1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 #include <linux/nstree.h> 37 38 #include "pnode.h" 39 #include "internal.h" 40 41 /* Maximum number of mounts in a mount namespace */ 42 static unsigned int sysctl_mount_max __read_mostly = 100000; 43 44 static unsigned int m_hash_mask __ro_after_init; 45 static unsigned int m_hash_shift __ro_after_init; 46 static unsigned int mp_hash_mask __ro_after_init; 47 static unsigned int mp_hash_shift __ro_after_init; 48 49 static __initdata unsigned long mhash_entries; 50 static int __init set_mhash_entries(char *str) 51 { 52 if (!str) 53 return 0; 54 mhash_entries = simple_strtoul(str, &str, 0); 55 return 1; 56 } 57 __setup("mhash_entries=", set_mhash_entries); 58 59 static __initdata unsigned long mphash_entries; 60 static int __init set_mphash_entries(char *str) 61 { 62 if (!str) 63 return 0; 64 mphash_entries = simple_strtoul(str, &str, 0); 65 return 1; 66 } 67 __setup("mphash_entries=", set_mphash_entries); 68 69 static char * __initdata initramfs_options; 70 static int __init initramfs_options_setup(char *str) 71 { 72 initramfs_options = str; 73 return 1; 74 } 75 76 __setup("initramfs_options=", initramfs_options_setup); 77 78 static u64 event; 79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 80 static DEFINE_IDA(mnt_group_ida); 81 82 /* Don't allow confusion with old 32bit mount ID */ 83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 85 86 static struct hlist_head *mount_hashtable __ro_after_init; 87 static struct hlist_head *mountpoint_hashtable __ro_after_init; 88 static struct kmem_cache *mnt_cache __ro_after_init; 89 static DECLARE_RWSEM(namespace_sem); 90 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */ 93 94 static inline void namespace_lock(void); 95 static void namespace_unlock(void); 96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock()) 97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem), 98 up_read(&namespace_sem)) 99 100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T)) 101 102 #ifdef CONFIG_FSNOTIFY 103 LIST_HEAD(notify_list); /* protected by namespace_sem */ 104 #endif 105 106 enum mount_kattr_flags_t { 107 MOUNT_KATTR_RECURSE = (1 << 0), 108 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 109 }; 110 111 struct mount_kattr { 112 unsigned int attr_set; 113 unsigned int attr_clr; 114 unsigned int propagation; 115 unsigned int lookup_flags; 116 enum mount_kattr_flags_t kflags; 117 struct user_namespace *mnt_userns; 118 struct mnt_idmap *mnt_idmap; 119 }; 120 121 /* /sys/fs */ 122 struct kobject *fs_kobj __ro_after_init; 123 EXPORT_SYMBOL_GPL(fs_kobj); 124 125 /* 126 * vfsmount lock may be taken for read to prevent changes to the 127 * vfsmount hash, ie. during mountpoint lookups or walking back 128 * up the tree. 129 * 130 * It should be taken for write in all cases where the vfsmount 131 * tree or hash is modified or when a vfsmount structure is modified. 132 */ 133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 134 135 static void mnt_ns_release(struct mnt_namespace *ns) 136 { 137 /* keep alive for {list,stat}mount() */ 138 if (ns && refcount_dec_and_test(&ns->passive)) { 139 fsnotify_mntns_delete(ns); 140 put_user_ns(ns->user_ns); 141 kfree(ns); 142 } 143 } 144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, 145 if (!IS_ERR(_T)) mnt_ns_release(_T)) 146 147 static void mnt_ns_release_rcu(struct rcu_head *rcu) 148 { 149 mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu)); 150 } 151 152 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 153 { 154 /* remove from global mount namespace list */ 155 if (ns_tree_active(ns)) 156 ns_tree_remove(ns); 157 158 call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu); 159 } 160 161 /* 162 * Lookup a mount namespace by id and take a passive reference count. Taking a 163 * passive reference means the mount namespace can be emptied if e.g., the last 164 * task holding an active reference exits. To access the mounts of the 165 * namespace the @namespace_sem must first be acquired. If the namespace has 166 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 167 * see that the mount rbtree of the namespace is empty. 168 * 169 * Note the lookup is lockless protected by a sequence counter. We only 170 * need to guard against false negatives as false positives aren't 171 * possible. So if we didn't find a mount namespace and the sequence 172 * counter has changed we need to retry. If the sequence counter is 173 * still the same we know the search actually failed. 174 */ 175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 176 { 177 struct mnt_namespace *mnt_ns; 178 struct ns_common *ns; 179 180 guard(rcu)(); 181 ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS); 182 if (!ns) 183 return NULL; 184 185 /* 186 * The last reference count is put with RCU delay so we can 187 * unconditonally acquire a reference here. 188 */ 189 mnt_ns = container_of(ns, struct mnt_namespace, ns); 190 refcount_inc(&mnt_ns->passive); 191 return mnt_ns; 192 } 193 194 static inline void lock_mount_hash(void) 195 { 196 write_seqlock(&mount_lock); 197 } 198 199 static inline void unlock_mount_hash(void) 200 { 201 write_sequnlock(&mount_lock); 202 } 203 204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 205 { 206 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 207 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 208 tmp = tmp + (tmp >> m_hash_shift); 209 return &mount_hashtable[tmp & m_hash_mask]; 210 } 211 212 static inline struct hlist_head *mp_hash(struct dentry *dentry) 213 { 214 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 215 tmp = tmp + (tmp >> mp_hash_shift); 216 return &mountpoint_hashtable[tmp & mp_hash_mask]; 217 } 218 219 static int mnt_alloc_id(struct mount *mnt) 220 { 221 int res; 222 223 xa_lock(&mnt_id_xa); 224 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 225 if (!res) 226 mnt->mnt_id_unique = ++mnt_id_ctr; 227 xa_unlock(&mnt_id_xa); 228 return res; 229 } 230 231 static void mnt_free_id(struct mount *mnt) 232 { 233 xa_erase(&mnt_id_xa, mnt->mnt_id); 234 } 235 236 /* 237 * Allocate a new peer group ID 238 */ 239 static int mnt_alloc_group_id(struct mount *mnt) 240 { 241 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 242 243 if (res < 0) 244 return res; 245 mnt->mnt_group_id = res; 246 return 0; 247 } 248 249 /* 250 * Release a peer group ID 251 */ 252 void mnt_release_group_id(struct mount *mnt) 253 { 254 ida_free(&mnt_group_ida, mnt->mnt_group_id); 255 mnt->mnt_group_id = 0; 256 } 257 258 /* 259 * vfsmount lock must be held for read 260 */ 261 static inline void mnt_add_count(struct mount *mnt, int n) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 265 #else 266 preempt_disable(); 267 mnt->mnt_count += n; 268 preempt_enable(); 269 #endif 270 } 271 272 /* 273 * vfsmount lock must be held for write 274 */ 275 int mnt_get_count(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 int count = 0; 279 int cpu; 280 281 for_each_possible_cpu(cpu) { 282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 283 } 284 285 return count; 286 #else 287 return mnt->mnt_count; 288 #endif 289 } 290 291 static struct mount *alloc_vfsmnt(const char *name) 292 { 293 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 294 if (mnt) { 295 int err; 296 297 err = mnt_alloc_id(mnt); 298 if (err) 299 goto out_free_cache; 300 301 if (name) 302 mnt->mnt_devname = kstrdup_const(name, 303 GFP_KERNEL_ACCOUNT); 304 else 305 mnt->mnt_devname = "none"; 306 if (!mnt->mnt_devname) 307 goto out_free_id; 308 309 #ifdef CONFIG_SMP 310 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 311 if (!mnt->mnt_pcp) 312 goto out_free_devname; 313 314 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 315 #else 316 mnt->mnt_count = 1; 317 mnt->mnt_writers = 0; 318 #endif 319 320 INIT_HLIST_NODE(&mnt->mnt_hash); 321 INIT_LIST_HEAD(&mnt->mnt_child); 322 INIT_LIST_HEAD(&mnt->mnt_mounts); 323 INIT_LIST_HEAD(&mnt->mnt_list); 324 INIT_LIST_HEAD(&mnt->mnt_expire); 325 INIT_LIST_HEAD(&mnt->mnt_share); 326 INIT_HLIST_HEAD(&mnt->mnt_slave_list); 327 INIT_HLIST_NODE(&mnt->mnt_slave); 328 INIT_HLIST_NODE(&mnt->mnt_mp_list); 329 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 330 RB_CLEAR_NODE(&mnt->mnt_node); 331 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 332 } 333 return mnt; 334 335 #ifdef CONFIG_SMP 336 out_free_devname: 337 kfree_const(mnt->mnt_devname); 338 #endif 339 out_free_id: 340 mnt_free_id(mnt); 341 out_free_cache: 342 kmem_cache_free(mnt_cache, mnt); 343 return NULL; 344 } 345 346 /* 347 * Most r/o checks on a fs are for operations that take 348 * discrete amounts of time, like a write() or unlink(). 349 * We must keep track of when those operations start 350 * (for permission checks) and when they end, so that 351 * we can determine when writes are able to occur to 352 * a filesystem. 353 */ 354 /* 355 * __mnt_is_readonly: check whether a mount is read-only 356 * @mnt: the mount to check for its write status 357 * 358 * This shouldn't be used directly ouside of the VFS. 359 * It does not guarantee that the filesystem will stay 360 * r/w, just that it is right *now*. This can not and 361 * should not be used in place of IS_RDONLY(inode). 362 * mnt_want/drop_write() will _keep_ the filesystem 363 * r/w. 364 */ 365 bool __mnt_is_readonly(const struct vfsmount *mnt) 366 { 367 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 368 } 369 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 370 371 static inline void mnt_inc_writers(struct mount *mnt) 372 { 373 #ifdef CONFIG_SMP 374 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 375 #else 376 mnt->mnt_writers++; 377 #endif 378 } 379 380 static inline void mnt_dec_writers(struct mount *mnt) 381 { 382 #ifdef CONFIG_SMP 383 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 384 #else 385 mnt->mnt_writers--; 386 #endif 387 } 388 389 static unsigned int mnt_get_writers(struct mount *mnt) 390 { 391 #ifdef CONFIG_SMP 392 unsigned int count = 0; 393 int cpu; 394 395 for_each_possible_cpu(cpu) { 396 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 397 } 398 399 return count; 400 #else 401 return mnt->mnt_writers; 402 #endif 403 } 404 405 static int mnt_is_readonly(const struct vfsmount *mnt) 406 { 407 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 408 return 1; 409 /* 410 * The barrier pairs with the barrier in sb_start_ro_state_change() 411 * making sure if we don't see s_readonly_remount set yet, we also will 412 * not see any superblock / mount flag changes done by remount. 413 * It also pairs with the barrier in sb_end_ro_state_change() 414 * assuring that if we see s_readonly_remount already cleared, we will 415 * see the values of superblock / mount flags updated by remount. 416 */ 417 smp_rmb(); 418 return __mnt_is_readonly(mnt); 419 } 420 421 /* 422 * Most r/o & frozen checks on a fs are for operations that take discrete 423 * amounts of time, like a write() or unlink(). We must keep track of when 424 * those operations start (for permission checks) and when they end, so that we 425 * can determine when writes are able to occur to a filesystem. 426 */ 427 /** 428 * mnt_get_write_access - get write access to a mount without freeze protection 429 * @m: the mount on which to take a write 430 * 431 * This tells the low-level filesystem that a write is about to be performed to 432 * it, and makes sure that writes are allowed (mnt it read-write) before 433 * returning success. This operation does not protect against filesystem being 434 * frozen. When the write operation is finished, mnt_put_write_access() must be 435 * called. This is effectively a refcount. 436 */ 437 int mnt_get_write_access(struct vfsmount *m) 438 { 439 struct mount *mnt = real_mount(m); 440 int ret = 0; 441 442 preempt_disable(); 443 mnt_inc_writers(mnt); 444 /* 445 * The store to mnt_inc_writers must be visible before we pass 446 * WRITE_HOLD loop below, so that the slowpath can see our 447 * incremented count after it has set WRITE_HOLD. 448 */ 449 smp_mb(); 450 might_lock(&mount_lock.lock); 451 while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) { 452 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 453 cpu_relax(); 454 } else { 455 /* 456 * This prevents priority inversion, if the task 457 * setting WRITE_HOLD got preempted on a remote 458 * CPU, and it prevents life lock if the task setting 459 * WRITE_HOLD has a lower priority and is bound to 460 * the same CPU as the task that is spinning here. 461 */ 462 preempt_enable(); 463 read_seqlock_excl(&mount_lock); 464 read_sequnlock_excl(&mount_lock); 465 preempt_disable(); 466 } 467 } 468 /* 469 * The barrier pairs with the barrier sb_start_ro_state_change() making 470 * sure that if we see WRITE_HOLD cleared, we will also see 471 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 472 * mnt_is_readonly() and bail in case we are racing with remount 473 * read-only. 474 */ 475 smp_rmb(); 476 if (mnt_is_readonly(m)) { 477 mnt_dec_writers(mnt); 478 ret = -EROFS; 479 } 480 preempt_enable(); 481 482 return ret; 483 } 484 EXPORT_SYMBOL_GPL(mnt_get_write_access); 485 486 /** 487 * mnt_want_write - get write access to a mount 488 * @m: the mount on which to take a write 489 * 490 * This tells the low-level filesystem that a write is about to be performed to 491 * it, and makes sure that writes are allowed (mount is read-write, filesystem 492 * is not frozen) before returning success. When the write operation is 493 * finished, mnt_drop_write() must be called. This is effectively a refcount. 494 */ 495 int mnt_want_write(struct vfsmount *m) 496 { 497 int ret; 498 499 sb_start_write(m->mnt_sb); 500 ret = mnt_get_write_access(m); 501 if (ret) 502 sb_end_write(m->mnt_sb); 503 return ret; 504 } 505 EXPORT_SYMBOL_GPL(mnt_want_write); 506 507 /** 508 * mnt_get_write_access_file - get write access to a file's mount 509 * @file: the file who's mount on which to take a write 510 * 511 * This is like mnt_get_write_access, but if @file is already open for write it 512 * skips incrementing mnt_writers (since the open file already has a reference) 513 * and instead only does the check for emergency r/o remounts. This must be 514 * paired with mnt_put_write_access_file. 515 */ 516 int mnt_get_write_access_file(struct file *file) 517 { 518 if (file->f_mode & FMODE_WRITER) { 519 /* 520 * Superblock may have become readonly while there are still 521 * writable fd's, e.g. due to a fs error with errors=remount-ro 522 */ 523 if (__mnt_is_readonly(file->f_path.mnt)) 524 return -EROFS; 525 return 0; 526 } 527 return mnt_get_write_access(file->f_path.mnt); 528 } 529 530 /** 531 * mnt_want_write_file - get write access to a file's mount 532 * @file: the file who's mount on which to take a write 533 * 534 * This is like mnt_want_write, but if the file is already open for writing it 535 * skips incrementing mnt_writers (since the open file already has a reference) 536 * and instead only does the freeze protection and the check for emergency r/o 537 * remounts. This must be paired with mnt_drop_write_file. 538 */ 539 int mnt_want_write_file(struct file *file) 540 { 541 int ret; 542 543 sb_start_write(file_inode(file)->i_sb); 544 ret = mnt_get_write_access_file(file); 545 if (ret) 546 sb_end_write(file_inode(file)->i_sb); 547 return ret; 548 } 549 EXPORT_SYMBOL_GPL(mnt_want_write_file); 550 551 /** 552 * mnt_put_write_access - give up write access to a mount 553 * @mnt: the mount on which to give up write access 554 * 555 * Tells the low-level filesystem that we are done 556 * performing writes to it. Must be matched with 557 * mnt_get_write_access() call above. 558 */ 559 void mnt_put_write_access(struct vfsmount *mnt) 560 { 561 preempt_disable(); 562 mnt_dec_writers(real_mount(mnt)); 563 preempt_enable(); 564 } 565 EXPORT_SYMBOL_GPL(mnt_put_write_access); 566 567 /** 568 * mnt_drop_write - give up write access to a mount 569 * @mnt: the mount on which to give up write access 570 * 571 * Tells the low-level filesystem that we are done performing writes to it and 572 * also allows filesystem to be frozen again. Must be matched with 573 * mnt_want_write() call above. 574 */ 575 void mnt_drop_write(struct vfsmount *mnt) 576 { 577 mnt_put_write_access(mnt); 578 sb_end_write(mnt->mnt_sb); 579 } 580 EXPORT_SYMBOL_GPL(mnt_drop_write); 581 582 void mnt_put_write_access_file(struct file *file) 583 { 584 if (!(file->f_mode & FMODE_WRITER)) 585 mnt_put_write_access(file->f_path.mnt); 586 } 587 588 void mnt_drop_write_file(struct file *file) 589 { 590 mnt_put_write_access_file(file); 591 sb_end_write(file_inode(file)->i_sb); 592 } 593 EXPORT_SYMBOL(mnt_drop_write_file); 594 595 /** 596 * mnt_hold_writers - prevent write access to the given mount 597 * @mnt: mnt to prevent write access to 598 * 599 * Prevents write access to @mnt if there are no active writers for @mnt. 600 * This function needs to be called and return successfully before changing 601 * properties of @mnt that need to remain stable for callers with write access 602 * to @mnt. 603 * 604 * After this functions has been called successfully callers must pair it with 605 * a call to mnt_unhold_writers() in order to stop preventing write access to 606 * @mnt. 607 * 608 * Context: This function expects to be in mount_locked_reader scope serializing 609 * setting WRITE_HOLD. 610 * Return: On success 0 is returned. 611 * On error, -EBUSY is returned. 612 */ 613 static inline int mnt_hold_writers(struct mount *mnt) 614 { 615 set_write_hold(mnt); 616 /* 617 * After storing WRITE_HOLD, we'll read the counters. This store 618 * should be visible before we do. 619 */ 620 smp_mb(); 621 622 /* 623 * With writers on hold, if this value is zero, then there are 624 * definitely no active writers (although held writers may subsequently 625 * increment the count, they'll have to wait, and decrement it after 626 * seeing MNT_READONLY). 627 * 628 * It is OK to have counter incremented on one CPU and decremented on 629 * another: the sum will add up correctly. The danger would be when we 630 * sum up each counter, if we read a counter before it is incremented, 631 * but then read another CPU's count which it has been subsequently 632 * decremented from -- we would see more decrements than we should. 633 * WRITE_HOLD protects against this scenario, because 634 * mnt_want_write first increments count, then smp_mb, then spins on 635 * WRITE_HOLD, so it can't be decremented by another CPU while 636 * we're counting up here. 637 */ 638 if (mnt_get_writers(mnt) > 0) 639 return -EBUSY; 640 641 return 0; 642 } 643 644 /** 645 * mnt_unhold_writers - stop preventing write access to the given mount 646 * @mnt: mnt to stop preventing write access to 647 * 648 * Stop preventing write access to @mnt allowing callers to gain write access 649 * to @mnt again. 650 * 651 * This function can only be called after a call to mnt_hold_writers(). 652 * 653 * Context: This function expects to be in the same mount_locked_reader scope 654 * as the matching mnt_hold_writers(). 655 */ 656 static inline void mnt_unhold_writers(struct mount *mnt) 657 { 658 if (!test_write_hold(mnt)) 659 return; 660 /* 661 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers 662 * that become unheld will see MNT_READONLY. 663 */ 664 smp_wmb(); 665 clear_write_hold(mnt); 666 } 667 668 static inline void mnt_del_instance(struct mount *m) 669 { 670 struct mount **p = m->mnt_pprev_for_sb; 671 struct mount *next = m->mnt_next_for_sb; 672 673 if (next) 674 next->mnt_pprev_for_sb = p; 675 *p = next; 676 } 677 678 static inline void mnt_add_instance(struct mount *m, struct super_block *s) 679 { 680 struct mount *first = s->s_mounts; 681 682 if (first) 683 first->mnt_pprev_for_sb = &m->mnt_next_for_sb; 684 m->mnt_next_for_sb = first; 685 m->mnt_pprev_for_sb = &s->s_mounts; 686 s->s_mounts = m; 687 } 688 689 static int mnt_make_readonly(struct mount *mnt) 690 { 691 int ret; 692 693 ret = mnt_hold_writers(mnt); 694 if (!ret) 695 mnt->mnt.mnt_flags |= MNT_READONLY; 696 mnt_unhold_writers(mnt); 697 return ret; 698 } 699 700 int sb_prepare_remount_readonly(struct super_block *sb) 701 { 702 int err = 0; 703 704 /* Racy optimization. Recheck the counter under WRITE_HOLD */ 705 if (atomic_long_read(&sb->s_remove_count)) 706 return -EBUSY; 707 708 guard(mount_locked_reader)(); 709 710 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) { 711 if (!(m->mnt.mnt_flags & MNT_READONLY)) { 712 err = mnt_hold_writers(m); 713 if (err) 714 break; 715 } 716 } 717 if (!err && atomic_long_read(&sb->s_remove_count)) 718 err = -EBUSY; 719 720 if (!err) 721 sb_start_ro_state_change(sb); 722 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) { 723 if (test_write_hold(m)) 724 clear_write_hold(m); 725 } 726 727 return err; 728 } 729 730 static void free_vfsmnt(struct mount *mnt) 731 { 732 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 733 kfree_const(mnt->mnt_devname); 734 #ifdef CONFIG_SMP 735 free_percpu(mnt->mnt_pcp); 736 #endif 737 kmem_cache_free(mnt_cache, mnt); 738 } 739 740 static void delayed_free_vfsmnt(struct rcu_head *head) 741 { 742 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 743 } 744 745 /* call under rcu_read_lock */ 746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 747 { 748 struct mount *mnt; 749 if (read_seqretry(&mount_lock, seq)) 750 return 1; 751 if (bastard == NULL) 752 return 0; 753 mnt = real_mount(bastard); 754 mnt_add_count(mnt, 1); 755 smp_mb(); // see mntput_no_expire() and do_umount() 756 if (likely(!read_seqretry(&mount_lock, seq))) 757 return 0; 758 lock_mount_hash(); 759 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { 760 mnt_add_count(mnt, -1); 761 unlock_mount_hash(); 762 return 1; 763 } 764 unlock_mount_hash(); 765 /* caller will mntput() */ 766 return -1; 767 } 768 769 /* call under rcu_read_lock */ 770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 771 { 772 int res = __legitimize_mnt(bastard, seq); 773 if (likely(!res)) 774 return true; 775 if (unlikely(res < 0)) { 776 rcu_read_unlock(); 777 mntput(bastard); 778 rcu_read_lock(); 779 } 780 return false; 781 } 782 783 /** 784 * __lookup_mnt - mount hash lookup 785 * @mnt: parent mount 786 * @dentry: dentry of mountpoint 787 * 788 * If @mnt has a child mount @c mounted on @dentry find and return it. 789 * Caller must either hold the spinlock component of @mount_lock or 790 * hold rcu_read_lock(), sample the seqcount component before the call 791 * and recheck it afterwards. 792 * 793 * Return: The child of @mnt mounted on @dentry or %NULL. 794 */ 795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 796 { 797 struct hlist_head *head = m_hash(mnt, dentry); 798 struct mount *p; 799 800 hlist_for_each_entry_rcu(p, head, mnt_hash) 801 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 802 return p; 803 return NULL; 804 } 805 806 /** 807 * lookup_mnt - Return the child mount mounted at given location 808 * @path: location in the namespace 809 * 810 * Acquires and returns a new reference to mount at given location 811 * or %NULL if nothing is mounted there. 812 */ 813 struct vfsmount *lookup_mnt(const struct path *path) 814 { 815 struct mount *child_mnt; 816 struct vfsmount *m; 817 unsigned seq; 818 819 rcu_read_lock(); 820 do { 821 seq = read_seqbegin(&mount_lock); 822 child_mnt = __lookup_mnt(path->mnt, path->dentry); 823 m = child_mnt ? &child_mnt->mnt : NULL; 824 } while (!legitimize_mnt(m, seq)); 825 rcu_read_unlock(); 826 return m; 827 } 828 829 /* 830 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 831 * current mount namespace. 832 * 833 * The common case is dentries are not mountpoints at all and that 834 * test is handled inline. For the slow case when we are actually 835 * dealing with a mountpoint of some kind, walk through all of the 836 * mounts in the current mount namespace and test to see if the dentry 837 * is a mountpoint. 838 * 839 * The mount_hashtable is not usable in the context because we 840 * need to identify all mounts that may be in the current mount 841 * namespace not just a mount that happens to have some specified 842 * parent mount. 843 */ 844 bool __is_local_mountpoint(const struct dentry *dentry) 845 { 846 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 847 struct mount *mnt, *n; 848 849 guard(namespace_shared)(); 850 851 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) 852 if (mnt->mnt_mountpoint == dentry) 853 return true; 854 855 return false; 856 } 857 858 struct pinned_mountpoint { 859 struct hlist_node node; 860 struct mountpoint *mp; 861 struct mount *parent; 862 }; 863 864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) 865 { 866 struct hlist_head *chain = mp_hash(dentry); 867 struct mountpoint *mp; 868 869 hlist_for_each_entry(mp, chain, m_hash) { 870 if (mp->m_dentry == dentry) { 871 hlist_add_head(&m->node, &mp->m_list); 872 m->mp = mp; 873 return true; 874 } 875 } 876 return false; 877 } 878 879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) 880 { 881 struct mountpoint *mp __free(kfree) = NULL; 882 bool found; 883 int ret; 884 885 if (d_mountpoint(dentry)) { 886 /* might be worth a WARN_ON() */ 887 if (d_unlinked(dentry)) 888 return -ENOENT; 889 mountpoint: 890 read_seqlock_excl(&mount_lock); 891 found = lookup_mountpoint(dentry, m); 892 read_sequnlock_excl(&mount_lock); 893 if (found) 894 return 0; 895 } 896 897 if (!mp) 898 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 899 if (!mp) 900 return -ENOMEM; 901 902 /* Exactly one processes may set d_mounted */ 903 ret = d_set_mounted(dentry); 904 905 /* Someone else set d_mounted? */ 906 if (ret == -EBUSY) 907 goto mountpoint; 908 909 /* The dentry is not available as a mountpoint? */ 910 if (ret) 911 return ret; 912 913 /* Add the new mountpoint to the hash table */ 914 read_seqlock_excl(&mount_lock); 915 mp->m_dentry = dget(dentry); 916 hlist_add_head(&mp->m_hash, mp_hash(dentry)); 917 INIT_HLIST_HEAD(&mp->m_list); 918 hlist_add_head(&m->node, &mp->m_list); 919 m->mp = no_free_ptr(mp); 920 read_sequnlock_excl(&mount_lock); 921 return 0; 922 } 923 924 /* 925 * vfsmount lock must be held. Additionally, the caller is responsible 926 * for serializing calls for given disposal list. 927 */ 928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list) 929 { 930 if (hlist_empty(&mp->m_list)) { 931 struct dentry *dentry = mp->m_dentry; 932 spin_lock(&dentry->d_lock); 933 dentry->d_flags &= ~DCACHE_MOUNTED; 934 spin_unlock(&dentry->d_lock); 935 dput_to_list(dentry, list); 936 hlist_del(&mp->m_hash); 937 kfree(mp); 938 } 939 } 940 941 /* 942 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl] 943 */ 944 static void unpin_mountpoint(struct pinned_mountpoint *m) 945 { 946 if (m->mp) { 947 hlist_del(&m->node); 948 maybe_free_mountpoint(m->mp, &ex_mountpoints); 949 } 950 } 951 952 static inline int check_mnt(const struct mount *mnt) 953 { 954 return mnt->mnt_ns == current->nsproxy->mnt_ns; 955 } 956 957 static inline bool check_anonymous_mnt(struct mount *mnt) 958 { 959 u64 seq; 960 961 if (!is_anon_ns(mnt->mnt_ns)) 962 return false; 963 964 seq = mnt->mnt_ns->seq_origin; 965 return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id); 966 } 967 968 /* 969 * vfsmount lock must be held for write 970 */ 971 static void touch_mnt_namespace(struct mnt_namespace *ns) 972 { 973 if (ns) { 974 ns->event = ++event; 975 wake_up_interruptible(&ns->poll); 976 } 977 } 978 979 /* 980 * vfsmount lock must be held for write 981 */ 982 static void __touch_mnt_namespace(struct mnt_namespace *ns) 983 { 984 if (ns && ns->event != event) { 985 ns->event = event; 986 wake_up_interruptible(&ns->poll); 987 } 988 } 989 990 /* 991 * locks: mount_lock[write_seqlock] 992 */ 993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list) 994 { 995 struct mountpoint *mp; 996 struct mount *parent = mnt->mnt_parent; 997 if (unlikely(parent->overmount == mnt)) 998 parent->overmount = NULL; 999 mnt->mnt_parent = mnt; 1000 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1001 list_del_init(&mnt->mnt_child); 1002 hlist_del_init_rcu(&mnt->mnt_hash); 1003 hlist_del_init(&mnt->mnt_mp_list); 1004 mp = mnt->mnt_mp; 1005 mnt->mnt_mp = NULL; 1006 maybe_free_mountpoint(mp, shrink_list); 1007 } 1008 1009 /* 1010 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints) 1011 */ 1012 static void umount_mnt(struct mount *mnt) 1013 { 1014 __umount_mnt(mnt, &ex_mountpoints); 1015 } 1016 1017 /* 1018 * vfsmount lock must be held for write 1019 */ 1020 void mnt_set_mountpoint(struct mount *mnt, 1021 struct mountpoint *mp, 1022 struct mount *child_mnt) 1023 { 1024 child_mnt->mnt_mountpoint = mp->m_dentry; 1025 child_mnt->mnt_parent = mnt; 1026 child_mnt->mnt_mp = mp; 1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1028 } 1029 1030 static void make_visible(struct mount *mnt) 1031 { 1032 struct mount *parent = mnt->mnt_parent; 1033 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root)) 1034 parent->overmount = mnt; 1035 hlist_add_head_rcu(&mnt->mnt_hash, 1036 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1037 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1038 } 1039 1040 /** 1041 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1042 * list of child mounts 1043 * @parent: the parent 1044 * @mnt: the new mount 1045 * @mp: the new mountpoint 1046 * 1047 * Mount @mnt at @mp on @parent. Then attach @mnt 1048 * to @parent's child mount list and to @mount_hashtable. 1049 * 1050 * Note, when make_visible() is called @mnt->mnt_parent already points 1051 * to the correct parent. 1052 * 1053 * Context: This function expects namespace_lock() and lock_mount_hash() 1054 * to have been acquired in that order. 1055 */ 1056 static void attach_mnt(struct mount *mnt, struct mount *parent, 1057 struct mountpoint *mp) 1058 { 1059 mnt_set_mountpoint(parent, mp, mnt); 1060 make_visible(mnt); 1061 } 1062 1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1064 { 1065 struct mountpoint *old_mp = mnt->mnt_mp; 1066 1067 list_del_init(&mnt->mnt_child); 1068 hlist_del_init(&mnt->mnt_mp_list); 1069 hlist_del_init_rcu(&mnt->mnt_hash); 1070 1071 attach_mnt(mnt, parent, mp); 1072 1073 maybe_free_mountpoint(old_mp, &ex_mountpoints); 1074 } 1075 1076 static inline struct mount *node_to_mount(struct rb_node *node) 1077 { 1078 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1079 } 1080 1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1082 { 1083 struct rb_node **link = &ns->mounts.rb_node; 1084 struct rb_node *parent = NULL; 1085 bool mnt_first_node = true, mnt_last_node = true; 1086 1087 WARN_ON(mnt_ns_attached(mnt)); 1088 mnt->mnt_ns = ns; 1089 while (*link) { 1090 parent = *link; 1091 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1092 link = &parent->rb_left; 1093 mnt_last_node = false; 1094 } else { 1095 link = &parent->rb_right; 1096 mnt_first_node = false; 1097 } 1098 } 1099 1100 if (mnt_last_node) 1101 ns->mnt_last_node = &mnt->mnt_node; 1102 if (mnt_first_node) 1103 ns->mnt_first_node = &mnt->mnt_node; 1104 rb_link_node(&mnt->mnt_node, parent, link); 1105 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1106 1107 mnt_notify_add(mnt); 1108 } 1109 1110 static struct mount *next_mnt(struct mount *p, struct mount *root) 1111 { 1112 struct list_head *next = p->mnt_mounts.next; 1113 if (next == &p->mnt_mounts) { 1114 while (1) { 1115 if (p == root) 1116 return NULL; 1117 next = p->mnt_child.next; 1118 if (next != &p->mnt_parent->mnt_mounts) 1119 break; 1120 p = p->mnt_parent; 1121 } 1122 } 1123 return list_entry(next, struct mount, mnt_child); 1124 } 1125 1126 static struct mount *skip_mnt_tree(struct mount *p) 1127 { 1128 struct list_head *prev = p->mnt_mounts.prev; 1129 while (prev != &p->mnt_mounts) { 1130 p = list_entry(prev, struct mount, mnt_child); 1131 prev = p->mnt_mounts.prev; 1132 } 1133 return p; 1134 } 1135 1136 /* 1137 * vfsmount lock must be held for write 1138 */ 1139 static void commit_tree(struct mount *mnt) 1140 { 1141 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns; 1142 1143 if (!mnt_ns_attached(mnt)) { 1144 for (struct mount *m = mnt; m; m = next_mnt(m, mnt)) 1145 mnt_add_to_ns(n, m); 1146 n->nr_mounts += n->pending_mounts; 1147 n->pending_mounts = 0; 1148 } 1149 1150 make_visible(mnt); 1151 touch_mnt_namespace(n); 1152 } 1153 1154 static void setup_mnt(struct mount *m, struct dentry *root) 1155 { 1156 struct super_block *s = root->d_sb; 1157 1158 atomic_inc(&s->s_active); 1159 m->mnt.mnt_sb = s; 1160 m->mnt.mnt_root = dget(root); 1161 m->mnt_mountpoint = m->mnt.mnt_root; 1162 m->mnt_parent = m; 1163 1164 guard(mount_locked_reader)(); 1165 mnt_add_instance(m, s); 1166 } 1167 1168 /** 1169 * vfs_create_mount - Create a mount for a configured superblock 1170 * @fc: The configuration context with the superblock attached 1171 * 1172 * Create a mount to an already configured superblock. If necessary, the 1173 * caller should invoke vfs_get_tree() before calling this. 1174 * 1175 * Note that this does not attach the mount to anything. 1176 */ 1177 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1178 { 1179 struct mount *mnt; 1180 1181 if (!fc->root) 1182 return ERR_PTR(-EINVAL); 1183 1184 mnt = alloc_vfsmnt(fc->source); 1185 if (!mnt) 1186 return ERR_PTR(-ENOMEM); 1187 1188 if (fc->sb_flags & SB_KERNMOUNT) 1189 mnt->mnt.mnt_flags = MNT_INTERNAL; 1190 1191 setup_mnt(mnt, fc->root); 1192 1193 return &mnt->mnt; 1194 } 1195 EXPORT_SYMBOL(vfs_create_mount); 1196 1197 struct vfsmount *fc_mount(struct fs_context *fc) 1198 { 1199 int err = vfs_get_tree(fc); 1200 if (!err) { 1201 up_write(&fc->root->d_sb->s_umount); 1202 return vfs_create_mount(fc); 1203 } 1204 return ERR_PTR(err); 1205 } 1206 EXPORT_SYMBOL(fc_mount); 1207 1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc) 1209 { 1210 struct vfsmount *mnt = fc_mount(fc); 1211 if (!IS_ERR(mnt)) 1212 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 1213 return mnt; 1214 } 1215 EXPORT_SYMBOL(fc_mount_longterm); 1216 1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1218 int flags, const char *name, 1219 void *data) 1220 { 1221 struct fs_context *fc; 1222 struct vfsmount *mnt; 1223 int ret = 0; 1224 1225 if (!type) 1226 return ERR_PTR(-EINVAL); 1227 1228 fc = fs_context_for_mount(type, flags); 1229 if (IS_ERR(fc)) 1230 return ERR_CAST(fc); 1231 1232 if (name) 1233 ret = vfs_parse_fs_string(fc, "source", name); 1234 if (!ret) 1235 ret = parse_monolithic_mount_data(fc, data); 1236 if (!ret) 1237 mnt = fc_mount(fc); 1238 else 1239 mnt = ERR_PTR(ret); 1240 1241 put_fs_context(fc); 1242 return mnt; 1243 } 1244 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1245 1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1247 int flag) 1248 { 1249 struct mount *mnt; 1250 int err; 1251 1252 mnt = alloc_vfsmnt(old->mnt_devname); 1253 if (!mnt) 1254 return ERR_PTR(-ENOMEM); 1255 1256 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) & 1257 ~MNT_INTERNAL_FLAGS; 1258 1259 if (flag & (CL_SLAVE | CL_PRIVATE)) 1260 mnt->mnt_group_id = 0; /* not a peer of original */ 1261 else 1262 mnt->mnt_group_id = old->mnt_group_id; 1263 1264 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1265 err = mnt_alloc_group_id(mnt); 1266 if (err) 1267 goto out_free; 1268 } 1269 1270 if (mnt->mnt_group_id) 1271 set_mnt_shared(mnt); 1272 1273 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1274 1275 setup_mnt(mnt, root); 1276 1277 if (flag & CL_PRIVATE) // we are done with it 1278 return mnt; 1279 1280 if (peers(mnt, old)) 1281 list_add(&mnt->mnt_share, &old->mnt_share); 1282 1283 if ((flag & CL_SLAVE) && old->mnt_group_id) { 1284 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list); 1285 mnt->mnt_master = old; 1286 } else if (IS_MNT_SLAVE(old)) { 1287 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave); 1288 mnt->mnt_master = old->mnt_master; 1289 } 1290 return mnt; 1291 1292 out_free: 1293 mnt_free_id(mnt); 1294 free_vfsmnt(mnt); 1295 return ERR_PTR(err); 1296 } 1297 1298 static void cleanup_mnt(struct mount *mnt) 1299 { 1300 struct hlist_node *p; 1301 struct mount *m; 1302 /* 1303 * The warning here probably indicates that somebody messed 1304 * up a mnt_want/drop_write() pair. If this happens, the 1305 * filesystem was probably unable to make r/w->r/o transitions. 1306 * The locking used to deal with mnt_count decrement provides barriers, 1307 * so mnt_get_writers() below is safe. 1308 */ 1309 WARN_ON(mnt_get_writers(mnt)); 1310 if (unlikely(mnt->mnt_pins.first)) 1311 mnt_pin_kill(mnt); 1312 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1313 hlist_del(&m->mnt_umount); 1314 mntput(&m->mnt); 1315 } 1316 fsnotify_vfsmount_delete(&mnt->mnt); 1317 dput(mnt->mnt.mnt_root); 1318 deactivate_super(mnt->mnt.mnt_sb); 1319 mnt_free_id(mnt); 1320 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1321 } 1322 1323 static void __cleanup_mnt(struct rcu_head *head) 1324 { 1325 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1326 } 1327 1328 static LLIST_HEAD(delayed_mntput_list); 1329 static void delayed_mntput(struct work_struct *unused) 1330 { 1331 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1332 struct mount *m, *t; 1333 1334 llist_for_each_entry_safe(m, t, node, mnt_llist) 1335 cleanup_mnt(m); 1336 } 1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1338 1339 static void mntput_no_expire(struct mount *mnt) 1340 { 1341 LIST_HEAD(list); 1342 int count; 1343 1344 rcu_read_lock(); 1345 if (likely(READ_ONCE(mnt->mnt_ns))) { 1346 /* 1347 * Since we don't do lock_mount_hash() here, 1348 * ->mnt_ns can change under us. However, if it's 1349 * non-NULL, then there's a reference that won't 1350 * be dropped until after an RCU delay done after 1351 * turning ->mnt_ns NULL. So if we observe it 1352 * non-NULL under rcu_read_lock(), the reference 1353 * we are dropping is not the final one. 1354 */ 1355 mnt_add_count(mnt, -1); 1356 rcu_read_unlock(); 1357 return; 1358 } 1359 lock_mount_hash(); 1360 /* 1361 * make sure that if __legitimize_mnt() has not seen us grab 1362 * mount_lock, we'll see their refcount increment here. 1363 */ 1364 smp_mb(); 1365 mnt_add_count(mnt, -1); 1366 count = mnt_get_count(mnt); 1367 if (count != 0) { 1368 WARN_ON(count < 0); 1369 rcu_read_unlock(); 1370 unlock_mount_hash(); 1371 return; 1372 } 1373 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1374 rcu_read_unlock(); 1375 unlock_mount_hash(); 1376 return; 1377 } 1378 mnt->mnt.mnt_flags |= MNT_DOOMED; 1379 rcu_read_unlock(); 1380 1381 mnt_del_instance(mnt); 1382 if (unlikely(!list_empty(&mnt->mnt_expire))) 1383 list_del(&mnt->mnt_expire); 1384 1385 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1386 struct mount *p, *tmp; 1387 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1388 __umount_mnt(p, &list); 1389 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1390 } 1391 } 1392 unlock_mount_hash(); 1393 shrink_dentry_list(&list); 1394 1395 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1396 struct task_struct *task = current; 1397 if (likely(!(task->flags & PF_KTHREAD))) { 1398 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1399 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1400 return; 1401 } 1402 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1403 schedule_delayed_work(&delayed_mntput_work, 1); 1404 return; 1405 } 1406 cleanup_mnt(mnt); 1407 } 1408 1409 void mntput(struct vfsmount *mnt) 1410 { 1411 if (mnt) { 1412 struct mount *m = real_mount(mnt); 1413 /* avoid cacheline pingpong */ 1414 if (unlikely(m->mnt_expiry_mark)) 1415 WRITE_ONCE(m->mnt_expiry_mark, 0); 1416 mntput_no_expire(m); 1417 } 1418 } 1419 EXPORT_SYMBOL(mntput); 1420 1421 struct vfsmount *mntget(struct vfsmount *mnt) 1422 { 1423 if (mnt) 1424 mnt_add_count(real_mount(mnt), 1); 1425 return mnt; 1426 } 1427 EXPORT_SYMBOL(mntget); 1428 1429 /* 1430 * Make a mount point inaccessible to new lookups. 1431 * Because there may still be current users, the caller MUST WAIT 1432 * for an RCU grace period before destroying the mount point. 1433 */ 1434 void mnt_make_shortterm(struct vfsmount *mnt) 1435 { 1436 if (mnt) 1437 real_mount(mnt)->mnt_ns = NULL; 1438 } 1439 1440 /** 1441 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1442 * @path: path to check 1443 * 1444 * d_mountpoint() can only be used reliably to establish if a dentry is 1445 * not mounted in any namespace and that common case is handled inline. 1446 * d_mountpoint() isn't aware of the possibility there may be multiple 1447 * mounts using a given dentry in a different namespace. This function 1448 * checks if the passed in path is a mountpoint rather than the dentry 1449 * alone. 1450 */ 1451 bool path_is_mountpoint(const struct path *path) 1452 { 1453 unsigned seq; 1454 bool res; 1455 1456 if (!d_mountpoint(path->dentry)) 1457 return false; 1458 1459 rcu_read_lock(); 1460 do { 1461 seq = read_seqbegin(&mount_lock); 1462 res = __path_is_mountpoint(path); 1463 } while (read_seqretry(&mount_lock, seq)); 1464 rcu_read_unlock(); 1465 1466 return res; 1467 } 1468 EXPORT_SYMBOL(path_is_mountpoint); 1469 1470 struct vfsmount *mnt_clone_internal(const struct path *path) 1471 { 1472 struct mount *p; 1473 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1474 if (IS_ERR(p)) 1475 return ERR_CAST(p); 1476 p->mnt.mnt_flags |= MNT_INTERNAL; 1477 return &p->mnt; 1478 } 1479 1480 /* 1481 * Returns the mount which either has the specified mnt_id, or has the next 1482 * smallest id afer the specified one. 1483 */ 1484 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1485 { 1486 struct rb_node *node = ns->mounts.rb_node; 1487 struct mount *ret = NULL; 1488 1489 while (node) { 1490 struct mount *m = node_to_mount(node); 1491 1492 if (mnt_id <= m->mnt_id_unique) { 1493 ret = node_to_mount(node); 1494 if (mnt_id == m->mnt_id_unique) 1495 break; 1496 node = node->rb_left; 1497 } else { 1498 node = node->rb_right; 1499 } 1500 } 1501 return ret; 1502 } 1503 1504 /* 1505 * Returns the mount which either has the specified mnt_id, or has the next 1506 * greater id before the specified one. 1507 */ 1508 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1509 { 1510 struct rb_node *node = ns->mounts.rb_node; 1511 struct mount *ret = NULL; 1512 1513 while (node) { 1514 struct mount *m = node_to_mount(node); 1515 1516 if (mnt_id >= m->mnt_id_unique) { 1517 ret = node_to_mount(node); 1518 if (mnt_id == m->mnt_id_unique) 1519 break; 1520 node = node->rb_right; 1521 } else { 1522 node = node->rb_left; 1523 } 1524 } 1525 return ret; 1526 } 1527 1528 #ifdef CONFIG_PROC_FS 1529 1530 /* iterator; we want it to have access to namespace_sem, thus here... */ 1531 static void *m_start(struct seq_file *m, loff_t *pos) 1532 { 1533 struct proc_mounts *p = m->private; 1534 1535 down_read(&namespace_sem); 1536 1537 return mnt_find_id_at(p->ns, *pos); 1538 } 1539 1540 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1541 { 1542 struct mount *next = NULL, *mnt = v; 1543 struct rb_node *node = rb_next(&mnt->mnt_node); 1544 1545 ++*pos; 1546 if (node) { 1547 next = node_to_mount(node); 1548 *pos = next->mnt_id_unique; 1549 } 1550 return next; 1551 } 1552 1553 static void m_stop(struct seq_file *m, void *v) 1554 { 1555 up_read(&namespace_sem); 1556 } 1557 1558 static int m_show(struct seq_file *m, void *v) 1559 { 1560 struct proc_mounts *p = m->private; 1561 struct mount *r = v; 1562 return p->show(m, &r->mnt); 1563 } 1564 1565 const struct seq_operations mounts_op = { 1566 .start = m_start, 1567 .next = m_next, 1568 .stop = m_stop, 1569 .show = m_show, 1570 }; 1571 1572 #endif /* CONFIG_PROC_FS */ 1573 1574 /** 1575 * may_umount_tree - check if a mount tree is busy 1576 * @m: root of mount tree 1577 * 1578 * This is called to check if a tree of mounts has any 1579 * open files, pwds, chroots or sub mounts that are 1580 * busy. 1581 */ 1582 int may_umount_tree(struct vfsmount *m) 1583 { 1584 struct mount *mnt = real_mount(m); 1585 bool busy = false; 1586 1587 /* write lock needed for mnt_get_count */ 1588 lock_mount_hash(); 1589 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) { 1590 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) { 1591 busy = true; 1592 break; 1593 } 1594 } 1595 unlock_mount_hash(); 1596 1597 return !busy; 1598 } 1599 1600 EXPORT_SYMBOL(may_umount_tree); 1601 1602 /** 1603 * may_umount - check if a mount point is busy 1604 * @mnt: root of mount 1605 * 1606 * This is called to check if a mount point has any 1607 * open files, pwds, chroots or sub mounts. If the 1608 * mount has sub mounts this will return busy 1609 * regardless of whether the sub mounts are busy. 1610 * 1611 * Doesn't take quota and stuff into account. IOW, in some cases it will 1612 * give false negatives. The main reason why it's here is that we need 1613 * a non-destructive way to look for easily umountable filesystems. 1614 */ 1615 int may_umount(struct vfsmount *mnt) 1616 { 1617 int ret = 1; 1618 down_read(&namespace_sem); 1619 lock_mount_hash(); 1620 if (propagate_mount_busy(real_mount(mnt), 2)) 1621 ret = 0; 1622 unlock_mount_hash(); 1623 up_read(&namespace_sem); 1624 return ret; 1625 } 1626 1627 EXPORT_SYMBOL(may_umount); 1628 1629 #ifdef CONFIG_FSNOTIFY 1630 static void mnt_notify(struct mount *p) 1631 { 1632 if (!p->prev_ns && p->mnt_ns) { 1633 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1634 } else if (p->prev_ns && !p->mnt_ns) { 1635 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1636 } else if (p->prev_ns == p->mnt_ns) { 1637 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1638 } else { 1639 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1640 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1641 } 1642 p->prev_ns = p->mnt_ns; 1643 } 1644 1645 static void notify_mnt_list(void) 1646 { 1647 struct mount *m, *tmp; 1648 /* 1649 * Notify about mounts that were added/reparented/detached/remain 1650 * connected after unmount. 1651 */ 1652 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1653 mnt_notify(m); 1654 list_del_init(&m->to_notify); 1655 } 1656 } 1657 1658 static bool need_notify_mnt_list(void) 1659 { 1660 return !list_empty(¬ify_list); 1661 } 1662 #else 1663 static void notify_mnt_list(void) 1664 { 1665 } 1666 1667 static bool need_notify_mnt_list(void) 1668 { 1669 return false; 1670 } 1671 #endif 1672 1673 static void free_mnt_ns(struct mnt_namespace *); 1674 static void namespace_unlock(void) 1675 { 1676 struct hlist_head head; 1677 struct hlist_node *p; 1678 struct mount *m; 1679 struct mnt_namespace *ns = emptied_ns; 1680 LIST_HEAD(list); 1681 1682 hlist_move_list(&unmounted, &head); 1683 list_splice_init(&ex_mountpoints, &list); 1684 emptied_ns = NULL; 1685 1686 if (need_notify_mnt_list()) { 1687 /* 1688 * No point blocking out concurrent readers while notifications 1689 * are sent. This will also allow statmount()/listmount() to run 1690 * concurrently. 1691 */ 1692 downgrade_write(&namespace_sem); 1693 notify_mnt_list(); 1694 up_read(&namespace_sem); 1695 } else { 1696 up_write(&namespace_sem); 1697 } 1698 if (unlikely(ns)) { 1699 /* Make sure we notice when we leak mounts. */ 1700 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 1701 free_mnt_ns(ns); 1702 } 1703 1704 shrink_dentry_list(&list); 1705 1706 if (likely(hlist_empty(&head))) 1707 return; 1708 1709 synchronize_rcu_expedited(); 1710 1711 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1712 hlist_del(&m->mnt_umount); 1713 mntput(&m->mnt); 1714 } 1715 } 1716 1717 static inline void namespace_lock(void) 1718 { 1719 down_write(&namespace_sem); 1720 } 1721 1722 enum umount_tree_flags { 1723 UMOUNT_SYNC = 1, 1724 UMOUNT_PROPAGATE = 2, 1725 UMOUNT_CONNECTED = 4, 1726 }; 1727 1728 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1729 { 1730 /* Leaving mounts connected is only valid for lazy umounts */ 1731 if (how & UMOUNT_SYNC) 1732 return true; 1733 1734 /* A mount without a parent has nothing to be connected to */ 1735 if (!mnt_has_parent(mnt)) 1736 return true; 1737 1738 /* Because the reference counting rules change when mounts are 1739 * unmounted and connected, umounted mounts may not be 1740 * connected to mounted mounts. 1741 */ 1742 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1743 return true; 1744 1745 /* Has it been requested that the mount remain connected? */ 1746 if (how & UMOUNT_CONNECTED) 1747 return false; 1748 1749 /* Is the mount locked such that it needs to remain connected? */ 1750 if (IS_MNT_LOCKED(mnt)) 1751 return false; 1752 1753 /* By default disconnect the mount */ 1754 return true; 1755 } 1756 1757 /* 1758 * mount_lock must be held 1759 * namespace_sem must be held for write 1760 */ 1761 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1762 { 1763 LIST_HEAD(tmp_list); 1764 struct mount *p; 1765 1766 if (how & UMOUNT_PROPAGATE) 1767 propagate_mount_unlock(mnt); 1768 1769 /* Gather the mounts to umount */ 1770 for (p = mnt; p; p = next_mnt(p, mnt)) { 1771 p->mnt.mnt_flags |= MNT_UMOUNT; 1772 if (mnt_ns_attached(p)) 1773 move_from_ns(p); 1774 list_add_tail(&p->mnt_list, &tmp_list); 1775 } 1776 1777 /* Hide the mounts from mnt_mounts */ 1778 list_for_each_entry(p, &tmp_list, mnt_list) { 1779 list_del_init(&p->mnt_child); 1780 } 1781 1782 /* Add propagated mounts to the tmp_list */ 1783 if (how & UMOUNT_PROPAGATE) 1784 propagate_umount(&tmp_list); 1785 1786 bulk_make_private(&tmp_list); 1787 1788 while (!list_empty(&tmp_list)) { 1789 struct mnt_namespace *ns; 1790 bool disconnect; 1791 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1792 list_del_init(&p->mnt_expire); 1793 list_del_init(&p->mnt_list); 1794 ns = p->mnt_ns; 1795 if (ns) { 1796 ns->nr_mounts--; 1797 __touch_mnt_namespace(ns); 1798 } 1799 p->mnt_ns = NULL; 1800 if (how & UMOUNT_SYNC) 1801 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1802 1803 disconnect = disconnect_mount(p, how); 1804 if (mnt_has_parent(p)) { 1805 if (!disconnect) { 1806 /* Don't forget about p */ 1807 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1808 } else { 1809 umount_mnt(p); 1810 } 1811 } 1812 if (disconnect) 1813 hlist_add_head(&p->mnt_umount, &unmounted); 1814 1815 /* 1816 * At this point p->mnt_ns is NULL, notification will be queued 1817 * only if 1818 * 1819 * - p->prev_ns is non-NULL *and* 1820 * - p->prev_ns->n_fsnotify_marks is non-NULL 1821 * 1822 * This will preclude queuing the mount if this is a cleanup 1823 * after a failed copy_tree() or destruction of an anonymous 1824 * namespace, etc. 1825 */ 1826 mnt_notify_add(p); 1827 } 1828 } 1829 1830 static void shrink_submounts(struct mount *mnt); 1831 1832 static int do_umount_root(struct super_block *sb) 1833 { 1834 int ret = 0; 1835 1836 down_write(&sb->s_umount); 1837 if (!sb_rdonly(sb)) { 1838 struct fs_context *fc; 1839 1840 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1841 SB_RDONLY); 1842 if (IS_ERR(fc)) { 1843 ret = PTR_ERR(fc); 1844 } else { 1845 ret = parse_monolithic_mount_data(fc, NULL); 1846 if (!ret) 1847 ret = reconfigure_super(fc); 1848 put_fs_context(fc); 1849 } 1850 } 1851 up_write(&sb->s_umount); 1852 return ret; 1853 } 1854 1855 static int do_umount(struct mount *mnt, int flags) 1856 { 1857 struct super_block *sb = mnt->mnt.mnt_sb; 1858 int retval; 1859 1860 retval = security_sb_umount(&mnt->mnt, flags); 1861 if (retval) 1862 return retval; 1863 1864 /* 1865 * Allow userspace to request a mountpoint be expired rather than 1866 * unmounting unconditionally. Unmount only happens if: 1867 * (1) the mark is already set (the mark is cleared by mntput()) 1868 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1869 */ 1870 if (flags & MNT_EXPIRE) { 1871 if (&mnt->mnt == current->fs->root.mnt || 1872 flags & (MNT_FORCE | MNT_DETACH)) 1873 return -EINVAL; 1874 1875 /* 1876 * probably don't strictly need the lock here if we examined 1877 * all race cases, but it's a slowpath. 1878 */ 1879 lock_mount_hash(); 1880 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) { 1881 unlock_mount_hash(); 1882 return -EBUSY; 1883 } 1884 unlock_mount_hash(); 1885 1886 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1887 return -EAGAIN; 1888 } 1889 1890 /* 1891 * If we may have to abort operations to get out of this 1892 * mount, and they will themselves hold resources we must 1893 * allow the fs to do things. In the Unix tradition of 1894 * 'Gee thats tricky lets do it in userspace' the umount_begin 1895 * might fail to complete on the first run through as other tasks 1896 * must return, and the like. Thats for the mount program to worry 1897 * about for the moment. 1898 */ 1899 1900 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1901 sb->s_op->umount_begin(sb); 1902 } 1903 1904 /* 1905 * No sense to grab the lock for this test, but test itself looks 1906 * somewhat bogus. Suggestions for better replacement? 1907 * Ho-hum... In principle, we might treat that as umount + switch 1908 * to rootfs. GC would eventually take care of the old vfsmount. 1909 * Actually it makes sense, especially if rootfs would contain a 1910 * /reboot - static binary that would close all descriptors and 1911 * call reboot(9). Then init(8) could umount root and exec /reboot. 1912 */ 1913 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1914 /* 1915 * Special case for "unmounting" root ... 1916 * we just try to remount it readonly. 1917 */ 1918 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1919 return -EPERM; 1920 return do_umount_root(sb); 1921 } 1922 1923 namespace_lock(); 1924 lock_mount_hash(); 1925 1926 /* Repeat the earlier racy checks, now that we are holding the locks */ 1927 retval = -EINVAL; 1928 if (!check_mnt(mnt)) 1929 goto out; 1930 1931 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1932 goto out; 1933 1934 if (!mnt_has_parent(mnt)) /* not the absolute root */ 1935 goto out; 1936 1937 event++; 1938 if (flags & MNT_DETACH) { 1939 umount_tree(mnt, UMOUNT_PROPAGATE); 1940 retval = 0; 1941 } else { 1942 smp_mb(); // paired with __legitimize_mnt() 1943 shrink_submounts(mnt); 1944 retval = -EBUSY; 1945 if (!propagate_mount_busy(mnt, 2)) { 1946 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1947 retval = 0; 1948 } 1949 } 1950 out: 1951 unlock_mount_hash(); 1952 namespace_unlock(); 1953 return retval; 1954 } 1955 1956 /* 1957 * __detach_mounts - lazily unmount all mounts on the specified dentry 1958 * 1959 * During unlink, rmdir, and d_drop it is possible to loose the path 1960 * to an existing mountpoint, and wind up leaking the mount. 1961 * detach_mounts allows lazily unmounting those mounts instead of 1962 * leaking them. 1963 * 1964 * The caller may hold dentry->d_inode->i_rwsem. 1965 */ 1966 void __detach_mounts(struct dentry *dentry) 1967 { 1968 struct pinned_mountpoint mp = {}; 1969 struct mount *mnt; 1970 1971 guard(namespace_excl)(); 1972 guard(mount_writer)(); 1973 1974 if (!lookup_mountpoint(dentry, &mp)) 1975 return; 1976 1977 event++; 1978 while (mp.node.next) { 1979 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list); 1980 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1981 umount_mnt(mnt); 1982 hlist_add_head(&mnt->mnt_umount, &unmounted); 1983 } 1984 else umount_tree(mnt, UMOUNT_CONNECTED); 1985 } 1986 unpin_mountpoint(&mp); 1987 } 1988 1989 /* 1990 * Is the caller allowed to modify his namespace? 1991 */ 1992 bool may_mount(void) 1993 { 1994 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1995 } 1996 1997 static void warn_mandlock(void) 1998 { 1999 pr_warn_once("=======================================================\n" 2000 "WARNING: The mand mount option has been deprecated and\n" 2001 " and is ignored by this kernel. Remove the mand\n" 2002 " option from the mount to silence this warning.\n" 2003 "=======================================================\n"); 2004 } 2005 2006 static int can_umount(const struct path *path, int flags) 2007 { 2008 struct mount *mnt = real_mount(path->mnt); 2009 struct super_block *sb = path->dentry->d_sb; 2010 2011 if (!may_mount()) 2012 return -EPERM; 2013 if (!path_mounted(path)) 2014 return -EINVAL; 2015 if (!check_mnt(mnt)) 2016 return -EINVAL; 2017 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2018 return -EINVAL; 2019 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2020 return -EPERM; 2021 return 0; 2022 } 2023 2024 // caller is responsible for flags being sane 2025 int path_umount(const struct path *path, int flags) 2026 { 2027 struct mount *mnt = real_mount(path->mnt); 2028 int ret; 2029 2030 ret = can_umount(path, flags); 2031 if (!ret) 2032 ret = do_umount(mnt, flags); 2033 2034 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2035 dput(path->dentry); 2036 mntput_no_expire(mnt); 2037 return ret; 2038 } 2039 2040 static int ksys_umount(char __user *name, int flags) 2041 { 2042 int lookup_flags = LOOKUP_MOUNTPOINT; 2043 struct path path; 2044 int ret; 2045 2046 // basic validity checks done first 2047 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2048 return -EINVAL; 2049 2050 if (!(flags & UMOUNT_NOFOLLOW)) 2051 lookup_flags |= LOOKUP_FOLLOW; 2052 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2053 if (ret) 2054 return ret; 2055 return path_umount(&path, flags); 2056 } 2057 2058 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2059 { 2060 return ksys_umount(name, flags); 2061 } 2062 2063 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2064 2065 /* 2066 * The 2.0 compatible umount. No flags. 2067 */ 2068 SYSCALL_DEFINE1(oldumount, char __user *, name) 2069 { 2070 return ksys_umount(name, 0); 2071 } 2072 2073 #endif 2074 2075 static bool is_mnt_ns_file(struct dentry *dentry) 2076 { 2077 struct ns_common *ns; 2078 2079 /* Is this a proxy for a mount namespace? */ 2080 if (dentry->d_op != &ns_dentry_operations) 2081 return false; 2082 2083 ns = d_inode(dentry)->i_private; 2084 2085 return ns->ops == &mntns_operations; 2086 } 2087 2088 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2089 { 2090 return &mnt->ns; 2091 } 2092 2093 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2094 { 2095 struct ns_common *ns; 2096 2097 guard(rcu)(); 2098 2099 for (;;) { 2100 ns = ns_tree_adjoined_rcu(mntns, previous); 2101 if (IS_ERR(ns)) 2102 return ERR_CAST(ns); 2103 2104 mntns = to_mnt_ns(ns); 2105 2106 /* 2107 * The last passive reference count is put with RCU 2108 * delay so accessing the mount namespace is not just 2109 * safe but all relevant members are still valid. 2110 */ 2111 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2112 continue; 2113 2114 /* 2115 * We need an active reference count as we're persisting 2116 * the mount namespace and it might already be on its 2117 * deathbed. 2118 */ 2119 if (!ns_ref_get(mntns)) 2120 continue; 2121 2122 return mntns; 2123 } 2124 } 2125 2126 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2127 { 2128 if (!is_mnt_ns_file(dentry)) 2129 return NULL; 2130 2131 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2132 } 2133 2134 static bool mnt_ns_loop(struct dentry *dentry) 2135 { 2136 /* Could bind mounting the mount namespace inode cause a 2137 * mount namespace loop? 2138 */ 2139 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2140 2141 if (!mnt_ns) 2142 return false; 2143 2144 return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id; 2145 } 2146 2147 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2148 int flag) 2149 { 2150 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2151 *dst_parent, *dst_mnt; 2152 2153 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2154 return ERR_PTR(-EINVAL); 2155 2156 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2157 return ERR_PTR(-EINVAL); 2158 2159 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2160 if (IS_ERR(dst_mnt)) 2161 return dst_mnt; 2162 2163 src_parent = src_root; 2164 2165 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2166 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2167 continue; 2168 2169 for (src_mnt = src_root_child; src_mnt; 2170 src_mnt = next_mnt(src_mnt, src_root_child)) { 2171 if (!(flag & CL_COPY_UNBINDABLE) && 2172 IS_MNT_UNBINDABLE(src_mnt)) { 2173 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2174 /* Both unbindable and locked. */ 2175 dst_mnt = ERR_PTR(-EPERM); 2176 goto out; 2177 } else { 2178 src_mnt = skip_mnt_tree(src_mnt); 2179 continue; 2180 } 2181 } 2182 if (!(flag & CL_COPY_MNT_NS_FILE) && 2183 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2184 src_mnt = skip_mnt_tree(src_mnt); 2185 continue; 2186 } 2187 while (src_parent != src_mnt->mnt_parent) { 2188 src_parent = src_parent->mnt_parent; 2189 dst_mnt = dst_mnt->mnt_parent; 2190 } 2191 2192 src_parent = src_mnt; 2193 dst_parent = dst_mnt; 2194 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2195 if (IS_ERR(dst_mnt)) 2196 goto out; 2197 lock_mount_hash(); 2198 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) 2199 dst_mnt->mnt.mnt_flags |= MNT_LOCKED; 2200 if (unlikely(flag & CL_EXPIRE)) { 2201 /* stick the duplicate mount on the same expiry 2202 * list as the original if that was on one */ 2203 if (!list_empty(&src_mnt->mnt_expire)) 2204 list_add(&dst_mnt->mnt_expire, 2205 &src_mnt->mnt_expire); 2206 } 2207 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp); 2208 unlock_mount_hash(); 2209 } 2210 } 2211 return res; 2212 2213 out: 2214 if (res) { 2215 lock_mount_hash(); 2216 umount_tree(res, UMOUNT_SYNC); 2217 unlock_mount_hash(); 2218 } 2219 return dst_mnt; 2220 } 2221 2222 static inline bool extend_array(struct path **res, struct path **to_free, 2223 unsigned n, unsigned *count, unsigned new_count) 2224 { 2225 struct path *p; 2226 2227 if (likely(n < *count)) 2228 return true; 2229 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL); 2230 if (p && *count) 2231 memcpy(p, *res, *count * sizeof(struct path)); 2232 *count = new_count; 2233 kfree(*to_free); 2234 *to_free = *res = p; 2235 return p; 2236 } 2237 2238 const struct path *collect_paths(const struct path *path, 2239 struct path *prealloc, unsigned count) 2240 { 2241 struct mount *root = real_mount(path->mnt); 2242 struct mount *child; 2243 struct path *res = prealloc, *to_free = NULL; 2244 unsigned n = 0; 2245 2246 guard(namespace_shared)(); 2247 2248 if (!check_mnt(root)) 2249 return ERR_PTR(-EINVAL); 2250 if (!extend_array(&res, &to_free, 0, &count, 32)) 2251 return ERR_PTR(-ENOMEM); 2252 res[n++] = *path; 2253 list_for_each_entry(child, &root->mnt_mounts, mnt_child) { 2254 if (!is_subdir(child->mnt_mountpoint, path->dentry)) 2255 continue; 2256 for (struct mount *m = child; m; m = next_mnt(m, child)) { 2257 if (!extend_array(&res, &to_free, n, &count, 2 * count)) 2258 return ERR_PTR(-ENOMEM); 2259 res[n].mnt = &m->mnt; 2260 res[n].dentry = m->mnt.mnt_root; 2261 n++; 2262 } 2263 } 2264 if (!extend_array(&res, &to_free, n, &count, count + 1)) 2265 return ERR_PTR(-ENOMEM); 2266 memset(res + n, 0, (count - n) * sizeof(struct path)); 2267 for (struct path *p = res; p->mnt; p++) 2268 path_get(p); 2269 return res; 2270 } 2271 2272 void drop_collected_paths(const struct path *paths, const struct path *prealloc) 2273 { 2274 for (const struct path *p = paths; p->mnt; p++) 2275 path_put(p); 2276 if (paths != prealloc) 2277 kfree(paths); 2278 } 2279 2280 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2281 2282 void dissolve_on_fput(struct vfsmount *mnt) 2283 { 2284 struct mount *m = real_mount(mnt); 2285 2286 /* 2287 * m used to be the root of anon namespace; if it still is one, 2288 * we need to dissolve the mount tree and free that namespace. 2289 * Let's try to avoid taking namespace_sem if we can determine 2290 * that there's nothing to do without it - rcu_read_lock() is 2291 * enough to make anon_ns_root() memory-safe and once m has 2292 * left its namespace, it's no longer our concern, since it will 2293 * never become a root of anon ns again. 2294 */ 2295 2296 scoped_guard(rcu) { 2297 if (!anon_ns_root(m)) 2298 return; 2299 } 2300 2301 scoped_guard(namespace_excl) { 2302 if (!anon_ns_root(m)) 2303 return; 2304 2305 emptied_ns = m->mnt_ns; 2306 lock_mount_hash(); 2307 umount_tree(m, UMOUNT_CONNECTED); 2308 unlock_mount_hash(); 2309 } 2310 } 2311 2312 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */ 2313 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry) 2314 { 2315 struct mount *child; 2316 2317 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2318 if (!is_subdir(child->mnt_mountpoint, dentry)) 2319 continue; 2320 2321 if (child->mnt.mnt_flags & MNT_LOCKED) 2322 return true; 2323 } 2324 return false; 2325 } 2326 2327 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2328 { 2329 guard(mount_locked_reader)(); 2330 return __has_locked_children(mnt, dentry); 2331 } 2332 2333 /* 2334 * Check that there aren't references to earlier/same mount namespaces in the 2335 * specified subtree. Such references can act as pins for mount namespaces 2336 * that aren't checked by the mount-cycle checking code, thereby allowing 2337 * cycles to be made. 2338 * 2339 * locks: mount_locked_reader || namespace_shared && pinned(subtree) 2340 */ 2341 static bool check_for_nsfs_mounts(struct mount *subtree) 2342 { 2343 for (struct mount *p = subtree; p; p = next_mnt(p, subtree)) 2344 if (mnt_ns_loop(p->mnt.mnt_root)) 2345 return false; 2346 return true; 2347 } 2348 2349 /** 2350 * clone_private_mount - create a private clone of a path 2351 * @path: path to clone 2352 * 2353 * This creates a new vfsmount, which will be the clone of @path. The new mount 2354 * will not be attached anywhere in the namespace and will be private (i.e. 2355 * changes to the originating mount won't be propagated into this). 2356 * 2357 * This assumes caller has called or done the equivalent of may_mount(). 2358 * 2359 * Release with mntput(). 2360 */ 2361 struct vfsmount *clone_private_mount(const struct path *path) 2362 { 2363 struct mount *old_mnt = real_mount(path->mnt); 2364 struct mount *new_mnt; 2365 2366 guard(namespace_shared)(); 2367 2368 if (IS_MNT_UNBINDABLE(old_mnt)) 2369 return ERR_PTR(-EINVAL); 2370 2371 /* 2372 * Make sure the source mount is acceptable. 2373 * Anything mounted in our mount namespace is allowed. 2374 * Otherwise, it must be the root of an anonymous mount 2375 * namespace, and we need to make sure no namespace 2376 * loops get created. 2377 */ 2378 if (!check_mnt(old_mnt)) { 2379 if (!anon_ns_root(old_mnt)) 2380 return ERR_PTR(-EINVAL); 2381 2382 if (!check_for_nsfs_mounts(old_mnt)) 2383 return ERR_PTR(-EINVAL); 2384 } 2385 2386 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2387 return ERR_PTR(-EPERM); 2388 2389 if (__has_locked_children(old_mnt, path->dentry)) 2390 return ERR_PTR(-EINVAL); 2391 2392 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2393 if (IS_ERR(new_mnt)) 2394 return ERR_PTR(-EINVAL); 2395 2396 /* Longterm mount to be removed by kern_unmount*() */ 2397 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2398 return &new_mnt->mnt; 2399 } 2400 EXPORT_SYMBOL_GPL(clone_private_mount); 2401 2402 static void lock_mnt_tree(struct mount *mnt) 2403 { 2404 struct mount *p; 2405 2406 for (p = mnt; p; p = next_mnt(p, mnt)) { 2407 int flags = p->mnt.mnt_flags; 2408 /* Don't allow unprivileged users to change mount flags */ 2409 flags |= MNT_LOCK_ATIME; 2410 2411 if (flags & MNT_READONLY) 2412 flags |= MNT_LOCK_READONLY; 2413 2414 if (flags & MNT_NODEV) 2415 flags |= MNT_LOCK_NODEV; 2416 2417 if (flags & MNT_NOSUID) 2418 flags |= MNT_LOCK_NOSUID; 2419 2420 if (flags & MNT_NOEXEC) 2421 flags |= MNT_LOCK_NOEXEC; 2422 /* Don't allow unprivileged users to reveal what is under a mount */ 2423 if (list_empty(&p->mnt_expire) && p != mnt) 2424 flags |= MNT_LOCKED; 2425 p->mnt.mnt_flags = flags; 2426 } 2427 } 2428 2429 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2430 { 2431 struct mount *p; 2432 2433 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2434 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2435 mnt_release_group_id(p); 2436 } 2437 } 2438 2439 static int invent_group_ids(struct mount *mnt, bool recurse) 2440 { 2441 struct mount *p; 2442 2443 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2444 if (!p->mnt_group_id) { 2445 int err = mnt_alloc_group_id(p); 2446 if (err) { 2447 cleanup_group_ids(mnt, p); 2448 return err; 2449 } 2450 } 2451 } 2452 2453 return 0; 2454 } 2455 2456 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2457 { 2458 unsigned int max = READ_ONCE(sysctl_mount_max); 2459 unsigned int mounts = 0; 2460 struct mount *p; 2461 2462 if (ns->nr_mounts >= max) 2463 return -ENOSPC; 2464 max -= ns->nr_mounts; 2465 if (ns->pending_mounts >= max) 2466 return -ENOSPC; 2467 max -= ns->pending_mounts; 2468 2469 for (p = mnt; p; p = next_mnt(p, mnt)) 2470 mounts++; 2471 2472 if (mounts > max) 2473 return -ENOSPC; 2474 2475 ns->pending_mounts += mounts; 2476 return 0; 2477 } 2478 2479 enum mnt_tree_flags_t { 2480 MNT_TREE_BENEATH = BIT(0), 2481 MNT_TREE_PROPAGATION = BIT(1), 2482 }; 2483 2484 /** 2485 * attach_recursive_mnt - attach a source mount tree 2486 * @source_mnt: mount tree to be attached 2487 * @dest: the context for mounting at the place where the tree should go 2488 * 2489 * NOTE: in the table below explains the semantics when a source mount 2490 * of a given type is attached to a destination mount of a given type. 2491 * --------------------------------------------------------------------------- 2492 * | BIND MOUNT OPERATION | 2493 * |************************************************************************** 2494 * | source-->| shared | private | slave | unbindable | 2495 * | dest | | | | | 2496 * | | | | | | | 2497 * | v | | | | | 2498 * |************************************************************************** 2499 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2500 * | | | | | | 2501 * |non-shared| shared (+) | private | slave (*) | invalid | 2502 * *************************************************************************** 2503 * A bind operation clones the source mount and mounts the clone on the 2504 * destination mount. 2505 * 2506 * (++) the cloned mount is propagated to all the mounts in the propagation 2507 * tree of the destination mount and the cloned mount is added to 2508 * the peer group of the source mount. 2509 * (+) the cloned mount is created under the destination mount and is marked 2510 * as shared. The cloned mount is added to the peer group of the source 2511 * mount. 2512 * (+++) the mount is propagated to all the mounts in the propagation tree 2513 * of the destination mount and the cloned mount is made slave 2514 * of the same master as that of the source mount. The cloned mount 2515 * is marked as 'shared and slave'. 2516 * (*) the cloned mount is made a slave of the same master as that of the 2517 * source mount. 2518 * 2519 * --------------------------------------------------------------------------- 2520 * | MOVE MOUNT OPERATION | 2521 * |************************************************************************** 2522 * | source-->| shared | private | slave | unbindable | 2523 * | dest | | | | | 2524 * | | | | | | | 2525 * | v | | | | | 2526 * |************************************************************************** 2527 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2528 * | | | | | | 2529 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2530 * *************************************************************************** 2531 * 2532 * (+) the mount is moved to the destination. And is then propagated to 2533 * all the mounts in the propagation tree of the destination mount. 2534 * (+*) the mount is moved to the destination. 2535 * (+++) the mount is moved to the destination and is then propagated to 2536 * all the mounts belonging to the destination mount's propagation tree. 2537 * the mount is marked as 'shared and slave'. 2538 * (*) the mount continues to be a slave at the new location. 2539 * 2540 * if the source mount is a tree, the operations explained above is 2541 * applied to each mount in the tree. 2542 * Must be called without spinlocks held, since this function can sleep 2543 * in allocations. 2544 * 2545 * Context: The function expects namespace_lock() to be held. 2546 * Return: If @source_mnt was successfully attached 0 is returned. 2547 * Otherwise a negative error code is returned. 2548 */ 2549 static int attach_recursive_mnt(struct mount *source_mnt, 2550 const struct pinned_mountpoint *dest) 2551 { 2552 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2553 struct mount *dest_mnt = dest->parent; 2554 struct mountpoint *dest_mp = dest->mp; 2555 HLIST_HEAD(tree_list); 2556 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2557 struct pinned_mountpoint root = {}; 2558 struct mountpoint *shorter = NULL; 2559 struct mount *child, *p; 2560 struct mount *top; 2561 struct hlist_node *n; 2562 int err = 0; 2563 bool moving = mnt_has_parent(source_mnt); 2564 2565 /* 2566 * Preallocate a mountpoint in case the new mounts need to be 2567 * mounted beneath mounts on the same mountpoint. 2568 */ 2569 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) { 2570 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root)) 2571 shorter = top->mnt_mp; 2572 } 2573 err = get_mountpoint(top->mnt.mnt_root, &root); 2574 if (err) 2575 return err; 2576 2577 /* Is there space to add these mounts to the mount namespace? */ 2578 if (!moving) { 2579 err = count_mounts(ns, source_mnt); 2580 if (err) 2581 goto out; 2582 } 2583 2584 if (IS_MNT_SHARED(dest_mnt)) { 2585 err = invent_group_ids(source_mnt, true); 2586 if (err) 2587 goto out; 2588 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2589 } 2590 lock_mount_hash(); 2591 if (err) 2592 goto out_cleanup_ids; 2593 2594 if (IS_MNT_SHARED(dest_mnt)) { 2595 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2596 set_mnt_shared(p); 2597 } 2598 2599 if (moving) { 2600 umount_mnt(source_mnt); 2601 mnt_notify_add(source_mnt); 2602 /* if the mount is moved, it should no longer be expired 2603 * automatically */ 2604 list_del_init(&source_mnt->mnt_expire); 2605 } else { 2606 if (source_mnt->mnt_ns) { 2607 /* move from anon - the caller will destroy */ 2608 emptied_ns = source_mnt->mnt_ns; 2609 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2610 move_from_ns(p); 2611 } 2612 } 2613 2614 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2615 /* 2616 * Now the original copy is in the same state as the secondaries - 2617 * its root attached to mountpoint, but not hashed and all mounts 2618 * in it are either in our namespace or in no namespace at all. 2619 * Add the original to the list of copies and deal with the 2620 * rest of work for all of them uniformly. 2621 */ 2622 hlist_add_head(&source_mnt->mnt_hash, &tree_list); 2623 2624 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2625 struct mount *q; 2626 hlist_del_init(&child->mnt_hash); 2627 /* Notice when we are propagating across user namespaces */ 2628 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2629 lock_mnt_tree(child); 2630 q = __lookup_mnt(&child->mnt_parent->mnt, 2631 child->mnt_mountpoint); 2632 commit_tree(child); 2633 if (q) { 2634 struct mount *r = topmost_overmount(child); 2635 struct mountpoint *mp = root.mp; 2636 2637 if (unlikely(shorter) && child != source_mnt) 2638 mp = shorter; 2639 mnt_change_mountpoint(r, mp, q); 2640 } 2641 } 2642 unpin_mountpoint(&root); 2643 unlock_mount_hash(); 2644 2645 return 0; 2646 2647 out_cleanup_ids: 2648 while (!hlist_empty(&tree_list)) { 2649 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2650 child->mnt_parent->mnt_ns->pending_mounts = 0; 2651 umount_tree(child, UMOUNT_SYNC); 2652 } 2653 unlock_mount_hash(); 2654 cleanup_group_ids(source_mnt, NULL); 2655 out: 2656 ns->pending_mounts = 0; 2657 2658 read_seqlock_excl(&mount_lock); 2659 unpin_mountpoint(&root); 2660 read_sequnlock_excl(&mount_lock); 2661 2662 return err; 2663 } 2664 2665 static inline struct mount *where_to_mount(const struct path *path, 2666 struct dentry **dentry, 2667 bool beneath) 2668 { 2669 struct mount *m; 2670 2671 if (unlikely(beneath)) { 2672 m = topmost_overmount(real_mount(path->mnt)); 2673 *dentry = m->mnt_mountpoint; 2674 return m->mnt_parent; 2675 } 2676 m = __lookup_mnt(path->mnt, path->dentry); 2677 if (unlikely(m)) { 2678 m = topmost_overmount(m); 2679 *dentry = m->mnt.mnt_root; 2680 return m; 2681 } 2682 *dentry = path->dentry; 2683 return real_mount(path->mnt); 2684 } 2685 2686 /** 2687 * do_lock_mount - acquire environment for mounting 2688 * @path: target path 2689 * @res: context to set up 2690 * @beneath: whether the intention is to mount beneath @path 2691 * 2692 * To mount something at given location, we need 2693 * namespace_sem locked exclusive 2694 * inode of dentry we are mounting on locked exclusive 2695 * struct mountpoint for that dentry 2696 * struct mount we are mounting on 2697 * 2698 * Results are stored in caller-supplied context (pinned_mountpoint); 2699 * on success we have res->parent and res->mp pointing to parent and 2700 * mountpoint respectively and res->node inserted into the ->m_list 2701 * of the mountpoint, making sure the mountpoint won't disappear. 2702 * On failure we have res->parent set to ERR_PTR(-E...), res->mp 2703 * left NULL, res->node - empty. 2704 * In case of success do_lock_mount returns with locks acquired (in 2705 * proper order - inode lock nests outside of namespace_sem). 2706 * 2707 * Request to mount on overmounted location is treated as "mount on 2708 * top of whatever's overmounting it"; request to mount beneath 2709 * a location - "mount immediately beneath the topmost mount at that 2710 * place". 2711 * 2712 * In all cases the location must not have been unmounted and the 2713 * chosen mountpoint must be allowed to be mounted on. For "beneath" 2714 * case we also require the location to be at the root of a mount 2715 * that has a parent (i.e. is not a root of some namespace). 2716 */ 2717 static void do_lock_mount(const struct path *path, 2718 struct pinned_mountpoint *res, 2719 bool beneath) 2720 { 2721 int err; 2722 2723 if (unlikely(beneath) && !path_mounted(path)) { 2724 res->parent = ERR_PTR(-EINVAL); 2725 return; 2726 } 2727 2728 do { 2729 struct dentry *dentry, *d; 2730 struct mount *m, *n; 2731 2732 scoped_guard(mount_locked_reader) { 2733 m = where_to_mount(path, &dentry, beneath); 2734 if (&m->mnt != path->mnt) { 2735 mntget(&m->mnt); 2736 dget(dentry); 2737 } 2738 } 2739 2740 inode_lock(dentry->d_inode); 2741 namespace_lock(); 2742 2743 // check if the chain of mounts (if any) has changed. 2744 scoped_guard(mount_locked_reader) 2745 n = where_to_mount(path, &d, beneath); 2746 2747 if (unlikely(n != m || dentry != d)) 2748 err = -EAGAIN; // something moved, retry 2749 else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt))) 2750 err = -ENOENT; // not to be mounted on 2751 else if (beneath && &m->mnt == path->mnt && !m->overmount) 2752 err = -EINVAL; 2753 else 2754 err = get_mountpoint(dentry, res); 2755 2756 if (unlikely(err)) { 2757 res->parent = ERR_PTR(err); 2758 namespace_unlock(); 2759 inode_unlock(dentry->d_inode); 2760 } else { 2761 res->parent = m; 2762 } 2763 /* 2764 * Drop the temporary references. This is subtle - on success 2765 * we are doing that under namespace_sem, which would normally 2766 * be forbidden. However, in that case we are guaranteed that 2767 * refcounts won't reach zero, since we know that path->mnt 2768 * is mounted and thus all mounts reachable from it are pinned 2769 * and stable, along with their mountpoints and roots. 2770 */ 2771 if (&m->mnt != path->mnt) { 2772 dput(dentry); 2773 mntput(&m->mnt); 2774 } 2775 } while (err == -EAGAIN); 2776 } 2777 2778 static void __unlock_mount(struct pinned_mountpoint *m) 2779 { 2780 inode_unlock(m->mp->m_dentry->d_inode); 2781 read_seqlock_excl(&mount_lock); 2782 unpin_mountpoint(m); 2783 read_sequnlock_excl(&mount_lock); 2784 namespace_unlock(); 2785 } 2786 2787 static inline void unlock_mount(struct pinned_mountpoint *m) 2788 { 2789 if (!IS_ERR(m->parent)) 2790 __unlock_mount(m); 2791 } 2792 2793 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \ 2794 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \ 2795 do_lock_mount((path), &mp, (beneath)) 2796 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false) 2797 #define LOCK_MOUNT_EXACT(mp, path) \ 2798 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \ 2799 lock_mount_exact((path), &mp) 2800 2801 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp) 2802 { 2803 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2804 return -EINVAL; 2805 2806 if (d_is_dir(mp->mp->m_dentry) != 2807 d_is_dir(mnt->mnt.mnt_root)) 2808 return -ENOTDIR; 2809 2810 return attach_recursive_mnt(mnt, mp); 2811 } 2812 2813 static int may_change_propagation(const struct mount *m) 2814 { 2815 struct mnt_namespace *ns = m->mnt_ns; 2816 2817 // it must be mounted in some namespace 2818 if (IS_ERR_OR_NULL(ns)) // is_mounted() 2819 return -EINVAL; 2820 // and the caller must be admin in userns of that namespace 2821 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) 2822 return -EPERM; 2823 return 0; 2824 } 2825 2826 /* 2827 * Sanity check the flags to change_mnt_propagation. 2828 */ 2829 2830 static int flags_to_propagation_type(int ms_flags) 2831 { 2832 int type = ms_flags & ~(MS_REC | MS_SILENT); 2833 2834 /* Fail if any non-propagation flags are set */ 2835 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2836 return 0; 2837 /* Only one propagation flag should be set */ 2838 if (!is_power_of_2(type)) 2839 return 0; 2840 return type; 2841 } 2842 2843 /* 2844 * recursively change the type of the mountpoint. 2845 */ 2846 static int do_change_type(const struct path *path, int ms_flags) 2847 { 2848 struct mount *m; 2849 struct mount *mnt = real_mount(path->mnt); 2850 int recurse = ms_flags & MS_REC; 2851 int type; 2852 int err; 2853 2854 if (!path_mounted(path)) 2855 return -EINVAL; 2856 2857 type = flags_to_propagation_type(ms_flags); 2858 if (!type) 2859 return -EINVAL; 2860 2861 guard(namespace_excl)(); 2862 2863 err = may_change_propagation(mnt); 2864 if (err) 2865 return err; 2866 2867 if (type == MS_SHARED) { 2868 err = invent_group_ids(mnt, recurse); 2869 if (err) 2870 return err; 2871 } 2872 2873 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2874 change_mnt_propagation(m, type); 2875 2876 return 0; 2877 } 2878 2879 /* may_copy_tree() - check if a mount tree can be copied 2880 * @path: path to the mount tree to be copied 2881 * 2882 * This helper checks if the caller may copy the mount tree starting 2883 * from @path->mnt. The caller may copy the mount tree under the 2884 * following circumstances: 2885 * 2886 * (1) The caller is located in the mount namespace of the mount tree. 2887 * This also implies that the mount does not belong to an anonymous 2888 * mount namespace. 2889 * (2) The caller tries to copy an nfs mount referring to a mount 2890 * namespace, i.e., the caller is trying to copy a mount namespace 2891 * entry from nsfs. 2892 * (3) The caller tries to copy a pidfs mount referring to a pidfd. 2893 * (4) The caller is trying to copy a mount tree that belongs to an 2894 * anonymous mount namespace. 2895 * 2896 * For that to be safe, this helper enforces that the origin mount 2897 * namespace the anonymous mount namespace was created from is the 2898 * same as the caller's mount namespace by comparing the sequence 2899 * numbers. 2900 * 2901 * This is not strictly necessary. The current semantics of the new 2902 * mount api enforce that the caller must be located in the same 2903 * mount namespace as the mount tree it interacts with. Using the 2904 * origin sequence number preserves these semantics even for 2905 * anonymous mount namespaces. However, one could envision extending 2906 * the api to directly operate across mount namespace if needed. 2907 * 2908 * The ownership of a non-anonymous mount namespace such as the 2909 * caller's cannot change. 2910 * => We know that the caller's mount namespace is stable. 2911 * 2912 * If the origin sequence number of the anonymous mount namespace is 2913 * the same as the sequence number of the caller's mount namespace. 2914 * => The owning namespaces are the same. 2915 * 2916 * ==> The earlier capability check on the owning namespace of the 2917 * caller's mount namespace ensures that the caller has the 2918 * ability to copy the mount tree. 2919 * 2920 * Returns true if the mount tree can be copied, false otherwise. 2921 */ 2922 static inline bool may_copy_tree(const struct path *path) 2923 { 2924 struct mount *mnt = real_mount(path->mnt); 2925 const struct dentry_operations *d_op; 2926 2927 if (check_mnt(mnt)) 2928 return true; 2929 2930 d_op = path->dentry->d_op; 2931 if (d_op == &ns_dentry_operations) 2932 return true; 2933 2934 if (d_op == &pidfs_dentry_operations) 2935 return true; 2936 2937 if (!is_mounted(path->mnt)) 2938 return false; 2939 2940 return check_anonymous_mnt(mnt); 2941 } 2942 2943 2944 static struct mount *__do_loopback(const struct path *old_path, int recurse) 2945 { 2946 struct mount *old = real_mount(old_path->mnt); 2947 2948 if (IS_MNT_UNBINDABLE(old)) 2949 return ERR_PTR(-EINVAL); 2950 2951 if (!may_copy_tree(old_path)) 2952 return ERR_PTR(-EINVAL); 2953 2954 if (!recurse && __has_locked_children(old, old_path->dentry)) 2955 return ERR_PTR(-EINVAL); 2956 2957 if (recurse) 2958 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2959 else 2960 return clone_mnt(old, old_path->dentry, 0); 2961 } 2962 2963 /* 2964 * do loopback mount. 2965 */ 2966 static int do_loopback(const struct path *path, const char *old_name, 2967 int recurse) 2968 { 2969 struct path old_path __free(path_put) = {}; 2970 struct mount *mnt = NULL; 2971 int err; 2972 if (!old_name || !*old_name) 2973 return -EINVAL; 2974 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2975 if (err) 2976 return err; 2977 2978 if (mnt_ns_loop(old_path.dentry)) 2979 return -EINVAL; 2980 2981 LOCK_MOUNT(mp, path); 2982 if (IS_ERR(mp.parent)) 2983 return PTR_ERR(mp.parent); 2984 2985 if (!check_mnt(mp.parent)) 2986 return -EINVAL; 2987 2988 mnt = __do_loopback(&old_path, recurse); 2989 if (IS_ERR(mnt)) 2990 return PTR_ERR(mnt); 2991 2992 err = graft_tree(mnt, &mp); 2993 if (err) { 2994 lock_mount_hash(); 2995 umount_tree(mnt, UMOUNT_SYNC); 2996 unlock_mount_hash(); 2997 } 2998 return err; 2999 } 3000 3001 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive) 3002 { 3003 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; 3004 struct user_namespace *user_ns = mnt_ns->user_ns; 3005 struct mount *mnt, *p; 3006 3007 ns = alloc_mnt_ns(user_ns, true); 3008 if (IS_ERR(ns)) 3009 return ns; 3010 3011 guard(namespace_excl)(); 3012 3013 /* 3014 * Record the sequence number of the source mount namespace. 3015 * This needs to hold namespace_sem to ensure that the mount 3016 * doesn't get attached. 3017 */ 3018 if (is_mounted(path->mnt)) { 3019 src_mnt_ns = real_mount(path->mnt)->mnt_ns; 3020 if (is_anon_ns(src_mnt_ns)) 3021 ns->seq_origin = src_mnt_ns->seq_origin; 3022 else 3023 ns->seq_origin = src_mnt_ns->ns.ns_id; 3024 } 3025 3026 mnt = __do_loopback(path, recursive); 3027 if (IS_ERR(mnt)) { 3028 emptied_ns = ns; 3029 return ERR_CAST(mnt); 3030 } 3031 3032 for (p = mnt; p; p = next_mnt(p, mnt)) { 3033 mnt_add_to_ns(ns, p); 3034 ns->nr_mounts++; 3035 } 3036 ns->root = mnt; 3037 return ns; 3038 } 3039 3040 static struct file *open_detached_copy(struct path *path, bool recursive) 3041 { 3042 struct mnt_namespace *ns = get_detached_copy(path, recursive); 3043 struct file *file; 3044 3045 if (IS_ERR(ns)) 3046 return ERR_CAST(ns); 3047 3048 mntput(path->mnt); 3049 path->mnt = mntget(&ns->root->mnt); 3050 file = dentry_open(path, O_PATH, current_cred()); 3051 if (IS_ERR(file)) 3052 dissolve_on_fput(path->mnt); 3053 else 3054 file->f_mode |= FMODE_NEED_UNMOUNT; 3055 return file; 3056 } 3057 3058 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3059 { 3060 int ret; 3061 struct path path __free(path_put) = {}; 3062 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3063 bool detached = flags & OPEN_TREE_CLONE; 3064 3065 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3066 3067 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3068 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3069 OPEN_TREE_CLOEXEC)) 3070 return ERR_PTR(-EINVAL); 3071 3072 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3073 return ERR_PTR(-EINVAL); 3074 3075 if (flags & AT_NO_AUTOMOUNT) 3076 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3077 if (flags & AT_SYMLINK_NOFOLLOW) 3078 lookup_flags &= ~LOOKUP_FOLLOW; 3079 if (flags & AT_EMPTY_PATH) 3080 lookup_flags |= LOOKUP_EMPTY; 3081 3082 if (detached && !may_mount()) 3083 return ERR_PTR(-EPERM); 3084 3085 ret = user_path_at(dfd, filename, lookup_flags, &path); 3086 if (unlikely(ret)) 3087 return ERR_PTR(ret); 3088 3089 if (detached) 3090 return open_detached_copy(&path, flags & AT_RECURSIVE); 3091 3092 return dentry_open(&path, O_PATH, current_cred()); 3093 } 3094 3095 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3096 { 3097 int fd; 3098 struct file *file __free(fput) = NULL; 3099 3100 file = vfs_open_tree(dfd, filename, flags); 3101 if (IS_ERR(file)) 3102 return PTR_ERR(file); 3103 3104 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3105 if (fd < 0) 3106 return fd; 3107 3108 fd_install(fd, no_free_ptr(file)); 3109 return fd; 3110 } 3111 3112 /* 3113 * Don't allow locked mount flags to be cleared. 3114 * 3115 * No locks need to be held here while testing the various MNT_LOCK 3116 * flags because those flags can never be cleared once they are set. 3117 */ 3118 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3119 { 3120 unsigned int fl = mnt->mnt.mnt_flags; 3121 3122 if ((fl & MNT_LOCK_READONLY) && 3123 !(mnt_flags & MNT_READONLY)) 3124 return false; 3125 3126 if ((fl & MNT_LOCK_NODEV) && 3127 !(mnt_flags & MNT_NODEV)) 3128 return false; 3129 3130 if ((fl & MNT_LOCK_NOSUID) && 3131 !(mnt_flags & MNT_NOSUID)) 3132 return false; 3133 3134 if ((fl & MNT_LOCK_NOEXEC) && 3135 !(mnt_flags & MNT_NOEXEC)) 3136 return false; 3137 3138 if ((fl & MNT_LOCK_ATIME) && 3139 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3140 return false; 3141 3142 return true; 3143 } 3144 3145 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3146 { 3147 bool readonly_request = (mnt_flags & MNT_READONLY); 3148 3149 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3150 return 0; 3151 3152 if (readonly_request) 3153 return mnt_make_readonly(mnt); 3154 3155 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3156 return 0; 3157 } 3158 3159 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3160 { 3161 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3162 mnt->mnt.mnt_flags = mnt_flags; 3163 touch_mnt_namespace(mnt->mnt_ns); 3164 } 3165 3166 static void mnt_warn_timestamp_expiry(const struct path *mountpoint, 3167 struct vfsmount *mnt) 3168 { 3169 struct super_block *sb = mnt->mnt_sb; 3170 3171 if (!__mnt_is_readonly(mnt) && 3172 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3173 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3174 char *buf, *mntpath; 3175 3176 buf = (char *)__get_free_page(GFP_KERNEL); 3177 if (buf) 3178 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3179 else 3180 mntpath = ERR_PTR(-ENOMEM); 3181 if (IS_ERR(mntpath)) 3182 mntpath = "(unknown)"; 3183 3184 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3185 sb->s_type->name, 3186 is_mounted(mnt) ? "remounted" : "mounted", 3187 mntpath, &sb->s_time_max, 3188 (unsigned long long)sb->s_time_max); 3189 3190 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3191 if (buf) 3192 free_page((unsigned long)buf); 3193 } 3194 } 3195 3196 /* 3197 * Handle reconfiguration of the mountpoint only without alteration of the 3198 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3199 * to mount(2). 3200 */ 3201 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags) 3202 { 3203 struct super_block *sb = path->mnt->mnt_sb; 3204 struct mount *mnt = real_mount(path->mnt); 3205 int ret; 3206 3207 if (!check_mnt(mnt)) 3208 return -EINVAL; 3209 3210 if (!path_mounted(path)) 3211 return -EINVAL; 3212 3213 if (!can_change_locked_flags(mnt, mnt_flags)) 3214 return -EPERM; 3215 3216 /* 3217 * We're only checking whether the superblock is read-only not 3218 * changing it, so only take down_read(&sb->s_umount). 3219 */ 3220 down_read(&sb->s_umount); 3221 lock_mount_hash(); 3222 ret = change_mount_ro_state(mnt, mnt_flags); 3223 if (ret == 0) 3224 set_mount_attributes(mnt, mnt_flags); 3225 unlock_mount_hash(); 3226 up_read(&sb->s_umount); 3227 3228 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3229 3230 return ret; 3231 } 3232 3233 /* 3234 * change filesystem flags. dir should be a physical root of filesystem. 3235 * If you've mounted a non-root directory somewhere and want to do remount 3236 * on it - tough luck. 3237 */ 3238 static int do_remount(const struct path *path, int sb_flags, 3239 int mnt_flags, void *data) 3240 { 3241 int err; 3242 struct super_block *sb = path->mnt->mnt_sb; 3243 struct mount *mnt = real_mount(path->mnt); 3244 struct fs_context *fc; 3245 3246 if (!check_mnt(mnt)) 3247 return -EINVAL; 3248 3249 if (!path_mounted(path)) 3250 return -EINVAL; 3251 3252 if (!can_change_locked_flags(mnt, mnt_flags)) 3253 return -EPERM; 3254 3255 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3256 if (IS_ERR(fc)) 3257 return PTR_ERR(fc); 3258 3259 /* 3260 * Indicate to the filesystem that the remount request is coming 3261 * from the legacy mount system call. 3262 */ 3263 fc->oldapi = true; 3264 3265 err = parse_monolithic_mount_data(fc, data); 3266 if (!err) { 3267 down_write(&sb->s_umount); 3268 err = -EPERM; 3269 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3270 err = reconfigure_super(fc); 3271 if (!err) { 3272 lock_mount_hash(); 3273 set_mount_attributes(mnt, mnt_flags); 3274 unlock_mount_hash(); 3275 } 3276 } 3277 up_write(&sb->s_umount); 3278 } 3279 3280 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3281 3282 put_fs_context(fc); 3283 return err; 3284 } 3285 3286 static inline int tree_contains_unbindable(struct mount *mnt) 3287 { 3288 struct mount *p; 3289 for (p = mnt; p; p = next_mnt(p, mnt)) { 3290 if (IS_MNT_UNBINDABLE(p)) 3291 return 1; 3292 } 3293 return 0; 3294 } 3295 3296 static int do_set_group(const struct path *from_path, const struct path *to_path) 3297 { 3298 struct mount *from = real_mount(from_path->mnt); 3299 struct mount *to = real_mount(to_path->mnt); 3300 int err; 3301 3302 guard(namespace_excl)(); 3303 3304 err = may_change_propagation(from); 3305 if (err) 3306 return err; 3307 err = may_change_propagation(to); 3308 if (err) 3309 return err; 3310 3311 /* To and From paths should be mount roots */ 3312 if (!path_mounted(from_path)) 3313 return -EINVAL; 3314 if (!path_mounted(to_path)) 3315 return -EINVAL; 3316 3317 /* Setting sharing groups is only allowed across same superblock */ 3318 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3319 return -EINVAL; 3320 3321 /* From mount root should be wider than To mount root */ 3322 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3323 return -EINVAL; 3324 3325 /* From mount should not have locked children in place of To's root */ 3326 if (__has_locked_children(from, to->mnt.mnt_root)) 3327 return -EINVAL; 3328 3329 /* Setting sharing groups is only allowed on private mounts */ 3330 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3331 return -EINVAL; 3332 3333 /* From should not be private */ 3334 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3335 return -EINVAL; 3336 3337 if (IS_MNT_SLAVE(from)) { 3338 hlist_add_behind(&to->mnt_slave, &from->mnt_slave); 3339 to->mnt_master = from->mnt_master; 3340 } 3341 3342 if (IS_MNT_SHARED(from)) { 3343 to->mnt_group_id = from->mnt_group_id; 3344 list_add(&to->mnt_share, &from->mnt_share); 3345 set_mnt_shared(to); 3346 } 3347 return 0; 3348 } 3349 3350 /** 3351 * path_overmounted - check if path is overmounted 3352 * @path: path to check 3353 * 3354 * Check if path is overmounted, i.e., if there's a mount on top of 3355 * @path->mnt with @path->dentry as mountpoint. 3356 * 3357 * Context: namespace_sem must be held at least shared. 3358 * MUST NOT be called under lock_mount_hash() (there one should just 3359 * call __lookup_mnt() and check if it returns NULL). 3360 * Return: If path is overmounted true is returned, false if not. 3361 */ 3362 static inline bool path_overmounted(const struct path *path) 3363 { 3364 unsigned seq = read_seqbegin(&mount_lock); 3365 bool no_child; 3366 3367 rcu_read_lock(); 3368 no_child = !__lookup_mnt(path->mnt, path->dentry); 3369 rcu_read_unlock(); 3370 if (need_seqretry(&mount_lock, seq)) { 3371 read_seqlock_excl(&mount_lock); 3372 no_child = !__lookup_mnt(path->mnt, path->dentry); 3373 read_sequnlock_excl(&mount_lock); 3374 } 3375 return unlikely(!no_child); 3376 } 3377 3378 /* 3379 * Check if there is a possibly empty chain of descent from p1 to p2. 3380 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl). 3381 */ 3382 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2) 3383 { 3384 while (p2 != p1 && mnt_has_parent(p2)) 3385 p2 = p2->mnt_parent; 3386 return p2 == p1; 3387 } 3388 3389 /** 3390 * can_move_mount_beneath - check that we can mount beneath the top mount 3391 * @mnt_from: mount we are trying to move 3392 * @mnt_to: mount under which to mount 3393 * @mp: mountpoint of @mnt_to 3394 * 3395 * - Make sure that nothing can be mounted beneath the caller's current 3396 * root or the rootfs of the namespace. 3397 * - Make sure that the caller can unmount the topmost mount ensuring 3398 * that the caller could reveal the underlying mountpoint. 3399 * - Ensure that nothing has been mounted on top of @mnt_from before we 3400 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3401 * - Prevent mounting beneath a mount if the propagation relationship 3402 * between the source mount, parent mount, and top mount would lead to 3403 * nonsensical mount trees. 3404 * 3405 * Context: This function expects namespace_lock() to be held. 3406 * Return: On success 0, and on error a negative error code is returned. 3407 */ 3408 static int can_move_mount_beneath(const struct mount *mnt_from, 3409 const struct mount *mnt_to, 3410 const struct mountpoint *mp) 3411 { 3412 struct mount *parent_mnt_to = mnt_to->mnt_parent; 3413 3414 if (IS_MNT_LOCKED(mnt_to)) 3415 return -EINVAL; 3416 3417 /* Avoid creating shadow mounts during mount propagation. */ 3418 if (mnt_from->overmount) 3419 return -EINVAL; 3420 3421 /* 3422 * Mounting beneath the rootfs only makes sense when the 3423 * semantics of pivot_root(".", ".") are used. 3424 */ 3425 if (&mnt_to->mnt == current->fs->root.mnt) 3426 return -EINVAL; 3427 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3428 return -EINVAL; 3429 3430 if (mount_is_ancestor(mnt_to, mnt_from)) 3431 return -EINVAL; 3432 3433 /* 3434 * If the parent mount propagates to the child mount this would 3435 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3436 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3437 * defeats the whole purpose of mounting beneath another mount. 3438 */ 3439 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3440 return -EINVAL; 3441 3442 /* 3443 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3444 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3445 * Afterwards @mnt_from would be mounted on top of 3446 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3447 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3448 * already mounted on @mnt_from, @mnt_to would ultimately be 3449 * remounted on top of @c. Afterwards, @mnt_from would be 3450 * covered by a copy @c of @mnt_from and @c would be covered by 3451 * @mnt_from itself. This defeats the whole purpose of mounting 3452 * @mnt_from beneath @mnt_to. 3453 */ 3454 if (check_mnt(mnt_from) && 3455 propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3456 return -EINVAL; 3457 3458 return 0; 3459 } 3460 3461 /* may_use_mount() - check if a mount tree can be used 3462 * @mnt: vfsmount to be used 3463 * 3464 * This helper checks if the caller may use the mount tree starting 3465 * from @path->mnt. The caller may use the mount tree under the 3466 * following circumstances: 3467 * 3468 * (1) The caller is located in the mount namespace of the mount tree. 3469 * This also implies that the mount does not belong to an anonymous 3470 * mount namespace. 3471 * (2) The caller is trying to use a mount tree that belongs to an 3472 * anonymous mount namespace. 3473 * 3474 * For that to be safe, this helper enforces that the origin mount 3475 * namespace the anonymous mount namespace was created from is the 3476 * same as the caller's mount namespace by comparing the sequence 3477 * numbers. 3478 * 3479 * The ownership of a non-anonymous mount namespace such as the 3480 * caller's cannot change. 3481 * => We know that the caller's mount namespace is stable. 3482 * 3483 * If the origin sequence number of the anonymous mount namespace is 3484 * the same as the sequence number of the caller's mount namespace. 3485 * => The owning namespaces are the same. 3486 * 3487 * ==> The earlier capability check on the owning namespace of the 3488 * caller's mount namespace ensures that the caller has the 3489 * ability to use the mount tree. 3490 * 3491 * Returns true if the mount tree can be used, false otherwise. 3492 */ 3493 static inline bool may_use_mount(struct mount *mnt) 3494 { 3495 if (check_mnt(mnt)) 3496 return true; 3497 3498 /* 3499 * Make sure that noone unmounted the target path or somehow 3500 * managed to get their hands on something purely kernel 3501 * internal. 3502 */ 3503 if (!is_mounted(&mnt->mnt)) 3504 return false; 3505 3506 return check_anonymous_mnt(mnt); 3507 } 3508 3509 static int do_move_mount(const struct path *old_path, 3510 const struct path *new_path, 3511 enum mnt_tree_flags_t flags) 3512 { 3513 struct mount *old = real_mount(old_path->mnt); 3514 int err; 3515 bool beneath = flags & MNT_TREE_BENEATH; 3516 3517 if (!path_mounted(old_path)) 3518 return -EINVAL; 3519 3520 if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) 3521 return -EINVAL; 3522 3523 LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath); 3524 if (IS_ERR(mp.parent)) 3525 return PTR_ERR(mp.parent); 3526 3527 if (check_mnt(old)) { 3528 /* if the source is in our namespace... */ 3529 /* ... it should be detachable from parent */ 3530 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old)) 3531 return -EINVAL; 3532 /* ... which should not be shared */ 3533 if (IS_MNT_SHARED(old->mnt_parent)) 3534 return -EINVAL; 3535 /* ... and the target should be in our namespace */ 3536 if (!check_mnt(mp.parent)) 3537 return -EINVAL; 3538 } else { 3539 /* 3540 * otherwise the source must be the root of some anon namespace. 3541 */ 3542 if (!anon_ns_root(old)) 3543 return -EINVAL; 3544 /* 3545 * Bail out early if the target is within the same namespace - 3546 * subsequent checks would've rejected that, but they lose 3547 * some corner cases if we check it early. 3548 */ 3549 if (old->mnt_ns == mp.parent->mnt_ns) 3550 return -EINVAL; 3551 /* 3552 * Target should be either in our namespace or in an acceptable 3553 * anon namespace, sensu check_anonymous_mnt(). 3554 */ 3555 if (!may_use_mount(mp.parent)) 3556 return -EINVAL; 3557 } 3558 3559 if (beneath) { 3560 struct mount *over = real_mount(new_path->mnt); 3561 3562 if (mp.parent != over->mnt_parent) 3563 over = mp.parent->overmount; 3564 err = can_move_mount_beneath(old, over, mp.mp); 3565 if (err) 3566 return err; 3567 } 3568 3569 /* 3570 * Don't move a mount tree containing unbindable mounts to a destination 3571 * mount which is shared. 3572 */ 3573 if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old)) 3574 return -EINVAL; 3575 if (!check_for_nsfs_mounts(old)) 3576 return -ELOOP; 3577 if (mount_is_ancestor(old, mp.parent)) 3578 return -ELOOP; 3579 3580 return attach_recursive_mnt(old, &mp); 3581 } 3582 3583 static int do_move_mount_old(const struct path *path, const char *old_name) 3584 { 3585 struct path old_path __free(path_put) = {}; 3586 int err; 3587 3588 if (!old_name || !*old_name) 3589 return -EINVAL; 3590 3591 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3592 if (err) 3593 return err; 3594 3595 return do_move_mount(&old_path, path, 0); 3596 } 3597 3598 /* 3599 * add a mount into a namespace's mount tree 3600 */ 3601 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp, 3602 int mnt_flags) 3603 { 3604 struct mount *parent = mp->parent; 3605 3606 if (IS_ERR(parent)) 3607 return PTR_ERR(parent); 3608 3609 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3610 3611 if (unlikely(!check_mnt(parent))) { 3612 /* that's acceptable only for automounts done in private ns */ 3613 if (!(mnt_flags & MNT_SHRINKABLE)) 3614 return -EINVAL; 3615 /* ... and for those we'd better have mountpoint still alive */ 3616 if (!parent->mnt_ns) 3617 return -EINVAL; 3618 } 3619 3620 /* Refuse the same filesystem on the same mount point */ 3621 if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb && 3622 parent->mnt.mnt_root == mp->mp->m_dentry) 3623 return -EBUSY; 3624 3625 if (d_is_symlink(newmnt->mnt.mnt_root)) 3626 return -EINVAL; 3627 3628 newmnt->mnt.mnt_flags = mnt_flags; 3629 return graft_tree(newmnt, mp); 3630 } 3631 3632 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3633 3634 /* 3635 * Create a new mount using a superblock configuration and request it 3636 * be added to the namespace tree. 3637 */ 3638 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint, 3639 unsigned int mnt_flags) 3640 { 3641 struct super_block *sb; 3642 struct vfsmount *mnt __free(mntput) = fc_mount(fc); 3643 int error; 3644 3645 if (IS_ERR(mnt)) 3646 return PTR_ERR(mnt); 3647 3648 sb = fc->root->d_sb; 3649 error = security_sb_kern_mount(sb); 3650 if (unlikely(error)) 3651 return error; 3652 3653 if (unlikely(mount_too_revealing(sb, &mnt_flags))) { 3654 errorfcp(fc, "VFS", "Mount too revealing"); 3655 return -EPERM; 3656 } 3657 3658 mnt_warn_timestamp_expiry(mountpoint, mnt); 3659 3660 LOCK_MOUNT(mp, mountpoint); 3661 error = do_add_mount(real_mount(mnt), &mp, mnt_flags); 3662 if (!error) 3663 retain_and_null_ptr(mnt); // consumed on success 3664 return error; 3665 } 3666 3667 /* 3668 * create a new mount for userspace and request it to be added into the 3669 * namespace's tree 3670 */ 3671 static int do_new_mount(const struct path *path, const char *fstype, 3672 int sb_flags, int mnt_flags, 3673 const char *name, void *data) 3674 { 3675 struct file_system_type *type; 3676 struct fs_context *fc; 3677 const char *subtype = NULL; 3678 int err = 0; 3679 3680 if (!fstype) 3681 return -EINVAL; 3682 3683 type = get_fs_type(fstype); 3684 if (!type) 3685 return -ENODEV; 3686 3687 if (type->fs_flags & FS_HAS_SUBTYPE) { 3688 subtype = strchr(fstype, '.'); 3689 if (subtype) { 3690 subtype++; 3691 if (!*subtype) { 3692 put_filesystem(type); 3693 return -EINVAL; 3694 } 3695 } 3696 } 3697 3698 fc = fs_context_for_mount(type, sb_flags); 3699 put_filesystem(type); 3700 if (IS_ERR(fc)) 3701 return PTR_ERR(fc); 3702 3703 /* 3704 * Indicate to the filesystem that the mount request is coming 3705 * from the legacy mount system call. 3706 */ 3707 fc->oldapi = true; 3708 3709 if (subtype) 3710 err = vfs_parse_fs_string(fc, "subtype", subtype); 3711 if (!err && name) 3712 err = vfs_parse_fs_string(fc, "source", name); 3713 if (!err) 3714 err = parse_monolithic_mount_data(fc, data); 3715 if (!err && !mount_capable(fc)) 3716 err = -EPERM; 3717 if (!err) 3718 err = do_new_mount_fc(fc, path, mnt_flags); 3719 3720 put_fs_context(fc); 3721 return err; 3722 } 3723 3724 static void lock_mount_exact(const struct path *path, 3725 struct pinned_mountpoint *mp) 3726 { 3727 struct dentry *dentry = path->dentry; 3728 int err; 3729 3730 inode_lock(dentry->d_inode); 3731 namespace_lock(); 3732 if (unlikely(cant_mount(dentry))) 3733 err = -ENOENT; 3734 else if (path_overmounted(path)) 3735 err = -EBUSY; 3736 else 3737 err = get_mountpoint(dentry, mp); 3738 if (unlikely(err)) { 3739 namespace_unlock(); 3740 inode_unlock(dentry->d_inode); 3741 mp->parent = ERR_PTR(err); 3742 } else { 3743 mp->parent = real_mount(path->mnt); 3744 } 3745 } 3746 3747 int finish_automount(struct vfsmount *__m, const struct path *path) 3748 { 3749 struct vfsmount *m __free(mntput) = __m; 3750 struct mount *mnt; 3751 int err; 3752 3753 if (!m) 3754 return 0; 3755 if (IS_ERR(m)) 3756 return PTR_ERR(m); 3757 3758 mnt = real_mount(m); 3759 3760 if (m->mnt_root == path->dentry) 3761 return -ELOOP; 3762 3763 /* 3764 * we don't want to use LOCK_MOUNT() - in this case finding something 3765 * that overmounts our mountpoint to be means "quitely drop what we've 3766 * got", not "try to mount it on top". 3767 */ 3768 LOCK_MOUNT_EXACT(mp, path); 3769 if (mp.parent == ERR_PTR(-EBUSY)) 3770 return 0; 3771 3772 err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE); 3773 if (likely(!err)) 3774 retain_and_null_ptr(m); 3775 return err; 3776 } 3777 3778 /** 3779 * mnt_set_expiry - Put a mount on an expiration list 3780 * @mnt: The mount to list. 3781 * @expiry_list: The list to add the mount to. 3782 */ 3783 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3784 { 3785 guard(mount_locked_reader)(); 3786 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3787 } 3788 EXPORT_SYMBOL(mnt_set_expiry); 3789 3790 /* 3791 * process a list of expirable mountpoints with the intent of discarding any 3792 * mountpoints that aren't in use and haven't been touched since last we came 3793 * here 3794 */ 3795 void mark_mounts_for_expiry(struct list_head *mounts) 3796 { 3797 struct mount *mnt, *next; 3798 LIST_HEAD(graveyard); 3799 3800 if (list_empty(mounts)) 3801 return; 3802 3803 guard(namespace_excl)(); 3804 guard(mount_writer)(); 3805 3806 /* extract from the expiration list every vfsmount that matches the 3807 * following criteria: 3808 * - already mounted 3809 * - only referenced by its parent vfsmount 3810 * - still marked for expiry (marked on the last call here; marks are 3811 * cleared by mntput()) 3812 */ 3813 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3814 if (!is_mounted(&mnt->mnt)) 3815 continue; 3816 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3817 propagate_mount_busy(mnt, 1)) 3818 continue; 3819 list_move(&mnt->mnt_expire, &graveyard); 3820 } 3821 while (!list_empty(&graveyard)) { 3822 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3823 touch_mnt_namespace(mnt->mnt_ns); 3824 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3825 } 3826 } 3827 3828 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3829 3830 /* 3831 * Ripoff of 'select_parent()' 3832 * 3833 * search the list of submounts for a given mountpoint, and move any 3834 * shrinkable submounts to the 'graveyard' list. 3835 */ 3836 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3837 { 3838 struct mount *this_parent = parent; 3839 struct list_head *next; 3840 int found = 0; 3841 3842 repeat: 3843 next = this_parent->mnt_mounts.next; 3844 resume: 3845 while (next != &this_parent->mnt_mounts) { 3846 struct list_head *tmp = next; 3847 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3848 3849 next = tmp->next; 3850 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3851 continue; 3852 /* 3853 * Descend a level if the d_mounts list is non-empty. 3854 */ 3855 if (!list_empty(&mnt->mnt_mounts)) { 3856 this_parent = mnt; 3857 goto repeat; 3858 } 3859 3860 if (!propagate_mount_busy(mnt, 1)) { 3861 list_move_tail(&mnt->mnt_expire, graveyard); 3862 found++; 3863 } 3864 } 3865 /* 3866 * All done at this level ... ascend and resume the search 3867 */ 3868 if (this_parent != parent) { 3869 next = this_parent->mnt_child.next; 3870 this_parent = this_parent->mnt_parent; 3871 goto resume; 3872 } 3873 return found; 3874 } 3875 3876 /* 3877 * process a list of expirable mountpoints with the intent of discarding any 3878 * submounts of a specific parent mountpoint 3879 * 3880 * mount_lock must be held for write 3881 */ 3882 static void shrink_submounts(struct mount *mnt) 3883 { 3884 LIST_HEAD(graveyard); 3885 struct mount *m; 3886 3887 /* extract submounts of 'mountpoint' from the expiration list */ 3888 while (select_submounts(mnt, &graveyard)) { 3889 while (!list_empty(&graveyard)) { 3890 m = list_first_entry(&graveyard, struct mount, 3891 mnt_expire); 3892 touch_mnt_namespace(m->mnt_ns); 3893 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3894 } 3895 } 3896 } 3897 3898 static void *copy_mount_options(const void __user * data) 3899 { 3900 char *copy; 3901 unsigned left, offset; 3902 3903 if (!data) 3904 return NULL; 3905 3906 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3907 if (!copy) 3908 return ERR_PTR(-ENOMEM); 3909 3910 left = copy_from_user(copy, data, PAGE_SIZE); 3911 3912 /* 3913 * Not all architectures have an exact copy_from_user(). Resort to 3914 * byte at a time. 3915 */ 3916 offset = PAGE_SIZE - left; 3917 while (left) { 3918 char c; 3919 if (get_user(c, (const char __user *)data + offset)) 3920 break; 3921 copy[offset] = c; 3922 left--; 3923 offset++; 3924 } 3925 3926 if (left == PAGE_SIZE) { 3927 kfree(copy); 3928 return ERR_PTR(-EFAULT); 3929 } 3930 3931 return copy; 3932 } 3933 3934 static char *copy_mount_string(const void __user *data) 3935 { 3936 return data ? strndup_user(data, PATH_MAX) : NULL; 3937 } 3938 3939 /* 3940 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3941 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3942 * 3943 * data is a (void *) that can point to any structure up to 3944 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3945 * information (or be NULL). 3946 * 3947 * Pre-0.97 versions of mount() didn't have a flags word. 3948 * When the flags word was introduced its top half was required 3949 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3950 * Therefore, if this magic number is present, it carries no information 3951 * and must be discarded. 3952 */ 3953 int path_mount(const char *dev_name, const struct path *path, 3954 const char *type_page, unsigned long flags, void *data_page) 3955 { 3956 unsigned int mnt_flags = 0, sb_flags; 3957 int ret; 3958 3959 /* Discard magic */ 3960 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3961 flags &= ~MS_MGC_MSK; 3962 3963 /* Basic sanity checks */ 3964 if (data_page) 3965 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3966 3967 if (flags & MS_NOUSER) 3968 return -EINVAL; 3969 3970 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3971 if (ret) 3972 return ret; 3973 if (!may_mount()) 3974 return -EPERM; 3975 if (flags & SB_MANDLOCK) 3976 warn_mandlock(); 3977 3978 /* Default to relatime unless overriden */ 3979 if (!(flags & MS_NOATIME)) 3980 mnt_flags |= MNT_RELATIME; 3981 3982 /* Separate the per-mountpoint flags */ 3983 if (flags & MS_NOSUID) 3984 mnt_flags |= MNT_NOSUID; 3985 if (flags & MS_NODEV) 3986 mnt_flags |= MNT_NODEV; 3987 if (flags & MS_NOEXEC) 3988 mnt_flags |= MNT_NOEXEC; 3989 if (flags & MS_NOATIME) 3990 mnt_flags |= MNT_NOATIME; 3991 if (flags & MS_NODIRATIME) 3992 mnt_flags |= MNT_NODIRATIME; 3993 if (flags & MS_STRICTATIME) 3994 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3995 if (flags & MS_RDONLY) 3996 mnt_flags |= MNT_READONLY; 3997 if (flags & MS_NOSYMFOLLOW) 3998 mnt_flags |= MNT_NOSYMFOLLOW; 3999 4000 /* The default atime for remount is preservation */ 4001 if ((flags & MS_REMOUNT) && 4002 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 4003 MS_STRICTATIME)) == 0)) { 4004 mnt_flags &= ~MNT_ATIME_MASK; 4005 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 4006 } 4007 4008 sb_flags = flags & (SB_RDONLY | 4009 SB_SYNCHRONOUS | 4010 SB_MANDLOCK | 4011 SB_DIRSYNC | 4012 SB_SILENT | 4013 SB_POSIXACL | 4014 SB_LAZYTIME | 4015 SB_I_VERSION); 4016 4017 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 4018 return do_reconfigure_mnt(path, mnt_flags); 4019 if (flags & MS_REMOUNT) 4020 return do_remount(path, sb_flags, mnt_flags, data_page); 4021 if (flags & MS_BIND) 4022 return do_loopback(path, dev_name, flags & MS_REC); 4023 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 4024 return do_change_type(path, flags); 4025 if (flags & MS_MOVE) 4026 return do_move_mount_old(path, dev_name); 4027 4028 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 4029 data_page); 4030 } 4031 4032 int do_mount(const char *dev_name, const char __user *dir_name, 4033 const char *type_page, unsigned long flags, void *data_page) 4034 { 4035 struct path path __free(path_put) = {}; 4036 int ret; 4037 4038 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 4039 if (ret) 4040 return ret; 4041 return path_mount(dev_name, &path, type_page, flags, data_page); 4042 } 4043 4044 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4045 { 4046 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4047 } 4048 4049 static void dec_mnt_namespaces(struct ucounts *ucounts) 4050 { 4051 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4052 } 4053 4054 static void free_mnt_ns(struct mnt_namespace *ns) 4055 { 4056 if (!is_anon_ns(ns)) 4057 ns_common_free(ns); 4058 dec_mnt_namespaces(ns->ucounts); 4059 mnt_ns_tree_remove(ns); 4060 } 4061 4062 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4063 { 4064 struct mnt_namespace *new_ns; 4065 struct ucounts *ucounts; 4066 int ret; 4067 4068 ucounts = inc_mnt_namespaces(user_ns); 4069 if (!ucounts) 4070 return ERR_PTR(-ENOSPC); 4071 4072 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4073 if (!new_ns) { 4074 dec_mnt_namespaces(ucounts); 4075 return ERR_PTR(-ENOMEM); 4076 } 4077 4078 if (anon) 4079 ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO); 4080 else 4081 ret = ns_common_init(new_ns); 4082 if (ret) { 4083 kfree(new_ns); 4084 dec_mnt_namespaces(ucounts); 4085 return ERR_PTR(ret); 4086 } 4087 if (!anon) 4088 ns_tree_gen_id(&new_ns->ns); 4089 refcount_set(&new_ns->passive, 1); 4090 new_ns->mounts = RB_ROOT; 4091 init_waitqueue_head(&new_ns->poll); 4092 new_ns->user_ns = get_user_ns(user_ns); 4093 new_ns->ucounts = ucounts; 4094 return new_ns; 4095 } 4096 4097 __latent_entropy 4098 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns, 4099 struct user_namespace *user_ns, struct fs_struct *new_fs) 4100 { 4101 struct mnt_namespace *new_ns; 4102 struct vfsmount *rootmnt __free(mntput) = NULL; 4103 struct vfsmount *pwdmnt __free(mntput) = NULL; 4104 struct mount *p, *q; 4105 struct mount *old; 4106 struct mount *new; 4107 int copy_flags; 4108 4109 BUG_ON(!ns); 4110 4111 if (likely(!(flags & CLONE_NEWNS))) { 4112 get_mnt_ns(ns); 4113 return ns; 4114 } 4115 4116 old = ns->root; 4117 4118 new_ns = alloc_mnt_ns(user_ns, false); 4119 if (IS_ERR(new_ns)) 4120 return new_ns; 4121 4122 guard(namespace_excl)(); 4123 /* First pass: copy the tree topology */ 4124 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4125 if (user_ns != ns->user_ns) 4126 copy_flags |= CL_SLAVE; 4127 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4128 if (IS_ERR(new)) { 4129 emptied_ns = new_ns; 4130 return ERR_CAST(new); 4131 } 4132 if (user_ns != ns->user_ns) { 4133 guard(mount_writer)(); 4134 lock_mnt_tree(new); 4135 } 4136 new_ns->root = new; 4137 4138 /* 4139 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4140 * as belonging to new namespace. We have already acquired a private 4141 * fs_struct, so tsk->fs->lock is not needed. 4142 */ 4143 p = old; 4144 q = new; 4145 while (p) { 4146 mnt_add_to_ns(new_ns, q); 4147 new_ns->nr_mounts++; 4148 if (new_fs) { 4149 if (&p->mnt == new_fs->root.mnt) { 4150 new_fs->root.mnt = mntget(&q->mnt); 4151 rootmnt = &p->mnt; 4152 } 4153 if (&p->mnt == new_fs->pwd.mnt) { 4154 new_fs->pwd.mnt = mntget(&q->mnt); 4155 pwdmnt = &p->mnt; 4156 } 4157 } 4158 p = next_mnt(p, old); 4159 q = next_mnt(q, new); 4160 if (!q) 4161 break; 4162 // an mntns binding we'd skipped? 4163 while (p->mnt.mnt_root != q->mnt.mnt_root) 4164 p = next_mnt(skip_mnt_tree(p), old); 4165 } 4166 ns_tree_add_raw(new_ns); 4167 return new_ns; 4168 } 4169 4170 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4171 { 4172 struct mount *mnt = real_mount(m); 4173 struct mnt_namespace *ns; 4174 struct super_block *s; 4175 struct path path; 4176 int err; 4177 4178 ns = alloc_mnt_ns(&init_user_ns, true); 4179 if (IS_ERR(ns)) { 4180 mntput(m); 4181 return ERR_CAST(ns); 4182 } 4183 ns->root = mnt; 4184 ns->nr_mounts++; 4185 mnt_add_to_ns(ns, mnt); 4186 4187 err = vfs_path_lookup(m->mnt_root, m, 4188 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4189 4190 put_mnt_ns(ns); 4191 4192 if (err) 4193 return ERR_PTR(err); 4194 4195 /* trade a vfsmount reference for active sb one */ 4196 s = path.mnt->mnt_sb; 4197 atomic_inc(&s->s_active); 4198 mntput(path.mnt); 4199 /* lock the sucker */ 4200 down_write(&s->s_umount); 4201 /* ... and return the root of (sub)tree on it */ 4202 return path.dentry; 4203 } 4204 EXPORT_SYMBOL(mount_subtree); 4205 4206 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4207 char __user *, type, unsigned long, flags, void __user *, data) 4208 { 4209 int ret; 4210 char *kernel_type; 4211 char *kernel_dev; 4212 void *options; 4213 4214 kernel_type = copy_mount_string(type); 4215 ret = PTR_ERR(kernel_type); 4216 if (IS_ERR(kernel_type)) 4217 goto out_type; 4218 4219 kernel_dev = copy_mount_string(dev_name); 4220 ret = PTR_ERR(kernel_dev); 4221 if (IS_ERR(kernel_dev)) 4222 goto out_dev; 4223 4224 options = copy_mount_options(data); 4225 ret = PTR_ERR(options); 4226 if (IS_ERR(options)) 4227 goto out_data; 4228 4229 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4230 4231 kfree(options); 4232 out_data: 4233 kfree(kernel_dev); 4234 out_dev: 4235 kfree(kernel_type); 4236 out_type: 4237 return ret; 4238 } 4239 4240 #define FSMOUNT_VALID_FLAGS \ 4241 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4242 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4243 MOUNT_ATTR_NOSYMFOLLOW) 4244 4245 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4246 4247 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4248 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4249 4250 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4251 { 4252 unsigned int mnt_flags = 0; 4253 4254 if (attr_flags & MOUNT_ATTR_RDONLY) 4255 mnt_flags |= MNT_READONLY; 4256 if (attr_flags & MOUNT_ATTR_NOSUID) 4257 mnt_flags |= MNT_NOSUID; 4258 if (attr_flags & MOUNT_ATTR_NODEV) 4259 mnt_flags |= MNT_NODEV; 4260 if (attr_flags & MOUNT_ATTR_NOEXEC) 4261 mnt_flags |= MNT_NOEXEC; 4262 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4263 mnt_flags |= MNT_NODIRATIME; 4264 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4265 mnt_flags |= MNT_NOSYMFOLLOW; 4266 4267 return mnt_flags; 4268 } 4269 4270 /* 4271 * Create a kernel mount representation for a new, prepared superblock 4272 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4273 */ 4274 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4275 unsigned int, attr_flags) 4276 { 4277 struct mnt_namespace *ns; 4278 struct fs_context *fc; 4279 struct file *file; 4280 struct path newmount; 4281 struct mount *mnt; 4282 unsigned int mnt_flags = 0; 4283 long ret; 4284 4285 if (!may_mount()) 4286 return -EPERM; 4287 4288 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4289 return -EINVAL; 4290 4291 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4292 return -EINVAL; 4293 4294 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4295 4296 switch (attr_flags & MOUNT_ATTR__ATIME) { 4297 case MOUNT_ATTR_STRICTATIME: 4298 break; 4299 case MOUNT_ATTR_NOATIME: 4300 mnt_flags |= MNT_NOATIME; 4301 break; 4302 case MOUNT_ATTR_RELATIME: 4303 mnt_flags |= MNT_RELATIME; 4304 break; 4305 default: 4306 return -EINVAL; 4307 } 4308 4309 CLASS(fd, f)(fs_fd); 4310 if (fd_empty(f)) 4311 return -EBADF; 4312 4313 if (fd_file(f)->f_op != &fscontext_fops) 4314 return -EINVAL; 4315 4316 fc = fd_file(f)->private_data; 4317 4318 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4319 if (ret < 0) 4320 return ret; 4321 4322 /* There must be a valid superblock or we can't mount it */ 4323 ret = -EINVAL; 4324 if (!fc->root) 4325 goto err_unlock; 4326 4327 ret = -EPERM; 4328 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4329 errorfcp(fc, "VFS", "Mount too revealing"); 4330 goto err_unlock; 4331 } 4332 4333 ret = -EBUSY; 4334 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4335 goto err_unlock; 4336 4337 if (fc->sb_flags & SB_MANDLOCK) 4338 warn_mandlock(); 4339 4340 newmount.mnt = vfs_create_mount(fc); 4341 if (IS_ERR(newmount.mnt)) { 4342 ret = PTR_ERR(newmount.mnt); 4343 goto err_unlock; 4344 } 4345 newmount.dentry = dget(fc->root); 4346 newmount.mnt->mnt_flags = mnt_flags; 4347 4348 /* We've done the mount bit - now move the file context into more or 4349 * less the same state as if we'd done an fspick(). We don't want to 4350 * do any memory allocation or anything like that at this point as we 4351 * don't want to have to handle any errors incurred. 4352 */ 4353 vfs_clean_context(fc); 4354 4355 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4356 if (IS_ERR(ns)) { 4357 ret = PTR_ERR(ns); 4358 goto err_path; 4359 } 4360 mnt = real_mount(newmount.mnt); 4361 ns->root = mnt; 4362 ns->nr_mounts = 1; 4363 mnt_add_to_ns(ns, mnt); 4364 mntget(newmount.mnt); 4365 4366 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4367 * it, not just simply put it. 4368 */ 4369 file = dentry_open(&newmount, O_PATH, fc->cred); 4370 if (IS_ERR(file)) { 4371 dissolve_on_fput(newmount.mnt); 4372 ret = PTR_ERR(file); 4373 goto err_path; 4374 } 4375 file->f_mode |= FMODE_NEED_UNMOUNT; 4376 4377 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4378 if (ret >= 0) 4379 fd_install(ret, file); 4380 else 4381 fput(file); 4382 4383 err_path: 4384 path_put(&newmount); 4385 err_unlock: 4386 mutex_unlock(&fc->uapi_mutex); 4387 return ret; 4388 } 4389 4390 static inline int vfs_move_mount(const struct path *from_path, 4391 const struct path *to_path, 4392 enum mnt_tree_flags_t mflags) 4393 { 4394 int ret; 4395 4396 ret = security_move_mount(from_path, to_path); 4397 if (ret) 4398 return ret; 4399 4400 if (mflags & MNT_TREE_PROPAGATION) 4401 return do_set_group(from_path, to_path); 4402 4403 return do_move_mount(from_path, to_path, mflags); 4404 } 4405 4406 /* 4407 * Move a mount from one place to another. In combination with 4408 * fsopen()/fsmount() this is used to install a new mount and in combination 4409 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4410 * a mount subtree. 4411 * 4412 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4413 */ 4414 SYSCALL_DEFINE5(move_mount, 4415 int, from_dfd, const char __user *, from_pathname, 4416 int, to_dfd, const char __user *, to_pathname, 4417 unsigned int, flags) 4418 { 4419 struct path to_path __free(path_put) = {}; 4420 struct path from_path __free(path_put) = {}; 4421 struct filename *to_name __free(putname) = NULL; 4422 struct filename *from_name __free(putname) = NULL; 4423 unsigned int lflags, uflags; 4424 enum mnt_tree_flags_t mflags = 0; 4425 int ret = 0; 4426 4427 if (!may_mount()) 4428 return -EPERM; 4429 4430 if (flags & ~MOVE_MOUNT__MASK) 4431 return -EINVAL; 4432 4433 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4434 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4435 return -EINVAL; 4436 4437 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; 4438 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; 4439 4440 uflags = 0; 4441 if (flags & MOVE_MOUNT_T_EMPTY_PATH) 4442 uflags = AT_EMPTY_PATH; 4443 4444 to_name = getname_maybe_null(to_pathname, uflags); 4445 if (IS_ERR(to_name)) 4446 return PTR_ERR(to_name); 4447 4448 if (!to_name && to_dfd >= 0) { 4449 CLASS(fd_raw, f_to)(to_dfd); 4450 if (fd_empty(f_to)) 4451 return -EBADF; 4452 4453 to_path = fd_file(f_to)->f_path; 4454 path_get(&to_path); 4455 } else { 4456 lflags = 0; 4457 if (flags & MOVE_MOUNT_T_SYMLINKS) 4458 lflags |= LOOKUP_FOLLOW; 4459 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) 4460 lflags |= LOOKUP_AUTOMOUNT; 4461 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); 4462 if (ret) 4463 return ret; 4464 } 4465 4466 uflags = 0; 4467 if (flags & MOVE_MOUNT_F_EMPTY_PATH) 4468 uflags = AT_EMPTY_PATH; 4469 4470 from_name = getname_maybe_null(from_pathname, uflags); 4471 if (IS_ERR(from_name)) 4472 return PTR_ERR(from_name); 4473 4474 if (!from_name && from_dfd >= 0) { 4475 CLASS(fd_raw, f_from)(from_dfd); 4476 if (fd_empty(f_from)) 4477 return -EBADF; 4478 4479 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); 4480 } 4481 4482 lflags = 0; 4483 if (flags & MOVE_MOUNT_F_SYMLINKS) 4484 lflags |= LOOKUP_FOLLOW; 4485 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) 4486 lflags |= LOOKUP_AUTOMOUNT; 4487 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); 4488 if (ret) 4489 return ret; 4490 4491 return vfs_move_mount(&from_path, &to_path, mflags); 4492 } 4493 4494 /* 4495 * Return true if path is reachable from root 4496 * 4497 * locks: mount_locked_reader || namespace_shared && is_mounted(mnt) 4498 */ 4499 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4500 const struct path *root) 4501 { 4502 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4503 dentry = mnt->mnt_mountpoint; 4504 mnt = mnt->mnt_parent; 4505 } 4506 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4507 } 4508 4509 bool path_is_under(const struct path *path1, const struct path *path2) 4510 { 4511 guard(mount_locked_reader)(); 4512 return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4513 } 4514 EXPORT_SYMBOL(path_is_under); 4515 4516 /* 4517 * pivot_root Semantics: 4518 * Moves the root file system of the current process to the directory put_old, 4519 * makes new_root as the new root file system of the current process, and sets 4520 * root/cwd of all processes which had them on the current root to new_root. 4521 * 4522 * Restrictions: 4523 * The new_root and put_old must be directories, and must not be on the 4524 * same file system as the current process root. The put_old must be 4525 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4526 * pointed to by put_old must yield the same directory as new_root. No other 4527 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4528 * 4529 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4530 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4531 * in this situation. 4532 * 4533 * Notes: 4534 * - we don't move root/cwd if they are not at the root (reason: if something 4535 * cared enough to change them, it's probably wrong to force them elsewhere) 4536 * - it's okay to pick a root that isn't the root of a file system, e.g. 4537 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4538 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4539 * first. 4540 */ 4541 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4542 const char __user *, put_old) 4543 { 4544 struct path new __free(path_put) = {}; 4545 struct path old __free(path_put) = {}; 4546 struct path root __free(path_put) = {}; 4547 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4548 int error; 4549 4550 if (!may_mount()) 4551 return -EPERM; 4552 4553 error = user_path_at(AT_FDCWD, new_root, 4554 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4555 if (error) 4556 return error; 4557 4558 error = user_path_at(AT_FDCWD, put_old, 4559 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4560 if (error) 4561 return error; 4562 4563 error = security_sb_pivotroot(&old, &new); 4564 if (error) 4565 return error; 4566 4567 get_fs_root(current->fs, &root); 4568 4569 LOCK_MOUNT(old_mp, &old); 4570 old_mnt = old_mp.parent; 4571 if (IS_ERR(old_mnt)) 4572 return PTR_ERR(old_mnt); 4573 4574 new_mnt = real_mount(new.mnt); 4575 root_mnt = real_mount(root.mnt); 4576 ex_parent = new_mnt->mnt_parent; 4577 root_parent = root_mnt->mnt_parent; 4578 if (IS_MNT_SHARED(old_mnt) || 4579 IS_MNT_SHARED(ex_parent) || 4580 IS_MNT_SHARED(root_parent)) 4581 return -EINVAL; 4582 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4583 return -EINVAL; 4584 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4585 return -EINVAL; 4586 if (d_unlinked(new.dentry)) 4587 return -ENOENT; 4588 if (new_mnt == root_mnt || old_mnt == root_mnt) 4589 return -EBUSY; /* loop, on the same file system */ 4590 if (!path_mounted(&root)) 4591 return -EINVAL; /* not a mountpoint */ 4592 if (!mnt_has_parent(root_mnt)) 4593 return -EINVAL; /* absolute root */ 4594 if (!path_mounted(&new)) 4595 return -EINVAL; /* not a mountpoint */ 4596 if (!mnt_has_parent(new_mnt)) 4597 return -EINVAL; /* absolute root */ 4598 /* make sure we can reach put_old from new_root */ 4599 if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new)) 4600 return -EINVAL; 4601 /* make certain new is below the root */ 4602 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4603 return -EINVAL; 4604 lock_mount_hash(); 4605 umount_mnt(new_mnt); 4606 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4607 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4608 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4609 } 4610 /* mount new_root on / */ 4611 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp); 4612 umount_mnt(root_mnt); 4613 /* mount old root on put_old */ 4614 attach_mnt(root_mnt, old_mnt, old_mp.mp); 4615 touch_mnt_namespace(current->nsproxy->mnt_ns); 4616 /* A moved mount should not expire automatically */ 4617 list_del_init(&new_mnt->mnt_expire); 4618 unlock_mount_hash(); 4619 mnt_notify_add(root_mnt); 4620 mnt_notify_add(new_mnt); 4621 chroot_fs_refs(&root, &new); 4622 return 0; 4623 } 4624 4625 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4626 { 4627 unsigned int flags = mnt->mnt.mnt_flags; 4628 4629 /* flags to clear */ 4630 flags &= ~kattr->attr_clr; 4631 /* flags to raise */ 4632 flags |= kattr->attr_set; 4633 4634 return flags; 4635 } 4636 4637 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4638 { 4639 struct vfsmount *m = &mnt->mnt; 4640 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4641 4642 if (!kattr->mnt_idmap) 4643 return 0; 4644 4645 /* 4646 * Creating an idmapped mount with the filesystem wide idmapping 4647 * doesn't make sense so block that. We don't allow mushy semantics. 4648 */ 4649 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4650 return -EINVAL; 4651 4652 /* 4653 * We only allow an mount to change it's idmapping if it has 4654 * never been accessible to userspace. 4655 */ 4656 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4657 return -EPERM; 4658 4659 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4660 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4661 return -EINVAL; 4662 4663 /* The filesystem has turned off idmapped mounts. */ 4664 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4665 return -EINVAL; 4666 4667 /* We're not controlling the superblock. */ 4668 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4669 return -EPERM; 4670 4671 /* Mount has already been visible in the filesystem hierarchy. */ 4672 if (!is_anon_ns(mnt->mnt_ns)) 4673 return -EINVAL; 4674 4675 return 0; 4676 } 4677 4678 /** 4679 * mnt_allow_writers() - check whether the attribute change allows writers 4680 * @kattr: the new mount attributes 4681 * @mnt: the mount to which @kattr will be applied 4682 * 4683 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4684 * 4685 * Return: true if writers need to be held, false if not 4686 */ 4687 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4688 const struct mount *mnt) 4689 { 4690 return (!(kattr->attr_set & MNT_READONLY) || 4691 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4692 !kattr->mnt_idmap; 4693 } 4694 4695 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4696 { 4697 struct mount *m; 4698 int err; 4699 4700 for (m = mnt; m; m = next_mnt(m, mnt)) { 4701 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4702 err = -EPERM; 4703 break; 4704 } 4705 4706 err = can_idmap_mount(kattr, m); 4707 if (err) 4708 break; 4709 4710 if (!mnt_allow_writers(kattr, m)) { 4711 err = mnt_hold_writers(m); 4712 if (err) { 4713 m = next_mnt(m, mnt); 4714 break; 4715 } 4716 } 4717 4718 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4719 return 0; 4720 } 4721 4722 if (err) { 4723 /* undo all mnt_hold_writers() we'd done */ 4724 for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt)) 4725 mnt_unhold_writers(p); 4726 } 4727 return err; 4728 } 4729 4730 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4731 { 4732 struct mnt_idmap *old_idmap; 4733 4734 if (!kattr->mnt_idmap) 4735 return; 4736 4737 old_idmap = mnt_idmap(&mnt->mnt); 4738 4739 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4740 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4741 mnt_idmap_put(old_idmap); 4742 } 4743 4744 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4745 { 4746 struct mount *m; 4747 4748 for (m = mnt; m; m = next_mnt(m, mnt)) { 4749 unsigned int flags; 4750 4751 do_idmap_mount(kattr, m); 4752 flags = recalc_flags(kattr, m); 4753 WRITE_ONCE(m->mnt.mnt_flags, flags); 4754 4755 /* If we had to hold writers unblock them. */ 4756 mnt_unhold_writers(m); 4757 4758 if (kattr->propagation) 4759 change_mnt_propagation(m, kattr->propagation); 4760 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4761 break; 4762 } 4763 touch_mnt_namespace(mnt->mnt_ns); 4764 } 4765 4766 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr) 4767 { 4768 struct mount *mnt = real_mount(path->mnt); 4769 int err = 0; 4770 4771 if (!path_mounted(path)) 4772 return -EINVAL; 4773 4774 if (kattr->mnt_userns) { 4775 struct mnt_idmap *mnt_idmap; 4776 4777 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4778 if (IS_ERR(mnt_idmap)) 4779 return PTR_ERR(mnt_idmap); 4780 kattr->mnt_idmap = mnt_idmap; 4781 } 4782 4783 if (kattr->propagation) { 4784 /* 4785 * Only take namespace_lock() if we're actually changing 4786 * propagation. 4787 */ 4788 namespace_lock(); 4789 if (kattr->propagation == MS_SHARED) { 4790 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 4791 if (err) { 4792 namespace_unlock(); 4793 return err; 4794 } 4795 } 4796 } 4797 4798 err = -EINVAL; 4799 lock_mount_hash(); 4800 4801 if (!anon_ns_root(mnt) && !check_mnt(mnt)) 4802 goto out; 4803 4804 /* 4805 * First, we get the mount tree in a shape where we can change mount 4806 * properties without failure. If we succeeded to do so we commit all 4807 * changes and if we failed we clean up. 4808 */ 4809 err = mount_setattr_prepare(kattr, mnt); 4810 if (!err) 4811 mount_setattr_commit(kattr, mnt); 4812 4813 out: 4814 unlock_mount_hash(); 4815 4816 if (kattr->propagation) { 4817 if (err) 4818 cleanup_group_ids(mnt, NULL); 4819 namespace_unlock(); 4820 } 4821 4822 return err; 4823 } 4824 4825 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4826 struct mount_kattr *kattr) 4827 { 4828 struct ns_common *ns; 4829 struct user_namespace *mnt_userns; 4830 4831 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4832 return 0; 4833 4834 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 4835 /* 4836 * We can only remove an idmapping if it's never been 4837 * exposed to userspace. 4838 */ 4839 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 4840 return -EINVAL; 4841 4842 /* 4843 * Removal of idmappings is equivalent to setting 4844 * nop_mnt_idmap. 4845 */ 4846 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 4847 kattr->mnt_idmap = &nop_mnt_idmap; 4848 return 0; 4849 } 4850 } 4851 4852 if (attr->userns_fd > INT_MAX) 4853 return -EINVAL; 4854 4855 CLASS(fd, f)(attr->userns_fd); 4856 if (fd_empty(f)) 4857 return -EBADF; 4858 4859 if (!proc_ns_file(fd_file(f))) 4860 return -EINVAL; 4861 4862 ns = get_proc_ns(file_inode(fd_file(f))); 4863 if (ns->ns_type != CLONE_NEWUSER) 4864 return -EINVAL; 4865 4866 /* 4867 * The initial idmapping cannot be used to create an idmapped 4868 * mount. We use the initial idmapping as an indicator of a mount 4869 * that is not idmapped. It can simply be passed into helpers that 4870 * are aware of idmapped mounts as a convenient shortcut. A user 4871 * can just create a dedicated identity mapping to achieve the same 4872 * result. 4873 */ 4874 mnt_userns = container_of(ns, struct user_namespace, ns); 4875 if (mnt_userns == &init_user_ns) 4876 return -EPERM; 4877 4878 /* We're not controlling the target namespace. */ 4879 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 4880 return -EPERM; 4881 4882 kattr->mnt_userns = get_user_ns(mnt_userns); 4883 return 0; 4884 } 4885 4886 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4887 struct mount_kattr *kattr) 4888 { 4889 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4890 return -EINVAL; 4891 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4892 return -EINVAL; 4893 kattr->propagation = attr->propagation; 4894 4895 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4896 return -EINVAL; 4897 4898 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4899 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4900 4901 /* 4902 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4903 * users wanting to transition to a different atime setting cannot 4904 * simply specify the atime setting in @attr_set, but must also 4905 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4906 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4907 * @attr_clr and that @attr_set can't have any atime bits set if 4908 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4909 */ 4910 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4911 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4912 return -EINVAL; 4913 4914 /* 4915 * Clear all previous time settings as they are mutually 4916 * exclusive. 4917 */ 4918 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4919 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4920 case MOUNT_ATTR_RELATIME: 4921 kattr->attr_set |= MNT_RELATIME; 4922 break; 4923 case MOUNT_ATTR_NOATIME: 4924 kattr->attr_set |= MNT_NOATIME; 4925 break; 4926 case MOUNT_ATTR_STRICTATIME: 4927 break; 4928 default: 4929 return -EINVAL; 4930 } 4931 } else { 4932 if (attr->attr_set & MOUNT_ATTR__ATIME) 4933 return -EINVAL; 4934 } 4935 4936 return build_mount_idmapped(attr, usize, kattr); 4937 } 4938 4939 static void finish_mount_kattr(struct mount_kattr *kattr) 4940 { 4941 if (kattr->mnt_userns) { 4942 put_user_ns(kattr->mnt_userns); 4943 kattr->mnt_userns = NULL; 4944 } 4945 4946 if (kattr->mnt_idmap) 4947 mnt_idmap_put(kattr->mnt_idmap); 4948 } 4949 4950 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, 4951 struct mount_kattr *kattr) 4952 { 4953 int ret; 4954 struct mount_attr attr; 4955 4956 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4957 4958 if (unlikely(usize > PAGE_SIZE)) 4959 return -E2BIG; 4960 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4961 return -EINVAL; 4962 4963 if (!may_mount()) 4964 return -EPERM; 4965 4966 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4967 if (ret) 4968 return ret; 4969 4970 /* Don't bother walking through the mounts if this is a nop. */ 4971 if (attr.attr_set == 0 && 4972 attr.attr_clr == 0 && 4973 attr.propagation == 0) 4974 return 0; /* Tell caller to not bother. */ 4975 4976 ret = build_mount_kattr(&attr, usize, kattr); 4977 if (ret < 0) 4978 return ret; 4979 4980 return 1; 4981 } 4982 4983 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4984 unsigned int, flags, struct mount_attr __user *, uattr, 4985 size_t, usize) 4986 { 4987 int err; 4988 struct path target; 4989 struct mount_kattr kattr; 4990 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4991 4992 if (flags & ~(AT_EMPTY_PATH | 4993 AT_RECURSIVE | 4994 AT_SYMLINK_NOFOLLOW | 4995 AT_NO_AUTOMOUNT)) 4996 return -EINVAL; 4997 4998 if (flags & AT_NO_AUTOMOUNT) 4999 lookup_flags &= ~LOOKUP_AUTOMOUNT; 5000 if (flags & AT_SYMLINK_NOFOLLOW) 5001 lookup_flags &= ~LOOKUP_FOLLOW; 5002 if (flags & AT_EMPTY_PATH) 5003 lookup_flags |= LOOKUP_EMPTY; 5004 5005 kattr = (struct mount_kattr) { 5006 .lookup_flags = lookup_flags, 5007 }; 5008 5009 if (flags & AT_RECURSIVE) 5010 kattr.kflags |= MOUNT_KATTR_RECURSE; 5011 5012 err = wants_mount_setattr(uattr, usize, &kattr); 5013 if (err <= 0) 5014 return err; 5015 5016 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5017 if (!err) { 5018 err = do_mount_setattr(&target, &kattr); 5019 path_put(&target); 5020 } 5021 finish_mount_kattr(&kattr); 5022 return err; 5023 } 5024 5025 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5026 unsigned, flags, struct mount_attr __user *, uattr, 5027 size_t, usize) 5028 { 5029 struct file __free(fput) *file = NULL; 5030 int fd; 5031 5032 if (!uattr && usize) 5033 return -EINVAL; 5034 5035 file = vfs_open_tree(dfd, filename, flags); 5036 if (IS_ERR(file)) 5037 return PTR_ERR(file); 5038 5039 if (uattr) { 5040 int ret; 5041 struct mount_kattr kattr = {}; 5042 5043 if (flags & OPEN_TREE_CLONE) 5044 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5045 if (flags & AT_RECURSIVE) 5046 kattr.kflags |= MOUNT_KATTR_RECURSE; 5047 5048 ret = wants_mount_setattr(uattr, usize, &kattr); 5049 if (ret > 0) { 5050 ret = do_mount_setattr(&file->f_path, &kattr); 5051 finish_mount_kattr(&kattr); 5052 } 5053 if (ret) 5054 return ret; 5055 } 5056 5057 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5058 if (fd < 0) 5059 return fd; 5060 5061 fd_install(fd, no_free_ptr(file)); 5062 return fd; 5063 } 5064 5065 int show_path(struct seq_file *m, struct dentry *root) 5066 { 5067 if (root->d_sb->s_op->show_path) 5068 return root->d_sb->s_op->show_path(m, root); 5069 5070 seq_dentry(m, root, " \t\n\\"); 5071 return 0; 5072 } 5073 5074 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5075 { 5076 struct mount *mnt = mnt_find_id_at(ns, id); 5077 5078 if (!mnt || mnt->mnt_id_unique != id) 5079 return NULL; 5080 5081 return &mnt->mnt; 5082 } 5083 5084 struct kstatmount { 5085 struct statmount __user *buf; 5086 size_t bufsize; 5087 struct vfsmount *mnt; 5088 struct mnt_idmap *idmap; 5089 u64 mask; 5090 struct path root; 5091 struct seq_file seq; 5092 5093 /* Must be last --ends in a flexible-array member. */ 5094 struct statmount sm; 5095 }; 5096 5097 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5098 { 5099 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5100 u64 attr_flags = 0; 5101 5102 if (mnt_flags & MNT_READONLY) 5103 attr_flags |= MOUNT_ATTR_RDONLY; 5104 if (mnt_flags & MNT_NOSUID) 5105 attr_flags |= MOUNT_ATTR_NOSUID; 5106 if (mnt_flags & MNT_NODEV) 5107 attr_flags |= MOUNT_ATTR_NODEV; 5108 if (mnt_flags & MNT_NOEXEC) 5109 attr_flags |= MOUNT_ATTR_NOEXEC; 5110 if (mnt_flags & MNT_NODIRATIME) 5111 attr_flags |= MOUNT_ATTR_NODIRATIME; 5112 if (mnt_flags & MNT_NOSYMFOLLOW) 5113 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5114 5115 if (mnt_flags & MNT_NOATIME) 5116 attr_flags |= MOUNT_ATTR_NOATIME; 5117 else if (mnt_flags & MNT_RELATIME) 5118 attr_flags |= MOUNT_ATTR_RELATIME; 5119 else 5120 attr_flags |= MOUNT_ATTR_STRICTATIME; 5121 5122 if (is_idmapped_mnt(mnt)) 5123 attr_flags |= MOUNT_ATTR_IDMAP; 5124 5125 return attr_flags; 5126 } 5127 5128 static u64 mnt_to_propagation_flags(struct mount *m) 5129 { 5130 u64 propagation = 0; 5131 5132 if (IS_MNT_SHARED(m)) 5133 propagation |= MS_SHARED; 5134 if (IS_MNT_SLAVE(m)) 5135 propagation |= MS_SLAVE; 5136 if (IS_MNT_UNBINDABLE(m)) 5137 propagation |= MS_UNBINDABLE; 5138 if (!propagation) 5139 propagation |= MS_PRIVATE; 5140 5141 return propagation; 5142 } 5143 5144 static void statmount_sb_basic(struct kstatmount *s) 5145 { 5146 struct super_block *sb = s->mnt->mnt_sb; 5147 5148 s->sm.mask |= STATMOUNT_SB_BASIC; 5149 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5150 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5151 s->sm.sb_magic = sb->s_magic; 5152 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5153 } 5154 5155 static void statmount_mnt_basic(struct kstatmount *s) 5156 { 5157 struct mount *m = real_mount(s->mnt); 5158 5159 s->sm.mask |= STATMOUNT_MNT_BASIC; 5160 s->sm.mnt_id = m->mnt_id_unique; 5161 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5162 s->sm.mnt_id_old = m->mnt_id; 5163 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5164 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5165 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5166 s->sm.mnt_peer_group = m->mnt_group_id; 5167 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5168 } 5169 5170 static void statmount_propagate_from(struct kstatmount *s) 5171 { 5172 struct mount *m = real_mount(s->mnt); 5173 5174 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5175 if (IS_MNT_SLAVE(m)) 5176 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5177 } 5178 5179 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5180 { 5181 int ret; 5182 size_t start = seq->count; 5183 5184 ret = show_path(seq, s->mnt->mnt_root); 5185 if (ret) 5186 return ret; 5187 5188 if (unlikely(seq_has_overflowed(seq))) 5189 return -EAGAIN; 5190 5191 /* 5192 * Unescape the result. It would be better if supplied string was not 5193 * escaped in the first place, but that's a pretty invasive change. 5194 */ 5195 seq->buf[seq->count] = '\0'; 5196 seq->count = start; 5197 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5198 return 0; 5199 } 5200 5201 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5202 { 5203 struct vfsmount *mnt = s->mnt; 5204 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5205 int err; 5206 5207 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5208 return err == SEQ_SKIP ? 0 : err; 5209 } 5210 5211 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5212 { 5213 struct super_block *sb = s->mnt->mnt_sb; 5214 5215 seq_puts(seq, sb->s_type->name); 5216 return 0; 5217 } 5218 5219 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5220 { 5221 struct super_block *sb = s->mnt->mnt_sb; 5222 5223 if (sb->s_subtype) 5224 seq_puts(seq, sb->s_subtype); 5225 } 5226 5227 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5228 { 5229 struct super_block *sb = s->mnt->mnt_sb; 5230 struct mount *r = real_mount(s->mnt); 5231 5232 if (sb->s_op->show_devname) { 5233 size_t start = seq->count; 5234 int ret; 5235 5236 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5237 if (ret) 5238 return ret; 5239 5240 if (unlikely(seq_has_overflowed(seq))) 5241 return -EAGAIN; 5242 5243 /* Unescape the result */ 5244 seq->buf[seq->count] = '\0'; 5245 seq->count = start; 5246 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5247 } else { 5248 seq_puts(seq, r->mnt_devname); 5249 } 5250 return 0; 5251 } 5252 5253 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5254 { 5255 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5256 s->sm.mnt_ns_id = ns->ns.ns_id; 5257 } 5258 5259 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5260 { 5261 struct vfsmount *mnt = s->mnt; 5262 struct super_block *sb = mnt->mnt_sb; 5263 size_t start = seq->count; 5264 int err; 5265 5266 err = security_sb_show_options(seq, sb); 5267 if (err) 5268 return err; 5269 5270 if (sb->s_op->show_options) { 5271 err = sb->s_op->show_options(seq, mnt->mnt_root); 5272 if (err) 5273 return err; 5274 } 5275 5276 if (unlikely(seq_has_overflowed(seq))) 5277 return -EAGAIN; 5278 5279 if (seq->count == start) 5280 return 0; 5281 5282 /* skip leading comma */ 5283 memmove(seq->buf + start, seq->buf + start + 1, 5284 seq->count - start - 1); 5285 seq->count--; 5286 5287 return 0; 5288 } 5289 5290 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5291 { 5292 char *buf_end, *opt_end, *src, *dst; 5293 int count = 0; 5294 5295 if (unlikely(seq_has_overflowed(seq))) 5296 return -EAGAIN; 5297 5298 buf_end = seq->buf + seq->count; 5299 dst = seq->buf + start; 5300 src = dst + 1; /* skip initial comma */ 5301 5302 if (src >= buf_end) { 5303 seq->count = start; 5304 return 0; 5305 } 5306 5307 *buf_end = '\0'; 5308 for (; src < buf_end; src = opt_end + 1) { 5309 opt_end = strchrnul(src, ','); 5310 *opt_end = '\0'; 5311 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5312 if (WARN_ON_ONCE(++count == INT_MAX)) 5313 return -EOVERFLOW; 5314 } 5315 seq->count = dst - 1 - seq->buf; 5316 return count; 5317 } 5318 5319 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5320 { 5321 struct vfsmount *mnt = s->mnt; 5322 struct super_block *sb = mnt->mnt_sb; 5323 size_t start = seq->count; 5324 int err; 5325 5326 if (!sb->s_op->show_options) 5327 return 0; 5328 5329 err = sb->s_op->show_options(seq, mnt->mnt_root); 5330 if (err) 5331 return err; 5332 5333 err = statmount_opt_process(seq, start); 5334 if (err < 0) 5335 return err; 5336 5337 s->sm.opt_num = err; 5338 return 0; 5339 } 5340 5341 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5342 { 5343 struct vfsmount *mnt = s->mnt; 5344 struct super_block *sb = mnt->mnt_sb; 5345 size_t start = seq->count; 5346 int err; 5347 5348 err = security_sb_show_options(seq, sb); 5349 if (err) 5350 return err; 5351 5352 err = statmount_opt_process(seq, start); 5353 if (err < 0) 5354 return err; 5355 5356 s->sm.opt_sec_num = err; 5357 return 0; 5358 } 5359 5360 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5361 { 5362 int ret; 5363 5364 ret = statmount_mnt_idmap(s->idmap, seq, true); 5365 if (ret < 0) 5366 return ret; 5367 5368 s->sm.mnt_uidmap_num = ret; 5369 /* 5370 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5371 * mappings. This allows userspace to distinguish between a 5372 * non-idmapped mount and an idmapped mount where none of the 5373 * individual mappings are valid in the caller's idmapping. 5374 */ 5375 if (is_valid_mnt_idmap(s->idmap)) 5376 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5377 return 0; 5378 } 5379 5380 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5381 { 5382 int ret; 5383 5384 ret = statmount_mnt_idmap(s->idmap, seq, false); 5385 if (ret < 0) 5386 return ret; 5387 5388 s->sm.mnt_gidmap_num = ret; 5389 /* 5390 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5391 * mappings. This allows userspace to distinguish between a 5392 * non-idmapped mount and an idmapped mount where none of the 5393 * individual mappings are valid in the caller's idmapping. 5394 */ 5395 if (is_valid_mnt_idmap(s->idmap)) 5396 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5397 return 0; 5398 } 5399 5400 static int statmount_string(struct kstatmount *s, u64 flag) 5401 { 5402 int ret = 0; 5403 size_t kbufsize; 5404 struct seq_file *seq = &s->seq; 5405 struct statmount *sm = &s->sm; 5406 u32 start, *offp; 5407 5408 /* Reserve an empty string at the beginning for any unset offsets */ 5409 if (!seq->count) 5410 seq_putc(seq, 0); 5411 5412 start = seq->count; 5413 5414 switch (flag) { 5415 case STATMOUNT_FS_TYPE: 5416 offp = &sm->fs_type; 5417 ret = statmount_fs_type(s, seq); 5418 break; 5419 case STATMOUNT_MNT_ROOT: 5420 offp = &sm->mnt_root; 5421 ret = statmount_mnt_root(s, seq); 5422 break; 5423 case STATMOUNT_MNT_POINT: 5424 offp = &sm->mnt_point; 5425 ret = statmount_mnt_point(s, seq); 5426 break; 5427 case STATMOUNT_MNT_OPTS: 5428 offp = &sm->mnt_opts; 5429 ret = statmount_mnt_opts(s, seq); 5430 break; 5431 case STATMOUNT_OPT_ARRAY: 5432 offp = &sm->opt_array; 5433 ret = statmount_opt_array(s, seq); 5434 break; 5435 case STATMOUNT_OPT_SEC_ARRAY: 5436 offp = &sm->opt_sec_array; 5437 ret = statmount_opt_sec_array(s, seq); 5438 break; 5439 case STATMOUNT_FS_SUBTYPE: 5440 offp = &sm->fs_subtype; 5441 statmount_fs_subtype(s, seq); 5442 break; 5443 case STATMOUNT_SB_SOURCE: 5444 offp = &sm->sb_source; 5445 ret = statmount_sb_source(s, seq); 5446 break; 5447 case STATMOUNT_MNT_UIDMAP: 5448 offp = &sm->mnt_uidmap; 5449 ret = statmount_mnt_uidmap(s, seq); 5450 break; 5451 case STATMOUNT_MNT_GIDMAP: 5452 offp = &sm->mnt_gidmap; 5453 ret = statmount_mnt_gidmap(s, seq); 5454 break; 5455 default: 5456 WARN_ON_ONCE(true); 5457 return -EINVAL; 5458 } 5459 5460 /* 5461 * If nothing was emitted, return to avoid setting the flag 5462 * and terminating the buffer. 5463 */ 5464 if (seq->count == start) 5465 return ret; 5466 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5467 return -EOVERFLOW; 5468 if (kbufsize >= s->bufsize) 5469 return -EOVERFLOW; 5470 5471 /* signal a retry */ 5472 if (unlikely(seq_has_overflowed(seq))) 5473 return -EAGAIN; 5474 5475 if (ret) 5476 return ret; 5477 5478 seq->buf[seq->count++] = '\0'; 5479 sm->mask |= flag; 5480 *offp = start; 5481 return 0; 5482 } 5483 5484 static int copy_statmount_to_user(struct kstatmount *s) 5485 { 5486 struct statmount *sm = &s->sm; 5487 struct seq_file *seq = &s->seq; 5488 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5489 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5490 5491 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5492 return -EFAULT; 5493 5494 /* Return the number of bytes copied to the buffer */ 5495 sm->size = copysize + seq->count; 5496 if (copy_to_user(s->buf, sm, copysize)) 5497 return -EFAULT; 5498 5499 return 0; 5500 } 5501 5502 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5503 { 5504 struct rb_node *node; 5505 5506 if (reverse) 5507 node = rb_prev(&curr->mnt_node); 5508 else 5509 node = rb_next(&curr->mnt_node); 5510 5511 return node_to_mount(node); 5512 } 5513 5514 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5515 { 5516 struct mount *first, *child; 5517 5518 rwsem_assert_held(&namespace_sem); 5519 5520 /* We're looking at our own ns, just use get_fs_root. */ 5521 if (ns == current->nsproxy->mnt_ns) { 5522 get_fs_root(current->fs, root); 5523 return 0; 5524 } 5525 5526 /* 5527 * We have to find the first mount in our ns and use that, however it 5528 * may not exist, so handle that properly. 5529 */ 5530 if (mnt_ns_empty(ns)) 5531 return -ENOENT; 5532 5533 first = child = ns->root; 5534 for (;;) { 5535 child = listmnt_next(child, false); 5536 if (!child) 5537 return -ENOENT; 5538 if (child->mnt_parent == first) 5539 break; 5540 } 5541 5542 root->mnt = mntget(&child->mnt); 5543 root->dentry = dget(root->mnt->mnt_root); 5544 return 0; 5545 } 5546 5547 /* This must be updated whenever a new flag is added */ 5548 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5549 STATMOUNT_MNT_BASIC | \ 5550 STATMOUNT_PROPAGATE_FROM | \ 5551 STATMOUNT_MNT_ROOT | \ 5552 STATMOUNT_MNT_POINT | \ 5553 STATMOUNT_FS_TYPE | \ 5554 STATMOUNT_MNT_NS_ID | \ 5555 STATMOUNT_MNT_OPTS | \ 5556 STATMOUNT_FS_SUBTYPE | \ 5557 STATMOUNT_SB_SOURCE | \ 5558 STATMOUNT_OPT_ARRAY | \ 5559 STATMOUNT_OPT_SEC_ARRAY | \ 5560 STATMOUNT_SUPPORTED_MASK | \ 5561 STATMOUNT_MNT_UIDMAP | \ 5562 STATMOUNT_MNT_GIDMAP) 5563 5564 /* locks: namespace_shared */ 5565 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5566 struct mnt_namespace *ns) 5567 { 5568 struct mount *m; 5569 int err; 5570 5571 /* Has the namespace already been emptied? */ 5572 if (mnt_ns_id && mnt_ns_empty(ns)) 5573 return -ENOENT; 5574 5575 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5576 if (!s->mnt) 5577 return -ENOENT; 5578 5579 err = grab_requested_root(ns, &s->root); 5580 if (err) 5581 return err; 5582 5583 /* 5584 * Don't trigger audit denials. We just want to determine what 5585 * mounts to show users. 5586 */ 5587 m = real_mount(s->mnt); 5588 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) && 5589 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5590 return -EPERM; 5591 5592 err = security_sb_statfs(s->mnt->mnt_root); 5593 if (err) 5594 return err; 5595 5596 /* 5597 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap 5598 * can change concurrently as we only hold the read-side of the 5599 * namespace semaphore and mount properties may change with only 5600 * the mount lock held. 5601 * 5602 * We could sample the mount lock sequence counter to detect 5603 * those changes and retry. But it's not worth it. Worst that 5604 * happens is that the mnt->mnt_idmap pointer is already changed 5605 * while mnt->mnt_flags isn't or vica versa. So what. 5606 * 5607 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved 5608 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical 5609 * torn read/write. That's all we care about right now. 5610 */ 5611 s->idmap = mnt_idmap(s->mnt); 5612 if (s->mask & STATMOUNT_MNT_BASIC) 5613 statmount_mnt_basic(s); 5614 5615 if (s->mask & STATMOUNT_SB_BASIC) 5616 statmount_sb_basic(s); 5617 5618 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5619 statmount_propagate_from(s); 5620 5621 if (s->mask & STATMOUNT_FS_TYPE) 5622 err = statmount_string(s, STATMOUNT_FS_TYPE); 5623 5624 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5625 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5626 5627 if (!err && s->mask & STATMOUNT_MNT_POINT) 5628 err = statmount_string(s, STATMOUNT_MNT_POINT); 5629 5630 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5631 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5632 5633 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5634 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5635 5636 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5637 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5638 5639 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5640 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5641 5642 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5643 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5644 5645 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5646 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5647 5648 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5649 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5650 5651 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5652 statmount_mnt_ns_id(s, ns); 5653 5654 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5655 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5656 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5657 } 5658 5659 if (err) 5660 return err; 5661 5662 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5663 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5664 5665 return 0; 5666 } 5667 5668 static inline bool retry_statmount(const long ret, size_t *seq_size) 5669 { 5670 if (likely(ret != -EAGAIN)) 5671 return false; 5672 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5673 return false; 5674 if (unlikely(*seq_size > MAX_RW_COUNT)) 5675 return false; 5676 return true; 5677 } 5678 5679 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5680 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5681 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5682 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5683 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5684 5685 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5686 struct statmount __user *buf, size_t bufsize, 5687 size_t seq_size) 5688 { 5689 if (!access_ok(buf, bufsize)) 5690 return -EFAULT; 5691 5692 memset(ks, 0, sizeof(*ks)); 5693 ks->mask = kreq->param; 5694 ks->buf = buf; 5695 ks->bufsize = bufsize; 5696 5697 if (ks->mask & STATMOUNT_STRING_REQ) { 5698 if (bufsize == sizeof(ks->sm)) 5699 return -EOVERFLOW; 5700 5701 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5702 if (!ks->seq.buf) 5703 return -ENOMEM; 5704 5705 ks->seq.size = seq_size; 5706 } 5707 5708 return 0; 5709 } 5710 5711 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5712 struct mnt_id_req *kreq) 5713 { 5714 int ret; 5715 size_t usize; 5716 5717 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5718 5719 ret = get_user(usize, &req->size); 5720 if (ret) 5721 return -EFAULT; 5722 if (unlikely(usize > PAGE_SIZE)) 5723 return -E2BIG; 5724 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5725 return -EINVAL; 5726 memset(kreq, 0, sizeof(*kreq)); 5727 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5728 if (ret) 5729 return ret; 5730 if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id) 5731 return -EINVAL; 5732 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5733 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5734 return -EINVAL; 5735 return 0; 5736 } 5737 5738 /* 5739 * If the user requested a specific mount namespace id, look that up and return 5740 * that, or if not simply grab a passive reference on our mount namespace and 5741 * return that. 5742 */ 5743 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5744 { 5745 struct mnt_namespace *mnt_ns; 5746 5747 if (kreq->mnt_ns_id) { 5748 mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id); 5749 } else if (kreq->mnt_ns_fd) { 5750 struct ns_common *ns; 5751 5752 CLASS(fd, f)(kreq->mnt_ns_fd); 5753 if (fd_empty(f)) 5754 return ERR_PTR(-EBADF); 5755 5756 if (!proc_ns_file(fd_file(f))) 5757 return ERR_PTR(-EINVAL); 5758 5759 ns = get_proc_ns(file_inode(fd_file(f))); 5760 if (ns->ns_type != CLONE_NEWNS) 5761 return ERR_PTR(-EINVAL); 5762 5763 mnt_ns = to_mnt_ns(ns); 5764 } else { 5765 mnt_ns = current->nsproxy->mnt_ns; 5766 } 5767 if (!mnt_ns) 5768 return ERR_PTR(-ENOENT); 5769 5770 refcount_inc(&mnt_ns->passive); 5771 return mnt_ns; 5772 } 5773 5774 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5775 struct statmount __user *, buf, size_t, bufsize, 5776 unsigned int, flags) 5777 { 5778 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5779 struct kstatmount *ks __free(kfree) = NULL; 5780 struct mnt_id_req kreq; 5781 /* We currently support retrieval of 3 strings. */ 5782 size_t seq_size = 3 * PATH_MAX; 5783 int ret; 5784 5785 if (flags) 5786 return -EINVAL; 5787 5788 ret = copy_mnt_id_req(req, &kreq); 5789 if (ret) 5790 return ret; 5791 5792 ns = grab_requested_mnt_ns(&kreq); 5793 if (IS_ERR(ns)) 5794 return PTR_ERR(ns); 5795 5796 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5797 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5798 return -ENOENT; 5799 5800 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 5801 if (!ks) 5802 return -ENOMEM; 5803 5804 retry: 5805 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 5806 if (ret) 5807 return ret; 5808 5809 scoped_guard(namespace_shared) 5810 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 5811 5812 if (!ret) 5813 ret = copy_statmount_to_user(ks); 5814 kvfree(ks->seq.buf); 5815 path_put(&ks->root); 5816 if (retry_statmount(ret, &seq_size)) 5817 goto retry; 5818 return ret; 5819 } 5820 5821 struct klistmount { 5822 u64 last_mnt_id; 5823 u64 mnt_parent_id; 5824 u64 *kmnt_ids; 5825 u32 nr_mnt_ids; 5826 struct mnt_namespace *ns; 5827 struct path root; 5828 }; 5829 5830 /* locks: namespace_shared */ 5831 static ssize_t do_listmount(struct klistmount *kls, bool reverse) 5832 { 5833 struct mnt_namespace *ns = kls->ns; 5834 u64 mnt_parent_id = kls->mnt_parent_id; 5835 u64 last_mnt_id = kls->last_mnt_id; 5836 u64 *mnt_ids = kls->kmnt_ids; 5837 size_t nr_mnt_ids = kls->nr_mnt_ids; 5838 struct path orig; 5839 struct mount *r, *first; 5840 ssize_t ret; 5841 5842 rwsem_assert_held(&namespace_sem); 5843 5844 ret = grab_requested_root(ns, &kls->root); 5845 if (ret) 5846 return ret; 5847 5848 if (mnt_parent_id == LSMT_ROOT) { 5849 orig = kls->root; 5850 } else { 5851 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5852 if (!orig.mnt) 5853 return -ENOENT; 5854 orig.dentry = orig.mnt->mnt_root; 5855 } 5856 5857 /* 5858 * Don't trigger audit denials. We just want to determine what 5859 * mounts to show users. 5860 */ 5861 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) && 5862 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5863 return -EPERM; 5864 5865 ret = security_sb_statfs(orig.dentry); 5866 if (ret) 5867 return ret; 5868 5869 if (!last_mnt_id) { 5870 if (reverse) 5871 first = node_to_mount(ns->mnt_last_node); 5872 else 5873 first = node_to_mount(ns->mnt_first_node); 5874 } else { 5875 if (reverse) 5876 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 5877 else 5878 first = mnt_find_id_at(ns, last_mnt_id + 1); 5879 } 5880 5881 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 5882 if (r->mnt_id_unique == mnt_parent_id) 5883 continue; 5884 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 5885 continue; 5886 *mnt_ids = r->mnt_id_unique; 5887 mnt_ids++; 5888 nr_mnt_ids--; 5889 ret++; 5890 } 5891 return ret; 5892 } 5893 5894 static void __free_klistmount_free(const struct klistmount *kls) 5895 { 5896 path_put(&kls->root); 5897 kvfree(kls->kmnt_ids); 5898 mnt_ns_release(kls->ns); 5899 } 5900 5901 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq, 5902 size_t nr_mnt_ids) 5903 { 5904 u64 last_mnt_id = kreq->param; 5905 struct mnt_namespace *ns; 5906 5907 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5908 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 5909 return -EINVAL; 5910 5911 kls->last_mnt_id = last_mnt_id; 5912 5913 kls->nr_mnt_ids = nr_mnt_ids; 5914 kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids), 5915 GFP_KERNEL_ACCOUNT); 5916 if (!kls->kmnt_ids) 5917 return -ENOMEM; 5918 5919 ns = grab_requested_mnt_ns(kreq); 5920 if (IS_ERR(ns)) 5921 return PTR_ERR(ns); 5922 kls->ns = ns; 5923 5924 kls->mnt_parent_id = kreq->mnt_id; 5925 return 0; 5926 } 5927 5928 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 5929 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 5930 { 5931 struct klistmount kls __free(klistmount_free) = {}; 5932 const size_t maxcount = 1000000; 5933 struct mnt_id_req kreq; 5934 ssize_t ret; 5935 5936 if (flags & ~LISTMOUNT_REVERSE) 5937 return -EINVAL; 5938 5939 /* 5940 * If the mount namespace really has more than 1 million mounts the 5941 * caller must iterate over the mount namespace (and reconsider their 5942 * system design...). 5943 */ 5944 if (unlikely(nr_mnt_ids > maxcount)) 5945 return -EOVERFLOW; 5946 5947 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 5948 return -EFAULT; 5949 5950 ret = copy_mnt_id_req(req, &kreq); 5951 if (ret) 5952 return ret; 5953 5954 ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids); 5955 if (ret) 5956 return ret; 5957 5958 if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) && 5959 !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN)) 5960 return -ENOENT; 5961 5962 /* 5963 * We only need to guard against mount topology changes as 5964 * listmount() doesn't care about any mount properties. 5965 */ 5966 scoped_guard(namespace_shared) 5967 ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE)); 5968 if (ret <= 0) 5969 return ret; 5970 5971 if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids))) 5972 return -EFAULT; 5973 5974 return ret; 5975 } 5976 5977 struct mnt_namespace init_mnt_ns = { 5978 .ns.inum = ns_init_inum(&init_mnt_ns), 5979 .ns.ops = &mntns_operations, 5980 .user_ns = &init_user_ns, 5981 .ns.__ns_ref = REFCOUNT_INIT(1), 5982 .ns.ns_type = ns_common_type(&init_mnt_ns), 5983 .passive = REFCOUNT_INIT(1), 5984 .mounts = RB_ROOT, 5985 .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll), 5986 }; 5987 5988 static void __init init_mount_tree(void) 5989 { 5990 struct vfsmount *mnt; 5991 struct mount *m; 5992 struct path root; 5993 5994 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options); 5995 if (IS_ERR(mnt)) 5996 panic("Can't create rootfs"); 5997 5998 m = real_mount(mnt); 5999 init_mnt_ns.root = m; 6000 init_mnt_ns.nr_mounts = 1; 6001 mnt_add_to_ns(&init_mnt_ns, m); 6002 init_task.nsproxy->mnt_ns = &init_mnt_ns; 6003 get_mnt_ns(&init_mnt_ns); 6004 6005 root.mnt = mnt; 6006 root.dentry = mnt->mnt_root; 6007 6008 set_fs_pwd(current->fs, &root); 6009 set_fs_root(current->fs, &root); 6010 6011 ns_tree_add(&init_mnt_ns); 6012 } 6013 6014 void __init mnt_init(void) 6015 { 6016 int err; 6017 6018 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 6019 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 6020 6021 mount_hashtable = alloc_large_system_hash("Mount-cache", 6022 sizeof(struct hlist_head), 6023 mhash_entries, 19, 6024 HASH_ZERO, 6025 &m_hash_shift, &m_hash_mask, 0, 0); 6026 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 6027 sizeof(struct hlist_head), 6028 mphash_entries, 19, 6029 HASH_ZERO, 6030 &mp_hash_shift, &mp_hash_mask, 0, 0); 6031 6032 if (!mount_hashtable || !mountpoint_hashtable) 6033 panic("Failed to allocate mount hash table\n"); 6034 6035 kernfs_init(); 6036 6037 err = sysfs_init(); 6038 if (err) 6039 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 6040 __func__, err); 6041 fs_kobj = kobject_create_and_add("fs", NULL); 6042 if (!fs_kobj) 6043 printk(KERN_WARNING "%s: kobj create error\n", __func__); 6044 shmem_init(); 6045 init_rootfs(); 6046 init_mount_tree(); 6047 } 6048 6049 void put_mnt_ns(struct mnt_namespace *ns) 6050 { 6051 if (!ns_ref_put(ns)) 6052 return; 6053 guard(namespace_excl)(); 6054 emptied_ns = ns; 6055 guard(mount_writer)(); 6056 umount_tree(ns->root, 0); 6057 } 6058 6059 struct vfsmount *kern_mount(struct file_system_type *type) 6060 { 6061 struct vfsmount *mnt; 6062 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 6063 if (!IS_ERR(mnt)) { 6064 /* 6065 * it is a longterm mount, don't release mnt until 6066 * we unmount before file sys is unregistered 6067 */ 6068 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 6069 } 6070 return mnt; 6071 } 6072 EXPORT_SYMBOL_GPL(kern_mount); 6073 6074 void kern_unmount(struct vfsmount *mnt) 6075 { 6076 /* release long term mount so mount point can be released */ 6077 if (!IS_ERR(mnt)) { 6078 mnt_make_shortterm(mnt); 6079 synchronize_rcu(); /* yecchhh... */ 6080 mntput(mnt); 6081 } 6082 } 6083 EXPORT_SYMBOL(kern_unmount); 6084 6085 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6086 { 6087 unsigned int i; 6088 6089 for (i = 0; i < num; i++) 6090 mnt_make_shortterm(mnt[i]); 6091 synchronize_rcu_expedited(); 6092 for (i = 0; i < num; i++) 6093 mntput(mnt[i]); 6094 } 6095 EXPORT_SYMBOL(kern_unmount_array); 6096 6097 bool our_mnt(struct vfsmount *mnt) 6098 { 6099 return check_mnt(real_mount(mnt)); 6100 } 6101 6102 bool current_chrooted(void) 6103 { 6104 /* Does the current process have a non-standard root */ 6105 struct path fs_root __free(path_put) = {}; 6106 struct mount *root; 6107 6108 get_fs_root(current->fs, &fs_root); 6109 6110 /* Find the namespace root */ 6111 6112 guard(mount_locked_reader)(); 6113 6114 root = topmost_overmount(current->nsproxy->mnt_ns->root); 6115 6116 return fs_root.mnt != &root->mnt || !path_mounted(&fs_root); 6117 } 6118 6119 static bool mnt_already_visible(struct mnt_namespace *ns, 6120 const struct super_block *sb, 6121 int *new_mnt_flags) 6122 { 6123 int new_flags = *new_mnt_flags; 6124 struct mount *mnt, *n; 6125 6126 guard(namespace_shared)(); 6127 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6128 struct mount *child; 6129 int mnt_flags; 6130 6131 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6132 continue; 6133 6134 /* This mount is not fully visible if it's root directory 6135 * is not the root directory of the filesystem. 6136 */ 6137 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6138 continue; 6139 6140 /* A local view of the mount flags */ 6141 mnt_flags = mnt->mnt.mnt_flags; 6142 6143 /* Don't miss readonly hidden in the superblock flags */ 6144 if (sb_rdonly(mnt->mnt.mnt_sb)) 6145 mnt_flags |= MNT_LOCK_READONLY; 6146 6147 /* Verify the mount flags are equal to or more permissive 6148 * than the proposed new mount. 6149 */ 6150 if ((mnt_flags & MNT_LOCK_READONLY) && 6151 !(new_flags & MNT_READONLY)) 6152 continue; 6153 if ((mnt_flags & MNT_LOCK_ATIME) && 6154 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6155 continue; 6156 6157 /* This mount is not fully visible if there are any 6158 * locked child mounts that cover anything except for 6159 * empty directories. 6160 */ 6161 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6162 struct inode *inode = child->mnt_mountpoint->d_inode; 6163 /* Only worry about locked mounts */ 6164 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6165 continue; 6166 /* Is the directory permanently empty? */ 6167 if (!is_empty_dir_inode(inode)) 6168 goto next; 6169 } 6170 /* Preserve the locked attributes */ 6171 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6172 MNT_LOCK_ATIME); 6173 return true; 6174 next: ; 6175 } 6176 return false; 6177 } 6178 6179 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6180 { 6181 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6182 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6183 unsigned long s_iflags; 6184 6185 if (ns->user_ns == &init_user_ns) 6186 return false; 6187 6188 /* Can this filesystem be too revealing? */ 6189 s_iflags = sb->s_iflags; 6190 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6191 return false; 6192 6193 if ((s_iflags & required_iflags) != required_iflags) { 6194 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6195 required_iflags); 6196 return true; 6197 } 6198 6199 return !mnt_already_visible(ns, sb, new_mnt_flags); 6200 } 6201 6202 bool mnt_may_suid(struct vfsmount *mnt) 6203 { 6204 /* 6205 * Foreign mounts (accessed via fchdir or through /proc 6206 * symlinks) are always treated as if they are nosuid. This 6207 * prevents namespaces from trusting potentially unsafe 6208 * suid/sgid bits, file caps, or security labels that originate 6209 * in other namespaces. 6210 */ 6211 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6212 current_in_userns(mnt->mnt_sb->s_user_ns); 6213 } 6214 6215 static struct ns_common *mntns_get(struct task_struct *task) 6216 { 6217 struct ns_common *ns = NULL; 6218 struct nsproxy *nsproxy; 6219 6220 task_lock(task); 6221 nsproxy = task->nsproxy; 6222 if (nsproxy) { 6223 ns = &nsproxy->mnt_ns->ns; 6224 get_mnt_ns(to_mnt_ns(ns)); 6225 } 6226 task_unlock(task); 6227 6228 return ns; 6229 } 6230 6231 static void mntns_put(struct ns_common *ns) 6232 { 6233 put_mnt_ns(to_mnt_ns(ns)); 6234 } 6235 6236 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6237 { 6238 struct nsproxy *nsproxy = nsset->nsproxy; 6239 struct fs_struct *fs = nsset->fs; 6240 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6241 struct user_namespace *user_ns = nsset->cred->user_ns; 6242 struct path root; 6243 int err; 6244 6245 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6246 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6247 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6248 return -EPERM; 6249 6250 if (is_anon_ns(mnt_ns)) 6251 return -EINVAL; 6252 6253 if (fs->users != 1) 6254 return -EINVAL; 6255 6256 get_mnt_ns(mnt_ns); 6257 old_mnt_ns = nsproxy->mnt_ns; 6258 nsproxy->mnt_ns = mnt_ns; 6259 6260 /* Find the root */ 6261 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6262 "/", LOOKUP_DOWN, &root); 6263 if (err) { 6264 /* revert to old namespace */ 6265 nsproxy->mnt_ns = old_mnt_ns; 6266 put_mnt_ns(mnt_ns); 6267 return err; 6268 } 6269 6270 put_mnt_ns(old_mnt_ns); 6271 6272 /* Update the pwd and root */ 6273 set_fs_pwd(fs, &root); 6274 set_fs_root(fs, &root); 6275 6276 path_put(&root); 6277 return 0; 6278 } 6279 6280 static struct user_namespace *mntns_owner(struct ns_common *ns) 6281 { 6282 return to_mnt_ns(ns)->user_ns; 6283 } 6284 6285 const struct proc_ns_operations mntns_operations = { 6286 .name = "mnt", 6287 .get = mntns_get, 6288 .put = mntns_put, 6289 .install = mntns_install, 6290 .owner = mntns_owner, 6291 }; 6292 6293 #ifdef CONFIG_SYSCTL 6294 static const struct ctl_table fs_namespace_sysctls[] = { 6295 { 6296 .procname = "mount-max", 6297 .data = &sysctl_mount_max, 6298 .maxlen = sizeof(unsigned int), 6299 .mode = 0644, 6300 .proc_handler = proc_dointvec_minmax, 6301 .extra1 = SYSCTL_ONE, 6302 }, 6303 }; 6304 6305 static int __init init_fs_namespace_sysctls(void) 6306 { 6307 register_sysctl_init("fs", fs_namespace_sysctls); 6308 return 0; 6309 } 6310 fs_initcall(init_fs_namespace_sysctls); 6311 6312 #endif /* CONFIG_SYSCTL */ 6313