xref: /linux/fs/namespace.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include "pnode.h"
35 #include "internal.h"
36 
37 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38 #define HASH_SIZE (1UL << HASH_SHIFT)
39 
40 /* spinlock for vfsmount related operations, inplace of dcache_lock */
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 
43 static int event;
44 static DEFINE_IDA(mnt_id_ida);
45 static DEFINE_IDA(mnt_group_ida);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 {
59 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
61 	tmp = tmp + (tmp >> HASH_SHIFT);
62 	return tmp & (HASH_SIZE - 1);
63 }
64 
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 
67 /* allocation is serialized by namespace_sem */
68 static int mnt_alloc_id(struct vfsmount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&vfsmount_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&vfsmount_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct vfsmount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&vfsmount_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&vfsmount_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct vfsmount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct vfsmount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 struct vfsmount *alloc_vfsmnt(const char *name)
129 {
130 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
131 	if (mnt) {
132 		int err;
133 
134 		err = mnt_alloc_id(mnt);
135 		if (err)
136 			goto out_free_cache;
137 
138 		if (name) {
139 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
140 			if (!mnt->mnt_devname)
141 				goto out_free_id;
142 		}
143 
144 		atomic_set(&mnt->mnt_count, 1);
145 		INIT_LIST_HEAD(&mnt->mnt_hash);
146 		INIT_LIST_HEAD(&mnt->mnt_child);
147 		INIT_LIST_HEAD(&mnt->mnt_mounts);
148 		INIT_LIST_HEAD(&mnt->mnt_list);
149 		INIT_LIST_HEAD(&mnt->mnt_expire);
150 		INIT_LIST_HEAD(&mnt->mnt_share);
151 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
152 		INIT_LIST_HEAD(&mnt->mnt_slave);
153 #ifdef CONFIG_SMP
154 		mnt->mnt_writers = alloc_percpu(int);
155 		if (!mnt->mnt_writers)
156 			goto out_free_devname;
157 #else
158 		mnt->mnt_writers = 0;
159 #endif
160 	}
161 	return mnt;
162 
163 #ifdef CONFIG_SMP
164 out_free_devname:
165 	kfree(mnt->mnt_devname);
166 #endif
167 out_free_id:
168 	mnt_free_id(mnt);
169 out_free_cache:
170 	kmem_cache_free(mnt_cache, mnt);
171 	return NULL;
172 }
173 
174 /*
175  * Most r/o checks on a fs are for operations that take
176  * discrete amounts of time, like a write() or unlink().
177  * We must keep track of when those operations start
178  * (for permission checks) and when they end, so that
179  * we can determine when writes are able to occur to
180  * a filesystem.
181  */
182 /*
183  * __mnt_is_readonly: check whether a mount is read-only
184  * @mnt: the mount to check for its write status
185  *
186  * This shouldn't be used directly ouside of the VFS.
187  * It does not guarantee that the filesystem will stay
188  * r/w, just that it is right *now*.  This can not and
189  * should not be used in place of IS_RDONLY(inode).
190  * mnt_want/drop_write() will _keep_ the filesystem
191  * r/w.
192  */
193 int __mnt_is_readonly(struct vfsmount *mnt)
194 {
195 	if (mnt->mnt_flags & MNT_READONLY)
196 		return 1;
197 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
198 		return 1;
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202 
203 static inline void inc_mnt_writers(struct vfsmount *mnt)
204 {
205 #ifdef CONFIG_SMP
206 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
207 #else
208 	mnt->mnt_writers++;
209 #endif
210 }
211 
212 static inline void dec_mnt_writers(struct vfsmount *mnt)
213 {
214 #ifdef CONFIG_SMP
215 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
216 #else
217 	mnt->mnt_writers--;
218 #endif
219 }
220 
221 static unsigned int count_mnt_writers(struct vfsmount *mnt)
222 {
223 #ifdef CONFIG_SMP
224 	unsigned int count = 0;
225 	int cpu;
226 
227 	for_each_possible_cpu(cpu) {
228 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
229 	}
230 
231 	return count;
232 #else
233 	return mnt->mnt_writers;
234 #endif
235 }
236 
237 /*
238  * Most r/o checks on a fs are for operations that take
239  * discrete amounts of time, like a write() or unlink().
240  * We must keep track of when those operations start
241  * (for permission checks) and when they end, so that
242  * we can determine when writes are able to occur to
243  * a filesystem.
244  */
245 /**
246  * mnt_want_write - get write access to a mount
247  * @mnt: the mount on which to take a write
248  *
249  * This tells the low-level filesystem that a write is
250  * about to be performed to it, and makes sure that
251  * writes are allowed before returning success.  When
252  * the write operation is finished, mnt_drop_write()
253  * must be called.  This is effectively a refcount.
254  */
255 int mnt_want_write(struct vfsmount *mnt)
256 {
257 	int ret = 0;
258 
259 	preempt_disable();
260 	inc_mnt_writers(mnt);
261 	/*
262 	 * The store to inc_mnt_writers must be visible before we pass
263 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 	 * incremented count after it has set MNT_WRITE_HOLD.
265 	 */
266 	smp_mb();
267 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
268 		cpu_relax();
269 	/*
270 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 	 * be set to match its requirements. So we must not load that until
272 	 * MNT_WRITE_HOLD is cleared.
273 	 */
274 	smp_rmb();
275 	if (__mnt_is_readonly(mnt)) {
276 		dec_mnt_writers(mnt);
277 		ret = -EROFS;
278 		goto out;
279 	}
280 out:
281 	preempt_enable();
282 	return ret;
283 }
284 EXPORT_SYMBOL_GPL(mnt_want_write);
285 
286 /**
287  * mnt_clone_write - get write access to a mount
288  * @mnt: the mount on which to take a write
289  *
290  * This is effectively like mnt_want_write, except
291  * it must only be used to take an extra write reference
292  * on a mountpoint that we already know has a write reference
293  * on it. This allows some optimisation.
294  *
295  * After finished, mnt_drop_write must be called as usual to
296  * drop the reference.
297  */
298 int mnt_clone_write(struct vfsmount *mnt)
299 {
300 	/* superblock may be r/o */
301 	if (__mnt_is_readonly(mnt))
302 		return -EROFS;
303 	preempt_disable();
304 	inc_mnt_writers(mnt);
305 	preempt_enable();
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(mnt_clone_write);
309 
310 /**
311  * mnt_want_write_file - get write access to a file's mount
312  * @file: the file who's mount on which to take a write
313  *
314  * This is like mnt_want_write, but it takes a file and can
315  * do some optimisations if the file is open for write already
316  */
317 int mnt_want_write_file(struct file *file)
318 {
319 	if (!(file->f_mode & FMODE_WRITE))
320 		return mnt_want_write(file->f_path.mnt);
321 	else
322 		return mnt_clone_write(file->f_path.mnt);
323 }
324 EXPORT_SYMBOL_GPL(mnt_want_write_file);
325 
326 /**
327  * mnt_drop_write - give up write access to a mount
328  * @mnt: the mount on which to give up write access
329  *
330  * Tells the low-level filesystem that we are done
331  * performing writes to it.  Must be matched with
332  * mnt_want_write() call above.
333  */
334 void mnt_drop_write(struct vfsmount *mnt)
335 {
336 	preempt_disable();
337 	dec_mnt_writers(mnt);
338 	preempt_enable();
339 }
340 EXPORT_SYMBOL_GPL(mnt_drop_write);
341 
342 static int mnt_make_readonly(struct vfsmount *mnt)
343 {
344 	int ret = 0;
345 
346 	spin_lock(&vfsmount_lock);
347 	mnt->mnt_flags |= MNT_WRITE_HOLD;
348 	/*
349 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
350 	 * should be visible before we do.
351 	 */
352 	smp_mb();
353 
354 	/*
355 	 * With writers on hold, if this value is zero, then there are
356 	 * definitely no active writers (although held writers may subsequently
357 	 * increment the count, they'll have to wait, and decrement it after
358 	 * seeing MNT_READONLY).
359 	 *
360 	 * It is OK to have counter incremented on one CPU and decremented on
361 	 * another: the sum will add up correctly. The danger would be when we
362 	 * sum up each counter, if we read a counter before it is incremented,
363 	 * but then read another CPU's count which it has been subsequently
364 	 * decremented from -- we would see more decrements than we should.
365 	 * MNT_WRITE_HOLD protects against this scenario, because
366 	 * mnt_want_write first increments count, then smp_mb, then spins on
367 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
368 	 * we're counting up here.
369 	 */
370 	if (count_mnt_writers(mnt) > 0)
371 		ret = -EBUSY;
372 	else
373 		mnt->mnt_flags |= MNT_READONLY;
374 	/*
375 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
376 	 * that become unheld will see MNT_READONLY.
377 	 */
378 	smp_wmb();
379 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
380 	spin_unlock(&vfsmount_lock);
381 	return ret;
382 }
383 
384 static void __mnt_unmake_readonly(struct vfsmount *mnt)
385 {
386 	spin_lock(&vfsmount_lock);
387 	mnt->mnt_flags &= ~MNT_READONLY;
388 	spin_unlock(&vfsmount_lock);
389 }
390 
391 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
392 {
393 	mnt->mnt_sb = sb;
394 	mnt->mnt_root = dget(sb->s_root);
395 }
396 
397 EXPORT_SYMBOL(simple_set_mnt);
398 
399 void free_vfsmnt(struct vfsmount *mnt)
400 {
401 	kfree(mnt->mnt_devname);
402 	mnt_free_id(mnt);
403 #ifdef CONFIG_SMP
404 	free_percpu(mnt->mnt_writers);
405 #endif
406 	kmem_cache_free(mnt_cache, mnt);
407 }
408 
409 /*
410  * find the first or last mount at @dentry on vfsmount @mnt depending on
411  * @dir. If @dir is set return the first mount else return the last mount.
412  */
413 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
414 			      int dir)
415 {
416 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
417 	struct list_head *tmp = head;
418 	struct vfsmount *p, *found = NULL;
419 
420 	for (;;) {
421 		tmp = dir ? tmp->next : tmp->prev;
422 		p = NULL;
423 		if (tmp == head)
424 			break;
425 		p = list_entry(tmp, struct vfsmount, mnt_hash);
426 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
427 			found = p;
428 			break;
429 		}
430 	}
431 	return found;
432 }
433 
434 /*
435  * lookup_mnt increments the ref count before returning
436  * the vfsmount struct.
437  */
438 struct vfsmount *lookup_mnt(struct path *path)
439 {
440 	struct vfsmount *child_mnt;
441 	spin_lock(&vfsmount_lock);
442 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
443 		mntget(child_mnt);
444 	spin_unlock(&vfsmount_lock);
445 	return child_mnt;
446 }
447 
448 static inline int check_mnt(struct vfsmount *mnt)
449 {
450 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
451 }
452 
453 static void touch_mnt_namespace(struct mnt_namespace *ns)
454 {
455 	if (ns) {
456 		ns->event = ++event;
457 		wake_up_interruptible(&ns->poll);
458 	}
459 }
460 
461 static void __touch_mnt_namespace(struct mnt_namespace *ns)
462 {
463 	if (ns && ns->event != event) {
464 		ns->event = event;
465 		wake_up_interruptible(&ns->poll);
466 	}
467 }
468 
469 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
470 {
471 	old_path->dentry = mnt->mnt_mountpoint;
472 	old_path->mnt = mnt->mnt_parent;
473 	mnt->mnt_parent = mnt;
474 	mnt->mnt_mountpoint = mnt->mnt_root;
475 	list_del_init(&mnt->mnt_child);
476 	list_del_init(&mnt->mnt_hash);
477 	old_path->dentry->d_mounted--;
478 }
479 
480 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
481 			struct vfsmount *child_mnt)
482 {
483 	child_mnt->mnt_parent = mntget(mnt);
484 	child_mnt->mnt_mountpoint = dget(dentry);
485 	dentry->d_mounted++;
486 }
487 
488 static void attach_mnt(struct vfsmount *mnt, struct path *path)
489 {
490 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
491 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
492 			hash(path->mnt, path->dentry));
493 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
494 }
495 
496 /*
497  * the caller must hold vfsmount_lock
498  */
499 static void commit_tree(struct vfsmount *mnt)
500 {
501 	struct vfsmount *parent = mnt->mnt_parent;
502 	struct vfsmount *m;
503 	LIST_HEAD(head);
504 	struct mnt_namespace *n = parent->mnt_ns;
505 
506 	BUG_ON(parent == mnt);
507 
508 	list_add_tail(&head, &mnt->mnt_list);
509 	list_for_each_entry(m, &head, mnt_list)
510 		m->mnt_ns = n;
511 	list_splice(&head, n->list.prev);
512 
513 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
514 				hash(parent, mnt->mnt_mountpoint));
515 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
516 	touch_mnt_namespace(n);
517 }
518 
519 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
520 {
521 	struct list_head *next = p->mnt_mounts.next;
522 	if (next == &p->mnt_mounts) {
523 		while (1) {
524 			if (p == root)
525 				return NULL;
526 			next = p->mnt_child.next;
527 			if (next != &p->mnt_parent->mnt_mounts)
528 				break;
529 			p = p->mnt_parent;
530 		}
531 	}
532 	return list_entry(next, struct vfsmount, mnt_child);
533 }
534 
535 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
536 {
537 	struct list_head *prev = p->mnt_mounts.prev;
538 	while (prev != &p->mnt_mounts) {
539 		p = list_entry(prev, struct vfsmount, mnt_child);
540 		prev = p->mnt_mounts.prev;
541 	}
542 	return p;
543 }
544 
545 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
546 					int flag)
547 {
548 	struct super_block *sb = old->mnt_sb;
549 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
550 
551 	if (mnt) {
552 		if (flag & (CL_SLAVE | CL_PRIVATE))
553 			mnt->mnt_group_id = 0; /* not a peer of original */
554 		else
555 			mnt->mnt_group_id = old->mnt_group_id;
556 
557 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
558 			int err = mnt_alloc_group_id(mnt);
559 			if (err)
560 				goto out_free;
561 		}
562 
563 		mnt->mnt_flags = old->mnt_flags;
564 		atomic_inc(&sb->s_active);
565 		mnt->mnt_sb = sb;
566 		mnt->mnt_root = dget(root);
567 		mnt->mnt_mountpoint = mnt->mnt_root;
568 		mnt->mnt_parent = mnt;
569 
570 		if (flag & CL_SLAVE) {
571 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
572 			mnt->mnt_master = old;
573 			CLEAR_MNT_SHARED(mnt);
574 		} else if (!(flag & CL_PRIVATE)) {
575 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
576 				list_add(&mnt->mnt_share, &old->mnt_share);
577 			if (IS_MNT_SLAVE(old))
578 				list_add(&mnt->mnt_slave, &old->mnt_slave);
579 			mnt->mnt_master = old->mnt_master;
580 		}
581 		if (flag & CL_MAKE_SHARED)
582 			set_mnt_shared(mnt);
583 
584 		/* stick the duplicate mount on the same expiry list
585 		 * as the original if that was on one */
586 		if (flag & CL_EXPIRE) {
587 			if (!list_empty(&old->mnt_expire))
588 				list_add(&mnt->mnt_expire, &old->mnt_expire);
589 		}
590 	}
591 	return mnt;
592 
593  out_free:
594 	free_vfsmnt(mnt);
595 	return NULL;
596 }
597 
598 static inline void __mntput(struct vfsmount *mnt)
599 {
600 	struct super_block *sb = mnt->mnt_sb;
601 	/*
602 	 * This probably indicates that somebody messed
603 	 * up a mnt_want/drop_write() pair.  If this
604 	 * happens, the filesystem was probably unable
605 	 * to make r/w->r/o transitions.
606 	 */
607 	/*
608 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
609 	 * provides barriers, so count_mnt_writers() below is safe.  AV
610 	 */
611 	WARN_ON(count_mnt_writers(mnt));
612 	dput(mnt->mnt_root);
613 	free_vfsmnt(mnt);
614 	deactivate_super(sb);
615 }
616 
617 void mntput_no_expire(struct vfsmount *mnt)
618 {
619 repeat:
620 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
621 		if (likely(!mnt->mnt_pinned)) {
622 			spin_unlock(&vfsmount_lock);
623 			__mntput(mnt);
624 			return;
625 		}
626 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
627 		mnt->mnt_pinned = 0;
628 		spin_unlock(&vfsmount_lock);
629 		acct_auto_close_mnt(mnt);
630 		security_sb_umount_close(mnt);
631 		goto repeat;
632 	}
633 }
634 
635 EXPORT_SYMBOL(mntput_no_expire);
636 
637 void mnt_pin(struct vfsmount *mnt)
638 {
639 	spin_lock(&vfsmount_lock);
640 	mnt->mnt_pinned++;
641 	spin_unlock(&vfsmount_lock);
642 }
643 
644 EXPORT_SYMBOL(mnt_pin);
645 
646 void mnt_unpin(struct vfsmount *mnt)
647 {
648 	spin_lock(&vfsmount_lock);
649 	if (mnt->mnt_pinned) {
650 		atomic_inc(&mnt->mnt_count);
651 		mnt->mnt_pinned--;
652 	}
653 	spin_unlock(&vfsmount_lock);
654 }
655 
656 EXPORT_SYMBOL(mnt_unpin);
657 
658 static inline void mangle(struct seq_file *m, const char *s)
659 {
660 	seq_escape(m, s, " \t\n\\");
661 }
662 
663 /*
664  * Simple .show_options callback for filesystems which don't want to
665  * implement more complex mount option showing.
666  *
667  * See also save_mount_options().
668  */
669 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
670 {
671 	const char *options;
672 
673 	rcu_read_lock();
674 	options = rcu_dereference(mnt->mnt_sb->s_options);
675 
676 	if (options != NULL && options[0]) {
677 		seq_putc(m, ',');
678 		mangle(m, options);
679 	}
680 	rcu_read_unlock();
681 
682 	return 0;
683 }
684 EXPORT_SYMBOL(generic_show_options);
685 
686 /*
687  * If filesystem uses generic_show_options(), this function should be
688  * called from the fill_super() callback.
689  *
690  * The .remount_fs callback usually needs to be handled in a special
691  * way, to make sure, that previous options are not overwritten if the
692  * remount fails.
693  *
694  * Also note, that if the filesystem's .remount_fs function doesn't
695  * reset all options to their default value, but changes only newly
696  * given options, then the displayed options will not reflect reality
697  * any more.
698  */
699 void save_mount_options(struct super_block *sb, char *options)
700 {
701 	BUG_ON(sb->s_options);
702 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
703 }
704 EXPORT_SYMBOL(save_mount_options);
705 
706 void replace_mount_options(struct super_block *sb, char *options)
707 {
708 	char *old = sb->s_options;
709 	rcu_assign_pointer(sb->s_options, options);
710 	if (old) {
711 		synchronize_rcu();
712 		kfree(old);
713 	}
714 }
715 EXPORT_SYMBOL(replace_mount_options);
716 
717 #ifdef CONFIG_PROC_FS
718 /* iterator */
719 static void *m_start(struct seq_file *m, loff_t *pos)
720 {
721 	struct proc_mounts *p = m->private;
722 
723 	down_read(&namespace_sem);
724 	return seq_list_start(&p->ns->list, *pos);
725 }
726 
727 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
728 {
729 	struct proc_mounts *p = m->private;
730 
731 	return seq_list_next(v, &p->ns->list, pos);
732 }
733 
734 static void m_stop(struct seq_file *m, void *v)
735 {
736 	up_read(&namespace_sem);
737 }
738 
739 struct proc_fs_info {
740 	int flag;
741 	const char *str;
742 };
743 
744 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
745 {
746 	static const struct proc_fs_info fs_info[] = {
747 		{ MS_SYNCHRONOUS, ",sync" },
748 		{ MS_DIRSYNC, ",dirsync" },
749 		{ MS_MANDLOCK, ",mand" },
750 		{ 0, NULL }
751 	};
752 	const struct proc_fs_info *fs_infop;
753 
754 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
755 		if (sb->s_flags & fs_infop->flag)
756 			seq_puts(m, fs_infop->str);
757 	}
758 
759 	return security_sb_show_options(m, sb);
760 }
761 
762 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
763 {
764 	static const struct proc_fs_info mnt_info[] = {
765 		{ MNT_NOSUID, ",nosuid" },
766 		{ MNT_NODEV, ",nodev" },
767 		{ MNT_NOEXEC, ",noexec" },
768 		{ MNT_NOATIME, ",noatime" },
769 		{ MNT_NODIRATIME, ",nodiratime" },
770 		{ MNT_RELATIME, ",relatime" },
771 		{ MNT_STRICTATIME, ",strictatime" },
772 		{ 0, NULL }
773 	};
774 	const struct proc_fs_info *fs_infop;
775 
776 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
777 		if (mnt->mnt_flags & fs_infop->flag)
778 			seq_puts(m, fs_infop->str);
779 	}
780 }
781 
782 static void show_type(struct seq_file *m, struct super_block *sb)
783 {
784 	mangle(m, sb->s_type->name);
785 	if (sb->s_subtype && sb->s_subtype[0]) {
786 		seq_putc(m, '.');
787 		mangle(m, sb->s_subtype);
788 	}
789 }
790 
791 static int show_vfsmnt(struct seq_file *m, void *v)
792 {
793 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
794 	int err = 0;
795 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
796 
797 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
798 	seq_putc(m, ' ');
799 	seq_path(m, &mnt_path, " \t\n\\");
800 	seq_putc(m, ' ');
801 	show_type(m, mnt->mnt_sb);
802 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
803 	err = show_sb_opts(m, mnt->mnt_sb);
804 	if (err)
805 		goto out;
806 	show_mnt_opts(m, mnt);
807 	if (mnt->mnt_sb->s_op->show_options)
808 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
809 	seq_puts(m, " 0 0\n");
810 out:
811 	return err;
812 }
813 
814 const struct seq_operations mounts_op = {
815 	.start	= m_start,
816 	.next	= m_next,
817 	.stop	= m_stop,
818 	.show	= show_vfsmnt
819 };
820 
821 static int show_mountinfo(struct seq_file *m, void *v)
822 {
823 	struct proc_mounts *p = m->private;
824 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
825 	struct super_block *sb = mnt->mnt_sb;
826 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
827 	struct path root = p->root;
828 	int err = 0;
829 
830 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
831 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
832 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
833 	seq_putc(m, ' ');
834 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
835 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
836 		/*
837 		 * Mountpoint is outside root, discard that one.  Ugly,
838 		 * but less so than trying to do that in iterator in a
839 		 * race-free way (due to renames).
840 		 */
841 		return SEQ_SKIP;
842 	}
843 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
844 	show_mnt_opts(m, mnt);
845 
846 	/* Tagged fields ("foo:X" or "bar") */
847 	if (IS_MNT_SHARED(mnt))
848 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
849 	if (IS_MNT_SLAVE(mnt)) {
850 		int master = mnt->mnt_master->mnt_group_id;
851 		int dom = get_dominating_id(mnt, &p->root);
852 		seq_printf(m, " master:%i", master);
853 		if (dom && dom != master)
854 			seq_printf(m, " propagate_from:%i", dom);
855 	}
856 	if (IS_MNT_UNBINDABLE(mnt))
857 		seq_puts(m, " unbindable");
858 
859 	/* Filesystem specific data */
860 	seq_puts(m, " - ");
861 	show_type(m, sb);
862 	seq_putc(m, ' ');
863 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
864 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
865 	err = show_sb_opts(m, sb);
866 	if (err)
867 		goto out;
868 	if (sb->s_op->show_options)
869 		err = sb->s_op->show_options(m, mnt);
870 	seq_putc(m, '\n');
871 out:
872 	return err;
873 }
874 
875 const struct seq_operations mountinfo_op = {
876 	.start	= m_start,
877 	.next	= m_next,
878 	.stop	= m_stop,
879 	.show	= show_mountinfo,
880 };
881 
882 static int show_vfsstat(struct seq_file *m, void *v)
883 {
884 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
885 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
886 	int err = 0;
887 
888 	/* device */
889 	if (mnt->mnt_devname) {
890 		seq_puts(m, "device ");
891 		mangle(m, mnt->mnt_devname);
892 	} else
893 		seq_puts(m, "no device");
894 
895 	/* mount point */
896 	seq_puts(m, " mounted on ");
897 	seq_path(m, &mnt_path, " \t\n\\");
898 	seq_putc(m, ' ');
899 
900 	/* file system type */
901 	seq_puts(m, "with fstype ");
902 	show_type(m, mnt->mnt_sb);
903 
904 	/* optional statistics */
905 	if (mnt->mnt_sb->s_op->show_stats) {
906 		seq_putc(m, ' ');
907 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
908 	}
909 
910 	seq_putc(m, '\n');
911 	return err;
912 }
913 
914 const struct seq_operations mountstats_op = {
915 	.start	= m_start,
916 	.next	= m_next,
917 	.stop	= m_stop,
918 	.show	= show_vfsstat,
919 };
920 #endif  /* CONFIG_PROC_FS */
921 
922 /**
923  * may_umount_tree - check if a mount tree is busy
924  * @mnt: root of mount tree
925  *
926  * This is called to check if a tree of mounts has any
927  * open files, pwds, chroots or sub mounts that are
928  * busy.
929  */
930 int may_umount_tree(struct vfsmount *mnt)
931 {
932 	int actual_refs = 0;
933 	int minimum_refs = 0;
934 	struct vfsmount *p;
935 
936 	spin_lock(&vfsmount_lock);
937 	for (p = mnt; p; p = next_mnt(p, mnt)) {
938 		actual_refs += atomic_read(&p->mnt_count);
939 		minimum_refs += 2;
940 	}
941 	spin_unlock(&vfsmount_lock);
942 
943 	if (actual_refs > minimum_refs)
944 		return 0;
945 
946 	return 1;
947 }
948 
949 EXPORT_SYMBOL(may_umount_tree);
950 
951 /**
952  * may_umount - check if a mount point is busy
953  * @mnt: root of mount
954  *
955  * This is called to check if a mount point has any
956  * open files, pwds, chroots or sub mounts. If the
957  * mount has sub mounts this will return busy
958  * regardless of whether the sub mounts are busy.
959  *
960  * Doesn't take quota and stuff into account. IOW, in some cases it will
961  * give false negatives. The main reason why it's here is that we need
962  * a non-destructive way to look for easily umountable filesystems.
963  */
964 int may_umount(struct vfsmount *mnt)
965 {
966 	int ret = 1;
967 	spin_lock(&vfsmount_lock);
968 	if (propagate_mount_busy(mnt, 2))
969 		ret = 0;
970 	spin_unlock(&vfsmount_lock);
971 	return ret;
972 }
973 
974 EXPORT_SYMBOL(may_umount);
975 
976 void release_mounts(struct list_head *head)
977 {
978 	struct vfsmount *mnt;
979 	while (!list_empty(head)) {
980 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
981 		list_del_init(&mnt->mnt_hash);
982 		if (mnt->mnt_parent != mnt) {
983 			struct dentry *dentry;
984 			struct vfsmount *m;
985 			spin_lock(&vfsmount_lock);
986 			dentry = mnt->mnt_mountpoint;
987 			m = mnt->mnt_parent;
988 			mnt->mnt_mountpoint = mnt->mnt_root;
989 			mnt->mnt_parent = mnt;
990 			m->mnt_ghosts--;
991 			spin_unlock(&vfsmount_lock);
992 			dput(dentry);
993 			mntput(m);
994 		}
995 		mntput(mnt);
996 	}
997 }
998 
999 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1000 {
1001 	struct vfsmount *p;
1002 
1003 	for (p = mnt; p; p = next_mnt(p, mnt))
1004 		list_move(&p->mnt_hash, kill);
1005 
1006 	if (propagate)
1007 		propagate_umount(kill);
1008 
1009 	list_for_each_entry(p, kill, mnt_hash) {
1010 		list_del_init(&p->mnt_expire);
1011 		list_del_init(&p->mnt_list);
1012 		__touch_mnt_namespace(p->mnt_ns);
1013 		p->mnt_ns = NULL;
1014 		list_del_init(&p->mnt_child);
1015 		if (p->mnt_parent != p) {
1016 			p->mnt_parent->mnt_ghosts++;
1017 			p->mnt_mountpoint->d_mounted--;
1018 		}
1019 		change_mnt_propagation(p, MS_PRIVATE);
1020 	}
1021 }
1022 
1023 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1024 
1025 static int do_umount(struct vfsmount *mnt, int flags)
1026 {
1027 	struct super_block *sb = mnt->mnt_sb;
1028 	int retval;
1029 	LIST_HEAD(umount_list);
1030 
1031 	retval = security_sb_umount(mnt, flags);
1032 	if (retval)
1033 		return retval;
1034 
1035 	/*
1036 	 * Allow userspace to request a mountpoint be expired rather than
1037 	 * unmounting unconditionally. Unmount only happens if:
1038 	 *  (1) the mark is already set (the mark is cleared by mntput())
1039 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1040 	 */
1041 	if (flags & MNT_EXPIRE) {
1042 		if (mnt == current->fs->root.mnt ||
1043 		    flags & (MNT_FORCE | MNT_DETACH))
1044 			return -EINVAL;
1045 
1046 		if (atomic_read(&mnt->mnt_count) != 2)
1047 			return -EBUSY;
1048 
1049 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1050 			return -EAGAIN;
1051 	}
1052 
1053 	/*
1054 	 * If we may have to abort operations to get out of this
1055 	 * mount, and they will themselves hold resources we must
1056 	 * allow the fs to do things. In the Unix tradition of
1057 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1058 	 * might fail to complete on the first run through as other tasks
1059 	 * must return, and the like. Thats for the mount program to worry
1060 	 * about for the moment.
1061 	 */
1062 
1063 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1064 		sb->s_op->umount_begin(sb);
1065 	}
1066 
1067 	/*
1068 	 * No sense to grab the lock for this test, but test itself looks
1069 	 * somewhat bogus. Suggestions for better replacement?
1070 	 * Ho-hum... In principle, we might treat that as umount + switch
1071 	 * to rootfs. GC would eventually take care of the old vfsmount.
1072 	 * Actually it makes sense, especially if rootfs would contain a
1073 	 * /reboot - static binary that would close all descriptors and
1074 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1075 	 */
1076 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1077 		/*
1078 		 * Special case for "unmounting" root ...
1079 		 * we just try to remount it readonly.
1080 		 */
1081 		down_write(&sb->s_umount);
1082 		if (!(sb->s_flags & MS_RDONLY))
1083 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1084 		up_write(&sb->s_umount);
1085 		return retval;
1086 	}
1087 
1088 	down_write(&namespace_sem);
1089 	spin_lock(&vfsmount_lock);
1090 	event++;
1091 
1092 	if (!(flags & MNT_DETACH))
1093 		shrink_submounts(mnt, &umount_list);
1094 
1095 	retval = -EBUSY;
1096 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1097 		if (!list_empty(&mnt->mnt_list))
1098 			umount_tree(mnt, 1, &umount_list);
1099 		retval = 0;
1100 	}
1101 	spin_unlock(&vfsmount_lock);
1102 	if (retval)
1103 		security_sb_umount_busy(mnt);
1104 	up_write(&namespace_sem);
1105 	release_mounts(&umount_list);
1106 	return retval;
1107 }
1108 
1109 /*
1110  * Now umount can handle mount points as well as block devices.
1111  * This is important for filesystems which use unnamed block devices.
1112  *
1113  * We now support a flag for forced unmount like the other 'big iron'
1114  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1115  */
1116 
1117 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1118 {
1119 	struct path path;
1120 	int retval;
1121 
1122 	retval = user_path(name, &path);
1123 	if (retval)
1124 		goto out;
1125 	retval = -EINVAL;
1126 	if (path.dentry != path.mnt->mnt_root)
1127 		goto dput_and_out;
1128 	if (!check_mnt(path.mnt))
1129 		goto dput_and_out;
1130 
1131 	retval = -EPERM;
1132 	if (!capable(CAP_SYS_ADMIN))
1133 		goto dput_and_out;
1134 
1135 	retval = do_umount(path.mnt, flags);
1136 dput_and_out:
1137 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1138 	dput(path.dentry);
1139 	mntput_no_expire(path.mnt);
1140 out:
1141 	return retval;
1142 }
1143 
1144 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1145 
1146 /*
1147  *	The 2.0 compatible umount. No flags.
1148  */
1149 SYSCALL_DEFINE1(oldumount, char __user *, name)
1150 {
1151 	return sys_umount(name, 0);
1152 }
1153 
1154 #endif
1155 
1156 static int mount_is_safe(struct path *path)
1157 {
1158 	if (capable(CAP_SYS_ADMIN))
1159 		return 0;
1160 	return -EPERM;
1161 #ifdef notyet
1162 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1163 		return -EPERM;
1164 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1165 		if (current_uid() != path->dentry->d_inode->i_uid)
1166 			return -EPERM;
1167 	}
1168 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1169 		return -EPERM;
1170 	return 0;
1171 #endif
1172 }
1173 
1174 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1175 					int flag)
1176 {
1177 	struct vfsmount *res, *p, *q, *r, *s;
1178 	struct path path;
1179 
1180 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1181 		return NULL;
1182 
1183 	res = q = clone_mnt(mnt, dentry, flag);
1184 	if (!q)
1185 		goto Enomem;
1186 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1187 
1188 	p = mnt;
1189 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1190 		if (!is_subdir(r->mnt_mountpoint, dentry))
1191 			continue;
1192 
1193 		for (s = r; s; s = next_mnt(s, r)) {
1194 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1195 				s = skip_mnt_tree(s);
1196 				continue;
1197 			}
1198 			while (p != s->mnt_parent) {
1199 				p = p->mnt_parent;
1200 				q = q->mnt_parent;
1201 			}
1202 			p = s;
1203 			path.mnt = q;
1204 			path.dentry = p->mnt_mountpoint;
1205 			q = clone_mnt(p, p->mnt_root, flag);
1206 			if (!q)
1207 				goto Enomem;
1208 			spin_lock(&vfsmount_lock);
1209 			list_add_tail(&q->mnt_list, &res->mnt_list);
1210 			attach_mnt(q, &path);
1211 			spin_unlock(&vfsmount_lock);
1212 		}
1213 	}
1214 	return res;
1215 Enomem:
1216 	if (res) {
1217 		LIST_HEAD(umount_list);
1218 		spin_lock(&vfsmount_lock);
1219 		umount_tree(res, 0, &umount_list);
1220 		spin_unlock(&vfsmount_lock);
1221 		release_mounts(&umount_list);
1222 	}
1223 	return NULL;
1224 }
1225 
1226 struct vfsmount *collect_mounts(struct path *path)
1227 {
1228 	struct vfsmount *tree;
1229 	down_write(&namespace_sem);
1230 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1231 	up_write(&namespace_sem);
1232 	return tree;
1233 }
1234 
1235 void drop_collected_mounts(struct vfsmount *mnt)
1236 {
1237 	LIST_HEAD(umount_list);
1238 	down_write(&namespace_sem);
1239 	spin_lock(&vfsmount_lock);
1240 	umount_tree(mnt, 0, &umount_list);
1241 	spin_unlock(&vfsmount_lock);
1242 	up_write(&namespace_sem);
1243 	release_mounts(&umount_list);
1244 }
1245 
1246 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1247 {
1248 	struct vfsmount *p;
1249 
1250 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1251 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1252 			mnt_release_group_id(p);
1253 	}
1254 }
1255 
1256 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1257 {
1258 	struct vfsmount *p;
1259 
1260 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1261 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1262 			int err = mnt_alloc_group_id(p);
1263 			if (err) {
1264 				cleanup_group_ids(mnt, p);
1265 				return err;
1266 			}
1267 		}
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  *  @source_mnt : mount tree to be attached
1275  *  @nd         : place the mount tree @source_mnt is attached
1276  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1277  *  		   store the parent mount and mountpoint dentry.
1278  *  		   (done when source_mnt is moved)
1279  *
1280  *  NOTE: in the table below explains the semantics when a source mount
1281  *  of a given type is attached to a destination mount of a given type.
1282  * ---------------------------------------------------------------------------
1283  * |         BIND MOUNT OPERATION                                            |
1284  * |**************************************************************************
1285  * | source-->| shared        |       private  |       slave    | unbindable |
1286  * | dest     |               |                |                |            |
1287  * |   |      |               |                |                |            |
1288  * |   v      |               |                |                |            |
1289  * |**************************************************************************
1290  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1291  * |          |               |                |                |            |
1292  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1293  * ***************************************************************************
1294  * A bind operation clones the source mount and mounts the clone on the
1295  * destination mount.
1296  *
1297  * (++)  the cloned mount is propagated to all the mounts in the propagation
1298  * 	 tree of the destination mount and the cloned mount is added to
1299  * 	 the peer group of the source mount.
1300  * (+)   the cloned mount is created under the destination mount and is marked
1301  *       as shared. The cloned mount is added to the peer group of the source
1302  *       mount.
1303  * (+++) the mount is propagated to all the mounts in the propagation tree
1304  *       of the destination mount and the cloned mount is made slave
1305  *       of the same master as that of the source mount. The cloned mount
1306  *       is marked as 'shared and slave'.
1307  * (*)   the cloned mount is made a slave of the same master as that of the
1308  * 	 source mount.
1309  *
1310  * ---------------------------------------------------------------------------
1311  * |         		MOVE MOUNT OPERATION                                 |
1312  * |**************************************************************************
1313  * | source-->| shared        |       private  |       slave    | unbindable |
1314  * | dest     |               |                |                |            |
1315  * |   |      |               |                |                |            |
1316  * |   v      |               |                |                |            |
1317  * |**************************************************************************
1318  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1319  * |          |               |                |                |            |
1320  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1321  * ***************************************************************************
1322  *
1323  * (+)  the mount is moved to the destination. And is then propagated to
1324  * 	all the mounts in the propagation tree of the destination mount.
1325  * (+*)  the mount is moved to the destination.
1326  * (+++)  the mount is moved to the destination and is then propagated to
1327  * 	all the mounts belonging to the destination mount's propagation tree.
1328  * 	the mount is marked as 'shared and slave'.
1329  * (*)	the mount continues to be a slave at the new location.
1330  *
1331  * if the source mount is a tree, the operations explained above is
1332  * applied to each mount in the tree.
1333  * Must be called without spinlocks held, since this function can sleep
1334  * in allocations.
1335  */
1336 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1337 			struct path *path, struct path *parent_path)
1338 {
1339 	LIST_HEAD(tree_list);
1340 	struct vfsmount *dest_mnt = path->mnt;
1341 	struct dentry *dest_dentry = path->dentry;
1342 	struct vfsmount *child, *p;
1343 	int err;
1344 
1345 	if (IS_MNT_SHARED(dest_mnt)) {
1346 		err = invent_group_ids(source_mnt, true);
1347 		if (err)
1348 			goto out;
1349 	}
1350 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1351 	if (err)
1352 		goto out_cleanup_ids;
1353 
1354 	if (IS_MNT_SHARED(dest_mnt)) {
1355 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1356 			set_mnt_shared(p);
1357 	}
1358 
1359 	spin_lock(&vfsmount_lock);
1360 	if (parent_path) {
1361 		detach_mnt(source_mnt, parent_path);
1362 		attach_mnt(source_mnt, path);
1363 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1364 	} else {
1365 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1366 		commit_tree(source_mnt);
1367 	}
1368 
1369 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1370 		list_del_init(&child->mnt_hash);
1371 		commit_tree(child);
1372 	}
1373 	spin_unlock(&vfsmount_lock);
1374 	return 0;
1375 
1376  out_cleanup_ids:
1377 	if (IS_MNT_SHARED(dest_mnt))
1378 		cleanup_group_ids(source_mnt, NULL);
1379  out:
1380 	return err;
1381 }
1382 
1383 static int graft_tree(struct vfsmount *mnt, struct path *path)
1384 {
1385 	int err;
1386 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1387 		return -EINVAL;
1388 
1389 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1390 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1391 		return -ENOTDIR;
1392 
1393 	err = -ENOENT;
1394 	mutex_lock(&path->dentry->d_inode->i_mutex);
1395 	if (IS_DEADDIR(path->dentry->d_inode))
1396 		goto out_unlock;
1397 
1398 	err = security_sb_check_sb(mnt, path);
1399 	if (err)
1400 		goto out_unlock;
1401 
1402 	err = -ENOENT;
1403 	if (!d_unlinked(path->dentry))
1404 		err = attach_recursive_mnt(mnt, path, NULL);
1405 out_unlock:
1406 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1407 	if (!err)
1408 		security_sb_post_addmount(mnt, path);
1409 	return err;
1410 }
1411 
1412 /*
1413  * recursively change the type of the mountpoint.
1414  */
1415 static int do_change_type(struct path *path, int flag)
1416 {
1417 	struct vfsmount *m, *mnt = path->mnt;
1418 	int recurse = flag & MS_REC;
1419 	int type = flag & ~MS_REC;
1420 	int err = 0;
1421 
1422 	if (!capable(CAP_SYS_ADMIN))
1423 		return -EPERM;
1424 
1425 	if (path->dentry != path->mnt->mnt_root)
1426 		return -EINVAL;
1427 
1428 	down_write(&namespace_sem);
1429 	if (type == MS_SHARED) {
1430 		err = invent_group_ids(mnt, recurse);
1431 		if (err)
1432 			goto out_unlock;
1433 	}
1434 
1435 	spin_lock(&vfsmount_lock);
1436 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1437 		change_mnt_propagation(m, type);
1438 	spin_unlock(&vfsmount_lock);
1439 
1440  out_unlock:
1441 	up_write(&namespace_sem);
1442 	return err;
1443 }
1444 
1445 /*
1446  * do loopback mount.
1447  */
1448 static int do_loopback(struct path *path, char *old_name,
1449 				int recurse)
1450 {
1451 	struct path old_path;
1452 	struct vfsmount *mnt = NULL;
1453 	int err = mount_is_safe(path);
1454 	if (err)
1455 		return err;
1456 	if (!old_name || !*old_name)
1457 		return -EINVAL;
1458 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1459 	if (err)
1460 		return err;
1461 
1462 	down_write(&namespace_sem);
1463 	err = -EINVAL;
1464 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1465 		goto out;
1466 
1467 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1468 		goto out;
1469 
1470 	err = -ENOMEM;
1471 	if (recurse)
1472 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1473 	else
1474 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1475 
1476 	if (!mnt)
1477 		goto out;
1478 
1479 	err = graft_tree(mnt, path);
1480 	if (err) {
1481 		LIST_HEAD(umount_list);
1482 		spin_lock(&vfsmount_lock);
1483 		umount_tree(mnt, 0, &umount_list);
1484 		spin_unlock(&vfsmount_lock);
1485 		release_mounts(&umount_list);
1486 	}
1487 
1488 out:
1489 	up_write(&namespace_sem);
1490 	path_put(&old_path);
1491 	return err;
1492 }
1493 
1494 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1495 {
1496 	int error = 0;
1497 	int readonly_request = 0;
1498 
1499 	if (ms_flags & MS_RDONLY)
1500 		readonly_request = 1;
1501 	if (readonly_request == __mnt_is_readonly(mnt))
1502 		return 0;
1503 
1504 	if (readonly_request)
1505 		error = mnt_make_readonly(mnt);
1506 	else
1507 		__mnt_unmake_readonly(mnt);
1508 	return error;
1509 }
1510 
1511 /*
1512  * change filesystem flags. dir should be a physical root of filesystem.
1513  * If you've mounted a non-root directory somewhere and want to do remount
1514  * on it - tough luck.
1515  */
1516 static int do_remount(struct path *path, int flags, int mnt_flags,
1517 		      void *data)
1518 {
1519 	int err;
1520 	struct super_block *sb = path->mnt->mnt_sb;
1521 
1522 	if (!capable(CAP_SYS_ADMIN))
1523 		return -EPERM;
1524 
1525 	if (!check_mnt(path->mnt))
1526 		return -EINVAL;
1527 
1528 	if (path->dentry != path->mnt->mnt_root)
1529 		return -EINVAL;
1530 
1531 	down_write(&sb->s_umount);
1532 	if (flags & MS_BIND)
1533 		err = change_mount_flags(path->mnt, flags);
1534 	else
1535 		err = do_remount_sb(sb, flags, data, 0);
1536 	if (!err)
1537 		path->mnt->mnt_flags = mnt_flags;
1538 	up_write(&sb->s_umount);
1539 	if (!err) {
1540 		security_sb_post_remount(path->mnt, flags, data);
1541 
1542 		spin_lock(&vfsmount_lock);
1543 		touch_mnt_namespace(path->mnt->mnt_ns);
1544 		spin_unlock(&vfsmount_lock);
1545 	}
1546 	return err;
1547 }
1548 
1549 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1550 {
1551 	struct vfsmount *p;
1552 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1553 		if (IS_MNT_UNBINDABLE(p))
1554 			return 1;
1555 	}
1556 	return 0;
1557 }
1558 
1559 static int do_move_mount(struct path *path, char *old_name)
1560 {
1561 	struct path old_path, parent_path;
1562 	struct vfsmount *p;
1563 	int err = 0;
1564 	if (!capable(CAP_SYS_ADMIN))
1565 		return -EPERM;
1566 	if (!old_name || !*old_name)
1567 		return -EINVAL;
1568 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1569 	if (err)
1570 		return err;
1571 
1572 	down_write(&namespace_sem);
1573 	while (d_mountpoint(path->dentry) &&
1574 	       follow_down(path))
1575 		;
1576 	err = -EINVAL;
1577 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1578 		goto out;
1579 
1580 	err = -ENOENT;
1581 	mutex_lock(&path->dentry->d_inode->i_mutex);
1582 	if (IS_DEADDIR(path->dentry->d_inode))
1583 		goto out1;
1584 
1585 	if (d_unlinked(path->dentry))
1586 		goto out1;
1587 
1588 	err = -EINVAL;
1589 	if (old_path.dentry != old_path.mnt->mnt_root)
1590 		goto out1;
1591 
1592 	if (old_path.mnt == old_path.mnt->mnt_parent)
1593 		goto out1;
1594 
1595 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1596 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1597 		goto out1;
1598 	/*
1599 	 * Don't move a mount residing in a shared parent.
1600 	 */
1601 	if (old_path.mnt->mnt_parent &&
1602 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1603 		goto out1;
1604 	/*
1605 	 * Don't move a mount tree containing unbindable mounts to a destination
1606 	 * mount which is shared.
1607 	 */
1608 	if (IS_MNT_SHARED(path->mnt) &&
1609 	    tree_contains_unbindable(old_path.mnt))
1610 		goto out1;
1611 	err = -ELOOP;
1612 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1613 		if (p == old_path.mnt)
1614 			goto out1;
1615 
1616 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1617 	if (err)
1618 		goto out1;
1619 
1620 	/* if the mount is moved, it should no longer be expire
1621 	 * automatically */
1622 	list_del_init(&old_path.mnt->mnt_expire);
1623 out1:
1624 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1625 out:
1626 	up_write(&namespace_sem);
1627 	if (!err)
1628 		path_put(&parent_path);
1629 	path_put(&old_path);
1630 	return err;
1631 }
1632 
1633 /*
1634  * create a new mount for userspace and request it to be added into the
1635  * namespace's tree
1636  */
1637 static int do_new_mount(struct path *path, char *type, int flags,
1638 			int mnt_flags, char *name, void *data)
1639 {
1640 	struct vfsmount *mnt;
1641 
1642 	if (!type || !memchr(type, 0, PAGE_SIZE))
1643 		return -EINVAL;
1644 
1645 	/* we need capabilities... */
1646 	if (!capable(CAP_SYS_ADMIN))
1647 		return -EPERM;
1648 
1649 	lock_kernel();
1650 	mnt = do_kern_mount(type, flags, name, data);
1651 	unlock_kernel();
1652 	if (IS_ERR(mnt))
1653 		return PTR_ERR(mnt);
1654 
1655 	return do_add_mount(mnt, path, mnt_flags, NULL);
1656 }
1657 
1658 /*
1659  * add a mount into a namespace's mount tree
1660  * - provide the option of adding the new mount to an expiration list
1661  */
1662 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1663 		 int mnt_flags, struct list_head *fslist)
1664 {
1665 	int err;
1666 
1667 	down_write(&namespace_sem);
1668 	/* Something was mounted here while we slept */
1669 	while (d_mountpoint(path->dentry) &&
1670 	       follow_down(path))
1671 		;
1672 	err = -EINVAL;
1673 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1674 		goto unlock;
1675 
1676 	/* Refuse the same filesystem on the same mount point */
1677 	err = -EBUSY;
1678 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1679 	    path->mnt->mnt_root == path->dentry)
1680 		goto unlock;
1681 
1682 	err = -EINVAL;
1683 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1684 		goto unlock;
1685 
1686 	newmnt->mnt_flags = mnt_flags;
1687 	if ((err = graft_tree(newmnt, path)))
1688 		goto unlock;
1689 
1690 	if (fslist) /* add to the specified expiration list */
1691 		list_add_tail(&newmnt->mnt_expire, fslist);
1692 
1693 	up_write(&namespace_sem);
1694 	return 0;
1695 
1696 unlock:
1697 	up_write(&namespace_sem);
1698 	mntput(newmnt);
1699 	return err;
1700 }
1701 
1702 EXPORT_SYMBOL_GPL(do_add_mount);
1703 
1704 /*
1705  * process a list of expirable mountpoints with the intent of discarding any
1706  * mountpoints that aren't in use and haven't been touched since last we came
1707  * here
1708  */
1709 void mark_mounts_for_expiry(struct list_head *mounts)
1710 {
1711 	struct vfsmount *mnt, *next;
1712 	LIST_HEAD(graveyard);
1713 	LIST_HEAD(umounts);
1714 
1715 	if (list_empty(mounts))
1716 		return;
1717 
1718 	down_write(&namespace_sem);
1719 	spin_lock(&vfsmount_lock);
1720 
1721 	/* extract from the expiration list every vfsmount that matches the
1722 	 * following criteria:
1723 	 * - only referenced by its parent vfsmount
1724 	 * - still marked for expiry (marked on the last call here; marks are
1725 	 *   cleared by mntput())
1726 	 */
1727 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1728 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1729 			propagate_mount_busy(mnt, 1))
1730 			continue;
1731 		list_move(&mnt->mnt_expire, &graveyard);
1732 	}
1733 	while (!list_empty(&graveyard)) {
1734 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1735 		touch_mnt_namespace(mnt->mnt_ns);
1736 		umount_tree(mnt, 1, &umounts);
1737 	}
1738 	spin_unlock(&vfsmount_lock);
1739 	up_write(&namespace_sem);
1740 
1741 	release_mounts(&umounts);
1742 }
1743 
1744 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1745 
1746 /*
1747  * Ripoff of 'select_parent()'
1748  *
1749  * search the list of submounts for a given mountpoint, and move any
1750  * shrinkable submounts to the 'graveyard' list.
1751  */
1752 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1753 {
1754 	struct vfsmount *this_parent = parent;
1755 	struct list_head *next;
1756 	int found = 0;
1757 
1758 repeat:
1759 	next = this_parent->mnt_mounts.next;
1760 resume:
1761 	while (next != &this_parent->mnt_mounts) {
1762 		struct list_head *tmp = next;
1763 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1764 
1765 		next = tmp->next;
1766 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1767 			continue;
1768 		/*
1769 		 * Descend a level if the d_mounts list is non-empty.
1770 		 */
1771 		if (!list_empty(&mnt->mnt_mounts)) {
1772 			this_parent = mnt;
1773 			goto repeat;
1774 		}
1775 
1776 		if (!propagate_mount_busy(mnt, 1)) {
1777 			list_move_tail(&mnt->mnt_expire, graveyard);
1778 			found++;
1779 		}
1780 	}
1781 	/*
1782 	 * All done at this level ... ascend and resume the search
1783 	 */
1784 	if (this_parent != parent) {
1785 		next = this_parent->mnt_child.next;
1786 		this_parent = this_parent->mnt_parent;
1787 		goto resume;
1788 	}
1789 	return found;
1790 }
1791 
1792 /*
1793  * process a list of expirable mountpoints with the intent of discarding any
1794  * submounts of a specific parent mountpoint
1795  */
1796 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1797 {
1798 	LIST_HEAD(graveyard);
1799 	struct vfsmount *m;
1800 
1801 	/* extract submounts of 'mountpoint' from the expiration list */
1802 	while (select_submounts(mnt, &graveyard)) {
1803 		while (!list_empty(&graveyard)) {
1804 			m = list_first_entry(&graveyard, struct vfsmount,
1805 						mnt_expire);
1806 			touch_mnt_namespace(m->mnt_ns);
1807 			umount_tree(m, 1, umounts);
1808 		}
1809 	}
1810 }
1811 
1812 /*
1813  * Some copy_from_user() implementations do not return the exact number of
1814  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1815  * Note that this function differs from copy_from_user() in that it will oops
1816  * on bad values of `to', rather than returning a short copy.
1817  */
1818 static long exact_copy_from_user(void *to, const void __user * from,
1819 				 unsigned long n)
1820 {
1821 	char *t = to;
1822 	const char __user *f = from;
1823 	char c;
1824 
1825 	if (!access_ok(VERIFY_READ, from, n))
1826 		return n;
1827 
1828 	while (n) {
1829 		if (__get_user(c, f)) {
1830 			memset(t, 0, n);
1831 			break;
1832 		}
1833 		*t++ = c;
1834 		f++;
1835 		n--;
1836 	}
1837 	return n;
1838 }
1839 
1840 int copy_mount_options(const void __user * data, unsigned long *where)
1841 {
1842 	int i;
1843 	unsigned long page;
1844 	unsigned long size;
1845 
1846 	*where = 0;
1847 	if (!data)
1848 		return 0;
1849 
1850 	if (!(page = __get_free_page(GFP_KERNEL)))
1851 		return -ENOMEM;
1852 
1853 	/* We only care that *some* data at the address the user
1854 	 * gave us is valid.  Just in case, we'll zero
1855 	 * the remainder of the page.
1856 	 */
1857 	/* copy_from_user cannot cross TASK_SIZE ! */
1858 	size = TASK_SIZE - (unsigned long)data;
1859 	if (size > PAGE_SIZE)
1860 		size = PAGE_SIZE;
1861 
1862 	i = size - exact_copy_from_user((void *)page, data, size);
1863 	if (!i) {
1864 		free_page(page);
1865 		return -EFAULT;
1866 	}
1867 	if (i != PAGE_SIZE)
1868 		memset((char *)page + i, 0, PAGE_SIZE - i);
1869 	*where = page;
1870 	return 0;
1871 }
1872 
1873 /*
1874  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1875  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1876  *
1877  * data is a (void *) that can point to any structure up to
1878  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1879  * information (or be NULL).
1880  *
1881  * Pre-0.97 versions of mount() didn't have a flags word.
1882  * When the flags word was introduced its top half was required
1883  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1884  * Therefore, if this magic number is present, it carries no information
1885  * and must be discarded.
1886  */
1887 long do_mount(char *dev_name, char *dir_name, char *type_page,
1888 		  unsigned long flags, void *data_page)
1889 {
1890 	struct path path;
1891 	int retval = 0;
1892 	int mnt_flags = 0;
1893 
1894 	/* Discard magic */
1895 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1896 		flags &= ~MS_MGC_MSK;
1897 
1898 	/* Basic sanity checks */
1899 
1900 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1901 		return -EINVAL;
1902 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1903 		return -EINVAL;
1904 
1905 	if (data_page)
1906 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1907 
1908 	/* Default to relatime unless overriden */
1909 	if (!(flags & MS_NOATIME))
1910 		mnt_flags |= MNT_RELATIME;
1911 
1912 	/* Separate the per-mountpoint flags */
1913 	if (flags & MS_NOSUID)
1914 		mnt_flags |= MNT_NOSUID;
1915 	if (flags & MS_NODEV)
1916 		mnt_flags |= MNT_NODEV;
1917 	if (flags & MS_NOEXEC)
1918 		mnt_flags |= MNT_NOEXEC;
1919 	if (flags & MS_NOATIME)
1920 		mnt_flags |= MNT_NOATIME;
1921 	if (flags & MS_NODIRATIME)
1922 		mnt_flags |= MNT_NODIRATIME;
1923 	if (flags & MS_STRICTATIME)
1924 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1925 	if (flags & MS_RDONLY)
1926 		mnt_flags |= MNT_READONLY;
1927 
1928 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1929 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1930 		   MS_STRICTATIME);
1931 
1932 	/* ... and get the mountpoint */
1933 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1934 	if (retval)
1935 		return retval;
1936 
1937 	retval = security_sb_mount(dev_name, &path,
1938 				   type_page, flags, data_page);
1939 	if (retval)
1940 		goto dput_out;
1941 
1942 	if (flags & MS_REMOUNT)
1943 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1944 				    data_page);
1945 	else if (flags & MS_BIND)
1946 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1947 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1948 		retval = do_change_type(&path, flags);
1949 	else if (flags & MS_MOVE)
1950 		retval = do_move_mount(&path, dev_name);
1951 	else
1952 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
1953 				      dev_name, data_page);
1954 dput_out:
1955 	path_put(&path);
1956 	return retval;
1957 }
1958 
1959 static struct mnt_namespace *alloc_mnt_ns(void)
1960 {
1961 	struct mnt_namespace *new_ns;
1962 
1963 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1964 	if (!new_ns)
1965 		return ERR_PTR(-ENOMEM);
1966 	atomic_set(&new_ns->count, 1);
1967 	new_ns->root = NULL;
1968 	INIT_LIST_HEAD(&new_ns->list);
1969 	init_waitqueue_head(&new_ns->poll);
1970 	new_ns->event = 0;
1971 	return new_ns;
1972 }
1973 
1974 /*
1975  * Allocate a new namespace structure and populate it with contents
1976  * copied from the namespace of the passed in task structure.
1977  */
1978 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1979 		struct fs_struct *fs)
1980 {
1981 	struct mnt_namespace *new_ns;
1982 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1983 	struct vfsmount *p, *q;
1984 
1985 	new_ns = alloc_mnt_ns();
1986 	if (IS_ERR(new_ns))
1987 		return new_ns;
1988 
1989 	down_write(&namespace_sem);
1990 	/* First pass: copy the tree topology */
1991 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1992 					CL_COPY_ALL | CL_EXPIRE);
1993 	if (!new_ns->root) {
1994 		up_write(&namespace_sem);
1995 		kfree(new_ns);
1996 		return ERR_PTR(-ENOMEM);
1997 	}
1998 	spin_lock(&vfsmount_lock);
1999 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2000 	spin_unlock(&vfsmount_lock);
2001 
2002 	/*
2003 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2004 	 * as belonging to new namespace.  We have already acquired a private
2005 	 * fs_struct, so tsk->fs->lock is not needed.
2006 	 */
2007 	p = mnt_ns->root;
2008 	q = new_ns->root;
2009 	while (p) {
2010 		q->mnt_ns = new_ns;
2011 		if (fs) {
2012 			if (p == fs->root.mnt) {
2013 				rootmnt = p;
2014 				fs->root.mnt = mntget(q);
2015 			}
2016 			if (p == fs->pwd.mnt) {
2017 				pwdmnt = p;
2018 				fs->pwd.mnt = mntget(q);
2019 			}
2020 		}
2021 		p = next_mnt(p, mnt_ns->root);
2022 		q = next_mnt(q, new_ns->root);
2023 	}
2024 	up_write(&namespace_sem);
2025 
2026 	if (rootmnt)
2027 		mntput(rootmnt);
2028 	if (pwdmnt)
2029 		mntput(pwdmnt);
2030 
2031 	return new_ns;
2032 }
2033 
2034 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2035 		struct fs_struct *new_fs)
2036 {
2037 	struct mnt_namespace *new_ns;
2038 
2039 	BUG_ON(!ns);
2040 	get_mnt_ns(ns);
2041 
2042 	if (!(flags & CLONE_NEWNS))
2043 		return ns;
2044 
2045 	new_ns = dup_mnt_ns(ns, new_fs);
2046 
2047 	put_mnt_ns(ns);
2048 	return new_ns;
2049 }
2050 
2051 /**
2052  * create_mnt_ns - creates a private namespace and adds a root filesystem
2053  * @mnt: pointer to the new root filesystem mountpoint
2054  */
2055 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2056 {
2057 	struct mnt_namespace *new_ns;
2058 
2059 	new_ns = alloc_mnt_ns();
2060 	if (!IS_ERR(new_ns)) {
2061 		mnt->mnt_ns = new_ns;
2062 		new_ns->root = mnt;
2063 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2064 	}
2065 	return new_ns;
2066 }
2067 EXPORT_SYMBOL(create_mnt_ns);
2068 
2069 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2070 		char __user *, type, unsigned long, flags, void __user *, data)
2071 {
2072 	int retval;
2073 	unsigned long data_page;
2074 	unsigned long type_page;
2075 	unsigned long dev_page;
2076 	char *dir_page;
2077 
2078 	retval = copy_mount_options(type, &type_page);
2079 	if (retval < 0)
2080 		return retval;
2081 
2082 	dir_page = getname(dir_name);
2083 	retval = PTR_ERR(dir_page);
2084 	if (IS_ERR(dir_page))
2085 		goto out1;
2086 
2087 	retval = copy_mount_options(dev_name, &dev_page);
2088 	if (retval < 0)
2089 		goto out2;
2090 
2091 	retval = copy_mount_options(data, &data_page);
2092 	if (retval < 0)
2093 		goto out3;
2094 
2095 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2096 			  flags, (void *)data_page);
2097 	free_page(data_page);
2098 
2099 out3:
2100 	free_page(dev_page);
2101 out2:
2102 	putname(dir_page);
2103 out1:
2104 	free_page(type_page);
2105 	return retval;
2106 }
2107 
2108 /*
2109  * pivot_root Semantics:
2110  * Moves the root file system of the current process to the directory put_old,
2111  * makes new_root as the new root file system of the current process, and sets
2112  * root/cwd of all processes which had them on the current root to new_root.
2113  *
2114  * Restrictions:
2115  * The new_root and put_old must be directories, and  must not be on the
2116  * same file  system as the current process root. The put_old  must  be
2117  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2118  * pointed to by put_old must yield the same directory as new_root. No other
2119  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2120  *
2121  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2122  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2123  * in this situation.
2124  *
2125  * Notes:
2126  *  - we don't move root/cwd if they are not at the root (reason: if something
2127  *    cared enough to change them, it's probably wrong to force them elsewhere)
2128  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2129  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2130  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2131  *    first.
2132  */
2133 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2134 		const char __user *, put_old)
2135 {
2136 	struct vfsmount *tmp;
2137 	struct path new, old, parent_path, root_parent, root;
2138 	int error;
2139 
2140 	if (!capable(CAP_SYS_ADMIN))
2141 		return -EPERM;
2142 
2143 	error = user_path_dir(new_root, &new);
2144 	if (error)
2145 		goto out0;
2146 	error = -EINVAL;
2147 	if (!check_mnt(new.mnt))
2148 		goto out1;
2149 
2150 	error = user_path_dir(put_old, &old);
2151 	if (error)
2152 		goto out1;
2153 
2154 	error = security_sb_pivotroot(&old, &new);
2155 	if (error) {
2156 		path_put(&old);
2157 		goto out1;
2158 	}
2159 
2160 	read_lock(&current->fs->lock);
2161 	root = current->fs->root;
2162 	path_get(&current->fs->root);
2163 	read_unlock(&current->fs->lock);
2164 	down_write(&namespace_sem);
2165 	mutex_lock(&old.dentry->d_inode->i_mutex);
2166 	error = -EINVAL;
2167 	if (IS_MNT_SHARED(old.mnt) ||
2168 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2169 		IS_MNT_SHARED(root.mnt->mnt_parent))
2170 		goto out2;
2171 	if (!check_mnt(root.mnt))
2172 		goto out2;
2173 	error = -ENOENT;
2174 	if (IS_DEADDIR(new.dentry->d_inode))
2175 		goto out2;
2176 	if (d_unlinked(new.dentry))
2177 		goto out2;
2178 	if (d_unlinked(old.dentry))
2179 		goto out2;
2180 	error = -EBUSY;
2181 	if (new.mnt == root.mnt ||
2182 	    old.mnt == root.mnt)
2183 		goto out2; /* loop, on the same file system  */
2184 	error = -EINVAL;
2185 	if (root.mnt->mnt_root != root.dentry)
2186 		goto out2; /* not a mountpoint */
2187 	if (root.mnt->mnt_parent == root.mnt)
2188 		goto out2; /* not attached */
2189 	if (new.mnt->mnt_root != new.dentry)
2190 		goto out2; /* not a mountpoint */
2191 	if (new.mnt->mnt_parent == new.mnt)
2192 		goto out2; /* not attached */
2193 	/* make sure we can reach put_old from new_root */
2194 	tmp = old.mnt;
2195 	spin_lock(&vfsmount_lock);
2196 	if (tmp != new.mnt) {
2197 		for (;;) {
2198 			if (tmp->mnt_parent == tmp)
2199 				goto out3; /* already mounted on put_old */
2200 			if (tmp->mnt_parent == new.mnt)
2201 				break;
2202 			tmp = tmp->mnt_parent;
2203 		}
2204 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2205 			goto out3;
2206 	} else if (!is_subdir(old.dentry, new.dentry))
2207 		goto out3;
2208 	detach_mnt(new.mnt, &parent_path);
2209 	detach_mnt(root.mnt, &root_parent);
2210 	/* mount old root on put_old */
2211 	attach_mnt(root.mnt, &old);
2212 	/* mount new_root on / */
2213 	attach_mnt(new.mnt, &root_parent);
2214 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2215 	spin_unlock(&vfsmount_lock);
2216 	chroot_fs_refs(&root, &new);
2217 	security_sb_post_pivotroot(&root, &new);
2218 	error = 0;
2219 	path_put(&root_parent);
2220 	path_put(&parent_path);
2221 out2:
2222 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2223 	up_write(&namespace_sem);
2224 	path_put(&root);
2225 	path_put(&old);
2226 out1:
2227 	path_put(&new);
2228 out0:
2229 	return error;
2230 out3:
2231 	spin_unlock(&vfsmount_lock);
2232 	goto out2;
2233 }
2234 
2235 static void __init init_mount_tree(void)
2236 {
2237 	struct vfsmount *mnt;
2238 	struct mnt_namespace *ns;
2239 	struct path root;
2240 
2241 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2242 	if (IS_ERR(mnt))
2243 		panic("Can't create rootfs");
2244 	ns = create_mnt_ns(mnt);
2245 	if (IS_ERR(ns))
2246 		panic("Can't allocate initial namespace");
2247 
2248 	init_task.nsproxy->mnt_ns = ns;
2249 	get_mnt_ns(ns);
2250 
2251 	root.mnt = ns->root;
2252 	root.dentry = ns->root->mnt_root;
2253 
2254 	set_fs_pwd(current->fs, &root);
2255 	set_fs_root(current->fs, &root);
2256 }
2257 
2258 void __init mnt_init(void)
2259 {
2260 	unsigned u;
2261 	int err;
2262 
2263 	init_rwsem(&namespace_sem);
2264 
2265 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2266 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2267 
2268 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2269 
2270 	if (!mount_hashtable)
2271 		panic("Failed to allocate mount hash table\n");
2272 
2273 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2274 
2275 	for (u = 0; u < HASH_SIZE; u++)
2276 		INIT_LIST_HEAD(&mount_hashtable[u]);
2277 
2278 	err = sysfs_init();
2279 	if (err)
2280 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2281 			__func__, err);
2282 	fs_kobj = kobject_create_and_add("fs", NULL);
2283 	if (!fs_kobj)
2284 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2285 	init_rootfs();
2286 	init_mount_tree();
2287 }
2288 
2289 void put_mnt_ns(struct mnt_namespace *ns)
2290 {
2291 	struct vfsmount *root;
2292 	LIST_HEAD(umount_list);
2293 
2294 	if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
2295 		return;
2296 	root = ns->root;
2297 	ns->root = NULL;
2298 	spin_unlock(&vfsmount_lock);
2299 	down_write(&namespace_sem);
2300 	spin_lock(&vfsmount_lock);
2301 	umount_tree(root, 0, &umount_list);
2302 	spin_unlock(&vfsmount_lock);
2303 	up_write(&namespace_sem);
2304 	release_mounts(&umount_list);
2305 	kfree(ns);
2306 }
2307 EXPORT_SYMBOL(put_mnt_ns);
2308