1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/acct.h> 18 #include <linux/capability.h> 19 #include <linux/cpumask.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/nsproxy.h> 26 #include <linux/security.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/log2.h> 30 #include <linux/idr.h> 31 #include <linux/fs_struct.h> 32 #include <asm/uaccess.h> 33 #include <asm/unistd.h> 34 #include "pnode.h" 35 #include "internal.h" 36 37 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) 38 #define HASH_SIZE (1UL << HASH_SHIFT) 39 40 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 42 43 static int event; 44 static DEFINE_IDA(mnt_id_ida); 45 static DEFINE_IDA(mnt_group_ida); 46 static int mnt_id_start = 0; 47 static int mnt_group_start = 1; 48 49 static struct list_head *mount_hashtable __read_mostly; 50 static struct kmem_cache *mnt_cache __read_mostly; 51 static struct rw_semaphore namespace_sem; 52 53 /* /sys/fs */ 54 struct kobject *fs_kobj; 55 EXPORT_SYMBOL_GPL(fs_kobj); 56 57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 58 { 59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 61 tmp = tmp + (tmp >> HASH_SHIFT); 62 return tmp & (HASH_SIZE - 1); 63 } 64 65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) 66 67 /* allocation is serialized by namespace_sem */ 68 static int mnt_alloc_id(struct vfsmount *mnt) 69 { 70 int res; 71 72 retry: 73 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 74 spin_lock(&vfsmount_lock); 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 76 if (!res) 77 mnt_id_start = mnt->mnt_id + 1; 78 spin_unlock(&vfsmount_lock); 79 if (res == -EAGAIN) 80 goto retry; 81 82 return res; 83 } 84 85 static void mnt_free_id(struct vfsmount *mnt) 86 { 87 int id = mnt->mnt_id; 88 spin_lock(&vfsmount_lock); 89 ida_remove(&mnt_id_ida, id); 90 if (mnt_id_start > id) 91 mnt_id_start = id; 92 spin_unlock(&vfsmount_lock); 93 } 94 95 /* 96 * Allocate a new peer group ID 97 * 98 * mnt_group_ida is protected by namespace_sem 99 */ 100 static int mnt_alloc_group_id(struct vfsmount *mnt) 101 { 102 int res; 103 104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 105 return -ENOMEM; 106 107 res = ida_get_new_above(&mnt_group_ida, 108 mnt_group_start, 109 &mnt->mnt_group_id); 110 if (!res) 111 mnt_group_start = mnt->mnt_group_id + 1; 112 113 return res; 114 } 115 116 /* 117 * Release a peer group ID 118 */ 119 void mnt_release_group_id(struct vfsmount *mnt) 120 { 121 int id = mnt->mnt_group_id; 122 ida_remove(&mnt_group_ida, id); 123 if (mnt_group_start > id) 124 mnt_group_start = id; 125 mnt->mnt_group_id = 0; 126 } 127 128 struct vfsmount *alloc_vfsmnt(const char *name) 129 { 130 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 131 if (mnt) { 132 int err; 133 134 err = mnt_alloc_id(mnt); 135 if (err) 136 goto out_free_cache; 137 138 if (name) { 139 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 140 if (!mnt->mnt_devname) 141 goto out_free_id; 142 } 143 144 atomic_set(&mnt->mnt_count, 1); 145 INIT_LIST_HEAD(&mnt->mnt_hash); 146 INIT_LIST_HEAD(&mnt->mnt_child); 147 INIT_LIST_HEAD(&mnt->mnt_mounts); 148 INIT_LIST_HEAD(&mnt->mnt_list); 149 INIT_LIST_HEAD(&mnt->mnt_expire); 150 INIT_LIST_HEAD(&mnt->mnt_share); 151 INIT_LIST_HEAD(&mnt->mnt_slave_list); 152 INIT_LIST_HEAD(&mnt->mnt_slave); 153 #ifdef CONFIG_SMP 154 mnt->mnt_writers = alloc_percpu(int); 155 if (!mnt->mnt_writers) 156 goto out_free_devname; 157 #else 158 mnt->mnt_writers = 0; 159 #endif 160 } 161 return mnt; 162 163 #ifdef CONFIG_SMP 164 out_free_devname: 165 kfree(mnt->mnt_devname); 166 #endif 167 out_free_id: 168 mnt_free_id(mnt); 169 out_free_cache: 170 kmem_cache_free(mnt_cache, mnt); 171 return NULL; 172 } 173 174 /* 175 * Most r/o checks on a fs are for operations that take 176 * discrete amounts of time, like a write() or unlink(). 177 * We must keep track of when those operations start 178 * (for permission checks) and when they end, so that 179 * we can determine when writes are able to occur to 180 * a filesystem. 181 */ 182 /* 183 * __mnt_is_readonly: check whether a mount is read-only 184 * @mnt: the mount to check for its write status 185 * 186 * This shouldn't be used directly ouside of the VFS. 187 * It does not guarantee that the filesystem will stay 188 * r/w, just that it is right *now*. This can not and 189 * should not be used in place of IS_RDONLY(inode). 190 * mnt_want/drop_write() will _keep_ the filesystem 191 * r/w. 192 */ 193 int __mnt_is_readonly(struct vfsmount *mnt) 194 { 195 if (mnt->mnt_flags & MNT_READONLY) 196 return 1; 197 if (mnt->mnt_sb->s_flags & MS_RDONLY) 198 return 1; 199 return 0; 200 } 201 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 202 203 static inline void inc_mnt_writers(struct vfsmount *mnt) 204 { 205 #ifdef CONFIG_SMP 206 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++; 207 #else 208 mnt->mnt_writers++; 209 #endif 210 } 211 212 static inline void dec_mnt_writers(struct vfsmount *mnt) 213 { 214 #ifdef CONFIG_SMP 215 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--; 216 #else 217 mnt->mnt_writers--; 218 #endif 219 } 220 221 static unsigned int count_mnt_writers(struct vfsmount *mnt) 222 { 223 #ifdef CONFIG_SMP 224 unsigned int count = 0; 225 int cpu; 226 227 for_each_possible_cpu(cpu) { 228 count += *per_cpu_ptr(mnt->mnt_writers, cpu); 229 } 230 231 return count; 232 #else 233 return mnt->mnt_writers; 234 #endif 235 } 236 237 /* 238 * Most r/o checks on a fs are for operations that take 239 * discrete amounts of time, like a write() or unlink(). 240 * We must keep track of when those operations start 241 * (for permission checks) and when they end, so that 242 * we can determine when writes are able to occur to 243 * a filesystem. 244 */ 245 /** 246 * mnt_want_write - get write access to a mount 247 * @mnt: the mount on which to take a write 248 * 249 * This tells the low-level filesystem that a write is 250 * about to be performed to it, and makes sure that 251 * writes are allowed before returning success. When 252 * the write operation is finished, mnt_drop_write() 253 * must be called. This is effectively a refcount. 254 */ 255 int mnt_want_write(struct vfsmount *mnt) 256 { 257 int ret = 0; 258 259 preempt_disable(); 260 inc_mnt_writers(mnt); 261 /* 262 * The store to inc_mnt_writers must be visible before we pass 263 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 264 * incremented count after it has set MNT_WRITE_HOLD. 265 */ 266 smp_mb(); 267 while (mnt->mnt_flags & MNT_WRITE_HOLD) 268 cpu_relax(); 269 /* 270 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 271 * be set to match its requirements. So we must not load that until 272 * MNT_WRITE_HOLD is cleared. 273 */ 274 smp_rmb(); 275 if (__mnt_is_readonly(mnt)) { 276 dec_mnt_writers(mnt); 277 ret = -EROFS; 278 goto out; 279 } 280 out: 281 preempt_enable(); 282 return ret; 283 } 284 EXPORT_SYMBOL_GPL(mnt_want_write); 285 286 /** 287 * mnt_clone_write - get write access to a mount 288 * @mnt: the mount on which to take a write 289 * 290 * This is effectively like mnt_want_write, except 291 * it must only be used to take an extra write reference 292 * on a mountpoint that we already know has a write reference 293 * on it. This allows some optimisation. 294 * 295 * After finished, mnt_drop_write must be called as usual to 296 * drop the reference. 297 */ 298 int mnt_clone_write(struct vfsmount *mnt) 299 { 300 /* superblock may be r/o */ 301 if (__mnt_is_readonly(mnt)) 302 return -EROFS; 303 preempt_disable(); 304 inc_mnt_writers(mnt); 305 preempt_enable(); 306 return 0; 307 } 308 EXPORT_SYMBOL_GPL(mnt_clone_write); 309 310 /** 311 * mnt_want_write_file - get write access to a file's mount 312 * @file: the file who's mount on which to take a write 313 * 314 * This is like mnt_want_write, but it takes a file and can 315 * do some optimisations if the file is open for write already 316 */ 317 int mnt_want_write_file(struct file *file) 318 { 319 if (!(file->f_mode & FMODE_WRITE)) 320 return mnt_want_write(file->f_path.mnt); 321 else 322 return mnt_clone_write(file->f_path.mnt); 323 } 324 EXPORT_SYMBOL_GPL(mnt_want_write_file); 325 326 /** 327 * mnt_drop_write - give up write access to a mount 328 * @mnt: the mount on which to give up write access 329 * 330 * Tells the low-level filesystem that we are done 331 * performing writes to it. Must be matched with 332 * mnt_want_write() call above. 333 */ 334 void mnt_drop_write(struct vfsmount *mnt) 335 { 336 preempt_disable(); 337 dec_mnt_writers(mnt); 338 preempt_enable(); 339 } 340 EXPORT_SYMBOL_GPL(mnt_drop_write); 341 342 static int mnt_make_readonly(struct vfsmount *mnt) 343 { 344 int ret = 0; 345 346 spin_lock(&vfsmount_lock); 347 mnt->mnt_flags |= MNT_WRITE_HOLD; 348 /* 349 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 350 * should be visible before we do. 351 */ 352 smp_mb(); 353 354 /* 355 * With writers on hold, if this value is zero, then there are 356 * definitely no active writers (although held writers may subsequently 357 * increment the count, they'll have to wait, and decrement it after 358 * seeing MNT_READONLY). 359 * 360 * It is OK to have counter incremented on one CPU and decremented on 361 * another: the sum will add up correctly. The danger would be when we 362 * sum up each counter, if we read a counter before it is incremented, 363 * but then read another CPU's count which it has been subsequently 364 * decremented from -- we would see more decrements than we should. 365 * MNT_WRITE_HOLD protects against this scenario, because 366 * mnt_want_write first increments count, then smp_mb, then spins on 367 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 368 * we're counting up here. 369 */ 370 if (count_mnt_writers(mnt) > 0) 371 ret = -EBUSY; 372 else 373 mnt->mnt_flags |= MNT_READONLY; 374 /* 375 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 376 * that become unheld will see MNT_READONLY. 377 */ 378 smp_wmb(); 379 mnt->mnt_flags &= ~MNT_WRITE_HOLD; 380 spin_unlock(&vfsmount_lock); 381 return ret; 382 } 383 384 static void __mnt_unmake_readonly(struct vfsmount *mnt) 385 { 386 spin_lock(&vfsmount_lock); 387 mnt->mnt_flags &= ~MNT_READONLY; 388 spin_unlock(&vfsmount_lock); 389 } 390 391 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 392 { 393 mnt->mnt_sb = sb; 394 mnt->mnt_root = dget(sb->s_root); 395 } 396 397 EXPORT_SYMBOL(simple_set_mnt); 398 399 void free_vfsmnt(struct vfsmount *mnt) 400 { 401 kfree(mnt->mnt_devname); 402 mnt_free_id(mnt); 403 #ifdef CONFIG_SMP 404 free_percpu(mnt->mnt_writers); 405 #endif 406 kmem_cache_free(mnt_cache, mnt); 407 } 408 409 /* 410 * find the first or last mount at @dentry on vfsmount @mnt depending on 411 * @dir. If @dir is set return the first mount else return the last mount. 412 */ 413 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 414 int dir) 415 { 416 struct list_head *head = mount_hashtable + hash(mnt, dentry); 417 struct list_head *tmp = head; 418 struct vfsmount *p, *found = NULL; 419 420 for (;;) { 421 tmp = dir ? tmp->next : tmp->prev; 422 p = NULL; 423 if (tmp == head) 424 break; 425 p = list_entry(tmp, struct vfsmount, mnt_hash); 426 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 427 found = p; 428 break; 429 } 430 } 431 return found; 432 } 433 434 /* 435 * lookup_mnt increments the ref count before returning 436 * the vfsmount struct. 437 */ 438 struct vfsmount *lookup_mnt(struct path *path) 439 { 440 struct vfsmount *child_mnt; 441 spin_lock(&vfsmount_lock); 442 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1))) 443 mntget(child_mnt); 444 spin_unlock(&vfsmount_lock); 445 return child_mnt; 446 } 447 448 static inline int check_mnt(struct vfsmount *mnt) 449 { 450 return mnt->mnt_ns == current->nsproxy->mnt_ns; 451 } 452 453 static void touch_mnt_namespace(struct mnt_namespace *ns) 454 { 455 if (ns) { 456 ns->event = ++event; 457 wake_up_interruptible(&ns->poll); 458 } 459 } 460 461 static void __touch_mnt_namespace(struct mnt_namespace *ns) 462 { 463 if (ns && ns->event != event) { 464 ns->event = event; 465 wake_up_interruptible(&ns->poll); 466 } 467 } 468 469 static void detach_mnt(struct vfsmount *mnt, struct path *old_path) 470 { 471 old_path->dentry = mnt->mnt_mountpoint; 472 old_path->mnt = mnt->mnt_parent; 473 mnt->mnt_parent = mnt; 474 mnt->mnt_mountpoint = mnt->mnt_root; 475 list_del_init(&mnt->mnt_child); 476 list_del_init(&mnt->mnt_hash); 477 old_path->dentry->d_mounted--; 478 } 479 480 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 481 struct vfsmount *child_mnt) 482 { 483 child_mnt->mnt_parent = mntget(mnt); 484 child_mnt->mnt_mountpoint = dget(dentry); 485 dentry->d_mounted++; 486 } 487 488 static void attach_mnt(struct vfsmount *mnt, struct path *path) 489 { 490 mnt_set_mountpoint(path->mnt, path->dentry, mnt); 491 list_add_tail(&mnt->mnt_hash, mount_hashtable + 492 hash(path->mnt, path->dentry)); 493 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); 494 } 495 496 /* 497 * the caller must hold vfsmount_lock 498 */ 499 static void commit_tree(struct vfsmount *mnt) 500 { 501 struct vfsmount *parent = mnt->mnt_parent; 502 struct vfsmount *m; 503 LIST_HEAD(head); 504 struct mnt_namespace *n = parent->mnt_ns; 505 506 BUG_ON(parent == mnt); 507 508 list_add_tail(&head, &mnt->mnt_list); 509 list_for_each_entry(m, &head, mnt_list) 510 m->mnt_ns = n; 511 list_splice(&head, n->list.prev); 512 513 list_add_tail(&mnt->mnt_hash, mount_hashtable + 514 hash(parent, mnt->mnt_mountpoint)); 515 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 516 touch_mnt_namespace(n); 517 } 518 519 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 520 { 521 struct list_head *next = p->mnt_mounts.next; 522 if (next == &p->mnt_mounts) { 523 while (1) { 524 if (p == root) 525 return NULL; 526 next = p->mnt_child.next; 527 if (next != &p->mnt_parent->mnt_mounts) 528 break; 529 p = p->mnt_parent; 530 } 531 } 532 return list_entry(next, struct vfsmount, mnt_child); 533 } 534 535 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 536 { 537 struct list_head *prev = p->mnt_mounts.prev; 538 while (prev != &p->mnt_mounts) { 539 p = list_entry(prev, struct vfsmount, mnt_child); 540 prev = p->mnt_mounts.prev; 541 } 542 return p; 543 } 544 545 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 546 int flag) 547 { 548 struct super_block *sb = old->mnt_sb; 549 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 550 551 if (mnt) { 552 if (flag & (CL_SLAVE | CL_PRIVATE)) 553 mnt->mnt_group_id = 0; /* not a peer of original */ 554 else 555 mnt->mnt_group_id = old->mnt_group_id; 556 557 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 558 int err = mnt_alloc_group_id(mnt); 559 if (err) 560 goto out_free; 561 } 562 563 mnt->mnt_flags = old->mnt_flags; 564 atomic_inc(&sb->s_active); 565 mnt->mnt_sb = sb; 566 mnt->mnt_root = dget(root); 567 mnt->mnt_mountpoint = mnt->mnt_root; 568 mnt->mnt_parent = mnt; 569 570 if (flag & CL_SLAVE) { 571 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 572 mnt->mnt_master = old; 573 CLEAR_MNT_SHARED(mnt); 574 } else if (!(flag & CL_PRIVATE)) { 575 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 576 list_add(&mnt->mnt_share, &old->mnt_share); 577 if (IS_MNT_SLAVE(old)) 578 list_add(&mnt->mnt_slave, &old->mnt_slave); 579 mnt->mnt_master = old->mnt_master; 580 } 581 if (flag & CL_MAKE_SHARED) 582 set_mnt_shared(mnt); 583 584 /* stick the duplicate mount on the same expiry list 585 * as the original if that was on one */ 586 if (flag & CL_EXPIRE) { 587 if (!list_empty(&old->mnt_expire)) 588 list_add(&mnt->mnt_expire, &old->mnt_expire); 589 } 590 } 591 return mnt; 592 593 out_free: 594 free_vfsmnt(mnt); 595 return NULL; 596 } 597 598 static inline void __mntput(struct vfsmount *mnt) 599 { 600 struct super_block *sb = mnt->mnt_sb; 601 /* 602 * This probably indicates that somebody messed 603 * up a mnt_want/drop_write() pair. If this 604 * happens, the filesystem was probably unable 605 * to make r/w->r/o transitions. 606 */ 607 /* 608 * atomic_dec_and_lock() used to deal with ->mnt_count decrements 609 * provides barriers, so count_mnt_writers() below is safe. AV 610 */ 611 WARN_ON(count_mnt_writers(mnt)); 612 dput(mnt->mnt_root); 613 free_vfsmnt(mnt); 614 deactivate_super(sb); 615 } 616 617 void mntput_no_expire(struct vfsmount *mnt) 618 { 619 repeat: 620 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 621 if (likely(!mnt->mnt_pinned)) { 622 spin_unlock(&vfsmount_lock); 623 __mntput(mnt); 624 return; 625 } 626 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 627 mnt->mnt_pinned = 0; 628 spin_unlock(&vfsmount_lock); 629 acct_auto_close_mnt(mnt); 630 security_sb_umount_close(mnt); 631 goto repeat; 632 } 633 } 634 635 EXPORT_SYMBOL(mntput_no_expire); 636 637 void mnt_pin(struct vfsmount *mnt) 638 { 639 spin_lock(&vfsmount_lock); 640 mnt->mnt_pinned++; 641 spin_unlock(&vfsmount_lock); 642 } 643 644 EXPORT_SYMBOL(mnt_pin); 645 646 void mnt_unpin(struct vfsmount *mnt) 647 { 648 spin_lock(&vfsmount_lock); 649 if (mnt->mnt_pinned) { 650 atomic_inc(&mnt->mnt_count); 651 mnt->mnt_pinned--; 652 } 653 spin_unlock(&vfsmount_lock); 654 } 655 656 EXPORT_SYMBOL(mnt_unpin); 657 658 static inline void mangle(struct seq_file *m, const char *s) 659 { 660 seq_escape(m, s, " \t\n\\"); 661 } 662 663 /* 664 * Simple .show_options callback for filesystems which don't want to 665 * implement more complex mount option showing. 666 * 667 * See also save_mount_options(). 668 */ 669 int generic_show_options(struct seq_file *m, struct vfsmount *mnt) 670 { 671 const char *options; 672 673 rcu_read_lock(); 674 options = rcu_dereference(mnt->mnt_sb->s_options); 675 676 if (options != NULL && options[0]) { 677 seq_putc(m, ','); 678 mangle(m, options); 679 } 680 rcu_read_unlock(); 681 682 return 0; 683 } 684 EXPORT_SYMBOL(generic_show_options); 685 686 /* 687 * If filesystem uses generic_show_options(), this function should be 688 * called from the fill_super() callback. 689 * 690 * The .remount_fs callback usually needs to be handled in a special 691 * way, to make sure, that previous options are not overwritten if the 692 * remount fails. 693 * 694 * Also note, that if the filesystem's .remount_fs function doesn't 695 * reset all options to their default value, but changes only newly 696 * given options, then the displayed options will not reflect reality 697 * any more. 698 */ 699 void save_mount_options(struct super_block *sb, char *options) 700 { 701 BUG_ON(sb->s_options); 702 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 703 } 704 EXPORT_SYMBOL(save_mount_options); 705 706 void replace_mount_options(struct super_block *sb, char *options) 707 { 708 char *old = sb->s_options; 709 rcu_assign_pointer(sb->s_options, options); 710 if (old) { 711 synchronize_rcu(); 712 kfree(old); 713 } 714 } 715 EXPORT_SYMBOL(replace_mount_options); 716 717 #ifdef CONFIG_PROC_FS 718 /* iterator */ 719 static void *m_start(struct seq_file *m, loff_t *pos) 720 { 721 struct proc_mounts *p = m->private; 722 723 down_read(&namespace_sem); 724 return seq_list_start(&p->ns->list, *pos); 725 } 726 727 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 728 { 729 struct proc_mounts *p = m->private; 730 731 return seq_list_next(v, &p->ns->list, pos); 732 } 733 734 static void m_stop(struct seq_file *m, void *v) 735 { 736 up_read(&namespace_sem); 737 } 738 739 struct proc_fs_info { 740 int flag; 741 const char *str; 742 }; 743 744 static int show_sb_opts(struct seq_file *m, struct super_block *sb) 745 { 746 static const struct proc_fs_info fs_info[] = { 747 { MS_SYNCHRONOUS, ",sync" }, 748 { MS_DIRSYNC, ",dirsync" }, 749 { MS_MANDLOCK, ",mand" }, 750 { 0, NULL } 751 }; 752 const struct proc_fs_info *fs_infop; 753 754 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 755 if (sb->s_flags & fs_infop->flag) 756 seq_puts(m, fs_infop->str); 757 } 758 759 return security_sb_show_options(m, sb); 760 } 761 762 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) 763 { 764 static const struct proc_fs_info mnt_info[] = { 765 { MNT_NOSUID, ",nosuid" }, 766 { MNT_NODEV, ",nodev" }, 767 { MNT_NOEXEC, ",noexec" }, 768 { MNT_NOATIME, ",noatime" }, 769 { MNT_NODIRATIME, ",nodiratime" }, 770 { MNT_RELATIME, ",relatime" }, 771 { MNT_STRICTATIME, ",strictatime" }, 772 { 0, NULL } 773 }; 774 const struct proc_fs_info *fs_infop; 775 776 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 777 if (mnt->mnt_flags & fs_infop->flag) 778 seq_puts(m, fs_infop->str); 779 } 780 } 781 782 static void show_type(struct seq_file *m, struct super_block *sb) 783 { 784 mangle(m, sb->s_type->name); 785 if (sb->s_subtype && sb->s_subtype[0]) { 786 seq_putc(m, '.'); 787 mangle(m, sb->s_subtype); 788 } 789 } 790 791 static int show_vfsmnt(struct seq_file *m, void *v) 792 { 793 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 794 int err = 0; 795 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 796 797 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 798 seq_putc(m, ' '); 799 seq_path(m, &mnt_path, " \t\n\\"); 800 seq_putc(m, ' '); 801 show_type(m, mnt->mnt_sb); 802 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); 803 err = show_sb_opts(m, mnt->mnt_sb); 804 if (err) 805 goto out; 806 show_mnt_opts(m, mnt); 807 if (mnt->mnt_sb->s_op->show_options) 808 err = mnt->mnt_sb->s_op->show_options(m, mnt); 809 seq_puts(m, " 0 0\n"); 810 out: 811 return err; 812 } 813 814 const struct seq_operations mounts_op = { 815 .start = m_start, 816 .next = m_next, 817 .stop = m_stop, 818 .show = show_vfsmnt 819 }; 820 821 static int show_mountinfo(struct seq_file *m, void *v) 822 { 823 struct proc_mounts *p = m->private; 824 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 825 struct super_block *sb = mnt->mnt_sb; 826 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 827 struct path root = p->root; 828 int err = 0; 829 830 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, 831 MAJOR(sb->s_dev), MINOR(sb->s_dev)); 832 seq_dentry(m, mnt->mnt_root, " \t\n\\"); 833 seq_putc(m, ' '); 834 seq_path_root(m, &mnt_path, &root, " \t\n\\"); 835 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { 836 /* 837 * Mountpoint is outside root, discard that one. Ugly, 838 * but less so than trying to do that in iterator in a 839 * race-free way (due to renames). 840 */ 841 return SEQ_SKIP; 842 } 843 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); 844 show_mnt_opts(m, mnt); 845 846 /* Tagged fields ("foo:X" or "bar") */ 847 if (IS_MNT_SHARED(mnt)) 848 seq_printf(m, " shared:%i", mnt->mnt_group_id); 849 if (IS_MNT_SLAVE(mnt)) { 850 int master = mnt->mnt_master->mnt_group_id; 851 int dom = get_dominating_id(mnt, &p->root); 852 seq_printf(m, " master:%i", master); 853 if (dom && dom != master) 854 seq_printf(m, " propagate_from:%i", dom); 855 } 856 if (IS_MNT_UNBINDABLE(mnt)) 857 seq_puts(m, " unbindable"); 858 859 /* Filesystem specific data */ 860 seq_puts(m, " - "); 861 show_type(m, sb); 862 seq_putc(m, ' '); 863 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 864 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); 865 err = show_sb_opts(m, sb); 866 if (err) 867 goto out; 868 if (sb->s_op->show_options) 869 err = sb->s_op->show_options(m, mnt); 870 seq_putc(m, '\n'); 871 out: 872 return err; 873 } 874 875 const struct seq_operations mountinfo_op = { 876 .start = m_start, 877 .next = m_next, 878 .stop = m_stop, 879 .show = show_mountinfo, 880 }; 881 882 static int show_vfsstat(struct seq_file *m, void *v) 883 { 884 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); 885 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 886 int err = 0; 887 888 /* device */ 889 if (mnt->mnt_devname) { 890 seq_puts(m, "device "); 891 mangle(m, mnt->mnt_devname); 892 } else 893 seq_puts(m, "no device"); 894 895 /* mount point */ 896 seq_puts(m, " mounted on "); 897 seq_path(m, &mnt_path, " \t\n\\"); 898 seq_putc(m, ' '); 899 900 /* file system type */ 901 seq_puts(m, "with fstype "); 902 show_type(m, mnt->mnt_sb); 903 904 /* optional statistics */ 905 if (mnt->mnt_sb->s_op->show_stats) { 906 seq_putc(m, ' '); 907 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 908 } 909 910 seq_putc(m, '\n'); 911 return err; 912 } 913 914 const struct seq_operations mountstats_op = { 915 .start = m_start, 916 .next = m_next, 917 .stop = m_stop, 918 .show = show_vfsstat, 919 }; 920 #endif /* CONFIG_PROC_FS */ 921 922 /** 923 * may_umount_tree - check if a mount tree is busy 924 * @mnt: root of mount tree 925 * 926 * This is called to check if a tree of mounts has any 927 * open files, pwds, chroots or sub mounts that are 928 * busy. 929 */ 930 int may_umount_tree(struct vfsmount *mnt) 931 { 932 int actual_refs = 0; 933 int minimum_refs = 0; 934 struct vfsmount *p; 935 936 spin_lock(&vfsmount_lock); 937 for (p = mnt; p; p = next_mnt(p, mnt)) { 938 actual_refs += atomic_read(&p->mnt_count); 939 minimum_refs += 2; 940 } 941 spin_unlock(&vfsmount_lock); 942 943 if (actual_refs > minimum_refs) 944 return 0; 945 946 return 1; 947 } 948 949 EXPORT_SYMBOL(may_umount_tree); 950 951 /** 952 * may_umount - check if a mount point is busy 953 * @mnt: root of mount 954 * 955 * This is called to check if a mount point has any 956 * open files, pwds, chroots or sub mounts. If the 957 * mount has sub mounts this will return busy 958 * regardless of whether the sub mounts are busy. 959 * 960 * Doesn't take quota and stuff into account. IOW, in some cases it will 961 * give false negatives. The main reason why it's here is that we need 962 * a non-destructive way to look for easily umountable filesystems. 963 */ 964 int may_umount(struct vfsmount *mnt) 965 { 966 int ret = 1; 967 spin_lock(&vfsmount_lock); 968 if (propagate_mount_busy(mnt, 2)) 969 ret = 0; 970 spin_unlock(&vfsmount_lock); 971 return ret; 972 } 973 974 EXPORT_SYMBOL(may_umount); 975 976 void release_mounts(struct list_head *head) 977 { 978 struct vfsmount *mnt; 979 while (!list_empty(head)) { 980 mnt = list_first_entry(head, struct vfsmount, mnt_hash); 981 list_del_init(&mnt->mnt_hash); 982 if (mnt->mnt_parent != mnt) { 983 struct dentry *dentry; 984 struct vfsmount *m; 985 spin_lock(&vfsmount_lock); 986 dentry = mnt->mnt_mountpoint; 987 m = mnt->mnt_parent; 988 mnt->mnt_mountpoint = mnt->mnt_root; 989 mnt->mnt_parent = mnt; 990 m->mnt_ghosts--; 991 spin_unlock(&vfsmount_lock); 992 dput(dentry); 993 mntput(m); 994 } 995 mntput(mnt); 996 } 997 } 998 999 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 1000 { 1001 struct vfsmount *p; 1002 1003 for (p = mnt; p; p = next_mnt(p, mnt)) 1004 list_move(&p->mnt_hash, kill); 1005 1006 if (propagate) 1007 propagate_umount(kill); 1008 1009 list_for_each_entry(p, kill, mnt_hash) { 1010 list_del_init(&p->mnt_expire); 1011 list_del_init(&p->mnt_list); 1012 __touch_mnt_namespace(p->mnt_ns); 1013 p->mnt_ns = NULL; 1014 list_del_init(&p->mnt_child); 1015 if (p->mnt_parent != p) { 1016 p->mnt_parent->mnt_ghosts++; 1017 p->mnt_mountpoint->d_mounted--; 1018 } 1019 change_mnt_propagation(p, MS_PRIVATE); 1020 } 1021 } 1022 1023 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); 1024 1025 static int do_umount(struct vfsmount *mnt, int flags) 1026 { 1027 struct super_block *sb = mnt->mnt_sb; 1028 int retval; 1029 LIST_HEAD(umount_list); 1030 1031 retval = security_sb_umount(mnt, flags); 1032 if (retval) 1033 return retval; 1034 1035 /* 1036 * Allow userspace to request a mountpoint be expired rather than 1037 * unmounting unconditionally. Unmount only happens if: 1038 * (1) the mark is already set (the mark is cleared by mntput()) 1039 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1040 */ 1041 if (flags & MNT_EXPIRE) { 1042 if (mnt == current->fs->root.mnt || 1043 flags & (MNT_FORCE | MNT_DETACH)) 1044 return -EINVAL; 1045 1046 if (atomic_read(&mnt->mnt_count) != 2) 1047 return -EBUSY; 1048 1049 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1050 return -EAGAIN; 1051 } 1052 1053 /* 1054 * If we may have to abort operations to get out of this 1055 * mount, and they will themselves hold resources we must 1056 * allow the fs to do things. In the Unix tradition of 1057 * 'Gee thats tricky lets do it in userspace' the umount_begin 1058 * might fail to complete on the first run through as other tasks 1059 * must return, and the like. Thats for the mount program to worry 1060 * about for the moment. 1061 */ 1062 1063 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1064 sb->s_op->umount_begin(sb); 1065 } 1066 1067 /* 1068 * No sense to grab the lock for this test, but test itself looks 1069 * somewhat bogus. Suggestions for better replacement? 1070 * Ho-hum... In principle, we might treat that as umount + switch 1071 * to rootfs. GC would eventually take care of the old vfsmount. 1072 * Actually it makes sense, especially if rootfs would contain a 1073 * /reboot - static binary that would close all descriptors and 1074 * call reboot(9). Then init(8) could umount root and exec /reboot. 1075 */ 1076 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1077 /* 1078 * Special case for "unmounting" root ... 1079 * we just try to remount it readonly. 1080 */ 1081 down_write(&sb->s_umount); 1082 if (!(sb->s_flags & MS_RDONLY)) 1083 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1084 up_write(&sb->s_umount); 1085 return retval; 1086 } 1087 1088 down_write(&namespace_sem); 1089 spin_lock(&vfsmount_lock); 1090 event++; 1091 1092 if (!(flags & MNT_DETACH)) 1093 shrink_submounts(mnt, &umount_list); 1094 1095 retval = -EBUSY; 1096 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 1097 if (!list_empty(&mnt->mnt_list)) 1098 umount_tree(mnt, 1, &umount_list); 1099 retval = 0; 1100 } 1101 spin_unlock(&vfsmount_lock); 1102 if (retval) 1103 security_sb_umount_busy(mnt); 1104 up_write(&namespace_sem); 1105 release_mounts(&umount_list); 1106 return retval; 1107 } 1108 1109 /* 1110 * Now umount can handle mount points as well as block devices. 1111 * This is important for filesystems which use unnamed block devices. 1112 * 1113 * We now support a flag for forced unmount like the other 'big iron' 1114 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1115 */ 1116 1117 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1118 { 1119 struct path path; 1120 int retval; 1121 1122 retval = user_path(name, &path); 1123 if (retval) 1124 goto out; 1125 retval = -EINVAL; 1126 if (path.dentry != path.mnt->mnt_root) 1127 goto dput_and_out; 1128 if (!check_mnt(path.mnt)) 1129 goto dput_and_out; 1130 1131 retval = -EPERM; 1132 if (!capable(CAP_SYS_ADMIN)) 1133 goto dput_and_out; 1134 1135 retval = do_umount(path.mnt, flags); 1136 dput_and_out: 1137 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1138 dput(path.dentry); 1139 mntput_no_expire(path.mnt); 1140 out: 1141 return retval; 1142 } 1143 1144 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1145 1146 /* 1147 * The 2.0 compatible umount. No flags. 1148 */ 1149 SYSCALL_DEFINE1(oldumount, char __user *, name) 1150 { 1151 return sys_umount(name, 0); 1152 } 1153 1154 #endif 1155 1156 static int mount_is_safe(struct path *path) 1157 { 1158 if (capable(CAP_SYS_ADMIN)) 1159 return 0; 1160 return -EPERM; 1161 #ifdef notyet 1162 if (S_ISLNK(path->dentry->d_inode->i_mode)) 1163 return -EPERM; 1164 if (path->dentry->d_inode->i_mode & S_ISVTX) { 1165 if (current_uid() != path->dentry->d_inode->i_uid) 1166 return -EPERM; 1167 } 1168 if (inode_permission(path->dentry->d_inode, MAY_WRITE)) 1169 return -EPERM; 1170 return 0; 1171 #endif 1172 } 1173 1174 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 1175 int flag) 1176 { 1177 struct vfsmount *res, *p, *q, *r, *s; 1178 struct path path; 1179 1180 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 1181 return NULL; 1182 1183 res = q = clone_mnt(mnt, dentry, flag); 1184 if (!q) 1185 goto Enomem; 1186 q->mnt_mountpoint = mnt->mnt_mountpoint; 1187 1188 p = mnt; 1189 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1190 if (!is_subdir(r->mnt_mountpoint, dentry)) 1191 continue; 1192 1193 for (s = r; s; s = next_mnt(s, r)) { 1194 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 1195 s = skip_mnt_tree(s); 1196 continue; 1197 } 1198 while (p != s->mnt_parent) { 1199 p = p->mnt_parent; 1200 q = q->mnt_parent; 1201 } 1202 p = s; 1203 path.mnt = q; 1204 path.dentry = p->mnt_mountpoint; 1205 q = clone_mnt(p, p->mnt_root, flag); 1206 if (!q) 1207 goto Enomem; 1208 spin_lock(&vfsmount_lock); 1209 list_add_tail(&q->mnt_list, &res->mnt_list); 1210 attach_mnt(q, &path); 1211 spin_unlock(&vfsmount_lock); 1212 } 1213 } 1214 return res; 1215 Enomem: 1216 if (res) { 1217 LIST_HEAD(umount_list); 1218 spin_lock(&vfsmount_lock); 1219 umount_tree(res, 0, &umount_list); 1220 spin_unlock(&vfsmount_lock); 1221 release_mounts(&umount_list); 1222 } 1223 return NULL; 1224 } 1225 1226 struct vfsmount *collect_mounts(struct path *path) 1227 { 1228 struct vfsmount *tree; 1229 down_write(&namespace_sem); 1230 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE); 1231 up_write(&namespace_sem); 1232 return tree; 1233 } 1234 1235 void drop_collected_mounts(struct vfsmount *mnt) 1236 { 1237 LIST_HEAD(umount_list); 1238 down_write(&namespace_sem); 1239 spin_lock(&vfsmount_lock); 1240 umount_tree(mnt, 0, &umount_list); 1241 spin_unlock(&vfsmount_lock); 1242 up_write(&namespace_sem); 1243 release_mounts(&umount_list); 1244 } 1245 1246 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) 1247 { 1248 struct vfsmount *p; 1249 1250 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1251 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1252 mnt_release_group_id(p); 1253 } 1254 } 1255 1256 static int invent_group_ids(struct vfsmount *mnt, bool recurse) 1257 { 1258 struct vfsmount *p; 1259 1260 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1261 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1262 int err = mnt_alloc_group_id(p); 1263 if (err) { 1264 cleanup_group_ids(mnt, p); 1265 return err; 1266 } 1267 } 1268 } 1269 1270 return 0; 1271 } 1272 1273 /* 1274 * @source_mnt : mount tree to be attached 1275 * @nd : place the mount tree @source_mnt is attached 1276 * @parent_nd : if non-null, detach the source_mnt from its parent and 1277 * store the parent mount and mountpoint dentry. 1278 * (done when source_mnt is moved) 1279 * 1280 * NOTE: in the table below explains the semantics when a source mount 1281 * of a given type is attached to a destination mount of a given type. 1282 * --------------------------------------------------------------------------- 1283 * | BIND MOUNT OPERATION | 1284 * |************************************************************************** 1285 * | source-->| shared | private | slave | unbindable | 1286 * | dest | | | | | 1287 * | | | | | | | 1288 * | v | | | | | 1289 * |************************************************************************** 1290 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1291 * | | | | | | 1292 * |non-shared| shared (+) | private | slave (*) | invalid | 1293 * *************************************************************************** 1294 * A bind operation clones the source mount and mounts the clone on the 1295 * destination mount. 1296 * 1297 * (++) the cloned mount is propagated to all the mounts in the propagation 1298 * tree of the destination mount and the cloned mount is added to 1299 * the peer group of the source mount. 1300 * (+) the cloned mount is created under the destination mount and is marked 1301 * as shared. The cloned mount is added to the peer group of the source 1302 * mount. 1303 * (+++) the mount is propagated to all the mounts in the propagation tree 1304 * of the destination mount and the cloned mount is made slave 1305 * of the same master as that of the source mount. The cloned mount 1306 * is marked as 'shared and slave'. 1307 * (*) the cloned mount is made a slave of the same master as that of the 1308 * source mount. 1309 * 1310 * --------------------------------------------------------------------------- 1311 * | MOVE MOUNT OPERATION | 1312 * |************************************************************************** 1313 * | source-->| shared | private | slave | unbindable | 1314 * | dest | | | | | 1315 * | | | | | | | 1316 * | v | | | | | 1317 * |************************************************************************** 1318 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1319 * | | | | | | 1320 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1321 * *************************************************************************** 1322 * 1323 * (+) the mount is moved to the destination. And is then propagated to 1324 * all the mounts in the propagation tree of the destination mount. 1325 * (+*) the mount is moved to the destination. 1326 * (+++) the mount is moved to the destination and is then propagated to 1327 * all the mounts belonging to the destination mount's propagation tree. 1328 * the mount is marked as 'shared and slave'. 1329 * (*) the mount continues to be a slave at the new location. 1330 * 1331 * if the source mount is a tree, the operations explained above is 1332 * applied to each mount in the tree. 1333 * Must be called without spinlocks held, since this function can sleep 1334 * in allocations. 1335 */ 1336 static int attach_recursive_mnt(struct vfsmount *source_mnt, 1337 struct path *path, struct path *parent_path) 1338 { 1339 LIST_HEAD(tree_list); 1340 struct vfsmount *dest_mnt = path->mnt; 1341 struct dentry *dest_dentry = path->dentry; 1342 struct vfsmount *child, *p; 1343 int err; 1344 1345 if (IS_MNT_SHARED(dest_mnt)) { 1346 err = invent_group_ids(source_mnt, true); 1347 if (err) 1348 goto out; 1349 } 1350 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); 1351 if (err) 1352 goto out_cleanup_ids; 1353 1354 if (IS_MNT_SHARED(dest_mnt)) { 1355 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1356 set_mnt_shared(p); 1357 } 1358 1359 spin_lock(&vfsmount_lock); 1360 if (parent_path) { 1361 detach_mnt(source_mnt, parent_path); 1362 attach_mnt(source_mnt, path); 1363 touch_mnt_namespace(parent_path->mnt->mnt_ns); 1364 } else { 1365 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 1366 commit_tree(source_mnt); 1367 } 1368 1369 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 1370 list_del_init(&child->mnt_hash); 1371 commit_tree(child); 1372 } 1373 spin_unlock(&vfsmount_lock); 1374 return 0; 1375 1376 out_cleanup_ids: 1377 if (IS_MNT_SHARED(dest_mnt)) 1378 cleanup_group_ids(source_mnt, NULL); 1379 out: 1380 return err; 1381 } 1382 1383 static int graft_tree(struct vfsmount *mnt, struct path *path) 1384 { 1385 int err; 1386 if (mnt->mnt_sb->s_flags & MS_NOUSER) 1387 return -EINVAL; 1388 1389 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1390 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 1391 return -ENOTDIR; 1392 1393 err = -ENOENT; 1394 mutex_lock(&path->dentry->d_inode->i_mutex); 1395 if (IS_DEADDIR(path->dentry->d_inode)) 1396 goto out_unlock; 1397 1398 err = security_sb_check_sb(mnt, path); 1399 if (err) 1400 goto out_unlock; 1401 1402 err = -ENOENT; 1403 if (!d_unlinked(path->dentry)) 1404 err = attach_recursive_mnt(mnt, path, NULL); 1405 out_unlock: 1406 mutex_unlock(&path->dentry->d_inode->i_mutex); 1407 if (!err) 1408 security_sb_post_addmount(mnt, path); 1409 return err; 1410 } 1411 1412 /* 1413 * recursively change the type of the mountpoint. 1414 */ 1415 static int do_change_type(struct path *path, int flag) 1416 { 1417 struct vfsmount *m, *mnt = path->mnt; 1418 int recurse = flag & MS_REC; 1419 int type = flag & ~MS_REC; 1420 int err = 0; 1421 1422 if (!capable(CAP_SYS_ADMIN)) 1423 return -EPERM; 1424 1425 if (path->dentry != path->mnt->mnt_root) 1426 return -EINVAL; 1427 1428 down_write(&namespace_sem); 1429 if (type == MS_SHARED) { 1430 err = invent_group_ids(mnt, recurse); 1431 if (err) 1432 goto out_unlock; 1433 } 1434 1435 spin_lock(&vfsmount_lock); 1436 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1437 change_mnt_propagation(m, type); 1438 spin_unlock(&vfsmount_lock); 1439 1440 out_unlock: 1441 up_write(&namespace_sem); 1442 return err; 1443 } 1444 1445 /* 1446 * do loopback mount. 1447 */ 1448 static int do_loopback(struct path *path, char *old_name, 1449 int recurse) 1450 { 1451 struct path old_path; 1452 struct vfsmount *mnt = NULL; 1453 int err = mount_is_safe(path); 1454 if (err) 1455 return err; 1456 if (!old_name || !*old_name) 1457 return -EINVAL; 1458 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1459 if (err) 1460 return err; 1461 1462 down_write(&namespace_sem); 1463 err = -EINVAL; 1464 if (IS_MNT_UNBINDABLE(old_path.mnt)) 1465 goto out; 1466 1467 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1468 goto out; 1469 1470 err = -ENOMEM; 1471 if (recurse) 1472 mnt = copy_tree(old_path.mnt, old_path.dentry, 0); 1473 else 1474 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); 1475 1476 if (!mnt) 1477 goto out; 1478 1479 err = graft_tree(mnt, path); 1480 if (err) { 1481 LIST_HEAD(umount_list); 1482 spin_lock(&vfsmount_lock); 1483 umount_tree(mnt, 0, &umount_list); 1484 spin_unlock(&vfsmount_lock); 1485 release_mounts(&umount_list); 1486 } 1487 1488 out: 1489 up_write(&namespace_sem); 1490 path_put(&old_path); 1491 return err; 1492 } 1493 1494 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 1495 { 1496 int error = 0; 1497 int readonly_request = 0; 1498 1499 if (ms_flags & MS_RDONLY) 1500 readonly_request = 1; 1501 if (readonly_request == __mnt_is_readonly(mnt)) 1502 return 0; 1503 1504 if (readonly_request) 1505 error = mnt_make_readonly(mnt); 1506 else 1507 __mnt_unmake_readonly(mnt); 1508 return error; 1509 } 1510 1511 /* 1512 * change filesystem flags. dir should be a physical root of filesystem. 1513 * If you've mounted a non-root directory somewhere and want to do remount 1514 * on it - tough luck. 1515 */ 1516 static int do_remount(struct path *path, int flags, int mnt_flags, 1517 void *data) 1518 { 1519 int err; 1520 struct super_block *sb = path->mnt->mnt_sb; 1521 1522 if (!capable(CAP_SYS_ADMIN)) 1523 return -EPERM; 1524 1525 if (!check_mnt(path->mnt)) 1526 return -EINVAL; 1527 1528 if (path->dentry != path->mnt->mnt_root) 1529 return -EINVAL; 1530 1531 down_write(&sb->s_umount); 1532 if (flags & MS_BIND) 1533 err = change_mount_flags(path->mnt, flags); 1534 else 1535 err = do_remount_sb(sb, flags, data, 0); 1536 if (!err) 1537 path->mnt->mnt_flags = mnt_flags; 1538 up_write(&sb->s_umount); 1539 if (!err) { 1540 security_sb_post_remount(path->mnt, flags, data); 1541 1542 spin_lock(&vfsmount_lock); 1543 touch_mnt_namespace(path->mnt->mnt_ns); 1544 spin_unlock(&vfsmount_lock); 1545 } 1546 return err; 1547 } 1548 1549 static inline int tree_contains_unbindable(struct vfsmount *mnt) 1550 { 1551 struct vfsmount *p; 1552 for (p = mnt; p; p = next_mnt(p, mnt)) { 1553 if (IS_MNT_UNBINDABLE(p)) 1554 return 1; 1555 } 1556 return 0; 1557 } 1558 1559 static int do_move_mount(struct path *path, char *old_name) 1560 { 1561 struct path old_path, parent_path; 1562 struct vfsmount *p; 1563 int err = 0; 1564 if (!capable(CAP_SYS_ADMIN)) 1565 return -EPERM; 1566 if (!old_name || !*old_name) 1567 return -EINVAL; 1568 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 1569 if (err) 1570 return err; 1571 1572 down_write(&namespace_sem); 1573 while (d_mountpoint(path->dentry) && 1574 follow_down(path)) 1575 ; 1576 err = -EINVAL; 1577 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) 1578 goto out; 1579 1580 err = -ENOENT; 1581 mutex_lock(&path->dentry->d_inode->i_mutex); 1582 if (IS_DEADDIR(path->dentry->d_inode)) 1583 goto out1; 1584 1585 if (d_unlinked(path->dentry)) 1586 goto out1; 1587 1588 err = -EINVAL; 1589 if (old_path.dentry != old_path.mnt->mnt_root) 1590 goto out1; 1591 1592 if (old_path.mnt == old_path.mnt->mnt_parent) 1593 goto out1; 1594 1595 if (S_ISDIR(path->dentry->d_inode->i_mode) != 1596 S_ISDIR(old_path.dentry->d_inode->i_mode)) 1597 goto out1; 1598 /* 1599 * Don't move a mount residing in a shared parent. 1600 */ 1601 if (old_path.mnt->mnt_parent && 1602 IS_MNT_SHARED(old_path.mnt->mnt_parent)) 1603 goto out1; 1604 /* 1605 * Don't move a mount tree containing unbindable mounts to a destination 1606 * mount which is shared. 1607 */ 1608 if (IS_MNT_SHARED(path->mnt) && 1609 tree_contains_unbindable(old_path.mnt)) 1610 goto out1; 1611 err = -ELOOP; 1612 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) 1613 if (p == old_path.mnt) 1614 goto out1; 1615 1616 err = attach_recursive_mnt(old_path.mnt, path, &parent_path); 1617 if (err) 1618 goto out1; 1619 1620 /* if the mount is moved, it should no longer be expire 1621 * automatically */ 1622 list_del_init(&old_path.mnt->mnt_expire); 1623 out1: 1624 mutex_unlock(&path->dentry->d_inode->i_mutex); 1625 out: 1626 up_write(&namespace_sem); 1627 if (!err) 1628 path_put(&parent_path); 1629 path_put(&old_path); 1630 return err; 1631 } 1632 1633 /* 1634 * create a new mount for userspace and request it to be added into the 1635 * namespace's tree 1636 */ 1637 static int do_new_mount(struct path *path, char *type, int flags, 1638 int mnt_flags, char *name, void *data) 1639 { 1640 struct vfsmount *mnt; 1641 1642 if (!type || !memchr(type, 0, PAGE_SIZE)) 1643 return -EINVAL; 1644 1645 /* we need capabilities... */ 1646 if (!capable(CAP_SYS_ADMIN)) 1647 return -EPERM; 1648 1649 lock_kernel(); 1650 mnt = do_kern_mount(type, flags, name, data); 1651 unlock_kernel(); 1652 if (IS_ERR(mnt)) 1653 return PTR_ERR(mnt); 1654 1655 return do_add_mount(mnt, path, mnt_flags, NULL); 1656 } 1657 1658 /* 1659 * add a mount into a namespace's mount tree 1660 * - provide the option of adding the new mount to an expiration list 1661 */ 1662 int do_add_mount(struct vfsmount *newmnt, struct path *path, 1663 int mnt_flags, struct list_head *fslist) 1664 { 1665 int err; 1666 1667 down_write(&namespace_sem); 1668 /* Something was mounted here while we slept */ 1669 while (d_mountpoint(path->dentry) && 1670 follow_down(path)) 1671 ; 1672 err = -EINVAL; 1673 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt)) 1674 goto unlock; 1675 1676 /* Refuse the same filesystem on the same mount point */ 1677 err = -EBUSY; 1678 if (path->mnt->mnt_sb == newmnt->mnt_sb && 1679 path->mnt->mnt_root == path->dentry) 1680 goto unlock; 1681 1682 err = -EINVAL; 1683 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1684 goto unlock; 1685 1686 newmnt->mnt_flags = mnt_flags; 1687 if ((err = graft_tree(newmnt, path))) 1688 goto unlock; 1689 1690 if (fslist) /* add to the specified expiration list */ 1691 list_add_tail(&newmnt->mnt_expire, fslist); 1692 1693 up_write(&namespace_sem); 1694 return 0; 1695 1696 unlock: 1697 up_write(&namespace_sem); 1698 mntput(newmnt); 1699 return err; 1700 } 1701 1702 EXPORT_SYMBOL_GPL(do_add_mount); 1703 1704 /* 1705 * process a list of expirable mountpoints with the intent of discarding any 1706 * mountpoints that aren't in use and haven't been touched since last we came 1707 * here 1708 */ 1709 void mark_mounts_for_expiry(struct list_head *mounts) 1710 { 1711 struct vfsmount *mnt, *next; 1712 LIST_HEAD(graveyard); 1713 LIST_HEAD(umounts); 1714 1715 if (list_empty(mounts)) 1716 return; 1717 1718 down_write(&namespace_sem); 1719 spin_lock(&vfsmount_lock); 1720 1721 /* extract from the expiration list every vfsmount that matches the 1722 * following criteria: 1723 * - only referenced by its parent vfsmount 1724 * - still marked for expiry (marked on the last call here; marks are 1725 * cleared by mntput()) 1726 */ 1727 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1728 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1729 propagate_mount_busy(mnt, 1)) 1730 continue; 1731 list_move(&mnt->mnt_expire, &graveyard); 1732 } 1733 while (!list_empty(&graveyard)) { 1734 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); 1735 touch_mnt_namespace(mnt->mnt_ns); 1736 umount_tree(mnt, 1, &umounts); 1737 } 1738 spin_unlock(&vfsmount_lock); 1739 up_write(&namespace_sem); 1740 1741 release_mounts(&umounts); 1742 } 1743 1744 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1745 1746 /* 1747 * Ripoff of 'select_parent()' 1748 * 1749 * search the list of submounts for a given mountpoint, and move any 1750 * shrinkable submounts to the 'graveyard' list. 1751 */ 1752 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1753 { 1754 struct vfsmount *this_parent = parent; 1755 struct list_head *next; 1756 int found = 0; 1757 1758 repeat: 1759 next = this_parent->mnt_mounts.next; 1760 resume: 1761 while (next != &this_parent->mnt_mounts) { 1762 struct list_head *tmp = next; 1763 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1764 1765 next = tmp->next; 1766 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1767 continue; 1768 /* 1769 * Descend a level if the d_mounts list is non-empty. 1770 */ 1771 if (!list_empty(&mnt->mnt_mounts)) { 1772 this_parent = mnt; 1773 goto repeat; 1774 } 1775 1776 if (!propagate_mount_busy(mnt, 1)) { 1777 list_move_tail(&mnt->mnt_expire, graveyard); 1778 found++; 1779 } 1780 } 1781 /* 1782 * All done at this level ... ascend and resume the search 1783 */ 1784 if (this_parent != parent) { 1785 next = this_parent->mnt_child.next; 1786 this_parent = this_parent->mnt_parent; 1787 goto resume; 1788 } 1789 return found; 1790 } 1791 1792 /* 1793 * process a list of expirable mountpoints with the intent of discarding any 1794 * submounts of a specific parent mountpoint 1795 */ 1796 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) 1797 { 1798 LIST_HEAD(graveyard); 1799 struct vfsmount *m; 1800 1801 /* extract submounts of 'mountpoint' from the expiration list */ 1802 while (select_submounts(mnt, &graveyard)) { 1803 while (!list_empty(&graveyard)) { 1804 m = list_first_entry(&graveyard, struct vfsmount, 1805 mnt_expire); 1806 touch_mnt_namespace(m->mnt_ns); 1807 umount_tree(m, 1, umounts); 1808 } 1809 } 1810 } 1811 1812 /* 1813 * Some copy_from_user() implementations do not return the exact number of 1814 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1815 * Note that this function differs from copy_from_user() in that it will oops 1816 * on bad values of `to', rather than returning a short copy. 1817 */ 1818 static long exact_copy_from_user(void *to, const void __user * from, 1819 unsigned long n) 1820 { 1821 char *t = to; 1822 const char __user *f = from; 1823 char c; 1824 1825 if (!access_ok(VERIFY_READ, from, n)) 1826 return n; 1827 1828 while (n) { 1829 if (__get_user(c, f)) { 1830 memset(t, 0, n); 1831 break; 1832 } 1833 *t++ = c; 1834 f++; 1835 n--; 1836 } 1837 return n; 1838 } 1839 1840 int copy_mount_options(const void __user * data, unsigned long *where) 1841 { 1842 int i; 1843 unsigned long page; 1844 unsigned long size; 1845 1846 *where = 0; 1847 if (!data) 1848 return 0; 1849 1850 if (!(page = __get_free_page(GFP_KERNEL))) 1851 return -ENOMEM; 1852 1853 /* We only care that *some* data at the address the user 1854 * gave us is valid. Just in case, we'll zero 1855 * the remainder of the page. 1856 */ 1857 /* copy_from_user cannot cross TASK_SIZE ! */ 1858 size = TASK_SIZE - (unsigned long)data; 1859 if (size > PAGE_SIZE) 1860 size = PAGE_SIZE; 1861 1862 i = size - exact_copy_from_user((void *)page, data, size); 1863 if (!i) { 1864 free_page(page); 1865 return -EFAULT; 1866 } 1867 if (i != PAGE_SIZE) 1868 memset((char *)page + i, 0, PAGE_SIZE - i); 1869 *where = page; 1870 return 0; 1871 } 1872 1873 /* 1874 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1875 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1876 * 1877 * data is a (void *) that can point to any structure up to 1878 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1879 * information (or be NULL). 1880 * 1881 * Pre-0.97 versions of mount() didn't have a flags word. 1882 * When the flags word was introduced its top half was required 1883 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1884 * Therefore, if this magic number is present, it carries no information 1885 * and must be discarded. 1886 */ 1887 long do_mount(char *dev_name, char *dir_name, char *type_page, 1888 unsigned long flags, void *data_page) 1889 { 1890 struct path path; 1891 int retval = 0; 1892 int mnt_flags = 0; 1893 1894 /* Discard magic */ 1895 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1896 flags &= ~MS_MGC_MSK; 1897 1898 /* Basic sanity checks */ 1899 1900 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1901 return -EINVAL; 1902 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1903 return -EINVAL; 1904 1905 if (data_page) 1906 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1907 1908 /* Default to relatime unless overriden */ 1909 if (!(flags & MS_NOATIME)) 1910 mnt_flags |= MNT_RELATIME; 1911 1912 /* Separate the per-mountpoint flags */ 1913 if (flags & MS_NOSUID) 1914 mnt_flags |= MNT_NOSUID; 1915 if (flags & MS_NODEV) 1916 mnt_flags |= MNT_NODEV; 1917 if (flags & MS_NOEXEC) 1918 mnt_flags |= MNT_NOEXEC; 1919 if (flags & MS_NOATIME) 1920 mnt_flags |= MNT_NOATIME; 1921 if (flags & MS_NODIRATIME) 1922 mnt_flags |= MNT_NODIRATIME; 1923 if (flags & MS_STRICTATIME) 1924 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 1925 if (flags & MS_RDONLY) 1926 mnt_flags |= MNT_READONLY; 1927 1928 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1929 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 1930 MS_STRICTATIME); 1931 1932 /* ... and get the mountpoint */ 1933 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); 1934 if (retval) 1935 return retval; 1936 1937 retval = security_sb_mount(dev_name, &path, 1938 type_page, flags, data_page); 1939 if (retval) 1940 goto dput_out; 1941 1942 if (flags & MS_REMOUNT) 1943 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 1944 data_page); 1945 else if (flags & MS_BIND) 1946 retval = do_loopback(&path, dev_name, flags & MS_REC); 1947 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1948 retval = do_change_type(&path, flags); 1949 else if (flags & MS_MOVE) 1950 retval = do_move_mount(&path, dev_name); 1951 else 1952 retval = do_new_mount(&path, type_page, flags, mnt_flags, 1953 dev_name, data_page); 1954 dput_out: 1955 path_put(&path); 1956 return retval; 1957 } 1958 1959 static struct mnt_namespace *alloc_mnt_ns(void) 1960 { 1961 struct mnt_namespace *new_ns; 1962 1963 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1964 if (!new_ns) 1965 return ERR_PTR(-ENOMEM); 1966 atomic_set(&new_ns->count, 1); 1967 new_ns->root = NULL; 1968 INIT_LIST_HEAD(&new_ns->list); 1969 init_waitqueue_head(&new_ns->poll); 1970 new_ns->event = 0; 1971 return new_ns; 1972 } 1973 1974 /* 1975 * Allocate a new namespace structure and populate it with contents 1976 * copied from the namespace of the passed in task structure. 1977 */ 1978 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, 1979 struct fs_struct *fs) 1980 { 1981 struct mnt_namespace *new_ns; 1982 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 1983 struct vfsmount *p, *q; 1984 1985 new_ns = alloc_mnt_ns(); 1986 if (IS_ERR(new_ns)) 1987 return new_ns; 1988 1989 down_write(&namespace_sem); 1990 /* First pass: copy the tree topology */ 1991 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1992 CL_COPY_ALL | CL_EXPIRE); 1993 if (!new_ns->root) { 1994 up_write(&namespace_sem); 1995 kfree(new_ns); 1996 return ERR_PTR(-ENOMEM); 1997 } 1998 spin_lock(&vfsmount_lock); 1999 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 2000 spin_unlock(&vfsmount_lock); 2001 2002 /* 2003 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2004 * as belonging to new namespace. We have already acquired a private 2005 * fs_struct, so tsk->fs->lock is not needed. 2006 */ 2007 p = mnt_ns->root; 2008 q = new_ns->root; 2009 while (p) { 2010 q->mnt_ns = new_ns; 2011 if (fs) { 2012 if (p == fs->root.mnt) { 2013 rootmnt = p; 2014 fs->root.mnt = mntget(q); 2015 } 2016 if (p == fs->pwd.mnt) { 2017 pwdmnt = p; 2018 fs->pwd.mnt = mntget(q); 2019 } 2020 } 2021 p = next_mnt(p, mnt_ns->root); 2022 q = next_mnt(q, new_ns->root); 2023 } 2024 up_write(&namespace_sem); 2025 2026 if (rootmnt) 2027 mntput(rootmnt); 2028 if (pwdmnt) 2029 mntput(pwdmnt); 2030 2031 return new_ns; 2032 } 2033 2034 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2035 struct fs_struct *new_fs) 2036 { 2037 struct mnt_namespace *new_ns; 2038 2039 BUG_ON(!ns); 2040 get_mnt_ns(ns); 2041 2042 if (!(flags & CLONE_NEWNS)) 2043 return ns; 2044 2045 new_ns = dup_mnt_ns(ns, new_fs); 2046 2047 put_mnt_ns(ns); 2048 return new_ns; 2049 } 2050 2051 /** 2052 * create_mnt_ns - creates a private namespace and adds a root filesystem 2053 * @mnt: pointer to the new root filesystem mountpoint 2054 */ 2055 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt) 2056 { 2057 struct mnt_namespace *new_ns; 2058 2059 new_ns = alloc_mnt_ns(); 2060 if (!IS_ERR(new_ns)) { 2061 mnt->mnt_ns = new_ns; 2062 new_ns->root = mnt; 2063 list_add(&new_ns->list, &new_ns->root->mnt_list); 2064 } 2065 return new_ns; 2066 } 2067 EXPORT_SYMBOL(create_mnt_ns); 2068 2069 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2070 char __user *, type, unsigned long, flags, void __user *, data) 2071 { 2072 int retval; 2073 unsigned long data_page; 2074 unsigned long type_page; 2075 unsigned long dev_page; 2076 char *dir_page; 2077 2078 retval = copy_mount_options(type, &type_page); 2079 if (retval < 0) 2080 return retval; 2081 2082 dir_page = getname(dir_name); 2083 retval = PTR_ERR(dir_page); 2084 if (IS_ERR(dir_page)) 2085 goto out1; 2086 2087 retval = copy_mount_options(dev_name, &dev_page); 2088 if (retval < 0) 2089 goto out2; 2090 2091 retval = copy_mount_options(data, &data_page); 2092 if (retval < 0) 2093 goto out3; 2094 2095 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 2096 flags, (void *)data_page); 2097 free_page(data_page); 2098 2099 out3: 2100 free_page(dev_page); 2101 out2: 2102 putname(dir_page); 2103 out1: 2104 free_page(type_page); 2105 return retval; 2106 } 2107 2108 /* 2109 * pivot_root Semantics: 2110 * Moves the root file system of the current process to the directory put_old, 2111 * makes new_root as the new root file system of the current process, and sets 2112 * root/cwd of all processes which had them on the current root to new_root. 2113 * 2114 * Restrictions: 2115 * The new_root and put_old must be directories, and must not be on the 2116 * same file system as the current process root. The put_old must be 2117 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2118 * pointed to by put_old must yield the same directory as new_root. No other 2119 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2120 * 2121 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2122 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2123 * in this situation. 2124 * 2125 * Notes: 2126 * - we don't move root/cwd if they are not at the root (reason: if something 2127 * cared enough to change them, it's probably wrong to force them elsewhere) 2128 * - it's okay to pick a root that isn't the root of a file system, e.g. 2129 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2130 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2131 * first. 2132 */ 2133 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2134 const char __user *, put_old) 2135 { 2136 struct vfsmount *tmp; 2137 struct path new, old, parent_path, root_parent, root; 2138 int error; 2139 2140 if (!capable(CAP_SYS_ADMIN)) 2141 return -EPERM; 2142 2143 error = user_path_dir(new_root, &new); 2144 if (error) 2145 goto out0; 2146 error = -EINVAL; 2147 if (!check_mnt(new.mnt)) 2148 goto out1; 2149 2150 error = user_path_dir(put_old, &old); 2151 if (error) 2152 goto out1; 2153 2154 error = security_sb_pivotroot(&old, &new); 2155 if (error) { 2156 path_put(&old); 2157 goto out1; 2158 } 2159 2160 read_lock(¤t->fs->lock); 2161 root = current->fs->root; 2162 path_get(¤t->fs->root); 2163 read_unlock(¤t->fs->lock); 2164 down_write(&namespace_sem); 2165 mutex_lock(&old.dentry->d_inode->i_mutex); 2166 error = -EINVAL; 2167 if (IS_MNT_SHARED(old.mnt) || 2168 IS_MNT_SHARED(new.mnt->mnt_parent) || 2169 IS_MNT_SHARED(root.mnt->mnt_parent)) 2170 goto out2; 2171 if (!check_mnt(root.mnt)) 2172 goto out2; 2173 error = -ENOENT; 2174 if (IS_DEADDIR(new.dentry->d_inode)) 2175 goto out2; 2176 if (d_unlinked(new.dentry)) 2177 goto out2; 2178 if (d_unlinked(old.dentry)) 2179 goto out2; 2180 error = -EBUSY; 2181 if (new.mnt == root.mnt || 2182 old.mnt == root.mnt) 2183 goto out2; /* loop, on the same file system */ 2184 error = -EINVAL; 2185 if (root.mnt->mnt_root != root.dentry) 2186 goto out2; /* not a mountpoint */ 2187 if (root.mnt->mnt_parent == root.mnt) 2188 goto out2; /* not attached */ 2189 if (new.mnt->mnt_root != new.dentry) 2190 goto out2; /* not a mountpoint */ 2191 if (new.mnt->mnt_parent == new.mnt) 2192 goto out2; /* not attached */ 2193 /* make sure we can reach put_old from new_root */ 2194 tmp = old.mnt; 2195 spin_lock(&vfsmount_lock); 2196 if (tmp != new.mnt) { 2197 for (;;) { 2198 if (tmp->mnt_parent == tmp) 2199 goto out3; /* already mounted on put_old */ 2200 if (tmp->mnt_parent == new.mnt) 2201 break; 2202 tmp = tmp->mnt_parent; 2203 } 2204 if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) 2205 goto out3; 2206 } else if (!is_subdir(old.dentry, new.dentry)) 2207 goto out3; 2208 detach_mnt(new.mnt, &parent_path); 2209 detach_mnt(root.mnt, &root_parent); 2210 /* mount old root on put_old */ 2211 attach_mnt(root.mnt, &old); 2212 /* mount new_root on / */ 2213 attach_mnt(new.mnt, &root_parent); 2214 touch_mnt_namespace(current->nsproxy->mnt_ns); 2215 spin_unlock(&vfsmount_lock); 2216 chroot_fs_refs(&root, &new); 2217 security_sb_post_pivotroot(&root, &new); 2218 error = 0; 2219 path_put(&root_parent); 2220 path_put(&parent_path); 2221 out2: 2222 mutex_unlock(&old.dentry->d_inode->i_mutex); 2223 up_write(&namespace_sem); 2224 path_put(&root); 2225 path_put(&old); 2226 out1: 2227 path_put(&new); 2228 out0: 2229 return error; 2230 out3: 2231 spin_unlock(&vfsmount_lock); 2232 goto out2; 2233 } 2234 2235 static void __init init_mount_tree(void) 2236 { 2237 struct vfsmount *mnt; 2238 struct mnt_namespace *ns; 2239 struct path root; 2240 2241 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 2242 if (IS_ERR(mnt)) 2243 panic("Can't create rootfs"); 2244 ns = create_mnt_ns(mnt); 2245 if (IS_ERR(ns)) 2246 panic("Can't allocate initial namespace"); 2247 2248 init_task.nsproxy->mnt_ns = ns; 2249 get_mnt_ns(ns); 2250 2251 root.mnt = ns->root; 2252 root.dentry = ns->root->mnt_root; 2253 2254 set_fs_pwd(current->fs, &root); 2255 set_fs_root(current->fs, &root); 2256 } 2257 2258 void __init mnt_init(void) 2259 { 2260 unsigned u; 2261 int err; 2262 2263 init_rwsem(&namespace_sem); 2264 2265 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 2266 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2267 2268 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 2269 2270 if (!mount_hashtable) 2271 panic("Failed to allocate mount hash table\n"); 2272 2273 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); 2274 2275 for (u = 0; u < HASH_SIZE; u++) 2276 INIT_LIST_HEAD(&mount_hashtable[u]); 2277 2278 err = sysfs_init(); 2279 if (err) 2280 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 2281 __func__, err); 2282 fs_kobj = kobject_create_and_add("fs", NULL); 2283 if (!fs_kobj) 2284 printk(KERN_WARNING "%s: kobj create error\n", __func__); 2285 init_rootfs(); 2286 init_mount_tree(); 2287 } 2288 2289 void put_mnt_ns(struct mnt_namespace *ns) 2290 { 2291 struct vfsmount *root; 2292 LIST_HEAD(umount_list); 2293 2294 if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock)) 2295 return; 2296 root = ns->root; 2297 ns->root = NULL; 2298 spin_unlock(&vfsmount_lock); 2299 down_write(&namespace_sem); 2300 spin_lock(&vfsmount_lock); 2301 umount_tree(root, 0, &umount_list); 2302 spin_unlock(&vfsmount_lock); 2303 up_write(&namespace_sem); 2304 release_mounts(&umount_list); 2305 kfree(ns); 2306 } 2307 EXPORT_SYMBOL(put_mnt_ns); 2308