list);
1001 }
1002 
1003 /*
1004  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1005  */
1006 static void umount_mnt(struct mount *mnt)
1007 {
1008 	__umount_mnt(mnt, &ex_mountpoints);
1009 }
1010 
1011 /*
1012  * vfsmount lock must be held for write
1013  */
1014 void mnt_set_mountpoint(struct mount *mnt,
1015 			struct mountpoint *mp,
1016 			struct mount *child_mnt)
1017 {
1018 	child_mnt->mnt_mountpoint = mp->m_dentry;
1019 	child_mnt->mnt_parent = mnt;
1020 	child_mnt->mnt_mp = mp;
1021 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1022 }
1023 
1024 static void make_visible(struct mount *mnt)
1025 {
1026 	struct mount *parent = mnt->mnt_parent;
1027 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1028 		parent->overmount = mnt;
1029 	hlist_add_head_rcu(&mnt->mnt_hash,
1030 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1031 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1032 }
1033 
1034 /**
1035  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1036  *              list of child mounts
1037  * @parent:  the parent
1038  * @mnt:     the new mount
1039  * @mp:      the new mountpoint
1040  *
1041  * Mount @mnt at @mp on @parent. Then attach @mnt
1042  * to @parent's child mount list and to @mount_hashtable.
1043  *
1044  * Note, when make_visible() is called @mnt->mnt_parent already points
1045  * to the correct parent.
1046  *
1047  * Context: This function expects namespace_lock() and lock_mount_hash()
1048  *          to have been acquired in that order.
1049  */
1050 static void attach_mnt(struct mount *mnt, struct mount *parent,
1051 		       struct mountpoint *mp)
1052 {
1053 	mnt_set_mountpoint(parent, mp, mnt);
1054 	make_visible(mnt);
1055 }
1056 
1057 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1058 {
1059 	struct mountpoint *old_mp = mnt->mnt_mp;
1060 
1061 	list_del_init(&mnt->mnt_child);
1062 	hlist_del_init(&mnt->mnt_mp_list);
1063 	hlist_del_init_rcu(&mnt->mnt_hash);
1064 
1065 	attach_mnt(mnt, parent, mp);
1066 
1067 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1068 }
1069 
1070 static inline struct mount *node_to_mount(struct rb_node *node)
1071 {
1072 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1073 }
1074 
1075 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1076 {
1077 	struct rb_node **link = &ns->mounts.rb_node;
1078 	struct rb_node *parent = NULL;
1079 	bool mnt_first_node = true, mnt_last_node = true;
1080 
1081 	WARN_ON(mnt_ns_attached(mnt));
1082 	mnt->mnt_ns = ns;
1083 	while (*link) {
1084 		parent = *link;
1085 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1086 			link = &parent->rb_left;
1087 			mnt_last_node = false;
1088 		} else {
1089 			link = &parent->rb_right;
1090 			mnt_first_node = false;
1091 		}
1092 	}
1093 
1094 	if (mnt_last_node)
1095 		ns->mnt_last_node = &mnt->mnt_node;
1096 	if (mnt_first_node)
1097 		ns->mnt_first_node = &mnt->mnt_node;
1098 	rb_link_node(&mnt->mnt_node, parent, link);
1099 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1100 
1101 	mnt_notify_add(mnt);
1102 }
1103 
1104 static struct mount *next_mnt(struct mount *p, struct mount *root)
1105 {
1106 	struct list_head *next = p->mnt_mounts.next;
1107 	if (next == &p->mnt_mounts) {
1108 		while (1) {
1109 			if (p == root)
1110 				return NULL;
1111 			next = p->mnt_child.next;
1112 			if (next != &p->mnt_parent->mnt_mounts)
1113 				break;
1114 			p = p->mnt_parent;
1115 		}
1116 	}
1117 	return list_entry(next, struct mount, mnt_child);
1118 }
1119 
1120 static struct mount *skip_mnt_tree(struct mount *p)
1121 {
1122 	struct list_head *prev = p->mnt_mounts.prev;
1123 	while (prev != &p->mnt_mounts) {
1124 		p = list_entry(prev, struct mount, mnt_child);
1125 		prev = p->mnt_mounts.prev;
1126 	}
1127 	return p;
1128 }
1129 
1130 /*
1131  * vfsmount lock must be held for write
1132  */
1133 static void commit_tree(struct mount *mnt)
1134 {
1135 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1136 
1137 	if (!mnt_ns_attached(mnt)) {
1138 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1139 			mnt_add_to_ns(n, m);
1140 		n->nr_mounts += n->pending_mounts;
1141 		n->pending_mounts = 0;
1142 	}
1143 
1144 	make_visible(mnt);
1145 	touch_mnt_namespace(n);
1146 }
1147 
1148 static void setup_mnt(struct mount *m, struct dentry *root)
1149 {
1150 	struct super_block *s = root->d_sb;
1151 
1152 	atomic_inc(&s->s_active);
1153 	m->mnt.mnt_sb = s;
1154 	m->mnt.mnt_root = dget(root);
1155 	m->mnt_mountpoint = m->mnt.mnt_root;
1156 	m->mnt_parent = m;
1157 
1158 	guard(mount_locked_reader)();
1159 	mnt_add_instance(m, s);
1160 }
1161 
1162 /**
1163  * vfs_create_mount - Create a mount for a configured superblock
1164  * @fc: The configuration context with the superblock attached
1165  *
1166  * Create a mount to an already configured superblock.  If necessary, the
1167  * caller should invoke vfs_get_tree() before calling this.
1168  *
1169  * Note that this does not attach the mount to anything.
1170  */
1171 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1172 {
1173 	struct mount *mnt;
1174 
1175 	if (!fc->root)
1176 		return ERR_PTR(-EINVAL);
1177 
1178 	mnt = alloc_vfsmnt(fc->source);
1179 	if (!mnt)
1180 		return ERR_PTR(-ENOMEM);
1181 
1182 	if (fc->sb_flags & SB_KERNMOUNT)
1183 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1184 
1185 	setup_mnt(mnt, fc->root);
1186 
1187 	return &mnt->mnt;
1188 }
1189 EXPORT_SYMBOL(vfs_create_mount);
1190 
1191 struct vfsmount *fc_mount(struct fs_context *fc)
1192 {
1193 	int err = vfs_get_tree(fc);
1194 	if (!err) {
1195 		up_write(&fc->root->d_sb->s_umount);
1196 		return vfs_create_mount(fc);
1197 	}
1198 	return ERR_PTR(err);
1199 }
1200 EXPORT_SYMBOL(fc_mount);
1201 
1202 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1203 {
1204 	struct vfsmount *mnt = fc_mount(fc);
1205 	if (!IS_ERR(mnt))
1206 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1207 	return mnt;
1208 }
1209 EXPORT_SYMBOL(fc_mount_longterm);
1210 
1211 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1212 				int flags, const char *name,
1213 				void *data)
1214 {
1215 	struct fs_context *fc;
1216 	struct vfsmount *mnt;
1217 	int ret = 0;
1218 
1219 	if (!type)
1220 		return ERR_PTR(-EINVAL);
1221 
1222 	fc = fs_context_for_mount(type, flags);
1223 	if (IS_ERR(fc))
1224 		return ERR_CAST(fc);
1225 
1226 	if (name)
1227 		ret = vfs_parse_fs_string(fc, "source", name);
1228 	if (!ret)
1229 		ret = parse_monolithic_mount_data(fc, data);
1230 	if (!ret)
1231 		mnt = fc_mount(fc);
1232 	else
1233 		mnt = ERR_PTR(ret);
1234 
1235 	put_fs_context(fc);
1236 	return mnt;
1237 }
1238 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1239 
1240 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1241 					int flag)
1242 {
1243 	struct mount *mnt;
1244 	int err;
1245 
1246 	mnt = alloc_vfsmnt(old->mnt_devname);
1247 	if (!mnt)
1248 		return ERR_PTR(-ENOMEM);
1249 
1250 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1251 			     ~MNT_INTERNAL_FLAGS;
1252 
1253 	if (flag & (CL_SLAVE | CL_PRIVATE))
1254 		mnt->mnt_group_id = 0; /* not a peer of original */
1255 	else
1256 		mnt->mnt_group_id = old->mnt_group_id;
1257 
1258 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1259 		err = mnt_alloc_group_id(mnt);
1260 		if (err)
1261 			goto out_free;
1262 	}
1263 
1264 	if (mnt->mnt_group_id)
1265 		set_mnt_shared(mnt);
1266 
1267 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1268 
1269 	setup_mnt(mnt, root);
1270 
1271 	if (flag & CL_PRIVATE)	// we are done with it
1272 		return mnt;
1273 
1274 	if (peers(mnt, old))
1275 		list_add(&mnt->mnt_share, &old->mnt_share);
1276 
1277 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1278 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1279 		mnt->mnt_master = old;
1280 	} else if (IS_MNT_SLAVE(old)) {
1281 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1282 		mnt->mnt_master = old->mnt_master;
1283 	}
1284 	return mnt;
1285 
1286  out_free:
1287 	mnt_free_id(mnt);
1288 	free_vfsmnt(mnt);
1289 	return ERR_PTR(err);
1290 }
1291 
1292 static void cleanup_mnt(struct mount *mnt)
1293 {
1294 	struct hlist_node *p;
1295 	struct mount *m;
1296 	/*
1297 	 * The warning here probably indicates that somebody messed
1298 	 * up a mnt_want/drop_write() pair.  If this happens, the
1299 	 * filesystem was probably unable to make r/w->r/o transitions.
1300 	 * The locking used to deal with mnt_count decrement provides barriers,
1301 	 * so mnt_get_writers() below is safe.
1302 	 */
1303 	WARN_ON(mnt_get_writers(mnt));
1304 	if (unlikely(mnt->mnt_pins.first))
1305 		mnt_pin_kill(mnt);
1306 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1307 		hlist_del(&m->mnt_umount);
1308 		mntput(&m->mnt);
1309 	}
1310 	fsnotify_vfsmount_delete(&mnt->mnt);
1311 	dput(mnt->mnt.mnt_root);
1312 	deactivate_super(mnt->mnt.mnt_sb);
1313 	mnt_free_id(mnt);
1314 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1315 }
1316 
1317 static void __cleanup_mnt(struct rcu_head *head)
1318 {
1319 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1320 }
1321 
1322 static LLIST_HEAD(delayed_mntput_list);
1323 static void delayed_mntput(struct work_struct *unused)
1324 {
1325 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1326 	struct mount *m, *t;
1327 
1328 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1329 		cleanup_mnt(m);
1330 }
1331 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1332 
1333 static void noinline mntput_no_expire_slowpath(struct mount *mnt)
1334 {
1335 	LIST_HEAD(list);
1336 	int count;
1337 
1338 	VFS_BUG_ON(mnt->mnt_ns);
1339 	lock_mount_hash();
1340 	/*
1341 	 * make sure that if __legitimize_mnt() has not seen us grab
1342 	 * mount_lock, we'll see their refcount increment here.
1343 	 */
1344 	smp_mb();
1345 	mnt_add_count(mnt, -1);
1346 	count = mnt_get_count(mnt);
1347 	if (count != 0) {
1348 		WARN_ON(count < 0);
1349 		rcu_read_unlock();
1350 		unlock_mount_hash();
1351 		return;
1352 	}
1353 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1354 		rcu_read_unlock();
1355 		unlock_mount_hash();
1356 		return;
1357 	}
1358 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1359 	rcu_read_unlock();
1360 
1361 	mnt_del_instance(mnt);
1362 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1363 		list_del(&mnt->mnt_expire);
1364 
1365 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1366 		struct mount *p, *tmp;
1367 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1368 			__umount_mnt(p, &list);
1369 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1370 		}
1371 	}
1372 	unlock_mount_hash();
1373 	shrink_dentry_list(&list);
1374 
1375 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1376 		struct task_struct *task = current;
1377 		if (likely(!(task->flags & PF_KTHREAD))) {
1378 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1379 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1380 				return;
1381 		}
1382 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1383 			schedule_delayed_work(&delayed_mntput_work, 1);
1384 		return;
1385 	}
1386 	cleanup_mnt(mnt);
1387 }
1388 
1389 static void mntput_no_expire(struct mount *mnt)
1390 {
1391 	rcu_read_lock();
1392 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1393 		/*
1394 		 * Since we don't do lock_mount_hash() here,
1395 		 * ->mnt_ns can change under us.  However, if it's
1396 		 * non-NULL, then there's a reference that won't
1397 		 * be dropped until after an RCU delay done after
1398 		 * turning ->mnt_ns NULL.  So if we observe it
1399 		 * non-NULL under rcu_read_lock(), the reference
1400 		 * we are dropping is not the final one.
1401 		 */
1402 		mnt_add_count(mnt, -1);
1403 		rcu_read_unlock();
1404 		return;
1405 	}
1406 	mntput_no_expire_slowpath(mnt);
1407 }
1408 
1409 void mntput(struct vfsmount *mnt)
1410 {
1411 	if (mnt) {
1412 		struct mount *m = real_mount(mnt);
1413 		/* avoid cacheline pingpong */
1414 		if (unlikely(m->mnt_expiry_mark))
1415 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1416 		mntput_no_expire(m);
1417 	}
1418 }
1419 EXPORT_SYMBOL(mntput);
1420 
1421 struct vfsmount *mntget(struct vfsmount *mnt)
1422 {
1423 	if (mnt)
1424 		mnt_add_count(real_mount(mnt), 1);
1425 	return mnt;
1426 }
1427 EXPORT_SYMBOL(mntget);
1428 
1429 /*
1430  * Make a mount point inaccessible to new lookups.
1431  * Because there may still be current users, the caller MUST WAIT
1432  * for an RCU grace period before destroying the mount point.
1433  */
1434 void mnt_make_shortterm(struct vfsmount *mnt)
1435 {
1436 	if (mnt)
1437 		real_mount(mnt)->mnt_ns = NULL;
1438 }
1439 
1440 /**
1441  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1442  * @path: path to check
1443  *
1444  *  d_mountpoint() can only be used reliably to establish if a dentry is
1445  *  not mounted in any namespace and that common case is handled inline.
1446  *  d_mountpoint() isn't aware of the possibility there may be multiple
1447  *  mounts using a given dentry in a different namespace. This function
1448  *  checks if the passed in path is a mountpoint rather than the dentry
1449  *  alone.
1450  */
1451 bool path_is_mountpoint(const struct path *path)
1452 {
1453 	unsigned seq;
1454 	bool res;
1455 
1456 	if (!d_mountpoint(path->dentry))
1457 		return false;
1458 
1459 	rcu_read_lock();
1460 	do {
1461 		seq = read_seqbegin(&mount_lock);
1462 		res = __path_is_mountpoint(path);
1463 	} while (read_seqretry(&mount_lock, seq));
1464 	rcu_read_unlock();
1465 
1466 	return res;
1467 }
1468 EXPORT_SYMBOL(path_is_mountpoint);
1469 
1470 struct vfsmount *mnt_clone_internal(const struct path *path)
1471 {
1472 	struct mount *p;
1473 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1474 	if (IS_ERR(p))
1475 		return ERR_CAST(p);
1476 	p->mnt.mnt_flags |= MNT_INTERNAL;
1477 	return &p->mnt;
1478 }
1479 
1480 /*
1481  * Returns the mount which either has the specified mnt_id, or has the next
1482  * smallest id afer the specified one.
1483  */
1484 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1485 {
1486 	struct rb_node *node = ns->mounts.rb_node;
1487 	struct mount *ret = NULL;
1488 
1489 	while (node) {
1490 		struct mount *m = node_to_mount(node);
1491 
1492 		if (mnt_id <= m->mnt_id_unique) {
1493 			ret = node_to_mount(node);
1494 			if (mnt_id == m->mnt_id_unique)
1495 				break;
1496 			node = node->rb_left;
1497 		} else {
1498 			node = node->rb_right;
1499 		}
1500 	}
1501 	return ret;
1502 }
1503 
1504 /*
1505  * Returns the mount which either has the specified mnt_id, or has the next
1506  * greater id before the specified one.
1507  */
1508 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1509 {
1510 	struct rb_node *node = ns->mounts.rb_node;
1511 	struct mount *ret = NULL;
1512 
1513 	while (node) {
1514 		struct mount *m = node_to_mount(node);
1515 
1516 		if (mnt_id >= m->mnt_id_unique) {
1517 			ret = node_to_mount(node);
1518 			if (mnt_id == m->mnt_id_unique)
1519 				break;
1520 			node = node->rb_right;
1521 		} else {
1522 			node = node->rb_left;
1523 		}
1524 	}
1525 	return ret;
1526 }
1527 
1528 #ifdef CONFIG_PROC_FS
1529 
1530 /* iterator; we want it to have access to namespace_sem, thus here... */
1531 static void *m_start(struct seq_file *m, loff_t *pos)
1532 {
1533 	struct proc_mounts *p = m->private;
1534 
1535 	down_read(&namespace_sem);
1536 
1537 	return mnt_find_id_at(p->ns, *pos);
1538 }
1539 
1540 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1541 {
1542 	struct mount *next = NULL, *mnt = v;
1543 	struct rb_node *node = rb_next(&mnt->mnt_node);
1544 
1545 	++*pos;
1546 	if (node) {
1547 		next = node_to_mount(node);
1548 		*pos = next->mnt_id_unique;
1549 	}
1550 	return next;
1551 }
1552 
1553 static void m_stop(struct seq_file *m, void *v)
1554 {
1555 	up_read(&namespace_sem);
1556 }
1557 
1558 static int m_show(struct seq_file *m, void *v)
1559 {
1560 	struct proc_mounts *p = m->private;
1561 	struct mount *r = v;
1562 	return p->show(m, &r->mnt);
1563 }
1564 
1565 const struct seq_operations mounts_op = {
1566 	.start	= m_start,
1567 	.next	= m_next,
1568 	.stop	= m_stop,
1569 	.show	= m_show,
1570 };
1571 
1572 #endif  /* CONFIG_PROC_FS */
1573 
1574 /**
1575  * may_umount_tree - check if a mount tree is busy
1576  * @m: root of mount tree
1577  *
1578  * This is called to check if a tree of mounts has any
1579  * open files, pwds, chroots or sub mounts that are
1580  * busy.
1581  */
1582 int may_umount_tree(struct vfsmount *m)
1583 {
1584 	struct mount *mnt = real_mount(m);
1585 	bool busy = false;
1586 
1587 	/* write lock needed for mnt_get_count */
1588 	lock_mount_hash();
1589 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1590 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1591 			busy = true;
1592 			break;
1593 		}
1594 	}
1595 	unlock_mount_hash();
1596 
1597 	return !busy;
1598 }
1599 
1600 EXPORT_SYMBOL(may_umount_tree);
1601 
1602 /**
1603  * may_umount - check if a mount point is busy
1604  * @mnt: root of mount
1605  *
1606  * This is called to check if a mount point has any
1607  * open files, pwds, chroots or sub mounts. If the
1608  * mount has sub mounts this will return busy
1609  * regardless of whether the sub mounts are busy.
1610  *
1611  * Doesn't take quota and stuff into account. IOW, in some cases it will
1612  * give false negatives. The main reason why it's here is that we need
1613  * a non-destructive way to look for easily umountable filesystems.
1614  */
1615 int may_umount(struct vfsmount *mnt)
1616 {
1617 	int ret = 1;
1618 	down_read(&namespace_sem);
1619 	lock_mount_hash();
1620 	if (propagate_mount_busy(real_mount(mnt), 2))
1621 		ret = 0;
1622 	unlock_mount_hash();
1623 	up_read(&namespace_sem);
1624 	return ret;
1625 }
1626 
1627 EXPORT_SYMBOL(may_umount);
1628 
1629 #ifdef CONFIG_FSNOTIFY
1630 static void mnt_notify(struct mount *p)
1631 {
1632 	if (!p->prev_ns && p->mnt_ns) {
1633 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1634 	} else if (p->prev_ns && !p->mnt_ns) {
1635 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1636 	} else if (p->prev_ns == p->mnt_ns) {
1637 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1638 	} else {
1639 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1640 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1641 	}
1642 	p->prev_ns = p->mnt_ns;
1643 }
1644 
1645 static void notify_mnt_list(void)
1646 {
1647 	struct mount *m, *tmp;
1648 	/*
1649 	 * Notify about mounts that were added/reparented/detached/remain
1650 	 * connected after unmount.
1651 	 */
1652 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1653 		mnt_notify(m);
1654 		list_del_init(&m->to_notify);
1655 	}
1656 }
1657 
1658 static bool need_notify_mnt_list(void)
1659 {
1660 	return !list_empty(&notify_list);
1661 }
1662 #else
1663 static void notify_mnt_list(void)
1664 {
1665 }
1666 
1667 static bool need_notify_mnt_list(void)
1668 {
1669 	return false;
1670 }
1671 #endif
1672 
1673 static void free_mnt_ns(struct mnt_namespace *);
1674 static void namespace_unlock(void)
1675 {
1676 	struct hlist_head head;
1677 	struct hlist_node *p;
1678 	struct mount *m;
1679 	struct mnt_namespace *ns = emptied_ns;
1680 	LIST_HEAD(list);
1681 
1682 	hlist_move_list(&unmounted, &head);
1683 	list_splice_init(&ex_mountpoints, &list);
1684 	emptied_ns = NULL;
1685 
1686 	if (need_notify_mnt_list()) {
1687 		/*
1688 		 * No point blocking out concurrent readers while notifications
1689 		 * are sent. This will also allow statmount()/listmount() to run
1690 		 * concurrently.
1691 		 */
1692 		downgrade_write(&namespace_sem);
1693 		notify_mnt_list();
1694 		up_read(&namespace_sem);
1695 	} else {
1696 		up_write(&namespace_sem);
1697 	}
1698 	if (unlikely(ns)) {
1699 		/* Make sure we notice when we leak mounts. */
1700 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1701 		free_mnt_ns(ns);
1702 	}
1703 
1704 	shrink_dentry_list(&list);
1705 
1706 	if (likely(hlist_empty(&head)))
1707 		return;
1708 
1709 	synchronize_rcu_expedited();
1710 
1711 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1712 		hlist_del(&m->mnt_umount);
1713 		mntput(&m->mnt);
1714 	}
1715 }
1716 
1717 static inline void namespace_lock(void)
1718 {
1719 	down_write(&namespace_sem);
1720 }
1721 
1722 enum umount_tree_flags {
1723 	UMOUNT_SYNC = 1,
1724 	UMOUNT_PROPAGATE = 2,
1725 	UMOUNT_CONNECTED = 4,
1726 };
1727 
1728 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1729 {
1730 	/* Leaving mounts connected is only valid for lazy umounts */
1731 	if (how & UMOUNT_SYNC)
1732 		return true;
1733 
1734 	/* A mount without a parent has nothing to be connected to */
1735 	if (!mnt_has_parent(mnt))
1736 		return true;
1737 
1738 	/* Because the reference counting rules change when mounts are
1739 	 * unmounted and connected, umounted mounts may not be
1740 	 * connected to mounted mounts.
1741 	 */
1742 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1743 		return true;
1744 
1745 	/* Has it been requested that the mount remain connected? */
1746 	if (how & UMOUNT_CONNECTED)
1747 		return false;
1748 
1749 	/* Is the mount locked such that it needs to remain connected? */
1750 	if (IS_MNT_LOCKED(mnt))
1751 		return false;
1752 
1753 	/* By default disconnect the mount */
1754 	return true;
1755 }
1756 
1757 /*
1758  * mount_lock must be held
1759  * namespace_sem must be held for write
1760  */
1761 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1762 {
1763 	LIST_HEAD(tmp_list);
1764 	struct mount *p;
1765 
1766 	if (how & UMOUNT_PROPAGATE)
1767 		propagate_mount_unlock(mnt);
1768 
1769 	/* Gather the mounts to umount */
1770 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1771 		p->mnt.mnt_flags |= MNT_UMOUNT;
1772 		if (mnt_ns_attached(p))
1773 			move_from_ns(p);
1774 		list_add_tail(&p->mnt_list, &tmp_list);
1775 	}
1776 
1777 	/* Hide the mounts from mnt_mounts */
1778 	list_for_each_entry(p, &tmp_list, mnt_list) {
1779 		list_del_init(&p->mnt_child);
1780 	}
1781 
1782 	/* Add propagated mounts to the tmp_list */
1783 	if (how & UMOUNT_PROPAGATE)
1784 		propagate_umount(&tmp_list);
1785 
1786 	bulk_make_private(&tmp_list);
1787 
1788 	while (!list_empty(&tmp_list)) {
1789 		struct mnt_namespace *ns;
1790 		bool disconnect;
1791 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1792 		list_del_init(&p->mnt_expire);
1793 		list_del_init(&p->mnt_list);
1794 		ns = p->mnt_ns;
1795 		if (ns) {
1796 			ns->nr_mounts--;
1797 			__touch_mnt_namespace(ns);
1798 		}
1799 		p->mnt_ns = NULL;
1800 		if (how & UMOUNT_SYNC)
1801 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1802 
1803 		disconnect = disconnect_mount(p, how);
1804 		if (mnt_has_parent(p)) {
1805 			if (!disconnect) {
1806 				/* Don't forget about p */
1807 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1808 			} else {
1809 				umount_mnt(p);
1810 			}
1811 		}
1812 		if (disconnect)
1813 			hlist_add_head(&p->mnt_umount, &unmounted);
1814 
1815 		/*
1816 		 * At this point p->mnt_ns is NULL, notification will be queued
1817 		 * only if
1818 		 *
1819 		 *  - p->prev_ns is non-NULL *and*
1820 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1821 		 *
1822 		 * This will preclude queuing the mount if this is a cleanup
1823 		 * after a failed copy_tree() or destruction of an anonymous
1824 		 * namespace, etc.
1825 		 */
1826 		mnt_notify_add(p);
1827 	}
1828 }
1829 
1830 static void shrink_submounts(struct mount *mnt);
1831 
1832 static int do_umount_root(struct super_block *sb)
1833 {
1834 	int ret = 0;
1835 
1836 	down_write(&sb->s_umount);
1837 	if (!sb_rdonly(sb)) {
1838 		struct fs_context *fc;
1839 
1840 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1841 						SB_RDONLY);
1842 		if (IS_ERR(fc)) {
1843 			ret = PTR_ERR(fc);
1844 		} else {
1845 			ret = parse_monolithic_mount_data(fc, NULL);
1846 			if (!ret)
1847 				ret = reconfigure_super(fc);
1848 			put_fs_context(fc);
1849 		}
1850 	}
1851 	up_write(&sb->s_umount);
1852 	return ret;
1853 }
1854 
1855 static int do_umount(struct mount *mnt, int flags)
1856 {
1857 	struct super_block *sb = mnt->mnt.mnt_sb;
1858 	int retval;
1859 
1860 	retval = security_sb_umount(&mnt->mnt, flags);
1861 	if (retval)
1862 		return retval;
1863 
1864 	/*
1865 	 * Allow userspace to request a mountpoint be expired rather than
1866 	 * unmounting unconditionally. Unmount only happens if:
1867 	 *  (1) the mark is already set (the mark is cleared by mntput())
1868 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1869 	 */
1870 	if (flags & MNT_EXPIRE) {
1871 		if (&mnt->mnt == current->fs->root.mnt ||
1872 		    flags & (MNT_FORCE | MNT_DETACH))
1873 			return -EINVAL;
1874 
1875 		/*
1876 		 * probably don't strictly need the lock here if we examined
1877 		 * all race cases, but it's a slowpath.
1878 		 */
1879 		lock_mount_hash();
1880 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1881 			unlock_mount_hash();
1882 			return -EBUSY;
1883 		}
1884 		unlock_mount_hash();
1885 
1886 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1887 			return -EAGAIN;
1888 	}
1889 
1890 	/*
1891 	 * If we may have to abort operations to get out of this
1892 	 * mount, and they will themselves hold resources we must
1893 	 * allow the fs to do things. In the Unix tradition of
1894 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1895 	 * might fail to complete on the first run through as other tasks
1896 	 * must return, and the like. Thats for the mount program to worry
1897 	 * about for the moment.
1898 	 */
1899 
1900 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1901 		sb->s_op->umount_begin(sb);
1902 	}
1903 
1904 	/*
1905 	 * No sense to grab the lock for this test, but test itself looks
1906 	 * somewhat bogus. Suggestions for better replacement?
1907 	 * Ho-hum... In principle, we might treat that as umount + switch
1908 	 * to rootfs. GC would eventually take care of the old vfsmount.
1909 	 * Actually it makes sense, especially if rootfs would contain a
1910 	 * /reboot - static binary that would close all descriptors and
1911 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1912 	 */
1913 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1914 		/*
1915 		 * Special case for "unmounting" root ...
1916 		 * we just try to remount it readonly.
1917 		 */
1918 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1919 			return -EPERM;
1920 		return do_umount_root(sb);
1921 	}
1922 
1923 	namespace_lock();
1924 	lock_mount_hash();
1925 
1926 	/* Repeat the earlier racy checks, now that we are holding the locks */
1927 	retval = -EINVAL;
1928 	if (!check_mnt(mnt))
1929 		goto out;
1930 
1931 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1932 		goto out;
1933 
1934 	if (!mnt_has_parent(mnt)) /* not the absolute root */
1935 		goto out;
1936 
1937 	event++;
1938 	if (flags & MNT_DETACH) {
1939 		umount_tree(mnt, UMOUNT_PROPAGATE);
1940 		retval = 0;
1941 	} else {
1942 		smp_mb(); // paired with __legitimize_mnt()
1943 		shrink_submounts(mnt);
1944 		retval = -EBUSY;
1945 		if (!propagate_mount_busy(mnt, 2)) {
1946 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1947 			retval = 0;
1948 		}
1949 	}
1950 out:
1951 	unlock_mount_hash();
1952 	namespace_unlock();
1953 	return retval;
1954 }
1955 
1956 /*
1957  * __detach_mounts - lazily unmount all mounts on the specified dentry
1958  *
1959  * During unlink, rmdir, and d_drop it is possible to loose the path
1960  * to an existing mountpoint, and wind up leaking the mount.
1961  * detach_mounts allows lazily unmounting those mounts instead of
1962  * leaking them.
1963  *
1964  * The caller may hold dentry->d_inode->i_rwsem.
1965  */
1966 void __detach_mounts(struct dentry *dentry)
1967 {
1968 	struct pinned_mountpoint mp = {};
1969 	struct mount *mnt;
1970 
1971 	guard(namespace_excl)();
1972 	guard(mount_writer)();
1973 
1974 	if (!lookup_mountpoint(dentry, &mp))
1975 		return;
1976 
1977 	event++;
1978 	while (mp.node.next) {
1979 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1980 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1981 			umount_mnt(mnt);
1982 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1983 		}
1984 		else umount_tree(mnt, UMOUNT_CONNECTED);
1985 	}
1986 	unpin_mountpoint(&mp);
1987 }
1988 
1989 /*
1990  * Is the caller allowed to modify his namespace?
1991  */
1992 bool may_mount(void)
1993 {
1994 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1995 }
1996 
1997 static void warn_mandlock(void)
1998 {
1999 	pr_warn_once("=======================================================\n"
2000 		     "WARNING: The mand mount option has been deprecated and\n"
2001 		     "         and is ignored by this kernel. Remove the mand\n"
2002 		     "         option from the mount to silence this warning.\n"
2003 		     "=======================================================\n");
2004 }
2005 
2006 static int can_umount(const struct path *path, int flags)
2007 {
2008 	struct mount *mnt = real_mount(path->mnt);
2009 	struct super_block *sb = path->dentry->d_sb;
2010 
2011 	if (!may_mount())
2012 		return -EPERM;
2013 	if (!path_mounted(path))
2014 		return -EINVAL;
2015 	if (!check_mnt(mnt))
2016 		return -EINVAL;
2017 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2018 		return -EINVAL;
2019 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2020 		return -EPERM;
2021 	return 0;
2022 }
2023 
2024 // caller is responsible for flags being sane
2025 int path_umount(const struct path *path, int flags)
2026 {
2027 	struct mount *mnt = real_mount(path->mnt);
2028 	int ret;
2029 
2030 	ret = can_umount(path, flags);
2031 	if (!ret)
2032 		ret = do_umount(mnt, flags);
2033 
2034 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2035 	dput(path->dentry);
2036 	mntput_no_expire(mnt);
2037 	return ret;
2038 }
2039 
2040 static int ksys_umount(char __user *name, int flags)
2041 {
2042 	int lookup_flags = LOOKUP_MOUNTPOINT;
2043 	struct path path;
2044 	int ret;
2045 
2046 	// basic validity checks done first
2047 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2048 		return -EINVAL;
2049 
2050 	if (!(flags & UMOUNT_NOFOLLOW))
2051 		lookup_flags |= LOOKUP_FOLLOW;
2052 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2053 	if (ret)
2054 		return ret;
2055 	return path_umount(&path, flags);
2056 }
2057 
2058 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2059 {
2060 	return ksys_umount(name, flags);
2061 }
2062 
2063 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2064 
2065 /*
2066  *	The 2.0 compatible umount. No flags.
2067  */
2068 SYSCALL_DEFINE1(oldumount, char __user *, name)
2069 {
2070 	return ksys_umount(name, 0);
2071 }
2072 
2073 #endif
2074 
2075 static bool is_mnt_ns_file(struct dentry *dentry)
2076 {
2077 	struct ns_common *ns;
2078 
2079 	/* Is this a proxy for a mount namespace? */
2080 	if (dentry->d_op != &ns_dentry_operations)
2081 		return false;
2082 
2083 	ns = d_inode(dentry)->i_private;
2084 
2085 	return ns->ops == &mntns_operations;
2086 }
2087 
2088 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2089 {
2090 	return &mnt->ns;
2091 }
2092 
2093 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2094 {
2095 	struct ns_common *ns;
2096 
2097 	guard(rcu)();
2098 
2099 	for (;;) {
2100 		ns = ns_tree_adjoined_rcu(mntns, previous);
2101 		if (IS_ERR(ns))
2102 			return ERR_CAST(ns);
2103 
2104 		mntns = to_mnt_ns(ns);
2105 
2106 		/*
2107 		 * The last passive reference count is put with RCU
2108 		 * delay so accessing the mount namespace is not just
2109 		 * safe but all relevant members are still valid.
2110 		 */
2111 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2112 			continue;
2113 
2114 		/*
2115 		 * We need an active reference count as we're persisting
2116 		 * the mount namespace and it might already be on its
2117 		 * deathbed.
2118 		 */
2119 		if (!ns_ref_get(mntns))
2120 			continue;
2121 
2122 		return mntns;
2123 	}
2124 }
2125 
2126 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2127 {
2128 	if (!is_mnt_ns_file(dentry))
2129 		return NULL;
2130 
2131 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2132 }
2133 
2134 static bool mnt_ns_loop(struct dentry *dentry)
2135 {
2136 	/* Could bind mounting the mount namespace inode cause a
2137 	 * mount namespace loop?
2138 	 */
2139 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2140 
2141 	if (!mnt_ns)
2142 		return false;
2143 
2144 	return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2145 }
2146 
2147 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2148 					int flag)
2149 {
2150 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2151 		*dst_parent, *dst_mnt;
2152 
2153 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2154 		return ERR_PTR(-EINVAL);
2155 
2156 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2157 		return ERR_PTR(-EINVAL);
2158 
2159 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2160 	if (IS_ERR(dst_mnt))
2161 		return dst_mnt;
2162 
2163 	src_parent = src_root;
2164 
2165 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2166 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2167 			continue;
2168 
2169 		for (src_mnt = src_root_child; src_mnt;
2170 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2171 			if (!(flag & CL_COPY_UNBINDABLE) &&
2172 			    IS_MNT_UNBINDABLE(src_mnt)) {
2173 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2174 					/* Both unbindable and locked. */
2175 					dst_mnt = ERR_PTR(-EPERM);
2176 					goto out;
2177 				} else {
2178 					src_mnt = skip_mnt_tree(src_mnt);
2179 					continue;
2180 				}
2181 			}
2182 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2183 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2184 				src_mnt = skip_mnt_tree(src_mnt);
2185 				continue;
2186 			}
2187 			while (src_parent != src_mnt->mnt_parent) {
2188 				src_parent = src_parent->mnt_parent;
2189 				dst_mnt = dst_mnt->mnt_parent;
2190 			}
2191 
2192 			src_parent = src_mnt;
2193 			dst_parent = dst_mnt;
2194 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2195 			if (IS_ERR(dst_mnt))
2196 				goto out;
2197 			lock_mount_hash();
2198 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2199 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2200 			if (unlikely(flag & CL_EXPIRE)) {
2201 				/* stick the duplicate mount on the same expiry
2202 				 * list as the original if that was on one */
2203 				if (!list_empty(&src_mnt->mnt_expire))
2204 					list_add(&dst_mnt->mnt_expire,
2205 						 &src_mnt->mnt_expire);
2206 			}
2207 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2208 			unlock_mount_hash();
2209 		}
2210 	}
2211 	return res;
2212 
2213 out:
2214 	if (res) {
2215 		lock_mount_hash();
2216 		umount_tree(res, UMOUNT_SYNC);
2217 		unlock_mount_hash();
2218 	}
2219 	return dst_mnt;
2220 }
2221 
2222 static inline bool extend_array(struct path **res, struct path **to_free,
2223 				unsigned n, unsigned *count, unsigned new_count)
2224 {
2225 	struct path *p;
2226 
2227 	if (likely(n < *count))
2228 		return true;
2229 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2230 	if (p && *count)
2231 		memcpy(p, *res, *count * sizeof(struct path));
2232 	*count = new_count;
2233 	kfree(*to_free);
2234 	*to_free = *res = p;
2235 	return p;
2236 }
2237 
2238 const struct path *collect_paths(const struct path *path,
2239 			      struct path *prealloc, unsigned count)
2240 {
2241 	struct mount *root = real_mount(path->mnt);
2242 	struct mount *child;
2243 	struct path *res = prealloc, *to_free = NULL;
2244 	unsigned n = 0;
2245 
2246 	guard(namespace_shared)();
2247 
2248 	if (!check_mnt(root))
2249 		return ERR_PTR(-EINVAL);
2250 	if (!extend_array(&res, &to_free, 0, &count, 32))
2251 		return ERR_PTR(-ENOMEM);
2252 	res[n++] = *path;
2253 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2254 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2255 			continue;
2256 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2257 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2258 				return ERR_PTR(-ENOMEM);
2259 			res[n].mnt = &m->mnt;
2260 			res[n].dentry = m->mnt.mnt_root;
2261 			n++;
2262 		}
2263 	}
2264 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2265 		return ERR_PTR(-ENOMEM);
2266 	memset(res + n, 0, (count - n) * sizeof(struct path));
2267 	for (struct path *p = res; p->mnt; p++)
2268 		path_get(p);
2269 	return res;
2270 }
2271 
2272 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2273 {
2274 	for (const struct path *p = paths; p->mnt; p++)
2275 		path_put(p);
2276 	if (paths != prealloc)
2277 		kfree(paths);
2278 }
2279 
2280 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2281 
2282 void dissolve_on_fput(struct vfsmount *mnt)
2283 {
2284 	struct mount *m = real_mount(mnt);
2285 
2286 	/*
2287 	 * m used to be the root of anon namespace; if it still is one,
2288 	 * we need to dissolve the mount tree and free that namespace.
2289 	 * Let's try to avoid taking namespace_sem if we can determine
2290 	 * that there's nothing to do without it - rcu_read_lock() is
2291 	 * enough to make anon_ns_root() memory-safe and once m has
2292 	 * left its namespace, it's no longer our concern, since it will
2293 	 * never become a root of anon ns again.
2294 	 */
2295 
2296 	scoped_guard(rcu) {
2297 		if (!anon_ns_root(m))
2298 			return;
2299 	}
2300 
2301 	scoped_guard(namespace_excl) {
2302 		if (!anon_ns_root(m))
2303 			return;
2304 
2305 		emptied_ns = m->mnt_ns;
2306 		lock_mount_hash();
2307 		umount_tree(m, UMOUNT_CONNECTED);
2308 		unlock_mount_hash();
2309 	}
2310 }
2311 
2312 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
2313 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2314 {
2315 	struct mount *child;
2316 
2317 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2318 		if (!is_subdir(child->mnt_mountpoint, dentry))
2319 			continue;
2320 
2321 		if (child->mnt.mnt_flags & MNT_LOCKED)
2322 			return true;
2323 	}
2324 	return false;
2325 }
2326 
2327 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2328 {
2329 	guard(mount_locked_reader)();
2330 	return __has_locked_children(mnt, dentry);
2331 }
2332 
2333 /*
2334  * Check that there aren't references to earlier/same mount namespaces in the
2335  * specified subtree.  Such references can act as pins for mount namespaces
2336  * that aren't checked by the mount-cycle checking code, thereby allowing
2337  * cycles to be made.
2338  *
2339  * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2340  */
2341 static bool check_for_nsfs_mounts(struct mount *subtree)
2342 {
2343 	for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2344 		if (mnt_ns_loop(p->mnt.mnt_root))
2345 			return false;
2346 	return true;
2347 }
2348 
2349 /**
2350  * clone_private_mount - create a private clone of a path
2351  * @path: path to clone
2352  *
2353  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2354  * will not be attached anywhere in the namespace and will be private (i.e.
2355  * changes to the originating mount won't be propagated into this).
2356  *
2357  * This assumes caller has called or done the equivalent of may_mount().
2358  *
2359  * Release with mntput().
2360  */
2361 struct vfsmount *clone_private_mount(const struct path *path)
2362 {
2363 	struct mount *old_mnt = real_mount(path->mnt);
2364 	struct mount *new_mnt;
2365 
2366 	guard(namespace_shared)();
2367 
2368 	if (IS_MNT_UNBINDABLE(old_mnt))
2369 		return ERR_PTR(-EINVAL);
2370 
2371 	/*
2372 	 * Make sure the source mount is acceptable.
2373 	 * Anything mounted in our mount namespace is allowed.
2374 	 * Otherwise, it must be the root of an anonymous mount
2375 	 * namespace, and we need to make sure no namespace
2376 	 * loops get created.
2377 	 */
2378 	if (!check_mnt(old_mnt)) {
2379 		if (!anon_ns_root(old_mnt))
2380 			return ERR_PTR(-EINVAL);
2381 
2382 		if (!check_for_nsfs_mounts(old_mnt))
2383 			return ERR_PTR(-EINVAL);
2384 	}
2385 
2386 	if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2387 		return ERR_PTR(-EPERM);
2388 
2389 	if (__has_locked_children(old_mnt, path->dentry))
2390 		return ERR_PTR(-EINVAL);
2391 
2392 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2393 	if (IS_ERR(new_mnt))
2394 		return ERR_PTR(-EINVAL);
2395 
2396 	/* Longterm mount to be removed by kern_unmount*() */
2397 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2398 	return &new_mnt->mnt;
2399 }
2400 EXPORT_SYMBOL_GPL(clone_private_mount);
2401 
2402 static void lock_mnt_tree(struct mount *mnt)
2403 {
2404 	struct mount *p;
2405 
2406 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2407 		int flags = p->mnt.mnt_flags;
2408 		/* Don't allow unprivileged users to change mount flags */
2409 		flags |= MNT_LOCK_ATIME;
2410 
2411 		if (flags & MNT_READONLY)
2412 			flags |= MNT_LOCK_READONLY;
2413 
2414 		if (flags & MNT_NODEV)
2415 			flags |= MNT_LOCK_NODEV;
2416 
2417 		if (flags & MNT_NOSUID)
2418 			flags |= MNT_LOCK_NOSUID;
2419 
2420 		if (flags & MNT_NOEXEC)
2421 			flags |= MNT_LOCK_NOEXEC;
2422 		/* Don't allow unprivileged users to reveal what is under a mount */
2423 		if (list_empty(&p->mnt_expire) && p != mnt)
2424 			flags |= MNT_LOCKED;
2425 		p->mnt.mnt_flags = flags;
2426 	}
2427 }
2428 
2429 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2430 {
2431 	struct mount *p;
2432 
2433 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2434 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2435 			mnt_release_group_id(p);
2436 	}
2437 }
2438 
2439 static int invent_group_ids(struct mount *mnt, bool recurse)
2440 {
2441 	struct mount *p;
2442 
2443 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2444 		if (!p->mnt_group_id) {
2445 			int err = mnt_alloc_group_id(p);
2446 			if (err) {
2447 				cleanup_group_ids(mnt, p);
2448 				return err;
2449 			}
2450 		}
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2457 {
2458 	unsigned int max = READ_ONCE(sysctl_mount_max);
2459 	unsigned int mounts = 0;
2460 	struct mount *p;
2461 
2462 	if (ns->nr_mounts >= max)
2463 		return -ENOSPC;
2464 	max -= ns->nr_mounts;
2465 	if (ns->pending_mounts >= max)
2466 		return -ENOSPC;
2467 	max -= ns->pending_mounts;
2468 
2469 	for (p = mnt; p; p = next_mnt(p, mnt))
2470 		mounts++;
2471 
2472 	if (mounts > max)
2473 		return -ENOSPC;
2474 
2475 	ns->pending_mounts += mounts;
2476 	return 0;
2477 }
2478 
2479 enum mnt_tree_flags_t {
2480 	MNT_TREE_BENEATH = BIT(0),
2481 	MNT_TREE_PROPAGATION = BIT(1),
2482 };
2483 
2484 /**
2485  * attach_recursive_mnt - attach a source mount tree
2486  * @source_mnt: mount tree to be attached
2487  * @dest:	the context for mounting at the place where the tree should go
2488  *
2489  *  NOTE: in the table below explains the semantics when a source mount
2490  *  of a given type is attached to a destination mount of a given type.
2491  * ---------------------------------------------------------------------------
2492  * |         BIND MOUNT OPERATION                                            |
2493  * |**************************************************************************
2494  * | source-->| shared        |       private  |       slave    | unbindable |
2495  * | dest     |               |                |                |            |
2496  * |   |      |               |                |                |            |
2497  * |   v      |               |                |                |            |
2498  * |**************************************************************************
2499  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2500  * |          |               |                |                |            |
2501  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2502  * ***************************************************************************
2503  * A bind operation clones the source mount and mounts the clone on the
2504  * destination mount.
2505  *
2506  * (++)  the cloned mount is propagated to all the mounts in the propagation
2507  * 	 tree of the destination mount and the cloned mount is added to
2508  * 	 the peer group of the source mount.
2509  * (+)   the cloned mount is created under the destination mount and is marked
2510  *       as shared. The cloned mount is added to the peer group of the source
2511  *       mount.
2512  * (+++) the mount is propagated to all the mounts in the propagation tree
2513  *       of the destination mount and the cloned mount is made slave
2514  *       of the same master as that of the source mount. The cloned mount
2515  *       is marked as 'shared and slave'.
2516  * (*)   the cloned mount is made a slave of the same master as that of the
2517  * 	 source mount.
2518  *
2519  * ---------------------------------------------------------------------------
2520  * |         		MOVE MOUNT OPERATION                                 |
2521  * |**************************************************************************
2522  * | source-->| shared        |       private  |       slave    | unbindable |
2523  * | dest     |               |                |                |            |
2524  * |   |      |               |                |                |            |
2525  * |   v      |               |                |                |            |
2526  * |**************************************************************************
2527  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2528  * |          |               |                |                |            |
2529  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2530  * ***************************************************************************
2531  *
2532  * (+)  the mount is moved to the destination. And is then propagated to
2533  * 	all the mounts in the propagation tree of the destination mount.
2534  * (+*)  the mount is moved to the destination.
2535  * (+++)  the mount is moved to the destination and is then propagated to
2536  * 	all the mounts belonging to the destination mount's propagation tree.
2537  * 	the mount is marked as 'shared and slave'.
2538  * (*)	the mount continues to be a slave at the new location.
2539  *
2540  * if the source mount is a tree, the operations explained above is
2541  * applied to each mount in the tree.
2542  * Must be called without spinlocks held, since this function can sleep
2543  * in allocations.
2544  *
2545  * Context: The function expects namespace_lock() to be held.
2546  * Return: If @source_mnt was successfully attached 0 is returned.
2547  *         Otherwise a negative error code is returned.
2548  */
2549 static int attach_recursive_mnt(struct mount *source_mnt,
2550 				const struct pinned_mountpoint *dest)
2551 {
2552 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2553 	struct mount *dest_mnt = dest->parent;
2554 	struct mountpoint *dest_mp = dest->mp;
2555 	HLIST_HEAD(tree_list);
2556 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2557 	struct pinned_mountpoint root = {};
2558 	struct mountpoint *shorter = NULL;
2559 	struct mount *child, *p;
2560 	struct mount *top;
2561 	struct hlist_node *n;
2562 	int err = 0;
2563 	bool moving = mnt_has_parent(source_mnt);
2564 
2565 	/*
2566 	 * Preallocate a mountpoint in case the new mounts need to be
2567 	 * mounted beneath mounts on the same mountpoint.
2568 	 */
2569 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2570 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2571 			shorter = top->mnt_mp;
2572 	}
2573 	err = get_mountpoint(top->mnt.mnt_root, &root);
2574 	if (err)
2575 		return err;
2576 
2577 	/* Is there space to add these mounts to the mount namespace? */
2578 	if (!moving) {
2579 		err = count_mounts(ns, source_mnt);
2580 		if (err)
2581 			goto out;
2582 	}
2583 
2584 	if (IS_MNT_SHARED(dest_mnt)) {
2585 		err = invent_group_ids(source_mnt, true);
2586 		if (err)
2587 			goto out;
2588 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2589 	}
2590 	lock_mount_hash();
2591 	if (err)
2592 		goto out_cleanup_ids;
2593 
2594 	if (IS_MNT_SHARED(dest_mnt)) {
2595 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2596 			set_mnt_shared(p);
2597 	}
2598 
2599 	if (moving) {
2600 		umount_mnt(source_mnt);
2601 		mnt_notify_add(source_mnt);
2602 		/* if the mount is moved, it should no longer be expired
2603 		 * automatically */
2604 		list_del_init(&source_mnt->mnt_expire);
2605 	} else {
2606 		if (source_mnt->mnt_ns) {
2607 			/* move from anon - the caller will destroy */
2608 			emptied_ns = source_mnt->mnt_ns;
2609 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2610 				move_from_ns(p);
2611 		}
2612 	}
2613 
2614 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2615 	/*
2616 	 * Now the original copy is in the same state as the secondaries -
2617 	 * its root attached to mountpoint, but not hashed and all mounts
2618 	 * in it are either in our namespace or in no namespace at all.
2619 	 * Add the original to the list of copies and deal with the
2620 	 * rest of work for all of them uniformly.
2621 	 */
2622 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2623 
2624 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2625 		struct mount *q;
2626 		hlist_del_init(&child->mnt_hash);
2627 		/* Notice when we are propagating across user namespaces */
2628 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2629 			lock_mnt_tree(child);
2630 		q = __lookup_mnt(&child->mnt_parent->mnt,
2631 				 child->mnt_mountpoint);
2632 		commit_tree(child);
2633 		if (q) {
2634 			struct mount *r = topmost_overmount(child);
2635 			struct mountpoint *mp = root.mp;
2636 
2637 			if (unlikely(shorter) && child != source_mnt)
2638 				mp = shorter;
2639 			mnt_change_mountpoint(r, mp, q);
2640 		}
2641 	}
2642 	unpin_mountpoint(&root);
2643 	unlock_mount_hash();
2644 
2645 	return 0;
2646 
2647  out_cleanup_ids:
2648 	while (!hlist_empty(&tree_list)) {
2649 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2650 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2651 		umount_tree(child, UMOUNT_SYNC);
2652 	}
2653 	unlock_mount_hash();
2654 	cleanup_group_ids(source_mnt, NULL);
2655  out:
2656 	ns->pending_mounts = 0;
2657 
2658 	read_seqlock_excl(&mount_lock);
2659 	unpin_mountpoint(&root);
2660 	read_sequnlock_excl(&mount_lock);
2661 
2662 	return err;
2663 }
2664 
2665 static inline struct mount *where_to_mount(const struct path *path,
2666 					   struct dentry **dentry,
2667 					   bool beneath)
2668 {
2669 	struct mount *m;
2670 
2671 	if (unlikely(beneath)) {
2672 		m = topmost_overmount(real_mount(path->mnt));
2673 		*dentry = m->mnt_mountpoint;
2674 		return m->mnt_parent;
2675 	}
2676 	m = __lookup_mnt(path->mnt, path->dentry);
2677 	if (unlikely(m)) {
2678 		m = topmost_overmount(m);
2679 		*dentry = m->mnt.mnt_root;
2680 		return m;
2681 	}
2682 	*dentry = path->dentry;
2683 	return real_mount(path->mnt);
2684 }
2685 
2686 /**
2687  * do_lock_mount - acquire environment for mounting
2688  * @path:	target path
2689  * @res:	context to set up
2690  * @beneath:	whether the intention is to mount beneath @path
2691  *
2692  * To mount something at given location, we need
2693  *	namespace_sem locked exclusive
2694  *	inode of dentry we are mounting on locked exclusive
2695  *	struct mountpoint for that dentry
2696  *	struct mount we are mounting on
2697  *
2698  * Results are stored in caller-supplied context (pinned_mountpoint);
2699  * on success we have res->parent and res->mp pointing to parent and
2700  * mountpoint respectively and res->node inserted into the ->m_list
2701  * of the mountpoint, making sure the mountpoint won't disappear.
2702  * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2703  * left NULL, res->node - empty.
2704  * In case of success do_lock_mount returns with locks acquired (in
2705  * proper order - inode lock nests outside of namespace_sem).
2706  *
2707  * Request to mount on overmounted location is treated as "mount on
2708  * top of whatever's overmounting it"; request to mount beneath
2709  * a location - "mount immediately beneath the topmost mount at that
2710  * place".
2711  *
2712  * In all cases the location must not have been unmounted and the
2713  * chosen mountpoint must be allowed to be mounted on.  For "beneath"
2714  * case we also require the location to be at the root of a mount
2715  * that has a parent (i.e. is not a root of some namespace).
2716  */
2717 static void do_lock_mount(const struct path *path,
2718 			  struct pinned_mountpoint *res,
2719 			  bool beneath)
2720 {
2721 	int err;
2722 
2723 	if (unlikely(beneath) && !path_mounted(path)) {
2724 		res->parent = ERR_PTR(-EINVAL);
2725 		return;
2726 	}
2727 
2728 	do {
2729 		struct dentry *dentry, *d;
2730 		struct mount *m, *n;
2731 
2732 		scoped_guard(mount_locked_reader) {
2733 			m = where_to_mount(path, &dentry, beneath);
2734 			if (&m->mnt != path->mnt) {
2735 				mntget(&m->mnt);
2736 				dget(dentry);
2737 			}
2738 		}
2739 
2740 		inode_lock(dentry->d_inode);
2741 		namespace_lock();
2742 
2743 		// check if the chain of mounts (if any) has changed.
2744 		scoped_guard(mount_locked_reader)
2745 			n = where_to_mount(path, &d, beneath);
2746 
2747 		if (unlikely(n != m || dentry != d))
2748 			err = -EAGAIN;		// something moved, retry
2749 		else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2750 			err = -ENOENT;		// not to be mounted on
2751 		else if (beneath && &m->mnt == path->mnt && !m->overmount)
2752 			err = -EINVAL;
2753 		else
2754 			err = get_mountpoint(dentry, res);
2755 
2756 		if (unlikely(err)) {
2757 			res->parent = ERR_PTR(err);
2758 			namespace_unlock();
2759 			inode_unlock(dentry->d_inode);
2760 		} else {
2761 			res->parent = m;
2762 		}
2763 		/*
2764 		 * Drop the temporary references.  This is subtle - on success
2765 		 * we are doing that under namespace_sem, which would normally
2766 		 * be forbidden.  However, in that case we are guaranteed that
2767 		 * refcounts won't reach zero, since we know that path->mnt
2768 		 * is mounted and thus all mounts reachable from it are pinned
2769 		 * and stable, along with their mountpoints and roots.
2770 		 */
2771 		if (&m->mnt != path->mnt) {
2772 			dput(dentry);
2773 			mntput(&m->mnt);
2774 		}
2775 	} while (err == -EAGAIN);
2776 }
2777 
2778 static void __unlock_mount(struct pinned_mountpoint *m)
2779 {
2780 	inode_unlock(m->mp->m_dentry->d_inode);
2781 	read_seqlock_excl(&mount_lock);
2782 	unpin_mountpoint(m);
2783 	read_sequnlock_excl(&mount_lock);
2784 	namespace_unlock();
2785 }
2786 
2787 static inline void unlock_mount(struct pinned_mountpoint *m)
2788 {
2789 	if (!IS_ERR(m->parent))
2790 		__unlock_mount(m);
2791 }
2792 
2793 static void lock_mount_exact(const struct path *path,
2794 			     struct pinned_mountpoint *mp);
2795 
2796 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2797 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2798 	do_lock_mount((path), &mp, (beneath))
2799 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2800 #define LOCK_MOUNT_EXACT(mp, path) \
2801 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2802 	lock_mount_exact((path), &mp)
2803 
2804 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2805 {
2806 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2807 		return -EINVAL;
2808 
2809 	if (d_is_dir(mp->mp->m_dentry) !=
2810 	      d_is_dir(mnt->mnt.mnt_root))
2811 		return -ENOTDIR;
2812 
2813 	return attach_recursive_mnt(mnt, mp);
2814 }
2815 
2816 static int may_change_propagation(const struct mount *m)
2817 {
2818         struct mnt_namespace *ns = m->mnt_ns;
2819 
2820 	 // it must be mounted in some namespace
2821 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2822 		 return -EINVAL;
2823 	 // and the caller must be admin in userns of that namespace
2824 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2825 		 return -EPERM;
2826 	 return 0;
2827 }
2828 
2829 /*
2830  * Sanity check the flags to change_mnt_propagation.
2831  */
2832 
2833 static int flags_to_propagation_type(int ms_flags)
2834 {
2835 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2836 
2837 	/* Fail if any non-propagation flags are set */
2838 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2839 		return 0;
2840 	/* Only one propagation flag should be set */
2841 	if (!is_power_of_2(type))
2842 		return 0;
2843 	return type;
2844 }
2845 
2846 /*
2847  * recursively change the type of the mountpoint.
2848  */
2849 static int do_change_type(const struct path *path, int ms_flags)
2850 {
2851 	struct mount *m;
2852 	struct mount *mnt = real_mount(path->mnt);
2853 	int recurse = ms_flags & MS_REC;
2854 	int type;
2855 	int err;
2856 
2857 	if (!path_mounted(path))
2858 		return -EINVAL;
2859 
2860 	type = flags_to_propagation_type(ms_flags);
2861 	if (!type)
2862 		return -EINVAL;
2863 
2864 	guard(namespace_excl)();
2865 
2866 	err = may_change_propagation(mnt);
2867 	if (err)
2868 		return err;
2869 
2870 	if (type == MS_SHARED) {
2871 		err = invent_group_ids(mnt, recurse);
2872 		if (err)
2873 			return err;
2874 	}
2875 
2876 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2877 		change_mnt_propagation(m, type);
2878 
2879 	return 0;
2880 }
2881 
2882 /* may_copy_tree() - check if a mount tree can be copied
2883  * @path: path to the mount tree to be copied
2884  *
2885  * This helper checks if the caller may copy the mount tree starting
2886  * from @path->mnt. The caller may copy the mount tree under the
2887  * following circumstances:
2888  *
2889  * (1) The caller is located in the mount namespace of the mount tree.
2890  *     This also implies that the mount does not belong to an anonymous
2891  *     mount namespace.
2892  * (2) The caller tries to copy an nfs mount referring to a mount
2893  *     namespace, i.e., the caller is trying to copy a mount namespace
2894  *     entry from nsfs.
2895  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2896  * (4) The caller is trying to copy a mount tree that belongs to an
2897  *     anonymous mount namespace.
2898  *
2899  *     For that to be safe, this helper enforces that the origin mount
2900  *     namespace the anonymous mount namespace was created from is the
2901  *     same as the caller's mount namespace by comparing the sequence
2902  *     numbers.
2903  *
2904  *     This is not strictly necessary. The current semantics of the new
2905  *     mount api enforce that the caller must be located in the same
2906  *     mount namespace as the mount tree it interacts with. Using the
2907  *     origin sequence number preserves these semantics even for
2908  *     anonymous mount namespaces. However, one could envision extending
2909  *     the api to directly operate across mount namespace if needed.
2910  *
2911  *     The ownership of a non-anonymous mount namespace such as the
2912  *     caller's cannot change.
2913  *     => We know that the caller's mount namespace is stable.
2914  *
2915  *     If the origin sequence number of the anonymous mount namespace is
2916  *     the same as the sequence number of the caller's mount namespace.
2917  *     => The owning namespaces are the same.
2918  *
2919  *     ==> The earlier capability check on the owning namespace of the
2920  *         caller's mount namespace ensures that the caller has the
2921  *         ability to copy the mount tree.
2922  *
2923  * Returns true if the mount tree can be copied, false otherwise.
2924  */
2925 static inline bool may_copy_tree(const struct path *path)
2926 {
2927 	struct mount *mnt = real_mount(path->mnt);
2928 	const struct dentry_operations *d_op;
2929 
2930 	if (check_mnt(mnt))
2931 		return true;
2932 
2933 	d_op = path->dentry->d_op;
2934 	if (d_op == &ns_dentry_operations)
2935 		return true;
2936 
2937 	if (d_op == &pidfs_dentry_operations)
2938 		return true;
2939 
2940 	if (!is_mounted(path->mnt))
2941 		return false;
2942 
2943 	return check_anonymous_mnt(mnt);
2944 }
2945 
2946 static struct mount *__do_loopback(const struct path *old_path,
2947 				   unsigned int flags, unsigned int copy_flags)
2948 {
2949 	struct mount *old = real_mount(old_path->mnt);
2950 	bool recurse = flags & AT_RECURSIVE;
2951 
2952 	if (IS_MNT_UNBINDABLE(old))
2953 		return ERR_PTR(-EINVAL);
2954 
2955 	if (!may_copy_tree(old_path))
2956 		return ERR_PTR(-EINVAL);
2957 
2958 	if (!recurse && __has_locked_children(old, old_path->dentry))
2959 		return ERR_PTR(-EINVAL);
2960 
2961 	/*
2962 	 * When creating a new mount namespace we don't want to copy over
2963 	 * mounts of mount namespaces to avoid the risk of cycles and also to
2964 	 * minimize the default complex interdependencies between mount
2965 	 * namespaces.
2966 	 *
2967 	 * We could ofc just check whether all mount namespace files aren't
2968 	 * creating cycles but really let's keep this simple.
2969 	 */
2970 	if (!(flags & OPEN_TREE_NAMESPACE))
2971 		copy_flags |= CL_COPY_MNT_NS_FILE;
2972 
2973 	if (recurse)
2974 		return copy_tree(old, old_path->dentry, copy_flags);
2975 
2976 	return clone_mnt(old, old_path->dentry, copy_flags);
2977 }
2978 
2979 /*
2980  * do loopback mount.
2981  */
2982 static int do_loopback(const struct path *path, const char *old_name,
2983 		       int recurse)
2984 {
2985 	struct path old_path __free(path_put) = {};
2986 	struct mount *mnt = NULL;
2987 	unsigned int flags = recurse ? AT_RECURSIVE : 0;
2988 	int err;
2989 
2990 	if (!old_name || !*old_name)
2991 		return -EINVAL;
2992 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2993 	if (err)
2994 		return err;
2995 
2996 	if (mnt_ns_loop(old_path.dentry))
2997 		return -EINVAL;
2998 
2999 	LOCK_MOUNT(mp, path);
3000 	if (IS_ERR(mp.parent))
3001 		return PTR_ERR(mp.parent);
3002 
3003 	if (!check_mnt(mp.parent))
3004 		return -EINVAL;
3005 
3006 	mnt = __do_loopback(&old_path, flags, 0);
3007 	if (IS_ERR(mnt))
3008 		return PTR_ERR(mnt);
3009 
3010 	err = graft_tree(mnt, &mp);
3011 	if (err) {
3012 		lock_mount_hash();
3013 		umount_tree(mnt, UMOUNT_SYNC);
3014 		unlock_mount_hash();
3015 	}
3016 	return err;
3017 }
3018 
3019 static struct mnt_namespace *get_detached_copy(const struct path *path, unsigned int flags)
3020 {
3021 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3022 	struct user_namespace *user_ns = mnt_ns->user_ns;
3023 	struct mount *mnt, *p;
3024 
3025 	ns = alloc_mnt_ns(user_ns, true);
3026 	if (IS_ERR(ns))
3027 		return ns;
3028 
3029 	guard(namespace_excl)();
3030 
3031 	/*
3032 	 * Record the sequence number of the source mount namespace.
3033 	 * This needs to hold namespace_sem to ensure that the mount
3034 	 * doesn't get attached.
3035 	 */
3036 	if (is_mounted(path->mnt)) {
3037 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3038 		if (is_anon_ns(src_mnt_ns))
3039 			ns->seq_origin = src_mnt_ns->seq_origin;
3040 		else
3041 			ns->seq_origin = src_mnt_ns->ns.ns_id;
3042 	}
3043 
3044 	mnt = __do_loopback(path, flags, 0);
3045 	if (IS_ERR(mnt)) {
3046 		emptied_ns = ns;
3047 		return ERR_CAST(mnt);
3048 	}
3049 
3050 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3051 		mnt_add_to_ns(ns, p);
3052 		ns->nr_mounts++;
3053 	}
3054 	ns->root = mnt;
3055 	return ns;
3056 }
3057 
3058 static struct file *open_detached_copy(struct path *path, unsigned int flags)
3059 {
3060 	struct mnt_namespace *ns = get_detached_copy(path, flags);
3061 	struct file *file;
3062 
3063 	if (IS_ERR(ns))
3064 		return ERR_CAST(ns);
3065 
3066 	mntput(path->mnt);
3067 	path->mnt = mntget(&ns->root->mnt);
3068 	file = dentry_open(path, O_PATH, current_cred());
3069 	if (IS_ERR(file))
3070 		dissolve_on_fput(path->mnt);
3071 	else
3072 		file->f_mode |= FMODE_NEED_UNMOUNT;
3073 	return file;
3074 }
3075 
3076 DEFINE_FREE(put_empty_mnt_ns, struct mnt_namespace *,
3077 	    if (!IS_ERR_OR_NULL(_T)) free_mnt_ns(_T))
3078 
3079 static struct mnt_namespace *create_new_namespace(struct path *path, unsigned int flags)
3080 {
3081 	struct mnt_namespace *new_ns __free(put_empty_mnt_ns) = NULL;
3082 	struct path to_path __free(path_put) = {};
3083 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3084 	struct user_namespace *user_ns = current_user_ns();
3085 	struct mount *new_ns_root;
3086 	struct mount *mnt;
3087 	unsigned int copy_flags = 0;
3088 	bool locked = false;
3089 
3090 	if (user_ns != ns->user_ns)
3091 		copy_flags |= CL_SLAVE;
3092 
3093 	new_ns = alloc_mnt_ns(user_ns, false);
3094 	if (IS_ERR(new_ns))
3095 		return ERR_CAST(new_ns);
3096 
3097 	scoped_guard(namespace_excl) {
3098 		new_ns_root = clone_mnt(ns->root, ns->root->mnt.mnt_root, copy_flags);
3099 		if (IS_ERR(new_ns_root))
3100 			return ERR_CAST(new_ns_root);
3101 
3102 		/*
3103 		 * If the real rootfs had a locked mount on top of it somewhere
3104 		 * in the stack, lock the new mount tree as well so it can't be
3105 		 * exposed.
3106 		 */
3107 		mnt = ns->root;
3108 		while (mnt->overmount) {
3109 			mnt = mnt->overmount;
3110 			if (mnt->mnt.mnt_flags & MNT_LOCKED)
3111 				locked = true;
3112 		}
3113 	}
3114 
3115 	/*
3116 	 * We dropped the namespace semaphore so we can actually lock
3117 	 * the copy for mounting. The copied mount isn't attached to any
3118 	 * mount namespace and it is thus excluded from any propagation.
3119 	 * So realistically we're isolated and the mount can't be
3120 	 * overmounted.
3121 	 */
3122 
3123 	/* Borrow the reference from clone_mnt(). */
3124 	to_path.mnt = &new_ns_root->mnt;
3125 	to_path.dentry = dget(new_ns_root->mnt.mnt_root);
3126 
3127 	/* Now lock for actual mounting. */
3128 	LOCK_MOUNT_EXACT(mp, &to_path);
3129 	if (unlikely(IS_ERR(mp.parent)))
3130 		return ERR_CAST(mp.parent);
3131 
3132 	/*
3133 	 * We don't emulate unshare()ing a mount namespace. We stick to the
3134 	 * restrictions of creating detached bind-mounts. It has a lot
3135 	 * saner and simpler semantics.
3136 	 */
3137 	mnt = __do_loopback(path, flags, copy_flags);
3138 	if (IS_ERR(mnt))
3139 		return ERR_CAST(mnt);
3140 
3141 	scoped_guard(mount_writer) {
3142 		if (locked)
3143 			mnt->mnt.mnt_flags |= MNT_LOCKED;
3144 		/*
3145 		 * Now mount the detached tree on top of the copy of the
3146 		 * real rootfs we created.
3147 		 */
3148 		attach_mnt(mnt, new_ns_root, mp.mp);
3149 		if (user_ns != ns->user_ns)
3150 			lock_mnt_tree(new_ns_root);
3151 	}
3152 
3153 	/* Add all mounts to the new namespace. */
3154 	for (struct mount *p = new_ns_root; p; p = next_mnt(p, new_ns_root)) {
3155 		mnt_add_to_ns(new_ns, p);
3156 		new_ns->nr_mounts++;
3157 	}
3158 
3159 	new_ns->root = real_mount(no_free_ptr(to_path.mnt));
3160 	ns_tree_add_raw(new_ns);
3161 	return no_free_ptr(new_ns);
3162 }
3163 
3164 static struct file *open_new_namespace(struct path *path, unsigned int flags)
3165 {
3166 	struct mnt_namespace *new_ns;
3167 
3168 	new_ns = create_new_namespace(path, flags);
3169 	if (IS_ERR(new_ns))
3170 		return ERR_CAST(new_ns);
3171 	return open_namespace_file(to_ns_common(new_ns));
3172 }
3173 
3174 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3175 {
3176 	int ret;
3177 	struct path path __free(path_put) = {};
3178 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3179 
3180 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3181 
3182 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3183 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3184 		      OPEN_TREE_CLOEXEC | OPEN_TREE_NAMESPACE))
3185 		return ERR_PTR(-EINVAL);
3186 
3187 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE | OPEN_TREE_NAMESPACE)) ==
3188 	    AT_RECURSIVE)
3189 		return ERR_PTR(-EINVAL);
3190 
3191 	if (hweight32(flags & (OPEN_TREE_CLONE | OPEN_TREE_NAMESPACE)) > 1)
3192 		return ERR_PTR(-EINVAL);
3193 
3194 	if (flags & AT_NO_AUTOMOUNT)
3195 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3196 	if (flags & AT_SYMLINK_NOFOLLOW)
3197 		lookup_flags &= ~LOOKUP_FOLLOW;
3198 
3199 	/*
3200 	 * If we create a new mount namespace with the cloned mount tree we
3201 	 * just care about being privileged over our current user namespace.
3202 	 * The new mount namespace will be owned by it.
3203 	 */
3204 	if ((flags & OPEN_TREE_NAMESPACE) &&
3205 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3206 		return ERR_PTR(-EPERM);
3207 
3208 	if ((flags & OPEN_TREE_CLONE) && !may_mount())
3209 		return ERR_PTR(-EPERM);
3210 
3211 	CLASS(filename_uflags, name)(filename, flags);
3212 	ret = filename_lookup(dfd, name, lookup_flags, &path, NULL);
3213 	if (unlikely(ret))
3214 		return ERR_PTR(ret);
3215 
3216 	if (flags & OPEN_TREE_NAMESPACE)
3217 		return open_new_namespace(&path, flags);
3218 
3219 	if (flags & OPEN_TREE_CLONE)
3220 		return open_detached_copy(&path, flags);
3221 
3222 	return dentry_open(&path, O_PATH, current_cred());
3223 }
3224 
3225 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3226 {
3227 	return FD_ADD(flags, vfs_open_tree(dfd, filename, flags));
3228 }
3229 
3230 /*
3231  * Don't allow locked mount flags to be cleared.
3232  *
3233  * No locks need to be held here while testing the various MNT_LOCK
3234  * flags because those flags can never be cleared once they are set.
3235  */
3236 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3237 {
3238 	unsigned int fl = mnt->mnt.mnt_flags;
3239 
3240 	if ((fl & MNT_LOCK_READONLY) &&
3241 	    !(mnt_flags & MNT_READONLY))
3242 		return false;
3243 
3244 	if ((fl & MNT_LOCK_NODEV) &&
3245 	    !(mnt_flags & MNT_NODEV))
3246 		return false;
3247 
3248 	if ((fl & MNT_LOCK_NOSUID) &&
3249 	    !(mnt_flags & MNT_NOSUID))
3250 		return false;
3251 
3252 	if ((fl & MNT_LOCK_NOEXEC) &&
3253 	    !(mnt_flags & MNT_NOEXEC))
3254 		return false;
3255 
3256 	if ((fl & MNT_LOCK_ATIME) &&
3257 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3258 		return false;
3259 
3260 	return true;
3261 }
3262 
3263 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3264 {
3265 	bool readonly_request = (mnt_flags & MNT_READONLY);
3266 
3267 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3268 		return 0;
3269 
3270 	if (readonly_request)
3271 		return mnt_make_readonly(mnt);
3272 
3273 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3274 	return 0;
3275 }
3276 
3277 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3278 {
3279 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3280 	mnt->mnt.mnt_flags = mnt_flags;
3281 	touch_mnt_namespace(mnt->mnt_ns);
3282 }
3283 
3284 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3285 				      struct vfsmount *mnt)
3286 {
3287 	struct super_block *sb = mnt->mnt_sb;
3288 
3289 	if (!__mnt_is_readonly(mnt) &&
3290 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3291 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3292 		char *buf, *mntpath;
3293 
3294 		buf = (char *)__get_free_page(GFP_KERNEL);
3295 		if (buf)
3296 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3297 		else
3298 			mntpath = ERR_PTR(-ENOMEM);
3299 		if (IS_ERR(mntpath))
3300 			mntpath = "(unknown)";
3301 
3302 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3303 			sb->s_type->name,
3304 			is_mounted(mnt) ? "remounted" : "mounted",
3305 			mntpath, &sb->s_time_max,
3306 			(unsigned long long)sb->s_time_max);
3307 
3308 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3309 		if (buf)
3310 			free_page((unsigned long)buf);
3311 	}
3312 }
3313 
3314 /*
3315  * Handle reconfiguration of the mountpoint only without alteration of the
3316  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3317  * to mount(2).
3318  */
3319 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3320 {
3321 	struct super_block *sb = path->mnt->mnt_sb;
3322 	struct mount *mnt = real_mount(path->mnt);
3323 	int ret;
3324 
3325 	if (!check_mnt(mnt))
3326 		return -EINVAL;
3327 
3328 	if (!path_mounted(path))
3329 		return -EINVAL;
3330 
3331 	if (!can_change_locked_flags(mnt, mnt_flags))
3332 		return -EPERM;
3333 
3334 	/*
3335 	 * We're only checking whether the superblock is read-only not
3336 	 * changing it, so only take down_read(&sb->s_umount).
3337 	 */
3338 	down_read(&sb->s_umount);
3339 	lock_mount_hash();
3340 	ret = change_mount_ro_state(mnt, mnt_flags);
3341 	if (ret == 0)
3342 		set_mount_attributes(mnt, mnt_flags);
3343 	unlock_mount_hash();
3344 	up_read(&sb->s_umount);
3345 
3346 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3347 
3348 	return ret;
3349 }
3350 
3351 /*
3352  * change filesystem flags. dir should be a physical root of filesystem.
3353  * If you've mounted a non-root directory somewhere and want to do remount
3354  * on it - tough luck.
3355  */
3356 static int do_remount(const struct path *path, int sb_flags,
3357 		      int mnt_flags, void *data)
3358 {
3359 	int err;
3360 	struct super_block *sb = path->mnt->mnt_sb;
3361 	struct mount *mnt = real_mount(path->mnt);
3362 	struct fs_context *fc;
3363 
3364 	if (!check_mnt(mnt))
3365 		return -EINVAL;
3366 
3367 	if (!path_mounted(path))
3368 		return -EINVAL;
3369 
3370 	if (!can_change_locked_flags(mnt, mnt_flags))
3371 		return -EPERM;
3372 
3373 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3374 	if (IS_ERR(fc))
3375 		return PTR_ERR(fc);
3376 
3377 	/*
3378 	 * Indicate to the filesystem that the remount request is coming
3379 	 * from the legacy mount system call.
3380 	 */
3381 	fc->oldapi = true;
3382 
3383 	err = parse_monolithic_mount_data(fc, data);
3384 	if (!err) {
3385 		down_write(&sb->s_umount);
3386 		err = -EPERM;
3387 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3388 			err = reconfigure_super(fc);
3389 			if (!err) {
3390 				lock_mount_hash();
3391 				set_mount_attributes(mnt, mnt_flags);
3392 				unlock_mount_hash();
3393 			}
3394 		}
3395 		up_write(&sb->s_umount);
3396 	}
3397 
3398 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3399 
3400 	put_fs_context(fc);
3401 	return err;
3402 }
3403 
3404 static inline int tree_contains_unbindable(struct mount *mnt)
3405 {
3406 	struct mount *p;
3407 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3408 		if (IS_MNT_UNBINDABLE(p))
3409 			return 1;
3410 	}
3411 	return 0;
3412 }
3413 
3414 static int do_set_group(const struct path *from_path, const struct path *to_path)
3415 {
3416 	struct mount *from = real_mount(from_path->mnt);
3417 	struct mount *to = real_mount(to_path->mnt);
3418 	int err;
3419 
3420 	guard(namespace_excl)();
3421 
3422 	err = may_change_propagation(from);
3423 	if (err)
3424 		return err;
3425 	err = may_change_propagation(to);
3426 	if (err)
3427 		return err;
3428 
3429 	/* To and From paths should be mount roots */
3430 	if (!path_mounted(from_path))
3431 		return -EINVAL;
3432 	if (!path_mounted(to_path))
3433 		return -EINVAL;
3434 
3435 	/* Setting sharing groups is only allowed across same superblock */
3436 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3437 		return -EINVAL;
3438 
3439 	/* From mount root should be wider than To mount root */
3440 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3441 		return -EINVAL;
3442 
3443 	/* From mount should not have locked children in place of To's root */
3444 	if (__has_locked_children(from, to->mnt.mnt_root))
3445 		return -EINVAL;
3446 
3447 	/* Setting sharing groups is only allowed on private mounts */
3448 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3449 		return -EINVAL;
3450 
3451 	/* From should not be private */
3452 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3453 		return -EINVAL;
3454 
3455 	if (IS_MNT_SLAVE(from)) {
3456 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3457 		to->mnt_master = from->mnt_master;
3458 	}
3459 
3460 	if (IS_MNT_SHARED(from)) {
3461 		to->mnt_group_id = from->mnt_group_id;
3462 		list_add(&to->mnt_share, &from->mnt_share);
3463 		set_mnt_shared(to);
3464 	}
3465 	return 0;
3466 }
3467 
3468 /**
3469  * path_overmounted - check if path is overmounted
3470  * @path: path to check
3471  *
3472  * Check if path is overmounted, i.e., if there's a mount on top of
3473  * @path->mnt with @path->dentry as mountpoint.
3474  *
3475  * Context: namespace_sem must be held at least shared.
3476  * MUST NOT be called under lock_mount_hash() (there one should just
3477  * call __lookup_mnt() and check if it returns NULL).
3478  * Return: If path is overmounted true is returned, false if not.
3479  */
3480 static inline bool path_overmounted(const struct path *path)
3481 {
3482 	unsigned seq = read_seqbegin(&mount_lock);
3483 	bool no_child;
3484 
3485 	rcu_read_lock();
3486 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3487 	rcu_read_unlock();
3488 	if (need_seqretry(&mount_lock, seq)) {
3489 		read_seqlock_excl(&mount_lock);
3490 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3491 		read_sequnlock_excl(&mount_lock);
3492 	}
3493 	return unlikely(!no_child);
3494 }
3495 
3496 /*
3497  * Check if there is a possibly empty chain of descent from p1 to p2.
3498  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3499  */
3500 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3501 {
3502 	while (p2 != p1 && mnt_has_parent(p2))
3503 		p2 = p2->mnt_parent;
3504 	return p2 == p1;
3505 }
3506 
3507 /**
3508  * can_move_mount_beneath - check that we can mount beneath the top mount
3509  * @mnt_from: mount we are trying to move
3510  * @mnt_to:   mount under which to mount
3511  * @mp:   mountpoint of @mnt_to
3512  *
3513  * - Make sure that nothing can be mounted beneath the caller's current
3514  *   root or the rootfs of the namespace.
3515  * - Make sure that the caller can unmount the topmost mount ensuring
3516  *   that the caller could reveal the underlying mountpoint.
3517  * - Ensure that nothing has been mounted on top of @mnt_from before we
3518  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3519  * - Prevent mounting beneath a mount if the propagation relationship
3520  *   between the source mount, parent mount, and top mount would lead to
3521  *   nonsensical mount trees.
3522  *
3523  * Context: This function expects namespace_lock() to be held.
3524  * Return: On success 0, and on error a negative error code is returned.
3525  */
3526 static int can_move_mount_beneath(const struct mount *mnt_from,
3527 				  const struct mount *mnt_to,
3528 				  const struct mountpoint *mp)
3529 {
3530 	struct mount *parent_mnt_to = mnt_to->mnt_parent;
3531 
3532 	if (IS_MNT_LOCKED(mnt_to))
3533 		return -EINVAL;
3534 
3535 	/* Avoid creating shadow mounts during mount propagation. */
3536 	if (mnt_from->overmount)
3537 		return -EINVAL;
3538 
3539 	/*
3540 	 * Mounting beneath the rootfs only makes sense when the
3541 	 * semantics of pivot_root(".", ".") are used.
3542 	 */
3543 	if (&mnt_to->mnt == current->fs->root.mnt)
3544 		return -EINVAL;
3545 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3546 		return -EINVAL;
3547 
3548 	if (mount_is_ancestor(mnt_to, mnt_from))
3549 		return -EINVAL;
3550 
3551 	/*
3552 	 * If the parent mount propagates to the child mount this would
3553 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3554 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3555 	 * defeats the whole purpose of mounting beneath another mount.
3556 	 */
3557 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3558 		return -EINVAL;
3559 
3560 	/*
3561 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3562 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3563 	 * Afterwards @mnt_from would be mounted on top of
3564 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3565 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3566 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3567 	 * remounted on top of @c. Afterwards, @mnt_from would be
3568 	 * covered by a copy @c of @mnt_from and @c would be covered by
3569 	 * @mnt_from itself. This defeats the whole purpose of mounting
3570 	 * @mnt_from beneath @mnt_to.
3571 	 */
3572 	if (check_mnt(mnt_from) &&
3573 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3574 		return -EINVAL;
3575 
3576 	return 0;
3577 }
3578 
3579 /* may_use_mount() - check if a mount tree can be used
3580  * @mnt: vfsmount to be used
3581  *
3582  * This helper checks if the caller may use the mount tree starting
3583  * from @path->mnt. The caller may use the mount tree under the
3584  * following circumstances:
3585  *
3586  * (1) The caller is located in the mount namespace of the mount tree.
3587  *     This also implies that the mount does not belong to an anonymous
3588  *     mount namespace.
3589  * (2) The caller is trying to use a mount tree that belongs to an
3590  *     anonymous mount namespace.
3591  *
3592  *     For that to be safe, this helper enforces that the origin mount
3593  *     namespace the anonymous mount namespace was created from is the
3594  *     same as the caller's mount namespace by comparing the sequence
3595  *     numbers.
3596  *
3597  *     The ownership of a non-anonymous mount namespace such as the
3598  *     caller's cannot change.
3599  *     => We know that the caller's mount namespace is stable.
3600  *
3601  *     If the origin sequence number of the anonymous mount namespace is
3602  *     the same as the sequence number of the caller's mount namespace.
3603  *     => The owning namespaces are the same.
3604  *
3605  *     ==> The earlier capability check on the owning namespace of the
3606  *         caller's mount namespace ensures that the caller has the
3607  *         ability to use the mount tree.
3608  *
3609  * Returns true if the mount tree can be used, false otherwise.
3610  */
3611 static inline bool may_use_mount(struct mount *mnt)
3612 {
3613 	if (check_mnt(mnt))
3614 		return true;
3615 
3616 	/*
3617 	 * Make sure that noone unmounted the target path or somehow
3618 	 * managed to get their hands on something purely kernel
3619 	 * internal.
3620 	 */
3621 	if (!is_mounted(&mnt->mnt))
3622 		return false;
3623 
3624 	return check_anonymous_mnt(mnt);
3625 }
3626 
3627 static int do_move_mount(const struct path *old_path,
3628 			 const struct path *new_path,
3629 			 enum mnt_tree_flags_t flags)
3630 {
3631 	struct mount *old = real_mount(old_path->mnt);
3632 	int err;
3633 	bool beneath = flags & MNT_TREE_BENEATH;
3634 
3635 	if (!path_mounted(old_path))
3636 		return -EINVAL;
3637 
3638 	if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3639 		return -EINVAL;
3640 
3641 	LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3642 	if (IS_ERR(mp.parent))
3643 		return PTR_ERR(mp.parent);
3644 
3645 	if (check_mnt(old)) {
3646 		/* if the source is in our namespace... */
3647 		/* ... it should be detachable from parent */
3648 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3649 			return -EINVAL;
3650 		/* ... which should not be shared */
3651 		if (IS_MNT_SHARED(old->mnt_parent))
3652 			return -EINVAL;
3653 		/* ... and the target should be in our namespace */
3654 		if (!check_mnt(mp.parent))
3655 			return -EINVAL;
3656 	} else {
3657 		/*
3658 		 * otherwise the source must be the root of some anon namespace.
3659 		 */
3660 		if (!anon_ns_root(old))
3661 			return -EINVAL;
3662 		/*
3663 		 * Bail out early if the target is within the same namespace -
3664 		 * subsequent checks would've rejected that, but they lose
3665 		 * some corner cases if we check it early.
3666 		 */
3667 		if (old->mnt_ns == mp.parent->mnt_ns)
3668 			return -EINVAL;
3669 		/*
3670 		 * Target should be either in our namespace or in an acceptable
3671 		 * anon namespace, sensu check_anonymous_mnt().
3672 		 */
3673 		if (!may_use_mount(mp.parent))
3674 			return -EINVAL;
3675 	}
3676 
3677 	if (beneath) {
3678 		struct mount *over = real_mount(new_path->mnt);
3679 
3680 		if (mp.parent != over->mnt_parent)
3681 			over = mp.parent->overmount;
3682 		err = can_move_mount_beneath(old, over, mp.mp);
3683 		if (err)
3684 			return err;
3685 	}
3686 
3687 	/*
3688 	 * Don't move a mount tree containing unbindable mounts to a destination
3689 	 * mount which is shared.
3690 	 */
3691 	if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3692 		return -EINVAL;
3693 	if (!check_for_nsfs_mounts(old))
3694 		return -ELOOP;
3695 	if (mount_is_ancestor(old, mp.parent))
3696 		return -ELOOP;
3697 
3698 	return attach_recursive_mnt(old, &mp);
3699 }
3700 
3701 static int do_move_mount_old(const struct path *path, const char *old_name)
3702 {
3703 	struct path old_path __free(path_put) = {};
3704 	int err;
3705 
3706 	if (!old_name || !*old_name)
3707 		return -EINVAL;
3708 
3709 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3710 	if (err)
3711 		return err;
3712 
3713 	return do_move_mount(&old_path, path, 0);
3714 }
3715 
3716 /*
3717  * add a mount into a namespace's mount tree
3718  */
3719 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3720 			int mnt_flags)
3721 {
3722 	struct mount *parent = mp->parent;
3723 
3724 	if (IS_ERR(parent))
3725 		return PTR_ERR(parent);
3726 
3727 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3728 
3729 	if (unlikely(!check_mnt(parent))) {
3730 		/* that's acceptable only for automounts done in private ns */
3731 		if (!(mnt_flags & MNT_SHRINKABLE))
3732 			return -EINVAL;
3733 		/* ... and for those we'd better have mountpoint still alive */
3734 		if (!parent->mnt_ns)
3735 			return -EINVAL;
3736 	}
3737 
3738 	/* Refuse the same filesystem on the same mount point */
3739 	if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3740 	    parent->mnt.mnt_root == mp->mp->m_dentry)
3741 		return -EBUSY;
3742 
3743 	if (d_is_symlink(newmnt->mnt.mnt_root))
3744 		return -EINVAL;
3745 
3746 	newmnt->mnt.mnt_flags = mnt_flags;
3747 	return graft_tree(newmnt, mp);
3748 }
3749 
3750 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3751 
3752 /*
3753  * Create a new mount using a superblock configuration and request it
3754  * be added to the namespace tree.
3755  */
3756 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3757 			   unsigned int mnt_flags)
3758 {
3759 	struct super_block *sb;
3760 	struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3761 	int error;
3762 
3763 	if (IS_ERR(mnt))
3764 		return PTR_ERR(mnt);
3765 
3766 	sb = fc->root->d_sb;
3767 	error = security_sb_kern_mount(sb);
3768 	if (unlikely(error))
3769 		return error;
3770 
3771 	if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3772 		errorfcp(fc, "VFS", "Mount too revealing");
3773 		return -EPERM;
3774 	}
3775 
3776 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3777 
3778 	LOCK_MOUNT(mp, mountpoint);
3779 	error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3780 	if (!error)
3781 		retain_and_null_ptr(mnt); // consumed on success
3782 	return error;
3783 }
3784 
3785 /*
3786  * create a new mount for userspace and request it to be added into the
3787  * namespace's tree
3788  */
3789 static int do_new_mount(const struct path *path, const char *fstype,
3790 			int sb_flags, int mnt_flags,
3791 			const char *name, void *data)
3792 {
3793 	struct file_system_type *type;
3794 	struct fs_context *fc;
3795 	const char *subtype = NULL;
3796 	int err = 0;
3797 
3798 	if (!fstype)
3799 		return -EINVAL;
3800 
3801 	type = get_fs_type(fstype);
3802 	if (!type)
3803 		return -ENODEV;
3804 
3805 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3806 		subtype = strchr(fstype, '.');
3807 		if (subtype) {
3808 			subtype++;
3809 			if (!*subtype) {
3810 				put_filesystem(type);
3811 				return -EINVAL;
3812 			}
3813 		}
3814 	}
3815 
3816 	fc = fs_context_for_mount(type, sb_flags);
3817 	put_filesystem(type);
3818 	if (IS_ERR(fc))
3819 		return PTR_ERR(fc);
3820 
3821 	/*
3822 	 * Indicate to the filesystem that the mount request is coming
3823 	 * from the legacy mount system call.
3824 	 */
3825 	fc->oldapi = true;
3826 
3827 	if (subtype)
3828 		err = vfs_parse_fs_string(fc, "subtype", subtype);
3829 	if (!err && name)
3830 		err = vfs_parse_fs_string(fc, "source", name);
3831 	if (!err)
3832 		err = parse_monolithic_mount_data(fc, data);
3833 	if (!err && !mount_capable(fc))
3834 		err = -EPERM;
3835 	if (!err)
3836 		err = do_new_mount_fc(fc, path, mnt_flags);
3837 
3838 	put_fs_context(fc);
3839 	return err;
3840 }
3841 
3842 static void lock_mount_exact(const struct path *path,
3843 			     struct pinned_mountpoint *mp)
3844 {
3845 	struct dentry *dentry = path->dentry;
3846 	int err;
3847 
3848 	inode_lock(dentry->d_inode);
3849 	namespace_lock();
3850 	if (unlikely(cant_mount(dentry)))
3851 		err = -ENOENT;
3852 	else if (path_overmounted(path))
3853 		err = -EBUSY;
3854 	else
3855 		err = get_mountpoint(dentry, mp);
3856 	if (unlikely(err)) {
3857 		namespace_unlock();
3858 		inode_unlock(dentry->d_inode);
3859 		mp->parent = ERR_PTR(err);
3860 	} else {
3861 		mp->parent = real_mount(path->mnt);
3862 	}
3863 }
3864 
3865 int finish_automount(struct vfsmount *__m, const struct path *path)
3866 {
3867 	struct vfsmount *m __free(mntput) = __m;
3868 	struct mount *mnt;
3869 	int err;
3870 
3871 	if (!m)
3872 		return 0;
3873 	if (IS_ERR(m))
3874 		return PTR_ERR(m);
3875 
3876 	mnt = real_mount(m);
3877 
3878 	if (m->mnt_root == path->dentry)
3879 		return -ELOOP;
3880 
3881 	/*
3882 	 * we don't want to use LOCK_MOUNT() - in this case finding something
3883 	 * that overmounts our mountpoint to be means "quitely drop what we've
3884 	 * got", not "try to mount it on top".
3885 	 */
3886 	LOCK_MOUNT_EXACT(mp, path);
3887 	if (mp.parent == ERR_PTR(-EBUSY))
3888 		return 0;
3889 
3890 	err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3891 	if (likely(!err))
3892 		retain_and_null_ptr(m);
3893 	return err;
3894 }
3895 
3896 /**
3897  * mnt_set_expiry - Put a mount on an expiration list
3898  * @mnt: The mount to list.
3899  * @expiry_list: The list to add the mount to.
3900  */
3901 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3902 {
3903 	guard(mount_locked_reader)();
3904 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3905 }
3906 EXPORT_SYMBOL(mnt_set_expiry);
3907 
3908 /*
3909  * process a list of expirable mountpoints with the intent of discarding any
3910  * mountpoints that aren't in use and haven't been touched since last we came
3911  * here
3912  */
3913 void mark_mounts_for_expiry(struct list_head *mounts)
3914 {
3915 	struct mount *mnt, *next;
3916 	LIST_HEAD(graveyard);
3917 
3918 	if (list_empty(mounts))
3919 		return;
3920 
3921 	guard(namespace_excl)();
3922 	guard(mount_writer)();
3923 
3924 	/* extract from the expiration list every vfsmount that matches the
3925 	 * following criteria:
3926 	 * - already mounted
3927 	 * - only referenced by its parent vfsmount
3928 	 * - still marked for expiry (marked on the last call here; marks are
3929 	 *   cleared by mntput())
3930 	 */
3931 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3932 		if (!is_mounted(&mnt->mnt))
3933 			continue;
3934 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3935 			propagate_mount_busy(mnt, 1))
3936 			continue;
3937 		list_move(&mnt->mnt_expire, &graveyard);
3938 	}
3939 	while (!list_empty(&graveyard)) {
3940 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3941 		touch_mnt_namespace(mnt->mnt_ns);
3942 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3943 	}
3944 }
3945 
3946 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3947 
3948 /*
3949  * Ripoff of 'select_parent()'
3950  *
3951  * search the list of submounts for a given mountpoint, and move any
3952  * shrinkable submounts to the 'graveyard' list.
3953  */
3954 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3955 {
3956 	struct mount *this_parent = parent;
3957 	struct list_head *next;
3958 	int found = 0;
3959 
3960 repeat:
3961 	next = this_parent->mnt_mounts.next;
3962 resume:
3963 	while (next != &this_parent->mnt_mounts) {
3964 		struct list_head *tmp = next;
3965 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3966 
3967 		next = tmp->next;
3968 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3969 			continue;
3970 		/*
3971 		 * Descend a level if the d_mounts list is non-empty.
3972 		 */
3973 		if (!list_empty(&mnt->mnt_mounts)) {
3974 			this_parent = mnt;
3975 			goto repeat;
3976 		}
3977 
3978 		if (!propagate_mount_busy(mnt, 1)) {
3979 			list_move_tail(&mnt->mnt_expire, graveyard);
3980 			found++;
3981 		}
3982 	}
3983 	/*
3984 	 * All done at this level ... ascend and resume the search
3985 	 */
3986 	if (this_parent != parent) {
3987 		next = this_parent->mnt_child.next;
3988 		this_parent = this_parent->mnt_parent;
3989 		goto resume;
3990 	}
3991 	return found;
3992 }
3993 
3994 /*
3995  * process a list of expirable mountpoints with the intent of discarding any
3996  * submounts of a specific parent mountpoint
3997  *
3998  * mount_lock must be held for write
3999  */
4000 static void shrink_submounts(struct mount *mnt)
4001 {
4002 	LIST_HEAD(graveyard);
4003 	struct mount *m;
4004 
4005 	/* extract submounts of 'mountpoint' from the expiration list */
4006 	while (select_submounts(mnt, &graveyard)) {
4007 		while (!list_empty(&graveyard)) {
4008 			m = list_first_entry(&graveyard, struct mount,
4009 						mnt_expire);
4010 			touch_mnt_namespace(m->mnt_ns);
4011 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4012 		}
4013 	}
4014 }
4015 
4016 static void *copy_mount_options(const void __user * data)
4017 {
4018 	char *copy;
4019 	unsigned left, offset;
4020 
4021 	if (!data)
4022 		return NULL;
4023 
4024 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4025 	if (!copy)
4026 		return ERR_PTR(-ENOMEM);
4027 
4028 	left = copy_from_user(copy, data, PAGE_SIZE);
4029 
4030 	/*
4031 	 * Not all architectures have an exact copy_from_user(). Resort to
4032 	 * byte at a time.
4033 	 */
4034 	offset = PAGE_SIZE - left;
4035 	while (left) {
4036 		char c;
4037 		if (get_user(c, (const char __user *)data + offset))
4038 			break;
4039 		copy[offset] = c;
4040 		left--;
4041 		offset++;
4042 	}
4043 
4044 	if (left == PAGE_SIZE) {
4045 		kfree(copy);
4046 		return ERR_PTR(-EFAULT);
4047 	}
4048 
4049 	return copy;
4050 }
4051 
4052 static char *copy_mount_string(const void __user *data)
4053 {
4054 	return data ? strndup_user(data, PATH_MAX) : NULL;
4055 }
4056 
4057 /*
4058  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4059  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4060  *
4061  * data is a (void *) that can point to any structure up to
4062  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4063  * information (or be NULL).
4064  *
4065  * Pre-0.97 versions of mount() didn't have a flags word.
4066  * When the flags word was introduced its top half was required
4067  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4068  * Therefore, if this magic number is present, it carries no information
4069  * and must be discarded.
4070  */
4071 int path_mount(const char *dev_name, const struct path *path,
4072 		const char *type_page, unsigned long flags, void *data_page)
4073 {
4074 	unsigned int mnt_flags = 0, sb_flags;
4075 	int ret;
4076 
4077 	/* Discard magic */
4078 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4079 		flags &= ~MS_MGC_MSK;
4080 
4081 	/* Basic sanity checks */
4082 	if (data_page)
4083 		((char *)data_page)[PAGE_SIZE - 1] = 0;
4084 
4085 	if (flags & MS_NOUSER)
4086 		return -EINVAL;
4087 
4088 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4089 	if (ret)
4090 		return ret;
4091 	if (!may_mount())
4092 		return -EPERM;
4093 	if (flags & SB_MANDLOCK)
4094 		warn_mandlock();
4095 
4096 	/* Default to relatime unless overriden */
4097 	if (!(flags & MS_NOATIME))
4098 		mnt_flags |= MNT_RELATIME;
4099 
4100 	/* Separate the per-mountpoint flags */
4101 	if (flags & MS_NOSUID)
4102 		mnt_flags |= MNT_NOSUID;
4103 	if (flags & MS_NODEV)
4104 		mnt_flags |= MNT_NODEV;
4105 	if (flags & MS_NOEXEC)
4106 		mnt_flags |= MNT_NOEXEC;
4107 	if (flags & MS_NOATIME)
4108 		mnt_flags |= MNT_NOATIME;
4109 	if (flags & MS_NODIRATIME)
4110 		mnt_flags |= MNT_NODIRATIME;
4111 	if (flags & MS_STRICTATIME)
4112 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4113 	if (flags & MS_RDONLY)
4114 		mnt_flags |= MNT_READONLY;
4115 	if (flags & MS_NOSYMFOLLOW)
4116 		mnt_flags |= MNT_NOSYMFOLLOW;
4117 
4118 	/* The default atime for remount is preservation */
4119 	if ((flags & MS_REMOUNT) &&
4120 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4121 		       MS_STRICTATIME)) == 0)) {
4122 		mnt_flags &= ~MNT_ATIME_MASK;
4123 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4124 	}
4125 
4126 	sb_flags = flags & (SB_RDONLY |
4127 			    SB_SYNCHRONOUS |
4128 			    SB_MANDLOCK |
4129 			    SB_DIRSYNC |
4130 			    SB_SILENT |
4131 			    SB_POSIXACL |
4132 			    SB_LAZYTIME |
4133 			    SB_I_VERSION);
4134 
4135 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4136 		return do_reconfigure_mnt(path, mnt_flags);
4137 	if (flags & MS_REMOUNT)
4138 		return do_remount(path, sb_flags, mnt_flags, data_page);
4139 	if (flags & MS_BIND)
4140 		return do_loopback(path, dev_name, flags & MS_REC);
4141 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4142 		return do_change_type(path, flags);
4143 	if (flags & MS_MOVE)
4144 		return do_move_mount_old(path, dev_name);
4145 
4146 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4147 			    data_page);
4148 }
4149 
4150 int do_mount(const char *dev_name, const char __user *dir_name,
4151 		const char *type_page, unsigned long flags, void *data_page)
4152 {
4153 	struct path path __free(path_put) = {};
4154 	int ret;
4155 
4156 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4157 	if (ret)
4158 		return ret;
4159 	return path_mount(dev_name, &path, type_page, flags, data_page);
4160 }
4161 
4162 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4163 {
4164 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4165 }
4166 
4167 static void dec_mnt_namespaces(struct ucounts *ucounts)
4168 {
4169 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4170 }
4171 
4172 static void free_mnt_ns(struct mnt_namespace *ns)
4173 {
4174 	if (!is_anon_ns(ns))
4175 		ns_common_free(ns);
4176 	dec_mnt_namespaces(ns->ucounts);
4177 	mnt_ns_tree_remove(ns);
4178 }
4179 
4180 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4181 {
4182 	struct mnt_namespace *new_ns;
4183 	struct ucounts *ucounts;
4184 	int ret;
4185 
4186 	ucounts = inc_mnt_namespaces(user_ns);
4187 	if (!ucounts)
4188 		return ERR_PTR(-ENOSPC);
4189 
4190 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4191 	if (!new_ns) {
4192 		dec_mnt_namespaces(ucounts);
4193 		return ERR_PTR(-ENOMEM);
4194 	}
4195 
4196 	if (anon)
4197 		ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4198 	else
4199 		ret = ns_common_init(new_ns);
4200 	if (ret) {
4201 		kfree(new_ns);
4202 		dec_mnt_namespaces(ucounts);
4203 		return ERR_PTR(ret);
4204 	}
4205 	ns_tree_gen_id(new_ns);
4206 
4207 	new_ns->is_anon = anon;
4208 	refcount_set(&new_ns->passive, 1);
4209 	new_ns->mounts = RB_ROOT;
4210 	init_waitqueue_head(&new_ns->poll);
4211 	new_ns->user_ns = get_user_ns(user_ns);
4212 	new_ns->ucounts = ucounts;
4213 	return new_ns;
4214 }
4215 
4216 __latent_entropy
4217 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4218 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4219 {
4220 	struct mnt_namespace *new_ns;
4221 	struct vfsmount *rootmnt __free(mntput) = NULL;
4222 	struct vfsmount *pwdmnt __free(mntput) = NULL;
4223 	struct mount *p, *q;
4224 	struct mount *old;
4225 	struct mount *new;
4226 	int copy_flags;
4227 
4228 	BUG_ON(!ns);
4229 
4230 	if (likely(!(flags & CLONE_NEWNS))) {
4231 		get_mnt_ns(ns);
4232 		return ns;
4233 	}
4234 
4235 	old = ns->root;
4236 
4237 	new_ns = alloc_mnt_ns(user_ns, false);
4238 	if (IS_ERR(new_ns))
4239 		return new_ns;
4240 
4241 	guard(namespace_excl)();
4242 	/* First pass: copy the tree topology */
4243 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4244 	if (user_ns != ns->user_ns)
4245 		copy_flags |= CL_SLAVE;
4246 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4247 	if (IS_ERR(new)) {
4248 		emptied_ns = new_ns;
4249 		return ERR_CAST(new);
4250 	}
4251 	if (user_ns != ns->user_ns) {
4252 		guard(mount_writer)();
4253 		lock_mnt_tree(new);
4254 	}
4255 	new_ns->root = new;
4256 
4257 	/*
4258 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4259 	 * as belonging to new namespace.  We have already acquired a private
4260 	 * fs_struct, so tsk->fs->lock is not needed.
4261 	 */
4262 	p = old;
4263 	q = new;
4264 	while (p) {
4265 		mnt_add_to_ns(new_ns, q);
4266 		new_ns->nr_mounts++;
4267 		if (new_fs) {
4268 			if (&p->mnt == new_fs->root.mnt) {
4269 				new_fs->root.mnt = mntget(&q->mnt);
4270 				rootmnt = &p->mnt;
4271 			}
4272 			if (&p->mnt == new_fs->pwd.mnt) {
4273 				new_fs->pwd.mnt = mntget(&q->mnt);
4274 				pwdmnt = &p->mnt;
4275 			}
4276 		}
4277 		p = next_mnt(p, old);
4278 		q = next_mnt(q, new);
4279 		if (!q)
4280 			break;
4281 		// an mntns binding we'd skipped?
4282 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4283 			p = next_mnt(skip_mnt_tree(p), old);
4284 	}
4285 	ns_tree_add_raw(new_ns);
4286 	return new_ns;
4287 }
4288 
4289 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4290 {
4291 	struct mount *mnt = real_mount(m);
4292 	struct mnt_namespace *ns;
4293 	struct super_block *s;
4294 	struct path path;
4295 	int err;
4296 
4297 	ns = alloc_mnt_ns(&init_user_ns, true);
4298 	if (IS_ERR(ns)) {
4299 		mntput(m);
4300 		return ERR_CAST(ns);
4301 	}
4302 	ns->root = mnt;
4303 	ns->nr_mounts++;
4304 	mnt_add_to_ns(ns, mnt);
4305 
4306 	err = vfs_path_lookup(m->mnt_root, m,
4307 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4308 
4309 	put_mnt_ns(ns);
4310 
4311 	if (err)
4312 		return ERR_PTR(err);
4313 
4314 	/* trade a vfsmount reference for active sb one */
4315 	s = path.mnt->mnt_sb;
4316 	atomic_inc(&s->s_active);
4317 	mntput(path.mnt);
4318 	/* lock the sucker */
4319 	down_write(&s->s_umount);
4320 	/* ... and return the root of (sub)tree on it */
4321 	return path.dentry;
4322 }
4323 EXPORT_SYMBOL(mount_subtree);
4324 
4325 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4326 		char __user *, type, unsigned long, flags, void __user *, data)
4327 {
4328 	int ret;
4329 	char *kernel_type;
4330 	char *kernel_dev;
4331 	void *options;
4332 
4333 	kernel_type = copy_mount_string(type);
4334 	ret = PTR_ERR(kernel_type);
4335 	if (IS_ERR(kernel_type))
4336 		goto out_type;
4337 
4338 	kernel_dev = copy_mount_string(dev_name);
4339 	ret = PTR_ERR(kernel_dev);
4340 	if (IS_ERR(kernel_dev))
4341 		goto out_dev;
4342 
4343 	options = copy_mount_options(data);
4344 	ret = PTR_ERR(options);
4345 	if (IS_ERR(options))
4346 		goto out_data;
4347 
4348 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4349 
4350 	kfree(options);
4351 out_data:
4352 	kfree(kernel_dev);
4353 out_dev:
4354 	kfree(kernel_type);
4355 out_type:
4356 	return ret;
4357 }
4358 
4359 #define FSMOUNT_VALID_FLAGS                                                    \
4360 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4361 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4362 	 MOUNT_ATTR_NOSYMFOLLOW)
4363 
4364 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4365 
4366 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4367 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4368 
4369 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4370 {
4371 	unsigned int mnt_flags = 0;
4372 
4373 	if (attr_flags & MOUNT_ATTR_RDONLY)
4374 		mnt_flags |= MNT_READONLY;
4375 	if (attr_flags & MOUNT_ATTR_NOSUID)
4376 		mnt_flags |= MNT_NOSUID;
4377 	if (attr_flags & MOUNT_ATTR_NODEV)
4378 		mnt_flags |= MNT_NODEV;
4379 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4380 		mnt_flags |= MNT_NOEXEC;
4381 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4382 		mnt_flags |= MNT_NODIRATIME;
4383 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4384 		mnt_flags |= MNT_NOSYMFOLLOW;
4385 
4386 	return mnt_flags;
4387 }
4388 
4389 /*
4390  * Create a kernel mount representation for a new, prepared superblock
4391  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4392  */
4393 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4394 		unsigned int, attr_flags)
4395 {
4396 	struct path new_path __free(path_put) = {};
4397 	struct mnt_namespace *ns;
4398 	struct fs_context *fc;
4399 	struct vfsmount *new_mnt;
4400 	struct mount *mnt;
4401 	unsigned int mnt_flags = 0;
4402 	long ret;
4403 
4404 	if (!may_mount())
4405 		return -EPERM;
4406 
4407 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4408 		return -EINVAL;
4409 
4410 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4411 		return -EINVAL;
4412 
4413 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4414 
4415 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4416 	case MOUNT_ATTR_STRICTATIME:
4417 		break;
4418 	case MOUNT_ATTR_NOATIME:
4419 		mnt_flags |= MNT_NOATIME;
4420 		break;
4421 	case MOUNT_ATTR_RELATIME:
4422 		mnt_flags |= MNT_RELATIME;
4423 		break;
4424 	default:
4425 		return -EINVAL;
4426 	}
4427 
4428 	CLASS(fd, f)(fs_fd);
4429 	if (fd_empty(f))
4430 		return -EBADF;
4431 
4432 	if (fd_file(f)->f_op != &fscontext_fops)
4433 		return -EINVAL;
4434 
4435 	fc = fd_file(f)->private_data;
4436 
4437 	ACQUIRE(mutex_intr, uapi_mutex)(&fc->uapi_mutex);
4438 	ret = ACQUIRE_ERR(mutex_intr, &uapi_mutex);
4439 	if (ret)
4440 		return ret;
4441 
4442 	/* There must be a valid superblock or we can't mount it */
4443 	ret = -EINVAL;
4444 	if (!fc->root)
4445 		return ret;
4446 
4447 	ret = -EPERM;
4448 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4449 		errorfcp(fc, "VFS", "Mount too revealing");
4450 		return ret;
4451 	}
4452 
4453 	ret = -EBUSY;
4454 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4455 		return ret;
4456 
4457 	if (fc->sb_flags & SB_MANDLOCK)
4458 		warn_mandlock();
4459 
4460 	new_mnt = vfs_create_mount(fc);
4461 	if (IS_ERR(new_mnt))
4462 		return PTR_ERR(new_mnt);
4463 	new_mnt->mnt_flags = mnt_flags;
4464 
4465 	new_path.dentry = dget(fc->root);
4466 	new_path.mnt = new_mnt;
4467 
4468 	/* We've done the mount bit - now move the file context into more or
4469 	 * less the same state as if we'd done an fspick().  We don't want to
4470 	 * do any memory allocation or anything like that at this point as we
4471 	 * don't want to have to handle any errors incurred.
4472 	 */
4473 	vfs_clean_context(fc);
4474 
4475 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4476 	if (IS_ERR(ns))
4477 		return PTR_ERR(ns);
4478 	mnt = real_mount(new_path.mnt);
4479 	ns->root = mnt;
4480 	ns->nr_mounts = 1;
4481 	mnt_add_to_ns(ns, mnt);
4482 	mntget(new_path.mnt);
4483 
4484 	FD_PREPARE(fdf, (flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0,
4485 		   dentry_open(&new_path, O_PATH, fc->cred));
4486 	if (fdf.err) {
4487 		dissolve_on_fput(new_path.mnt);
4488 		return fdf.err;
4489 	}
4490 
4491 	/*
4492 	 * Attach to an apparent O_PATH fd with a note that we
4493 	 * need to unmount it, not just simply put it.
4494 	 */
4495 	fd_prepare_file(fdf)->f_mode |= FMODE_NEED_UNMOUNT;
4496 	return fd_publish(fdf);
4497 }
4498 
4499 static inline int vfs_move_mount(const struct path *from_path,
4500 				 const struct path *to_path,
4501 				 enum mnt_tree_flags_t mflags)
4502 {
4503 	int ret;
4504 
4505 	ret = security_move_mount(from_path, to_path);
4506 	if (ret)
4507 		return ret;
4508 
4509 	if (mflags & MNT_TREE_PROPAGATION)
4510 		return do_set_group(from_path, to_path);
4511 
4512 	return do_move_mount(from_path, to_path, mflags);
4513 }
4514 
4515 /*
4516  * Move a mount from one place to another.  In combination with
4517  * fsopen()/fsmount() this is used to install a new mount and in combination
4518  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4519  * a mount subtree.
4520  *
4521  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4522  */
4523 SYSCALL_DEFINE5(move_mount,
4524 		int, from_dfd, const char __user *, from_pathname,
4525 		int, to_dfd, const char __user *, to_pathname,
4526 		unsigned int, flags)
4527 {
4528 	struct path to_path __free(path_put) = {};
4529 	struct path from_path __free(path_put) = {};
4530 	unsigned int lflags, uflags;
4531 	enum mnt_tree_flags_t mflags = 0;
4532 	int ret = 0;
4533 
4534 	if (!may_mount())
4535 		return -EPERM;
4536 
4537 	if (flags & ~MOVE_MOUNT__MASK)
4538 		return -EINVAL;
4539 
4540 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4541 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4542 		return -EINVAL;
4543 
4544 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4545 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4546 
4547 	uflags = 0;
4548 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4549 		uflags = AT_EMPTY_PATH;
4550 
4551 	CLASS(filename_maybe_null,to_name)(to_pathname, uflags);
4552 	if (!to_name && to_dfd >= 0) {
4553 		CLASS(fd_raw, f_to)(to_dfd);
4554 		if (fd_empty(f_to))
4555 			return -EBADF;
4556 
4557 		to_path = fd_file(f_to)->f_path;
4558 		path_get(&to_path);
4559 	} else {
4560 		lflags = 0;
4561 		if (flags & MOVE_MOUNT_T_SYMLINKS)
4562 			lflags |= LOOKUP_FOLLOW;
4563 		if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4564 			lflags |= LOOKUP_AUTOMOUNT;
4565 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4566 		if (ret)
4567 			return ret;
4568 	}
4569 
4570 	uflags = 0;
4571 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4572 		uflags = AT_EMPTY_PATH;
4573 
4574 	CLASS(filename_maybe_null,from_name)(from_pathname, uflags);
4575 	if (!from_name && from_dfd >= 0) {
4576 		CLASS(fd_raw, f_from)(from_dfd);
4577 		if (fd_empty(f_from))
4578 			return -EBADF;
4579 
4580 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4581 	}
4582 
4583 	lflags = 0;
4584 	if (flags & MOVE_MOUNT_F_SYMLINKS)
4585 		lflags |= LOOKUP_FOLLOW;
4586 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4587 		lflags |= LOOKUP_AUTOMOUNT;
4588 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4589 	if (ret)
4590 		return ret;
4591 
4592 	return vfs_move_mount(&from_path, &to_path, mflags);
4593 }
4594 
4595 /*
4596  * Return true if path is reachable from root
4597  *
4598  * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4599  */
4600 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4601 			 const struct path *root)
4602 {
4603 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4604 		dentry = mnt->mnt_mountpoint;
4605 		mnt = mnt->mnt_parent;
4606 	}
4607 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4608 }
4609 
4610 bool path_is_under(const struct path *path1, const struct path *path2)
4611 {
4612 	guard(mount_locked_reader)();
4613 	return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4614 }
4615 EXPORT_SYMBOL(path_is_under);
4616 
4617 int path_pivot_root(struct path *new, struct path *old)
4618 {
4619 	struct path root __free(path_put) = {};
4620 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4621 	int error;
4622 
4623 	if (!may_mount())
4624 		return -EPERM;
4625 
4626 	error = security_sb_pivotroot(old, new);
4627 	if (error)
4628 		return error;
4629 
4630 	get_fs_root(current->fs, &root);
4631 
4632 	LOCK_MOUNT(old_mp, old);
4633 	old_mnt = old_mp.parent;
4634 	if (IS_ERR(old_mnt))
4635 		return PTR_ERR(old_mnt);
4636 
4637 	new_mnt = real_mount(new->mnt);
4638 	root_mnt = real_mount(root.mnt);
4639 	ex_parent = new_mnt->mnt_parent;
4640 	root_parent = root_mnt->mnt_parent;
4641 	if (IS_MNT_SHARED(old_mnt) ||
4642 		IS_MNT_SHARED(ex_parent) ||
4643 		IS_MNT_SHARED(root_parent))
4644 		return -EINVAL;
4645 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4646 		return -EINVAL;
4647 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4648 		return -EINVAL;
4649 	if (d_unlinked(new->dentry))
4650 		return -ENOENT;
4651 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4652 		return -EBUSY; /* loop, on the same file system  */
4653 	if (!path_mounted(&root))
4654 		return -EINVAL; /* not a mountpoint */
4655 	if (!mnt_has_parent(root_mnt))
4656 		return -EINVAL; /* absolute root */
4657 	if (!path_mounted(new))
4658 		return -EINVAL; /* not a mountpoint */
4659 	if (!mnt_has_parent(new_mnt))
4660 		return -EINVAL; /* absolute root */
4661 	/* make sure we can reach put_old from new_root */
4662 	if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, new))
4663 		return -EINVAL;
4664 	/* make certain new is below the root */
4665 	if (!is_path_reachable(new_mnt, new->dentry, &root))
4666 		return -EINVAL;
4667 	lock_mount_hash();
4668 	umount_mnt(new_mnt);
4669 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4670 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4671 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4672 	}
4673 	/* mount new_root on / */
4674 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4675 	umount_mnt(root_mnt);
4676 	/* mount old root on put_old */
4677 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4678 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4679 	/* A moved mount should not expire automatically */
4680 	list_del_init(&new_mnt->mnt_expire);
4681 	unlock_mount_hash();
4682 	mnt_notify_add(root_mnt);
4683 	mnt_notify_add(new_mnt);
4684 	chroot_fs_refs(&root, new);
4685 	return 0;
4686 }
4687 
4688 /*
4689  * pivot_root Semantics:
4690  * Moves the root file system of the current process to the directory put_old,
4691  * makes new_root as the new root file system of the current process, and sets
4692  * root/cwd of all processes which had them on the current root to new_root.
4693  *
4694  * Restrictions:
4695  * The new_root and put_old must be directories, and  must not be on the
4696  * same file  system as the current process root. The put_old  must  be
4697  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4698  * pointed to by put_old must yield the same directory as new_root. No other
4699  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4700  *
4701  * The immutable nullfs filesystem is mounted as the true root of the VFS
4702  * hierarchy. The mutable rootfs (tmpfs/ramfs) is layered on top of this,
4703  * allowing pivot_root() to work normally from initramfs.
4704  *
4705  * Notes:
4706  *  - we don't move root/cwd if they are not at the root (reason: if something
4707  *    cared enough to change them, it's probably wrong to force them elsewhere)
4708  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4709  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4710  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4711  *    first.
4712  */
4713 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4714 		const char __user *, put_old)
4715 {
4716 	struct path new __free(path_put) = {};
4717 	struct path old __free(path_put) = {};
4718 	int error;
4719 
4720 	error = user_path_at(AT_FDCWD, new_root,
4721 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4722 	if (error)
4723 		return error;
4724 
4725 	error = user_path_at(AT_FDCWD, put_old,
4726 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4727 	if (error)
4728 		return error;
4729 
4730 	return path_pivot_root(&new, &old);
4731 }
4732 
4733 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4734 {
4735 	unsigned int flags = mnt->mnt.mnt_flags;
4736 
4737 	/*  flags to clear */
4738 	flags &= ~kattr->attr_clr;
4739 	/* flags to raise */
4740 	flags |= kattr->attr_set;
4741 
4742 	return flags;
4743 }
4744 
4745 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4746 {
4747 	struct vfsmount *m = &mnt->mnt;
4748 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4749 
4750 	if (!kattr->mnt_idmap)
4751 		return 0;
4752 
4753 	/*
4754 	 * Creating an idmapped mount with the filesystem wide idmapping
4755 	 * doesn't make sense so block that. We don't allow mushy semantics.
4756 	 */
4757 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4758 		return -EINVAL;
4759 
4760 	/*
4761 	 * We only allow an mount to change it's idmapping if it has
4762 	 * never been accessible to userspace.
4763 	 */
4764 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4765 		return -EPERM;
4766 
4767 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4768 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4769 		return -EINVAL;
4770 
4771 	/* The filesystem has turned off idmapped mounts. */
4772 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4773 		return -EINVAL;
4774 
4775 	/* We're not controlling the superblock. */
4776 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4777 		return -EPERM;
4778 
4779 	/* Mount has already been visible in the filesystem hierarchy. */
4780 	if (!is_anon_ns(mnt->mnt_ns))
4781 		return -EINVAL;
4782 
4783 	return 0;
4784 }
4785 
4786 /**
4787  * mnt_allow_writers() - check whether the attribute change allows writers
4788  * @kattr: the new mount attributes
4789  * @mnt: the mount to which @kattr will be applied
4790  *
4791  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4792  *
4793  * Return: true if writers need to be held, false if not
4794  */
4795 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4796 				     const struct mount *mnt)
4797 {
4798 	return (!(kattr->attr_set & MNT_READONLY) ||
4799 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4800 	       !kattr->mnt_idmap;
4801 }
4802 
4803 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4804 {
4805 	struct mount *m;
4806 	int err;
4807 
4808 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4809 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4810 			err = -EPERM;
4811 			break;
4812 		}
4813 
4814 		err = can_idmap_mount(kattr, m);
4815 		if (err)
4816 			break;
4817 
4818 		if (!mnt_allow_writers(kattr, m)) {
4819 			err = mnt_hold_writers(m);
4820 			if (err) {
4821 				m = next_mnt(m, mnt);
4822 				break;
4823 			}
4824 		}
4825 
4826 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4827 			return 0;
4828 	}
4829 
4830 	if (err) {
4831 		/* undo all mnt_hold_writers() we'd done */
4832 		for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4833 			mnt_unhold_writers(p);
4834 	}
4835 	return err;
4836 }
4837 
4838 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4839 {
4840 	struct mnt_idmap *old_idmap;
4841 
4842 	if (!kattr->mnt_idmap)
4843 		return;
4844 
4845 	old_idmap = mnt_idmap(&mnt->mnt);
4846 
4847 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4848 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4849 	mnt_idmap_put(old_idmap);
4850 }
4851 
4852 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4853 {
4854 	struct mount *m;
4855 
4856 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4857 		unsigned int flags;
4858 
4859 		do_idmap_mount(kattr, m);
4860 		flags = recalc_flags(kattr, m);
4861 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4862 
4863 		/* If we had to hold writers unblock them. */
4864 		mnt_unhold_writers(m);
4865 
4866 		if (kattr->propagation)
4867 			change_mnt_propagation(m, kattr->propagation);
4868 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4869 			break;
4870 	}
4871 	touch_mnt_namespace(mnt->mnt_ns);
4872 }
4873 
4874 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4875 {
4876 	struct mount *mnt = real_mount(path->mnt);
4877 	int err = 0;
4878 
4879 	if (!path_mounted(path))
4880 		return -EINVAL;
4881 
4882 	if (kattr->mnt_userns) {
4883 		struct mnt_idmap *mnt_idmap;
4884 
4885 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4886 		if (IS_ERR(mnt_idmap))
4887 			return PTR_ERR(mnt_idmap);
4888 		kattr->mnt_idmap = mnt_idmap;
4889 	}
4890 
4891 	if (kattr->propagation) {
4892 		/*
4893 		 * Only take namespace_lock() if we're actually changing
4894 		 * propagation.
4895 		 */
4896 		namespace_lock();
4897 		if (kattr->propagation == MS_SHARED) {
4898 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4899 			if (err) {
4900 				namespace_unlock();
4901 				return err;
4902 			}
4903 		}
4904 	}
4905 
4906 	err = -EINVAL;
4907 	lock_mount_hash();
4908 
4909 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4910 		goto out;
4911 
4912 	/*
4913 	 * First, we get the mount tree in a shape where we can change mount
4914 	 * properties without failure. If we succeeded to do so we commit all
4915 	 * changes and if we failed we clean up.
4916 	 */
4917 	err = mount_setattr_prepare(kattr, mnt);
4918 	if (!err)
4919 		mount_setattr_commit(kattr, mnt);
4920 
4921 out:
4922 	unlock_mount_hash();
4923 
4924 	if (kattr->propagation) {
4925 		if (err)
4926 			cleanup_group_ids(mnt, NULL);
4927 		namespace_unlock();
4928 	}
4929 
4930 	return err;
4931 }
4932 
4933 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4934 				struct mount_kattr *kattr)
4935 {
4936 	struct ns_common *ns;
4937 	struct user_namespace *mnt_userns;
4938 
4939 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4940 		return 0;
4941 
4942 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4943 		/*
4944 		 * We can only remove an idmapping if it's never been
4945 		 * exposed to userspace.
4946 		 */
4947 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4948 			return -EINVAL;
4949 
4950 		/*
4951 		 * Removal of idmappings is equivalent to setting
4952 		 * nop_mnt_idmap.
4953 		 */
4954 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4955 			kattr->mnt_idmap = &nop_mnt_idmap;
4956 			return 0;
4957 		}
4958 	}
4959 
4960 	if (attr->userns_fd > INT_MAX)
4961 		return -EINVAL;
4962 
4963 	CLASS(fd, f)(attr->userns_fd);
4964 	if (fd_empty(f))
4965 		return -EBADF;
4966 
4967 	if (!proc_ns_file(fd_file(f)))
4968 		return -EINVAL;
4969 
4970 	ns = get_proc_ns(file_inode(fd_file(f)));
4971 	if (ns->ns_type != CLONE_NEWUSER)
4972 		return -EINVAL;
4973 
4974 	/*
4975 	 * The initial idmapping cannot be used to create an idmapped
4976 	 * mount. We use the initial idmapping as an indicator of a mount
4977 	 * that is not idmapped. It can simply be passed into helpers that
4978 	 * are aware of idmapped mounts as a convenient shortcut. A user
4979 	 * can just create a dedicated identity mapping to achieve the same
4980 	 * result.
4981 	 */
4982 	mnt_userns = container_of(ns, struct user_namespace, ns);
4983 	if (mnt_userns == &init_user_ns)
4984 		return -EPERM;
4985 
4986 	/* We're not controlling the target namespace. */
4987 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4988 		return -EPERM;
4989 
4990 	kattr->mnt_userns = get_user_ns(mnt_userns);
4991 	return 0;
4992 }
4993 
4994 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4995 			     struct mount_kattr *kattr)
4996 {
4997 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4998 		return -EINVAL;
4999 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5000 		return -EINVAL;
5001 	kattr->propagation = attr->propagation;
5002 
5003 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5004 		return -EINVAL;
5005 
5006 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5007 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5008 
5009 	/*
5010 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5011 	 * users wanting to transition to a different atime setting cannot
5012 	 * simply specify the atime setting in @attr_set, but must also
5013 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5014 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5015 	 * @attr_clr and that @attr_set can't have any atime bits set if
5016 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5017 	 */
5018 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5019 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5020 			return -EINVAL;
5021 
5022 		/*
5023 		 * Clear all previous time settings as they are mutually
5024 		 * exclusive.
5025 		 */
5026 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5027 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5028 		case MOUNT_ATTR_RELATIME:
5029 			kattr->attr_set |= MNT_RELATIME;
5030 			break;
5031 		case MOUNT_ATTR_NOATIME:
5032 			kattr->attr_set |= MNT_NOATIME;
5033 			break;
5034 		case MOUNT_ATTR_STRICTATIME:
5035 			break;
5036 		default:
5037 			return -EINVAL;
5038 		}
5039 	} else {
5040 		if (attr->attr_set & MOUNT_ATTR__ATIME)
5041 			return -EINVAL;
5042 	}
5043 
5044 	return build_mount_idmapped(attr, usize, kattr);
5045 }
5046 
5047 static void finish_mount_kattr(struct mount_kattr *kattr)
5048 {
5049 	if (kattr->mnt_userns) {
5050 		put_user_ns(kattr->mnt_userns);
5051 		kattr->mnt_userns = NULL;
5052 	}
5053 
5054 	if (kattr->mnt_idmap)
5055 		mnt_idmap_put(kattr->mnt_idmap);
5056 }
5057 
5058 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5059 			       struct mount_kattr *kattr)
5060 {
5061 	int ret;
5062 	struct mount_attr attr;
5063 
5064 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5065 
5066 	if (unlikely(usize > PAGE_SIZE))
5067 		return -E2BIG;
5068 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5069 		return -EINVAL;
5070 
5071 	if (!may_mount())
5072 		return -EPERM;
5073 
5074 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5075 	if (ret)
5076 		return ret;
5077 
5078 	/* Don't bother walking through the mounts if this is a nop. */
5079 	if (attr.attr_set == 0 &&
5080 	    attr.attr_clr == 0 &&
5081 	    attr.propagation == 0)
5082 		return 0; /* Tell caller to not bother. */
5083 
5084 	ret = build_mount_kattr(&attr, usize, kattr);
5085 	if (ret < 0)
5086 		return ret;
5087 
5088 	return 1;
5089 }
5090 
5091 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5092 		unsigned int, flags, struct mount_attr __user *, uattr,
5093 		size_t, usize)
5094 {
5095 	int err;
5096 	struct path target;
5097 	struct mount_kattr kattr;
5098 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5099 
5100 	if (flags & ~(AT_EMPTY_PATH |
5101 		      AT_RECURSIVE |
5102 		      AT_SYMLINK_NOFOLLOW |
5103 		      AT_NO_AUTOMOUNT))
5104 		return -EINVAL;
5105 
5106 	if (flags & AT_NO_AUTOMOUNT)
5107 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5108 	if (flags & AT_SYMLINK_NOFOLLOW)
5109 		lookup_flags &= ~LOOKUP_FOLLOW;
5110 
5111 	kattr = (struct mount_kattr) {
5112 		.lookup_flags	= lookup_flags,
5113 	};
5114 
5115 	if (flags & AT_RECURSIVE)
5116 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5117 
5118 	err = wants_mount_setattr(uattr, usize, &kattr);
5119 	if (err <= 0)
5120 		return err;
5121 
5122 	CLASS(filename_uflags, name)(path, flags);
5123 	err = filename_lookup(dfd, name, kattr.lookup_flags, &target, NULL);
5124 	if (!err) {
5125 		err = do_mount_setattr(&target, &kattr);
5126 		path_put(&target);
5127 	}
5128 	finish_mount_kattr(&kattr);
5129 	return err;
5130 }
5131 
5132 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5133 		unsigned, flags, struct mount_attr __user *, uattr,
5134 		size_t, usize)
5135 {
5136 	if (!uattr && usize)
5137 		return -EINVAL;
5138 
5139 	FD_PREPARE(fdf, flags, vfs_open_tree(dfd, filename, flags));
5140 	if (fdf.err)
5141 		return fdf.err;
5142 
5143 	if (uattr) {
5144 		struct mount_kattr kattr = {};
5145 		struct file *file = fd_prepare_file(fdf);
5146 		int ret;
5147 
5148 		if (flags & OPEN_TREE_CLONE)
5149 			kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5150 		if (flags & AT_RECURSIVE)
5151 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5152 
5153 		ret = wants_mount_setattr(uattr, usize, &kattr);
5154 		if (ret > 0) {
5155 			ret = do_mount_setattr(&file->f_path, &kattr);
5156 			finish_mount_kattr(&kattr);
5157 		}
5158 		if (ret)
5159 			return ret;
5160 	}
5161 
5162 	return fd_publish(fdf);
5163 }
5164 
5165 int show_path(struct seq_file *m, struct dentry *root)
5166 {
5167 	if (root->d_sb->s_op->show_path)
5168 		return root->d_sb->s_op->show_path(m, root);
5169 
5170 	seq_dentry(m, root, " \t\n\\");
5171 	return 0;
5172 }
5173 
5174 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5175 {
5176 	struct mount *mnt = mnt_find_id_at(ns, id);
5177 
5178 	if (!mnt || mnt->mnt_id_unique != id)
5179 		return NULL;
5180 
5181 	return &mnt->mnt;
5182 }
5183 
5184 struct kstatmount {
5185 	struct statmount __user *buf;
5186 	size_t bufsize;
5187 	struct vfsmount *mnt;
5188 	struct mnt_idmap *idmap;
5189 	u64 mask;
5190 	struct path root;
5191 	struct seq_file seq;
5192 
5193 	/* Must be last --ends in a flexible-array member. */
5194 	struct statmount sm;
5195 };
5196 
5197 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5198 {
5199 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5200 	u64 attr_flags = 0;
5201 
5202 	if (mnt_flags & MNT_READONLY)
5203 		attr_flags |= MOUNT_ATTR_RDONLY;
5204 	if (mnt_flags & MNT_NOSUID)
5205 		attr_flags |= MOUNT_ATTR_NOSUID;
5206 	if (mnt_flags & MNT_NODEV)
5207 		attr_flags |= MOUNT_ATTR_NODEV;
5208 	if (mnt_flags & MNT_NOEXEC)
5209 		attr_flags |= MOUNT_ATTR_NOEXEC;
5210 	if (mnt_flags & MNT_NODIRATIME)
5211 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5212 	if (mnt_flags & MNT_NOSYMFOLLOW)
5213 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5214 
5215 	if (mnt_flags & MNT_NOATIME)
5216 		attr_flags |= MOUNT_ATTR_NOATIME;
5217 	else if (mnt_flags & MNT_RELATIME)
5218 		attr_flags |= MOUNT_ATTR_RELATIME;
5219 	else
5220 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5221 
5222 	if (is_idmapped_mnt(mnt))
5223 		attr_flags |= MOUNT_ATTR_IDMAP;
5224 
5225 	return attr_flags;
5226 }
5227 
5228 static u64 mnt_to_propagation_flags(struct mount *m)
5229 {
5230 	u64 propagation = 0;
5231 
5232 	if (IS_MNT_SHARED(m))
5233 		propagation |= MS_SHARED;
5234 	if (IS_MNT_SLAVE(m))
5235 		propagation |= MS_SLAVE;
5236 	if (IS_MNT_UNBINDABLE(m))
5237 		propagation |= MS_UNBINDABLE;
5238 	if (!propagation)
5239 		propagation |= MS_PRIVATE;
5240 
5241 	return propagation;
5242 }
5243 
5244 u64 vfsmount_to_propagation_flags(struct vfsmount *mnt)
5245 {
5246 	return mnt_to_propagation_flags(real_mount(mnt));
5247 }
5248 EXPORT_SYMBOL_GPL(vfsmount_to_propagation_flags);
5249 
5250 static void statmount_sb_basic(struct kstatmount *s)
5251 {
5252 	struct super_block *sb = s->mnt->mnt_sb;
5253 
5254 	s->sm.mask |= STATMOUNT_SB_BASIC;
5255 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5256 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5257 	s->sm.sb_magic = sb->s_magic;
5258 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5259 }
5260 
5261 static void statmount_mnt_basic(struct kstatmount *s)
5262 {
5263 	struct mount *m = real_mount(s->mnt);
5264 
5265 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5266 	s->sm.mnt_id = m->mnt_id_unique;
5267 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5268 	s->sm.mnt_id_old = m->mnt_id;
5269 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5270 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5271 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5272 	s->sm.mnt_peer_group = m->mnt_group_id;
5273 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5274 }
5275 
5276 static void statmount_propagate_from(struct kstatmount *s)
5277 {
5278 	struct mount *m = real_mount(s->mnt);
5279 
5280 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5281 	if (IS_MNT_SLAVE(m))
5282 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5283 }
5284 
5285 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5286 {
5287 	int ret;
5288 	size_t start = seq->count;
5289 
5290 	ret = show_path(seq, s->mnt->mnt_root);
5291 	if (ret)
5292 		return ret;
5293 
5294 	if (unlikely(seq_has_overflowed(seq)))
5295 		return -EAGAIN;
5296 
5297 	/*
5298          * Unescape the result. It would be better if supplied string was not
5299          * escaped in the first place, but that's a pretty invasive change.
5300          */
5301 	seq->buf[seq->count] = '\0';
5302 	seq->count = start;
5303 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5304 	return 0;
5305 }
5306 
5307 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5308 {
5309 	struct vfsmount *mnt = s->mnt;
5310 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5311 	int err;
5312 
5313 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5314 	return err == SEQ_SKIP ? 0 : err;
5315 }
5316 
5317 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5318 {
5319 	struct super_block *sb = s->mnt->mnt_sb;
5320 
5321 	seq_puts(seq, sb->s_type->name);
5322 	return 0;
5323 }
5324 
5325 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5326 {
5327 	struct super_block *sb = s->mnt->mnt_sb;
5328 
5329 	if (sb->s_subtype)
5330 		seq_puts(seq, sb->s_subtype);
5331 }
5332 
5333 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5334 {
5335 	struct super_block *sb = s->mnt->mnt_sb;
5336 	struct mount *r = real_mount(s->mnt);
5337 
5338 	if (sb->s_op->show_devname) {
5339 		size_t start = seq->count;
5340 		int ret;
5341 
5342 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5343 		if (ret)
5344 			return ret;
5345 
5346 		if (unlikely(seq_has_overflowed(seq)))
5347 			return -EAGAIN;
5348 
5349 		/* Unescape the result */
5350 		seq->buf[seq->count] = '\0';
5351 		seq->count = start;
5352 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5353 	} else {
5354 		seq_puts(seq, r->mnt_devname);
5355 	}
5356 	return 0;
5357 }
5358 
5359 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5360 {
5361 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5362 	s->sm.mnt_ns_id = ns->ns.ns_id;
5363 }
5364 
5365 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5366 {
5367 	struct vfsmount *mnt = s->mnt;
5368 	struct super_block *sb = mnt->mnt_sb;
5369 	size_t start = seq->count;
5370 	int err;
5371 
5372 	err = security_sb_show_options(seq, sb);
5373 	if (err)
5374 		return err;
5375 
5376 	if (sb->s_op->show_options) {
5377 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5378 		if (err)
5379 			return err;
5380 	}
5381 
5382 	if (unlikely(seq_has_overflowed(seq)))
5383 		return -EAGAIN;
5384 
5385 	if (seq->count == start)
5386 		return 0;
5387 
5388 	/* skip leading comma */
5389 	memmove(seq->buf + start, seq->buf + start + 1,
5390 		seq->count - start - 1);
5391 	seq->count--;
5392 
5393 	return 0;
5394 }
5395 
5396 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5397 {
5398 	char *buf_end, *opt_end, *src, *dst;
5399 	int count = 0;
5400 
5401 	if (unlikely(seq_has_overflowed(seq)))
5402 		return -EAGAIN;
5403 
5404 	buf_end = seq->buf + seq->count;
5405 	dst = seq->buf + start;
5406 	src = dst + 1;	/* skip initial comma */
5407 
5408 	if (src >= buf_end) {
5409 		seq->count = start;
5410 		return 0;
5411 	}
5412 
5413 	*buf_end = '\0';
5414 	for (; src < buf_end; src = opt_end + 1) {
5415 		opt_end = strchrnul(src, ',');
5416 		*opt_end = '\0';
5417 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5418 		if (WARN_ON_ONCE(++count == INT_MAX))
5419 			return -EOVERFLOW;
5420 	}
5421 	seq->count = dst - 1 - seq->buf;
5422 	return count;
5423 }
5424 
5425 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5426 {
5427 	struct vfsmount *mnt = s->mnt;
5428 	struct super_block *sb = mnt->mnt_sb;
5429 	size_t start = seq->count;
5430 	int err;
5431 
5432 	if (!sb->s_op->show_options)
5433 		return 0;
5434 
5435 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5436 	if (err)
5437 		return err;
5438 
5439 	err = statmount_opt_process(seq, start);
5440 	if (err < 0)
5441 		return err;
5442 
5443 	s->sm.opt_num = err;
5444 	return 0;
5445 }
5446 
5447 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5448 {
5449 	struct vfsmount *mnt = s->mnt;
5450 	struct super_block *sb = mnt->mnt_sb;
5451 	size_t start = seq->count;
5452 	int err;
5453 
5454 	err = security_sb_show_options(seq, sb);
5455 	if (err)
5456 		return err;
5457 
5458 	err = statmount_opt_process(seq, start);
5459 	if (err < 0)
5460 		return err;
5461 
5462 	s->sm.opt_sec_num = err;
5463 	return 0;
5464 }
5465 
5466 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5467 {
5468 	int ret;
5469 
5470 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5471 	if (ret < 0)
5472 		return ret;
5473 
5474 	s->sm.mnt_uidmap_num = ret;
5475 	/*
5476 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5477 	 * mappings. This allows userspace to distinguish between a
5478 	 * non-idmapped mount and an idmapped mount where none of the
5479 	 * individual mappings are valid in the caller's idmapping.
5480 	 */
5481 	if (is_valid_mnt_idmap(s->idmap))
5482 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5483 	return 0;
5484 }
5485 
5486 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5487 {
5488 	int ret;
5489 
5490 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5491 	if (ret < 0)
5492 		return ret;
5493 
5494 	s->sm.mnt_gidmap_num = ret;
5495 	/*
5496 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5497 	 * mappings. This allows userspace to distinguish between a
5498 	 * non-idmapped mount and an idmapped mount where none of the
5499 	 * individual mappings are valid in the caller's idmapping.
5500 	 */
5501 	if (is_valid_mnt_idmap(s->idmap))
5502 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5503 	return 0;
5504 }
5505 
5506 static int statmount_string(struct kstatmount *s, u64 flag)
5507 {
5508 	int ret = 0;
5509 	size_t kbufsize;
5510 	struct seq_file *seq = &s->seq;
5511 	struct statmount *sm = &s->sm;
5512 	u32 start, *offp;
5513 
5514 	/* Reserve an empty string at the beginning for any unset offsets */
5515 	if (!seq->count)
5516 		seq_putc(seq, 0);
5517 
5518 	start = seq->count;
5519 
5520 	switch (flag) {
5521 	case STATMOUNT_FS_TYPE:
5522 		offp = &sm->fs_type;
5523 		ret = statmount_fs_type(s, seq);
5524 		break;
5525 	case STATMOUNT_MNT_ROOT:
5526 		offp = &sm->mnt_root;
5527 		ret = statmount_mnt_root(s, seq);
5528 		break;
5529 	case STATMOUNT_MNT_POINT:
5530 		offp = &sm->mnt_point;
5531 		ret = statmount_mnt_point(s, seq);
5532 		break;
5533 	case STATMOUNT_MNT_OPTS:
5534 		offp = &sm->mnt_opts;
5535 		ret = statmount_mnt_opts(s, seq);
5536 		break;
5537 	case STATMOUNT_OPT_ARRAY:
5538 		offp = &sm->opt_array;
5539 		ret = statmount_opt_array(s, seq);
5540 		break;
5541 	case STATMOUNT_OPT_SEC_ARRAY:
5542 		offp = &sm->opt_sec_array;
5543 		ret = statmount_opt_sec_array(s, seq);
5544 		break;
5545 	case STATMOUNT_FS_SUBTYPE:
5546 		offp = &sm->fs_subtype;
5547 		statmount_fs_subtype(s, seq);
5548 		break;
5549 	case STATMOUNT_SB_SOURCE:
5550 		offp = &sm->sb_source;
5551 		ret = statmount_sb_source(s, seq);
5552 		break;
5553 	case STATMOUNT_MNT_UIDMAP:
5554 		offp = &sm->mnt_uidmap;
5555 		ret = statmount_mnt_uidmap(s, seq);
5556 		break;
5557 	case STATMOUNT_MNT_GIDMAP:
5558 		offp = &sm->mnt_gidmap;
5559 		ret = statmount_mnt_gidmap(s, seq);
5560 		break;
5561 	default:
5562 		WARN_ON_ONCE(true);
5563 		return -EINVAL;
5564 	}
5565 
5566 	/*
5567 	 * If nothing was emitted, return to avoid setting the flag
5568 	 * and terminating the buffer.
5569 	 */
5570 	if (seq->count == start)
5571 		return ret;
5572 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5573 		return -EOVERFLOW;
5574 	if (kbufsize >= s->bufsize)
5575 		return -EOVERFLOW;
5576 
5577 	/* signal a retry */
5578 	if (unlikely(seq_has_overflowed(seq)))
5579 		return -EAGAIN;
5580 
5581 	if (ret)
5582 		return ret;
5583 
5584 	seq->buf[seq->count++] = '\0';
5585 	sm->mask |= flag;
5586 	*offp = start;
5587 	return 0;
5588 }
5589 
5590 static int copy_statmount_to_user(struct kstatmount *s)
5591 {
5592 	struct statmount *sm = &s->sm;
5593 	struct seq_file *seq = &s->seq;
5594 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5595 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5596 
5597 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5598 		return -EFAULT;
5599 
5600 	/* Return the number of bytes copied to the buffer */
5601 	sm->size = copysize + seq->count;
5602 	if (copy_to_user(s->buf, sm, copysize))
5603 		return -EFAULT;
5604 
5605 	return 0;
5606 }
5607 
5608 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5609 {
5610 	struct rb_node *node;
5611 
5612 	if (reverse)
5613 		node = rb_prev(&curr->mnt_node);
5614 	else
5615 		node = rb_next(&curr->mnt_node);
5616 
5617 	return node_to_mount(node);
5618 }
5619 
5620 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5621 {
5622 	struct mount *first, *child;
5623 
5624 	rwsem_assert_held(&namespace_sem);
5625 
5626 	/* We're looking at our own ns, just use get_fs_root. */
5627 	if (ns == current->nsproxy->mnt_ns) {
5628 		get_fs_root(current->fs, root);
5629 		return 0;
5630 	}
5631 
5632 	/*
5633 	 * We have to find the first mount in our ns and use that, however it
5634 	 * may not exist, so handle that properly.
5635 	 */
5636 	if (mnt_ns_empty(ns))
5637 		return -ENOENT;
5638 
5639 	first = child = ns->root;
5640 	for (;;) {
5641 		child = listmnt_next(child, false);
5642 		if (!child)
5643 			return -ENOENT;
5644 		if (child->mnt_parent == first)
5645 			break;
5646 	}
5647 
5648 	root->mnt = mntget(&child->mnt);
5649 	root->dentry = dget(root->mnt->mnt_root);
5650 	return 0;
5651 }
5652 
5653 /* This must be updated whenever a new flag is added */
5654 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5655 			     STATMOUNT_MNT_BASIC | \
5656 			     STATMOUNT_PROPAGATE_FROM | \
5657 			     STATMOUNT_MNT_ROOT | \
5658 			     STATMOUNT_MNT_POINT | \
5659 			     STATMOUNT_FS_TYPE | \
5660 			     STATMOUNT_MNT_NS_ID | \
5661 			     STATMOUNT_MNT_OPTS | \
5662 			     STATMOUNT_FS_SUBTYPE | \
5663 			     STATMOUNT_SB_SOURCE | \
5664 			     STATMOUNT_OPT_ARRAY | \
5665 			     STATMOUNT_OPT_SEC_ARRAY | \
5666 			     STATMOUNT_SUPPORTED_MASK | \
5667 			     STATMOUNT_MNT_UIDMAP | \
5668 			     STATMOUNT_MNT_GIDMAP)
5669 
5670 /* locks: namespace_shared */
5671 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5672                         struct file *mnt_file, struct mnt_namespace *ns)
5673 {
5674 	int err;
5675 
5676 	if (mnt_file) {
5677 		WARN_ON_ONCE(ns != NULL);
5678 
5679 		s->mnt = mnt_file->f_path.mnt;
5680 		ns = real_mount(s->mnt)->mnt_ns;
5681 		if (!ns)
5682 			/*
5683 			 * We can't set mount point and mnt_ns_id since we don't have a
5684 			 * ns for the mount. This can happen if the mount is unmounted
5685 			 * with MNT_DETACH.
5686 			 */
5687 			s->mask &= ~(STATMOUNT_MNT_POINT | STATMOUNT_MNT_NS_ID);
5688 	} else {
5689 		/* Has the namespace already been emptied? */
5690 		if (mnt_ns_id && mnt_ns_empty(ns))
5691 			return -ENOENT;
5692 
5693 		s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5694 		if (!s->mnt)
5695 			return -ENOENT;
5696 	}
5697 
5698 	if (ns) {
5699 		err = grab_requested_root(ns, &s->root);
5700 		if (err)
5701 			return err;
5702 
5703 		if (!mnt_file) {
5704 			struct mount *m;
5705 			/*
5706 			 * Don't trigger audit denials. We just want to determine what
5707 			 * mounts to show users.
5708 			 */
5709 			m = real_mount(s->mnt);
5710 			if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5711 			    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5712 				return -EPERM;
5713 		}
5714 	}
5715 
5716 	err = security_sb_statfs(s->mnt->mnt_root);
5717 	if (err)
5718 		return err;
5719 
5720 	/*
5721 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5722 	 * can change concurrently as we only hold the read-side of the
5723 	 * namespace semaphore and mount properties may change with only
5724 	 * the mount lock held.
5725 	 *
5726 	 * We could sample the mount lock sequence counter to detect
5727 	 * those changes and retry. But it's not worth it. Worst that
5728 	 * happens is that the mnt->mnt_idmap pointer is already changed
5729 	 * while mnt->mnt_flags isn't or vica versa. So what.
5730 	 *
5731 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5732 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5733 	 * torn read/write. That's all we care about right now.
5734 	 */
5735 	s->idmap = mnt_idmap(s->mnt);
5736 	if (s->mask & STATMOUNT_MNT_BASIC)
5737 		statmount_mnt_basic(s);
5738 
5739 	if (s->mask & STATMOUNT_SB_BASIC)
5740 		statmount_sb_basic(s);
5741 
5742 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5743 		statmount_propagate_from(s);
5744 
5745 	if (s->mask & STATMOUNT_FS_TYPE)
5746 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5747 
5748 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5749 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5750 
5751 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5752 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5753 
5754 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5755 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5756 
5757 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5758 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5759 
5760 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5761 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5762 
5763 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5764 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5765 
5766 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5767 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5768 
5769 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5770 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5771 
5772 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5773 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5774 
5775 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5776 		statmount_mnt_ns_id(s, ns);
5777 
5778 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5779 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5780 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5781 	}
5782 
5783 	if (err)
5784 		return err;
5785 
5786 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5787 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5788 
5789 	return 0;
5790 }
5791 
5792 static inline bool retry_statmount(const long ret, size_t *seq_size)
5793 {
5794 	if (likely(ret != -EAGAIN))
5795 		return false;
5796 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5797 		return false;
5798 	if (unlikely(*seq_size > MAX_RW_COUNT))
5799 		return false;
5800 	return true;
5801 }
5802 
5803 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5804 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5805 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5806 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5807 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5808 
5809 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5810 			      struct statmount __user *buf, size_t bufsize,
5811 			      size_t seq_size)
5812 {
5813 	if (!access_ok(buf, bufsize))
5814 		return -EFAULT;
5815 
5816 	memset(ks, 0, sizeof(*ks));
5817 	ks->mask = kreq->param;
5818 	ks->buf = buf;
5819 	ks->bufsize = bufsize;
5820 
5821 	if (ks->mask & STATMOUNT_STRING_REQ) {
5822 		if (bufsize == sizeof(ks->sm))
5823 			return -EOVERFLOW;
5824 
5825 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5826 		if (!ks->seq.buf)
5827 			return -ENOMEM;
5828 
5829 		ks->seq.size = seq_size;
5830 	}
5831 
5832 	return 0;
5833 }
5834 
5835 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5836 			   struct mnt_id_req *kreq, unsigned int flags)
5837 {
5838 	int ret;
5839 	size_t usize;
5840 
5841 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5842 
5843 	ret = get_user(usize, &req->size);
5844 	if (ret)
5845 		return -EFAULT;
5846 	if (unlikely(usize > PAGE_SIZE))
5847 		return -E2BIG;
5848 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5849 		return -EINVAL;
5850 	memset(kreq, 0, sizeof(*kreq));
5851 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5852 	if (ret)
5853 		return ret;
5854 
5855 	if (flags & STATMOUNT_BY_FD) {
5856 		if (kreq->mnt_id || kreq->mnt_ns_id)
5857 			return -EINVAL;
5858 	} else {
5859 		if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5860 			return -EINVAL;
5861 		/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5862 		if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5863 			return -EINVAL;
5864 	}
5865 	return 0;
5866 }
5867 
5868 /*
5869  * If the user requested a specific mount namespace id, look that up and return
5870  * that, or if not simply grab a passive reference on our mount namespace and
5871  * return that.
5872  */
5873 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5874 {
5875 	struct mnt_namespace *mnt_ns;
5876 
5877 	if (kreq->mnt_ns_id) {
5878 		mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5879 		if (!mnt_ns)
5880 			return ERR_PTR(-ENOENT);
5881 	} else if (kreq->mnt_ns_fd) {
5882 		struct ns_common *ns;
5883 
5884 		CLASS(fd, f)(kreq->mnt_ns_fd);
5885 		if (fd_empty(f))
5886 			return ERR_PTR(-EBADF);
5887 
5888 		if (!proc_ns_file(fd_file(f)))
5889 			return ERR_PTR(-EINVAL);
5890 
5891 		ns = get_proc_ns(file_inode(fd_file(f)));
5892 		if (ns->ns_type != CLONE_NEWNS)
5893 			return ERR_PTR(-EINVAL);
5894 
5895 		mnt_ns = to_mnt_ns(ns);
5896 		refcount_inc(&mnt_ns->passive);
5897 	} else {
5898 		mnt_ns = current->nsproxy->mnt_ns;
5899 		refcount_inc(&mnt_ns->passive);
5900 	}
5901 
5902 	return mnt_ns;
5903 }
5904 
5905 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5906 		struct statmount __user *, buf, size_t, bufsize,
5907 		unsigned int, flags)
5908 {
5909 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5910 	struct kstatmount *ks __free(kfree) = NULL;
5911 	struct file *mnt_file __free(fput) = NULL;
5912 	struct mnt_id_req kreq;
5913 	/* We currently support retrieval of 3 strings. */
5914 	size_t seq_size = 3 * PATH_MAX;
5915 	int ret;
5916 
5917 	if (flags & ~STATMOUNT_BY_FD)
5918 		return -EINVAL;
5919 
5920 	ret = copy_mnt_id_req(req, &kreq, flags);
5921 	if (ret)
5922 		return ret;
5923 
5924 	if (flags & STATMOUNT_BY_FD) {
5925 		mnt_file = fget_raw(kreq.mnt_fd);
5926 		if (!mnt_file)
5927 			return -EBADF;
5928 		/* do_statmount sets ns in case of STATMOUNT_BY_FD */
5929 	} else {
5930 		ns = grab_requested_mnt_ns(&kreq);
5931 		if (IS_ERR(ns))
5932 			return PTR_ERR(ns);
5933 
5934 		if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5935 		    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5936 			return -EPERM;
5937 	}
5938 
5939 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5940 	if (!ks)
5941 		return -ENOMEM;
5942 
5943 retry:
5944 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5945 	if (ret)
5946 		return ret;
5947 
5948 	scoped_guard(namespace_shared)
5949 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, mnt_file, ns);
5950 
5951 	if (!ret)
5952 		ret = copy_statmount_to_user(ks);
5953 	kvfree(ks->seq.buf);
5954 	path_put(&ks->root);
5955 	if (retry_statmount(ret, &seq_size))
5956 		goto retry;
5957 	return ret;
5958 }
5959 
5960 struct klistmount {
5961 	u64 last_mnt_id;
5962 	u64 mnt_parent_id;
5963 	u64 *kmnt_ids;
5964 	u32 nr_mnt_ids;
5965 	struct mnt_namespace *ns;
5966 	struct path root;
5967 };
5968 
5969 /* locks: namespace_shared */
5970 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5971 {
5972 	struct mnt_namespace *ns = kls->ns;
5973 	u64 mnt_parent_id = kls->mnt_parent_id;
5974 	u64 last_mnt_id = kls->last_mnt_id;
5975 	u64 *mnt_ids = kls->kmnt_ids;
5976 	size_t nr_mnt_ids = kls->nr_mnt_ids;
5977 	struct path orig;
5978 	struct mount *r, *first;
5979 	ssize_t ret;
5980 
5981 	rwsem_assert_held(&namespace_sem);
5982 
5983 	ret = grab_requested_root(ns, &kls->root);
5984 	if (ret)
5985 		return ret;
5986 
5987 	if (mnt_parent_id == LSMT_ROOT) {
5988 		orig = kls->root;
5989 	} else {
5990 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5991 		if (!orig.mnt)
5992 			return -ENOENT;
5993 		orig.dentry = orig.mnt->mnt_root;
5994 	}
5995 
5996 	/*
5997 	 * Don't trigger audit denials. We just want to determine what
5998 	 * mounts to show users.
5999 	 */
6000 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
6001 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6002 		return -EPERM;
6003 
6004 	ret = security_sb_statfs(orig.dentry);
6005 	if (ret)
6006 		return ret;
6007 
6008 	if (!last_mnt_id) {
6009 		if (reverse)
6010 			first = node_to_mount(ns->mnt_last_node);
6011 		else
6012 			first = node_to_mount(ns->mnt_first_node);
6013 	} else {
6014 		if (reverse)
6015 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6016 		else
6017 			first = mnt_find_id_at(ns, last_mnt_id + 1);
6018 	}
6019 
6020 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6021 		if (r->mnt_id_unique == mnt_parent_id)
6022 			continue;
6023 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6024 			continue;
6025 		*mnt_ids = r->mnt_id_unique;
6026 		mnt_ids++;
6027 		nr_mnt_ids--;
6028 		ret++;
6029 	}
6030 	return ret;
6031 }
6032 
6033 static void __free_klistmount_free(const struct klistmount *kls)
6034 {
6035 	path_put(&kls->root);
6036 	kvfree(kls->kmnt_ids);
6037 	mnt_ns_release(kls->ns);
6038 }
6039 
6040 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
6041 				     size_t nr_mnt_ids)
6042 {
6043 	u64 last_mnt_id = kreq->param;
6044 	struct mnt_namespace *ns;
6045 
6046 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6047 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6048 		return -EINVAL;
6049 
6050 	kls->last_mnt_id = last_mnt_id;
6051 
6052 	kls->nr_mnt_ids = nr_mnt_ids;
6053 	kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
6054 				       GFP_KERNEL_ACCOUNT);
6055 	if (!kls->kmnt_ids)
6056 		return -ENOMEM;
6057 
6058 	ns = grab_requested_mnt_ns(kreq);
6059 	if (IS_ERR(ns))
6060 		return PTR_ERR(ns);
6061 	kls->ns = ns;
6062 
6063 	kls->mnt_parent_id = kreq->mnt_id;
6064 	return 0;
6065 }
6066 
6067 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6068 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6069 {
6070 	struct klistmount kls __free(klistmount_free) = {};
6071 	const size_t maxcount = 1000000;
6072 	struct mnt_id_req kreq;
6073 	ssize_t ret;
6074 
6075 	if (flags & ~LISTMOUNT_REVERSE)
6076 		return -EINVAL;
6077 
6078 	/*
6079 	 * If the mount namespace really has more than 1 million mounts the
6080 	 * caller must iterate over the mount namespace (and reconsider their
6081 	 * system design...).
6082 	 */
6083 	if (unlikely(nr_mnt_ids > maxcount))
6084 		return -EOVERFLOW;
6085 
6086 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6087 		return -EFAULT;
6088 
6089 	ret = copy_mnt_id_req(req, &kreq, 0);
6090 	if (ret)
6091 		return ret;
6092 
6093 	ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
6094 	if (ret)
6095 		return ret;
6096 
6097 	if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
6098 	    !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
6099 		return -ENOENT;
6100 
6101 	/*
6102 	 * We only need to guard against mount topology changes as
6103 	 * listmount() doesn't care about any mount properties.
6104 	 */
6105 	scoped_guard(namespace_shared)
6106 		ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
6107 	if (ret <= 0)
6108 		return ret;
6109 
6110 	if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
6111 		return -EFAULT;
6112 
6113 	return ret;
6114 }
6115 
6116 struct mnt_namespace init_mnt_ns = {
6117 	.ns		= NS_COMMON_INIT(init_mnt_ns),
6118 	.user_ns	= &init_user_ns,
6119 	.passive	= REFCOUNT_INIT(1),
6120 	.mounts		= RB_ROOT,
6121 	.poll		= __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
6122 };
6123 
6124 static void __init init_mount_tree(void)
6125 {
6126 	struct vfsmount *mnt, *nullfs_mnt;
6127 	struct mount *mnt_root;
6128 	struct path root;
6129 
6130 	/*
6131 	 * We create two mounts:
6132 	 *
6133 	 * (1) nullfs with mount id 1
6134 	 * (2) mutable rootfs with mount id 2
6135 	 *
6136 	 * with (2) mounted on top of (1).
6137 	 */
6138 	nullfs_mnt = vfs_kern_mount(&nullfs_fs_type, 0, "nullfs", NULL);
6139 	if (IS_ERR(nullfs_mnt))
6140 		panic("VFS: Failed to create nullfs");
6141 
6142 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
6143 	if (IS_ERR(mnt))
6144 		panic("Can't create rootfs");
6145 
6146 	VFS_WARN_ON_ONCE(real_mount(nullfs_mnt)->mnt_id != 1);
6147 	VFS_WARN_ON_ONCE(real_mount(mnt)->mnt_id != 2);
6148 
6149 	/* The namespace root is the nullfs mnt. */
6150 	mnt_root		= real_mount(nullfs_mnt);
6151 	init_mnt_ns.root	= mnt_root;
6152 
6153 	/* Mount mutable rootfs on top of nullfs. */
6154 	root.mnt		= nullfs_mnt;
6155 	root.dentry		= nullfs_mnt->mnt_root;
6156 
6157 	LOCK_MOUNT_EXACT(mp, &root);
6158 	if (unlikely(IS_ERR(mp.parent)))
6159 		panic("VFS: Failed to mount rootfs on nullfs");
6160 	scoped_guard(mount_writer)
6161 		attach_mnt(real_mount(mnt), mp.parent, mp.mp);
6162 
6163 	pr_info("VFS: Finished mounting rootfs on nullfs\n");
6164 
6165 	/*
6166 	 * We've dropped all locks here but that's fine. Not just are we
6167 	 * the only task that's running, there's no other mount
6168 	 * namespace in existence and the initial mount namespace is
6169 	 * completely empty until we add the mounts we just created.
6170 	 */
6171 	for (struct mount *p = mnt_root; p; p = next_mnt(p, mnt_root)) {
6172 		mnt_add_to_ns(&init_mnt_ns, p);
6173 		init_mnt_ns.nr_mounts++;
6174 	}
6175 
6176 	init_task.nsproxy->mnt_ns = &init_mnt_ns;
6177 	get_mnt_ns(&init_mnt_ns);
6178 
6179 	/* The root and pwd always point to the mutable rootfs. */
6180 	root.mnt	= mnt;
6181 	root.dentry	= mnt->mnt_root;
6182 	set_fs_pwd(current->fs, &root);
6183 	set_fs_root(current->fs, &root);
6184 
6185 	ns_tree_add(&init_mnt_ns);
6186 }
6187 
6188 void __init mnt_init(void)
6189 {
6190 	int err;
6191 
6192 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6193 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6194 
6195 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6196 				sizeof(struct hlist_head),
6197 				mhash_entries, 19,
6198 				HASH_ZERO,
6199 				&m_hash_shift, &m_hash_mask, 0, 0);
6200 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6201 				sizeof(struct hlist_head),
6202 				mphash_entries, 19,
6203 				HASH_ZERO,
6204 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6205 
6206 	if (!mount_hashtable || !mountpoint_hashtable)
6207 		panic("Failed to allocate mount hash table\n");
6208 
6209 	kernfs_init();
6210 
6211 	err = sysfs_init();
6212 	if (err)
6213 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6214 			__func__, err);
6215 	fs_kobj = kobject_create_and_add("fs", NULL);
6216 	if (!fs_kobj)
6217 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6218 	shmem_init();
6219 	init_rootfs();
6220 	init_mount_tree();
6221 }
6222 
6223 void put_mnt_ns(struct mnt_namespace *ns)
6224 {
6225 	if (!ns_ref_put(ns))
6226 		return;
6227 	guard(namespace_excl)();
6228 	emptied_ns = ns;
6229 	guard(mount_writer)();
6230 	umount_tree(ns->root, 0);
6231 }
6232 
6233 struct vfsmount *kern_mount(struct file_system_type *type)
6234 {
6235 	struct vfsmount *mnt;
6236 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6237 	if (!IS_ERR(mnt)) {
6238 		/*
6239 		 * it is a longterm mount, don't release mnt until
6240 		 * we unmount before file sys is unregistered
6241 		*/
6242 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6243 	}
6244 	return mnt;
6245 }
6246 EXPORT_SYMBOL_GPL(kern_mount);
6247 
6248 void kern_unmount(struct vfsmount *mnt)
6249 {
6250 	/* release long term mount so mount point can be released */
6251 	if (!IS_ERR(mnt)) {
6252 		mnt_make_shortterm(mnt);
6253 		synchronize_rcu();	/* yecchhh... */
6254 		mntput(mnt);
6255 	}
6256 }
6257 EXPORT_SYMBOL(kern_unmount);
6258 
6259 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6260 {
6261 	unsigned int i;
6262 
6263 	for (i = 0; i < num; i++)
6264 		mnt_make_shortterm(mnt[i]);
6265 	synchronize_rcu_expedited();
6266 	for (i = 0; i < num; i++)
6267 		mntput(mnt[i]);
6268 }
6269 EXPORT_SYMBOL(kern_unmount_array);
6270 
6271 bool our_mnt(struct vfsmount *mnt)
6272 {
6273 	return check_mnt(real_mount(mnt));
6274 }
6275 
6276 bool current_chrooted(void)
6277 {
6278 	/* Does the current process have a non-standard root */
6279 	struct path fs_root __free(path_put) = {};
6280 	struct mount *root;
6281 
6282 	get_fs_root(current->fs, &fs_root);
6283 
6284 	/* Find the namespace root */
6285 
6286 	guard(mount_locked_reader)();
6287 
6288 	root = topmost_overmount(current->nsproxy->mnt_ns->root);
6289 
6290 	return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6291 }
6292 
6293 static bool mnt_already_visible(struct mnt_namespace *ns,
6294 				const struct super_block *sb,
6295 				int *new_mnt_flags)
6296 {
6297 	int new_flags = *new_mnt_flags;
6298 	struct mount *mnt, *n;
6299 
6300 	guard(namespace_shared)();
6301 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6302 		struct mount *child;
6303 		int mnt_flags;
6304 
6305 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6306 			continue;
6307 
6308 		/* This mount is not fully visible if it's root directory
6309 		 * is not the root directory of the filesystem.
6310 		 */
6311 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6312 			continue;
6313 
6314 		/* A local view of the mount flags */
6315 		mnt_flags = mnt->mnt.mnt_flags;
6316 
6317 		/* Don't miss readonly hidden in the superblock flags */
6318 		if (sb_rdonly(mnt->mnt.mnt_sb))
6319 			mnt_flags |= MNT_LOCK_READONLY;
6320 
6321 		/* Verify the mount flags are equal to or more permissive
6322 		 * than the proposed new mount.
6323 		 */
6324 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6325 		    !(new_flags & MNT_READONLY))
6326 			continue;
6327 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6328 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6329 			continue;
6330 
6331 		/* This mount is not fully visible if there are any
6332 		 * locked child mounts that cover anything except for
6333 		 * empty directories.
6334 		 */
6335 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6336 			struct inode *inode = child->mnt_mountpoint->d_inode;
6337 			/* Only worry about locked mounts */
6338 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6339 				continue;
6340 			/* Is the directory permanently empty? */
6341 			if (!is_empty_dir_inode(inode))
6342 				goto next;
6343 		}
6344 		/* Preserve the locked attributes */
6345 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6346 					       MNT_LOCK_ATIME);
6347 		return true;
6348 	next:	;
6349 	}
6350 	return false;
6351 }
6352 
6353 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6354 {
6355 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6356 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6357 	unsigned long s_iflags;
6358 
6359 	if (ns->user_ns == &init_user_ns)
6360 		return false;
6361 
6362 	/* Can this filesystem be too revealing? */
6363 	s_iflags = sb->s_iflags;
6364 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6365 		return false;
6366 
6367 	if ((s_iflags & required_iflags) != required_iflags) {
6368 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6369 			  required_iflags);
6370 		return true;
6371 	}
6372 
6373 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6374 }
6375 
6376 bool mnt_may_suid(struct vfsmount *mnt)
6377 {
6378 	/*
6379 	 * Foreign mounts (accessed via fchdir or through /proc
6380 	 * symlinks) are always treated as if they are nosuid.  This
6381 	 * prevents namespaces from trusting potentially unsafe
6382 	 * suid/sgid bits, file caps, or security labels that originate
6383 	 * in other namespaces.
6384 	 */
6385 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6386 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6387 }
6388 
6389 static struct ns_common *mntns_get(struct task_struct *task)
6390 {
6391 	struct ns_common *ns = NULL;
6392 	struct nsproxy *nsproxy;
6393 
6394 	task_lock(task);
6395 	nsproxy = task->nsproxy;
6396 	if (nsproxy) {
6397 		ns = &nsproxy->mnt_ns->ns;
6398 		get_mnt_ns(to_mnt_ns(ns));
6399 	}
6400 	task_unlock(task);
6401 
6402 	return ns;
6403 }
6404 
6405 static void mntns_put(struct ns_common *ns)
6406 {
6407 	put_mnt_ns(to_mnt_ns(ns));
6408 }
6409 
6410 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6411 {
6412 	struct nsproxy *nsproxy = nsset->nsproxy;
6413 	struct fs_struct *fs = nsset->fs;
6414 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6415 	struct user_namespace *user_ns = nsset->cred->user_ns;
6416 	struct path root;
6417 	int err;
6418 
6419 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6420 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6421 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6422 		return -EPERM;
6423 
6424 	if (is_anon_ns(mnt_ns))
6425 		return -EINVAL;
6426 
6427 	if (fs->users != 1)
6428 		return -EINVAL;
6429 
6430 	get_mnt_ns(mnt_ns);
6431 	old_mnt_ns = nsproxy->mnt_ns;
6432 	nsproxy->mnt_ns = mnt_ns;
6433 
6434 	/* Find the root */
6435 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6436 				"/", LOOKUP_DOWN, &root);
6437 	if (err) {
6438 		/* revert to old namespace */
6439 		nsproxy->mnt_ns = old_mnt_ns;
6440 		put_mnt_ns(mnt_ns);
6441 		return err;
6442 	}
6443 
6444 	put_mnt_ns(old_mnt_ns);
6445 
6446 	/* Update the pwd and root */
6447 	set_fs_pwd(fs, &root);
6448 	set_fs_root(fs, &root);
6449 
6450 	path_put(&root);
6451 	return 0;
6452 }
6453 
6454 static struct user_namespace *mntns_owner(struct ns_common *ns)
6455 {
6456 	return to_mnt_ns(ns)->user_ns;
6457 }
6458 
6459 const struct proc_ns_operations mntns_operations = {
6460 	.name		= "mnt",
6461 	.get		= mntns_get,
6462 	.put		= mntns_put,
6463 	.install	= mntns_install,
6464 	.owner		= mntns_owner,
6465 };
6466 
6467 #ifdef CONFIG_SYSCTL
6468 static const struct ctl_table fs_namespace_sysctls[] = {
6469 	{
6470 		.procname	= "mount-max",
6471 		.data		= &sysctl_mount_max,
6472 		.maxlen		= sizeof(unsigned int),
6473 		.mode		= 0644,
6474 		.proc_handler	= proc_dointvec_minmax,
6475 		.extra1		= SYSCTL_ONE,
6476 	},
6477 };
6478 
6479 static int __init init_fs_namespace_sysctls(void)
6480 {
6481 	register_sysctl_init("fs", fs_namespace_sysctls);
6482 	return 0;
6483 }
6484 fs_initcall(init_fs_namespace_sysctls);
6485 
6486 #endif /* CONFIG_SYSCTL */
6487