xref: /linux/fs/namespace.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 #include <uapi/linux/mount.h>
30 #include <linux/fs_context.h>
31 
32 #include "pnode.h"
33 #include "internal.h"
34 
35 /* Maximum number of mounts in a mount namespace */
36 unsigned int sysctl_mount_max __read_mostly = 100000;
37 
38 static unsigned int m_hash_mask __read_mostly;
39 static unsigned int m_hash_shift __read_mostly;
40 static unsigned int mp_hash_mask __read_mostly;
41 static unsigned int mp_hash_shift __read_mostly;
42 
43 static __initdata unsigned long mhash_entries;
44 static int __init set_mhash_entries(char *str)
45 {
46 	if (!str)
47 		return 0;
48 	mhash_entries = simple_strtoul(str, &str, 0);
49 	return 1;
50 }
51 __setup("mhash_entries=", set_mhash_entries);
52 
53 static __initdata unsigned long mphash_entries;
54 static int __init set_mphash_entries(char *str)
55 {
56 	if (!str)
57 		return 0;
58 	mphash_entries = simple_strtoul(str, &str, 0);
59 	return 1;
60 }
61 __setup("mphash_entries=", set_mphash_entries);
62 
63 static u64 event;
64 static DEFINE_IDA(mnt_id_ida);
65 static DEFINE_IDA(mnt_group_ida);
66 
67 static struct hlist_head *mount_hashtable __read_mostly;
68 static struct hlist_head *mountpoint_hashtable __read_mostly;
69 static struct kmem_cache *mnt_cache __read_mostly;
70 static DECLARE_RWSEM(namespace_sem);
71 
72 /* /sys/fs */
73 struct kobject *fs_kobj;
74 EXPORT_SYMBOL_GPL(fs_kobj);
75 
76 /*
77  * vfsmount lock may be taken for read to prevent changes to the
78  * vfsmount hash, ie. during mountpoint lookups or walking back
79  * up the tree.
80  *
81  * It should be taken for write in all cases where the vfsmount
82  * tree or hash is modified or when a vfsmount structure is modified.
83  */
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
85 
86 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
87 {
88 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
89 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
90 	tmp = tmp + (tmp >> m_hash_shift);
91 	return &mount_hashtable[tmp & m_hash_mask];
92 }
93 
94 static inline struct hlist_head *mp_hash(struct dentry *dentry)
95 {
96 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
97 	tmp = tmp + (tmp >> mp_hash_shift);
98 	return &mountpoint_hashtable[tmp & mp_hash_mask];
99 }
100 
101 static int mnt_alloc_id(struct mount *mnt)
102 {
103 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
104 
105 	if (res < 0)
106 		return res;
107 	mnt->mnt_id = res;
108 	return 0;
109 }
110 
111 static void mnt_free_id(struct mount *mnt)
112 {
113 	ida_free(&mnt_id_ida, mnt->mnt_id);
114 }
115 
116 /*
117  * Allocate a new peer group ID
118  */
119 static int mnt_alloc_group_id(struct mount *mnt)
120 {
121 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
122 
123 	if (res < 0)
124 		return res;
125 	mnt->mnt_group_id = res;
126 	return 0;
127 }
128 
129 /*
130  * Release a peer group ID
131  */
132 void mnt_release_group_id(struct mount *mnt)
133 {
134 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
135 	mnt->mnt_group_id = 0;
136 }
137 
138 /*
139  * vfsmount lock must be held for read
140  */
141 static inline void mnt_add_count(struct mount *mnt, int n)
142 {
143 #ifdef CONFIG_SMP
144 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
145 #else
146 	preempt_disable();
147 	mnt->mnt_count += n;
148 	preempt_enable();
149 #endif
150 }
151 
152 /*
153  * vfsmount lock must be held for write
154  */
155 unsigned int mnt_get_count(struct mount *mnt)
156 {
157 #ifdef CONFIG_SMP
158 	unsigned int count = 0;
159 	int cpu;
160 
161 	for_each_possible_cpu(cpu) {
162 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
163 	}
164 
165 	return count;
166 #else
167 	return mnt->mnt_count;
168 #endif
169 }
170 
171 static void drop_mountpoint(struct fs_pin *p)
172 {
173 	struct mount *m = container_of(p, struct mount, mnt_umount);
174 	dput(m->mnt_ex_mountpoint);
175 	pin_remove(p);
176 	mntput(&m->mnt);
177 }
178 
179 static struct mount *alloc_vfsmnt(const char *name)
180 {
181 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
182 	if (mnt) {
183 		int err;
184 
185 		err = mnt_alloc_id(mnt);
186 		if (err)
187 			goto out_free_cache;
188 
189 		if (name) {
190 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
191 			if (!mnt->mnt_devname)
192 				goto out_free_id;
193 		}
194 
195 #ifdef CONFIG_SMP
196 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
197 		if (!mnt->mnt_pcp)
198 			goto out_free_devname;
199 
200 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
201 #else
202 		mnt->mnt_count = 1;
203 		mnt->mnt_writers = 0;
204 #endif
205 
206 		INIT_HLIST_NODE(&mnt->mnt_hash);
207 		INIT_LIST_HEAD(&mnt->mnt_child);
208 		INIT_LIST_HEAD(&mnt->mnt_mounts);
209 		INIT_LIST_HEAD(&mnt->mnt_list);
210 		INIT_LIST_HEAD(&mnt->mnt_expire);
211 		INIT_LIST_HEAD(&mnt->mnt_share);
212 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
213 		INIT_LIST_HEAD(&mnt->mnt_slave);
214 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
215 		INIT_LIST_HEAD(&mnt->mnt_umounting);
216 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
217 	}
218 	return mnt;
219 
220 #ifdef CONFIG_SMP
221 out_free_devname:
222 	kfree_const(mnt->mnt_devname);
223 #endif
224 out_free_id:
225 	mnt_free_id(mnt);
226 out_free_cache:
227 	kmem_cache_free(mnt_cache, mnt);
228 	return NULL;
229 }
230 
231 /*
232  * Most r/o checks on a fs are for operations that take
233  * discrete amounts of time, like a write() or unlink().
234  * We must keep track of when those operations start
235  * (for permission checks) and when they end, so that
236  * we can determine when writes are able to occur to
237  * a filesystem.
238  */
239 /*
240  * __mnt_is_readonly: check whether a mount is read-only
241  * @mnt: the mount to check for its write status
242  *
243  * This shouldn't be used directly ouside of the VFS.
244  * It does not guarantee that the filesystem will stay
245  * r/w, just that it is right *now*.  This can not and
246  * should not be used in place of IS_RDONLY(inode).
247  * mnt_want/drop_write() will _keep_ the filesystem
248  * r/w.
249  */
250 bool __mnt_is_readonly(struct vfsmount *mnt)
251 {
252 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
253 }
254 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255 
256 static inline void mnt_inc_writers(struct mount *mnt)
257 {
258 #ifdef CONFIG_SMP
259 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
260 #else
261 	mnt->mnt_writers++;
262 #endif
263 }
264 
265 static inline void mnt_dec_writers(struct mount *mnt)
266 {
267 #ifdef CONFIG_SMP
268 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
269 #else
270 	mnt->mnt_writers--;
271 #endif
272 }
273 
274 static unsigned int mnt_get_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 	unsigned int count = 0;
278 	int cpu;
279 
280 	for_each_possible_cpu(cpu) {
281 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
282 	}
283 
284 	return count;
285 #else
286 	return mnt->mnt_writers;
287 #endif
288 }
289 
290 static int mnt_is_readonly(struct vfsmount *mnt)
291 {
292 	if (mnt->mnt_sb->s_readonly_remount)
293 		return 1;
294 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
295 	smp_rmb();
296 	return __mnt_is_readonly(mnt);
297 }
298 
299 /*
300  * Most r/o & frozen checks on a fs are for operations that take discrete
301  * amounts of time, like a write() or unlink().  We must keep track of when
302  * those operations start (for permission checks) and when they end, so that we
303  * can determine when writes are able to occur to a filesystem.
304  */
305 /**
306  * __mnt_want_write - get write access to a mount without freeze protection
307  * @m: the mount on which to take a write
308  *
309  * This tells the low-level filesystem that a write is about to be performed to
310  * it, and makes sure that writes are allowed (mnt it read-write) before
311  * returning success. This operation does not protect against filesystem being
312  * frozen. When the write operation is finished, __mnt_drop_write() must be
313  * called. This is effectively a refcount.
314  */
315 int __mnt_want_write(struct vfsmount *m)
316 {
317 	struct mount *mnt = real_mount(m);
318 	int ret = 0;
319 
320 	preempt_disable();
321 	mnt_inc_writers(mnt);
322 	/*
323 	 * The store to mnt_inc_writers must be visible before we pass
324 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
325 	 * incremented count after it has set MNT_WRITE_HOLD.
326 	 */
327 	smp_mb();
328 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
329 		cpu_relax();
330 	/*
331 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
332 	 * be set to match its requirements. So we must not load that until
333 	 * MNT_WRITE_HOLD is cleared.
334 	 */
335 	smp_rmb();
336 	if (mnt_is_readonly(m)) {
337 		mnt_dec_writers(mnt);
338 		ret = -EROFS;
339 	}
340 	preempt_enable();
341 
342 	return ret;
343 }
344 
345 /**
346  * mnt_want_write - get write access to a mount
347  * @m: the mount on which to take a write
348  *
349  * This tells the low-level filesystem that a write is about to be performed to
350  * it, and makes sure that writes are allowed (mount is read-write, filesystem
351  * is not frozen) before returning success.  When the write operation is
352  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
353  */
354 int mnt_want_write(struct vfsmount *m)
355 {
356 	int ret;
357 
358 	sb_start_write(m->mnt_sb);
359 	ret = __mnt_want_write(m);
360 	if (ret)
361 		sb_end_write(m->mnt_sb);
362 	return ret;
363 }
364 EXPORT_SYMBOL_GPL(mnt_want_write);
365 
366 /**
367  * mnt_clone_write - get write access to a mount
368  * @mnt: the mount on which to take a write
369  *
370  * This is effectively like mnt_want_write, except
371  * it must only be used to take an extra write reference
372  * on a mountpoint that we already know has a write reference
373  * on it. This allows some optimisation.
374  *
375  * After finished, mnt_drop_write must be called as usual to
376  * drop the reference.
377  */
378 int mnt_clone_write(struct vfsmount *mnt)
379 {
380 	/* superblock may be r/o */
381 	if (__mnt_is_readonly(mnt))
382 		return -EROFS;
383 	preempt_disable();
384 	mnt_inc_writers(real_mount(mnt));
385 	preempt_enable();
386 	return 0;
387 }
388 EXPORT_SYMBOL_GPL(mnt_clone_write);
389 
390 /**
391  * __mnt_want_write_file - get write access to a file's mount
392  * @file: the file who's mount on which to take a write
393  *
394  * This is like __mnt_want_write, but it takes a file and can
395  * do some optimisations if the file is open for write already
396  */
397 int __mnt_want_write_file(struct file *file)
398 {
399 	if (!(file->f_mode & FMODE_WRITER))
400 		return __mnt_want_write(file->f_path.mnt);
401 	else
402 		return mnt_clone_write(file->f_path.mnt);
403 }
404 
405 /**
406  * mnt_want_write_file - get write access to a file's mount
407  * @file: the file who's mount on which to take a write
408  *
409  * This is like mnt_want_write, but it takes a file and can
410  * do some optimisations if the file is open for write already
411  */
412 int mnt_want_write_file(struct file *file)
413 {
414 	int ret;
415 
416 	sb_start_write(file_inode(file)->i_sb);
417 	ret = __mnt_want_write_file(file);
418 	if (ret)
419 		sb_end_write(file_inode(file)->i_sb);
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(mnt_want_write_file);
423 
424 /**
425  * __mnt_drop_write - give up write access to a mount
426  * @mnt: the mount on which to give up write access
427  *
428  * Tells the low-level filesystem that we are done
429  * performing writes to it.  Must be matched with
430  * __mnt_want_write() call above.
431  */
432 void __mnt_drop_write(struct vfsmount *mnt)
433 {
434 	preempt_disable();
435 	mnt_dec_writers(real_mount(mnt));
436 	preempt_enable();
437 }
438 
439 /**
440  * mnt_drop_write - give up write access to a mount
441  * @mnt: the mount on which to give up write access
442  *
443  * Tells the low-level filesystem that we are done performing writes to it and
444  * also allows filesystem to be frozen again.  Must be matched with
445  * mnt_want_write() call above.
446  */
447 void mnt_drop_write(struct vfsmount *mnt)
448 {
449 	__mnt_drop_write(mnt);
450 	sb_end_write(mnt->mnt_sb);
451 }
452 EXPORT_SYMBOL_GPL(mnt_drop_write);
453 
454 void __mnt_drop_write_file(struct file *file)
455 {
456 	__mnt_drop_write(file->f_path.mnt);
457 }
458 
459 void mnt_drop_write_file(struct file *file)
460 {
461 	__mnt_drop_write_file(file);
462 	sb_end_write(file_inode(file)->i_sb);
463 }
464 EXPORT_SYMBOL(mnt_drop_write_file);
465 
466 static int mnt_make_readonly(struct mount *mnt)
467 {
468 	int ret = 0;
469 
470 	lock_mount_hash();
471 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
472 	/*
473 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
474 	 * should be visible before we do.
475 	 */
476 	smp_mb();
477 
478 	/*
479 	 * With writers on hold, if this value is zero, then there are
480 	 * definitely no active writers (although held writers may subsequently
481 	 * increment the count, they'll have to wait, and decrement it after
482 	 * seeing MNT_READONLY).
483 	 *
484 	 * It is OK to have counter incremented on one CPU and decremented on
485 	 * another: the sum will add up correctly. The danger would be when we
486 	 * sum up each counter, if we read a counter before it is incremented,
487 	 * but then read another CPU's count which it has been subsequently
488 	 * decremented from -- we would see more decrements than we should.
489 	 * MNT_WRITE_HOLD protects against this scenario, because
490 	 * mnt_want_write first increments count, then smp_mb, then spins on
491 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
492 	 * we're counting up here.
493 	 */
494 	if (mnt_get_writers(mnt) > 0)
495 		ret = -EBUSY;
496 	else
497 		mnt->mnt.mnt_flags |= MNT_READONLY;
498 	/*
499 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
500 	 * that become unheld will see MNT_READONLY.
501 	 */
502 	smp_wmb();
503 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
504 	unlock_mount_hash();
505 	return ret;
506 }
507 
508 static int __mnt_unmake_readonly(struct mount *mnt)
509 {
510 	lock_mount_hash();
511 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
512 	unlock_mount_hash();
513 	return 0;
514 }
515 
516 int sb_prepare_remount_readonly(struct super_block *sb)
517 {
518 	struct mount *mnt;
519 	int err = 0;
520 
521 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
522 	if (atomic_long_read(&sb->s_remove_count))
523 		return -EBUSY;
524 
525 	lock_mount_hash();
526 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
527 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
528 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
529 			smp_mb();
530 			if (mnt_get_writers(mnt) > 0) {
531 				err = -EBUSY;
532 				break;
533 			}
534 		}
535 	}
536 	if (!err && atomic_long_read(&sb->s_remove_count))
537 		err = -EBUSY;
538 
539 	if (!err) {
540 		sb->s_readonly_remount = 1;
541 		smp_wmb();
542 	}
543 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
545 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
546 	}
547 	unlock_mount_hash();
548 
549 	return err;
550 }
551 
552 static void free_vfsmnt(struct mount *mnt)
553 {
554 	kfree_const(mnt->mnt_devname);
555 #ifdef CONFIG_SMP
556 	free_percpu(mnt->mnt_pcp);
557 #endif
558 	kmem_cache_free(mnt_cache, mnt);
559 }
560 
561 static void delayed_free_vfsmnt(struct rcu_head *head)
562 {
563 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
564 }
565 
566 /* call under rcu_read_lock */
567 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
568 {
569 	struct mount *mnt;
570 	if (read_seqretry(&mount_lock, seq))
571 		return 1;
572 	if (bastard == NULL)
573 		return 0;
574 	mnt = real_mount(bastard);
575 	mnt_add_count(mnt, 1);
576 	smp_mb();			// see mntput_no_expire()
577 	if (likely(!read_seqretry(&mount_lock, seq)))
578 		return 0;
579 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
580 		mnt_add_count(mnt, -1);
581 		return 1;
582 	}
583 	lock_mount_hash();
584 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
585 		mnt_add_count(mnt, -1);
586 		unlock_mount_hash();
587 		return 1;
588 	}
589 	unlock_mount_hash();
590 	/* caller will mntput() */
591 	return -1;
592 }
593 
594 /* call under rcu_read_lock */
595 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596 {
597 	int res = __legitimize_mnt(bastard, seq);
598 	if (likely(!res))
599 		return true;
600 	if (unlikely(res < 0)) {
601 		rcu_read_unlock();
602 		mntput(bastard);
603 		rcu_read_lock();
604 	}
605 	return false;
606 }
607 
608 /*
609  * find the first mount at @dentry on vfsmount @mnt.
610  * call under rcu_read_lock()
611  */
612 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
613 {
614 	struct hlist_head *head = m_hash(mnt, dentry);
615 	struct mount *p;
616 
617 	hlist_for_each_entry_rcu(p, head, mnt_hash)
618 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
619 			return p;
620 	return NULL;
621 }
622 
623 /*
624  * lookup_mnt - Return the first child mount mounted at path
625  *
626  * "First" means first mounted chronologically.  If you create the
627  * following mounts:
628  *
629  * mount /dev/sda1 /mnt
630  * mount /dev/sda2 /mnt
631  * mount /dev/sda3 /mnt
632  *
633  * Then lookup_mnt() on the base /mnt dentry in the root mount will
634  * return successively the root dentry and vfsmount of /dev/sda1, then
635  * /dev/sda2, then /dev/sda3, then NULL.
636  *
637  * lookup_mnt takes a reference to the found vfsmount.
638  */
639 struct vfsmount *lookup_mnt(const struct path *path)
640 {
641 	struct mount *child_mnt;
642 	struct vfsmount *m;
643 	unsigned seq;
644 
645 	rcu_read_lock();
646 	do {
647 		seq = read_seqbegin(&mount_lock);
648 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
649 		m = child_mnt ? &child_mnt->mnt : NULL;
650 	} while (!legitimize_mnt(m, seq));
651 	rcu_read_unlock();
652 	return m;
653 }
654 
655 /*
656  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
657  *                         current mount namespace.
658  *
659  * The common case is dentries are not mountpoints at all and that
660  * test is handled inline.  For the slow case when we are actually
661  * dealing with a mountpoint of some kind, walk through all of the
662  * mounts in the current mount namespace and test to see if the dentry
663  * is a mountpoint.
664  *
665  * The mount_hashtable is not usable in the context because we
666  * need to identify all mounts that may be in the current mount
667  * namespace not just a mount that happens to have some specified
668  * parent mount.
669  */
670 bool __is_local_mountpoint(struct dentry *dentry)
671 {
672 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
673 	struct mount *mnt;
674 	bool is_covered = false;
675 
676 	if (!d_mountpoint(dentry))
677 		goto out;
678 
679 	down_read(&namespace_sem);
680 	list_for_each_entry(mnt, &ns->list, mnt_list) {
681 		is_covered = (mnt->mnt_mountpoint == dentry);
682 		if (is_covered)
683 			break;
684 	}
685 	up_read(&namespace_sem);
686 out:
687 	return is_covered;
688 }
689 
690 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
691 {
692 	struct hlist_head *chain = mp_hash(dentry);
693 	struct mountpoint *mp;
694 
695 	hlist_for_each_entry(mp, chain, m_hash) {
696 		if (mp->m_dentry == dentry) {
697 			mp->m_count++;
698 			return mp;
699 		}
700 	}
701 	return NULL;
702 }
703 
704 static struct mountpoint *get_mountpoint(struct dentry *dentry)
705 {
706 	struct mountpoint *mp, *new = NULL;
707 	int ret;
708 
709 	if (d_mountpoint(dentry)) {
710 		/* might be worth a WARN_ON() */
711 		if (d_unlinked(dentry))
712 			return ERR_PTR(-ENOENT);
713 mountpoint:
714 		read_seqlock_excl(&mount_lock);
715 		mp = lookup_mountpoint(dentry);
716 		read_sequnlock_excl(&mount_lock);
717 		if (mp)
718 			goto done;
719 	}
720 
721 	if (!new)
722 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
723 	if (!new)
724 		return ERR_PTR(-ENOMEM);
725 
726 
727 	/* Exactly one processes may set d_mounted */
728 	ret = d_set_mounted(dentry);
729 
730 	/* Someone else set d_mounted? */
731 	if (ret == -EBUSY)
732 		goto mountpoint;
733 
734 	/* The dentry is not available as a mountpoint? */
735 	mp = ERR_PTR(ret);
736 	if (ret)
737 		goto done;
738 
739 	/* Add the new mountpoint to the hash table */
740 	read_seqlock_excl(&mount_lock);
741 	new->m_dentry = dentry;
742 	new->m_count = 1;
743 	hlist_add_head(&new->m_hash, mp_hash(dentry));
744 	INIT_HLIST_HEAD(&new->m_list);
745 	read_sequnlock_excl(&mount_lock);
746 
747 	mp = new;
748 	new = NULL;
749 done:
750 	kfree(new);
751 	return mp;
752 }
753 
754 static void put_mountpoint(struct mountpoint *mp)
755 {
756 	if (!--mp->m_count) {
757 		struct dentry *dentry = mp->m_dentry;
758 		BUG_ON(!hlist_empty(&mp->m_list));
759 		spin_lock(&dentry->d_lock);
760 		dentry->d_flags &= ~DCACHE_MOUNTED;
761 		spin_unlock(&dentry->d_lock);
762 		hlist_del(&mp->m_hash);
763 		kfree(mp);
764 	}
765 }
766 
767 static inline int check_mnt(struct mount *mnt)
768 {
769 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
770 }
771 
772 /*
773  * vfsmount lock must be held for write
774  */
775 static void touch_mnt_namespace(struct mnt_namespace *ns)
776 {
777 	if (ns) {
778 		ns->event = ++event;
779 		wake_up_interruptible(&ns->poll);
780 	}
781 }
782 
783 /*
784  * vfsmount lock must be held for write
785  */
786 static void __touch_mnt_namespace(struct mnt_namespace *ns)
787 {
788 	if (ns && ns->event != event) {
789 		ns->event = event;
790 		wake_up_interruptible(&ns->poll);
791 	}
792 }
793 
794 /*
795  * vfsmount lock must be held for write
796  */
797 static void unhash_mnt(struct mount *mnt)
798 {
799 	mnt->mnt_parent = mnt;
800 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
801 	list_del_init(&mnt->mnt_child);
802 	hlist_del_init_rcu(&mnt->mnt_hash);
803 	hlist_del_init(&mnt->mnt_mp_list);
804 	put_mountpoint(mnt->mnt_mp);
805 	mnt->mnt_mp = NULL;
806 }
807 
808 /*
809  * vfsmount lock must be held for write
810  */
811 static void detach_mnt(struct mount *mnt, struct path *old_path)
812 {
813 	old_path->dentry = mnt->mnt_mountpoint;
814 	old_path->mnt = &mnt->mnt_parent->mnt;
815 	unhash_mnt(mnt);
816 }
817 
818 /*
819  * vfsmount lock must be held for write
820  */
821 static void umount_mnt(struct mount *mnt)
822 {
823 	/* old mountpoint will be dropped when we can do that */
824 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
825 	unhash_mnt(mnt);
826 }
827 
828 /*
829  * vfsmount lock must be held for write
830  */
831 void mnt_set_mountpoint(struct mount *mnt,
832 			struct mountpoint *mp,
833 			struct mount *child_mnt)
834 {
835 	mp->m_count++;
836 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
837 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
838 	child_mnt->mnt_parent = mnt;
839 	child_mnt->mnt_mp = mp;
840 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
841 }
842 
843 static void __attach_mnt(struct mount *mnt, struct mount *parent)
844 {
845 	hlist_add_head_rcu(&mnt->mnt_hash,
846 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
847 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
848 }
849 
850 /*
851  * vfsmount lock must be held for write
852  */
853 static void attach_mnt(struct mount *mnt,
854 			struct mount *parent,
855 			struct mountpoint *mp)
856 {
857 	mnt_set_mountpoint(parent, mp, mnt);
858 	__attach_mnt(mnt, parent);
859 }
860 
861 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
862 {
863 	struct mountpoint *old_mp = mnt->mnt_mp;
864 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
865 	struct mount *old_parent = mnt->mnt_parent;
866 
867 	list_del_init(&mnt->mnt_child);
868 	hlist_del_init(&mnt->mnt_mp_list);
869 	hlist_del_init_rcu(&mnt->mnt_hash);
870 
871 	attach_mnt(mnt, parent, mp);
872 
873 	put_mountpoint(old_mp);
874 
875 	/*
876 	 * Safely avoid even the suggestion this code might sleep or
877 	 * lock the mount hash by taking advantage of the knowledge that
878 	 * mnt_change_mountpoint will not release the final reference
879 	 * to a mountpoint.
880 	 *
881 	 * During mounting, the mount passed in as the parent mount will
882 	 * continue to use the old mountpoint and during unmounting, the
883 	 * old mountpoint will continue to exist until namespace_unlock,
884 	 * which happens well after mnt_change_mountpoint.
885 	 */
886 	spin_lock(&old_mountpoint->d_lock);
887 	old_mountpoint->d_lockref.count--;
888 	spin_unlock(&old_mountpoint->d_lock);
889 
890 	mnt_add_count(old_parent, -1);
891 }
892 
893 /*
894  * vfsmount lock must be held for write
895  */
896 static void commit_tree(struct mount *mnt)
897 {
898 	struct mount *parent = mnt->mnt_parent;
899 	struct mount *m;
900 	LIST_HEAD(head);
901 	struct mnt_namespace *n = parent->mnt_ns;
902 
903 	BUG_ON(parent == mnt);
904 
905 	list_add_tail(&head, &mnt->mnt_list);
906 	list_for_each_entry(m, &head, mnt_list)
907 		m->mnt_ns = n;
908 
909 	list_splice(&head, n->list.prev);
910 
911 	n->mounts += n->pending_mounts;
912 	n->pending_mounts = 0;
913 
914 	__attach_mnt(mnt, parent);
915 	touch_mnt_namespace(n);
916 }
917 
918 static struct mount *next_mnt(struct mount *p, struct mount *root)
919 {
920 	struct list_head *next = p->mnt_mounts.next;
921 	if (next == &p->mnt_mounts) {
922 		while (1) {
923 			if (p == root)
924 				return NULL;
925 			next = p->mnt_child.next;
926 			if (next != &p->mnt_parent->mnt_mounts)
927 				break;
928 			p = p->mnt_parent;
929 		}
930 	}
931 	return list_entry(next, struct mount, mnt_child);
932 }
933 
934 static struct mount *skip_mnt_tree(struct mount *p)
935 {
936 	struct list_head *prev = p->mnt_mounts.prev;
937 	while (prev != &p->mnt_mounts) {
938 		p = list_entry(prev, struct mount, mnt_child);
939 		prev = p->mnt_mounts.prev;
940 	}
941 	return p;
942 }
943 
944 /**
945  * vfs_create_mount - Create a mount for a configured superblock
946  * @fc: The configuration context with the superblock attached
947  *
948  * Create a mount to an already configured superblock.  If necessary, the
949  * caller should invoke vfs_get_tree() before calling this.
950  *
951  * Note that this does not attach the mount to anything.
952  */
953 struct vfsmount *vfs_create_mount(struct fs_context *fc)
954 {
955 	struct mount *mnt;
956 
957 	if (!fc->root)
958 		return ERR_PTR(-EINVAL);
959 
960 	mnt = alloc_vfsmnt(fc->source ?: "none");
961 	if (!mnt)
962 		return ERR_PTR(-ENOMEM);
963 
964 	if (fc->sb_flags & SB_KERNMOUNT)
965 		mnt->mnt.mnt_flags = MNT_INTERNAL;
966 
967 	atomic_inc(&fc->root->d_sb->s_active);
968 	mnt->mnt.mnt_sb		= fc->root->d_sb;
969 	mnt->mnt.mnt_root	= dget(fc->root);
970 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
971 	mnt->mnt_parent		= mnt;
972 
973 	lock_mount_hash();
974 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
975 	unlock_mount_hash();
976 	return &mnt->mnt;
977 }
978 EXPORT_SYMBOL(vfs_create_mount);
979 
980 struct vfsmount *fc_mount(struct fs_context *fc)
981 {
982 	int err = vfs_get_tree(fc);
983 	if (!err) {
984 		up_write(&fc->root->d_sb->s_umount);
985 		return vfs_create_mount(fc);
986 	}
987 	return ERR_PTR(err);
988 }
989 EXPORT_SYMBOL(fc_mount);
990 
991 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
992 				int flags, const char *name,
993 				void *data)
994 {
995 	struct fs_context *fc;
996 	struct vfsmount *mnt;
997 	int ret = 0;
998 
999 	if (!type)
1000 		return ERR_PTR(-EINVAL);
1001 
1002 	fc = fs_context_for_mount(type, flags);
1003 	if (IS_ERR(fc))
1004 		return ERR_CAST(fc);
1005 
1006 	if (name)
1007 		ret = vfs_parse_fs_string(fc, "source",
1008 					  name, strlen(name));
1009 	if (!ret)
1010 		ret = parse_monolithic_mount_data(fc, data);
1011 	if (!ret)
1012 		mnt = fc_mount(fc);
1013 	else
1014 		mnt = ERR_PTR(ret);
1015 
1016 	put_fs_context(fc);
1017 	return mnt;
1018 }
1019 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1020 
1021 struct vfsmount *
1022 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1023 	     const char *name, void *data)
1024 {
1025 	/* Until it is worked out how to pass the user namespace
1026 	 * through from the parent mount to the submount don't support
1027 	 * unprivileged mounts with submounts.
1028 	 */
1029 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1030 		return ERR_PTR(-EPERM);
1031 
1032 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1033 }
1034 EXPORT_SYMBOL_GPL(vfs_submount);
1035 
1036 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1037 					int flag)
1038 {
1039 	struct super_block *sb = old->mnt.mnt_sb;
1040 	struct mount *mnt;
1041 	int err;
1042 
1043 	mnt = alloc_vfsmnt(old->mnt_devname);
1044 	if (!mnt)
1045 		return ERR_PTR(-ENOMEM);
1046 
1047 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1048 		mnt->mnt_group_id = 0; /* not a peer of original */
1049 	else
1050 		mnt->mnt_group_id = old->mnt_group_id;
1051 
1052 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1053 		err = mnt_alloc_group_id(mnt);
1054 		if (err)
1055 			goto out_free;
1056 	}
1057 
1058 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1059 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1060 
1061 	atomic_inc(&sb->s_active);
1062 	mnt->mnt.mnt_sb = sb;
1063 	mnt->mnt.mnt_root = dget(root);
1064 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1065 	mnt->mnt_parent = mnt;
1066 	lock_mount_hash();
1067 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1068 	unlock_mount_hash();
1069 
1070 	if ((flag & CL_SLAVE) ||
1071 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1072 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1073 		mnt->mnt_master = old;
1074 		CLEAR_MNT_SHARED(mnt);
1075 	} else if (!(flag & CL_PRIVATE)) {
1076 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1077 			list_add(&mnt->mnt_share, &old->mnt_share);
1078 		if (IS_MNT_SLAVE(old))
1079 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1080 		mnt->mnt_master = old->mnt_master;
1081 	} else {
1082 		CLEAR_MNT_SHARED(mnt);
1083 	}
1084 	if (flag & CL_MAKE_SHARED)
1085 		set_mnt_shared(mnt);
1086 
1087 	/* stick the duplicate mount on the same expiry list
1088 	 * as the original if that was on one */
1089 	if (flag & CL_EXPIRE) {
1090 		if (!list_empty(&old->mnt_expire))
1091 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1092 	}
1093 
1094 	return mnt;
1095 
1096  out_free:
1097 	mnt_free_id(mnt);
1098 	free_vfsmnt(mnt);
1099 	return ERR_PTR(err);
1100 }
1101 
1102 static void cleanup_mnt(struct mount *mnt)
1103 {
1104 	/*
1105 	 * This probably indicates that somebody messed
1106 	 * up a mnt_want/drop_write() pair.  If this
1107 	 * happens, the filesystem was probably unable
1108 	 * to make r/w->r/o transitions.
1109 	 */
1110 	/*
1111 	 * The locking used to deal with mnt_count decrement provides barriers,
1112 	 * so mnt_get_writers() below is safe.
1113 	 */
1114 	WARN_ON(mnt_get_writers(mnt));
1115 	if (unlikely(mnt->mnt_pins.first))
1116 		mnt_pin_kill(mnt);
1117 	fsnotify_vfsmount_delete(&mnt->mnt);
1118 	dput(mnt->mnt.mnt_root);
1119 	deactivate_super(mnt->mnt.mnt_sb);
1120 	mnt_free_id(mnt);
1121 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1122 }
1123 
1124 static void __cleanup_mnt(struct rcu_head *head)
1125 {
1126 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1127 }
1128 
1129 static LLIST_HEAD(delayed_mntput_list);
1130 static void delayed_mntput(struct work_struct *unused)
1131 {
1132 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1133 	struct mount *m, *t;
1134 
1135 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1136 		cleanup_mnt(m);
1137 }
1138 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1139 
1140 static void mntput_no_expire(struct mount *mnt)
1141 {
1142 	rcu_read_lock();
1143 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1144 		/*
1145 		 * Since we don't do lock_mount_hash() here,
1146 		 * ->mnt_ns can change under us.  However, if it's
1147 		 * non-NULL, then there's a reference that won't
1148 		 * be dropped until after an RCU delay done after
1149 		 * turning ->mnt_ns NULL.  So if we observe it
1150 		 * non-NULL under rcu_read_lock(), the reference
1151 		 * we are dropping is not the final one.
1152 		 */
1153 		mnt_add_count(mnt, -1);
1154 		rcu_read_unlock();
1155 		return;
1156 	}
1157 	lock_mount_hash();
1158 	/*
1159 	 * make sure that if __legitimize_mnt() has not seen us grab
1160 	 * mount_lock, we'll see their refcount increment here.
1161 	 */
1162 	smp_mb();
1163 	mnt_add_count(mnt, -1);
1164 	if (mnt_get_count(mnt)) {
1165 		rcu_read_unlock();
1166 		unlock_mount_hash();
1167 		return;
1168 	}
1169 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1170 		rcu_read_unlock();
1171 		unlock_mount_hash();
1172 		return;
1173 	}
1174 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1175 	rcu_read_unlock();
1176 
1177 	list_del(&mnt->mnt_instance);
1178 
1179 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1180 		struct mount *p, *tmp;
1181 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1182 			umount_mnt(p);
1183 		}
1184 	}
1185 	unlock_mount_hash();
1186 
1187 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1188 		struct task_struct *task = current;
1189 		if (likely(!(task->flags & PF_KTHREAD))) {
1190 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1191 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1192 				return;
1193 		}
1194 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1195 			schedule_delayed_work(&delayed_mntput_work, 1);
1196 		return;
1197 	}
1198 	cleanup_mnt(mnt);
1199 }
1200 
1201 void mntput(struct vfsmount *mnt)
1202 {
1203 	if (mnt) {
1204 		struct mount *m = real_mount(mnt);
1205 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1206 		if (unlikely(m->mnt_expiry_mark))
1207 			m->mnt_expiry_mark = 0;
1208 		mntput_no_expire(m);
1209 	}
1210 }
1211 EXPORT_SYMBOL(mntput);
1212 
1213 struct vfsmount *mntget(struct vfsmount *mnt)
1214 {
1215 	if (mnt)
1216 		mnt_add_count(real_mount(mnt), 1);
1217 	return mnt;
1218 }
1219 EXPORT_SYMBOL(mntget);
1220 
1221 /* path_is_mountpoint() - Check if path is a mount in the current
1222  *                          namespace.
1223  *
1224  *  d_mountpoint() can only be used reliably to establish if a dentry is
1225  *  not mounted in any namespace and that common case is handled inline.
1226  *  d_mountpoint() isn't aware of the possibility there may be multiple
1227  *  mounts using a given dentry in a different namespace. This function
1228  *  checks if the passed in path is a mountpoint rather than the dentry
1229  *  alone.
1230  */
1231 bool path_is_mountpoint(const struct path *path)
1232 {
1233 	unsigned seq;
1234 	bool res;
1235 
1236 	if (!d_mountpoint(path->dentry))
1237 		return false;
1238 
1239 	rcu_read_lock();
1240 	do {
1241 		seq = read_seqbegin(&mount_lock);
1242 		res = __path_is_mountpoint(path);
1243 	} while (read_seqretry(&mount_lock, seq));
1244 	rcu_read_unlock();
1245 
1246 	return res;
1247 }
1248 EXPORT_SYMBOL(path_is_mountpoint);
1249 
1250 struct vfsmount *mnt_clone_internal(const struct path *path)
1251 {
1252 	struct mount *p;
1253 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1254 	if (IS_ERR(p))
1255 		return ERR_CAST(p);
1256 	p->mnt.mnt_flags |= MNT_INTERNAL;
1257 	return &p->mnt;
1258 }
1259 
1260 #ifdef CONFIG_PROC_FS
1261 /* iterator; we want it to have access to namespace_sem, thus here... */
1262 static void *m_start(struct seq_file *m, loff_t *pos)
1263 {
1264 	struct proc_mounts *p = m->private;
1265 
1266 	down_read(&namespace_sem);
1267 	if (p->cached_event == p->ns->event) {
1268 		void *v = p->cached_mount;
1269 		if (*pos == p->cached_index)
1270 			return v;
1271 		if (*pos == p->cached_index + 1) {
1272 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1273 			return p->cached_mount = v;
1274 		}
1275 	}
1276 
1277 	p->cached_event = p->ns->event;
1278 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1279 	p->cached_index = *pos;
1280 	return p->cached_mount;
1281 }
1282 
1283 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1284 {
1285 	struct proc_mounts *p = m->private;
1286 
1287 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1288 	p->cached_index = *pos;
1289 	return p->cached_mount;
1290 }
1291 
1292 static void m_stop(struct seq_file *m, void *v)
1293 {
1294 	up_read(&namespace_sem);
1295 }
1296 
1297 static int m_show(struct seq_file *m, void *v)
1298 {
1299 	struct proc_mounts *p = m->private;
1300 	struct mount *r = list_entry(v, struct mount, mnt_list);
1301 	return p->show(m, &r->mnt);
1302 }
1303 
1304 const struct seq_operations mounts_op = {
1305 	.start	= m_start,
1306 	.next	= m_next,
1307 	.stop	= m_stop,
1308 	.show	= m_show,
1309 };
1310 #endif  /* CONFIG_PROC_FS */
1311 
1312 /**
1313  * may_umount_tree - check if a mount tree is busy
1314  * @mnt: root of mount tree
1315  *
1316  * This is called to check if a tree of mounts has any
1317  * open files, pwds, chroots or sub mounts that are
1318  * busy.
1319  */
1320 int may_umount_tree(struct vfsmount *m)
1321 {
1322 	struct mount *mnt = real_mount(m);
1323 	int actual_refs = 0;
1324 	int minimum_refs = 0;
1325 	struct mount *p;
1326 	BUG_ON(!m);
1327 
1328 	/* write lock needed for mnt_get_count */
1329 	lock_mount_hash();
1330 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1331 		actual_refs += mnt_get_count(p);
1332 		minimum_refs += 2;
1333 	}
1334 	unlock_mount_hash();
1335 
1336 	if (actual_refs > minimum_refs)
1337 		return 0;
1338 
1339 	return 1;
1340 }
1341 
1342 EXPORT_SYMBOL(may_umount_tree);
1343 
1344 /**
1345  * may_umount - check if a mount point is busy
1346  * @mnt: root of mount
1347  *
1348  * This is called to check if a mount point has any
1349  * open files, pwds, chroots or sub mounts. If the
1350  * mount has sub mounts this will return busy
1351  * regardless of whether the sub mounts are busy.
1352  *
1353  * Doesn't take quota and stuff into account. IOW, in some cases it will
1354  * give false negatives. The main reason why it's here is that we need
1355  * a non-destructive way to look for easily umountable filesystems.
1356  */
1357 int may_umount(struct vfsmount *mnt)
1358 {
1359 	int ret = 1;
1360 	down_read(&namespace_sem);
1361 	lock_mount_hash();
1362 	if (propagate_mount_busy(real_mount(mnt), 2))
1363 		ret = 0;
1364 	unlock_mount_hash();
1365 	up_read(&namespace_sem);
1366 	return ret;
1367 }
1368 
1369 EXPORT_SYMBOL(may_umount);
1370 
1371 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1372 
1373 static void namespace_unlock(void)
1374 {
1375 	struct hlist_head head;
1376 
1377 	hlist_move_list(&unmounted, &head);
1378 
1379 	up_write(&namespace_sem);
1380 
1381 	if (likely(hlist_empty(&head)))
1382 		return;
1383 
1384 	synchronize_rcu_expedited();
1385 
1386 	group_pin_kill(&head);
1387 }
1388 
1389 static inline void namespace_lock(void)
1390 {
1391 	down_write(&namespace_sem);
1392 }
1393 
1394 enum umount_tree_flags {
1395 	UMOUNT_SYNC = 1,
1396 	UMOUNT_PROPAGATE = 2,
1397 	UMOUNT_CONNECTED = 4,
1398 };
1399 
1400 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1401 {
1402 	/* Leaving mounts connected is only valid for lazy umounts */
1403 	if (how & UMOUNT_SYNC)
1404 		return true;
1405 
1406 	/* A mount without a parent has nothing to be connected to */
1407 	if (!mnt_has_parent(mnt))
1408 		return true;
1409 
1410 	/* Because the reference counting rules change when mounts are
1411 	 * unmounted and connected, umounted mounts may not be
1412 	 * connected to mounted mounts.
1413 	 */
1414 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1415 		return true;
1416 
1417 	/* Has it been requested that the mount remain connected? */
1418 	if (how & UMOUNT_CONNECTED)
1419 		return false;
1420 
1421 	/* Is the mount locked such that it needs to remain connected? */
1422 	if (IS_MNT_LOCKED(mnt))
1423 		return false;
1424 
1425 	/* By default disconnect the mount */
1426 	return true;
1427 }
1428 
1429 /*
1430  * mount_lock must be held
1431  * namespace_sem must be held for write
1432  */
1433 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1434 {
1435 	LIST_HEAD(tmp_list);
1436 	struct mount *p;
1437 
1438 	if (how & UMOUNT_PROPAGATE)
1439 		propagate_mount_unlock(mnt);
1440 
1441 	/* Gather the mounts to umount */
1442 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1443 		p->mnt.mnt_flags |= MNT_UMOUNT;
1444 		list_move(&p->mnt_list, &tmp_list);
1445 	}
1446 
1447 	/* Hide the mounts from mnt_mounts */
1448 	list_for_each_entry(p, &tmp_list, mnt_list) {
1449 		list_del_init(&p->mnt_child);
1450 	}
1451 
1452 	/* Add propogated mounts to the tmp_list */
1453 	if (how & UMOUNT_PROPAGATE)
1454 		propagate_umount(&tmp_list);
1455 
1456 	while (!list_empty(&tmp_list)) {
1457 		struct mnt_namespace *ns;
1458 		bool disconnect;
1459 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1460 		list_del_init(&p->mnt_expire);
1461 		list_del_init(&p->mnt_list);
1462 		ns = p->mnt_ns;
1463 		if (ns) {
1464 			ns->mounts--;
1465 			__touch_mnt_namespace(ns);
1466 		}
1467 		p->mnt_ns = NULL;
1468 		if (how & UMOUNT_SYNC)
1469 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1470 
1471 		disconnect = disconnect_mount(p, how);
1472 
1473 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1474 				 disconnect ? &unmounted : NULL);
1475 		if (mnt_has_parent(p)) {
1476 			mnt_add_count(p->mnt_parent, -1);
1477 			if (!disconnect) {
1478 				/* Don't forget about p */
1479 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1480 			} else {
1481 				umount_mnt(p);
1482 			}
1483 		}
1484 		change_mnt_propagation(p, MS_PRIVATE);
1485 	}
1486 }
1487 
1488 static void shrink_submounts(struct mount *mnt);
1489 
1490 static int do_umount_root(struct super_block *sb)
1491 {
1492 	int ret = 0;
1493 
1494 	down_write(&sb->s_umount);
1495 	if (!sb_rdonly(sb)) {
1496 		struct fs_context *fc;
1497 
1498 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1499 						SB_RDONLY);
1500 		if (IS_ERR(fc)) {
1501 			ret = PTR_ERR(fc);
1502 		} else {
1503 			ret = parse_monolithic_mount_data(fc, NULL);
1504 			if (!ret)
1505 				ret = reconfigure_super(fc);
1506 			put_fs_context(fc);
1507 		}
1508 	}
1509 	up_write(&sb->s_umount);
1510 	return ret;
1511 }
1512 
1513 static int do_umount(struct mount *mnt, int flags)
1514 {
1515 	struct super_block *sb = mnt->mnt.mnt_sb;
1516 	int retval;
1517 
1518 	retval = security_sb_umount(&mnt->mnt, flags);
1519 	if (retval)
1520 		return retval;
1521 
1522 	/*
1523 	 * Allow userspace to request a mountpoint be expired rather than
1524 	 * unmounting unconditionally. Unmount only happens if:
1525 	 *  (1) the mark is already set (the mark is cleared by mntput())
1526 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1527 	 */
1528 	if (flags & MNT_EXPIRE) {
1529 		if (&mnt->mnt == current->fs->root.mnt ||
1530 		    flags & (MNT_FORCE | MNT_DETACH))
1531 			return -EINVAL;
1532 
1533 		/*
1534 		 * probably don't strictly need the lock here if we examined
1535 		 * all race cases, but it's a slowpath.
1536 		 */
1537 		lock_mount_hash();
1538 		if (mnt_get_count(mnt) != 2) {
1539 			unlock_mount_hash();
1540 			return -EBUSY;
1541 		}
1542 		unlock_mount_hash();
1543 
1544 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1545 			return -EAGAIN;
1546 	}
1547 
1548 	/*
1549 	 * If we may have to abort operations to get out of this
1550 	 * mount, and they will themselves hold resources we must
1551 	 * allow the fs to do things. In the Unix tradition of
1552 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1553 	 * might fail to complete on the first run through as other tasks
1554 	 * must return, and the like. Thats for the mount program to worry
1555 	 * about for the moment.
1556 	 */
1557 
1558 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1559 		sb->s_op->umount_begin(sb);
1560 	}
1561 
1562 	/*
1563 	 * No sense to grab the lock for this test, but test itself looks
1564 	 * somewhat bogus. Suggestions for better replacement?
1565 	 * Ho-hum... In principle, we might treat that as umount + switch
1566 	 * to rootfs. GC would eventually take care of the old vfsmount.
1567 	 * Actually it makes sense, especially if rootfs would contain a
1568 	 * /reboot - static binary that would close all descriptors and
1569 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1570 	 */
1571 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1572 		/*
1573 		 * Special case for "unmounting" root ...
1574 		 * we just try to remount it readonly.
1575 		 */
1576 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1577 			return -EPERM;
1578 		return do_umount_root(sb);
1579 	}
1580 
1581 	namespace_lock();
1582 	lock_mount_hash();
1583 
1584 	/* Recheck MNT_LOCKED with the locks held */
1585 	retval = -EINVAL;
1586 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1587 		goto out;
1588 
1589 	event++;
1590 	if (flags & MNT_DETACH) {
1591 		if (!list_empty(&mnt->mnt_list))
1592 			umount_tree(mnt, UMOUNT_PROPAGATE);
1593 		retval = 0;
1594 	} else {
1595 		shrink_submounts(mnt);
1596 		retval = -EBUSY;
1597 		if (!propagate_mount_busy(mnt, 2)) {
1598 			if (!list_empty(&mnt->mnt_list))
1599 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1600 			retval = 0;
1601 		}
1602 	}
1603 out:
1604 	unlock_mount_hash();
1605 	namespace_unlock();
1606 	return retval;
1607 }
1608 
1609 /*
1610  * __detach_mounts - lazily unmount all mounts on the specified dentry
1611  *
1612  * During unlink, rmdir, and d_drop it is possible to loose the path
1613  * to an existing mountpoint, and wind up leaking the mount.
1614  * detach_mounts allows lazily unmounting those mounts instead of
1615  * leaking them.
1616  *
1617  * The caller may hold dentry->d_inode->i_mutex.
1618  */
1619 void __detach_mounts(struct dentry *dentry)
1620 {
1621 	struct mountpoint *mp;
1622 	struct mount *mnt;
1623 
1624 	namespace_lock();
1625 	lock_mount_hash();
1626 	mp = lookup_mountpoint(dentry);
1627 	if (IS_ERR_OR_NULL(mp))
1628 		goto out_unlock;
1629 
1630 	event++;
1631 	while (!hlist_empty(&mp->m_list)) {
1632 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1633 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1634 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1635 			umount_mnt(mnt);
1636 		}
1637 		else umount_tree(mnt, UMOUNT_CONNECTED);
1638 	}
1639 	put_mountpoint(mp);
1640 out_unlock:
1641 	unlock_mount_hash();
1642 	namespace_unlock();
1643 }
1644 
1645 /*
1646  * Is the caller allowed to modify his namespace?
1647  */
1648 static inline bool may_mount(void)
1649 {
1650 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1651 }
1652 
1653 static inline bool may_mandlock(void)
1654 {
1655 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1656 	return false;
1657 #endif
1658 	return capable(CAP_SYS_ADMIN);
1659 }
1660 
1661 /*
1662  * Now umount can handle mount points as well as block devices.
1663  * This is important for filesystems which use unnamed block devices.
1664  *
1665  * We now support a flag for forced unmount like the other 'big iron'
1666  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1667  */
1668 
1669 int ksys_umount(char __user *name, int flags)
1670 {
1671 	struct path path;
1672 	struct mount *mnt;
1673 	int retval;
1674 	int lookup_flags = 0;
1675 
1676 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1677 		return -EINVAL;
1678 
1679 	if (!may_mount())
1680 		return -EPERM;
1681 
1682 	if (!(flags & UMOUNT_NOFOLLOW))
1683 		lookup_flags |= LOOKUP_FOLLOW;
1684 
1685 	lookup_flags |= LOOKUP_NO_EVAL;
1686 
1687 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1688 	if (retval)
1689 		goto out;
1690 	mnt = real_mount(path.mnt);
1691 	retval = -EINVAL;
1692 	if (path.dentry != path.mnt->mnt_root)
1693 		goto dput_and_out;
1694 	if (!check_mnt(mnt))
1695 		goto dput_and_out;
1696 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1697 		goto dput_and_out;
1698 	retval = -EPERM;
1699 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1700 		goto dput_and_out;
1701 
1702 	retval = do_umount(mnt, flags);
1703 dput_and_out:
1704 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1705 	dput(path.dentry);
1706 	mntput_no_expire(mnt);
1707 out:
1708 	return retval;
1709 }
1710 
1711 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1712 {
1713 	return ksys_umount(name, flags);
1714 }
1715 
1716 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1717 
1718 /*
1719  *	The 2.0 compatible umount. No flags.
1720  */
1721 SYSCALL_DEFINE1(oldumount, char __user *, name)
1722 {
1723 	return ksys_umount(name, 0);
1724 }
1725 
1726 #endif
1727 
1728 static bool is_mnt_ns_file(struct dentry *dentry)
1729 {
1730 	/* Is this a proxy for a mount namespace? */
1731 	return dentry->d_op == &ns_dentry_operations &&
1732 	       dentry->d_fsdata == &mntns_operations;
1733 }
1734 
1735 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1736 {
1737 	return container_of(ns, struct mnt_namespace, ns);
1738 }
1739 
1740 static bool mnt_ns_loop(struct dentry *dentry)
1741 {
1742 	/* Could bind mounting the mount namespace inode cause a
1743 	 * mount namespace loop?
1744 	 */
1745 	struct mnt_namespace *mnt_ns;
1746 	if (!is_mnt_ns_file(dentry))
1747 		return false;
1748 
1749 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1750 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1751 }
1752 
1753 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1754 					int flag)
1755 {
1756 	struct mount *res, *p, *q, *r, *parent;
1757 
1758 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1759 		return ERR_PTR(-EINVAL);
1760 
1761 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1762 		return ERR_PTR(-EINVAL);
1763 
1764 	res = q = clone_mnt(mnt, dentry, flag);
1765 	if (IS_ERR(q))
1766 		return q;
1767 
1768 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1769 
1770 	p = mnt;
1771 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1772 		struct mount *s;
1773 		if (!is_subdir(r->mnt_mountpoint, dentry))
1774 			continue;
1775 
1776 		for (s = r; s; s = next_mnt(s, r)) {
1777 			if (!(flag & CL_COPY_UNBINDABLE) &&
1778 			    IS_MNT_UNBINDABLE(s)) {
1779 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1780 					/* Both unbindable and locked. */
1781 					q = ERR_PTR(-EPERM);
1782 					goto out;
1783 				} else {
1784 					s = skip_mnt_tree(s);
1785 					continue;
1786 				}
1787 			}
1788 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1789 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1790 				s = skip_mnt_tree(s);
1791 				continue;
1792 			}
1793 			while (p != s->mnt_parent) {
1794 				p = p->mnt_parent;
1795 				q = q->mnt_parent;
1796 			}
1797 			p = s;
1798 			parent = q;
1799 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1800 			if (IS_ERR(q))
1801 				goto out;
1802 			lock_mount_hash();
1803 			list_add_tail(&q->mnt_list, &res->mnt_list);
1804 			attach_mnt(q, parent, p->mnt_mp);
1805 			unlock_mount_hash();
1806 		}
1807 	}
1808 	return res;
1809 out:
1810 	if (res) {
1811 		lock_mount_hash();
1812 		umount_tree(res, UMOUNT_SYNC);
1813 		unlock_mount_hash();
1814 	}
1815 	return q;
1816 }
1817 
1818 /* Caller should check returned pointer for errors */
1819 
1820 struct vfsmount *collect_mounts(const struct path *path)
1821 {
1822 	struct mount *tree;
1823 	namespace_lock();
1824 	if (!check_mnt(real_mount(path->mnt)))
1825 		tree = ERR_PTR(-EINVAL);
1826 	else
1827 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1828 				 CL_COPY_ALL | CL_PRIVATE);
1829 	namespace_unlock();
1830 	if (IS_ERR(tree))
1831 		return ERR_CAST(tree);
1832 	return &tree->mnt;
1833 }
1834 
1835 void drop_collected_mounts(struct vfsmount *mnt)
1836 {
1837 	namespace_lock();
1838 	lock_mount_hash();
1839 	umount_tree(real_mount(mnt), 0);
1840 	unlock_mount_hash();
1841 	namespace_unlock();
1842 }
1843 
1844 /**
1845  * clone_private_mount - create a private clone of a path
1846  *
1847  * This creates a new vfsmount, which will be the clone of @path.  The new will
1848  * not be attached anywhere in the namespace and will be private (i.e. changes
1849  * to the originating mount won't be propagated into this).
1850  *
1851  * Release with mntput().
1852  */
1853 struct vfsmount *clone_private_mount(const struct path *path)
1854 {
1855 	struct mount *old_mnt = real_mount(path->mnt);
1856 	struct mount *new_mnt;
1857 
1858 	if (IS_MNT_UNBINDABLE(old_mnt))
1859 		return ERR_PTR(-EINVAL);
1860 
1861 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1862 	if (IS_ERR(new_mnt))
1863 		return ERR_CAST(new_mnt);
1864 
1865 	return &new_mnt->mnt;
1866 }
1867 EXPORT_SYMBOL_GPL(clone_private_mount);
1868 
1869 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1870 		   struct vfsmount *root)
1871 {
1872 	struct mount *mnt;
1873 	int res = f(root, arg);
1874 	if (res)
1875 		return res;
1876 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1877 		res = f(&mnt->mnt, arg);
1878 		if (res)
1879 			return res;
1880 	}
1881 	return 0;
1882 }
1883 
1884 static void lock_mnt_tree(struct mount *mnt)
1885 {
1886 	struct mount *p;
1887 
1888 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1889 		int flags = p->mnt.mnt_flags;
1890 		/* Don't allow unprivileged users to change mount flags */
1891 		flags |= MNT_LOCK_ATIME;
1892 
1893 		if (flags & MNT_READONLY)
1894 			flags |= MNT_LOCK_READONLY;
1895 
1896 		if (flags & MNT_NODEV)
1897 			flags |= MNT_LOCK_NODEV;
1898 
1899 		if (flags & MNT_NOSUID)
1900 			flags |= MNT_LOCK_NOSUID;
1901 
1902 		if (flags & MNT_NOEXEC)
1903 			flags |= MNT_LOCK_NOEXEC;
1904 		/* Don't allow unprivileged users to reveal what is under a mount */
1905 		if (list_empty(&p->mnt_expire))
1906 			flags |= MNT_LOCKED;
1907 		p->mnt.mnt_flags = flags;
1908 	}
1909 }
1910 
1911 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1912 {
1913 	struct mount *p;
1914 
1915 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1916 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1917 			mnt_release_group_id(p);
1918 	}
1919 }
1920 
1921 static int invent_group_ids(struct mount *mnt, bool recurse)
1922 {
1923 	struct mount *p;
1924 
1925 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1926 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1927 			int err = mnt_alloc_group_id(p);
1928 			if (err) {
1929 				cleanup_group_ids(mnt, p);
1930 				return err;
1931 			}
1932 		}
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1939 {
1940 	unsigned int max = READ_ONCE(sysctl_mount_max);
1941 	unsigned int mounts = 0, old, pending, sum;
1942 	struct mount *p;
1943 
1944 	for (p = mnt; p; p = next_mnt(p, mnt))
1945 		mounts++;
1946 
1947 	old = ns->mounts;
1948 	pending = ns->pending_mounts;
1949 	sum = old + pending;
1950 	if ((old > sum) ||
1951 	    (pending > sum) ||
1952 	    (max < sum) ||
1953 	    (mounts > (max - sum)))
1954 		return -ENOSPC;
1955 
1956 	ns->pending_mounts = pending + mounts;
1957 	return 0;
1958 }
1959 
1960 /*
1961  *  @source_mnt : mount tree to be attached
1962  *  @nd         : place the mount tree @source_mnt is attached
1963  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1964  *  		   store the parent mount and mountpoint dentry.
1965  *  		   (done when source_mnt is moved)
1966  *
1967  *  NOTE: in the table below explains the semantics when a source mount
1968  *  of a given type is attached to a destination mount of a given type.
1969  * ---------------------------------------------------------------------------
1970  * |         BIND MOUNT OPERATION                                            |
1971  * |**************************************************************************
1972  * | source-->| shared        |       private  |       slave    | unbindable |
1973  * | dest     |               |                |                |            |
1974  * |   |      |               |                |                |            |
1975  * |   v      |               |                |                |            |
1976  * |**************************************************************************
1977  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1978  * |          |               |                |                |            |
1979  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1980  * ***************************************************************************
1981  * A bind operation clones the source mount and mounts the clone on the
1982  * destination mount.
1983  *
1984  * (++)  the cloned mount is propagated to all the mounts in the propagation
1985  * 	 tree of the destination mount and the cloned mount is added to
1986  * 	 the peer group of the source mount.
1987  * (+)   the cloned mount is created under the destination mount and is marked
1988  *       as shared. The cloned mount is added to the peer group of the source
1989  *       mount.
1990  * (+++) the mount is propagated to all the mounts in the propagation tree
1991  *       of the destination mount and the cloned mount is made slave
1992  *       of the same master as that of the source mount. The cloned mount
1993  *       is marked as 'shared and slave'.
1994  * (*)   the cloned mount is made a slave of the same master as that of the
1995  * 	 source mount.
1996  *
1997  * ---------------------------------------------------------------------------
1998  * |         		MOVE MOUNT OPERATION                                 |
1999  * |**************************************************************************
2000  * | source-->| shared        |       private  |       slave    | unbindable |
2001  * | dest     |               |                |                |            |
2002  * |   |      |               |                |                |            |
2003  * |   v      |               |                |                |            |
2004  * |**************************************************************************
2005  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2006  * |          |               |                |                |            |
2007  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2008  * ***************************************************************************
2009  *
2010  * (+)  the mount is moved to the destination. And is then propagated to
2011  * 	all the mounts in the propagation tree of the destination mount.
2012  * (+*)  the mount is moved to the destination.
2013  * (+++)  the mount is moved to the destination and is then propagated to
2014  * 	all the mounts belonging to the destination mount's propagation tree.
2015  * 	the mount is marked as 'shared and slave'.
2016  * (*)	the mount continues to be a slave at the new location.
2017  *
2018  * if the source mount is a tree, the operations explained above is
2019  * applied to each mount in the tree.
2020  * Must be called without spinlocks held, since this function can sleep
2021  * in allocations.
2022  */
2023 static int attach_recursive_mnt(struct mount *source_mnt,
2024 			struct mount *dest_mnt,
2025 			struct mountpoint *dest_mp,
2026 			struct path *parent_path)
2027 {
2028 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2029 	HLIST_HEAD(tree_list);
2030 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2031 	struct mountpoint *smp;
2032 	struct mount *child, *p;
2033 	struct hlist_node *n;
2034 	int err;
2035 
2036 	/* Preallocate a mountpoint in case the new mounts need
2037 	 * to be tucked under other mounts.
2038 	 */
2039 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2040 	if (IS_ERR(smp))
2041 		return PTR_ERR(smp);
2042 
2043 	/* Is there space to add these mounts to the mount namespace? */
2044 	if (!parent_path) {
2045 		err = count_mounts(ns, source_mnt);
2046 		if (err)
2047 			goto out;
2048 	}
2049 
2050 	if (IS_MNT_SHARED(dest_mnt)) {
2051 		err = invent_group_ids(source_mnt, true);
2052 		if (err)
2053 			goto out;
2054 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2055 		lock_mount_hash();
2056 		if (err)
2057 			goto out_cleanup_ids;
2058 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2059 			set_mnt_shared(p);
2060 	} else {
2061 		lock_mount_hash();
2062 	}
2063 	if (parent_path) {
2064 		detach_mnt(source_mnt, parent_path);
2065 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2066 		touch_mnt_namespace(source_mnt->mnt_ns);
2067 	} else {
2068 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2069 		commit_tree(source_mnt);
2070 	}
2071 
2072 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2073 		struct mount *q;
2074 		hlist_del_init(&child->mnt_hash);
2075 		q = __lookup_mnt(&child->mnt_parent->mnt,
2076 				 child->mnt_mountpoint);
2077 		if (q)
2078 			mnt_change_mountpoint(child, smp, q);
2079 		/* Notice when we are propagating across user namespaces */
2080 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2081 			lock_mnt_tree(child);
2082 		commit_tree(child);
2083 	}
2084 	put_mountpoint(smp);
2085 	unlock_mount_hash();
2086 
2087 	return 0;
2088 
2089  out_cleanup_ids:
2090 	while (!hlist_empty(&tree_list)) {
2091 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2092 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2093 		umount_tree(child, UMOUNT_SYNC);
2094 	}
2095 	unlock_mount_hash();
2096 	cleanup_group_ids(source_mnt, NULL);
2097  out:
2098 	ns->pending_mounts = 0;
2099 
2100 	read_seqlock_excl(&mount_lock);
2101 	put_mountpoint(smp);
2102 	read_sequnlock_excl(&mount_lock);
2103 
2104 	return err;
2105 }
2106 
2107 static struct mountpoint *lock_mount(struct path *path)
2108 {
2109 	struct vfsmount *mnt;
2110 	struct dentry *dentry = path->dentry;
2111 retry:
2112 	inode_lock(dentry->d_inode);
2113 	if (unlikely(cant_mount(dentry))) {
2114 		inode_unlock(dentry->d_inode);
2115 		return ERR_PTR(-ENOENT);
2116 	}
2117 	namespace_lock();
2118 	mnt = lookup_mnt(path);
2119 	if (likely(!mnt)) {
2120 		struct mountpoint *mp = get_mountpoint(dentry);
2121 		if (IS_ERR(mp)) {
2122 			namespace_unlock();
2123 			inode_unlock(dentry->d_inode);
2124 			return mp;
2125 		}
2126 		return mp;
2127 	}
2128 	namespace_unlock();
2129 	inode_unlock(path->dentry->d_inode);
2130 	path_put(path);
2131 	path->mnt = mnt;
2132 	dentry = path->dentry = dget(mnt->mnt_root);
2133 	goto retry;
2134 }
2135 
2136 static void unlock_mount(struct mountpoint *where)
2137 {
2138 	struct dentry *dentry = where->m_dentry;
2139 
2140 	read_seqlock_excl(&mount_lock);
2141 	put_mountpoint(where);
2142 	read_sequnlock_excl(&mount_lock);
2143 
2144 	namespace_unlock();
2145 	inode_unlock(dentry->d_inode);
2146 }
2147 
2148 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2149 {
2150 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2151 		return -EINVAL;
2152 
2153 	if (d_is_dir(mp->m_dentry) !=
2154 	      d_is_dir(mnt->mnt.mnt_root))
2155 		return -ENOTDIR;
2156 
2157 	return attach_recursive_mnt(mnt, p, mp, NULL);
2158 }
2159 
2160 /*
2161  * Sanity check the flags to change_mnt_propagation.
2162  */
2163 
2164 static int flags_to_propagation_type(int ms_flags)
2165 {
2166 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2167 
2168 	/* Fail if any non-propagation flags are set */
2169 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2170 		return 0;
2171 	/* Only one propagation flag should be set */
2172 	if (!is_power_of_2(type))
2173 		return 0;
2174 	return type;
2175 }
2176 
2177 /*
2178  * recursively change the type of the mountpoint.
2179  */
2180 static int do_change_type(struct path *path, int ms_flags)
2181 {
2182 	struct mount *m;
2183 	struct mount *mnt = real_mount(path->mnt);
2184 	int recurse = ms_flags & MS_REC;
2185 	int type;
2186 	int err = 0;
2187 
2188 	if (path->dentry != path->mnt->mnt_root)
2189 		return -EINVAL;
2190 
2191 	type = flags_to_propagation_type(ms_flags);
2192 	if (!type)
2193 		return -EINVAL;
2194 
2195 	namespace_lock();
2196 	if (type == MS_SHARED) {
2197 		err = invent_group_ids(mnt, recurse);
2198 		if (err)
2199 			goto out_unlock;
2200 	}
2201 
2202 	lock_mount_hash();
2203 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2204 		change_mnt_propagation(m, type);
2205 	unlock_mount_hash();
2206 
2207  out_unlock:
2208 	namespace_unlock();
2209 	return err;
2210 }
2211 
2212 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2213 {
2214 	struct mount *child;
2215 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2216 		if (!is_subdir(child->mnt_mountpoint, dentry))
2217 			continue;
2218 
2219 		if (child->mnt.mnt_flags & MNT_LOCKED)
2220 			return true;
2221 	}
2222 	return false;
2223 }
2224 
2225 /*
2226  * do loopback mount.
2227  */
2228 static int do_loopback(struct path *path, const char *old_name,
2229 				int recurse)
2230 {
2231 	struct path old_path;
2232 	struct mount *mnt = NULL, *old, *parent;
2233 	struct mountpoint *mp;
2234 	int err;
2235 	if (!old_name || !*old_name)
2236 		return -EINVAL;
2237 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2238 	if (err)
2239 		return err;
2240 
2241 	err = -EINVAL;
2242 	if (mnt_ns_loop(old_path.dentry))
2243 		goto out;
2244 
2245 	mp = lock_mount(path);
2246 	err = PTR_ERR(mp);
2247 	if (IS_ERR(mp))
2248 		goto out;
2249 
2250 	old = real_mount(old_path.mnt);
2251 	parent = real_mount(path->mnt);
2252 
2253 	err = -EINVAL;
2254 	if (IS_MNT_UNBINDABLE(old))
2255 		goto out2;
2256 
2257 	if (!check_mnt(parent))
2258 		goto out2;
2259 
2260 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2261 		goto out2;
2262 
2263 	if (!recurse && has_locked_children(old, old_path.dentry))
2264 		goto out2;
2265 
2266 	if (recurse)
2267 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2268 	else
2269 		mnt = clone_mnt(old, old_path.dentry, 0);
2270 
2271 	if (IS_ERR(mnt)) {
2272 		err = PTR_ERR(mnt);
2273 		goto out2;
2274 	}
2275 
2276 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2277 
2278 	err = graft_tree(mnt, parent, mp);
2279 	if (err) {
2280 		lock_mount_hash();
2281 		umount_tree(mnt, UMOUNT_SYNC);
2282 		unlock_mount_hash();
2283 	}
2284 out2:
2285 	unlock_mount(mp);
2286 out:
2287 	path_put(&old_path);
2288 	return err;
2289 }
2290 
2291 /*
2292  * Don't allow locked mount flags to be cleared.
2293  *
2294  * No locks need to be held here while testing the various MNT_LOCK
2295  * flags because those flags can never be cleared once they are set.
2296  */
2297 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2298 {
2299 	unsigned int fl = mnt->mnt.mnt_flags;
2300 
2301 	if ((fl & MNT_LOCK_READONLY) &&
2302 	    !(mnt_flags & MNT_READONLY))
2303 		return false;
2304 
2305 	if ((fl & MNT_LOCK_NODEV) &&
2306 	    !(mnt_flags & MNT_NODEV))
2307 		return false;
2308 
2309 	if ((fl & MNT_LOCK_NOSUID) &&
2310 	    !(mnt_flags & MNT_NOSUID))
2311 		return false;
2312 
2313 	if ((fl & MNT_LOCK_NOEXEC) &&
2314 	    !(mnt_flags & MNT_NOEXEC))
2315 		return false;
2316 
2317 	if ((fl & MNT_LOCK_ATIME) &&
2318 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2319 		return false;
2320 
2321 	return true;
2322 }
2323 
2324 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2325 {
2326 	bool readonly_request = (mnt_flags & MNT_READONLY);
2327 
2328 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2329 		return 0;
2330 
2331 	if (readonly_request)
2332 		return mnt_make_readonly(mnt);
2333 
2334 	return __mnt_unmake_readonly(mnt);
2335 }
2336 
2337 /*
2338  * Update the user-settable attributes on a mount.  The caller must hold
2339  * sb->s_umount for writing.
2340  */
2341 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2342 {
2343 	lock_mount_hash();
2344 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2345 	mnt->mnt.mnt_flags = mnt_flags;
2346 	touch_mnt_namespace(mnt->mnt_ns);
2347 	unlock_mount_hash();
2348 }
2349 
2350 /*
2351  * Handle reconfiguration of the mountpoint only without alteration of the
2352  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2353  * to mount(2).
2354  */
2355 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2356 {
2357 	struct super_block *sb = path->mnt->mnt_sb;
2358 	struct mount *mnt = real_mount(path->mnt);
2359 	int ret;
2360 
2361 	if (!check_mnt(mnt))
2362 		return -EINVAL;
2363 
2364 	if (path->dentry != mnt->mnt.mnt_root)
2365 		return -EINVAL;
2366 
2367 	if (!can_change_locked_flags(mnt, mnt_flags))
2368 		return -EPERM;
2369 
2370 	down_write(&sb->s_umount);
2371 	ret = change_mount_ro_state(mnt, mnt_flags);
2372 	if (ret == 0)
2373 		set_mount_attributes(mnt, mnt_flags);
2374 	up_write(&sb->s_umount);
2375 	return ret;
2376 }
2377 
2378 /*
2379  * change filesystem flags. dir should be a physical root of filesystem.
2380  * If you've mounted a non-root directory somewhere and want to do remount
2381  * on it - tough luck.
2382  */
2383 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2384 		      int mnt_flags, void *data)
2385 {
2386 	int err;
2387 	struct super_block *sb = path->mnt->mnt_sb;
2388 	struct mount *mnt = real_mount(path->mnt);
2389 	struct fs_context *fc;
2390 
2391 	if (!check_mnt(mnt))
2392 		return -EINVAL;
2393 
2394 	if (path->dentry != path->mnt->mnt_root)
2395 		return -EINVAL;
2396 
2397 	if (!can_change_locked_flags(mnt, mnt_flags))
2398 		return -EPERM;
2399 
2400 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2401 	if (IS_ERR(fc))
2402 		return PTR_ERR(fc);
2403 
2404 	err = parse_monolithic_mount_data(fc, data);
2405 	if (!err) {
2406 		down_write(&sb->s_umount);
2407 		err = -EPERM;
2408 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2409 			err = reconfigure_super(fc);
2410 			if (!err)
2411 				set_mount_attributes(mnt, mnt_flags);
2412 		}
2413 		up_write(&sb->s_umount);
2414 	}
2415 	put_fs_context(fc);
2416 	return err;
2417 }
2418 
2419 static inline int tree_contains_unbindable(struct mount *mnt)
2420 {
2421 	struct mount *p;
2422 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2423 		if (IS_MNT_UNBINDABLE(p))
2424 			return 1;
2425 	}
2426 	return 0;
2427 }
2428 
2429 static int do_move_mount(struct path *path, const char *old_name)
2430 {
2431 	struct path old_path, parent_path;
2432 	struct mount *p;
2433 	struct mount *old;
2434 	struct mountpoint *mp;
2435 	int err;
2436 	if (!old_name || !*old_name)
2437 		return -EINVAL;
2438 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2439 	if (err)
2440 		return err;
2441 
2442 	mp = lock_mount(path);
2443 	err = PTR_ERR(mp);
2444 	if (IS_ERR(mp))
2445 		goto out;
2446 
2447 	old = real_mount(old_path.mnt);
2448 	p = real_mount(path->mnt);
2449 
2450 	err = -EINVAL;
2451 	if (!check_mnt(p) || !check_mnt(old))
2452 		goto out1;
2453 
2454 	if (old->mnt.mnt_flags & MNT_LOCKED)
2455 		goto out1;
2456 
2457 	err = -EINVAL;
2458 	if (old_path.dentry != old_path.mnt->mnt_root)
2459 		goto out1;
2460 
2461 	if (!mnt_has_parent(old))
2462 		goto out1;
2463 
2464 	if (d_is_dir(path->dentry) !=
2465 	      d_is_dir(old_path.dentry))
2466 		goto out1;
2467 	/*
2468 	 * Don't move a mount residing in a shared parent.
2469 	 */
2470 	if (IS_MNT_SHARED(old->mnt_parent))
2471 		goto out1;
2472 	/*
2473 	 * Don't move a mount tree containing unbindable mounts to a destination
2474 	 * mount which is shared.
2475 	 */
2476 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2477 		goto out1;
2478 	err = -ELOOP;
2479 	for (; mnt_has_parent(p); p = p->mnt_parent)
2480 		if (p == old)
2481 			goto out1;
2482 
2483 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2484 	if (err)
2485 		goto out1;
2486 
2487 	/* if the mount is moved, it should no longer be expire
2488 	 * automatically */
2489 	list_del_init(&old->mnt_expire);
2490 out1:
2491 	unlock_mount(mp);
2492 out:
2493 	if (!err)
2494 		path_put(&parent_path);
2495 	path_put(&old_path);
2496 	return err;
2497 }
2498 
2499 /*
2500  * add a mount into a namespace's mount tree
2501  */
2502 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2503 {
2504 	struct mountpoint *mp;
2505 	struct mount *parent;
2506 	int err;
2507 
2508 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2509 
2510 	mp = lock_mount(path);
2511 	if (IS_ERR(mp))
2512 		return PTR_ERR(mp);
2513 
2514 	parent = real_mount(path->mnt);
2515 	err = -EINVAL;
2516 	if (unlikely(!check_mnt(parent))) {
2517 		/* that's acceptable only for automounts done in private ns */
2518 		if (!(mnt_flags & MNT_SHRINKABLE))
2519 			goto unlock;
2520 		/* ... and for those we'd better have mountpoint still alive */
2521 		if (!parent->mnt_ns)
2522 			goto unlock;
2523 	}
2524 
2525 	/* Refuse the same filesystem on the same mount point */
2526 	err = -EBUSY;
2527 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2528 	    path->mnt->mnt_root == path->dentry)
2529 		goto unlock;
2530 
2531 	err = -EINVAL;
2532 	if (d_is_symlink(newmnt->mnt.mnt_root))
2533 		goto unlock;
2534 
2535 	newmnt->mnt.mnt_flags = mnt_flags;
2536 	err = graft_tree(newmnt, parent, mp);
2537 
2538 unlock:
2539 	unlock_mount(mp);
2540 	return err;
2541 }
2542 
2543 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2544 
2545 /*
2546  * Create a new mount using a superblock configuration and request it
2547  * be added to the namespace tree.
2548  */
2549 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2550 			   unsigned int mnt_flags)
2551 {
2552 	struct vfsmount *mnt;
2553 	struct super_block *sb = fc->root->d_sb;
2554 	int error;
2555 
2556 	error = security_sb_kern_mount(sb);
2557 	if (!error && mount_too_revealing(sb, &mnt_flags))
2558 		error = -EPERM;
2559 
2560 	if (unlikely(error)) {
2561 		fc_drop_locked(fc);
2562 		return error;
2563 	}
2564 
2565 	up_write(&sb->s_umount);
2566 
2567 	mnt = vfs_create_mount(fc);
2568 	if (IS_ERR(mnt))
2569 		return PTR_ERR(mnt);
2570 
2571 	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2572 	if (error < 0)
2573 		mntput(mnt);
2574 	return error;
2575 }
2576 
2577 /*
2578  * create a new mount for userspace and request it to be added into the
2579  * namespace's tree
2580  */
2581 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2582 			int mnt_flags, const char *name, void *data)
2583 {
2584 	struct file_system_type *type;
2585 	struct fs_context *fc;
2586 	const char *subtype = NULL;
2587 	int err = 0;
2588 
2589 	if (!fstype)
2590 		return -EINVAL;
2591 
2592 	type = get_fs_type(fstype);
2593 	if (!type)
2594 		return -ENODEV;
2595 
2596 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2597 		subtype = strchr(fstype, '.');
2598 		if (subtype) {
2599 			subtype++;
2600 			if (!*subtype) {
2601 				put_filesystem(type);
2602 				return -EINVAL;
2603 			}
2604 		} else {
2605 			subtype = "";
2606 		}
2607 	}
2608 
2609 	fc = fs_context_for_mount(type, sb_flags);
2610 	put_filesystem(type);
2611 	if (IS_ERR(fc))
2612 		return PTR_ERR(fc);
2613 
2614 	if (subtype)
2615 		err = vfs_parse_fs_string(fc, "subtype",
2616 					  subtype, strlen(subtype));
2617 	if (!err && name)
2618 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2619 	if (!err)
2620 		err = parse_monolithic_mount_data(fc, data);
2621 	if (!err)
2622 		err = vfs_get_tree(fc);
2623 	if (!err)
2624 		err = do_new_mount_fc(fc, path, mnt_flags);
2625 
2626 	put_fs_context(fc);
2627 	return err;
2628 }
2629 
2630 int finish_automount(struct vfsmount *m, struct path *path)
2631 {
2632 	struct mount *mnt = real_mount(m);
2633 	int err;
2634 	/* The new mount record should have at least 2 refs to prevent it being
2635 	 * expired before we get a chance to add it
2636 	 */
2637 	BUG_ON(mnt_get_count(mnt) < 2);
2638 
2639 	if (m->mnt_sb == path->mnt->mnt_sb &&
2640 	    m->mnt_root == path->dentry) {
2641 		err = -ELOOP;
2642 		goto fail;
2643 	}
2644 
2645 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2646 	if (!err)
2647 		return 0;
2648 fail:
2649 	/* remove m from any expiration list it may be on */
2650 	if (!list_empty(&mnt->mnt_expire)) {
2651 		namespace_lock();
2652 		list_del_init(&mnt->mnt_expire);
2653 		namespace_unlock();
2654 	}
2655 	mntput(m);
2656 	mntput(m);
2657 	return err;
2658 }
2659 
2660 /**
2661  * mnt_set_expiry - Put a mount on an expiration list
2662  * @mnt: The mount to list.
2663  * @expiry_list: The list to add the mount to.
2664  */
2665 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2666 {
2667 	namespace_lock();
2668 
2669 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2670 
2671 	namespace_unlock();
2672 }
2673 EXPORT_SYMBOL(mnt_set_expiry);
2674 
2675 /*
2676  * process a list of expirable mountpoints with the intent of discarding any
2677  * mountpoints that aren't in use and haven't been touched since last we came
2678  * here
2679  */
2680 void mark_mounts_for_expiry(struct list_head *mounts)
2681 {
2682 	struct mount *mnt, *next;
2683 	LIST_HEAD(graveyard);
2684 
2685 	if (list_empty(mounts))
2686 		return;
2687 
2688 	namespace_lock();
2689 	lock_mount_hash();
2690 
2691 	/* extract from the expiration list every vfsmount that matches the
2692 	 * following criteria:
2693 	 * - only referenced by its parent vfsmount
2694 	 * - still marked for expiry (marked on the last call here; marks are
2695 	 *   cleared by mntput())
2696 	 */
2697 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2698 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2699 			propagate_mount_busy(mnt, 1))
2700 			continue;
2701 		list_move(&mnt->mnt_expire, &graveyard);
2702 	}
2703 	while (!list_empty(&graveyard)) {
2704 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2705 		touch_mnt_namespace(mnt->mnt_ns);
2706 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2707 	}
2708 	unlock_mount_hash();
2709 	namespace_unlock();
2710 }
2711 
2712 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2713 
2714 /*
2715  * Ripoff of 'select_parent()'
2716  *
2717  * search the list of submounts for a given mountpoint, and move any
2718  * shrinkable submounts to the 'graveyard' list.
2719  */
2720 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2721 {
2722 	struct mount *this_parent = parent;
2723 	struct list_head *next;
2724 	int found = 0;
2725 
2726 repeat:
2727 	next = this_parent->mnt_mounts.next;
2728 resume:
2729 	while (next != &this_parent->mnt_mounts) {
2730 		struct list_head *tmp = next;
2731 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2732 
2733 		next = tmp->next;
2734 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2735 			continue;
2736 		/*
2737 		 * Descend a level if the d_mounts list is non-empty.
2738 		 */
2739 		if (!list_empty(&mnt->mnt_mounts)) {
2740 			this_parent = mnt;
2741 			goto repeat;
2742 		}
2743 
2744 		if (!propagate_mount_busy(mnt, 1)) {
2745 			list_move_tail(&mnt->mnt_expire, graveyard);
2746 			found++;
2747 		}
2748 	}
2749 	/*
2750 	 * All done at this level ... ascend and resume the search
2751 	 */
2752 	if (this_parent != parent) {
2753 		next = this_parent->mnt_child.next;
2754 		this_parent = this_parent->mnt_parent;
2755 		goto resume;
2756 	}
2757 	return found;
2758 }
2759 
2760 /*
2761  * process a list of expirable mountpoints with the intent of discarding any
2762  * submounts of a specific parent mountpoint
2763  *
2764  * mount_lock must be held for write
2765  */
2766 static void shrink_submounts(struct mount *mnt)
2767 {
2768 	LIST_HEAD(graveyard);
2769 	struct mount *m;
2770 
2771 	/* extract submounts of 'mountpoint' from the expiration list */
2772 	while (select_submounts(mnt, &graveyard)) {
2773 		while (!list_empty(&graveyard)) {
2774 			m = list_first_entry(&graveyard, struct mount,
2775 						mnt_expire);
2776 			touch_mnt_namespace(m->mnt_ns);
2777 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2778 		}
2779 	}
2780 }
2781 
2782 /*
2783  * Some copy_from_user() implementations do not return the exact number of
2784  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2785  * Note that this function differs from copy_from_user() in that it will oops
2786  * on bad values of `to', rather than returning a short copy.
2787  */
2788 static long exact_copy_from_user(void *to, const void __user * from,
2789 				 unsigned long n)
2790 {
2791 	char *t = to;
2792 	const char __user *f = from;
2793 	char c;
2794 
2795 	if (!access_ok(from, n))
2796 		return n;
2797 
2798 	while (n) {
2799 		if (__get_user(c, f)) {
2800 			memset(t, 0, n);
2801 			break;
2802 		}
2803 		*t++ = c;
2804 		f++;
2805 		n--;
2806 	}
2807 	return n;
2808 }
2809 
2810 void *copy_mount_options(const void __user * data)
2811 {
2812 	int i;
2813 	unsigned long size;
2814 	char *copy;
2815 
2816 	if (!data)
2817 		return NULL;
2818 
2819 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2820 	if (!copy)
2821 		return ERR_PTR(-ENOMEM);
2822 
2823 	/* We only care that *some* data at the address the user
2824 	 * gave us is valid.  Just in case, we'll zero
2825 	 * the remainder of the page.
2826 	 */
2827 	/* copy_from_user cannot cross TASK_SIZE ! */
2828 	size = TASK_SIZE - (unsigned long)data;
2829 	if (size > PAGE_SIZE)
2830 		size = PAGE_SIZE;
2831 
2832 	i = size - exact_copy_from_user(copy, data, size);
2833 	if (!i) {
2834 		kfree(copy);
2835 		return ERR_PTR(-EFAULT);
2836 	}
2837 	if (i != PAGE_SIZE)
2838 		memset(copy + i, 0, PAGE_SIZE - i);
2839 	return copy;
2840 }
2841 
2842 char *copy_mount_string(const void __user *data)
2843 {
2844 	return data ? strndup_user(data, PATH_MAX) : NULL;
2845 }
2846 
2847 /*
2848  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2849  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2850  *
2851  * data is a (void *) that can point to any structure up to
2852  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2853  * information (or be NULL).
2854  *
2855  * Pre-0.97 versions of mount() didn't have a flags word.
2856  * When the flags word was introduced its top half was required
2857  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2858  * Therefore, if this magic number is present, it carries no information
2859  * and must be discarded.
2860  */
2861 long do_mount(const char *dev_name, const char __user *dir_name,
2862 		const char *type_page, unsigned long flags, void *data_page)
2863 {
2864 	struct path path;
2865 	unsigned int mnt_flags = 0, sb_flags;
2866 	int retval = 0;
2867 
2868 	/* Discard magic */
2869 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2870 		flags &= ~MS_MGC_MSK;
2871 
2872 	/* Basic sanity checks */
2873 	if (data_page)
2874 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2875 
2876 	if (flags & MS_NOUSER)
2877 		return -EINVAL;
2878 
2879 	/* ... and get the mountpoint */
2880 	retval = user_path(dir_name, &path);
2881 	if (retval)
2882 		return retval;
2883 
2884 	retval = security_sb_mount(dev_name, &path,
2885 				   type_page, flags, data_page);
2886 	if (!retval && !may_mount())
2887 		retval = -EPERM;
2888 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2889 		retval = -EPERM;
2890 	if (retval)
2891 		goto dput_out;
2892 
2893 	/* Default to relatime unless overriden */
2894 	if (!(flags & MS_NOATIME))
2895 		mnt_flags |= MNT_RELATIME;
2896 
2897 	/* Separate the per-mountpoint flags */
2898 	if (flags & MS_NOSUID)
2899 		mnt_flags |= MNT_NOSUID;
2900 	if (flags & MS_NODEV)
2901 		mnt_flags |= MNT_NODEV;
2902 	if (flags & MS_NOEXEC)
2903 		mnt_flags |= MNT_NOEXEC;
2904 	if (flags & MS_NOATIME)
2905 		mnt_flags |= MNT_NOATIME;
2906 	if (flags & MS_NODIRATIME)
2907 		mnt_flags |= MNT_NODIRATIME;
2908 	if (flags & MS_STRICTATIME)
2909 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2910 	if (flags & MS_RDONLY)
2911 		mnt_flags |= MNT_READONLY;
2912 
2913 	/* The default atime for remount is preservation */
2914 	if ((flags & MS_REMOUNT) &&
2915 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2916 		       MS_STRICTATIME)) == 0)) {
2917 		mnt_flags &= ~MNT_ATIME_MASK;
2918 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2919 	}
2920 
2921 	sb_flags = flags & (SB_RDONLY |
2922 			    SB_SYNCHRONOUS |
2923 			    SB_MANDLOCK |
2924 			    SB_DIRSYNC |
2925 			    SB_SILENT |
2926 			    SB_POSIXACL |
2927 			    SB_LAZYTIME |
2928 			    SB_I_VERSION);
2929 
2930 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2931 		retval = do_reconfigure_mnt(&path, mnt_flags);
2932 	else if (flags & MS_REMOUNT)
2933 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
2934 				    data_page);
2935 	else if (flags & MS_BIND)
2936 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2937 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2938 		retval = do_change_type(&path, flags);
2939 	else if (flags & MS_MOVE)
2940 		retval = do_move_mount(&path, dev_name);
2941 	else
2942 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2943 				      dev_name, data_page);
2944 dput_out:
2945 	path_put(&path);
2946 	return retval;
2947 }
2948 
2949 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2950 {
2951 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2952 }
2953 
2954 static void dec_mnt_namespaces(struct ucounts *ucounts)
2955 {
2956 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2957 }
2958 
2959 static void free_mnt_ns(struct mnt_namespace *ns)
2960 {
2961 	if (!is_anon_ns(ns))
2962 		ns_free_inum(&ns->ns);
2963 	dec_mnt_namespaces(ns->ucounts);
2964 	put_user_ns(ns->user_ns);
2965 	kfree(ns);
2966 }
2967 
2968 /*
2969  * Assign a sequence number so we can detect when we attempt to bind
2970  * mount a reference to an older mount namespace into the current
2971  * mount namespace, preventing reference counting loops.  A 64bit
2972  * number incrementing at 10Ghz will take 12,427 years to wrap which
2973  * is effectively never, so we can ignore the possibility.
2974  */
2975 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2976 
2977 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
2978 {
2979 	struct mnt_namespace *new_ns;
2980 	struct ucounts *ucounts;
2981 	int ret;
2982 
2983 	ucounts = inc_mnt_namespaces(user_ns);
2984 	if (!ucounts)
2985 		return ERR_PTR(-ENOSPC);
2986 
2987 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2988 	if (!new_ns) {
2989 		dec_mnt_namespaces(ucounts);
2990 		return ERR_PTR(-ENOMEM);
2991 	}
2992 	if (!anon) {
2993 		ret = ns_alloc_inum(&new_ns->ns);
2994 		if (ret) {
2995 			kfree(new_ns);
2996 			dec_mnt_namespaces(ucounts);
2997 			return ERR_PTR(ret);
2998 		}
2999 	}
3000 	new_ns->ns.ops = &mntns_operations;
3001 	if (!anon)
3002 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3003 	atomic_set(&new_ns->count, 1);
3004 	INIT_LIST_HEAD(&new_ns->list);
3005 	init_waitqueue_head(&new_ns->poll);
3006 	new_ns->user_ns = get_user_ns(user_ns);
3007 	new_ns->ucounts = ucounts;
3008 	return new_ns;
3009 }
3010 
3011 __latent_entropy
3012 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3013 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3014 {
3015 	struct mnt_namespace *new_ns;
3016 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3017 	struct mount *p, *q;
3018 	struct mount *old;
3019 	struct mount *new;
3020 	int copy_flags;
3021 
3022 	BUG_ON(!ns);
3023 
3024 	if (likely(!(flags & CLONE_NEWNS))) {
3025 		get_mnt_ns(ns);
3026 		return ns;
3027 	}
3028 
3029 	old = ns->root;
3030 
3031 	new_ns = alloc_mnt_ns(user_ns, false);
3032 	if (IS_ERR(new_ns))
3033 		return new_ns;
3034 
3035 	namespace_lock();
3036 	/* First pass: copy the tree topology */
3037 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3038 	if (user_ns != ns->user_ns)
3039 		copy_flags |= CL_SHARED_TO_SLAVE;
3040 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3041 	if (IS_ERR(new)) {
3042 		namespace_unlock();
3043 		free_mnt_ns(new_ns);
3044 		return ERR_CAST(new);
3045 	}
3046 	if (user_ns != ns->user_ns) {
3047 		lock_mount_hash();
3048 		lock_mnt_tree(new);
3049 		unlock_mount_hash();
3050 	}
3051 	new_ns->root = new;
3052 	list_add_tail(&new_ns->list, &new->mnt_list);
3053 
3054 	/*
3055 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3056 	 * as belonging to new namespace.  We have already acquired a private
3057 	 * fs_struct, so tsk->fs->lock is not needed.
3058 	 */
3059 	p = old;
3060 	q = new;
3061 	while (p) {
3062 		q->mnt_ns = new_ns;
3063 		new_ns->mounts++;
3064 		if (new_fs) {
3065 			if (&p->mnt == new_fs->root.mnt) {
3066 				new_fs->root.mnt = mntget(&q->mnt);
3067 				rootmnt = &p->mnt;
3068 			}
3069 			if (&p->mnt == new_fs->pwd.mnt) {
3070 				new_fs->pwd.mnt = mntget(&q->mnt);
3071 				pwdmnt = &p->mnt;
3072 			}
3073 		}
3074 		p = next_mnt(p, old);
3075 		q = next_mnt(q, new);
3076 		if (!q)
3077 			break;
3078 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3079 			p = next_mnt(p, old);
3080 	}
3081 	namespace_unlock();
3082 
3083 	if (rootmnt)
3084 		mntput(rootmnt);
3085 	if (pwdmnt)
3086 		mntput(pwdmnt);
3087 
3088 	return new_ns;
3089 }
3090 
3091 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3092 {
3093 	struct mount *mnt = real_mount(m);
3094 	struct mnt_namespace *ns;
3095 	struct super_block *s;
3096 	struct path path;
3097 	int err;
3098 
3099 	ns = alloc_mnt_ns(&init_user_ns, true);
3100 	if (IS_ERR(ns)) {
3101 		mntput(m);
3102 		return ERR_CAST(ns);
3103 	}
3104 	mnt->mnt_ns = ns;
3105 	ns->root = mnt;
3106 	ns->mounts++;
3107 	list_add(&mnt->mnt_list, &ns->list);
3108 
3109 	err = vfs_path_lookup(m->mnt_root, m,
3110 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3111 
3112 	put_mnt_ns(ns);
3113 
3114 	if (err)
3115 		return ERR_PTR(err);
3116 
3117 	/* trade a vfsmount reference for active sb one */
3118 	s = path.mnt->mnt_sb;
3119 	atomic_inc(&s->s_active);
3120 	mntput(path.mnt);
3121 	/* lock the sucker */
3122 	down_write(&s->s_umount);
3123 	/* ... and return the root of (sub)tree on it */
3124 	return path.dentry;
3125 }
3126 EXPORT_SYMBOL(mount_subtree);
3127 
3128 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3129 	       unsigned long flags, void __user *data)
3130 {
3131 	int ret;
3132 	char *kernel_type;
3133 	char *kernel_dev;
3134 	void *options;
3135 
3136 	kernel_type = copy_mount_string(type);
3137 	ret = PTR_ERR(kernel_type);
3138 	if (IS_ERR(kernel_type))
3139 		goto out_type;
3140 
3141 	kernel_dev = copy_mount_string(dev_name);
3142 	ret = PTR_ERR(kernel_dev);
3143 	if (IS_ERR(kernel_dev))
3144 		goto out_dev;
3145 
3146 	options = copy_mount_options(data);
3147 	ret = PTR_ERR(options);
3148 	if (IS_ERR(options))
3149 		goto out_data;
3150 
3151 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3152 
3153 	kfree(options);
3154 out_data:
3155 	kfree(kernel_dev);
3156 out_dev:
3157 	kfree(kernel_type);
3158 out_type:
3159 	return ret;
3160 }
3161 
3162 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3163 		char __user *, type, unsigned long, flags, void __user *, data)
3164 {
3165 	return ksys_mount(dev_name, dir_name, type, flags, data);
3166 }
3167 
3168 /*
3169  * Return true if path is reachable from root
3170  *
3171  * namespace_sem or mount_lock is held
3172  */
3173 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3174 			 const struct path *root)
3175 {
3176 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3177 		dentry = mnt->mnt_mountpoint;
3178 		mnt = mnt->mnt_parent;
3179 	}
3180 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3181 }
3182 
3183 bool path_is_under(const struct path *path1, const struct path *path2)
3184 {
3185 	bool res;
3186 	read_seqlock_excl(&mount_lock);
3187 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3188 	read_sequnlock_excl(&mount_lock);
3189 	return res;
3190 }
3191 EXPORT_SYMBOL(path_is_under);
3192 
3193 /*
3194  * pivot_root Semantics:
3195  * Moves the root file system of the current process to the directory put_old,
3196  * makes new_root as the new root file system of the current process, and sets
3197  * root/cwd of all processes which had them on the current root to new_root.
3198  *
3199  * Restrictions:
3200  * The new_root and put_old must be directories, and  must not be on the
3201  * same file  system as the current process root. The put_old  must  be
3202  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3203  * pointed to by put_old must yield the same directory as new_root. No other
3204  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3205  *
3206  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3207  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3208  * in this situation.
3209  *
3210  * Notes:
3211  *  - we don't move root/cwd if they are not at the root (reason: if something
3212  *    cared enough to change them, it's probably wrong to force them elsewhere)
3213  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3214  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3215  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3216  *    first.
3217  */
3218 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3219 		const char __user *, put_old)
3220 {
3221 	struct path new, old, parent_path, root_parent, root;
3222 	struct mount *new_mnt, *root_mnt, *old_mnt;
3223 	struct mountpoint *old_mp, *root_mp;
3224 	int error;
3225 
3226 	if (!may_mount())
3227 		return -EPERM;
3228 
3229 	error = user_path_dir(new_root, &new);
3230 	if (error)
3231 		goto out0;
3232 
3233 	error = user_path_dir(put_old, &old);
3234 	if (error)
3235 		goto out1;
3236 
3237 	error = security_sb_pivotroot(&old, &new);
3238 	if (error)
3239 		goto out2;
3240 
3241 	get_fs_root(current->fs, &root);
3242 	old_mp = lock_mount(&old);
3243 	error = PTR_ERR(old_mp);
3244 	if (IS_ERR(old_mp))
3245 		goto out3;
3246 
3247 	error = -EINVAL;
3248 	new_mnt = real_mount(new.mnt);
3249 	root_mnt = real_mount(root.mnt);
3250 	old_mnt = real_mount(old.mnt);
3251 	if (IS_MNT_SHARED(old_mnt) ||
3252 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3253 		IS_MNT_SHARED(root_mnt->mnt_parent))
3254 		goto out4;
3255 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3256 		goto out4;
3257 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3258 		goto out4;
3259 	error = -ENOENT;
3260 	if (d_unlinked(new.dentry))
3261 		goto out4;
3262 	error = -EBUSY;
3263 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3264 		goto out4; /* loop, on the same file system  */
3265 	error = -EINVAL;
3266 	if (root.mnt->mnt_root != root.dentry)
3267 		goto out4; /* not a mountpoint */
3268 	if (!mnt_has_parent(root_mnt))
3269 		goto out4; /* not attached */
3270 	root_mp = root_mnt->mnt_mp;
3271 	if (new.mnt->mnt_root != new.dentry)
3272 		goto out4; /* not a mountpoint */
3273 	if (!mnt_has_parent(new_mnt))
3274 		goto out4; /* not attached */
3275 	/* make sure we can reach put_old from new_root */
3276 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3277 		goto out4;
3278 	/* make certain new is below the root */
3279 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3280 		goto out4;
3281 	root_mp->m_count++; /* pin it so it won't go away */
3282 	lock_mount_hash();
3283 	detach_mnt(new_mnt, &parent_path);
3284 	detach_mnt(root_mnt, &root_parent);
3285 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3286 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3287 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3288 	}
3289 	/* mount old root on put_old */
3290 	attach_mnt(root_mnt, old_mnt, old_mp);
3291 	/* mount new_root on / */
3292 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3293 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3294 	/* A moved mount should not expire automatically */
3295 	list_del_init(&new_mnt->mnt_expire);
3296 	put_mountpoint(root_mp);
3297 	unlock_mount_hash();
3298 	chroot_fs_refs(&root, &new);
3299 	error = 0;
3300 out4:
3301 	unlock_mount(old_mp);
3302 	if (!error) {
3303 		path_put(&root_parent);
3304 		path_put(&parent_path);
3305 	}
3306 out3:
3307 	path_put(&root);
3308 out2:
3309 	path_put(&old);
3310 out1:
3311 	path_put(&new);
3312 out0:
3313 	return error;
3314 }
3315 
3316 static void __init init_mount_tree(void)
3317 {
3318 	struct vfsmount *mnt;
3319 	struct mount *m;
3320 	struct mnt_namespace *ns;
3321 	struct path root;
3322 	struct file_system_type *type;
3323 
3324 	type = get_fs_type("rootfs");
3325 	if (!type)
3326 		panic("Can't find rootfs type");
3327 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3328 	put_filesystem(type);
3329 	if (IS_ERR(mnt))
3330 		panic("Can't create rootfs");
3331 
3332 	ns = alloc_mnt_ns(&init_user_ns, false);
3333 	if (IS_ERR(ns))
3334 		panic("Can't allocate initial namespace");
3335 	m = real_mount(mnt);
3336 	m->mnt_ns = ns;
3337 	ns->root = m;
3338 	ns->mounts = 1;
3339 	list_add(&m->mnt_list, &ns->list);
3340 	init_task.nsproxy->mnt_ns = ns;
3341 	get_mnt_ns(ns);
3342 
3343 	root.mnt = mnt;
3344 	root.dentry = mnt->mnt_root;
3345 	mnt->mnt_flags |= MNT_LOCKED;
3346 
3347 	set_fs_pwd(current->fs, &root);
3348 	set_fs_root(current->fs, &root);
3349 }
3350 
3351 void __init mnt_init(void)
3352 {
3353 	int err;
3354 
3355 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3356 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3357 
3358 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3359 				sizeof(struct hlist_head),
3360 				mhash_entries, 19,
3361 				HASH_ZERO,
3362 				&m_hash_shift, &m_hash_mask, 0, 0);
3363 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3364 				sizeof(struct hlist_head),
3365 				mphash_entries, 19,
3366 				HASH_ZERO,
3367 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3368 
3369 	if (!mount_hashtable || !mountpoint_hashtable)
3370 		panic("Failed to allocate mount hash table\n");
3371 
3372 	kernfs_init();
3373 
3374 	err = sysfs_init();
3375 	if (err)
3376 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3377 			__func__, err);
3378 	fs_kobj = kobject_create_and_add("fs", NULL);
3379 	if (!fs_kobj)
3380 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3381 	init_rootfs();
3382 	init_mount_tree();
3383 }
3384 
3385 void put_mnt_ns(struct mnt_namespace *ns)
3386 {
3387 	if (!atomic_dec_and_test(&ns->count))
3388 		return;
3389 	drop_collected_mounts(&ns->root->mnt);
3390 	free_mnt_ns(ns);
3391 }
3392 
3393 struct vfsmount *kern_mount(struct file_system_type *type)
3394 {
3395 	struct vfsmount *mnt;
3396 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3397 	if (!IS_ERR(mnt)) {
3398 		/*
3399 		 * it is a longterm mount, don't release mnt until
3400 		 * we unmount before file sys is unregistered
3401 		*/
3402 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3403 	}
3404 	return mnt;
3405 }
3406 EXPORT_SYMBOL_GPL(kern_mount);
3407 
3408 void kern_unmount(struct vfsmount *mnt)
3409 {
3410 	/* release long term mount so mount point can be released */
3411 	if (!IS_ERR_OR_NULL(mnt)) {
3412 		real_mount(mnt)->mnt_ns = NULL;
3413 		synchronize_rcu();	/* yecchhh... */
3414 		mntput(mnt);
3415 	}
3416 }
3417 EXPORT_SYMBOL(kern_unmount);
3418 
3419 bool our_mnt(struct vfsmount *mnt)
3420 {
3421 	return check_mnt(real_mount(mnt));
3422 }
3423 
3424 bool current_chrooted(void)
3425 {
3426 	/* Does the current process have a non-standard root */
3427 	struct path ns_root;
3428 	struct path fs_root;
3429 	bool chrooted;
3430 
3431 	/* Find the namespace root */
3432 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3433 	ns_root.dentry = ns_root.mnt->mnt_root;
3434 	path_get(&ns_root);
3435 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3436 		;
3437 
3438 	get_fs_root(current->fs, &fs_root);
3439 
3440 	chrooted = !path_equal(&fs_root, &ns_root);
3441 
3442 	path_put(&fs_root);
3443 	path_put(&ns_root);
3444 
3445 	return chrooted;
3446 }
3447 
3448 static bool mnt_already_visible(struct mnt_namespace *ns,
3449 				const struct super_block *sb,
3450 				int *new_mnt_flags)
3451 {
3452 	int new_flags = *new_mnt_flags;
3453 	struct mount *mnt;
3454 	bool visible = false;
3455 
3456 	down_read(&namespace_sem);
3457 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3458 		struct mount *child;
3459 		int mnt_flags;
3460 
3461 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3462 			continue;
3463 
3464 		/* This mount is not fully visible if it's root directory
3465 		 * is not the root directory of the filesystem.
3466 		 */
3467 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3468 			continue;
3469 
3470 		/* A local view of the mount flags */
3471 		mnt_flags = mnt->mnt.mnt_flags;
3472 
3473 		/* Don't miss readonly hidden in the superblock flags */
3474 		if (sb_rdonly(mnt->mnt.mnt_sb))
3475 			mnt_flags |= MNT_LOCK_READONLY;
3476 
3477 		/* Verify the mount flags are equal to or more permissive
3478 		 * than the proposed new mount.
3479 		 */
3480 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3481 		    !(new_flags & MNT_READONLY))
3482 			continue;
3483 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3484 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3485 			continue;
3486 
3487 		/* This mount is not fully visible if there are any
3488 		 * locked child mounts that cover anything except for
3489 		 * empty directories.
3490 		 */
3491 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3492 			struct inode *inode = child->mnt_mountpoint->d_inode;
3493 			/* Only worry about locked mounts */
3494 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3495 				continue;
3496 			/* Is the directory permanetly empty? */
3497 			if (!is_empty_dir_inode(inode))
3498 				goto next;
3499 		}
3500 		/* Preserve the locked attributes */
3501 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3502 					       MNT_LOCK_ATIME);
3503 		visible = true;
3504 		goto found;
3505 	next:	;
3506 	}
3507 found:
3508 	up_read(&namespace_sem);
3509 	return visible;
3510 }
3511 
3512 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3513 {
3514 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3515 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3516 	unsigned long s_iflags;
3517 
3518 	if (ns->user_ns == &init_user_ns)
3519 		return false;
3520 
3521 	/* Can this filesystem be too revealing? */
3522 	s_iflags = sb->s_iflags;
3523 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3524 		return false;
3525 
3526 	if ((s_iflags & required_iflags) != required_iflags) {
3527 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3528 			  required_iflags);
3529 		return true;
3530 	}
3531 
3532 	return !mnt_already_visible(ns, sb, new_mnt_flags);
3533 }
3534 
3535 bool mnt_may_suid(struct vfsmount *mnt)
3536 {
3537 	/*
3538 	 * Foreign mounts (accessed via fchdir or through /proc
3539 	 * symlinks) are always treated as if they are nosuid.  This
3540 	 * prevents namespaces from trusting potentially unsafe
3541 	 * suid/sgid bits, file caps, or security labels that originate
3542 	 * in other namespaces.
3543 	 */
3544 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3545 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3546 }
3547 
3548 static struct ns_common *mntns_get(struct task_struct *task)
3549 {
3550 	struct ns_common *ns = NULL;
3551 	struct nsproxy *nsproxy;
3552 
3553 	task_lock(task);
3554 	nsproxy = task->nsproxy;
3555 	if (nsproxy) {
3556 		ns = &nsproxy->mnt_ns->ns;
3557 		get_mnt_ns(to_mnt_ns(ns));
3558 	}
3559 	task_unlock(task);
3560 
3561 	return ns;
3562 }
3563 
3564 static void mntns_put(struct ns_common *ns)
3565 {
3566 	put_mnt_ns(to_mnt_ns(ns));
3567 }
3568 
3569 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3570 {
3571 	struct fs_struct *fs = current->fs;
3572 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3573 	struct path root;
3574 	int err;
3575 
3576 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3577 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3578 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3579 		return -EPERM;
3580 
3581 	if (is_anon_ns(mnt_ns))
3582 		return -EINVAL;
3583 
3584 	if (fs->users != 1)
3585 		return -EINVAL;
3586 
3587 	get_mnt_ns(mnt_ns);
3588 	old_mnt_ns = nsproxy->mnt_ns;
3589 	nsproxy->mnt_ns = mnt_ns;
3590 
3591 	/* Find the root */
3592 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3593 				"/", LOOKUP_DOWN, &root);
3594 	if (err) {
3595 		/* revert to old namespace */
3596 		nsproxy->mnt_ns = old_mnt_ns;
3597 		put_mnt_ns(mnt_ns);
3598 		return err;
3599 	}
3600 
3601 	put_mnt_ns(old_mnt_ns);
3602 
3603 	/* Update the pwd and root */
3604 	set_fs_pwd(fs, &root);
3605 	set_fs_root(fs, &root);
3606 
3607 	path_put(&root);
3608 	return 0;
3609 }
3610 
3611 static struct user_namespace *mntns_owner(struct ns_common *ns)
3612 {
3613 	return to_mnt_ns(ns)->user_ns;
3614 }
3615 
3616 const struct proc_ns_operations mntns_operations = {
3617 	.name		= "mnt",
3618 	.type		= CLONE_NEWNS,
3619 	.get		= mntns_get,
3620 	.put		= mntns_put,
3621 	.install	= mntns_install,
3622 	.owner		= mntns_owner,
3623 };
3624