xref: /linux/fs/namespace.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include "pnode.h"
35 #include "internal.h"
36 
37 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38 #define HASH_SIZE (1UL << HASH_SHIFT)
39 
40 /* spinlock for vfsmount related operations, inplace of dcache_lock */
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 
43 static int event;
44 static DEFINE_IDA(mnt_id_ida);
45 static DEFINE_IDA(mnt_group_ida);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48 
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52 
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56 
57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 {
59 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
61 	tmp = tmp + (tmp >> HASH_SHIFT);
62 	return tmp & (HASH_SIZE - 1);
63 }
64 
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 
67 /* allocation is serialized by namespace_sem */
68 static int mnt_alloc_id(struct vfsmount *mnt)
69 {
70 	int res;
71 
72 retry:
73 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 	spin_lock(&vfsmount_lock);
75 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 	if (!res)
77 		mnt_id_start = mnt->mnt_id + 1;
78 	spin_unlock(&vfsmount_lock);
79 	if (res == -EAGAIN)
80 		goto retry;
81 
82 	return res;
83 }
84 
85 static void mnt_free_id(struct vfsmount *mnt)
86 {
87 	int id = mnt->mnt_id;
88 	spin_lock(&vfsmount_lock);
89 	ida_remove(&mnt_id_ida, id);
90 	if (mnt_id_start > id)
91 		mnt_id_start = id;
92 	spin_unlock(&vfsmount_lock);
93 }
94 
95 /*
96  * Allocate a new peer group ID
97  *
98  * mnt_group_ida is protected by namespace_sem
99  */
100 static int mnt_alloc_group_id(struct vfsmount *mnt)
101 {
102 	int res;
103 
104 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 		return -ENOMEM;
106 
107 	res = ida_get_new_above(&mnt_group_ida,
108 				mnt_group_start,
109 				&mnt->mnt_group_id);
110 	if (!res)
111 		mnt_group_start = mnt->mnt_group_id + 1;
112 
113 	return res;
114 }
115 
116 /*
117  * Release a peer group ID
118  */
119 void mnt_release_group_id(struct vfsmount *mnt)
120 {
121 	int id = mnt->mnt_group_id;
122 	ida_remove(&mnt_group_ida, id);
123 	if (mnt_group_start > id)
124 		mnt_group_start = id;
125 	mnt->mnt_group_id = 0;
126 }
127 
128 struct vfsmount *alloc_vfsmnt(const char *name)
129 {
130 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
131 	if (mnt) {
132 		int err;
133 
134 		err = mnt_alloc_id(mnt);
135 		if (err)
136 			goto out_free_cache;
137 
138 		if (name) {
139 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
140 			if (!mnt->mnt_devname)
141 				goto out_free_id;
142 		}
143 
144 		atomic_set(&mnt->mnt_count, 1);
145 		INIT_LIST_HEAD(&mnt->mnt_hash);
146 		INIT_LIST_HEAD(&mnt->mnt_child);
147 		INIT_LIST_HEAD(&mnt->mnt_mounts);
148 		INIT_LIST_HEAD(&mnt->mnt_list);
149 		INIT_LIST_HEAD(&mnt->mnt_expire);
150 		INIT_LIST_HEAD(&mnt->mnt_share);
151 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
152 		INIT_LIST_HEAD(&mnt->mnt_slave);
153 #ifdef CONFIG_SMP
154 		mnt->mnt_writers = alloc_percpu(int);
155 		if (!mnt->mnt_writers)
156 			goto out_free_devname;
157 #else
158 		mnt->mnt_writers = 0;
159 #endif
160 	}
161 	return mnt;
162 
163 #ifdef CONFIG_SMP
164 out_free_devname:
165 	kfree(mnt->mnt_devname);
166 #endif
167 out_free_id:
168 	mnt_free_id(mnt);
169 out_free_cache:
170 	kmem_cache_free(mnt_cache, mnt);
171 	return NULL;
172 }
173 
174 /*
175  * Most r/o checks on a fs are for operations that take
176  * discrete amounts of time, like a write() or unlink().
177  * We must keep track of when those operations start
178  * (for permission checks) and when they end, so that
179  * we can determine when writes are able to occur to
180  * a filesystem.
181  */
182 /*
183  * __mnt_is_readonly: check whether a mount is read-only
184  * @mnt: the mount to check for its write status
185  *
186  * This shouldn't be used directly ouside of the VFS.
187  * It does not guarantee that the filesystem will stay
188  * r/w, just that it is right *now*.  This can not and
189  * should not be used in place of IS_RDONLY(inode).
190  * mnt_want/drop_write() will _keep_ the filesystem
191  * r/w.
192  */
193 int __mnt_is_readonly(struct vfsmount *mnt)
194 {
195 	if (mnt->mnt_flags & MNT_READONLY)
196 		return 1;
197 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
198 		return 1;
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202 
203 static inline void inc_mnt_writers(struct vfsmount *mnt)
204 {
205 #ifdef CONFIG_SMP
206 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
207 #else
208 	mnt->mnt_writers++;
209 #endif
210 }
211 
212 static inline void dec_mnt_writers(struct vfsmount *mnt)
213 {
214 #ifdef CONFIG_SMP
215 	(*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
216 #else
217 	mnt->mnt_writers--;
218 #endif
219 }
220 
221 static unsigned int count_mnt_writers(struct vfsmount *mnt)
222 {
223 #ifdef CONFIG_SMP
224 	unsigned int count = 0;
225 	int cpu;
226 
227 	for_each_possible_cpu(cpu) {
228 		count += *per_cpu_ptr(mnt->mnt_writers, cpu);
229 	}
230 
231 	return count;
232 #else
233 	return mnt->mnt_writers;
234 #endif
235 }
236 
237 /*
238  * Most r/o checks on a fs are for operations that take
239  * discrete amounts of time, like a write() or unlink().
240  * We must keep track of when those operations start
241  * (for permission checks) and when they end, so that
242  * we can determine when writes are able to occur to
243  * a filesystem.
244  */
245 /**
246  * mnt_want_write - get write access to a mount
247  * @mnt: the mount on which to take a write
248  *
249  * This tells the low-level filesystem that a write is
250  * about to be performed to it, and makes sure that
251  * writes are allowed before returning success.  When
252  * the write operation is finished, mnt_drop_write()
253  * must be called.  This is effectively a refcount.
254  */
255 int mnt_want_write(struct vfsmount *mnt)
256 {
257 	int ret = 0;
258 
259 	preempt_disable();
260 	inc_mnt_writers(mnt);
261 	/*
262 	 * The store to inc_mnt_writers must be visible before we pass
263 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 	 * incremented count after it has set MNT_WRITE_HOLD.
265 	 */
266 	smp_mb();
267 	while (mnt->mnt_flags & MNT_WRITE_HOLD)
268 		cpu_relax();
269 	/*
270 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 	 * be set to match its requirements. So we must not load that until
272 	 * MNT_WRITE_HOLD is cleared.
273 	 */
274 	smp_rmb();
275 	if (__mnt_is_readonly(mnt)) {
276 		dec_mnt_writers(mnt);
277 		ret = -EROFS;
278 		goto out;
279 	}
280 out:
281 	preempt_enable();
282 	return ret;
283 }
284 EXPORT_SYMBOL_GPL(mnt_want_write);
285 
286 /**
287  * mnt_clone_write - get write access to a mount
288  * @mnt: the mount on which to take a write
289  *
290  * This is effectively like mnt_want_write, except
291  * it must only be used to take an extra write reference
292  * on a mountpoint that we already know has a write reference
293  * on it. This allows some optimisation.
294  *
295  * After finished, mnt_drop_write must be called as usual to
296  * drop the reference.
297  */
298 int mnt_clone_write(struct vfsmount *mnt)
299 {
300 	/* superblock may be r/o */
301 	if (__mnt_is_readonly(mnt))
302 		return -EROFS;
303 	preempt_disable();
304 	inc_mnt_writers(mnt);
305 	preempt_enable();
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(mnt_clone_write);
309 
310 /**
311  * mnt_want_write_file - get write access to a file's mount
312  * @file: the file who's mount on which to take a write
313  *
314  * This is like mnt_want_write, but it takes a file and can
315  * do some optimisations if the file is open for write already
316  */
317 int mnt_want_write_file(struct file *file)
318 {
319 	struct inode *inode = file->f_dentry->d_inode;
320 	if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
321 		return mnt_want_write(file->f_path.mnt);
322 	else
323 		return mnt_clone_write(file->f_path.mnt);
324 }
325 EXPORT_SYMBOL_GPL(mnt_want_write_file);
326 
327 /**
328  * mnt_drop_write - give up write access to a mount
329  * @mnt: the mount on which to give up write access
330  *
331  * Tells the low-level filesystem that we are done
332  * performing writes to it.  Must be matched with
333  * mnt_want_write() call above.
334  */
335 void mnt_drop_write(struct vfsmount *mnt)
336 {
337 	preempt_disable();
338 	dec_mnt_writers(mnt);
339 	preempt_enable();
340 }
341 EXPORT_SYMBOL_GPL(mnt_drop_write);
342 
343 static int mnt_make_readonly(struct vfsmount *mnt)
344 {
345 	int ret = 0;
346 
347 	spin_lock(&vfsmount_lock);
348 	mnt->mnt_flags |= MNT_WRITE_HOLD;
349 	/*
350 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
351 	 * should be visible before we do.
352 	 */
353 	smp_mb();
354 
355 	/*
356 	 * With writers on hold, if this value is zero, then there are
357 	 * definitely no active writers (although held writers may subsequently
358 	 * increment the count, they'll have to wait, and decrement it after
359 	 * seeing MNT_READONLY).
360 	 *
361 	 * It is OK to have counter incremented on one CPU and decremented on
362 	 * another: the sum will add up correctly. The danger would be when we
363 	 * sum up each counter, if we read a counter before it is incremented,
364 	 * but then read another CPU's count which it has been subsequently
365 	 * decremented from -- we would see more decrements than we should.
366 	 * MNT_WRITE_HOLD protects against this scenario, because
367 	 * mnt_want_write first increments count, then smp_mb, then spins on
368 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
369 	 * we're counting up here.
370 	 */
371 	if (count_mnt_writers(mnt) > 0)
372 		ret = -EBUSY;
373 	else
374 		mnt->mnt_flags |= MNT_READONLY;
375 	/*
376 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
377 	 * that become unheld will see MNT_READONLY.
378 	 */
379 	smp_wmb();
380 	mnt->mnt_flags &= ~MNT_WRITE_HOLD;
381 	spin_unlock(&vfsmount_lock);
382 	return ret;
383 }
384 
385 static void __mnt_unmake_readonly(struct vfsmount *mnt)
386 {
387 	spin_lock(&vfsmount_lock);
388 	mnt->mnt_flags &= ~MNT_READONLY;
389 	spin_unlock(&vfsmount_lock);
390 }
391 
392 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
393 {
394 	mnt->mnt_sb = sb;
395 	mnt->mnt_root = dget(sb->s_root);
396 }
397 
398 EXPORT_SYMBOL(simple_set_mnt);
399 
400 void free_vfsmnt(struct vfsmount *mnt)
401 {
402 	kfree(mnt->mnt_devname);
403 	mnt_free_id(mnt);
404 #ifdef CONFIG_SMP
405 	free_percpu(mnt->mnt_writers);
406 #endif
407 	kmem_cache_free(mnt_cache, mnt);
408 }
409 
410 /*
411  * find the first or last mount at @dentry on vfsmount @mnt depending on
412  * @dir. If @dir is set return the first mount else return the last mount.
413  */
414 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
415 			      int dir)
416 {
417 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
418 	struct list_head *tmp = head;
419 	struct vfsmount *p, *found = NULL;
420 
421 	for (;;) {
422 		tmp = dir ? tmp->next : tmp->prev;
423 		p = NULL;
424 		if (tmp == head)
425 			break;
426 		p = list_entry(tmp, struct vfsmount, mnt_hash);
427 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
428 			found = p;
429 			break;
430 		}
431 	}
432 	return found;
433 }
434 
435 /*
436  * lookup_mnt increments the ref count before returning
437  * the vfsmount struct.
438  */
439 struct vfsmount *lookup_mnt(struct path *path)
440 {
441 	struct vfsmount *child_mnt;
442 	spin_lock(&vfsmount_lock);
443 	if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
444 		mntget(child_mnt);
445 	spin_unlock(&vfsmount_lock);
446 	return child_mnt;
447 }
448 
449 static inline int check_mnt(struct vfsmount *mnt)
450 {
451 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
452 }
453 
454 static void touch_mnt_namespace(struct mnt_namespace *ns)
455 {
456 	if (ns) {
457 		ns->event = ++event;
458 		wake_up_interruptible(&ns->poll);
459 	}
460 }
461 
462 static void __touch_mnt_namespace(struct mnt_namespace *ns)
463 {
464 	if (ns && ns->event != event) {
465 		ns->event = event;
466 		wake_up_interruptible(&ns->poll);
467 	}
468 }
469 
470 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
471 {
472 	old_path->dentry = mnt->mnt_mountpoint;
473 	old_path->mnt = mnt->mnt_parent;
474 	mnt->mnt_parent = mnt;
475 	mnt->mnt_mountpoint = mnt->mnt_root;
476 	list_del_init(&mnt->mnt_child);
477 	list_del_init(&mnt->mnt_hash);
478 	old_path->dentry->d_mounted--;
479 }
480 
481 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
482 			struct vfsmount *child_mnt)
483 {
484 	child_mnt->mnt_parent = mntget(mnt);
485 	child_mnt->mnt_mountpoint = dget(dentry);
486 	dentry->d_mounted++;
487 }
488 
489 static void attach_mnt(struct vfsmount *mnt, struct path *path)
490 {
491 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
492 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
493 			hash(path->mnt, path->dentry));
494 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
495 }
496 
497 /*
498  * the caller must hold vfsmount_lock
499  */
500 static void commit_tree(struct vfsmount *mnt)
501 {
502 	struct vfsmount *parent = mnt->mnt_parent;
503 	struct vfsmount *m;
504 	LIST_HEAD(head);
505 	struct mnt_namespace *n = parent->mnt_ns;
506 
507 	BUG_ON(parent == mnt);
508 
509 	list_add_tail(&head, &mnt->mnt_list);
510 	list_for_each_entry(m, &head, mnt_list)
511 		m->mnt_ns = n;
512 	list_splice(&head, n->list.prev);
513 
514 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
515 				hash(parent, mnt->mnt_mountpoint));
516 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
517 	touch_mnt_namespace(n);
518 }
519 
520 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
521 {
522 	struct list_head *next = p->mnt_mounts.next;
523 	if (next == &p->mnt_mounts) {
524 		while (1) {
525 			if (p == root)
526 				return NULL;
527 			next = p->mnt_child.next;
528 			if (next != &p->mnt_parent->mnt_mounts)
529 				break;
530 			p = p->mnt_parent;
531 		}
532 	}
533 	return list_entry(next, struct vfsmount, mnt_child);
534 }
535 
536 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
537 {
538 	struct list_head *prev = p->mnt_mounts.prev;
539 	while (prev != &p->mnt_mounts) {
540 		p = list_entry(prev, struct vfsmount, mnt_child);
541 		prev = p->mnt_mounts.prev;
542 	}
543 	return p;
544 }
545 
546 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
547 					int flag)
548 {
549 	struct super_block *sb = old->mnt_sb;
550 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
551 
552 	if (mnt) {
553 		if (flag & (CL_SLAVE | CL_PRIVATE))
554 			mnt->mnt_group_id = 0; /* not a peer of original */
555 		else
556 			mnt->mnt_group_id = old->mnt_group_id;
557 
558 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
559 			int err = mnt_alloc_group_id(mnt);
560 			if (err)
561 				goto out_free;
562 		}
563 
564 		mnt->mnt_flags = old->mnt_flags;
565 		atomic_inc(&sb->s_active);
566 		mnt->mnt_sb = sb;
567 		mnt->mnt_root = dget(root);
568 		mnt->mnt_mountpoint = mnt->mnt_root;
569 		mnt->mnt_parent = mnt;
570 
571 		if (flag & CL_SLAVE) {
572 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
573 			mnt->mnt_master = old;
574 			CLEAR_MNT_SHARED(mnt);
575 		} else if (!(flag & CL_PRIVATE)) {
576 			if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
577 				list_add(&mnt->mnt_share, &old->mnt_share);
578 			if (IS_MNT_SLAVE(old))
579 				list_add(&mnt->mnt_slave, &old->mnt_slave);
580 			mnt->mnt_master = old->mnt_master;
581 		}
582 		if (flag & CL_MAKE_SHARED)
583 			set_mnt_shared(mnt);
584 
585 		/* stick the duplicate mount on the same expiry list
586 		 * as the original if that was on one */
587 		if (flag & CL_EXPIRE) {
588 			if (!list_empty(&old->mnt_expire))
589 				list_add(&mnt->mnt_expire, &old->mnt_expire);
590 		}
591 	}
592 	return mnt;
593 
594  out_free:
595 	free_vfsmnt(mnt);
596 	return NULL;
597 }
598 
599 static inline void __mntput(struct vfsmount *mnt)
600 {
601 	struct super_block *sb = mnt->mnt_sb;
602 	/*
603 	 * This probably indicates that somebody messed
604 	 * up a mnt_want/drop_write() pair.  If this
605 	 * happens, the filesystem was probably unable
606 	 * to make r/w->r/o transitions.
607 	 */
608 	/*
609 	 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
610 	 * provides barriers, so count_mnt_writers() below is safe.  AV
611 	 */
612 	WARN_ON(count_mnt_writers(mnt));
613 	dput(mnt->mnt_root);
614 	free_vfsmnt(mnt);
615 	deactivate_super(sb);
616 }
617 
618 void mntput_no_expire(struct vfsmount *mnt)
619 {
620 repeat:
621 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
622 		if (likely(!mnt->mnt_pinned)) {
623 			spin_unlock(&vfsmount_lock);
624 			__mntput(mnt);
625 			return;
626 		}
627 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
628 		mnt->mnt_pinned = 0;
629 		spin_unlock(&vfsmount_lock);
630 		acct_auto_close_mnt(mnt);
631 		goto repeat;
632 	}
633 }
634 
635 EXPORT_SYMBOL(mntput_no_expire);
636 
637 void mnt_pin(struct vfsmount *mnt)
638 {
639 	spin_lock(&vfsmount_lock);
640 	mnt->mnt_pinned++;
641 	spin_unlock(&vfsmount_lock);
642 }
643 
644 EXPORT_SYMBOL(mnt_pin);
645 
646 void mnt_unpin(struct vfsmount *mnt)
647 {
648 	spin_lock(&vfsmount_lock);
649 	if (mnt->mnt_pinned) {
650 		atomic_inc(&mnt->mnt_count);
651 		mnt->mnt_pinned--;
652 	}
653 	spin_unlock(&vfsmount_lock);
654 }
655 
656 EXPORT_SYMBOL(mnt_unpin);
657 
658 static inline void mangle(struct seq_file *m, const char *s)
659 {
660 	seq_escape(m, s, " \t\n\\");
661 }
662 
663 /*
664  * Simple .show_options callback for filesystems which don't want to
665  * implement more complex mount option showing.
666  *
667  * See also save_mount_options().
668  */
669 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
670 {
671 	const char *options;
672 
673 	rcu_read_lock();
674 	options = rcu_dereference(mnt->mnt_sb->s_options);
675 
676 	if (options != NULL && options[0]) {
677 		seq_putc(m, ',');
678 		mangle(m, options);
679 	}
680 	rcu_read_unlock();
681 
682 	return 0;
683 }
684 EXPORT_SYMBOL(generic_show_options);
685 
686 /*
687  * If filesystem uses generic_show_options(), this function should be
688  * called from the fill_super() callback.
689  *
690  * The .remount_fs callback usually needs to be handled in a special
691  * way, to make sure, that previous options are not overwritten if the
692  * remount fails.
693  *
694  * Also note, that if the filesystem's .remount_fs function doesn't
695  * reset all options to their default value, but changes only newly
696  * given options, then the displayed options will not reflect reality
697  * any more.
698  */
699 void save_mount_options(struct super_block *sb, char *options)
700 {
701 	BUG_ON(sb->s_options);
702 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
703 }
704 EXPORT_SYMBOL(save_mount_options);
705 
706 void replace_mount_options(struct super_block *sb, char *options)
707 {
708 	char *old = sb->s_options;
709 	rcu_assign_pointer(sb->s_options, options);
710 	if (old) {
711 		synchronize_rcu();
712 		kfree(old);
713 	}
714 }
715 EXPORT_SYMBOL(replace_mount_options);
716 
717 #ifdef CONFIG_PROC_FS
718 /* iterator */
719 static void *m_start(struct seq_file *m, loff_t *pos)
720 {
721 	struct proc_mounts *p = m->private;
722 
723 	down_read(&namespace_sem);
724 	return seq_list_start(&p->ns->list, *pos);
725 }
726 
727 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
728 {
729 	struct proc_mounts *p = m->private;
730 
731 	return seq_list_next(v, &p->ns->list, pos);
732 }
733 
734 static void m_stop(struct seq_file *m, void *v)
735 {
736 	up_read(&namespace_sem);
737 }
738 
739 int mnt_had_events(struct proc_mounts *p)
740 {
741 	struct mnt_namespace *ns = p->ns;
742 	int res = 0;
743 
744 	spin_lock(&vfsmount_lock);
745 	if (p->event != ns->event) {
746 		p->event = ns->event;
747 		res = 1;
748 	}
749 	spin_unlock(&vfsmount_lock);
750 
751 	return res;
752 }
753 
754 struct proc_fs_info {
755 	int flag;
756 	const char *str;
757 };
758 
759 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
760 {
761 	static const struct proc_fs_info fs_info[] = {
762 		{ MS_SYNCHRONOUS, ",sync" },
763 		{ MS_DIRSYNC, ",dirsync" },
764 		{ MS_MANDLOCK, ",mand" },
765 		{ 0, NULL }
766 	};
767 	const struct proc_fs_info *fs_infop;
768 
769 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
770 		if (sb->s_flags & fs_infop->flag)
771 			seq_puts(m, fs_infop->str);
772 	}
773 
774 	return security_sb_show_options(m, sb);
775 }
776 
777 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
778 {
779 	static const struct proc_fs_info mnt_info[] = {
780 		{ MNT_NOSUID, ",nosuid" },
781 		{ MNT_NODEV, ",nodev" },
782 		{ MNT_NOEXEC, ",noexec" },
783 		{ MNT_NOATIME, ",noatime" },
784 		{ MNT_NODIRATIME, ",nodiratime" },
785 		{ MNT_RELATIME, ",relatime" },
786 		{ MNT_STRICTATIME, ",strictatime" },
787 		{ 0, NULL }
788 	};
789 	const struct proc_fs_info *fs_infop;
790 
791 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
792 		if (mnt->mnt_flags & fs_infop->flag)
793 			seq_puts(m, fs_infop->str);
794 	}
795 }
796 
797 static void show_type(struct seq_file *m, struct super_block *sb)
798 {
799 	mangle(m, sb->s_type->name);
800 	if (sb->s_subtype && sb->s_subtype[0]) {
801 		seq_putc(m, '.');
802 		mangle(m, sb->s_subtype);
803 	}
804 }
805 
806 static int show_vfsmnt(struct seq_file *m, void *v)
807 {
808 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
809 	int err = 0;
810 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
811 
812 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
813 	seq_putc(m, ' ');
814 	seq_path(m, &mnt_path, " \t\n\\");
815 	seq_putc(m, ' ');
816 	show_type(m, mnt->mnt_sb);
817 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
818 	err = show_sb_opts(m, mnt->mnt_sb);
819 	if (err)
820 		goto out;
821 	show_mnt_opts(m, mnt);
822 	if (mnt->mnt_sb->s_op->show_options)
823 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
824 	seq_puts(m, " 0 0\n");
825 out:
826 	return err;
827 }
828 
829 const struct seq_operations mounts_op = {
830 	.start	= m_start,
831 	.next	= m_next,
832 	.stop	= m_stop,
833 	.show	= show_vfsmnt
834 };
835 
836 static int show_mountinfo(struct seq_file *m, void *v)
837 {
838 	struct proc_mounts *p = m->private;
839 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
840 	struct super_block *sb = mnt->mnt_sb;
841 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
842 	struct path root = p->root;
843 	int err = 0;
844 
845 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
846 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
847 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
848 	seq_putc(m, ' ');
849 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
850 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
851 		/*
852 		 * Mountpoint is outside root, discard that one.  Ugly,
853 		 * but less so than trying to do that in iterator in a
854 		 * race-free way (due to renames).
855 		 */
856 		return SEQ_SKIP;
857 	}
858 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
859 	show_mnt_opts(m, mnt);
860 
861 	/* Tagged fields ("foo:X" or "bar") */
862 	if (IS_MNT_SHARED(mnt))
863 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
864 	if (IS_MNT_SLAVE(mnt)) {
865 		int master = mnt->mnt_master->mnt_group_id;
866 		int dom = get_dominating_id(mnt, &p->root);
867 		seq_printf(m, " master:%i", master);
868 		if (dom && dom != master)
869 			seq_printf(m, " propagate_from:%i", dom);
870 	}
871 	if (IS_MNT_UNBINDABLE(mnt))
872 		seq_puts(m, " unbindable");
873 
874 	/* Filesystem specific data */
875 	seq_puts(m, " - ");
876 	show_type(m, sb);
877 	seq_putc(m, ' ');
878 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
879 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
880 	err = show_sb_opts(m, sb);
881 	if (err)
882 		goto out;
883 	if (sb->s_op->show_options)
884 		err = sb->s_op->show_options(m, mnt);
885 	seq_putc(m, '\n');
886 out:
887 	return err;
888 }
889 
890 const struct seq_operations mountinfo_op = {
891 	.start	= m_start,
892 	.next	= m_next,
893 	.stop	= m_stop,
894 	.show	= show_mountinfo,
895 };
896 
897 static int show_vfsstat(struct seq_file *m, void *v)
898 {
899 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
900 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
901 	int err = 0;
902 
903 	/* device */
904 	if (mnt->mnt_devname) {
905 		seq_puts(m, "device ");
906 		mangle(m, mnt->mnt_devname);
907 	} else
908 		seq_puts(m, "no device");
909 
910 	/* mount point */
911 	seq_puts(m, " mounted on ");
912 	seq_path(m, &mnt_path, " \t\n\\");
913 	seq_putc(m, ' ');
914 
915 	/* file system type */
916 	seq_puts(m, "with fstype ");
917 	show_type(m, mnt->mnt_sb);
918 
919 	/* optional statistics */
920 	if (mnt->mnt_sb->s_op->show_stats) {
921 		seq_putc(m, ' ');
922 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
923 	}
924 
925 	seq_putc(m, '\n');
926 	return err;
927 }
928 
929 const struct seq_operations mountstats_op = {
930 	.start	= m_start,
931 	.next	= m_next,
932 	.stop	= m_stop,
933 	.show	= show_vfsstat,
934 };
935 #endif  /* CONFIG_PROC_FS */
936 
937 /**
938  * may_umount_tree - check if a mount tree is busy
939  * @mnt: root of mount tree
940  *
941  * This is called to check if a tree of mounts has any
942  * open files, pwds, chroots or sub mounts that are
943  * busy.
944  */
945 int may_umount_tree(struct vfsmount *mnt)
946 {
947 	int actual_refs = 0;
948 	int minimum_refs = 0;
949 	struct vfsmount *p;
950 
951 	spin_lock(&vfsmount_lock);
952 	for (p = mnt; p; p = next_mnt(p, mnt)) {
953 		actual_refs += atomic_read(&p->mnt_count);
954 		minimum_refs += 2;
955 	}
956 	spin_unlock(&vfsmount_lock);
957 
958 	if (actual_refs > minimum_refs)
959 		return 0;
960 
961 	return 1;
962 }
963 
964 EXPORT_SYMBOL(may_umount_tree);
965 
966 /**
967  * may_umount - check if a mount point is busy
968  * @mnt: root of mount
969  *
970  * This is called to check if a mount point has any
971  * open files, pwds, chroots or sub mounts. If the
972  * mount has sub mounts this will return busy
973  * regardless of whether the sub mounts are busy.
974  *
975  * Doesn't take quota and stuff into account. IOW, in some cases it will
976  * give false negatives. The main reason why it's here is that we need
977  * a non-destructive way to look for easily umountable filesystems.
978  */
979 int may_umount(struct vfsmount *mnt)
980 {
981 	int ret = 1;
982 	down_read(&namespace_sem);
983 	spin_lock(&vfsmount_lock);
984 	if (propagate_mount_busy(mnt, 2))
985 		ret = 0;
986 	spin_unlock(&vfsmount_lock);
987 	up_read(&namespace_sem);
988 	return ret;
989 }
990 
991 EXPORT_SYMBOL(may_umount);
992 
993 void release_mounts(struct list_head *head)
994 {
995 	struct vfsmount *mnt;
996 	while (!list_empty(head)) {
997 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
998 		list_del_init(&mnt->mnt_hash);
999 		if (mnt->mnt_parent != mnt) {
1000 			struct dentry *dentry;
1001 			struct vfsmount *m;
1002 			spin_lock(&vfsmount_lock);
1003 			dentry = mnt->mnt_mountpoint;
1004 			m = mnt->mnt_parent;
1005 			mnt->mnt_mountpoint = mnt->mnt_root;
1006 			mnt->mnt_parent = mnt;
1007 			m->mnt_ghosts--;
1008 			spin_unlock(&vfsmount_lock);
1009 			dput(dentry);
1010 			mntput(m);
1011 		}
1012 		mntput(mnt);
1013 	}
1014 }
1015 
1016 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1017 {
1018 	struct vfsmount *p;
1019 
1020 	for (p = mnt; p; p = next_mnt(p, mnt))
1021 		list_move(&p->mnt_hash, kill);
1022 
1023 	if (propagate)
1024 		propagate_umount(kill);
1025 
1026 	list_for_each_entry(p, kill, mnt_hash) {
1027 		list_del_init(&p->mnt_expire);
1028 		list_del_init(&p->mnt_list);
1029 		__touch_mnt_namespace(p->mnt_ns);
1030 		p->mnt_ns = NULL;
1031 		list_del_init(&p->mnt_child);
1032 		if (p->mnt_parent != p) {
1033 			p->mnt_parent->mnt_ghosts++;
1034 			p->mnt_mountpoint->d_mounted--;
1035 		}
1036 		change_mnt_propagation(p, MS_PRIVATE);
1037 	}
1038 }
1039 
1040 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1041 
1042 static int do_umount(struct vfsmount *mnt, int flags)
1043 {
1044 	struct super_block *sb = mnt->mnt_sb;
1045 	int retval;
1046 	LIST_HEAD(umount_list);
1047 
1048 	retval = security_sb_umount(mnt, flags);
1049 	if (retval)
1050 		return retval;
1051 
1052 	/*
1053 	 * Allow userspace to request a mountpoint be expired rather than
1054 	 * unmounting unconditionally. Unmount only happens if:
1055 	 *  (1) the mark is already set (the mark is cleared by mntput())
1056 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1057 	 */
1058 	if (flags & MNT_EXPIRE) {
1059 		if (mnt == current->fs->root.mnt ||
1060 		    flags & (MNT_FORCE | MNT_DETACH))
1061 			return -EINVAL;
1062 
1063 		if (atomic_read(&mnt->mnt_count) != 2)
1064 			return -EBUSY;
1065 
1066 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1067 			return -EAGAIN;
1068 	}
1069 
1070 	/*
1071 	 * If we may have to abort operations to get out of this
1072 	 * mount, and they will themselves hold resources we must
1073 	 * allow the fs to do things. In the Unix tradition of
1074 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1075 	 * might fail to complete on the first run through as other tasks
1076 	 * must return, and the like. Thats for the mount program to worry
1077 	 * about for the moment.
1078 	 */
1079 
1080 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1081 		sb->s_op->umount_begin(sb);
1082 	}
1083 
1084 	/*
1085 	 * No sense to grab the lock for this test, but test itself looks
1086 	 * somewhat bogus. Suggestions for better replacement?
1087 	 * Ho-hum... In principle, we might treat that as umount + switch
1088 	 * to rootfs. GC would eventually take care of the old vfsmount.
1089 	 * Actually it makes sense, especially if rootfs would contain a
1090 	 * /reboot - static binary that would close all descriptors and
1091 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1092 	 */
1093 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1094 		/*
1095 		 * Special case for "unmounting" root ...
1096 		 * we just try to remount it readonly.
1097 		 */
1098 		down_write(&sb->s_umount);
1099 		if (!(sb->s_flags & MS_RDONLY))
1100 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1101 		up_write(&sb->s_umount);
1102 		return retval;
1103 	}
1104 
1105 	down_write(&namespace_sem);
1106 	spin_lock(&vfsmount_lock);
1107 	event++;
1108 
1109 	if (!(flags & MNT_DETACH))
1110 		shrink_submounts(mnt, &umount_list);
1111 
1112 	retval = -EBUSY;
1113 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1114 		if (!list_empty(&mnt->mnt_list))
1115 			umount_tree(mnt, 1, &umount_list);
1116 		retval = 0;
1117 	}
1118 	spin_unlock(&vfsmount_lock);
1119 	up_write(&namespace_sem);
1120 	release_mounts(&umount_list);
1121 	return retval;
1122 }
1123 
1124 /*
1125  * Now umount can handle mount points as well as block devices.
1126  * This is important for filesystems which use unnamed block devices.
1127  *
1128  * We now support a flag for forced unmount like the other 'big iron'
1129  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1130  */
1131 
1132 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1133 {
1134 	struct path path;
1135 	int retval;
1136 	int lookup_flags = 0;
1137 
1138 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1139 		return -EINVAL;
1140 
1141 	if (!(flags & UMOUNT_NOFOLLOW))
1142 		lookup_flags |= LOOKUP_FOLLOW;
1143 
1144 	retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1145 	if (retval)
1146 		goto out;
1147 	retval = -EINVAL;
1148 	if (path.dentry != path.mnt->mnt_root)
1149 		goto dput_and_out;
1150 	if (!check_mnt(path.mnt))
1151 		goto dput_and_out;
1152 
1153 	retval = -EPERM;
1154 	if (!capable(CAP_SYS_ADMIN))
1155 		goto dput_and_out;
1156 
1157 	retval = do_umount(path.mnt, flags);
1158 dput_and_out:
1159 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1160 	dput(path.dentry);
1161 	mntput_no_expire(path.mnt);
1162 out:
1163 	return retval;
1164 }
1165 
1166 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1167 
1168 /*
1169  *	The 2.0 compatible umount. No flags.
1170  */
1171 SYSCALL_DEFINE1(oldumount, char __user *, name)
1172 {
1173 	return sys_umount(name, 0);
1174 }
1175 
1176 #endif
1177 
1178 static int mount_is_safe(struct path *path)
1179 {
1180 	if (capable(CAP_SYS_ADMIN))
1181 		return 0;
1182 	return -EPERM;
1183 #ifdef notyet
1184 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1185 		return -EPERM;
1186 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1187 		if (current_uid() != path->dentry->d_inode->i_uid)
1188 			return -EPERM;
1189 	}
1190 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1191 		return -EPERM;
1192 	return 0;
1193 #endif
1194 }
1195 
1196 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1197 					int flag)
1198 {
1199 	struct vfsmount *res, *p, *q, *r, *s;
1200 	struct path path;
1201 
1202 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1203 		return NULL;
1204 
1205 	res = q = clone_mnt(mnt, dentry, flag);
1206 	if (!q)
1207 		goto Enomem;
1208 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1209 
1210 	p = mnt;
1211 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1212 		if (!is_subdir(r->mnt_mountpoint, dentry))
1213 			continue;
1214 
1215 		for (s = r; s; s = next_mnt(s, r)) {
1216 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1217 				s = skip_mnt_tree(s);
1218 				continue;
1219 			}
1220 			while (p != s->mnt_parent) {
1221 				p = p->mnt_parent;
1222 				q = q->mnt_parent;
1223 			}
1224 			p = s;
1225 			path.mnt = q;
1226 			path.dentry = p->mnt_mountpoint;
1227 			q = clone_mnt(p, p->mnt_root, flag);
1228 			if (!q)
1229 				goto Enomem;
1230 			spin_lock(&vfsmount_lock);
1231 			list_add_tail(&q->mnt_list, &res->mnt_list);
1232 			attach_mnt(q, &path);
1233 			spin_unlock(&vfsmount_lock);
1234 		}
1235 	}
1236 	return res;
1237 Enomem:
1238 	if (res) {
1239 		LIST_HEAD(umount_list);
1240 		spin_lock(&vfsmount_lock);
1241 		umount_tree(res, 0, &umount_list);
1242 		spin_unlock(&vfsmount_lock);
1243 		release_mounts(&umount_list);
1244 	}
1245 	return NULL;
1246 }
1247 
1248 struct vfsmount *collect_mounts(struct path *path)
1249 {
1250 	struct vfsmount *tree;
1251 	down_write(&namespace_sem);
1252 	tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1253 	up_write(&namespace_sem);
1254 	return tree;
1255 }
1256 
1257 void drop_collected_mounts(struct vfsmount *mnt)
1258 {
1259 	LIST_HEAD(umount_list);
1260 	down_write(&namespace_sem);
1261 	spin_lock(&vfsmount_lock);
1262 	umount_tree(mnt, 0, &umount_list);
1263 	spin_unlock(&vfsmount_lock);
1264 	up_write(&namespace_sem);
1265 	release_mounts(&umount_list);
1266 }
1267 
1268 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1269 		   struct vfsmount *root)
1270 {
1271 	struct vfsmount *mnt;
1272 	int res = f(root, arg);
1273 	if (res)
1274 		return res;
1275 	list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1276 		res = f(mnt, arg);
1277 		if (res)
1278 			return res;
1279 	}
1280 	return 0;
1281 }
1282 
1283 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1284 {
1285 	struct vfsmount *p;
1286 
1287 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1288 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1289 			mnt_release_group_id(p);
1290 	}
1291 }
1292 
1293 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1294 {
1295 	struct vfsmount *p;
1296 
1297 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1298 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1299 			int err = mnt_alloc_group_id(p);
1300 			if (err) {
1301 				cleanup_group_ids(mnt, p);
1302 				return err;
1303 			}
1304 		}
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  *  @source_mnt : mount tree to be attached
1312  *  @nd         : place the mount tree @source_mnt is attached
1313  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1314  *  		   store the parent mount and mountpoint dentry.
1315  *  		   (done when source_mnt is moved)
1316  *
1317  *  NOTE: in the table below explains the semantics when a source mount
1318  *  of a given type is attached to a destination mount of a given type.
1319  * ---------------------------------------------------------------------------
1320  * |         BIND MOUNT OPERATION                                            |
1321  * |**************************************************************************
1322  * | source-->| shared        |       private  |       slave    | unbindable |
1323  * | dest     |               |                |                |            |
1324  * |   |      |               |                |                |            |
1325  * |   v      |               |                |                |            |
1326  * |**************************************************************************
1327  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1328  * |          |               |                |                |            |
1329  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1330  * ***************************************************************************
1331  * A bind operation clones the source mount and mounts the clone on the
1332  * destination mount.
1333  *
1334  * (++)  the cloned mount is propagated to all the mounts in the propagation
1335  * 	 tree of the destination mount and the cloned mount is added to
1336  * 	 the peer group of the source mount.
1337  * (+)   the cloned mount is created under the destination mount and is marked
1338  *       as shared. The cloned mount is added to the peer group of the source
1339  *       mount.
1340  * (+++) the mount is propagated to all the mounts in the propagation tree
1341  *       of the destination mount and the cloned mount is made slave
1342  *       of the same master as that of the source mount. The cloned mount
1343  *       is marked as 'shared and slave'.
1344  * (*)   the cloned mount is made a slave of the same master as that of the
1345  * 	 source mount.
1346  *
1347  * ---------------------------------------------------------------------------
1348  * |         		MOVE MOUNT OPERATION                                 |
1349  * |**************************************************************************
1350  * | source-->| shared        |       private  |       slave    | unbindable |
1351  * | dest     |               |                |                |            |
1352  * |   |      |               |                |                |            |
1353  * |   v      |               |                |                |            |
1354  * |**************************************************************************
1355  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1356  * |          |               |                |                |            |
1357  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1358  * ***************************************************************************
1359  *
1360  * (+)  the mount is moved to the destination. And is then propagated to
1361  * 	all the mounts in the propagation tree of the destination mount.
1362  * (+*)  the mount is moved to the destination.
1363  * (+++)  the mount is moved to the destination and is then propagated to
1364  * 	all the mounts belonging to the destination mount's propagation tree.
1365  * 	the mount is marked as 'shared and slave'.
1366  * (*)	the mount continues to be a slave at the new location.
1367  *
1368  * if the source mount is a tree, the operations explained above is
1369  * applied to each mount in the tree.
1370  * Must be called without spinlocks held, since this function can sleep
1371  * in allocations.
1372  */
1373 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1374 			struct path *path, struct path *parent_path)
1375 {
1376 	LIST_HEAD(tree_list);
1377 	struct vfsmount *dest_mnt = path->mnt;
1378 	struct dentry *dest_dentry = path->dentry;
1379 	struct vfsmount *child, *p;
1380 	int err;
1381 
1382 	if (IS_MNT_SHARED(dest_mnt)) {
1383 		err = invent_group_ids(source_mnt, true);
1384 		if (err)
1385 			goto out;
1386 	}
1387 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1388 	if (err)
1389 		goto out_cleanup_ids;
1390 
1391 	spin_lock(&vfsmount_lock);
1392 
1393 	if (IS_MNT_SHARED(dest_mnt)) {
1394 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1395 			set_mnt_shared(p);
1396 	}
1397 	if (parent_path) {
1398 		detach_mnt(source_mnt, parent_path);
1399 		attach_mnt(source_mnt, path);
1400 		touch_mnt_namespace(parent_path->mnt->mnt_ns);
1401 	} else {
1402 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1403 		commit_tree(source_mnt);
1404 	}
1405 
1406 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1407 		list_del_init(&child->mnt_hash);
1408 		commit_tree(child);
1409 	}
1410 	spin_unlock(&vfsmount_lock);
1411 	return 0;
1412 
1413  out_cleanup_ids:
1414 	if (IS_MNT_SHARED(dest_mnt))
1415 		cleanup_group_ids(source_mnt, NULL);
1416  out:
1417 	return err;
1418 }
1419 
1420 static int graft_tree(struct vfsmount *mnt, struct path *path)
1421 {
1422 	int err;
1423 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1424 		return -EINVAL;
1425 
1426 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1427 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1428 		return -ENOTDIR;
1429 
1430 	err = -ENOENT;
1431 	mutex_lock(&path->dentry->d_inode->i_mutex);
1432 	if (cant_mount(path->dentry))
1433 		goto out_unlock;
1434 
1435 	if (!d_unlinked(path->dentry))
1436 		err = attach_recursive_mnt(mnt, path, NULL);
1437 out_unlock:
1438 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1439 	return err;
1440 }
1441 
1442 /*
1443  * recursively change the type of the mountpoint.
1444  */
1445 static int do_change_type(struct path *path, int flag)
1446 {
1447 	struct vfsmount *m, *mnt = path->mnt;
1448 	int recurse = flag & MS_REC;
1449 	int type = flag & ~MS_REC;
1450 	int err = 0;
1451 
1452 	if (!capable(CAP_SYS_ADMIN))
1453 		return -EPERM;
1454 
1455 	if (path->dentry != path->mnt->mnt_root)
1456 		return -EINVAL;
1457 
1458 	down_write(&namespace_sem);
1459 	if (type == MS_SHARED) {
1460 		err = invent_group_ids(mnt, recurse);
1461 		if (err)
1462 			goto out_unlock;
1463 	}
1464 
1465 	spin_lock(&vfsmount_lock);
1466 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1467 		change_mnt_propagation(m, type);
1468 	spin_unlock(&vfsmount_lock);
1469 
1470  out_unlock:
1471 	up_write(&namespace_sem);
1472 	return err;
1473 }
1474 
1475 /*
1476  * do loopback mount.
1477  */
1478 static int do_loopback(struct path *path, char *old_name,
1479 				int recurse)
1480 {
1481 	struct path old_path;
1482 	struct vfsmount *mnt = NULL;
1483 	int err = mount_is_safe(path);
1484 	if (err)
1485 		return err;
1486 	if (!old_name || !*old_name)
1487 		return -EINVAL;
1488 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1489 	if (err)
1490 		return err;
1491 
1492 	down_write(&namespace_sem);
1493 	err = -EINVAL;
1494 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1495 		goto out;
1496 
1497 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1498 		goto out;
1499 
1500 	err = -ENOMEM;
1501 	if (recurse)
1502 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1503 	else
1504 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1505 
1506 	if (!mnt)
1507 		goto out;
1508 
1509 	err = graft_tree(mnt, path);
1510 	if (err) {
1511 		LIST_HEAD(umount_list);
1512 		spin_lock(&vfsmount_lock);
1513 		umount_tree(mnt, 0, &umount_list);
1514 		spin_unlock(&vfsmount_lock);
1515 		release_mounts(&umount_list);
1516 	}
1517 
1518 out:
1519 	up_write(&namespace_sem);
1520 	path_put(&old_path);
1521 	return err;
1522 }
1523 
1524 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1525 {
1526 	int error = 0;
1527 	int readonly_request = 0;
1528 
1529 	if (ms_flags & MS_RDONLY)
1530 		readonly_request = 1;
1531 	if (readonly_request == __mnt_is_readonly(mnt))
1532 		return 0;
1533 
1534 	if (readonly_request)
1535 		error = mnt_make_readonly(mnt);
1536 	else
1537 		__mnt_unmake_readonly(mnt);
1538 	return error;
1539 }
1540 
1541 /*
1542  * change filesystem flags. dir should be a physical root of filesystem.
1543  * If you've mounted a non-root directory somewhere and want to do remount
1544  * on it - tough luck.
1545  */
1546 static int do_remount(struct path *path, int flags, int mnt_flags,
1547 		      void *data)
1548 {
1549 	int err;
1550 	struct super_block *sb = path->mnt->mnt_sb;
1551 
1552 	if (!capable(CAP_SYS_ADMIN))
1553 		return -EPERM;
1554 
1555 	if (!check_mnt(path->mnt))
1556 		return -EINVAL;
1557 
1558 	if (path->dentry != path->mnt->mnt_root)
1559 		return -EINVAL;
1560 
1561 	down_write(&sb->s_umount);
1562 	if (flags & MS_BIND)
1563 		err = change_mount_flags(path->mnt, flags);
1564 	else
1565 		err = do_remount_sb(sb, flags, data, 0);
1566 	if (!err) {
1567 		spin_lock(&vfsmount_lock);
1568 		mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1569 		path->mnt->mnt_flags = mnt_flags;
1570 		spin_unlock(&vfsmount_lock);
1571 	}
1572 	up_write(&sb->s_umount);
1573 	if (!err) {
1574 		spin_lock(&vfsmount_lock);
1575 		touch_mnt_namespace(path->mnt->mnt_ns);
1576 		spin_unlock(&vfsmount_lock);
1577 	}
1578 	return err;
1579 }
1580 
1581 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1582 {
1583 	struct vfsmount *p;
1584 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1585 		if (IS_MNT_UNBINDABLE(p))
1586 			return 1;
1587 	}
1588 	return 0;
1589 }
1590 
1591 static int do_move_mount(struct path *path, char *old_name)
1592 {
1593 	struct path old_path, parent_path;
1594 	struct vfsmount *p;
1595 	int err = 0;
1596 	if (!capable(CAP_SYS_ADMIN))
1597 		return -EPERM;
1598 	if (!old_name || !*old_name)
1599 		return -EINVAL;
1600 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1601 	if (err)
1602 		return err;
1603 
1604 	down_write(&namespace_sem);
1605 	while (d_mountpoint(path->dentry) &&
1606 	       follow_down(path))
1607 		;
1608 	err = -EINVAL;
1609 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1610 		goto out;
1611 
1612 	err = -ENOENT;
1613 	mutex_lock(&path->dentry->d_inode->i_mutex);
1614 	if (cant_mount(path->dentry))
1615 		goto out1;
1616 
1617 	if (d_unlinked(path->dentry))
1618 		goto out1;
1619 
1620 	err = -EINVAL;
1621 	if (old_path.dentry != old_path.mnt->mnt_root)
1622 		goto out1;
1623 
1624 	if (old_path.mnt == old_path.mnt->mnt_parent)
1625 		goto out1;
1626 
1627 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1628 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1629 		goto out1;
1630 	/*
1631 	 * Don't move a mount residing in a shared parent.
1632 	 */
1633 	if (old_path.mnt->mnt_parent &&
1634 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1635 		goto out1;
1636 	/*
1637 	 * Don't move a mount tree containing unbindable mounts to a destination
1638 	 * mount which is shared.
1639 	 */
1640 	if (IS_MNT_SHARED(path->mnt) &&
1641 	    tree_contains_unbindable(old_path.mnt))
1642 		goto out1;
1643 	err = -ELOOP;
1644 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1645 		if (p == old_path.mnt)
1646 			goto out1;
1647 
1648 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1649 	if (err)
1650 		goto out1;
1651 
1652 	/* if the mount is moved, it should no longer be expire
1653 	 * automatically */
1654 	list_del_init(&old_path.mnt->mnt_expire);
1655 out1:
1656 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1657 out:
1658 	up_write(&namespace_sem);
1659 	if (!err)
1660 		path_put(&parent_path);
1661 	path_put(&old_path);
1662 	return err;
1663 }
1664 
1665 /*
1666  * create a new mount for userspace and request it to be added into the
1667  * namespace's tree
1668  */
1669 static int do_new_mount(struct path *path, char *type, int flags,
1670 			int mnt_flags, char *name, void *data)
1671 {
1672 	struct vfsmount *mnt;
1673 
1674 	if (!type)
1675 		return -EINVAL;
1676 
1677 	/* we need capabilities... */
1678 	if (!capable(CAP_SYS_ADMIN))
1679 		return -EPERM;
1680 
1681 	lock_kernel();
1682 	mnt = do_kern_mount(type, flags, name, data);
1683 	unlock_kernel();
1684 	if (IS_ERR(mnt))
1685 		return PTR_ERR(mnt);
1686 
1687 	return do_add_mount(mnt, path, mnt_flags, NULL);
1688 }
1689 
1690 /*
1691  * add a mount into a namespace's mount tree
1692  * - provide the option of adding the new mount to an expiration list
1693  */
1694 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1695 		 int mnt_flags, struct list_head *fslist)
1696 {
1697 	int err;
1698 
1699 	mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1700 
1701 	down_write(&namespace_sem);
1702 	/* Something was mounted here while we slept */
1703 	while (d_mountpoint(path->dentry) &&
1704 	       follow_down(path))
1705 		;
1706 	err = -EINVAL;
1707 	if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1708 		goto unlock;
1709 
1710 	/* Refuse the same filesystem on the same mount point */
1711 	err = -EBUSY;
1712 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1713 	    path->mnt->mnt_root == path->dentry)
1714 		goto unlock;
1715 
1716 	err = -EINVAL;
1717 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1718 		goto unlock;
1719 
1720 	newmnt->mnt_flags = mnt_flags;
1721 	if ((err = graft_tree(newmnt, path)))
1722 		goto unlock;
1723 
1724 	if (fslist) /* add to the specified expiration list */
1725 		list_add_tail(&newmnt->mnt_expire, fslist);
1726 
1727 	up_write(&namespace_sem);
1728 	return 0;
1729 
1730 unlock:
1731 	up_write(&namespace_sem);
1732 	mntput(newmnt);
1733 	return err;
1734 }
1735 
1736 EXPORT_SYMBOL_GPL(do_add_mount);
1737 
1738 /*
1739  * process a list of expirable mountpoints with the intent of discarding any
1740  * mountpoints that aren't in use and haven't been touched since last we came
1741  * here
1742  */
1743 void mark_mounts_for_expiry(struct list_head *mounts)
1744 {
1745 	struct vfsmount *mnt, *next;
1746 	LIST_HEAD(graveyard);
1747 	LIST_HEAD(umounts);
1748 
1749 	if (list_empty(mounts))
1750 		return;
1751 
1752 	down_write(&namespace_sem);
1753 	spin_lock(&vfsmount_lock);
1754 
1755 	/* extract from the expiration list every vfsmount that matches the
1756 	 * following criteria:
1757 	 * - only referenced by its parent vfsmount
1758 	 * - still marked for expiry (marked on the last call here; marks are
1759 	 *   cleared by mntput())
1760 	 */
1761 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1762 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1763 			propagate_mount_busy(mnt, 1))
1764 			continue;
1765 		list_move(&mnt->mnt_expire, &graveyard);
1766 	}
1767 	while (!list_empty(&graveyard)) {
1768 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1769 		touch_mnt_namespace(mnt->mnt_ns);
1770 		umount_tree(mnt, 1, &umounts);
1771 	}
1772 	spin_unlock(&vfsmount_lock);
1773 	up_write(&namespace_sem);
1774 
1775 	release_mounts(&umounts);
1776 }
1777 
1778 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1779 
1780 /*
1781  * Ripoff of 'select_parent()'
1782  *
1783  * search the list of submounts for a given mountpoint, and move any
1784  * shrinkable submounts to the 'graveyard' list.
1785  */
1786 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1787 {
1788 	struct vfsmount *this_parent = parent;
1789 	struct list_head *next;
1790 	int found = 0;
1791 
1792 repeat:
1793 	next = this_parent->mnt_mounts.next;
1794 resume:
1795 	while (next != &this_parent->mnt_mounts) {
1796 		struct list_head *tmp = next;
1797 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1798 
1799 		next = tmp->next;
1800 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1801 			continue;
1802 		/*
1803 		 * Descend a level if the d_mounts list is non-empty.
1804 		 */
1805 		if (!list_empty(&mnt->mnt_mounts)) {
1806 			this_parent = mnt;
1807 			goto repeat;
1808 		}
1809 
1810 		if (!propagate_mount_busy(mnt, 1)) {
1811 			list_move_tail(&mnt->mnt_expire, graveyard);
1812 			found++;
1813 		}
1814 	}
1815 	/*
1816 	 * All done at this level ... ascend and resume the search
1817 	 */
1818 	if (this_parent != parent) {
1819 		next = this_parent->mnt_child.next;
1820 		this_parent = this_parent->mnt_parent;
1821 		goto resume;
1822 	}
1823 	return found;
1824 }
1825 
1826 /*
1827  * process a list of expirable mountpoints with the intent of discarding any
1828  * submounts of a specific parent mountpoint
1829  */
1830 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1831 {
1832 	LIST_HEAD(graveyard);
1833 	struct vfsmount *m;
1834 
1835 	/* extract submounts of 'mountpoint' from the expiration list */
1836 	while (select_submounts(mnt, &graveyard)) {
1837 		while (!list_empty(&graveyard)) {
1838 			m = list_first_entry(&graveyard, struct vfsmount,
1839 						mnt_expire);
1840 			touch_mnt_namespace(m->mnt_ns);
1841 			umount_tree(m, 1, umounts);
1842 		}
1843 	}
1844 }
1845 
1846 /*
1847  * Some copy_from_user() implementations do not return the exact number of
1848  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1849  * Note that this function differs from copy_from_user() in that it will oops
1850  * on bad values of `to', rather than returning a short copy.
1851  */
1852 static long exact_copy_from_user(void *to, const void __user * from,
1853 				 unsigned long n)
1854 {
1855 	char *t = to;
1856 	const char __user *f = from;
1857 	char c;
1858 
1859 	if (!access_ok(VERIFY_READ, from, n))
1860 		return n;
1861 
1862 	while (n) {
1863 		if (__get_user(c, f)) {
1864 			memset(t, 0, n);
1865 			break;
1866 		}
1867 		*t++ = c;
1868 		f++;
1869 		n--;
1870 	}
1871 	return n;
1872 }
1873 
1874 int copy_mount_options(const void __user * data, unsigned long *where)
1875 {
1876 	int i;
1877 	unsigned long page;
1878 	unsigned long size;
1879 
1880 	*where = 0;
1881 	if (!data)
1882 		return 0;
1883 
1884 	if (!(page = __get_free_page(GFP_KERNEL)))
1885 		return -ENOMEM;
1886 
1887 	/* We only care that *some* data at the address the user
1888 	 * gave us is valid.  Just in case, we'll zero
1889 	 * the remainder of the page.
1890 	 */
1891 	/* copy_from_user cannot cross TASK_SIZE ! */
1892 	size = TASK_SIZE - (unsigned long)data;
1893 	if (size > PAGE_SIZE)
1894 		size = PAGE_SIZE;
1895 
1896 	i = size - exact_copy_from_user((void *)page, data, size);
1897 	if (!i) {
1898 		free_page(page);
1899 		return -EFAULT;
1900 	}
1901 	if (i != PAGE_SIZE)
1902 		memset((char *)page + i, 0, PAGE_SIZE - i);
1903 	*where = page;
1904 	return 0;
1905 }
1906 
1907 int copy_mount_string(const void __user *data, char **where)
1908 {
1909 	char *tmp;
1910 
1911 	if (!data) {
1912 		*where = NULL;
1913 		return 0;
1914 	}
1915 
1916 	tmp = strndup_user(data, PAGE_SIZE);
1917 	if (IS_ERR(tmp))
1918 		return PTR_ERR(tmp);
1919 
1920 	*where = tmp;
1921 	return 0;
1922 }
1923 
1924 /*
1925  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1926  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1927  *
1928  * data is a (void *) that can point to any structure up to
1929  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1930  * information (or be NULL).
1931  *
1932  * Pre-0.97 versions of mount() didn't have a flags word.
1933  * When the flags word was introduced its top half was required
1934  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1935  * Therefore, if this magic number is present, it carries no information
1936  * and must be discarded.
1937  */
1938 long do_mount(char *dev_name, char *dir_name, char *type_page,
1939 		  unsigned long flags, void *data_page)
1940 {
1941 	struct path path;
1942 	int retval = 0;
1943 	int mnt_flags = 0;
1944 
1945 	/* Discard magic */
1946 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1947 		flags &= ~MS_MGC_MSK;
1948 
1949 	/* Basic sanity checks */
1950 
1951 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1952 		return -EINVAL;
1953 
1954 	if (data_page)
1955 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1956 
1957 	/* ... and get the mountpoint */
1958 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1959 	if (retval)
1960 		return retval;
1961 
1962 	retval = security_sb_mount(dev_name, &path,
1963 				   type_page, flags, data_page);
1964 	if (retval)
1965 		goto dput_out;
1966 
1967 	/* Default to relatime unless overriden */
1968 	if (!(flags & MS_NOATIME))
1969 		mnt_flags |= MNT_RELATIME;
1970 
1971 	/* Separate the per-mountpoint flags */
1972 	if (flags & MS_NOSUID)
1973 		mnt_flags |= MNT_NOSUID;
1974 	if (flags & MS_NODEV)
1975 		mnt_flags |= MNT_NODEV;
1976 	if (flags & MS_NOEXEC)
1977 		mnt_flags |= MNT_NOEXEC;
1978 	if (flags & MS_NOATIME)
1979 		mnt_flags |= MNT_NOATIME;
1980 	if (flags & MS_NODIRATIME)
1981 		mnt_flags |= MNT_NODIRATIME;
1982 	if (flags & MS_STRICTATIME)
1983 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1984 	if (flags & MS_RDONLY)
1985 		mnt_flags |= MNT_READONLY;
1986 
1987 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1988 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1989 		   MS_STRICTATIME);
1990 
1991 	if (flags & MS_REMOUNT)
1992 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1993 				    data_page);
1994 	else if (flags & MS_BIND)
1995 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1996 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1997 		retval = do_change_type(&path, flags);
1998 	else if (flags & MS_MOVE)
1999 		retval = do_move_mount(&path, dev_name);
2000 	else
2001 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2002 				      dev_name, data_page);
2003 dput_out:
2004 	path_put(&path);
2005 	return retval;
2006 }
2007 
2008 static struct mnt_namespace *alloc_mnt_ns(void)
2009 {
2010 	struct mnt_namespace *new_ns;
2011 
2012 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2013 	if (!new_ns)
2014 		return ERR_PTR(-ENOMEM);
2015 	atomic_set(&new_ns->count, 1);
2016 	new_ns->root = NULL;
2017 	INIT_LIST_HEAD(&new_ns->list);
2018 	init_waitqueue_head(&new_ns->poll);
2019 	new_ns->event = 0;
2020 	return new_ns;
2021 }
2022 
2023 /*
2024  * Allocate a new namespace structure and populate it with contents
2025  * copied from the namespace of the passed in task structure.
2026  */
2027 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2028 		struct fs_struct *fs)
2029 {
2030 	struct mnt_namespace *new_ns;
2031 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2032 	struct vfsmount *p, *q;
2033 
2034 	new_ns = alloc_mnt_ns();
2035 	if (IS_ERR(new_ns))
2036 		return new_ns;
2037 
2038 	down_write(&namespace_sem);
2039 	/* First pass: copy the tree topology */
2040 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2041 					CL_COPY_ALL | CL_EXPIRE);
2042 	if (!new_ns->root) {
2043 		up_write(&namespace_sem);
2044 		kfree(new_ns);
2045 		return ERR_PTR(-ENOMEM);
2046 	}
2047 	spin_lock(&vfsmount_lock);
2048 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2049 	spin_unlock(&vfsmount_lock);
2050 
2051 	/*
2052 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2053 	 * as belonging to new namespace.  We have already acquired a private
2054 	 * fs_struct, so tsk->fs->lock is not needed.
2055 	 */
2056 	p = mnt_ns->root;
2057 	q = new_ns->root;
2058 	while (p) {
2059 		q->mnt_ns = new_ns;
2060 		if (fs) {
2061 			if (p == fs->root.mnt) {
2062 				rootmnt = p;
2063 				fs->root.mnt = mntget(q);
2064 			}
2065 			if (p == fs->pwd.mnt) {
2066 				pwdmnt = p;
2067 				fs->pwd.mnt = mntget(q);
2068 			}
2069 		}
2070 		p = next_mnt(p, mnt_ns->root);
2071 		q = next_mnt(q, new_ns->root);
2072 	}
2073 	up_write(&namespace_sem);
2074 
2075 	if (rootmnt)
2076 		mntput(rootmnt);
2077 	if (pwdmnt)
2078 		mntput(pwdmnt);
2079 
2080 	return new_ns;
2081 }
2082 
2083 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2084 		struct fs_struct *new_fs)
2085 {
2086 	struct mnt_namespace *new_ns;
2087 
2088 	BUG_ON(!ns);
2089 	get_mnt_ns(ns);
2090 
2091 	if (!(flags & CLONE_NEWNS))
2092 		return ns;
2093 
2094 	new_ns = dup_mnt_ns(ns, new_fs);
2095 
2096 	put_mnt_ns(ns);
2097 	return new_ns;
2098 }
2099 
2100 /**
2101  * create_mnt_ns - creates a private namespace and adds a root filesystem
2102  * @mnt: pointer to the new root filesystem mountpoint
2103  */
2104 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2105 {
2106 	struct mnt_namespace *new_ns;
2107 
2108 	new_ns = alloc_mnt_ns();
2109 	if (!IS_ERR(new_ns)) {
2110 		mnt->mnt_ns = new_ns;
2111 		new_ns->root = mnt;
2112 		list_add(&new_ns->list, &new_ns->root->mnt_list);
2113 	}
2114 	return new_ns;
2115 }
2116 EXPORT_SYMBOL(create_mnt_ns);
2117 
2118 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2119 		char __user *, type, unsigned long, flags, void __user *, data)
2120 {
2121 	int ret;
2122 	char *kernel_type;
2123 	char *kernel_dir;
2124 	char *kernel_dev;
2125 	unsigned long data_page;
2126 
2127 	ret = copy_mount_string(type, &kernel_type);
2128 	if (ret < 0)
2129 		goto out_type;
2130 
2131 	kernel_dir = getname(dir_name);
2132 	if (IS_ERR(kernel_dir)) {
2133 		ret = PTR_ERR(kernel_dir);
2134 		goto out_dir;
2135 	}
2136 
2137 	ret = copy_mount_string(dev_name, &kernel_dev);
2138 	if (ret < 0)
2139 		goto out_dev;
2140 
2141 	ret = copy_mount_options(data, &data_page);
2142 	if (ret < 0)
2143 		goto out_data;
2144 
2145 	ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2146 		(void *) data_page);
2147 
2148 	free_page(data_page);
2149 out_data:
2150 	kfree(kernel_dev);
2151 out_dev:
2152 	putname(kernel_dir);
2153 out_dir:
2154 	kfree(kernel_type);
2155 out_type:
2156 	return ret;
2157 }
2158 
2159 /*
2160  * pivot_root Semantics:
2161  * Moves the root file system of the current process to the directory put_old,
2162  * makes new_root as the new root file system of the current process, and sets
2163  * root/cwd of all processes which had them on the current root to new_root.
2164  *
2165  * Restrictions:
2166  * The new_root and put_old must be directories, and  must not be on the
2167  * same file  system as the current process root. The put_old  must  be
2168  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2169  * pointed to by put_old must yield the same directory as new_root. No other
2170  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2171  *
2172  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2173  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2174  * in this situation.
2175  *
2176  * Notes:
2177  *  - we don't move root/cwd if they are not at the root (reason: if something
2178  *    cared enough to change them, it's probably wrong to force them elsewhere)
2179  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2180  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2181  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2182  *    first.
2183  */
2184 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2185 		const char __user *, put_old)
2186 {
2187 	struct vfsmount *tmp;
2188 	struct path new, old, parent_path, root_parent, root;
2189 	int error;
2190 
2191 	if (!capable(CAP_SYS_ADMIN))
2192 		return -EPERM;
2193 
2194 	error = user_path_dir(new_root, &new);
2195 	if (error)
2196 		goto out0;
2197 	error = -EINVAL;
2198 	if (!check_mnt(new.mnt))
2199 		goto out1;
2200 
2201 	error = user_path_dir(put_old, &old);
2202 	if (error)
2203 		goto out1;
2204 
2205 	error = security_sb_pivotroot(&old, &new);
2206 	if (error) {
2207 		path_put(&old);
2208 		goto out1;
2209 	}
2210 
2211 	read_lock(&current->fs->lock);
2212 	root = current->fs->root;
2213 	path_get(&current->fs->root);
2214 	read_unlock(&current->fs->lock);
2215 	down_write(&namespace_sem);
2216 	mutex_lock(&old.dentry->d_inode->i_mutex);
2217 	error = -EINVAL;
2218 	if (IS_MNT_SHARED(old.mnt) ||
2219 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2220 		IS_MNT_SHARED(root.mnt->mnt_parent))
2221 		goto out2;
2222 	if (!check_mnt(root.mnt))
2223 		goto out2;
2224 	error = -ENOENT;
2225 	if (cant_mount(old.dentry))
2226 		goto out2;
2227 	if (d_unlinked(new.dentry))
2228 		goto out2;
2229 	if (d_unlinked(old.dentry))
2230 		goto out2;
2231 	error = -EBUSY;
2232 	if (new.mnt == root.mnt ||
2233 	    old.mnt == root.mnt)
2234 		goto out2; /* loop, on the same file system  */
2235 	error = -EINVAL;
2236 	if (root.mnt->mnt_root != root.dentry)
2237 		goto out2; /* not a mountpoint */
2238 	if (root.mnt->mnt_parent == root.mnt)
2239 		goto out2; /* not attached */
2240 	if (new.mnt->mnt_root != new.dentry)
2241 		goto out2; /* not a mountpoint */
2242 	if (new.mnt->mnt_parent == new.mnt)
2243 		goto out2; /* not attached */
2244 	/* make sure we can reach put_old from new_root */
2245 	tmp = old.mnt;
2246 	spin_lock(&vfsmount_lock);
2247 	if (tmp != new.mnt) {
2248 		for (;;) {
2249 			if (tmp->mnt_parent == tmp)
2250 				goto out3; /* already mounted on put_old */
2251 			if (tmp->mnt_parent == new.mnt)
2252 				break;
2253 			tmp = tmp->mnt_parent;
2254 		}
2255 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2256 			goto out3;
2257 	} else if (!is_subdir(old.dentry, new.dentry))
2258 		goto out3;
2259 	detach_mnt(new.mnt, &parent_path);
2260 	detach_mnt(root.mnt, &root_parent);
2261 	/* mount old root on put_old */
2262 	attach_mnt(root.mnt, &old);
2263 	/* mount new_root on / */
2264 	attach_mnt(new.mnt, &root_parent);
2265 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2266 	spin_unlock(&vfsmount_lock);
2267 	chroot_fs_refs(&root, &new);
2268 	error = 0;
2269 	path_put(&root_parent);
2270 	path_put(&parent_path);
2271 out2:
2272 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2273 	up_write(&namespace_sem);
2274 	path_put(&root);
2275 	path_put(&old);
2276 out1:
2277 	path_put(&new);
2278 out0:
2279 	return error;
2280 out3:
2281 	spin_unlock(&vfsmount_lock);
2282 	goto out2;
2283 }
2284 
2285 static void __init init_mount_tree(void)
2286 {
2287 	struct vfsmount *mnt;
2288 	struct mnt_namespace *ns;
2289 	struct path root;
2290 
2291 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2292 	if (IS_ERR(mnt))
2293 		panic("Can't create rootfs");
2294 	ns = create_mnt_ns(mnt);
2295 	if (IS_ERR(ns))
2296 		panic("Can't allocate initial namespace");
2297 
2298 	init_task.nsproxy->mnt_ns = ns;
2299 	get_mnt_ns(ns);
2300 
2301 	root.mnt = ns->root;
2302 	root.dentry = ns->root->mnt_root;
2303 
2304 	set_fs_pwd(current->fs, &root);
2305 	set_fs_root(current->fs, &root);
2306 }
2307 
2308 void __init mnt_init(void)
2309 {
2310 	unsigned u;
2311 	int err;
2312 
2313 	init_rwsem(&namespace_sem);
2314 
2315 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2316 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2317 
2318 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2319 
2320 	if (!mount_hashtable)
2321 		panic("Failed to allocate mount hash table\n");
2322 
2323 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2324 
2325 	for (u = 0; u < HASH_SIZE; u++)
2326 		INIT_LIST_HEAD(&mount_hashtable[u]);
2327 
2328 	err = sysfs_init();
2329 	if (err)
2330 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2331 			__func__, err);
2332 	fs_kobj = kobject_create_and_add("fs", NULL);
2333 	if (!fs_kobj)
2334 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2335 	init_rootfs();
2336 	init_mount_tree();
2337 }
2338 
2339 void put_mnt_ns(struct mnt_namespace *ns)
2340 {
2341 	LIST_HEAD(umount_list);
2342 
2343 	if (!atomic_dec_and_test(&ns->count))
2344 		return;
2345 	down_write(&namespace_sem);
2346 	spin_lock(&vfsmount_lock);
2347 	umount_tree(ns->root, 0, &umount_list);
2348 	spin_unlock(&vfsmount_lock);
2349 	up_write(&namespace_sem);
2350 	release_mounts(&umount_list);
2351 	kfree(ns);
2352 }
2353 EXPORT_SYMBOL(put_mnt_ns);
2354