1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/nospec.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_IDA(mnt_id_ida); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(1ULL << 32); 74 75 static struct hlist_head *mount_hashtable __ro_after_init; 76 static struct hlist_head *mountpoint_hashtable __ro_after_init; 77 static struct kmem_cache *mnt_cache __ro_after_init; 78 static DECLARE_RWSEM(namespace_sem); 79 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 80 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 81 82 struct mount_kattr { 83 unsigned int attr_set; 84 unsigned int attr_clr; 85 unsigned int propagation; 86 unsigned int lookup_flags; 87 bool recurse; 88 struct user_namespace *mnt_userns; 89 struct mnt_idmap *mnt_idmap; 90 }; 91 92 /* /sys/fs */ 93 struct kobject *fs_kobj __ro_after_init; 94 EXPORT_SYMBOL_GPL(fs_kobj); 95 96 /* 97 * vfsmount lock may be taken for read to prevent changes to the 98 * vfsmount hash, ie. during mountpoint lookups or walking back 99 * up the tree. 100 * 101 * It should be taken for write in all cases where the vfsmount 102 * tree or hash is modified or when a vfsmount structure is modified. 103 */ 104 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 105 106 static inline void lock_mount_hash(void) 107 { 108 write_seqlock(&mount_lock); 109 } 110 111 static inline void unlock_mount_hash(void) 112 { 113 write_sequnlock(&mount_lock); 114 } 115 116 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 117 { 118 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 119 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 120 tmp = tmp + (tmp >> m_hash_shift); 121 return &mount_hashtable[tmp & m_hash_mask]; 122 } 123 124 static inline struct hlist_head *mp_hash(struct dentry *dentry) 125 { 126 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 127 tmp = tmp + (tmp >> mp_hash_shift); 128 return &mountpoint_hashtable[tmp & mp_hash_mask]; 129 } 130 131 static int mnt_alloc_id(struct mount *mnt) 132 { 133 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 134 135 if (res < 0) 136 return res; 137 mnt->mnt_id = res; 138 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr); 139 return 0; 140 } 141 142 static void mnt_free_id(struct mount *mnt) 143 { 144 ida_free(&mnt_id_ida, mnt->mnt_id); 145 } 146 147 /* 148 * Allocate a new peer group ID 149 */ 150 static int mnt_alloc_group_id(struct mount *mnt) 151 { 152 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 153 154 if (res < 0) 155 return res; 156 mnt->mnt_group_id = res; 157 return 0; 158 } 159 160 /* 161 * Release a peer group ID 162 */ 163 void mnt_release_group_id(struct mount *mnt) 164 { 165 ida_free(&mnt_group_ida, mnt->mnt_group_id); 166 mnt->mnt_group_id = 0; 167 } 168 169 /* 170 * vfsmount lock must be held for read 171 */ 172 static inline void mnt_add_count(struct mount *mnt, int n) 173 { 174 #ifdef CONFIG_SMP 175 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 176 #else 177 preempt_disable(); 178 mnt->mnt_count += n; 179 preempt_enable(); 180 #endif 181 } 182 183 /* 184 * vfsmount lock must be held for write 185 */ 186 int mnt_get_count(struct mount *mnt) 187 { 188 #ifdef CONFIG_SMP 189 int count = 0; 190 int cpu; 191 192 for_each_possible_cpu(cpu) { 193 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 194 } 195 196 return count; 197 #else 198 return mnt->mnt_count; 199 #endif 200 } 201 202 static struct mount *alloc_vfsmnt(const char *name) 203 { 204 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 205 if (mnt) { 206 int err; 207 208 err = mnt_alloc_id(mnt); 209 if (err) 210 goto out_free_cache; 211 212 if (name) { 213 mnt->mnt_devname = kstrdup_const(name, 214 GFP_KERNEL_ACCOUNT); 215 if (!mnt->mnt_devname) 216 goto out_free_id; 217 } 218 219 #ifdef CONFIG_SMP 220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 221 if (!mnt->mnt_pcp) 222 goto out_free_devname; 223 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 225 #else 226 mnt->mnt_count = 1; 227 mnt->mnt_writers = 0; 228 #endif 229 230 INIT_HLIST_NODE(&mnt->mnt_hash); 231 INIT_LIST_HEAD(&mnt->mnt_child); 232 INIT_LIST_HEAD(&mnt->mnt_mounts); 233 INIT_LIST_HEAD(&mnt->mnt_list); 234 INIT_LIST_HEAD(&mnt->mnt_expire); 235 INIT_LIST_HEAD(&mnt->mnt_share); 236 INIT_LIST_HEAD(&mnt->mnt_slave_list); 237 INIT_LIST_HEAD(&mnt->mnt_slave); 238 INIT_HLIST_NODE(&mnt->mnt_mp_list); 239 INIT_LIST_HEAD(&mnt->mnt_umounting); 240 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 241 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 242 } 243 return mnt; 244 245 #ifdef CONFIG_SMP 246 out_free_devname: 247 kfree_const(mnt->mnt_devname); 248 #endif 249 out_free_id: 250 mnt_free_id(mnt); 251 out_free_cache: 252 kmem_cache_free(mnt_cache, mnt); 253 return NULL; 254 } 255 256 /* 257 * Most r/o checks on a fs are for operations that take 258 * discrete amounts of time, like a write() or unlink(). 259 * We must keep track of when those operations start 260 * (for permission checks) and when they end, so that 261 * we can determine when writes are able to occur to 262 * a filesystem. 263 */ 264 /* 265 * __mnt_is_readonly: check whether a mount is read-only 266 * @mnt: the mount to check for its write status 267 * 268 * This shouldn't be used directly ouside of the VFS. 269 * It does not guarantee that the filesystem will stay 270 * r/w, just that it is right *now*. This can not and 271 * should not be used in place of IS_RDONLY(inode). 272 * mnt_want/drop_write() will _keep_ the filesystem 273 * r/w. 274 */ 275 bool __mnt_is_readonly(struct vfsmount *mnt) 276 { 277 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 278 } 279 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 280 281 static inline void mnt_inc_writers(struct mount *mnt) 282 { 283 #ifdef CONFIG_SMP 284 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 285 #else 286 mnt->mnt_writers++; 287 #endif 288 } 289 290 static inline void mnt_dec_writers(struct mount *mnt) 291 { 292 #ifdef CONFIG_SMP 293 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 294 #else 295 mnt->mnt_writers--; 296 #endif 297 } 298 299 static unsigned int mnt_get_writers(struct mount *mnt) 300 { 301 #ifdef CONFIG_SMP 302 unsigned int count = 0; 303 int cpu; 304 305 for_each_possible_cpu(cpu) { 306 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 307 } 308 309 return count; 310 #else 311 return mnt->mnt_writers; 312 #endif 313 } 314 315 static int mnt_is_readonly(struct vfsmount *mnt) 316 { 317 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 318 return 1; 319 /* 320 * The barrier pairs with the barrier in sb_start_ro_state_change() 321 * making sure if we don't see s_readonly_remount set yet, we also will 322 * not see any superblock / mount flag changes done by remount. 323 * It also pairs with the barrier in sb_end_ro_state_change() 324 * assuring that if we see s_readonly_remount already cleared, we will 325 * see the values of superblock / mount flags updated by remount. 326 */ 327 smp_rmb(); 328 return __mnt_is_readonly(mnt); 329 } 330 331 /* 332 * Most r/o & frozen checks on a fs are for operations that take discrete 333 * amounts of time, like a write() or unlink(). We must keep track of when 334 * those operations start (for permission checks) and when they end, so that we 335 * can determine when writes are able to occur to a filesystem. 336 */ 337 /** 338 * mnt_get_write_access - get write access to a mount without freeze protection 339 * @m: the mount on which to take a write 340 * 341 * This tells the low-level filesystem that a write is about to be performed to 342 * it, and makes sure that writes are allowed (mnt it read-write) before 343 * returning success. This operation does not protect against filesystem being 344 * frozen. When the write operation is finished, mnt_put_write_access() must be 345 * called. This is effectively a refcount. 346 */ 347 int mnt_get_write_access(struct vfsmount *m) 348 { 349 struct mount *mnt = real_mount(m); 350 int ret = 0; 351 352 preempt_disable(); 353 mnt_inc_writers(mnt); 354 /* 355 * The store to mnt_inc_writers must be visible before we pass 356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 357 * incremented count after it has set MNT_WRITE_HOLD. 358 */ 359 smp_mb(); 360 might_lock(&mount_lock.lock); 361 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 362 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 363 cpu_relax(); 364 } else { 365 /* 366 * This prevents priority inversion, if the task 367 * setting MNT_WRITE_HOLD got preempted on a remote 368 * CPU, and it prevents life lock if the task setting 369 * MNT_WRITE_HOLD has a lower priority and is bound to 370 * the same CPU as the task that is spinning here. 371 */ 372 preempt_enable(); 373 lock_mount_hash(); 374 unlock_mount_hash(); 375 preempt_disable(); 376 } 377 } 378 /* 379 * The barrier pairs with the barrier sb_start_ro_state_change() making 380 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 381 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 382 * mnt_is_readonly() and bail in case we are racing with remount 383 * read-only. 384 */ 385 smp_rmb(); 386 if (mnt_is_readonly(m)) { 387 mnt_dec_writers(mnt); 388 ret = -EROFS; 389 } 390 preempt_enable(); 391 392 return ret; 393 } 394 EXPORT_SYMBOL_GPL(mnt_get_write_access); 395 396 /** 397 * mnt_want_write - get write access to a mount 398 * @m: the mount on which to take a write 399 * 400 * This tells the low-level filesystem that a write is about to be performed to 401 * it, and makes sure that writes are allowed (mount is read-write, filesystem 402 * is not frozen) before returning success. When the write operation is 403 * finished, mnt_drop_write() must be called. This is effectively a refcount. 404 */ 405 int mnt_want_write(struct vfsmount *m) 406 { 407 int ret; 408 409 sb_start_write(m->mnt_sb); 410 ret = mnt_get_write_access(m); 411 if (ret) 412 sb_end_write(m->mnt_sb); 413 return ret; 414 } 415 EXPORT_SYMBOL_GPL(mnt_want_write); 416 417 /** 418 * mnt_get_write_access_file - get write access to a file's mount 419 * @file: the file who's mount on which to take a write 420 * 421 * This is like mnt_get_write_access, but if @file is already open for write it 422 * skips incrementing mnt_writers (since the open file already has a reference) 423 * and instead only does the check for emergency r/o remounts. This must be 424 * paired with mnt_put_write_access_file. 425 */ 426 int mnt_get_write_access_file(struct file *file) 427 { 428 if (file->f_mode & FMODE_WRITER) { 429 /* 430 * Superblock may have become readonly while there are still 431 * writable fd's, e.g. due to a fs error with errors=remount-ro 432 */ 433 if (__mnt_is_readonly(file->f_path.mnt)) 434 return -EROFS; 435 return 0; 436 } 437 return mnt_get_write_access(file->f_path.mnt); 438 } 439 440 /** 441 * mnt_want_write_file - get write access to a file's mount 442 * @file: the file who's mount on which to take a write 443 * 444 * This is like mnt_want_write, but if the file is already open for writing it 445 * skips incrementing mnt_writers (since the open file already has a reference) 446 * and instead only does the freeze protection and the check for emergency r/o 447 * remounts. This must be paired with mnt_drop_write_file. 448 */ 449 int mnt_want_write_file(struct file *file) 450 { 451 int ret; 452 453 sb_start_write(file_inode(file)->i_sb); 454 ret = mnt_get_write_access_file(file); 455 if (ret) 456 sb_end_write(file_inode(file)->i_sb); 457 return ret; 458 } 459 EXPORT_SYMBOL_GPL(mnt_want_write_file); 460 461 /** 462 * mnt_put_write_access - give up write access to a mount 463 * @mnt: the mount on which to give up write access 464 * 465 * Tells the low-level filesystem that we are done 466 * performing writes to it. Must be matched with 467 * mnt_get_write_access() call above. 468 */ 469 void mnt_put_write_access(struct vfsmount *mnt) 470 { 471 preempt_disable(); 472 mnt_dec_writers(real_mount(mnt)); 473 preempt_enable(); 474 } 475 EXPORT_SYMBOL_GPL(mnt_put_write_access); 476 477 /** 478 * mnt_drop_write - give up write access to a mount 479 * @mnt: the mount on which to give up write access 480 * 481 * Tells the low-level filesystem that we are done performing writes to it and 482 * also allows filesystem to be frozen again. Must be matched with 483 * mnt_want_write() call above. 484 */ 485 void mnt_drop_write(struct vfsmount *mnt) 486 { 487 mnt_put_write_access(mnt); 488 sb_end_write(mnt->mnt_sb); 489 } 490 EXPORT_SYMBOL_GPL(mnt_drop_write); 491 492 void mnt_put_write_access_file(struct file *file) 493 { 494 if (!(file->f_mode & FMODE_WRITER)) 495 mnt_put_write_access(file->f_path.mnt); 496 } 497 498 void mnt_drop_write_file(struct file *file) 499 { 500 mnt_put_write_access_file(file); 501 sb_end_write(file_inode(file)->i_sb); 502 } 503 EXPORT_SYMBOL(mnt_drop_write_file); 504 505 /** 506 * mnt_hold_writers - prevent write access to the given mount 507 * @mnt: mnt to prevent write access to 508 * 509 * Prevents write access to @mnt if there are no active writers for @mnt. 510 * This function needs to be called and return successfully before changing 511 * properties of @mnt that need to remain stable for callers with write access 512 * to @mnt. 513 * 514 * After this functions has been called successfully callers must pair it with 515 * a call to mnt_unhold_writers() in order to stop preventing write access to 516 * @mnt. 517 * 518 * Context: This function expects lock_mount_hash() to be held serializing 519 * setting MNT_WRITE_HOLD. 520 * Return: On success 0 is returned. 521 * On error, -EBUSY is returned. 522 */ 523 static inline int mnt_hold_writers(struct mount *mnt) 524 { 525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 526 /* 527 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 528 * should be visible before we do. 529 */ 530 smp_mb(); 531 532 /* 533 * With writers on hold, if this value is zero, then there are 534 * definitely no active writers (although held writers may subsequently 535 * increment the count, they'll have to wait, and decrement it after 536 * seeing MNT_READONLY). 537 * 538 * It is OK to have counter incremented on one CPU and decremented on 539 * another: the sum will add up correctly. The danger would be when we 540 * sum up each counter, if we read a counter before it is incremented, 541 * but then read another CPU's count which it has been subsequently 542 * decremented from -- we would see more decrements than we should. 543 * MNT_WRITE_HOLD protects against this scenario, because 544 * mnt_want_write first increments count, then smp_mb, then spins on 545 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 546 * we're counting up here. 547 */ 548 if (mnt_get_writers(mnt) > 0) 549 return -EBUSY; 550 551 return 0; 552 } 553 554 /** 555 * mnt_unhold_writers - stop preventing write access to the given mount 556 * @mnt: mnt to stop preventing write access to 557 * 558 * Stop preventing write access to @mnt allowing callers to gain write access 559 * to @mnt again. 560 * 561 * This function can only be called after a successful call to 562 * mnt_hold_writers(). 563 * 564 * Context: This function expects lock_mount_hash() to be held. 565 */ 566 static inline void mnt_unhold_writers(struct mount *mnt) 567 { 568 /* 569 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 570 * that become unheld will see MNT_READONLY. 571 */ 572 smp_wmb(); 573 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 574 } 575 576 static int mnt_make_readonly(struct mount *mnt) 577 { 578 int ret; 579 580 ret = mnt_hold_writers(mnt); 581 if (!ret) 582 mnt->mnt.mnt_flags |= MNT_READONLY; 583 mnt_unhold_writers(mnt); 584 return ret; 585 } 586 587 int sb_prepare_remount_readonly(struct super_block *sb) 588 { 589 struct mount *mnt; 590 int err = 0; 591 592 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 593 if (atomic_long_read(&sb->s_remove_count)) 594 return -EBUSY; 595 596 lock_mount_hash(); 597 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 598 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 599 err = mnt_hold_writers(mnt); 600 if (err) 601 break; 602 } 603 } 604 if (!err && atomic_long_read(&sb->s_remove_count)) 605 err = -EBUSY; 606 607 if (!err) 608 sb_start_ro_state_change(sb); 609 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 610 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 611 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 612 } 613 unlock_mount_hash(); 614 615 return err; 616 } 617 618 static void free_vfsmnt(struct mount *mnt) 619 { 620 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 621 kfree_const(mnt->mnt_devname); 622 #ifdef CONFIG_SMP 623 free_percpu(mnt->mnt_pcp); 624 #endif 625 kmem_cache_free(mnt_cache, mnt); 626 } 627 628 static void delayed_free_vfsmnt(struct rcu_head *head) 629 { 630 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 631 } 632 633 /* call under rcu_read_lock */ 634 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 635 { 636 struct mount *mnt; 637 if (read_seqretry(&mount_lock, seq)) 638 return 1; 639 if (bastard == NULL) 640 return 0; 641 mnt = real_mount(bastard); 642 mnt_add_count(mnt, 1); 643 smp_mb(); // see mntput_no_expire() 644 if (likely(!read_seqretry(&mount_lock, seq))) 645 return 0; 646 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 647 mnt_add_count(mnt, -1); 648 return 1; 649 } 650 lock_mount_hash(); 651 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 652 mnt_add_count(mnt, -1); 653 unlock_mount_hash(); 654 return 1; 655 } 656 unlock_mount_hash(); 657 /* caller will mntput() */ 658 return -1; 659 } 660 661 /* call under rcu_read_lock */ 662 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 663 { 664 int res = __legitimize_mnt(bastard, seq); 665 if (likely(!res)) 666 return true; 667 if (unlikely(res < 0)) { 668 rcu_read_unlock(); 669 mntput(bastard); 670 rcu_read_lock(); 671 } 672 return false; 673 } 674 675 /** 676 * __lookup_mnt - find first child mount 677 * @mnt: parent mount 678 * @dentry: mountpoint 679 * 680 * If @mnt has a child mount @c mounted @dentry find and return it. 681 * 682 * Note that the child mount @c need not be unique. There are cases 683 * where shadow mounts are created. For example, during mount 684 * propagation when a source mount @mnt whose root got overmounted by a 685 * mount @o after path lookup but before @namespace_sem could be 686 * acquired gets copied and propagated. So @mnt gets copied including 687 * @o. When @mnt is propagated to a destination mount @d that already 688 * has another mount @n mounted at the same mountpoint then the source 689 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 690 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 691 * on @dentry. 692 * 693 * Return: The first child of @mnt mounted @dentry or NULL. 694 */ 695 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 696 { 697 struct hlist_head *head = m_hash(mnt, dentry); 698 struct mount *p; 699 700 hlist_for_each_entry_rcu(p, head, mnt_hash) 701 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 702 return p; 703 return NULL; 704 } 705 706 /* 707 * lookup_mnt - Return the first child mount mounted at path 708 * 709 * "First" means first mounted chronologically. If you create the 710 * following mounts: 711 * 712 * mount /dev/sda1 /mnt 713 * mount /dev/sda2 /mnt 714 * mount /dev/sda3 /mnt 715 * 716 * Then lookup_mnt() on the base /mnt dentry in the root mount will 717 * return successively the root dentry and vfsmount of /dev/sda1, then 718 * /dev/sda2, then /dev/sda3, then NULL. 719 * 720 * lookup_mnt takes a reference to the found vfsmount. 721 */ 722 struct vfsmount *lookup_mnt(const struct path *path) 723 { 724 struct mount *child_mnt; 725 struct vfsmount *m; 726 unsigned seq; 727 728 rcu_read_lock(); 729 do { 730 seq = read_seqbegin(&mount_lock); 731 child_mnt = __lookup_mnt(path->mnt, path->dentry); 732 m = child_mnt ? &child_mnt->mnt : NULL; 733 } while (!legitimize_mnt(m, seq)); 734 rcu_read_unlock(); 735 return m; 736 } 737 738 /* 739 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 740 * current mount namespace. 741 * 742 * The common case is dentries are not mountpoints at all and that 743 * test is handled inline. For the slow case when we are actually 744 * dealing with a mountpoint of some kind, walk through all of the 745 * mounts in the current mount namespace and test to see if the dentry 746 * is a mountpoint. 747 * 748 * The mount_hashtable is not usable in the context because we 749 * need to identify all mounts that may be in the current mount 750 * namespace not just a mount that happens to have some specified 751 * parent mount. 752 */ 753 bool __is_local_mountpoint(struct dentry *dentry) 754 { 755 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 756 struct mount *mnt, *n; 757 bool is_covered = false; 758 759 down_read(&namespace_sem); 760 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 761 is_covered = (mnt->mnt_mountpoint == dentry); 762 if (is_covered) 763 break; 764 } 765 up_read(&namespace_sem); 766 767 return is_covered; 768 } 769 770 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 771 { 772 struct hlist_head *chain = mp_hash(dentry); 773 struct mountpoint *mp; 774 775 hlist_for_each_entry(mp, chain, m_hash) { 776 if (mp->m_dentry == dentry) { 777 mp->m_count++; 778 return mp; 779 } 780 } 781 return NULL; 782 } 783 784 static struct mountpoint *get_mountpoint(struct dentry *dentry) 785 { 786 struct mountpoint *mp, *new = NULL; 787 int ret; 788 789 if (d_mountpoint(dentry)) { 790 /* might be worth a WARN_ON() */ 791 if (d_unlinked(dentry)) 792 return ERR_PTR(-ENOENT); 793 mountpoint: 794 read_seqlock_excl(&mount_lock); 795 mp = lookup_mountpoint(dentry); 796 read_sequnlock_excl(&mount_lock); 797 if (mp) 798 goto done; 799 } 800 801 if (!new) 802 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 803 if (!new) 804 return ERR_PTR(-ENOMEM); 805 806 807 /* Exactly one processes may set d_mounted */ 808 ret = d_set_mounted(dentry); 809 810 /* Someone else set d_mounted? */ 811 if (ret == -EBUSY) 812 goto mountpoint; 813 814 /* The dentry is not available as a mountpoint? */ 815 mp = ERR_PTR(ret); 816 if (ret) 817 goto done; 818 819 /* Add the new mountpoint to the hash table */ 820 read_seqlock_excl(&mount_lock); 821 new->m_dentry = dget(dentry); 822 new->m_count = 1; 823 hlist_add_head(&new->m_hash, mp_hash(dentry)); 824 INIT_HLIST_HEAD(&new->m_list); 825 read_sequnlock_excl(&mount_lock); 826 827 mp = new; 828 new = NULL; 829 done: 830 kfree(new); 831 return mp; 832 } 833 834 /* 835 * vfsmount lock must be held. Additionally, the caller is responsible 836 * for serializing calls for given disposal list. 837 */ 838 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 839 { 840 if (!--mp->m_count) { 841 struct dentry *dentry = mp->m_dentry; 842 BUG_ON(!hlist_empty(&mp->m_list)); 843 spin_lock(&dentry->d_lock); 844 dentry->d_flags &= ~DCACHE_MOUNTED; 845 spin_unlock(&dentry->d_lock); 846 dput_to_list(dentry, list); 847 hlist_del(&mp->m_hash); 848 kfree(mp); 849 } 850 } 851 852 /* called with namespace_lock and vfsmount lock */ 853 static void put_mountpoint(struct mountpoint *mp) 854 { 855 __put_mountpoint(mp, &ex_mountpoints); 856 } 857 858 static inline int check_mnt(struct mount *mnt) 859 { 860 return mnt->mnt_ns == current->nsproxy->mnt_ns; 861 } 862 863 /* 864 * vfsmount lock must be held for write 865 */ 866 static void touch_mnt_namespace(struct mnt_namespace *ns) 867 { 868 if (ns) { 869 ns->event = ++event; 870 wake_up_interruptible(&ns->poll); 871 } 872 } 873 874 /* 875 * vfsmount lock must be held for write 876 */ 877 static void __touch_mnt_namespace(struct mnt_namespace *ns) 878 { 879 if (ns && ns->event != event) { 880 ns->event = event; 881 wake_up_interruptible(&ns->poll); 882 } 883 } 884 885 /* 886 * vfsmount lock must be held for write 887 */ 888 static struct mountpoint *unhash_mnt(struct mount *mnt) 889 { 890 struct mountpoint *mp; 891 mnt->mnt_parent = mnt; 892 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 893 list_del_init(&mnt->mnt_child); 894 hlist_del_init_rcu(&mnt->mnt_hash); 895 hlist_del_init(&mnt->mnt_mp_list); 896 mp = mnt->mnt_mp; 897 mnt->mnt_mp = NULL; 898 return mp; 899 } 900 901 /* 902 * vfsmount lock must be held for write 903 */ 904 static void umount_mnt(struct mount *mnt) 905 { 906 put_mountpoint(unhash_mnt(mnt)); 907 } 908 909 /* 910 * vfsmount lock must be held for write 911 */ 912 void mnt_set_mountpoint(struct mount *mnt, 913 struct mountpoint *mp, 914 struct mount *child_mnt) 915 { 916 mp->m_count++; 917 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 918 child_mnt->mnt_mountpoint = mp->m_dentry; 919 child_mnt->mnt_parent = mnt; 920 child_mnt->mnt_mp = mp; 921 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 922 } 923 924 /** 925 * mnt_set_mountpoint_beneath - mount a mount beneath another one 926 * 927 * @new_parent: the source mount 928 * @top_mnt: the mount beneath which @new_parent is mounted 929 * @new_mp: the new mountpoint of @top_mnt on @new_parent 930 * 931 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 932 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 933 * @new_mp. And mount @new_parent on the old parent and old 934 * mountpoint of @top_mnt. 935 * 936 * Context: This function expects namespace_lock() and lock_mount_hash() 937 * to have been acquired in that order. 938 */ 939 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 940 struct mount *top_mnt, 941 struct mountpoint *new_mp) 942 { 943 struct mount *old_top_parent = top_mnt->mnt_parent; 944 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 945 946 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 947 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 948 } 949 950 951 static void __attach_mnt(struct mount *mnt, struct mount *parent) 952 { 953 hlist_add_head_rcu(&mnt->mnt_hash, 954 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 955 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 956 } 957 958 /** 959 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 960 * list of child mounts 961 * @parent: the parent 962 * @mnt: the new mount 963 * @mp: the new mountpoint 964 * @beneath: whether to mount @mnt beneath or on top of @parent 965 * 966 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 967 * to @parent's child mount list and to @mount_hashtable. 968 * 969 * If @beneath is true, remove @mnt from its current parent and 970 * mountpoint and mount it on @mp on @parent, and mount @parent on the 971 * old parent and old mountpoint of @mnt. Finally, attach @parent to 972 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 973 * 974 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 975 * to the correct parent. 976 * 977 * Context: This function expects namespace_lock() and lock_mount_hash() 978 * to have been acquired in that order. 979 */ 980 static void attach_mnt(struct mount *mnt, struct mount *parent, 981 struct mountpoint *mp, bool beneath) 982 { 983 if (beneath) 984 mnt_set_mountpoint_beneath(mnt, parent, mp); 985 else 986 mnt_set_mountpoint(parent, mp, mnt); 987 /* 988 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 989 * beneath @parent then @mnt will need to be attached to 990 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 991 * isn't the same mount as @parent. 992 */ 993 __attach_mnt(mnt, mnt->mnt_parent); 994 } 995 996 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 997 { 998 struct mountpoint *old_mp = mnt->mnt_mp; 999 struct mount *old_parent = mnt->mnt_parent; 1000 1001 list_del_init(&mnt->mnt_child); 1002 hlist_del_init(&mnt->mnt_mp_list); 1003 hlist_del_init_rcu(&mnt->mnt_hash); 1004 1005 attach_mnt(mnt, parent, mp, false); 1006 1007 put_mountpoint(old_mp); 1008 mnt_add_count(old_parent, -1); 1009 } 1010 1011 static inline struct mount *node_to_mount(struct rb_node *node) 1012 { 1013 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1014 } 1015 1016 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1017 { 1018 struct rb_node **link = &ns->mounts.rb_node; 1019 struct rb_node *parent = NULL; 1020 1021 WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB); 1022 mnt->mnt_ns = ns; 1023 while (*link) { 1024 parent = *link; 1025 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) 1026 link = &parent->rb_left; 1027 else 1028 link = &parent->rb_right; 1029 } 1030 rb_link_node(&mnt->mnt_node, parent, link); 1031 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1032 mnt->mnt.mnt_flags |= MNT_ONRB; 1033 } 1034 1035 /* 1036 * vfsmount lock must be held for write 1037 */ 1038 static void commit_tree(struct mount *mnt) 1039 { 1040 struct mount *parent = mnt->mnt_parent; 1041 struct mount *m; 1042 LIST_HEAD(head); 1043 struct mnt_namespace *n = parent->mnt_ns; 1044 1045 BUG_ON(parent == mnt); 1046 1047 list_add_tail(&head, &mnt->mnt_list); 1048 while (!list_empty(&head)) { 1049 m = list_first_entry(&head, typeof(*m), mnt_list); 1050 list_del(&m->mnt_list); 1051 1052 mnt_add_to_ns(n, m); 1053 } 1054 n->nr_mounts += n->pending_mounts; 1055 n->pending_mounts = 0; 1056 1057 __attach_mnt(mnt, parent); 1058 touch_mnt_namespace(n); 1059 } 1060 1061 static struct mount *next_mnt(struct mount *p, struct mount *root) 1062 { 1063 struct list_head *next = p->mnt_mounts.next; 1064 if (next == &p->mnt_mounts) { 1065 while (1) { 1066 if (p == root) 1067 return NULL; 1068 next = p->mnt_child.next; 1069 if (next != &p->mnt_parent->mnt_mounts) 1070 break; 1071 p = p->mnt_parent; 1072 } 1073 } 1074 return list_entry(next, struct mount, mnt_child); 1075 } 1076 1077 static struct mount *skip_mnt_tree(struct mount *p) 1078 { 1079 struct list_head *prev = p->mnt_mounts.prev; 1080 while (prev != &p->mnt_mounts) { 1081 p = list_entry(prev, struct mount, mnt_child); 1082 prev = p->mnt_mounts.prev; 1083 } 1084 return p; 1085 } 1086 1087 /** 1088 * vfs_create_mount - Create a mount for a configured superblock 1089 * @fc: The configuration context with the superblock attached 1090 * 1091 * Create a mount to an already configured superblock. If necessary, the 1092 * caller should invoke vfs_get_tree() before calling this. 1093 * 1094 * Note that this does not attach the mount to anything. 1095 */ 1096 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1097 { 1098 struct mount *mnt; 1099 1100 if (!fc->root) 1101 return ERR_PTR(-EINVAL); 1102 1103 mnt = alloc_vfsmnt(fc->source ?: "none"); 1104 if (!mnt) 1105 return ERR_PTR(-ENOMEM); 1106 1107 if (fc->sb_flags & SB_KERNMOUNT) 1108 mnt->mnt.mnt_flags = MNT_INTERNAL; 1109 1110 atomic_inc(&fc->root->d_sb->s_active); 1111 mnt->mnt.mnt_sb = fc->root->d_sb; 1112 mnt->mnt.mnt_root = dget(fc->root); 1113 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1114 mnt->mnt_parent = mnt; 1115 1116 lock_mount_hash(); 1117 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1118 unlock_mount_hash(); 1119 return &mnt->mnt; 1120 } 1121 EXPORT_SYMBOL(vfs_create_mount); 1122 1123 struct vfsmount *fc_mount(struct fs_context *fc) 1124 { 1125 int err = vfs_get_tree(fc); 1126 if (!err) { 1127 up_write(&fc->root->d_sb->s_umount); 1128 return vfs_create_mount(fc); 1129 } 1130 return ERR_PTR(err); 1131 } 1132 EXPORT_SYMBOL(fc_mount); 1133 1134 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1135 int flags, const char *name, 1136 void *data) 1137 { 1138 struct fs_context *fc; 1139 struct vfsmount *mnt; 1140 int ret = 0; 1141 1142 if (!type) 1143 return ERR_PTR(-EINVAL); 1144 1145 fc = fs_context_for_mount(type, flags); 1146 if (IS_ERR(fc)) 1147 return ERR_CAST(fc); 1148 1149 if (name) 1150 ret = vfs_parse_fs_string(fc, "source", 1151 name, strlen(name)); 1152 if (!ret) 1153 ret = parse_monolithic_mount_data(fc, data); 1154 if (!ret) 1155 mnt = fc_mount(fc); 1156 else 1157 mnt = ERR_PTR(ret); 1158 1159 put_fs_context(fc); 1160 return mnt; 1161 } 1162 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1163 1164 struct vfsmount * 1165 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1166 const char *name, void *data) 1167 { 1168 /* Until it is worked out how to pass the user namespace 1169 * through from the parent mount to the submount don't support 1170 * unprivileged mounts with submounts. 1171 */ 1172 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1173 return ERR_PTR(-EPERM); 1174 1175 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1176 } 1177 EXPORT_SYMBOL_GPL(vfs_submount); 1178 1179 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1180 int flag) 1181 { 1182 struct super_block *sb = old->mnt.mnt_sb; 1183 struct mount *mnt; 1184 int err; 1185 1186 mnt = alloc_vfsmnt(old->mnt_devname); 1187 if (!mnt) 1188 return ERR_PTR(-ENOMEM); 1189 1190 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1191 mnt->mnt_group_id = 0; /* not a peer of original */ 1192 else 1193 mnt->mnt_group_id = old->mnt_group_id; 1194 1195 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1196 err = mnt_alloc_group_id(mnt); 1197 if (err) 1198 goto out_free; 1199 } 1200 1201 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1202 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB); 1203 1204 atomic_inc(&sb->s_active); 1205 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1206 1207 mnt->mnt.mnt_sb = sb; 1208 mnt->mnt.mnt_root = dget(root); 1209 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1210 mnt->mnt_parent = mnt; 1211 lock_mount_hash(); 1212 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1213 unlock_mount_hash(); 1214 1215 if ((flag & CL_SLAVE) || 1216 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1217 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1218 mnt->mnt_master = old; 1219 CLEAR_MNT_SHARED(mnt); 1220 } else if (!(flag & CL_PRIVATE)) { 1221 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1222 list_add(&mnt->mnt_share, &old->mnt_share); 1223 if (IS_MNT_SLAVE(old)) 1224 list_add(&mnt->mnt_slave, &old->mnt_slave); 1225 mnt->mnt_master = old->mnt_master; 1226 } else { 1227 CLEAR_MNT_SHARED(mnt); 1228 } 1229 if (flag & CL_MAKE_SHARED) 1230 set_mnt_shared(mnt); 1231 1232 /* stick the duplicate mount on the same expiry list 1233 * as the original if that was on one */ 1234 if (flag & CL_EXPIRE) { 1235 if (!list_empty(&old->mnt_expire)) 1236 list_add(&mnt->mnt_expire, &old->mnt_expire); 1237 } 1238 1239 return mnt; 1240 1241 out_free: 1242 mnt_free_id(mnt); 1243 free_vfsmnt(mnt); 1244 return ERR_PTR(err); 1245 } 1246 1247 static void cleanup_mnt(struct mount *mnt) 1248 { 1249 struct hlist_node *p; 1250 struct mount *m; 1251 /* 1252 * The warning here probably indicates that somebody messed 1253 * up a mnt_want/drop_write() pair. If this happens, the 1254 * filesystem was probably unable to make r/w->r/o transitions. 1255 * The locking used to deal with mnt_count decrement provides barriers, 1256 * so mnt_get_writers() below is safe. 1257 */ 1258 WARN_ON(mnt_get_writers(mnt)); 1259 if (unlikely(mnt->mnt_pins.first)) 1260 mnt_pin_kill(mnt); 1261 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1262 hlist_del(&m->mnt_umount); 1263 mntput(&m->mnt); 1264 } 1265 fsnotify_vfsmount_delete(&mnt->mnt); 1266 dput(mnt->mnt.mnt_root); 1267 deactivate_super(mnt->mnt.mnt_sb); 1268 mnt_free_id(mnt); 1269 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1270 } 1271 1272 static void __cleanup_mnt(struct rcu_head *head) 1273 { 1274 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1275 } 1276 1277 static LLIST_HEAD(delayed_mntput_list); 1278 static void delayed_mntput(struct work_struct *unused) 1279 { 1280 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1281 struct mount *m, *t; 1282 1283 llist_for_each_entry_safe(m, t, node, mnt_llist) 1284 cleanup_mnt(m); 1285 } 1286 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1287 1288 static void mntput_no_expire(struct mount *mnt) 1289 { 1290 LIST_HEAD(list); 1291 int count; 1292 1293 rcu_read_lock(); 1294 if (likely(READ_ONCE(mnt->mnt_ns))) { 1295 /* 1296 * Since we don't do lock_mount_hash() here, 1297 * ->mnt_ns can change under us. However, if it's 1298 * non-NULL, then there's a reference that won't 1299 * be dropped until after an RCU delay done after 1300 * turning ->mnt_ns NULL. So if we observe it 1301 * non-NULL under rcu_read_lock(), the reference 1302 * we are dropping is not the final one. 1303 */ 1304 mnt_add_count(mnt, -1); 1305 rcu_read_unlock(); 1306 return; 1307 } 1308 lock_mount_hash(); 1309 /* 1310 * make sure that if __legitimize_mnt() has not seen us grab 1311 * mount_lock, we'll see their refcount increment here. 1312 */ 1313 smp_mb(); 1314 mnt_add_count(mnt, -1); 1315 count = mnt_get_count(mnt); 1316 if (count != 0) { 1317 WARN_ON(count < 0); 1318 rcu_read_unlock(); 1319 unlock_mount_hash(); 1320 return; 1321 } 1322 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1323 rcu_read_unlock(); 1324 unlock_mount_hash(); 1325 return; 1326 } 1327 mnt->mnt.mnt_flags |= MNT_DOOMED; 1328 rcu_read_unlock(); 1329 1330 list_del(&mnt->mnt_instance); 1331 1332 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1333 struct mount *p, *tmp; 1334 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1335 __put_mountpoint(unhash_mnt(p), &list); 1336 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1337 } 1338 } 1339 unlock_mount_hash(); 1340 shrink_dentry_list(&list); 1341 1342 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1343 struct task_struct *task = current; 1344 if (likely(!(task->flags & PF_KTHREAD))) { 1345 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1346 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1347 return; 1348 } 1349 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1350 schedule_delayed_work(&delayed_mntput_work, 1); 1351 return; 1352 } 1353 cleanup_mnt(mnt); 1354 } 1355 1356 void mntput(struct vfsmount *mnt) 1357 { 1358 if (mnt) { 1359 struct mount *m = real_mount(mnt); 1360 /* avoid cacheline pingpong */ 1361 if (unlikely(m->mnt_expiry_mark)) 1362 WRITE_ONCE(m->mnt_expiry_mark, 0); 1363 mntput_no_expire(m); 1364 } 1365 } 1366 EXPORT_SYMBOL(mntput); 1367 1368 struct vfsmount *mntget(struct vfsmount *mnt) 1369 { 1370 if (mnt) 1371 mnt_add_count(real_mount(mnt), 1); 1372 return mnt; 1373 } 1374 EXPORT_SYMBOL(mntget); 1375 1376 /* 1377 * Make a mount point inaccessible to new lookups. 1378 * Because there may still be current users, the caller MUST WAIT 1379 * for an RCU grace period before destroying the mount point. 1380 */ 1381 void mnt_make_shortterm(struct vfsmount *mnt) 1382 { 1383 if (mnt) 1384 real_mount(mnt)->mnt_ns = NULL; 1385 } 1386 1387 /** 1388 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1389 * @path: path to check 1390 * 1391 * d_mountpoint() can only be used reliably to establish if a dentry is 1392 * not mounted in any namespace and that common case is handled inline. 1393 * d_mountpoint() isn't aware of the possibility there may be multiple 1394 * mounts using a given dentry in a different namespace. This function 1395 * checks if the passed in path is a mountpoint rather than the dentry 1396 * alone. 1397 */ 1398 bool path_is_mountpoint(const struct path *path) 1399 { 1400 unsigned seq; 1401 bool res; 1402 1403 if (!d_mountpoint(path->dentry)) 1404 return false; 1405 1406 rcu_read_lock(); 1407 do { 1408 seq = read_seqbegin(&mount_lock); 1409 res = __path_is_mountpoint(path); 1410 } while (read_seqretry(&mount_lock, seq)); 1411 rcu_read_unlock(); 1412 1413 return res; 1414 } 1415 EXPORT_SYMBOL(path_is_mountpoint); 1416 1417 struct vfsmount *mnt_clone_internal(const struct path *path) 1418 { 1419 struct mount *p; 1420 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1421 if (IS_ERR(p)) 1422 return ERR_CAST(p); 1423 p->mnt.mnt_flags |= MNT_INTERNAL; 1424 return &p->mnt; 1425 } 1426 1427 /* 1428 * Returns the mount which either has the specified mnt_id, or has the next 1429 * smallest id afer the specified one. 1430 */ 1431 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1432 { 1433 struct rb_node *node = ns->mounts.rb_node; 1434 struct mount *ret = NULL; 1435 1436 while (node) { 1437 struct mount *m = node_to_mount(node); 1438 1439 if (mnt_id <= m->mnt_id_unique) { 1440 ret = node_to_mount(node); 1441 if (mnt_id == m->mnt_id_unique) 1442 break; 1443 node = node->rb_left; 1444 } else { 1445 node = node->rb_right; 1446 } 1447 } 1448 return ret; 1449 } 1450 1451 #ifdef CONFIG_PROC_FS 1452 1453 /* iterator; we want it to have access to namespace_sem, thus here... */ 1454 static void *m_start(struct seq_file *m, loff_t *pos) 1455 { 1456 struct proc_mounts *p = m->private; 1457 1458 down_read(&namespace_sem); 1459 1460 return mnt_find_id_at(p->ns, *pos); 1461 } 1462 1463 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1464 { 1465 struct mount *next = NULL, *mnt = v; 1466 struct rb_node *node = rb_next(&mnt->mnt_node); 1467 1468 ++*pos; 1469 if (node) { 1470 next = node_to_mount(node); 1471 *pos = next->mnt_id_unique; 1472 } 1473 return next; 1474 } 1475 1476 static void m_stop(struct seq_file *m, void *v) 1477 { 1478 up_read(&namespace_sem); 1479 } 1480 1481 static int m_show(struct seq_file *m, void *v) 1482 { 1483 struct proc_mounts *p = m->private; 1484 struct mount *r = v; 1485 return p->show(m, &r->mnt); 1486 } 1487 1488 const struct seq_operations mounts_op = { 1489 .start = m_start, 1490 .next = m_next, 1491 .stop = m_stop, 1492 .show = m_show, 1493 }; 1494 1495 #endif /* CONFIG_PROC_FS */ 1496 1497 /** 1498 * may_umount_tree - check if a mount tree is busy 1499 * @m: root of mount tree 1500 * 1501 * This is called to check if a tree of mounts has any 1502 * open files, pwds, chroots or sub mounts that are 1503 * busy. 1504 */ 1505 int may_umount_tree(struct vfsmount *m) 1506 { 1507 struct mount *mnt = real_mount(m); 1508 int actual_refs = 0; 1509 int minimum_refs = 0; 1510 struct mount *p; 1511 BUG_ON(!m); 1512 1513 /* write lock needed for mnt_get_count */ 1514 lock_mount_hash(); 1515 for (p = mnt; p; p = next_mnt(p, mnt)) { 1516 actual_refs += mnt_get_count(p); 1517 minimum_refs += 2; 1518 } 1519 unlock_mount_hash(); 1520 1521 if (actual_refs > minimum_refs) 1522 return 0; 1523 1524 return 1; 1525 } 1526 1527 EXPORT_SYMBOL(may_umount_tree); 1528 1529 /** 1530 * may_umount - check if a mount point is busy 1531 * @mnt: root of mount 1532 * 1533 * This is called to check if a mount point has any 1534 * open files, pwds, chroots or sub mounts. If the 1535 * mount has sub mounts this will return busy 1536 * regardless of whether the sub mounts are busy. 1537 * 1538 * Doesn't take quota and stuff into account. IOW, in some cases it will 1539 * give false negatives. The main reason why it's here is that we need 1540 * a non-destructive way to look for easily umountable filesystems. 1541 */ 1542 int may_umount(struct vfsmount *mnt) 1543 { 1544 int ret = 1; 1545 down_read(&namespace_sem); 1546 lock_mount_hash(); 1547 if (propagate_mount_busy(real_mount(mnt), 2)) 1548 ret = 0; 1549 unlock_mount_hash(); 1550 up_read(&namespace_sem); 1551 return ret; 1552 } 1553 1554 EXPORT_SYMBOL(may_umount); 1555 1556 static void namespace_unlock(void) 1557 { 1558 struct hlist_head head; 1559 struct hlist_node *p; 1560 struct mount *m; 1561 LIST_HEAD(list); 1562 1563 hlist_move_list(&unmounted, &head); 1564 list_splice_init(&ex_mountpoints, &list); 1565 1566 up_write(&namespace_sem); 1567 1568 shrink_dentry_list(&list); 1569 1570 if (likely(hlist_empty(&head))) 1571 return; 1572 1573 synchronize_rcu_expedited(); 1574 1575 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1576 hlist_del(&m->mnt_umount); 1577 mntput(&m->mnt); 1578 } 1579 } 1580 1581 static inline void namespace_lock(void) 1582 { 1583 down_write(&namespace_sem); 1584 } 1585 1586 enum umount_tree_flags { 1587 UMOUNT_SYNC = 1, 1588 UMOUNT_PROPAGATE = 2, 1589 UMOUNT_CONNECTED = 4, 1590 }; 1591 1592 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1593 { 1594 /* Leaving mounts connected is only valid for lazy umounts */ 1595 if (how & UMOUNT_SYNC) 1596 return true; 1597 1598 /* A mount without a parent has nothing to be connected to */ 1599 if (!mnt_has_parent(mnt)) 1600 return true; 1601 1602 /* Because the reference counting rules change when mounts are 1603 * unmounted and connected, umounted mounts may not be 1604 * connected to mounted mounts. 1605 */ 1606 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1607 return true; 1608 1609 /* Has it been requested that the mount remain connected? */ 1610 if (how & UMOUNT_CONNECTED) 1611 return false; 1612 1613 /* Is the mount locked such that it needs to remain connected? */ 1614 if (IS_MNT_LOCKED(mnt)) 1615 return false; 1616 1617 /* By default disconnect the mount */ 1618 return true; 1619 } 1620 1621 /* 1622 * mount_lock must be held 1623 * namespace_sem must be held for write 1624 */ 1625 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1626 { 1627 LIST_HEAD(tmp_list); 1628 struct mount *p; 1629 1630 if (how & UMOUNT_PROPAGATE) 1631 propagate_mount_unlock(mnt); 1632 1633 /* Gather the mounts to umount */ 1634 for (p = mnt; p; p = next_mnt(p, mnt)) { 1635 p->mnt.mnt_flags |= MNT_UMOUNT; 1636 if (p->mnt.mnt_flags & MNT_ONRB) 1637 move_from_ns(p, &tmp_list); 1638 else 1639 list_move(&p->mnt_list, &tmp_list); 1640 } 1641 1642 /* Hide the mounts from mnt_mounts */ 1643 list_for_each_entry(p, &tmp_list, mnt_list) { 1644 list_del_init(&p->mnt_child); 1645 } 1646 1647 /* Add propogated mounts to the tmp_list */ 1648 if (how & UMOUNT_PROPAGATE) 1649 propagate_umount(&tmp_list); 1650 1651 while (!list_empty(&tmp_list)) { 1652 struct mnt_namespace *ns; 1653 bool disconnect; 1654 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1655 list_del_init(&p->mnt_expire); 1656 list_del_init(&p->mnt_list); 1657 ns = p->mnt_ns; 1658 if (ns) { 1659 ns->nr_mounts--; 1660 __touch_mnt_namespace(ns); 1661 } 1662 p->mnt_ns = NULL; 1663 if (how & UMOUNT_SYNC) 1664 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1665 1666 disconnect = disconnect_mount(p, how); 1667 if (mnt_has_parent(p)) { 1668 mnt_add_count(p->mnt_parent, -1); 1669 if (!disconnect) { 1670 /* Don't forget about p */ 1671 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1672 } else { 1673 umount_mnt(p); 1674 } 1675 } 1676 change_mnt_propagation(p, MS_PRIVATE); 1677 if (disconnect) 1678 hlist_add_head(&p->mnt_umount, &unmounted); 1679 } 1680 } 1681 1682 static void shrink_submounts(struct mount *mnt); 1683 1684 static int do_umount_root(struct super_block *sb) 1685 { 1686 int ret = 0; 1687 1688 down_write(&sb->s_umount); 1689 if (!sb_rdonly(sb)) { 1690 struct fs_context *fc; 1691 1692 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1693 SB_RDONLY); 1694 if (IS_ERR(fc)) { 1695 ret = PTR_ERR(fc); 1696 } else { 1697 ret = parse_monolithic_mount_data(fc, NULL); 1698 if (!ret) 1699 ret = reconfigure_super(fc); 1700 put_fs_context(fc); 1701 } 1702 } 1703 up_write(&sb->s_umount); 1704 return ret; 1705 } 1706 1707 static int do_umount(struct mount *mnt, int flags) 1708 { 1709 struct super_block *sb = mnt->mnt.mnt_sb; 1710 int retval; 1711 1712 retval = security_sb_umount(&mnt->mnt, flags); 1713 if (retval) 1714 return retval; 1715 1716 /* 1717 * Allow userspace to request a mountpoint be expired rather than 1718 * unmounting unconditionally. Unmount only happens if: 1719 * (1) the mark is already set (the mark is cleared by mntput()) 1720 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1721 */ 1722 if (flags & MNT_EXPIRE) { 1723 if (&mnt->mnt == current->fs->root.mnt || 1724 flags & (MNT_FORCE | MNT_DETACH)) 1725 return -EINVAL; 1726 1727 /* 1728 * probably don't strictly need the lock here if we examined 1729 * all race cases, but it's a slowpath. 1730 */ 1731 lock_mount_hash(); 1732 if (mnt_get_count(mnt) != 2) { 1733 unlock_mount_hash(); 1734 return -EBUSY; 1735 } 1736 unlock_mount_hash(); 1737 1738 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1739 return -EAGAIN; 1740 } 1741 1742 /* 1743 * If we may have to abort operations to get out of this 1744 * mount, and they will themselves hold resources we must 1745 * allow the fs to do things. In the Unix tradition of 1746 * 'Gee thats tricky lets do it in userspace' the umount_begin 1747 * might fail to complete on the first run through as other tasks 1748 * must return, and the like. Thats for the mount program to worry 1749 * about for the moment. 1750 */ 1751 1752 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1753 sb->s_op->umount_begin(sb); 1754 } 1755 1756 /* 1757 * No sense to grab the lock for this test, but test itself looks 1758 * somewhat bogus. Suggestions for better replacement? 1759 * Ho-hum... In principle, we might treat that as umount + switch 1760 * to rootfs. GC would eventually take care of the old vfsmount. 1761 * Actually it makes sense, especially if rootfs would contain a 1762 * /reboot - static binary that would close all descriptors and 1763 * call reboot(9). Then init(8) could umount root and exec /reboot. 1764 */ 1765 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1766 /* 1767 * Special case for "unmounting" root ... 1768 * we just try to remount it readonly. 1769 */ 1770 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1771 return -EPERM; 1772 return do_umount_root(sb); 1773 } 1774 1775 namespace_lock(); 1776 lock_mount_hash(); 1777 1778 /* Recheck MNT_LOCKED with the locks held */ 1779 retval = -EINVAL; 1780 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1781 goto out; 1782 1783 event++; 1784 if (flags & MNT_DETACH) { 1785 if (mnt->mnt.mnt_flags & MNT_ONRB || 1786 !list_empty(&mnt->mnt_list)) 1787 umount_tree(mnt, UMOUNT_PROPAGATE); 1788 retval = 0; 1789 } else { 1790 shrink_submounts(mnt); 1791 retval = -EBUSY; 1792 if (!propagate_mount_busy(mnt, 2)) { 1793 if (mnt->mnt.mnt_flags & MNT_ONRB || 1794 !list_empty(&mnt->mnt_list)) 1795 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1796 retval = 0; 1797 } 1798 } 1799 out: 1800 unlock_mount_hash(); 1801 namespace_unlock(); 1802 return retval; 1803 } 1804 1805 /* 1806 * __detach_mounts - lazily unmount all mounts on the specified dentry 1807 * 1808 * During unlink, rmdir, and d_drop it is possible to loose the path 1809 * to an existing mountpoint, and wind up leaking the mount. 1810 * detach_mounts allows lazily unmounting those mounts instead of 1811 * leaking them. 1812 * 1813 * The caller may hold dentry->d_inode->i_mutex. 1814 */ 1815 void __detach_mounts(struct dentry *dentry) 1816 { 1817 struct mountpoint *mp; 1818 struct mount *mnt; 1819 1820 namespace_lock(); 1821 lock_mount_hash(); 1822 mp = lookup_mountpoint(dentry); 1823 if (!mp) 1824 goto out_unlock; 1825 1826 event++; 1827 while (!hlist_empty(&mp->m_list)) { 1828 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1829 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1830 umount_mnt(mnt); 1831 hlist_add_head(&mnt->mnt_umount, &unmounted); 1832 } 1833 else umount_tree(mnt, UMOUNT_CONNECTED); 1834 } 1835 put_mountpoint(mp); 1836 out_unlock: 1837 unlock_mount_hash(); 1838 namespace_unlock(); 1839 } 1840 1841 /* 1842 * Is the caller allowed to modify his namespace? 1843 */ 1844 bool may_mount(void) 1845 { 1846 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1847 } 1848 1849 /** 1850 * path_mounted - check whether path is mounted 1851 * @path: path to check 1852 * 1853 * Determine whether @path refers to the root of a mount. 1854 * 1855 * Return: true if @path is the root of a mount, false if not. 1856 */ 1857 static inline bool path_mounted(const struct path *path) 1858 { 1859 return path->mnt->mnt_root == path->dentry; 1860 } 1861 1862 static void warn_mandlock(void) 1863 { 1864 pr_warn_once("=======================================================\n" 1865 "WARNING: The mand mount option has been deprecated and\n" 1866 " and is ignored by this kernel. Remove the mand\n" 1867 " option from the mount to silence this warning.\n" 1868 "=======================================================\n"); 1869 } 1870 1871 static int can_umount(const struct path *path, int flags) 1872 { 1873 struct mount *mnt = real_mount(path->mnt); 1874 1875 if (!may_mount()) 1876 return -EPERM; 1877 if (!path_mounted(path)) 1878 return -EINVAL; 1879 if (!check_mnt(mnt)) 1880 return -EINVAL; 1881 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1882 return -EINVAL; 1883 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1884 return -EPERM; 1885 return 0; 1886 } 1887 1888 // caller is responsible for flags being sane 1889 int path_umount(struct path *path, int flags) 1890 { 1891 struct mount *mnt = real_mount(path->mnt); 1892 int ret; 1893 1894 ret = can_umount(path, flags); 1895 if (!ret) 1896 ret = do_umount(mnt, flags); 1897 1898 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1899 dput(path->dentry); 1900 mntput_no_expire(mnt); 1901 return ret; 1902 } 1903 1904 static int ksys_umount(char __user *name, int flags) 1905 { 1906 int lookup_flags = LOOKUP_MOUNTPOINT; 1907 struct path path; 1908 int ret; 1909 1910 // basic validity checks done first 1911 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1912 return -EINVAL; 1913 1914 if (!(flags & UMOUNT_NOFOLLOW)) 1915 lookup_flags |= LOOKUP_FOLLOW; 1916 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1917 if (ret) 1918 return ret; 1919 return path_umount(&path, flags); 1920 } 1921 1922 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1923 { 1924 return ksys_umount(name, flags); 1925 } 1926 1927 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1928 1929 /* 1930 * The 2.0 compatible umount. No flags. 1931 */ 1932 SYSCALL_DEFINE1(oldumount, char __user *, name) 1933 { 1934 return ksys_umount(name, 0); 1935 } 1936 1937 #endif 1938 1939 static bool is_mnt_ns_file(struct dentry *dentry) 1940 { 1941 /* Is this a proxy for a mount namespace? */ 1942 return dentry->d_op == &ns_dentry_operations && 1943 dentry->d_fsdata == &mntns_operations; 1944 } 1945 1946 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1947 { 1948 return container_of(ns, struct mnt_namespace, ns); 1949 } 1950 1951 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1952 { 1953 return &mnt->ns; 1954 } 1955 1956 static bool mnt_ns_loop(struct dentry *dentry) 1957 { 1958 /* Could bind mounting the mount namespace inode cause a 1959 * mount namespace loop? 1960 */ 1961 struct mnt_namespace *mnt_ns; 1962 if (!is_mnt_ns_file(dentry)) 1963 return false; 1964 1965 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1966 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1967 } 1968 1969 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1970 int flag) 1971 { 1972 struct mount *res, *p, *q, *r, *parent; 1973 1974 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1975 return ERR_PTR(-EINVAL); 1976 1977 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1978 return ERR_PTR(-EINVAL); 1979 1980 res = q = clone_mnt(mnt, dentry, flag); 1981 if (IS_ERR(q)) 1982 return q; 1983 1984 q->mnt_mountpoint = mnt->mnt_mountpoint; 1985 1986 p = mnt; 1987 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1988 struct mount *s; 1989 if (!is_subdir(r->mnt_mountpoint, dentry)) 1990 continue; 1991 1992 for (s = r; s; s = next_mnt(s, r)) { 1993 if (!(flag & CL_COPY_UNBINDABLE) && 1994 IS_MNT_UNBINDABLE(s)) { 1995 if (s->mnt.mnt_flags & MNT_LOCKED) { 1996 /* Both unbindable and locked. */ 1997 q = ERR_PTR(-EPERM); 1998 goto out; 1999 } else { 2000 s = skip_mnt_tree(s); 2001 continue; 2002 } 2003 } 2004 if (!(flag & CL_COPY_MNT_NS_FILE) && 2005 is_mnt_ns_file(s->mnt.mnt_root)) { 2006 s = skip_mnt_tree(s); 2007 continue; 2008 } 2009 while (p != s->mnt_parent) { 2010 p = p->mnt_parent; 2011 q = q->mnt_parent; 2012 } 2013 p = s; 2014 parent = q; 2015 q = clone_mnt(p, p->mnt.mnt_root, flag); 2016 if (IS_ERR(q)) 2017 goto out; 2018 lock_mount_hash(); 2019 list_add_tail(&q->mnt_list, &res->mnt_list); 2020 attach_mnt(q, parent, p->mnt_mp, false); 2021 unlock_mount_hash(); 2022 } 2023 } 2024 return res; 2025 out: 2026 if (res) { 2027 lock_mount_hash(); 2028 umount_tree(res, UMOUNT_SYNC); 2029 unlock_mount_hash(); 2030 } 2031 return q; 2032 } 2033 2034 /* Caller should check returned pointer for errors */ 2035 2036 struct vfsmount *collect_mounts(const struct path *path) 2037 { 2038 struct mount *tree; 2039 namespace_lock(); 2040 if (!check_mnt(real_mount(path->mnt))) 2041 tree = ERR_PTR(-EINVAL); 2042 else 2043 tree = copy_tree(real_mount(path->mnt), path->dentry, 2044 CL_COPY_ALL | CL_PRIVATE); 2045 namespace_unlock(); 2046 if (IS_ERR(tree)) 2047 return ERR_CAST(tree); 2048 return &tree->mnt; 2049 } 2050 2051 static void free_mnt_ns(struct mnt_namespace *); 2052 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2053 2054 void dissolve_on_fput(struct vfsmount *mnt) 2055 { 2056 struct mnt_namespace *ns; 2057 namespace_lock(); 2058 lock_mount_hash(); 2059 ns = real_mount(mnt)->mnt_ns; 2060 if (ns) { 2061 if (is_anon_ns(ns)) 2062 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2063 else 2064 ns = NULL; 2065 } 2066 unlock_mount_hash(); 2067 namespace_unlock(); 2068 if (ns) 2069 free_mnt_ns(ns); 2070 } 2071 2072 void drop_collected_mounts(struct vfsmount *mnt) 2073 { 2074 namespace_lock(); 2075 lock_mount_hash(); 2076 umount_tree(real_mount(mnt), 0); 2077 unlock_mount_hash(); 2078 namespace_unlock(); 2079 } 2080 2081 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2082 { 2083 struct mount *child; 2084 2085 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2086 if (!is_subdir(child->mnt_mountpoint, dentry)) 2087 continue; 2088 2089 if (child->mnt.mnt_flags & MNT_LOCKED) 2090 return true; 2091 } 2092 return false; 2093 } 2094 2095 /** 2096 * clone_private_mount - create a private clone of a path 2097 * @path: path to clone 2098 * 2099 * This creates a new vfsmount, which will be the clone of @path. The new mount 2100 * will not be attached anywhere in the namespace and will be private (i.e. 2101 * changes to the originating mount won't be propagated into this). 2102 * 2103 * Release with mntput(). 2104 */ 2105 struct vfsmount *clone_private_mount(const struct path *path) 2106 { 2107 struct mount *old_mnt = real_mount(path->mnt); 2108 struct mount *new_mnt; 2109 2110 down_read(&namespace_sem); 2111 if (IS_MNT_UNBINDABLE(old_mnt)) 2112 goto invalid; 2113 2114 if (!check_mnt(old_mnt)) 2115 goto invalid; 2116 2117 if (has_locked_children(old_mnt, path->dentry)) 2118 goto invalid; 2119 2120 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2121 up_read(&namespace_sem); 2122 2123 if (IS_ERR(new_mnt)) 2124 return ERR_CAST(new_mnt); 2125 2126 /* Longterm mount to be removed by kern_unmount*() */ 2127 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2128 2129 return &new_mnt->mnt; 2130 2131 invalid: 2132 up_read(&namespace_sem); 2133 return ERR_PTR(-EINVAL); 2134 } 2135 EXPORT_SYMBOL_GPL(clone_private_mount); 2136 2137 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2138 struct vfsmount *root) 2139 { 2140 struct mount *mnt; 2141 int res = f(root, arg); 2142 if (res) 2143 return res; 2144 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2145 res = f(&mnt->mnt, arg); 2146 if (res) 2147 return res; 2148 } 2149 return 0; 2150 } 2151 2152 static void lock_mnt_tree(struct mount *mnt) 2153 { 2154 struct mount *p; 2155 2156 for (p = mnt; p; p = next_mnt(p, mnt)) { 2157 int flags = p->mnt.mnt_flags; 2158 /* Don't allow unprivileged users to change mount flags */ 2159 flags |= MNT_LOCK_ATIME; 2160 2161 if (flags & MNT_READONLY) 2162 flags |= MNT_LOCK_READONLY; 2163 2164 if (flags & MNT_NODEV) 2165 flags |= MNT_LOCK_NODEV; 2166 2167 if (flags & MNT_NOSUID) 2168 flags |= MNT_LOCK_NOSUID; 2169 2170 if (flags & MNT_NOEXEC) 2171 flags |= MNT_LOCK_NOEXEC; 2172 /* Don't allow unprivileged users to reveal what is under a mount */ 2173 if (list_empty(&p->mnt_expire)) 2174 flags |= MNT_LOCKED; 2175 p->mnt.mnt_flags = flags; 2176 } 2177 } 2178 2179 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2180 { 2181 struct mount *p; 2182 2183 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2184 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2185 mnt_release_group_id(p); 2186 } 2187 } 2188 2189 static int invent_group_ids(struct mount *mnt, bool recurse) 2190 { 2191 struct mount *p; 2192 2193 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2194 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2195 int err = mnt_alloc_group_id(p); 2196 if (err) { 2197 cleanup_group_ids(mnt, p); 2198 return err; 2199 } 2200 } 2201 } 2202 2203 return 0; 2204 } 2205 2206 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2207 { 2208 unsigned int max = READ_ONCE(sysctl_mount_max); 2209 unsigned int mounts = 0; 2210 struct mount *p; 2211 2212 if (ns->nr_mounts >= max) 2213 return -ENOSPC; 2214 max -= ns->nr_mounts; 2215 if (ns->pending_mounts >= max) 2216 return -ENOSPC; 2217 max -= ns->pending_mounts; 2218 2219 for (p = mnt; p; p = next_mnt(p, mnt)) 2220 mounts++; 2221 2222 if (mounts > max) 2223 return -ENOSPC; 2224 2225 ns->pending_mounts += mounts; 2226 return 0; 2227 } 2228 2229 enum mnt_tree_flags_t { 2230 MNT_TREE_MOVE = BIT(0), 2231 MNT_TREE_BENEATH = BIT(1), 2232 }; 2233 2234 /** 2235 * attach_recursive_mnt - attach a source mount tree 2236 * @source_mnt: mount tree to be attached 2237 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2238 * @dest_mp: the mountpoint @source_mnt will be mounted at 2239 * @flags: modify how @source_mnt is supposed to be attached 2240 * 2241 * NOTE: in the table below explains the semantics when a source mount 2242 * of a given type is attached to a destination mount of a given type. 2243 * --------------------------------------------------------------------------- 2244 * | BIND MOUNT OPERATION | 2245 * |************************************************************************** 2246 * | source-->| shared | private | slave | unbindable | 2247 * | dest | | | | | 2248 * | | | | | | | 2249 * | v | | | | | 2250 * |************************************************************************** 2251 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2252 * | | | | | | 2253 * |non-shared| shared (+) | private | slave (*) | invalid | 2254 * *************************************************************************** 2255 * A bind operation clones the source mount and mounts the clone on the 2256 * destination mount. 2257 * 2258 * (++) the cloned mount is propagated to all the mounts in the propagation 2259 * tree of the destination mount and the cloned mount is added to 2260 * the peer group of the source mount. 2261 * (+) the cloned mount is created under the destination mount and is marked 2262 * as shared. The cloned mount is added to the peer group of the source 2263 * mount. 2264 * (+++) the mount is propagated to all the mounts in the propagation tree 2265 * of the destination mount and the cloned mount is made slave 2266 * of the same master as that of the source mount. The cloned mount 2267 * is marked as 'shared and slave'. 2268 * (*) the cloned mount is made a slave of the same master as that of the 2269 * source mount. 2270 * 2271 * --------------------------------------------------------------------------- 2272 * | MOVE MOUNT OPERATION | 2273 * |************************************************************************** 2274 * | source-->| shared | private | slave | unbindable | 2275 * | dest | | | | | 2276 * | | | | | | | 2277 * | v | | | | | 2278 * |************************************************************************** 2279 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2280 * | | | | | | 2281 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2282 * *************************************************************************** 2283 * 2284 * (+) the mount is moved to the destination. And is then propagated to 2285 * all the mounts in the propagation tree of the destination mount. 2286 * (+*) the mount is moved to the destination. 2287 * (+++) the mount is moved to the destination and is then propagated to 2288 * all the mounts belonging to the destination mount's propagation tree. 2289 * the mount is marked as 'shared and slave'. 2290 * (*) the mount continues to be a slave at the new location. 2291 * 2292 * if the source mount is a tree, the operations explained above is 2293 * applied to each mount in the tree. 2294 * Must be called without spinlocks held, since this function can sleep 2295 * in allocations. 2296 * 2297 * Context: The function expects namespace_lock() to be held. 2298 * Return: If @source_mnt was successfully attached 0 is returned. 2299 * Otherwise a negative error code is returned. 2300 */ 2301 static int attach_recursive_mnt(struct mount *source_mnt, 2302 struct mount *top_mnt, 2303 struct mountpoint *dest_mp, 2304 enum mnt_tree_flags_t flags) 2305 { 2306 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2307 HLIST_HEAD(tree_list); 2308 struct mnt_namespace *ns = top_mnt->mnt_ns; 2309 struct mountpoint *smp; 2310 struct mount *child, *dest_mnt, *p; 2311 struct hlist_node *n; 2312 int err = 0; 2313 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2314 2315 /* 2316 * Preallocate a mountpoint in case the new mounts need to be 2317 * mounted beneath mounts on the same mountpoint. 2318 */ 2319 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2320 if (IS_ERR(smp)) 2321 return PTR_ERR(smp); 2322 2323 /* Is there space to add these mounts to the mount namespace? */ 2324 if (!moving) { 2325 err = count_mounts(ns, source_mnt); 2326 if (err) 2327 goto out; 2328 } 2329 2330 if (beneath) 2331 dest_mnt = top_mnt->mnt_parent; 2332 else 2333 dest_mnt = top_mnt; 2334 2335 if (IS_MNT_SHARED(dest_mnt)) { 2336 err = invent_group_ids(source_mnt, true); 2337 if (err) 2338 goto out; 2339 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2340 } 2341 lock_mount_hash(); 2342 if (err) 2343 goto out_cleanup_ids; 2344 2345 if (IS_MNT_SHARED(dest_mnt)) { 2346 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2347 set_mnt_shared(p); 2348 } 2349 2350 if (moving) { 2351 if (beneath) 2352 dest_mp = smp; 2353 unhash_mnt(source_mnt); 2354 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2355 touch_mnt_namespace(source_mnt->mnt_ns); 2356 } else { 2357 if (source_mnt->mnt_ns) { 2358 LIST_HEAD(head); 2359 2360 /* move from anon - the caller will destroy */ 2361 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2362 move_from_ns(p, &head); 2363 list_del_init(&head); 2364 } 2365 if (beneath) 2366 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2367 else 2368 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2369 commit_tree(source_mnt); 2370 } 2371 2372 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2373 struct mount *q; 2374 hlist_del_init(&child->mnt_hash); 2375 q = __lookup_mnt(&child->mnt_parent->mnt, 2376 child->mnt_mountpoint); 2377 if (q) 2378 mnt_change_mountpoint(child, smp, q); 2379 /* Notice when we are propagating across user namespaces */ 2380 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2381 lock_mnt_tree(child); 2382 child->mnt.mnt_flags &= ~MNT_LOCKED; 2383 commit_tree(child); 2384 } 2385 put_mountpoint(smp); 2386 unlock_mount_hash(); 2387 2388 return 0; 2389 2390 out_cleanup_ids: 2391 while (!hlist_empty(&tree_list)) { 2392 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2393 child->mnt_parent->mnt_ns->pending_mounts = 0; 2394 umount_tree(child, UMOUNT_SYNC); 2395 } 2396 unlock_mount_hash(); 2397 cleanup_group_ids(source_mnt, NULL); 2398 out: 2399 ns->pending_mounts = 0; 2400 2401 read_seqlock_excl(&mount_lock); 2402 put_mountpoint(smp); 2403 read_sequnlock_excl(&mount_lock); 2404 2405 return err; 2406 } 2407 2408 /** 2409 * do_lock_mount - lock mount and mountpoint 2410 * @path: target path 2411 * @beneath: whether the intention is to mount beneath @path 2412 * 2413 * Follow the mount stack on @path until the top mount @mnt is found. If 2414 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2415 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2416 * until nothing is stacked on top of it anymore. 2417 * 2418 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2419 * against concurrent removal of the new mountpoint from another mount 2420 * namespace. 2421 * 2422 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2423 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2424 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2425 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2426 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2427 * on top of it for @beneath. 2428 * 2429 * In addition, @beneath needs to make sure that @mnt hasn't been 2430 * unmounted or moved from its current mountpoint in between dropping 2431 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2432 * being unmounted would be detected later by e.g., calling 2433 * check_mnt(mnt) in the function it's called from. For the @beneath 2434 * case however, it's useful to detect it directly in do_lock_mount(). 2435 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2436 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2437 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2438 * 2439 * Return: Either the target mountpoint on the top mount or the top 2440 * mount's mountpoint. 2441 */ 2442 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2443 { 2444 struct vfsmount *mnt = path->mnt; 2445 struct dentry *dentry; 2446 struct mountpoint *mp = ERR_PTR(-ENOENT); 2447 2448 for (;;) { 2449 struct mount *m; 2450 2451 if (beneath) { 2452 m = real_mount(mnt); 2453 read_seqlock_excl(&mount_lock); 2454 dentry = dget(m->mnt_mountpoint); 2455 read_sequnlock_excl(&mount_lock); 2456 } else { 2457 dentry = path->dentry; 2458 } 2459 2460 inode_lock(dentry->d_inode); 2461 if (unlikely(cant_mount(dentry))) { 2462 inode_unlock(dentry->d_inode); 2463 goto out; 2464 } 2465 2466 namespace_lock(); 2467 2468 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2469 namespace_unlock(); 2470 inode_unlock(dentry->d_inode); 2471 goto out; 2472 } 2473 2474 mnt = lookup_mnt(path); 2475 if (likely(!mnt)) 2476 break; 2477 2478 namespace_unlock(); 2479 inode_unlock(dentry->d_inode); 2480 if (beneath) 2481 dput(dentry); 2482 path_put(path); 2483 path->mnt = mnt; 2484 path->dentry = dget(mnt->mnt_root); 2485 } 2486 2487 mp = get_mountpoint(dentry); 2488 if (IS_ERR(mp)) { 2489 namespace_unlock(); 2490 inode_unlock(dentry->d_inode); 2491 } 2492 2493 out: 2494 if (beneath) 2495 dput(dentry); 2496 2497 return mp; 2498 } 2499 2500 static inline struct mountpoint *lock_mount(struct path *path) 2501 { 2502 return do_lock_mount(path, false); 2503 } 2504 2505 static void unlock_mount(struct mountpoint *where) 2506 { 2507 struct dentry *dentry = where->m_dentry; 2508 2509 read_seqlock_excl(&mount_lock); 2510 put_mountpoint(where); 2511 read_sequnlock_excl(&mount_lock); 2512 2513 namespace_unlock(); 2514 inode_unlock(dentry->d_inode); 2515 } 2516 2517 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2518 { 2519 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2520 return -EINVAL; 2521 2522 if (d_is_dir(mp->m_dentry) != 2523 d_is_dir(mnt->mnt.mnt_root)) 2524 return -ENOTDIR; 2525 2526 return attach_recursive_mnt(mnt, p, mp, 0); 2527 } 2528 2529 /* 2530 * Sanity check the flags to change_mnt_propagation. 2531 */ 2532 2533 static int flags_to_propagation_type(int ms_flags) 2534 { 2535 int type = ms_flags & ~(MS_REC | MS_SILENT); 2536 2537 /* Fail if any non-propagation flags are set */ 2538 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2539 return 0; 2540 /* Only one propagation flag should be set */ 2541 if (!is_power_of_2(type)) 2542 return 0; 2543 return type; 2544 } 2545 2546 /* 2547 * recursively change the type of the mountpoint. 2548 */ 2549 static int do_change_type(struct path *path, int ms_flags) 2550 { 2551 struct mount *m; 2552 struct mount *mnt = real_mount(path->mnt); 2553 int recurse = ms_flags & MS_REC; 2554 int type; 2555 int err = 0; 2556 2557 if (!path_mounted(path)) 2558 return -EINVAL; 2559 2560 type = flags_to_propagation_type(ms_flags); 2561 if (!type) 2562 return -EINVAL; 2563 2564 namespace_lock(); 2565 if (type == MS_SHARED) { 2566 err = invent_group_ids(mnt, recurse); 2567 if (err) 2568 goto out_unlock; 2569 } 2570 2571 lock_mount_hash(); 2572 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2573 change_mnt_propagation(m, type); 2574 unlock_mount_hash(); 2575 2576 out_unlock: 2577 namespace_unlock(); 2578 return err; 2579 } 2580 2581 static struct mount *__do_loopback(struct path *old_path, int recurse) 2582 { 2583 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2584 2585 if (IS_MNT_UNBINDABLE(old)) 2586 return mnt; 2587 2588 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2589 return mnt; 2590 2591 if (!recurse && has_locked_children(old, old_path->dentry)) 2592 return mnt; 2593 2594 if (recurse) 2595 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2596 else 2597 mnt = clone_mnt(old, old_path->dentry, 0); 2598 2599 if (!IS_ERR(mnt)) 2600 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2601 2602 return mnt; 2603 } 2604 2605 /* 2606 * do loopback mount. 2607 */ 2608 static int do_loopback(struct path *path, const char *old_name, 2609 int recurse) 2610 { 2611 struct path old_path; 2612 struct mount *mnt = NULL, *parent; 2613 struct mountpoint *mp; 2614 int err; 2615 if (!old_name || !*old_name) 2616 return -EINVAL; 2617 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2618 if (err) 2619 return err; 2620 2621 err = -EINVAL; 2622 if (mnt_ns_loop(old_path.dentry)) 2623 goto out; 2624 2625 mp = lock_mount(path); 2626 if (IS_ERR(mp)) { 2627 err = PTR_ERR(mp); 2628 goto out; 2629 } 2630 2631 parent = real_mount(path->mnt); 2632 if (!check_mnt(parent)) 2633 goto out2; 2634 2635 mnt = __do_loopback(&old_path, recurse); 2636 if (IS_ERR(mnt)) { 2637 err = PTR_ERR(mnt); 2638 goto out2; 2639 } 2640 2641 err = graft_tree(mnt, parent, mp); 2642 if (err) { 2643 lock_mount_hash(); 2644 umount_tree(mnt, UMOUNT_SYNC); 2645 unlock_mount_hash(); 2646 } 2647 out2: 2648 unlock_mount(mp); 2649 out: 2650 path_put(&old_path); 2651 return err; 2652 } 2653 2654 static struct file *open_detached_copy(struct path *path, bool recursive) 2655 { 2656 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2657 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2658 struct mount *mnt, *p; 2659 struct file *file; 2660 2661 if (IS_ERR(ns)) 2662 return ERR_CAST(ns); 2663 2664 namespace_lock(); 2665 mnt = __do_loopback(path, recursive); 2666 if (IS_ERR(mnt)) { 2667 namespace_unlock(); 2668 free_mnt_ns(ns); 2669 return ERR_CAST(mnt); 2670 } 2671 2672 lock_mount_hash(); 2673 for (p = mnt; p; p = next_mnt(p, mnt)) { 2674 mnt_add_to_ns(ns, p); 2675 ns->nr_mounts++; 2676 } 2677 ns->root = mnt; 2678 mntget(&mnt->mnt); 2679 unlock_mount_hash(); 2680 namespace_unlock(); 2681 2682 mntput(path->mnt); 2683 path->mnt = &mnt->mnt; 2684 file = dentry_open(path, O_PATH, current_cred()); 2685 if (IS_ERR(file)) 2686 dissolve_on_fput(path->mnt); 2687 else 2688 file->f_mode |= FMODE_NEED_UNMOUNT; 2689 return file; 2690 } 2691 2692 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2693 { 2694 struct file *file; 2695 struct path path; 2696 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2697 bool detached = flags & OPEN_TREE_CLONE; 2698 int error; 2699 int fd; 2700 2701 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2702 2703 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2704 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2705 OPEN_TREE_CLOEXEC)) 2706 return -EINVAL; 2707 2708 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2709 return -EINVAL; 2710 2711 if (flags & AT_NO_AUTOMOUNT) 2712 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2713 if (flags & AT_SYMLINK_NOFOLLOW) 2714 lookup_flags &= ~LOOKUP_FOLLOW; 2715 if (flags & AT_EMPTY_PATH) 2716 lookup_flags |= LOOKUP_EMPTY; 2717 2718 if (detached && !may_mount()) 2719 return -EPERM; 2720 2721 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2722 if (fd < 0) 2723 return fd; 2724 2725 error = user_path_at(dfd, filename, lookup_flags, &path); 2726 if (unlikely(error)) { 2727 file = ERR_PTR(error); 2728 } else { 2729 if (detached) 2730 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2731 else 2732 file = dentry_open(&path, O_PATH, current_cred()); 2733 path_put(&path); 2734 } 2735 if (IS_ERR(file)) { 2736 put_unused_fd(fd); 2737 return PTR_ERR(file); 2738 } 2739 fd_install(fd, file); 2740 return fd; 2741 } 2742 2743 /* 2744 * Don't allow locked mount flags to be cleared. 2745 * 2746 * No locks need to be held here while testing the various MNT_LOCK 2747 * flags because those flags can never be cleared once they are set. 2748 */ 2749 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2750 { 2751 unsigned int fl = mnt->mnt.mnt_flags; 2752 2753 if ((fl & MNT_LOCK_READONLY) && 2754 !(mnt_flags & MNT_READONLY)) 2755 return false; 2756 2757 if ((fl & MNT_LOCK_NODEV) && 2758 !(mnt_flags & MNT_NODEV)) 2759 return false; 2760 2761 if ((fl & MNT_LOCK_NOSUID) && 2762 !(mnt_flags & MNT_NOSUID)) 2763 return false; 2764 2765 if ((fl & MNT_LOCK_NOEXEC) && 2766 !(mnt_flags & MNT_NOEXEC)) 2767 return false; 2768 2769 if ((fl & MNT_LOCK_ATIME) && 2770 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2771 return false; 2772 2773 return true; 2774 } 2775 2776 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2777 { 2778 bool readonly_request = (mnt_flags & MNT_READONLY); 2779 2780 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2781 return 0; 2782 2783 if (readonly_request) 2784 return mnt_make_readonly(mnt); 2785 2786 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2787 return 0; 2788 } 2789 2790 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2791 { 2792 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2793 mnt->mnt.mnt_flags = mnt_flags; 2794 touch_mnt_namespace(mnt->mnt_ns); 2795 } 2796 2797 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2798 { 2799 struct super_block *sb = mnt->mnt_sb; 2800 2801 if (!__mnt_is_readonly(mnt) && 2802 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2803 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2804 char *buf = (char *)__get_free_page(GFP_KERNEL); 2805 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2806 2807 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2808 sb->s_type->name, 2809 is_mounted(mnt) ? "remounted" : "mounted", 2810 mntpath, &sb->s_time_max, 2811 (unsigned long long)sb->s_time_max); 2812 2813 free_page((unsigned long)buf); 2814 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2815 } 2816 } 2817 2818 /* 2819 * Handle reconfiguration of the mountpoint only without alteration of the 2820 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2821 * to mount(2). 2822 */ 2823 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2824 { 2825 struct super_block *sb = path->mnt->mnt_sb; 2826 struct mount *mnt = real_mount(path->mnt); 2827 int ret; 2828 2829 if (!check_mnt(mnt)) 2830 return -EINVAL; 2831 2832 if (!path_mounted(path)) 2833 return -EINVAL; 2834 2835 if (!can_change_locked_flags(mnt, mnt_flags)) 2836 return -EPERM; 2837 2838 /* 2839 * We're only checking whether the superblock is read-only not 2840 * changing it, so only take down_read(&sb->s_umount). 2841 */ 2842 down_read(&sb->s_umount); 2843 lock_mount_hash(); 2844 ret = change_mount_ro_state(mnt, mnt_flags); 2845 if (ret == 0) 2846 set_mount_attributes(mnt, mnt_flags); 2847 unlock_mount_hash(); 2848 up_read(&sb->s_umount); 2849 2850 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2851 2852 return ret; 2853 } 2854 2855 /* 2856 * change filesystem flags. dir should be a physical root of filesystem. 2857 * If you've mounted a non-root directory somewhere and want to do remount 2858 * on it - tough luck. 2859 */ 2860 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2861 int mnt_flags, void *data) 2862 { 2863 int err; 2864 struct super_block *sb = path->mnt->mnt_sb; 2865 struct mount *mnt = real_mount(path->mnt); 2866 struct fs_context *fc; 2867 2868 if (!check_mnt(mnt)) 2869 return -EINVAL; 2870 2871 if (!path_mounted(path)) 2872 return -EINVAL; 2873 2874 if (!can_change_locked_flags(mnt, mnt_flags)) 2875 return -EPERM; 2876 2877 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2878 if (IS_ERR(fc)) 2879 return PTR_ERR(fc); 2880 2881 /* 2882 * Indicate to the filesystem that the remount request is coming 2883 * from the legacy mount system call. 2884 */ 2885 fc->oldapi = true; 2886 2887 err = parse_monolithic_mount_data(fc, data); 2888 if (!err) { 2889 down_write(&sb->s_umount); 2890 err = -EPERM; 2891 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2892 err = reconfigure_super(fc); 2893 if (!err) { 2894 lock_mount_hash(); 2895 set_mount_attributes(mnt, mnt_flags); 2896 unlock_mount_hash(); 2897 } 2898 } 2899 up_write(&sb->s_umount); 2900 } 2901 2902 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2903 2904 put_fs_context(fc); 2905 return err; 2906 } 2907 2908 static inline int tree_contains_unbindable(struct mount *mnt) 2909 { 2910 struct mount *p; 2911 for (p = mnt; p; p = next_mnt(p, mnt)) { 2912 if (IS_MNT_UNBINDABLE(p)) 2913 return 1; 2914 } 2915 return 0; 2916 } 2917 2918 /* 2919 * Check that there aren't references to earlier/same mount namespaces in the 2920 * specified subtree. Such references can act as pins for mount namespaces 2921 * that aren't checked by the mount-cycle checking code, thereby allowing 2922 * cycles to be made. 2923 */ 2924 static bool check_for_nsfs_mounts(struct mount *subtree) 2925 { 2926 struct mount *p; 2927 bool ret = false; 2928 2929 lock_mount_hash(); 2930 for (p = subtree; p; p = next_mnt(p, subtree)) 2931 if (mnt_ns_loop(p->mnt.mnt_root)) 2932 goto out; 2933 2934 ret = true; 2935 out: 2936 unlock_mount_hash(); 2937 return ret; 2938 } 2939 2940 static int do_set_group(struct path *from_path, struct path *to_path) 2941 { 2942 struct mount *from, *to; 2943 int err; 2944 2945 from = real_mount(from_path->mnt); 2946 to = real_mount(to_path->mnt); 2947 2948 namespace_lock(); 2949 2950 err = -EINVAL; 2951 /* To and From must be mounted */ 2952 if (!is_mounted(&from->mnt)) 2953 goto out; 2954 if (!is_mounted(&to->mnt)) 2955 goto out; 2956 2957 err = -EPERM; 2958 /* We should be allowed to modify mount namespaces of both mounts */ 2959 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2960 goto out; 2961 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2962 goto out; 2963 2964 err = -EINVAL; 2965 /* To and From paths should be mount roots */ 2966 if (!path_mounted(from_path)) 2967 goto out; 2968 if (!path_mounted(to_path)) 2969 goto out; 2970 2971 /* Setting sharing groups is only allowed across same superblock */ 2972 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2973 goto out; 2974 2975 /* From mount root should be wider than To mount root */ 2976 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2977 goto out; 2978 2979 /* From mount should not have locked children in place of To's root */ 2980 if (has_locked_children(from, to->mnt.mnt_root)) 2981 goto out; 2982 2983 /* Setting sharing groups is only allowed on private mounts */ 2984 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2985 goto out; 2986 2987 /* From should not be private */ 2988 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2989 goto out; 2990 2991 if (IS_MNT_SLAVE(from)) { 2992 struct mount *m = from->mnt_master; 2993 2994 list_add(&to->mnt_slave, &m->mnt_slave_list); 2995 to->mnt_master = m; 2996 } 2997 2998 if (IS_MNT_SHARED(from)) { 2999 to->mnt_group_id = from->mnt_group_id; 3000 list_add(&to->mnt_share, &from->mnt_share); 3001 lock_mount_hash(); 3002 set_mnt_shared(to); 3003 unlock_mount_hash(); 3004 } 3005 3006 err = 0; 3007 out: 3008 namespace_unlock(); 3009 return err; 3010 } 3011 3012 /** 3013 * path_overmounted - check if path is overmounted 3014 * @path: path to check 3015 * 3016 * Check if path is overmounted, i.e., if there's a mount on top of 3017 * @path->mnt with @path->dentry as mountpoint. 3018 * 3019 * Context: This function expects namespace_lock() to be held. 3020 * Return: If path is overmounted true is returned, false if not. 3021 */ 3022 static inline bool path_overmounted(const struct path *path) 3023 { 3024 rcu_read_lock(); 3025 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3026 rcu_read_unlock(); 3027 return true; 3028 } 3029 rcu_read_unlock(); 3030 return false; 3031 } 3032 3033 /** 3034 * can_move_mount_beneath - check that we can mount beneath the top mount 3035 * @from: mount to mount beneath 3036 * @to: mount under which to mount 3037 * @mp: mountpoint of @to 3038 * 3039 * - Make sure that @to->dentry is actually the root of a mount under 3040 * which we can mount another mount. 3041 * - Make sure that nothing can be mounted beneath the caller's current 3042 * root or the rootfs of the namespace. 3043 * - Make sure that the caller can unmount the topmost mount ensuring 3044 * that the caller could reveal the underlying mountpoint. 3045 * - Ensure that nothing has been mounted on top of @from before we 3046 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3047 * - Prevent mounting beneath a mount if the propagation relationship 3048 * between the source mount, parent mount, and top mount would lead to 3049 * nonsensical mount trees. 3050 * 3051 * Context: This function expects namespace_lock() to be held. 3052 * Return: On success 0, and on error a negative error code is returned. 3053 */ 3054 static int can_move_mount_beneath(const struct path *from, 3055 const struct path *to, 3056 const struct mountpoint *mp) 3057 { 3058 struct mount *mnt_from = real_mount(from->mnt), 3059 *mnt_to = real_mount(to->mnt), 3060 *parent_mnt_to = mnt_to->mnt_parent; 3061 3062 if (!mnt_has_parent(mnt_to)) 3063 return -EINVAL; 3064 3065 if (!path_mounted(to)) 3066 return -EINVAL; 3067 3068 if (IS_MNT_LOCKED(mnt_to)) 3069 return -EINVAL; 3070 3071 /* Avoid creating shadow mounts during mount propagation. */ 3072 if (path_overmounted(from)) 3073 return -EINVAL; 3074 3075 /* 3076 * Mounting beneath the rootfs only makes sense when the 3077 * semantics of pivot_root(".", ".") are used. 3078 */ 3079 if (&mnt_to->mnt == current->fs->root.mnt) 3080 return -EINVAL; 3081 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3082 return -EINVAL; 3083 3084 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3085 if (p == mnt_to) 3086 return -EINVAL; 3087 3088 /* 3089 * If the parent mount propagates to the child mount this would 3090 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3091 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3092 * defeats the whole purpose of mounting beneath another mount. 3093 */ 3094 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3095 return -EINVAL; 3096 3097 /* 3098 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3099 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3100 * Afterwards @mnt_from would be mounted on top of 3101 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3102 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3103 * already mounted on @mnt_from, @mnt_to would ultimately be 3104 * remounted on top of @c. Afterwards, @mnt_from would be 3105 * covered by a copy @c of @mnt_from and @c would be covered by 3106 * @mnt_from itself. This defeats the whole purpose of mounting 3107 * @mnt_from beneath @mnt_to. 3108 */ 3109 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3110 return -EINVAL; 3111 3112 return 0; 3113 } 3114 3115 static int do_move_mount(struct path *old_path, struct path *new_path, 3116 bool beneath) 3117 { 3118 struct mnt_namespace *ns; 3119 struct mount *p; 3120 struct mount *old; 3121 struct mount *parent; 3122 struct mountpoint *mp, *old_mp; 3123 int err; 3124 bool attached; 3125 enum mnt_tree_flags_t flags = 0; 3126 3127 mp = do_lock_mount(new_path, beneath); 3128 if (IS_ERR(mp)) 3129 return PTR_ERR(mp); 3130 3131 old = real_mount(old_path->mnt); 3132 p = real_mount(new_path->mnt); 3133 parent = old->mnt_parent; 3134 attached = mnt_has_parent(old); 3135 if (attached) 3136 flags |= MNT_TREE_MOVE; 3137 old_mp = old->mnt_mp; 3138 ns = old->mnt_ns; 3139 3140 err = -EINVAL; 3141 /* The mountpoint must be in our namespace. */ 3142 if (!check_mnt(p)) 3143 goto out; 3144 3145 /* The thing moved must be mounted... */ 3146 if (!is_mounted(&old->mnt)) 3147 goto out; 3148 3149 /* ... and either ours or the root of anon namespace */ 3150 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3151 goto out; 3152 3153 if (old->mnt.mnt_flags & MNT_LOCKED) 3154 goto out; 3155 3156 if (!path_mounted(old_path)) 3157 goto out; 3158 3159 if (d_is_dir(new_path->dentry) != 3160 d_is_dir(old_path->dentry)) 3161 goto out; 3162 /* 3163 * Don't move a mount residing in a shared parent. 3164 */ 3165 if (attached && IS_MNT_SHARED(parent)) 3166 goto out; 3167 3168 if (beneath) { 3169 err = can_move_mount_beneath(old_path, new_path, mp); 3170 if (err) 3171 goto out; 3172 3173 err = -EINVAL; 3174 p = p->mnt_parent; 3175 flags |= MNT_TREE_BENEATH; 3176 } 3177 3178 /* 3179 * Don't move a mount tree containing unbindable mounts to a destination 3180 * mount which is shared. 3181 */ 3182 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3183 goto out; 3184 err = -ELOOP; 3185 if (!check_for_nsfs_mounts(old)) 3186 goto out; 3187 for (; mnt_has_parent(p); p = p->mnt_parent) 3188 if (p == old) 3189 goto out; 3190 3191 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3192 if (err) 3193 goto out; 3194 3195 /* if the mount is moved, it should no longer be expire 3196 * automatically */ 3197 list_del_init(&old->mnt_expire); 3198 if (attached) 3199 put_mountpoint(old_mp); 3200 out: 3201 unlock_mount(mp); 3202 if (!err) { 3203 if (attached) 3204 mntput_no_expire(parent); 3205 else 3206 free_mnt_ns(ns); 3207 } 3208 return err; 3209 } 3210 3211 static int do_move_mount_old(struct path *path, const char *old_name) 3212 { 3213 struct path old_path; 3214 int err; 3215 3216 if (!old_name || !*old_name) 3217 return -EINVAL; 3218 3219 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3220 if (err) 3221 return err; 3222 3223 err = do_move_mount(&old_path, path, false); 3224 path_put(&old_path); 3225 return err; 3226 } 3227 3228 /* 3229 * add a mount into a namespace's mount tree 3230 */ 3231 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3232 const struct path *path, int mnt_flags) 3233 { 3234 struct mount *parent = real_mount(path->mnt); 3235 3236 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3237 3238 if (unlikely(!check_mnt(parent))) { 3239 /* that's acceptable only for automounts done in private ns */ 3240 if (!(mnt_flags & MNT_SHRINKABLE)) 3241 return -EINVAL; 3242 /* ... and for those we'd better have mountpoint still alive */ 3243 if (!parent->mnt_ns) 3244 return -EINVAL; 3245 } 3246 3247 /* Refuse the same filesystem on the same mount point */ 3248 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3249 return -EBUSY; 3250 3251 if (d_is_symlink(newmnt->mnt.mnt_root)) 3252 return -EINVAL; 3253 3254 newmnt->mnt.mnt_flags = mnt_flags; 3255 return graft_tree(newmnt, parent, mp); 3256 } 3257 3258 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3259 3260 /* 3261 * Create a new mount using a superblock configuration and request it 3262 * be added to the namespace tree. 3263 */ 3264 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3265 unsigned int mnt_flags) 3266 { 3267 struct vfsmount *mnt; 3268 struct mountpoint *mp; 3269 struct super_block *sb = fc->root->d_sb; 3270 int error; 3271 3272 error = security_sb_kern_mount(sb); 3273 if (!error && mount_too_revealing(sb, &mnt_flags)) 3274 error = -EPERM; 3275 3276 if (unlikely(error)) { 3277 fc_drop_locked(fc); 3278 return error; 3279 } 3280 3281 up_write(&sb->s_umount); 3282 3283 mnt = vfs_create_mount(fc); 3284 if (IS_ERR(mnt)) 3285 return PTR_ERR(mnt); 3286 3287 mnt_warn_timestamp_expiry(mountpoint, mnt); 3288 3289 mp = lock_mount(mountpoint); 3290 if (IS_ERR(mp)) { 3291 mntput(mnt); 3292 return PTR_ERR(mp); 3293 } 3294 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3295 unlock_mount(mp); 3296 if (error < 0) 3297 mntput(mnt); 3298 return error; 3299 } 3300 3301 /* 3302 * create a new mount for userspace and request it to be added into the 3303 * namespace's tree 3304 */ 3305 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3306 int mnt_flags, const char *name, void *data) 3307 { 3308 struct file_system_type *type; 3309 struct fs_context *fc; 3310 const char *subtype = NULL; 3311 int err = 0; 3312 3313 if (!fstype) 3314 return -EINVAL; 3315 3316 type = get_fs_type(fstype); 3317 if (!type) 3318 return -ENODEV; 3319 3320 if (type->fs_flags & FS_HAS_SUBTYPE) { 3321 subtype = strchr(fstype, '.'); 3322 if (subtype) { 3323 subtype++; 3324 if (!*subtype) { 3325 put_filesystem(type); 3326 return -EINVAL; 3327 } 3328 } 3329 } 3330 3331 fc = fs_context_for_mount(type, sb_flags); 3332 put_filesystem(type); 3333 if (IS_ERR(fc)) 3334 return PTR_ERR(fc); 3335 3336 /* 3337 * Indicate to the filesystem that the mount request is coming 3338 * from the legacy mount system call. 3339 */ 3340 fc->oldapi = true; 3341 3342 if (subtype) 3343 err = vfs_parse_fs_string(fc, "subtype", 3344 subtype, strlen(subtype)); 3345 if (!err && name) 3346 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3347 if (!err) 3348 err = parse_monolithic_mount_data(fc, data); 3349 if (!err && !mount_capable(fc)) 3350 err = -EPERM; 3351 if (!err) 3352 err = vfs_get_tree(fc); 3353 if (!err) 3354 err = do_new_mount_fc(fc, path, mnt_flags); 3355 3356 put_fs_context(fc); 3357 return err; 3358 } 3359 3360 int finish_automount(struct vfsmount *m, const struct path *path) 3361 { 3362 struct dentry *dentry = path->dentry; 3363 struct mountpoint *mp; 3364 struct mount *mnt; 3365 int err; 3366 3367 if (!m) 3368 return 0; 3369 if (IS_ERR(m)) 3370 return PTR_ERR(m); 3371 3372 mnt = real_mount(m); 3373 /* The new mount record should have at least 2 refs to prevent it being 3374 * expired before we get a chance to add it 3375 */ 3376 BUG_ON(mnt_get_count(mnt) < 2); 3377 3378 if (m->mnt_sb == path->mnt->mnt_sb && 3379 m->mnt_root == dentry) { 3380 err = -ELOOP; 3381 goto discard; 3382 } 3383 3384 /* 3385 * we don't want to use lock_mount() - in this case finding something 3386 * that overmounts our mountpoint to be means "quitely drop what we've 3387 * got", not "try to mount it on top". 3388 */ 3389 inode_lock(dentry->d_inode); 3390 namespace_lock(); 3391 if (unlikely(cant_mount(dentry))) { 3392 err = -ENOENT; 3393 goto discard_locked; 3394 } 3395 if (path_overmounted(path)) { 3396 err = 0; 3397 goto discard_locked; 3398 } 3399 mp = get_mountpoint(dentry); 3400 if (IS_ERR(mp)) { 3401 err = PTR_ERR(mp); 3402 goto discard_locked; 3403 } 3404 3405 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3406 unlock_mount(mp); 3407 if (unlikely(err)) 3408 goto discard; 3409 mntput(m); 3410 return 0; 3411 3412 discard_locked: 3413 namespace_unlock(); 3414 inode_unlock(dentry->d_inode); 3415 discard: 3416 /* remove m from any expiration list it may be on */ 3417 if (!list_empty(&mnt->mnt_expire)) { 3418 namespace_lock(); 3419 list_del_init(&mnt->mnt_expire); 3420 namespace_unlock(); 3421 } 3422 mntput(m); 3423 mntput(m); 3424 return err; 3425 } 3426 3427 /** 3428 * mnt_set_expiry - Put a mount on an expiration list 3429 * @mnt: The mount to list. 3430 * @expiry_list: The list to add the mount to. 3431 */ 3432 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3433 { 3434 namespace_lock(); 3435 3436 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3437 3438 namespace_unlock(); 3439 } 3440 EXPORT_SYMBOL(mnt_set_expiry); 3441 3442 /* 3443 * process a list of expirable mountpoints with the intent of discarding any 3444 * mountpoints that aren't in use and haven't been touched since last we came 3445 * here 3446 */ 3447 void mark_mounts_for_expiry(struct list_head *mounts) 3448 { 3449 struct mount *mnt, *next; 3450 LIST_HEAD(graveyard); 3451 3452 if (list_empty(mounts)) 3453 return; 3454 3455 namespace_lock(); 3456 lock_mount_hash(); 3457 3458 /* extract from the expiration list every vfsmount that matches the 3459 * following criteria: 3460 * - only referenced by its parent vfsmount 3461 * - still marked for expiry (marked on the last call here; marks are 3462 * cleared by mntput()) 3463 */ 3464 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3465 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3466 propagate_mount_busy(mnt, 1)) 3467 continue; 3468 list_move(&mnt->mnt_expire, &graveyard); 3469 } 3470 while (!list_empty(&graveyard)) { 3471 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3472 touch_mnt_namespace(mnt->mnt_ns); 3473 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3474 } 3475 unlock_mount_hash(); 3476 namespace_unlock(); 3477 } 3478 3479 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3480 3481 /* 3482 * Ripoff of 'select_parent()' 3483 * 3484 * search the list of submounts for a given mountpoint, and move any 3485 * shrinkable submounts to the 'graveyard' list. 3486 */ 3487 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3488 { 3489 struct mount *this_parent = parent; 3490 struct list_head *next; 3491 int found = 0; 3492 3493 repeat: 3494 next = this_parent->mnt_mounts.next; 3495 resume: 3496 while (next != &this_parent->mnt_mounts) { 3497 struct list_head *tmp = next; 3498 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3499 3500 next = tmp->next; 3501 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3502 continue; 3503 /* 3504 * Descend a level if the d_mounts list is non-empty. 3505 */ 3506 if (!list_empty(&mnt->mnt_mounts)) { 3507 this_parent = mnt; 3508 goto repeat; 3509 } 3510 3511 if (!propagate_mount_busy(mnt, 1)) { 3512 list_move_tail(&mnt->mnt_expire, graveyard); 3513 found++; 3514 } 3515 } 3516 /* 3517 * All done at this level ... ascend and resume the search 3518 */ 3519 if (this_parent != parent) { 3520 next = this_parent->mnt_child.next; 3521 this_parent = this_parent->mnt_parent; 3522 goto resume; 3523 } 3524 return found; 3525 } 3526 3527 /* 3528 * process a list of expirable mountpoints with the intent of discarding any 3529 * submounts of a specific parent mountpoint 3530 * 3531 * mount_lock must be held for write 3532 */ 3533 static void shrink_submounts(struct mount *mnt) 3534 { 3535 LIST_HEAD(graveyard); 3536 struct mount *m; 3537 3538 /* extract submounts of 'mountpoint' from the expiration list */ 3539 while (select_submounts(mnt, &graveyard)) { 3540 while (!list_empty(&graveyard)) { 3541 m = list_first_entry(&graveyard, struct mount, 3542 mnt_expire); 3543 touch_mnt_namespace(m->mnt_ns); 3544 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3545 } 3546 } 3547 } 3548 3549 static void *copy_mount_options(const void __user * data) 3550 { 3551 char *copy; 3552 unsigned left, offset; 3553 3554 if (!data) 3555 return NULL; 3556 3557 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3558 if (!copy) 3559 return ERR_PTR(-ENOMEM); 3560 3561 left = copy_from_user(copy, data, PAGE_SIZE); 3562 3563 /* 3564 * Not all architectures have an exact copy_from_user(). Resort to 3565 * byte at a time. 3566 */ 3567 offset = PAGE_SIZE - left; 3568 while (left) { 3569 char c; 3570 if (get_user(c, (const char __user *)data + offset)) 3571 break; 3572 copy[offset] = c; 3573 left--; 3574 offset++; 3575 } 3576 3577 if (left == PAGE_SIZE) { 3578 kfree(copy); 3579 return ERR_PTR(-EFAULT); 3580 } 3581 3582 return copy; 3583 } 3584 3585 static char *copy_mount_string(const void __user *data) 3586 { 3587 return data ? strndup_user(data, PATH_MAX) : NULL; 3588 } 3589 3590 /* 3591 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3592 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3593 * 3594 * data is a (void *) that can point to any structure up to 3595 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3596 * information (or be NULL). 3597 * 3598 * Pre-0.97 versions of mount() didn't have a flags word. 3599 * When the flags word was introduced its top half was required 3600 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3601 * Therefore, if this magic number is present, it carries no information 3602 * and must be discarded. 3603 */ 3604 int path_mount(const char *dev_name, struct path *path, 3605 const char *type_page, unsigned long flags, void *data_page) 3606 { 3607 unsigned int mnt_flags = 0, sb_flags; 3608 int ret; 3609 3610 /* Discard magic */ 3611 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3612 flags &= ~MS_MGC_MSK; 3613 3614 /* Basic sanity checks */ 3615 if (data_page) 3616 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3617 3618 if (flags & MS_NOUSER) 3619 return -EINVAL; 3620 3621 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3622 if (ret) 3623 return ret; 3624 if (!may_mount()) 3625 return -EPERM; 3626 if (flags & SB_MANDLOCK) 3627 warn_mandlock(); 3628 3629 /* Default to relatime unless overriden */ 3630 if (!(flags & MS_NOATIME)) 3631 mnt_flags |= MNT_RELATIME; 3632 3633 /* Separate the per-mountpoint flags */ 3634 if (flags & MS_NOSUID) 3635 mnt_flags |= MNT_NOSUID; 3636 if (flags & MS_NODEV) 3637 mnt_flags |= MNT_NODEV; 3638 if (flags & MS_NOEXEC) 3639 mnt_flags |= MNT_NOEXEC; 3640 if (flags & MS_NOATIME) 3641 mnt_flags |= MNT_NOATIME; 3642 if (flags & MS_NODIRATIME) 3643 mnt_flags |= MNT_NODIRATIME; 3644 if (flags & MS_STRICTATIME) 3645 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3646 if (flags & MS_RDONLY) 3647 mnt_flags |= MNT_READONLY; 3648 if (flags & MS_NOSYMFOLLOW) 3649 mnt_flags |= MNT_NOSYMFOLLOW; 3650 3651 /* The default atime for remount is preservation */ 3652 if ((flags & MS_REMOUNT) && 3653 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3654 MS_STRICTATIME)) == 0)) { 3655 mnt_flags &= ~MNT_ATIME_MASK; 3656 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3657 } 3658 3659 sb_flags = flags & (SB_RDONLY | 3660 SB_SYNCHRONOUS | 3661 SB_MANDLOCK | 3662 SB_DIRSYNC | 3663 SB_SILENT | 3664 SB_POSIXACL | 3665 SB_LAZYTIME | 3666 SB_I_VERSION); 3667 3668 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3669 return do_reconfigure_mnt(path, mnt_flags); 3670 if (flags & MS_REMOUNT) 3671 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3672 if (flags & MS_BIND) 3673 return do_loopback(path, dev_name, flags & MS_REC); 3674 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3675 return do_change_type(path, flags); 3676 if (flags & MS_MOVE) 3677 return do_move_mount_old(path, dev_name); 3678 3679 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3680 data_page); 3681 } 3682 3683 long do_mount(const char *dev_name, const char __user *dir_name, 3684 const char *type_page, unsigned long flags, void *data_page) 3685 { 3686 struct path path; 3687 int ret; 3688 3689 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3690 if (ret) 3691 return ret; 3692 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3693 path_put(&path); 3694 return ret; 3695 } 3696 3697 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3698 { 3699 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3700 } 3701 3702 static void dec_mnt_namespaces(struct ucounts *ucounts) 3703 { 3704 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3705 } 3706 3707 static void free_mnt_ns(struct mnt_namespace *ns) 3708 { 3709 if (!is_anon_ns(ns)) 3710 ns_free_inum(&ns->ns); 3711 dec_mnt_namespaces(ns->ucounts); 3712 put_user_ns(ns->user_ns); 3713 kfree(ns); 3714 } 3715 3716 /* 3717 * Assign a sequence number so we can detect when we attempt to bind 3718 * mount a reference to an older mount namespace into the current 3719 * mount namespace, preventing reference counting loops. A 64bit 3720 * number incrementing at 10Ghz will take 12,427 years to wrap which 3721 * is effectively never, so we can ignore the possibility. 3722 */ 3723 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3724 3725 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3726 { 3727 struct mnt_namespace *new_ns; 3728 struct ucounts *ucounts; 3729 int ret; 3730 3731 ucounts = inc_mnt_namespaces(user_ns); 3732 if (!ucounts) 3733 return ERR_PTR(-ENOSPC); 3734 3735 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3736 if (!new_ns) { 3737 dec_mnt_namespaces(ucounts); 3738 return ERR_PTR(-ENOMEM); 3739 } 3740 if (!anon) { 3741 ret = ns_alloc_inum(&new_ns->ns); 3742 if (ret) { 3743 kfree(new_ns); 3744 dec_mnt_namespaces(ucounts); 3745 return ERR_PTR(ret); 3746 } 3747 } 3748 new_ns->ns.ops = &mntns_operations; 3749 if (!anon) 3750 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3751 refcount_set(&new_ns->ns.count, 1); 3752 new_ns->mounts = RB_ROOT; 3753 init_waitqueue_head(&new_ns->poll); 3754 new_ns->user_ns = get_user_ns(user_ns); 3755 new_ns->ucounts = ucounts; 3756 return new_ns; 3757 } 3758 3759 __latent_entropy 3760 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3761 struct user_namespace *user_ns, struct fs_struct *new_fs) 3762 { 3763 struct mnt_namespace *new_ns; 3764 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3765 struct mount *p, *q; 3766 struct mount *old; 3767 struct mount *new; 3768 int copy_flags; 3769 3770 BUG_ON(!ns); 3771 3772 if (likely(!(flags & CLONE_NEWNS))) { 3773 get_mnt_ns(ns); 3774 return ns; 3775 } 3776 3777 old = ns->root; 3778 3779 new_ns = alloc_mnt_ns(user_ns, false); 3780 if (IS_ERR(new_ns)) 3781 return new_ns; 3782 3783 namespace_lock(); 3784 /* First pass: copy the tree topology */ 3785 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3786 if (user_ns != ns->user_ns) 3787 copy_flags |= CL_SHARED_TO_SLAVE; 3788 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3789 if (IS_ERR(new)) { 3790 namespace_unlock(); 3791 free_mnt_ns(new_ns); 3792 return ERR_CAST(new); 3793 } 3794 if (user_ns != ns->user_ns) { 3795 lock_mount_hash(); 3796 lock_mnt_tree(new); 3797 unlock_mount_hash(); 3798 } 3799 new_ns->root = new; 3800 3801 /* 3802 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3803 * as belonging to new namespace. We have already acquired a private 3804 * fs_struct, so tsk->fs->lock is not needed. 3805 */ 3806 p = old; 3807 q = new; 3808 while (p) { 3809 mnt_add_to_ns(new_ns, q); 3810 new_ns->nr_mounts++; 3811 if (new_fs) { 3812 if (&p->mnt == new_fs->root.mnt) { 3813 new_fs->root.mnt = mntget(&q->mnt); 3814 rootmnt = &p->mnt; 3815 } 3816 if (&p->mnt == new_fs->pwd.mnt) { 3817 new_fs->pwd.mnt = mntget(&q->mnt); 3818 pwdmnt = &p->mnt; 3819 } 3820 } 3821 p = next_mnt(p, old); 3822 q = next_mnt(q, new); 3823 if (!q) 3824 break; 3825 // an mntns binding we'd skipped? 3826 while (p->mnt.mnt_root != q->mnt.mnt_root) 3827 p = next_mnt(skip_mnt_tree(p), old); 3828 } 3829 namespace_unlock(); 3830 3831 if (rootmnt) 3832 mntput(rootmnt); 3833 if (pwdmnt) 3834 mntput(pwdmnt); 3835 3836 return new_ns; 3837 } 3838 3839 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3840 { 3841 struct mount *mnt = real_mount(m); 3842 struct mnt_namespace *ns; 3843 struct super_block *s; 3844 struct path path; 3845 int err; 3846 3847 ns = alloc_mnt_ns(&init_user_ns, true); 3848 if (IS_ERR(ns)) { 3849 mntput(m); 3850 return ERR_CAST(ns); 3851 } 3852 ns->root = mnt; 3853 ns->nr_mounts++; 3854 mnt_add_to_ns(ns, mnt); 3855 3856 err = vfs_path_lookup(m->mnt_root, m, 3857 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3858 3859 put_mnt_ns(ns); 3860 3861 if (err) 3862 return ERR_PTR(err); 3863 3864 /* trade a vfsmount reference for active sb one */ 3865 s = path.mnt->mnt_sb; 3866 atomic_inc(&s->s_active); 3867 mntput(path.mnt); 3868 /* lock the sucker */ 3869 down_write(&s->s_umount); 3870 /* ... and return the root of (sub)tree on it */ 3871 return path.dentry; 3872 } 3873 EXPORT_SYMBOL(mount_subtree); 3874 3875 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3876 char __user *, type, unsigned long, flags, void __user *, data) 3877 { 3878 int ret; 3879 char *kernel_type; 3880 char *kernel_dev; 3881 void *options; 3882 3883 kernel_type = copy_mount_string(type); 3884 ret = PTR_ERR(kernel_type); 3885 if (IS_ERR(kernel_type)) 3886 goto out_type; 3887 3888 kernel_dev = copy_mount_string(dev_name); 3889 ret = PTR_ERR(kernel_dev); 3890 if (IS_ERR(kernel_dev)) 3891 goto out_dev; 3892 3893 options = copy_mount_options(data); 3894 ret = PTR_ERR(options); 3895 if (IS_ERR(options)) 3896 goto out_data; 3897 3898 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3899 3900 kfree(options); 3901 out_data: 3902 kfree(kernel_dev); 3903 out_dev: 3904 kfree(kernel_type); 3905 out_type: 3906 return ret; 3907 } 3908 3909 #define FSMOUNT_VALID_FLAGS \ 3910 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3911 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3912 MOUNT_ATTR_NOSYMFOLLOW) 3913 3914 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3915 3916 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3917 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3918 3919 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3920 { 3921 unsigned int mnt_flags = 0; 3922 3923 if (attr_flags & MOUNT_ATTR_RDONLY) 3924 mnt_flags |= MNT_READONLY; 3925 if (attr_flags & MOUNT_ATTR_NOSUID) 3926 mnt_flags |= MNT_NOSUID; 3927 if (attr_flags & MOUNT_ATTR_NODEV) 3928 mnt_flags |= MNT_NODEV; 3929 if (attr_flags & MOUNT_ATTR_NOEXEC) 3930 mnt_flags |= MNT_NOEXEC; 3931 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3932 mnt_flags |= MNT_NODIRATIME; 3933 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3934 mnt_flags |= MNT_NOSYMFOLLOW; 3935 3936 return mnt_flags; 3937 } 3938 3939 /* 3940 * Create a kernel mount representation for a new, prepared superblock 3941 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3942 */ 3943 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3944 unsigned int, attr_flags) 3945 { 3946 struct mnt_namespace *ns; 3947 struct fs_context *fc; 3948 struct file *file; 3949 struct path newmount; 3950 struct mount *mnt; 3951 struct fd f; 3952 unsigned int mnt_flags = 0; 3953 long ret; 3954 3955 if (!may_mount()) 3956 return -EPERM; 3957 3958 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3959 return -EINVAL; 3960 3961 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3962 return -EINVAL; 3963 3964 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3965 3966 switch (attr_flags & MOUNT_ATTR__ATIME) { 3967 case MOUNT_ATTR_STRICTATIME: 3968 break; 3969 case MOUNT_ATTR_NOATIME: 3970 mnt_flags |= MNT_NOATIME; 3971 break; 3972 case MOUNT_ATTR_RELATIME: 3973 mnt_flags |= MNT_RELATIME; 3974 break; 3975 default: 3976 return -EINVAL; 3977 } 3978 3979 f = fdget(fs_fd); 3980 if (!f.file) 3981 return -EBADF; 3982 3983 ret = -EINVAL; 3984 if (f.file->f_op != &fscontext_fops) 3985 goto err_fsfd; 3986 3987 fc = f.file->private_data; 3988 3989 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3990 if (ret < 0) 3991 goto err_fsfd; 3992 3993 /* There must be a valid superblock or we can't mount it */ 3994 ret = -EINVAL; 3995 if (!fc->root) 3996 goto err_unlock; 3997 3998 ret = -EPERM; 3999 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4000 pr_warn("VFS: Mount too revealing\n"); 4001 goto err_unlock; 4002 } 4003 4004 ret = -EBUSY; 4005 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4006 goto err_unlock; 4007 4008 if (fc->sb_flags & SB_MANDLOCK) 4009 warn_mandlock(); 4010 4011 newmount.mnt = vfs_create_mount(fc); 4012 if (IS_ERR(newmount.mnt)) { 4013 ret = PTR_ERR(newmount.mnt); 4014 goto err_unlock; 4015 } 4016 newmount.dentry = dget(fc->root); 4017 newmount.mnt->mnt_flags = mnt_flags; 4018 4019 /* We've done the mount bit - now move the file context into more or 4020 * less the same state as if we'd done an fspick(). We don't want to 4021 * do any memory allocation or anything like that at this point as we 4022 * don't want to have to handle any errors incurred. 4023 */ 4024 vfs_clean_context(fc); 4025 4026 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4027 if (IS_ERR(ns)) { 4028 ret = PTR_ERR(ns); 4029 goto err_path; 4030 } 4031 mnt = real_mount(newmount.mnt); 4032 ns->root = mnt; 4033 ns->nr_mounts = 1; 4034 mnt_add_to_ns(ns, mnt); 4035 mntget(newmount.mnt); 4036 4037 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4038 * it, not just simply put it. 4039 */ 4040 file = dentry_open(&newmount, O_PATH, fc->cred); 4041 if (IS_ERR(file)) { 4042 dissolve_on_fput(newmount.mnt); 4043 ret = PTR_ERR(file); 4044 goto err_path; 4045 } 4046 file->f_mode |= FMODE_NEED_UNMOUNT; 4047 4048 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4049 if (ret >= 0) 4050 fd_install(ret, file); 4051 else 4052 fput(file); 4053 4054 err_path: 4055 path_put(&newmount); 4056 err_unlock: 4057 mutex_unlock(&fc->uapi_mutex); 4058 err_fsfd: 4059 fdput(f); 4060 return ret; 4061 } 4062 4063 /* 4064 * Move a mount from one place to another. In combination with 4065 * fsopen()/fsmount() this is used to install a new mount and in combination 4066 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4067 * a mount subtree. 4068 * 4069 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4070 */ 4071 SYSCALL_DEFINE5(move_mount, 4072 int, from_dfd, const char __user *, from_pathname, 4073 int, to_dfd, const char __user *, to_pathname, 4074 unsigned int, flags) 4075 { 4076 struct path from_path, to_path; 4077 unsigned int lflags; 4078 int ret = 0; 4079 4080 if (!may_mount()) 4081 return -EPERM; 4082 4083 if (flags & ~MOVE_MOUNT__MASK) 4084 return -EINVAL; 4085 4086 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4087 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4088 return -EINVAL; 4089 4090 /* If someone gives a pathname, they aren't permitted to move 4091 * from an fd that requires unmount as we can't get at the flag 4092 * to clear it afterwards. 4093 */ 4094 lflags = 0; 4095 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4096 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4097 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4098 4099 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4100 if (ret < 0) 4101 return ret; 4102 4103 lflags = 0; 4104 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4105 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4106 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4107 4108 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4109 if (ret < 0) 4110 goto out_from; 4111 4112 ret = security_move_mount(&from_path, &to_path); 4113 if (ret < 0) 4114 goto out_to; 4115 4116 if (flags & MOVE_MOUNT_SET_GROUP) 4117 ret = do_set_group(&from_path, &to_path); 4118 else 4119 ret = do_move_mount(&from_path, &to_path, 4120 (flags & MOVE_MOUNT_BENEATH)); 4121 4122 out_to: 4123 path_put(&to_path); 4124 out_from: 4125 path_put(&from_path); 4126 return ret; 4127 } 4128 4129 /* 4130 * Return true if path is reachable from root 4131 * 4132 * namespace_sem or mount_lock is held 4133 */ 4134 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4135 const struct path *root) 4136 { 4137 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4138 dentry = mnt->mnt_mountpoint; 4139 mnt = mnt->mnt_parent; 4140 } 4141 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4142 } 4143 4144 bool path_is_under(const struct path *path1, const struct path *path2) 4145 { 4146 bool res; 4147 read_seqlock_excl(&mount_lock); 4148 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4149 read_sequnlock_excl(&mount_lock); 4150 return res; 4151 } 4152 EXPORT_SYMBOL(path_is_under); 4153 4154 /* 4155 * pivot_root Semantics: 4156 * Moves the root file system of the current process to the directory put_old, 4157 * makes new_root as the new root file system of the current process, and sets 4158 * root/cwd of all processes which had them on the current root to new_root. 4159 * 4160 * Restrictions: 4161 * The new_root and put_old must be directories, and must not be on the 4162 * same file system as the current process root. The put_old must be 4163 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4164 * pointed to by put_old must yield the same directory as new_root. No other 4165 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4166 * 4167 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4168 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4169 * in this situation. 4170 * 4171 * Notes: 4172 * - we don't move root/cwd if they are not at the root (reason: if something 4173 * cared enough to change them, it's probably wrong to force them elsewhere) 4174 * - it's okay to pick a root that isn't the root of a file system, e.g. 4175 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4176 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4177 * first. 4178 */ 4179 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4180 const char __user *, put_old) 4181 { 4182 struct path new, old, root; 4183 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4184 struct mountpoint *old_mp, *root_mp; 4185 int error; 4186 4187 if (!may_mount()) 4188 return -EPERM; 4189 4190 error = user_path_at(AT_FDCWD, new_root, 4191 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4192 if (error) 4193 goto out0; 4194 4195 error = user_path_at(AT_FDCWD, put_old, 4196 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4197 if (error) 4198 goto out1; 4199 4200 error = security_sb_pivotroot(&old, &new); 4201 if (error) 4202 goto out2; 4203 4204 get_fs_root(current->fs, &root); 4205 old_mp = lock_mount(&old); 4206 error = PTR_ERR(old_mp); 4207 if (IS_ERR(old_mp)) 4208 goto out3; 4209 4210 error = -EINVAL; 4211 new_mnt = real_mount(new.mnt); 4212 root_mnt = real_mount(root.mnt); 4213 old_mnt = real_mount(old.mnt); 4214 ex_parent = new_mnt->mnt_parent; 4215 root_parent = root_mnt->mnt_parent; 4216 if (IS_MNT_SHARED(old_mnt) || 4217 IS_MNT_SHARED(ex_parent) || 4218 IS_MNT_SHARED(root_parent)) 4219 goto out4; 4220 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4221 goto out4; 4222 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4223 goto out4; 4224 error = -ENOENT; 4225 if (d_unlinked(new.dentry)) 4226 goto out4; 4227 error = -EBUSY; 4228 if (new_mnt == root_mnt || old_mnt == root_mnt) 4229 goto out4; /* loop, on the same file system */ 4230 error = -EINVAL; 4231 if (!path_mounted(&root)) 4232 goto out4; /* not a mountpoint */ 4233 if (!mnt_has_parent(root_mnt)) 4234 goto out4; /* not attached */ 4235 if (!path_mounted(&new)) 4236 goto out4; /* not a mountpoint */ 4237 if (!mnt_has_parent(new_mnt)) 4238 goto out4; /* not attached */ 4239 /* make sure we can reach put_old from new_root */ 4240 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4241 goto out4; 4242 /* make certain new is below the root */ 4243 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4244 goto out4; 4245 lock_mount_hash(); 4246 umount_mnt(new_mnt); 4247 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4248 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4249 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4250 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4251 } 4252 /* mount old root on put_old */ 4253 attach_mnt(root_mnt, old_mnt, old_mp, false); 4254 /* mount new_root on / */ 4255 attach_mnt(new_mnt, root_parent, root_mp, false); 4256 mnt_add_count(root_parent, -1); 4257 touch_mnt_namespace(current->nsproxy->mnt_ns); 4258 /* A moved mount should not expire automatically */ 4259 list_del_init(&new_mnt->mnt_expire); 4260 put_mountpoint(root_mp); 4261 unlock_mount_hash(); 4262 chroot_fs_refs(&root, &new); 4263 error = 0; 4264 out4: 4265 unlock_mount(old_mp); 4266 if (!error) 4267 mntput_no_expire(ex_parent); 4268 out3: 4269 path_put(&root); 4270 out2: 4271 path_put(&old); 4272 out1: 4273 path_put(&new); 4274 out0: 4275 return error; 4276 } 4277 4278 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4279 { 4280 unsigned int flags = mnt->mnt.mnt_flags; 4281 4282 /* flags to clear */ 4283 flags &= ~kattr->attr_clr; 4284 /* flags to raise */ 4285 flags |= kattr->attr_set; 4286 4287 return flags; 4288 } 4289 4290 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4291 { 4292 struct vfsmount *m = &mnt->mnt; 4293 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4294 4295 if (!kattr->mnt_idmap) 4296 return 0; 4297 4298 /* 4299 * Creating an idmapped mount with the filesystem wide idmapping 4300 * doesn't make sense so block that. We don't allow mushy semantics. 4301 */ 4302 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4303 return -EINVAL; 4304 4305 /* 4306 * Once a mount has been idmapped we don't allow it to change its 4307 * mapping. It makes things simpler and callers can just create 4308 * another bind-mount they can idmap if they want to. 4309 */ 4310 if (is_idmapped_mnt(m)) 4311 return -EPERM; 4312 4313 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4314 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4315 return -EINVAL; 4316 4317 /* We're not controlling the superblock. */ 4318 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4319 return -EPERM; 4320 4321 /* Mount has already been visible in the filesystem hierarchy. */ 4322 if (!is_anon_ns(mnt->mnt_ns)) 4323 return -EINVAL; 4324 4325 return 0; 4326 } 4327 4328 /** 4329 * mnt_allow_writers() - check whether the attribute change allows writers 4330 * @kattr: the new mount attributes 4331 * @mnt: the mount to which @kattr will be applied 4332 * 4333 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4334 * 4335 * Return: true if writers need to be held, false if not 4336 */ 4337 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4338 const struct mount *mnt) 4339 { 4340 return (!(kattr->attr_set & MNT_READONLY) || 4341 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4342 !kattr->mnt_idmap; 4343 } 4344 4345 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4346 { 4347 struct mount *m; 4348 int err; 4349 4350 for (m = mnt; m; m = next_mnt(m, mnt)) { 4351 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4352 err = -EPERM; 4353 break; 4354 } 4355 4356 err = can_idmap_mount(kattr, m); 4357 if (err) 4358 break; 4359 4360 if (!mnt_allow_writers(kattr, m)) { 4361 err = mnt_hold_writers(m); 4362 if (err) 4363 break; 4364 } 4365 4366 if (!kattr->recurse) 4367 return 0; 4368 } 4369 4370 if (err) { 4371 struct mount *p; 4372 4373 /* 4374 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4375 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4376 * mounts and needs to take care to include the first mount. 4377 */ 4378 for (p = mnt; p; p = next_mnt(p, mnt)) { 4379 /* If we had to hold writers unblock them. */ 4380 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4381 mnt_unhold_writers(p); 4382 4383 /* 4384 * We're done once the first mount we changed got 4385 * MNT_WRITE_HOLD unset. 4386 */ 4387 if (p == m) 4388 break; 4389 } 4390 } 4391 return err; 4392 } 4393 4394 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4395 { 4396 if (!kattr->mnt_idmap) 4397 return; 4398 4399 /* 4400 * Pairs with smp_load_acquire() in mnt_idmap(). 4401 * 4402 * Since we only allow a mount to change the idmapping once and 4403 * verified this in can_idmap_mount() we know that the mount has 4404 * @nop_mnt_idmap attached to it. So there's no need to drop any 4405 * references. 4406 */ 4407 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4408 } 4409 4410 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4411 { 4412 struct mount *m; 4413 4414 for (m = mnt; m; m = next_mnt(m, mnt)) { 4415 unsigned int flags; 4416 4417 do_idmap_mount(kattr, m); 4418 flags = recalc_flags(kattr, m); 4419 WRITE_ONCE(m->mnt.mnt_flags, flags); 4420 4421 /* If we had to hold writers unblock them. */ 4422 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4423 mnt_unhold_writers(m); 4424 4425 if (kattr->propagation) 4426 change_mnt_propagation(m, kattr->propagation); 4427 if (!kattr->recurse) 4428 break; 4429 } 4430 touch_mnt_namespace(mnt->mnt_ns); 4431 } 4432 4433 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4434 { 4435 struct mount *mnt = real_mount(path->mnt); 4436 int err = 0; 4437 4438 if (!path_mounted(path)) 4439 return -EINVAL; 4440 4441 if (kattr->mnt_userns) { 4442 struct mnt_idmap *mnt_idmap; 4443 4444 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4445 if (IS_ERR(mnt_idmap)) 4446 return PTR_ERR(mnt_idmap); 4447 kattr->mnt_idmap = mnt_idmap; 4448 } 4449 4450 if (kattr->propagation) { 4451 /* 4452 * Only take namespace_lock() if we're actually changing 4453 * propagation. 4454 */ 4455 namespace_lock(); 4456 if (kattr->propagation == MS_SHARED) { 4457 err = invent_group_ids(mnt, kattr->recurse); 4458 if (err) { 4459 namespace_unlock(); 4460 return err; 4461 } 4462 } 4463 } 4464 4465 err = -EINVAL; 4466 lock_mount_hash(); 4467 4468 /* Ensure that this isn't anything purely vfs internal. */ 4469 if (!is_mounted(&mnt->mnt)) 4470 goto out; 4471 4472 /* 4473 * If this is an attached mount make sure it's located in the callers 4474 * mount namespace. If it's not don't let the caller interact with it. 4475 * 4476 * If this mount doesn't have a parent it's most often simply a 4477 * detached mount with an anonymous mount namespace. IOW, something 4478 * that's simply not attached yet. But there are apparently also users 4479 * that do change mount properties on the rootfs itself. That obviously 4480 * neither has a parent nor is it a detached mount so we cannot 4481 * unconditionally check for detached mounts. 4482 */ 4483 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4484 goto out; 4485 4486 /* 4487 * First, we get the mount tree in a shape where we can change mount 4488 * properties without failure. If we succeeded to do so we commit all 4489 * changes and if we failed we clean up. 4490 */ 4491 err = mount_setattr_prepare(kattr, mnt); 4492 if (!err) 4493 mount_setattr_commit(kattr, mnt); 4494 4495 out: 4496 unlock_mount_hash(); 4497 4498 if (kattr->propagation) { 4499 if (err) 4500 cleanup_group_ids(mnt, NULL); 4501 namespace_unlock(); 4502 } 4503 4504 return err; 4505 } 4506 4507 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4508 struct mount_kattr *kattr, unsigned int flags) 4509 { 4510 int err = 0; 4511 struct ns_common *ns; 4512 struct user_namespace *mnt_userns; 4513 struct fd f; 4514 4515 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4516 return 0; 4517 4518 /* 4519 * We currently do not support clearing an idmapped mount. If this ever 4520 * is a use-case we can revisit this but for now let's keep it simple 4521 * and not allow it. 4522 */ 4523 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4524 return -EINVAL; 4525 4526 if (attr->userns_fd > INT_MAX) 4527 return -EINVAL; 4528 4529 f = fdget(attr->userns_fd); 4530 if (!f.file) 4531 return -EBADF; 4532 4533 if (!proc_ns_file(f.file)) { 4534 err = -EINVAL; 4535 goto out_fput; 4536 } 4537 4538 ns = get_proc_ns(file_inode(f.file)); 4539 if (ns->ops->type != CLONE_NEWUSER) { 4540 err = -EINVAL; 4541 goto out_fput; 4542 } 4543 4544 /* 4545 * The initial idmapping cannot be used to create an idmapped 4546 * mount. We use the initial idmapping as an indicator of a mount 4547 * that is not idmapped. It can simply be passed into helpers that 4548 * are aware of idmapped mounts as a convenient shortcut. A user 4549 * can just create a dedicated identity mapping to achieve the same 4550 * result. 4551 */ 4552 mnt_userns = container_of(ns, struct user_namespace, ns); 4553 if (mnt_userns == &init_user_ns) { 4554 err = -EPERM; 4555 goto out_fput; 4556 } 4557 4558 /* We're not controlling the target namespace. */ 4559 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4560 err = -EPERM; 4561 goto out_fput; 4562 } 4563 4564 kattr->mnt_userns = get_user_ns(mnt_userns); 4565 4566 out_fput: 4567 fdput(f); 4568 return err; 4569 } 4570 4571 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4572 struct mount_kattr *kattr, unsigned int flags) 4573 { 4574 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4575 4576 if (flags & AT_NO_AUTOMOUNT) 4577 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4578 if (flags & AT_SYMLINK_NOFOLLOW) 4579 lookup_flags &= ~LOOKUP_FOLLOW; 4580 if (flags & AT_EMPTY_PATH) 4581 lookup_flags |= LOOKUP_EMPTY; 4582 4583 *kattr = (struct mount_kattr) { 4584 .lookup_flags = lookup_flags, 4585 .recurse = !!(flags & AT_RECURSIVE), 4586 }; 4587 4588 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4589 return -EINVAL; 4590 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4591 return -EINVAL; 4592 kattr->propagation = attr->propagation; 4593 4594 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4595 return -EINVAL; 4596 4597 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4598 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4599 4600 /* 4601 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4602 * users wanting to transition to a different atime setting cannot 4603 * simply specify the atime setting in @attr_set, but must also 4604 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4605 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4606 * @attr_clr and that @attr_set can't have any atime bits set if 4607 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4608 */ 4609 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4610 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4611 return -EINVAL; 4612 4613 /* 4614 * Clear all previous time settings as they are mutually 4615 * exclusive. 4616 */ 4617 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4618 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4619 case MOUNT_ATTR_RELATIME: 4620 kattr->attr_set |= MNT_RELATIME; 4621 break; 4622 case MOUNT_ATTR_NOATIME: 4623 kattr->attr_set |= MNT_NOATIME; 4624 break; 4625 case MOUNT_ATTR_STRICTATIME: 4626 break; 4627 default: 4628 return -EINVAL; 4629 } 4630 } else { 4631 if (attr->attr_set & MOUNT_ATTR__ATIME) 4632 return -EINVAL; 4633 } 4634 4635 return build_mount_idmapped(attr, usize, kattr, flags); 4636 } 4637 4638 static void finish_mount_kattr(struct mount_kattr *kattr) 4639 { 4640 put_user_ns(kattr->mnt_userns); 4641 kattr->mnt_userns = NULL; 4642 4643 if (kattr->mnt_idmap) 4644 mnt_idmap_put(kattr->mnt_idmap); 4645 } 4646 4647 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4648 unsigned int, flags, struct mount_attr __user *, uattr, 4649 size_t, usize) 4650 { 4651 int err; 4652 struct path target; 4653 struct mount_attr attr; 4654 struct mount_kattr kattr; 4655 4656 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4657 4658 if (flags & ~(AT_EMPTY_PATH | 4659 AT_RECURSIVE | 4660 AT_SYMLINK_NOFOLLOW | 4661 AT_NO_AUTOMOUNT)) 4662 return -EINVAL; 4663 4664 if (unlikely(usize > PAGE_SIZE)) 4665 return -E2BIG; 4666 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4667 return -EINVAL; 4668 4669 if (!may_mount()) 4670 return -EPERM; 4671 4672 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4673 if (err) 4674 return err; 4675 4676 /* Don't bother walking through the mounts if this is a nop. */ 4677 if (attr.attr_set == 0 && 4678 attr.attr_clr == 0 && 4679 attr.propagation == 0) 4680 return 0; 4681 4682 err = build_mount_kattr(&attr, usize, &kattr, flags); 4683 if (err) 4684 return err; 4685 4686 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4687 if (!err) { 4688 err = do_mount_setattr(&target, &kattr); 4689 path_put(&target); 4690 } 4691 finish_mount_kattr(&kattr); 4692 return err; 4693 } 4694 4695 int show_path(struct seq_file *m, struct dentry *root) 4696 { 4697 if (root->d_sb->s_op->show_path) 4698 return root->d_sb->s_op->show_path(m, root); 4699 4700 seq_dentry(m, root, " \t\n\\"); 4701 return 0; 4702 } 4703 4704 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 4705 { 4706 struct mount *mnt = mnt_find_id_at(ns, id); 4707 4708 if (!mnt || mnt->mnt_id_unique != id) 4709 return NULL; 4710 4711 return &mnt->mnt; 4712 } 4713 4714 struct kstatmount { 4715 struct statmount __user *buf; 4716 size_t bufsize; 4717 struct vfsmount *mnt; 4718 u64 mask; 4719 struct path root; 4720 struct statmount sm; 4721 struct seq_file seq; 4722 }; 4723 4724 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 4725 { 4726 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 4727 u64 attr_flags = 0; 4728 4729 if (mnt_flags & MNT_READONLY) 4730 attr_flags |= MOUNT_ATTR_RDONLY; 4731 if (mnt_flags & MNT_NOSUID) 4732 attr_flags |= MOUNT_ATTR_NOSUID; 4733 if (mnt_flags & MNT_NODEV) 4734 attr_flags |= MOUNT_ATTR_NODEV; 4735 if (mnt_flags & MNT_NOEXEC) 4736 attr_flags |= MOUNT_ATTR_NOEXEC; 4737 if (mnt_flags & MNT_NODIRATIME) 4738 attr_flags |= MOUNT_ATTR_NODIRATIME; 4739 if (mnt_flags & MNT_NOSYMFOLLOW) 4740 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 4741 4742 if (mnt_flags & MNT_NOATIME) 4743 attr_flags |= MOUNT_ATTR_NOATIME; 4744 else if (mnt_flags & MNT_RELATIME) 4745 attr_flags |= MOUNT_ATTR_RELATIME; 4746 else 4747 attr_flags |= MOUNT_ATTR_STRICTATIME; 4748 4749 if (is_idmapped_mnt(mnt)) 4750 attr_flags |= MOUNT_ATTR_IDMAP; 4751 4752 return attr_flags; 4753 } 4754 4755 static u64 mnt_to_propagation_flags(struct mount *m) 4756 { 4757 u64 propagation = 0; 4758 4759 if (IS_MNT_SHARED(m)) 4760 propagation |= MS_SHARED; 4761 if (IS_MNT_SLAVE(m)) 4762 propagation |= MS_SLAVE; 4763 if (IS_MNT_UNBINDABLE(m)) 4764 propagation |= MS_UNBINDABLE; 4765 if (!propagation) 4766 propagation |= MS_PRIVATE; 4767 4768 return propagation; 4769 } 4770 4771 static void statmount_sb_basic(struct kstatmount *s) 4772 { 4773 struct super_block *sb = s->mnt->mnt_sb; 4774 4775 s->sm.mask |= STATMOUNT_SB_BASIC; 4776 s->sm.sb_dev_major = MAJOR(sb->s_dev); 4777 s->sm.sb_dev_minor = MINOR(sb->s_dev); 4778 s->sm.sb_magic = sb->s_magic; 4779 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 4780 } 4781 4782 static void statmount_mnt_basic(struct kstatmount *s) 4783 { 4784 struct mount *m = real_mount(s->mnt); 4785 4786 s->sm.mask |= STATMOUNT_MNT_BASIC; 4787 s->sm.mnt_id = m->mnt_id_unique; 4788 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 4789 s->sm.mnt_id_old = m->mnt_id; 4790 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 4791 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 4792 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 4793 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 4794 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 4795 } 4796 4797 static void statmount_propagate_from(struct kstatmount *s) 4798 { 4799 struct mount *m = real_mount(s->mnt); 4800 4801 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 4802 if (IS_MNT_SLAVE(m)) 4803 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 4804 } 4805 4806 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 4807 { 4808 int ret; 4809 size_t start = seq->count; 4810 4811 ret = show_path(seq, s->mnt->mnt_root); 4812 if (ret) 4813 return ret; 4814 4815 if (unlikely(seq_has_overflowed(seq))) 4816 return -EAGAIN; 4817 4818 /* 4819 * Unescape the result. It would be better if supplied string was not 4820 * escaped in the first place, but that's a pretty invasive change. 4821 */ 4822 seq->buf[seq->count] = '\0'; 4823 seq->count = start; 4824 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 4825 return 0; 4826 } 4827 4828 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 4829 { 4830 struct vfsmount *mnt = s->mnt; 4831 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 4832 int err; 4833 4834 err = seq_path_root(seq, &mnt_path, &s->root, ""); 4835 return err == SEQ_SKIP ? 0 : err; 4836 } 4837 4838 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 4839 { 4840 struct super_block *sb = s->mnt->mnt_sb; 4841 4842 seq_puts(seq, sb->s_type->name); 4843 return 0; 4844 } 4845 4846 static int statmount_string(struct kstatmount *s, u64 flag) 4847 { 4848 int ret; 4849 size_t kbufsize; 4850 struct seq_file *seq = &s->seq; 4851 struct statmount *sm = &s->sm; 4852 4853 switch (flag) { 4854 case STATMOUNT_FS_TYPE: 4855 sm->fs_type = seq->count; 4856 ret = statmount_fs_type(s, seq); 4857 break; 4858 case STATMOUNT_MNT_ROOT: 4859 sm->mnt_root = seq->count; 4860 ret = statmount_mnt_root(s, seq); 4861 break; 4862 case STATMOUNT_MNT_POINT: 4863 sm->mnt_point = seq->count; 4864 ret = statmount_mnt_point(s, seq); 4865 break; 4866 default: 4867 WARN_ON_ONCE(true); 4868 return -EINVAL; 4869 } 4870 4871 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 4872 return -EOVERFLOW; 4873 if (kbufsize >= s->bufsize) 4874 return -EOVERFLOW; 4875 4876 /* signal a retry */ 4877 if (unlikely(seq_has_overflowed(seq))) 4878 return -EAGAIN; 4879 4880 if (ret) 4881 return ret; 4882 4883 seq->buf[seq->count++] = '\0'; 4884 sm->mask |= flag; 4885 return 0; 4886 } 4887 4888 static int copy_statmount_to_user(struct kstatmount *s) 4889 { 4890 struct statmount *sm = &s->sm; 4891 struct seq_file *seq = &s->seq; 4892 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 4893 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 4894 4895 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 4896 return -EFAULT; 4897 4898 /* Return the number of bytes copied to the buffer */ 4899 sm->size = copysize + seq->count; 4900 if (copy_to_user(s->buf, sm, copysize)) 4901 return -EFAULT; 4902 4903 return 0; 4904 } 4905 4906 static int do_statmount(struct kstatmount *s) 4907 { 4908 struct mount *m = real_mount(s->mnt); 4909 int err; 4910 4911 /* 4912 * Don't trigger audit denials. We just want to determine what 4913 * mounts to show users. 4914 */ 4915 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) && 4916 !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN)) 4917 return -EPERM; 4918 4919 err = security_sb_statfs(s->mnt->mnt_root); 4920 if (err) 4921 return err; 4922 4923 if (s->mask & STATMOUNT_SB_BASIC) 4924 statmount_sb_basic(s); 4925 4926 if (s->mask & STATMOUNT_MNT_BASIC) 4927 statmount_mnt_basic(s); 4928 4929 if (s->mask & STATMOUNT_PROPAGATE_FROM) 4930 statmount_propagate_from(s); 4931 4932 if (s->mask & STATMOUNT_FS_TYPE) 4933 err = statmount_string(s, STATMOUNT_FS_TYPE); 4934 4935 if (!err && s->mask & STATMOUNT_MNT_ROOT) 4936 err = statmount_string(s, STATMOUNT_MNT_ROOT); 4937 4938 if (!err && s->mask & STATMOUNT_MNT_POINT) 4939 err = statmount_string(s, STATMOUNT_MNT_POINT); 4940 4941 if (err) 4942 return err; 4943 4944 return 0; 4945 } 4946 4947 static inline bool retry_statmount(const long ret, size_t *seq_size) 4948 { 4949 if (likely(ret != -EAGAIN)) 4950 return false; 4951 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 4952 return false; 4953 if (unlikely(*seq_size > MAX_RW_COUNT)) 4954 return false; 4955 return true; 4956 } 4957 4958 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 4959 struct statmount __user *buf, size_t bufsize, 4960 size_t seq_size) 4961 { 4962 if (!access_ok(buf, bufsize)) 4963 return -EFAULT; 4964 4965 memset(ks, 0, sizeof(*ks)); 4966 ks->mask = kreq->param; 4967 ks->buf = buf; 4968 ks->bufsize = bufsize; 4969 ks->seq.size = seq_size; 4970 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 4971 if (!ks->seq.buf) 4972 return -ENOMEM; 4973 return 0; 4974 } 4975 4976 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 4977 struct mnt_id_req *kreq) 4978 { 4979 int ret; 4980 size_t usize; 4981 4982 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER0); 4983 4984 ret = get_user(usize, &req->size); 4985 if (ret) 4986 return -EFAULT; 4987 if (unlikely(usize > PAGE_SIZE)) 4988 return -E2BIG; 4989 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 4990 return -EINVAL; 4991 memset(kreq, 0, sizeof(*kreq)); 4992 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 4993 if (ret) 4994 return ret; 4995 if (kreq->spare != 0) 4996 return -EINVAL; 4997 return 0; 4998 } 4999 5000 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5001 struct statmount __user *, buf, size_t, bufsize, 5002 unsigned int, flags) 5003 { 5004 struct vfsmount *mnt; 5005 struct mnt_id_req kreq; 5006 struct kstatmount ks; 5007 /* We currently support retrieval of 3 strings. */ 5008 size_t seq_size = 3 * PATH_MAX; 5009 int ret; 5010 5011 if (flags) 5012 return -EINVAL; 5013 5014 ret = copy_mnt_id_req(req, &kreq); 5015 if (ret) 5016 return ret; 5017 5018 retry: 5019 ret = prepare_kstatmount(&ks, &kreq, buf, bufsize, seq_size); 5020 if (ret) 5021 return ret; 5022 5023 down_read(&namespace_sem); 5024 mnt = lookup_mnt_in_ns(kreq.mnt_id, current->nsproxy->mnt_ns); 5025 if (!mnt) { 5026 up_read(&namespace_sem); 5027 kvfree(ks.seq.buf); 5028 return -ENOENT; 5029 } 5030 5031 ks.mnt = mnt; 5032 get_fs_root(current->fs, &ks.root); 5033 ret = do_statmount(&ks); 5034 path_put(&ks.root); 5035 up_read(&namespace_sem); 5036 5037 if (!ret) 5038 ret = copy_statmount_to_user(&ks); 5039 kvfree(ks.seq.buf); 5040 if (retry_statmount(ret, &seq_size)) 5041 goto retry; 5042 return ret; 5043 } 5044 5045 static struct mount *listmnt_next(struct mount *curr) 5046 { 5047 return node_to_mount(rb_next(&curr->mnt_node)); 5048 } 5049 5050 static ssize_t do_listmount(struct mount *first, struct path *orig, 5051 u64 mnt_parent_id, u64 __user *mnt_ids, 5052 size_t nr_mnt_ids, const struct path *root) 5053 { 5054 struct mount *r; 5055 ssize_t ret; 5056 5057 /* 5058 * Don't trigger audit denials. We just want to determine what 5059 * mounts to show users. 5060 */ 5061 if (!is_path_reachable(real_mount(orig->mnt), orig->dentry, root) && 5062 !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN)) 5063 return -EPERM; 5064 5065 ret = security_sb_statfs(orig->dentry); 5066 if (ret) 5067 return ret; 5068 5069 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r)) { 5070 if (r->mnt_id_unique == mnt_parent_id) 5071 continue; 5072 if (!is_path_reachable(r, r->mnt.mnt_root, orig)) 5073 continue; 5074 if (put_user(r->mnt_id_unique, mnt_ids)) 5075 return -EFAULT; 5076 mnt_ids++; 5077 nr_mnt_ids--; 5078 ret++; 5079 } 5080 return ret; 5081 } 5082 5083 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, u64 __user *, 5084 mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 5085 { 5086 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 5087 struct mnt_id_req kreq; 5088 struct mount *first; 5089 struct path root, orig; 5090 u64 mnt_parent_id, last_mnt_id; 5091 const size_t maxcount = (size_t)-1 >> 3; 5092 ssize_t ret; 5093 5094 if (flags) 5095 return -EINVAL; 5096 5097 if (unlikely(nr_mnt_ids > maxcount)) 5098 return -EFAULT; 5099 5100 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 5101 return -EFAULT; 5102 5103 ret = copy_mnt_id_req(req, &kreq); 5104 if (ret) 5105 return ret; 5106 mnt_parent_id = kreq.mnt_id; 5107 last_mnt_id = kreq.param; 5108 5109 down_read(&namespace_sem); 5110 get_fs_root(current->fs, &root); 5111 if (mnt_parent_id == LSMT_ROOT) { 5112 orig = root; 5113 } else { 5114 ret = -ENOENT; 5115 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5116 if (!orig.mnt) 5117 goto err; 5118 orig.dentry = orig.mnt->mnt_root; 5119 } 5120 if (!last_mnt_id) 5121 first = node_to_mount(rb_first(&ns->mounts)); 5122 else 5123 first = mnt_find_id_at(ns, last_mnt_id + 1); 5124 5125 ret = do_listmount(first, &orig, mnt_parent_id, mnt_ids, nr_mnt_ids, &root); 5126 err: 5127 path_put(&root); 5128 up_read(&namespace_sem); 5129 return ret; 5130 } 5131 5132 5133 static void __init init_mount_tree(void) 5134 { 5135 struct vfsmount *mnt; 5136 struct mount *m; 5137 struct mnt_namespace *ns; 5138 struct path root; 5139 5140 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 5141 if (IS_ERR(mnt)) 5142 panic("Can't create rootfs"); 5143 5144 ns = alloc_mnt_ns(&init_user_ns, false); 5145 if (IS_ERR(ns)) 5146 panic("Can't allocate initial namespace"); 5147 m = real_mount(mnt); 5148 ns->root = m; 5149 ns->nr_mounts = 1; 5150 mnt_add_to_ns(ns, m); 5151 init_task.nsproxy->mnt_ns = ns; 5152 get_mnt_ns(ns); 5153 5154 root.mnt = mnt; 5155 root.dentry = mnt->mnt_root; 5156 mnt->mnt_flags |= MNT_LOCKED; 5157 5158 set_fs_pwd(current->fs, &root); 5159 set_fs_root(current->fs, &root); 5160 } 5161 5162 void __init mnt_init(void) 5163 { 5164 int err; 5165 5166 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 5167 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 5168 5169 mount_hashtable = alloc_large_system_hash("Mount-cache", 5170 sizeof(struct hlist_head), 5171 mhash_entries, 19, 5172 HASH_ZERO, 5173 &m_hash_shift, &m_hash_mask, 0, 0); 5174 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 5175 sizeof(struct hlist_head), 5176 mphash_entries, 19, 5177 HASH_ZERO, 5178 &mp_hash_shift, &mp_hash_mask, 0, 0); 5179 5180 if (!mount_hashtable || !mountpoint_hashtable) 5181 panic("Failed to allocate mount hash table\n"); 5182 5183 kernfs_init(); 5184 5185 err = sysfs_init(); 5186 if (err) 5187 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 5188 __func__, err); 5189 fs_kobj = kobject_create_and_add("fs", NULL); 5190 if (!fs_kobj) 5191 printk(KERN_WARNING "%s: kobj create error\n", __func__); 5192 shmem_init(); 5193 init_rootfs(); 5194 init_mount_tree(); 5195 } 5196 5197 void put_mnt_ns(struct mnt_namespace *ns) 5198 { 5199 if (!refcount_dec_and_test(&ns->ns.count)) 5200 return; 5201 drop_collected_mounts(&ns->root->mnt); 5202 free_mnt_ns(ns); 5203 } 5204 5205 struct vfsmount *kern_mount(struct file_system_type *type) 5206 { 5207 struct vfsmount *mnt; 5208 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 5209 if (!IS_ERR(mnt)) { 5210 /* 5211 * it is a longterm mount, don't release mnt until 5212 * we unmount before file sys is unregistered 5213 */ 5214 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 5215 } 5216 return mnt; 5217 } 5218 EXPORT_SYMBOL_GPL(kern_mount); 5219 5220 void kern_unmount(struct vfsmount *mnt) 5221 { 5222 /* release long term mount so mount point can be released */ 5223 if (!IS_ERR(mnt)) { 5224 mnt_make_shortterm(mnt); 5225 synchronize_rcu(); /* yecchhh... */ 5226 mntput(mnt); 5227 } 5228 } 5229 EXPORT_SYMBOL(kern_unmount); 5230 5231 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 5232 { 5233 unsigned int i; 5234 5235 for (i = 0; i < num; i++) 5236 mnt_make_shortterm(mnt[i]); 5237 synchronize_rcu_expedited(); 5238 for (i = 0; i < num; i++) 5239 mntput(mnt[i]); 5240 } 5241 EXPORT_SYMBOL(kern_unmount_array); 5242 5243 bool our_mnt(struct vfsmount *mnt) 5244 { 5245 return check_mnt(real_mount(mnt)); 5246 } 5247 5248 bool current_chrooted(void) 5249 { 5250 /* Does the current process have a non-standard root */ 5251 struct path ns_root; 5252 struct path fs_root; 5253 bool chrooted; 5254 5255 /* Find the namespace root */ 5256 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 5257 ns_root.dentry = ns_root.mnt->mnt_root; 5258 path_get(&ns_root); 5259 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 5260 ; 5261 5262 get_fs_root(current->fs, &fs_root); 5263 5264 chrooted = !path_equal(&fs_root, &ns_root); 5265 5266 path_put(&fs_root); 5267 path_put(&ns_root); 5268 5269 return chrooted; 5270 } 5271 5272 static bool mnt_already_visible(struct mnt_namespace *ns, 5273 const struct super_block *sb, 5274 int *new_mnt_flags) 5275 { 5276 int new_flags = *new_mnt_flags; 5277 struct mount *mnt, *n; 5278 bool visible = false; 5279 5280 down_read(&namespace_sem); 5281 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 5282 struct mount *child; 5283 int mnt_flags; 5284 5285 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 5286 continue; 5287 5288 /* This mount is not fully visible if it's root directory 5289 * is not the root directory of the filesystem. 5290 */ 5291 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 5292 continue; 5293 5294 /* A local view of the mount flags */ 5295 mnt_flags = mnt->mnt.mnt_flags; 5296 5297 /* Don't miss readonly hidden in the superblock flags */ 5298 if (sb_rdonly(mnt->mnt.mnt_sb)) 5299 mnt_flags |= MNT_LOCK_READONLY; 5300 5301 /* Verify the mount flags are equal to or more permissive 5302 * than the proposed new mount. 5303 */ 5304 if ((mnt_flags & MNT_LOCK_READONLY) && 5305 !(new_flags & MNT_READONLY)) 5306 continue; 5307 if ((mnt_flags & MNT_LOCK_ATIME) && 5308 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 5309 continue; 5310 5311 /* This mount is not fully visible if there are any 5312 * locked child mounts that cover anything except for 5313 * empty directories. 5314 */ 5315 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 5316 struct inode *inode = child->mnt_mountpoint->d_inode; 5317 /* Only worry about locked mounts */ 5318 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 5319 continue; 5320 /* Is the directory permanetly empty? */ 5321 if (!is_empty_dir_inode(inode)) 5322 goto next; 5323 } 5324 /* Preserve the locked attributes */ 5325 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 5326 MNT_LOCK_ATIME); 5327 visible = true; 5328 goto found; 5329 next: ; 5330 } 5331 found: 5332 up_read(&namespace_sem); 5333 return visible; 5334 } 5335 5336 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 5337 { 5338 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 5339 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 5340 unsigned long s_iflags; 5341 5342 if (ns->user_ns == &init_user_ns) 5343 return false; 5344 5345 /* Can this filesystem be too revealing? */ 5346 s_iflags = sb->s_iflags; 5347 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 5348 return false; 5349 5350 if ((s_iflags & required_iflags) != required_iflags) { 5351 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 5352 required_iflags); 5353 return true; 5354 } 5355 5356 return !mnt_already_visible(ns, sb, new_mnt_flags); 5357 } 5358 5359 bool mnt_may_suid(struct vfsmount *mnt) 5360 { 5361 /* 5362 * Foreign mounts (accessed via fchdir or through /proc 5363 * symlinks) are always treated as if they are nosuid. This 5364 * prevents namespaces from trusting potentially unsafe 5365 * suid/sgid bits, file caps, or security labels that originate 5366 * in other namespaces. 5367 */ 5368 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 5369 current_in_userns(mnt->mnt_sb->s_user_ns); 5370 } 5371 5372 static struct ns_common *mntns_get(struct task_struct *task) 5373 { 5374 struct ns_common *ns = NULL; 5375 struct nsproxy *nsproxy; 5376 5377 task_lock(task); 5378 nsproxy = task->nsproxy; 5379 if (nsproxy) { 5380 ns = &nsproxy->mnt_ns->ns; 5381 get_mnt_ns(to_mnt_ns(ns)); 5382 } 5383 task_unlock(task); 5384 5385 return ns; 5386 } 5387 5388 static void mntns_put(struct ns_common *ns) 5389 { 5390 put_mnt_ns(to_mnt_ns(ns)); 5391 } 5392 5393 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 5394 { 5395 struct nsproxy *nsproxy = nsset->nsproxy; 5396 struct fs_struct *fs = nsset->fs; 5397 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 5398 struct user_namespace *user_ns = nsset->cred->user_ns; 5399 struct path root; 5400 int err; 5401 5402 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 5403 !ns_capable(user_ns, CAP_SYS_CHROOT) || 5404 !ns_capable(user_ns, CAP_SYS_ADMIN)) 5405 return -EPERM; 5406 5407 if (is_anon_ns(mnt_ns)) 5408 return -EINVAL; 5409 5410 if (fs->users != 1) 5411 return -EINVAL; 5412 5413 get_mnt_ns(mnt_ns); 5414 old_mnt_ns = nsproxy->mnt_ns; 5415 nsproxy->mnt_ns = mnt_ns; 5416 5417 /* Find the root */ 5418 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 5419 "/", LOOKUP_DOWN, &root); 5420 if (err) { 5421 /* revert to old namespace */ 5422 nsproxy->mnt_ns = old_mnt_ns; 5423 put_mnt_ns(mnt_ns); 5424 return err; 5425 } 5426 5427 put_mnt_ns(old_mnt_ns); 5428 5429 /* Update the pwd and root */ 5430 set_fs_pwd(fs, &root); 5431 set_fs_root(fs, &root); 5432 5433 path_put(&root); 5434 return 0; 5435 } 5436 5437 static struct user_namespace *mntns_owner(struct ns_common *ns) 5438 { 5439 return to_mnt_ns(ns)->user_ns; 5440 } 5441 5442 const struct proc_ns_operations mntns_operations = { 5443 .name = "mnt", 5444 .type = CLONE_NEWNS, 5445 .get = mntns_get, 5446 .put = mntns_put, 5447 .install = mntns_install, 5448 .owner = mntns_owner, 5449 }; 5450 5451 #ifdef CONFIG_SYSCTL 5452 static struct ctl_table fs_namespace_sysctls[] = { 5453 { 5454 .procname = "mount-max", 5455 .data = &sysctl_mount_max, 5456 .maxlen = sizeof(unsigned int), 5457 .mode = 0644, 5458 .proc_handler = proc_dointvec_minmax, 5459 .extra1 = SYSCTL_ONE, 5460 }, 5461 }; 5462 5463 static int __init init_fs_namespace_sysctls(void) 5464 { 5465 register_sysctl_init("fs", fs_namespace_sysctls); 5466 return 0; 5467 } 5468 fs_initcall(init_fs_namespace_sysctls); 5469 5470 #endif /* CONFIG_SYSCTL */ 5471