xref: /linux/fs/namespace.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37 
38 #include "pnode.h"
39 #include "internal.h"
40 
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48 
49 static __initdata unsigned long mhash_entries;
50 static int __init set_mhash_entries(char *str)
51 {
52 	if (!str)
53 		return 0;
54 	mhash_entries = simple_strtoul(str, &str, 0);
55 	return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58 
59 static __initdata unsigned long mphash_entries;
60 static int __init set_mphash_entries(char *str)
61 {
62 	if (!str)
63 		return 0;
64 	mphash_entries = simple_strtoul(str, &str, 0);
65 	return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68 
69 static char * __initdata initramfs_options;
70 static int __init initramfs_options_setup(char *str)
71 {
72 	initramfs_options = str;
73 	return 1;
74 }
75 
76 __setup("initramfs_options=", initramfs_options_setup);
77 
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81 
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85 
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93 
94 #ifdef CONFIG_FSNOTIFY
95 LIST_HEAD(notify_list); /* protected by namespace_sem */
96 #endif
97 
98 enum mount_kattr_flags_t {
99 	MOUNT_KATTR_RECURSE		= (1 << 0),
100 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
101 };
102 
103 struct mount_kattr {
104 	unsigned int attr_set;
105 	unsigned int attr_clr;
106 	unsigned int propagation;
107 	unsigned int lookup_flags;
108 	enum mount_kattr_flags_t kflags;
109 	struct user_namespace *mnt_userns;
110 	struct mnt_idmap *mnt_idmap;
111 };
112 
113 /* /sys/fs */
114 struct kobject *fs_kobj __ro_after_init;
115 EXPORT_SYMBOL_GPL(fs_kobj);
116 
117 /*
118  * vfsmount lock may be taken for read to prevent changes to the
119  * vfsmount hash, ie. during mountpoint lookups or walking back
120  * up the tree.
121  *
122  * It should be taken for write in all cases where the vfsmount
123  * tree or hash is modified or when a vfsmount structure is modified.
124  */
125 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
126 
127 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
128 {
129 	struct ns_common *ns;
130 
131 	if (!node)
132 		return NULL;
133 	ns = rb_entry(node, struct ns_common, ns_tree_node);
134 	return container_of(ns, struct mnt_namespace, ns);
135 }
136 
137 static void mnt_ns_release(struct mnt_namespace *ns)
138 {
139 	/* keep alive for {list,stat}mount() */
140 	if (ns && refcount_dec_and_test(&ns->passive)) {
141 		fsnotify_mntns_delete(ns);
142 		put_user_ns(ns->user_ns);
143 		kfree(ns);
144 	}
145 }
146 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
147 
148 static void mnt_ns_release_rcu(struct rcu_head *rcu)
149 {
150 	mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
151 }
152 
153 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
154 {
155 	/* remove from global mount namespace list */
156 	if (ns_tree_active(ns))
157 		ns_tree_remove(ns);
158 
159 	call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
160 }
161 
162 /*
163  * Lookup a mount namespace by id and take a passive reference count. Taking a
164  * passive reference means the mount namespace can be emptied if e.g., the last
165  * task holding an active reference exits. To access the mounts of the
166  * namespace the @namespace_sem must first be acquired. If the namespace has
167  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
168  * see that the mount rbtree of the namespace is empty.
169  *
170  * Note the lookup is lockless protected by a sequence counter. We only
171  * need to guard against false negatives as false positives aren't
172  * possible. So if we didn't find a mount namespace and the sequence
173  * counter has changed we need to retry. If the sequence counter is
174  * still the same we know the search actually failed.
175  */
176 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
177 {
178 	struct mnt_namespace *mnt_ns;
179 	struct ns_common *ns;
180 
181 	guard(rcu)();
182 	ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
183 	if (!ns)
184 		return NULL;
185 
186 	/*
187 	 * The last reference count is put with RCU delay so we can
188 	 * unconditonally acquire a reference here.
189 	 */
190 	mnt_ns = container_of(ns, struct mnt_namespace, ns);
191 	refcount_inc(&mnt_ns->passive);
192 	return mnt_ns;
193 }
194 
195 static inline void lock_mount_hash(void)
196 {
197 	write_seqlock(&mount_lock);
198 }
199 
200 static inline void unlock_mount_hash(void)
201 {
202 	write_sequnlock(&mount_lock);
203 }
204 
205 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
206 {
207 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
208 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
209 	tmp = tmp + (tmp >> m_hash_shift);
210 	return &mount_hashtable[tmp & m_hash_mask];
211 }
212 
213 static inline struct hlist_head *mp_hash(struct dentry *dentry)
214 {
215 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
216 	tmp = tmp + (tmp >> mp_hash_shift);
217 	return &mountpoint_hashtable[tmp & mp_hash_mask];
218 }
219 
220 static int mnt_alloc_id(struct mount *mnt)
221 {
222 	int res;
223 
224 	xa_lock(&mnt_id_xa);
225 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
226 	if (!res)
227 		mnt->mnt_id_unique = ++mnt_id_ctr;
228 	xa_unlock(&mnt_id_xa);
229 	return res;
230 }
231 
232 static void mnt_free_id(struct mount *mnt)
233 {
234 	xa_erase(&mnt_id_xa, mnt->mnt_id);
235 }
236 
237 /*
238  * Allocate a new peer group ID
239  */
240 static int mnt_alloc_group_id(struct mount *mnt)
241 {
242 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
243 
244 	if (res < 0)
245 		return res;
246 	mnt->mnt_group_id = res;
247 	return 0;
248 }
249 
250 /*
251  * Release a peer group ID
252  */
253 void mnt_release_group_id(struct mount *mnt)
254 {
255 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
256 	mnt->mnt_group_id = 0;
257 }
258 
259 /*
260  * vfsmount lock must be held for read
261  */
262 static inline void mnt_add_count(struct mount *mnt, int n)
263 {
264 #ifdef CONFIG_SMP
265 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
266 #else
267 	preempt_disable();
268 	mnt->mnt_count += n;
269 	preempt_enable();
270 #endif
271 }
272 
273 /*
274  * vfsmount lock must be held for write
275  */
276 int mnt_get_count(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	int count = 0;
280 	int cpu;
281 
282 	for_each_possible_cpu(cpu) {
283 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
284 	}
285 
286 	return count;
287 #else
288 	return mnt->mnt_count;
289 #endif
290 }
291 
292 static struct mount *alloc_vfsmnt(const char *name)
293 {
294 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
295 	if (mnt) {
296 		int err;
297 
298 		err = mnt_alloc_id(mnt);
299 		if (err)
300 			goto out_free_cache;
301 
302 		if (name)
303 			mnt->mnt_devname = kstrdup_const(name,
304 							 GFP_KERNEL_ACCOUNT);
305 		else
306 			mnt->mnt_devname = "none";
307 		if (!mnt->mnt_devname)
308 			goto out_free_id;
309 
310 #ifdef CONFIG_SMP
311 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
312 		if (!mnt->mnt_pcp)
313 			goto out_free_devname;
314 
315 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
316 #else
317 		mnt->mnt_count = 1;
318 		mnt->mnt_writers = 0;
319 #endif
320 
321 		INIT_HLIST_NODE(&mnt->mnt_hash);
322 		INIT_LIST_HEAD(&mnt->mnt_child);
323 		INIT_LIST_HEAD(&mnt->mnt_mounts);
324 		INIT_LIST_HEAD(&mnt->mnt_list);
325 		INIT_LIST_HEAD(&mnt->mnt_expire);
326 		INIT_LIST_HEAD(&mnt->mnt_share);
327 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
328 		INIT_HLIST_NODE(&mnt->mnt_slave);
329 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
330 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
331 		RB_CLEAR_NODE(&mnt->mnt_node);
332 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
333 	}
334 	return mnt;
335 
336 #ifdef CONFIG_SMP
337 out_free_devname:
338 	kfree_const(mnt->mnt_devname);
339 #endif
340 out_free_id:
341 	mnt_free_id(mnt);
342 out_free_cache:
343 	kmem_cache_free(mnt_cache, mnt);
344 	return NULL;
345 }
346 
347 /*
348  * Most r/o checks on a fs are for operations that take
349  * discrete amounts of time, like a write() or unlink().
350  * We must keep track of when those operations start
351  * (for permission checks) and when they end, so that
352  * we can determine when writes are able to occur to
353  * a filesystem.
354  */
355 /*
356  * __mnt_is_readonly: check whether a mount is read-only
357  * @mnt: the mount to check for its write status
358  *
359  * This shouldn't be used directly ouside of the VFS.
360  * It does not guarantee that the filesystem will stay
361  * r/w, just that it is right *now*.  This can not and
362  * should not be used in place of IS_RDONLY(inode).
363  * mnt_want/drop_write() will _keep_ the filesystem
364  * r/w.
365  */
366 bool __mnt_is_readonly(struct vfsmount *mnt)
367 {
368 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
369 }
370 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
371 
372 static inline void mnt_inc_writers(struct mount *mnt)
373 {
374 #ifdef CONFIG_SMP
375 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
376 #else
377 	mnt->mnt_writers++;
378 #endif
379 }
380 
381 static inline void mnt_dec_writers(struct mount *mnt)
382 {
383 #ifdef CONFIG_SMP
384 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
385 #else
386 	mnt->mnt_writers--;
387 #endif
388 }
389 
390 static unsigned int mnt_get_writers(struct mount *mnt)
391 {
392 #ifdef CONFIG_SMP
393 	unsigned int count = 0;
394 	int cpu;
395 
396 	for_each_possible_cpu(cpu) {
397 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
398 	}
399 
400 	return count;
401 #else
402 	return mnt->mnt_writers;
403 #endif
404 }
405 
406 static int mnt_is_readonly(struct vfsmount *mnt)
407 {
408 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
409 		return 1;
410 	/*
411 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
412 	 * making sure if we don't see s_readonly_remount set yet, we also will
413 	 * not see any superblock / mount flag changes done by remount.
414 	 * It also pairs with the barrier in sb_end_ro_state_change()
415 	 * assuring that if we see s_readonly_remount already cleared, we will
416 	 * see the values of superblock / mount flags updated by remount.
417 	 */
418 	smp_rmb();
419 	return __mnt_is_readonly(mnt);
420 }
421 
422 /*
423  * Most r/o & frozen checks on a fs are for operations that take discrete
424  * amounts of time, like a write() or unlink().  We must keep track of when
425  * those operations start (for permission checks) and when they end, so that we
426  * can determine when writes are able to occur to a filesystem.
427  */
428 /**
429  * mnt_get_write_access - get write access to a mount without freeze protection
430  * @m: the mount on which to take a write
431  *
432  * This tells the low-level filesystem that a write is about to be performed to
433  * it, and makes sure that writes are allowed (mnt it read-write) before
434  * returning success. This operation does not protect against filesystem being
435  * frozen. When the write operation is finished, mnt_put_write_access() must be
436  * called. This is effectively a refcount.
437  */
438 int mnt_get_write_access(struct vfsmount *m)
439 {
440 	struct mount *mnt = real_mount(m);
441 	int ret = 0;
442 
443 	preempt_disable();
444 	mnt_inc_writers(mnt);
445 	/*
446 	 * The store to mnt_inc_writers must be visible before we pass
447 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
448 	 * incremented count after it has set MNT_WRITE_HOLD.
449 	 */
450 	smp_mb();
451 	might_lock(&mount_lock.lock);
452 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
453 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
454 			cpu_relax();
455 		} else {
456 			/*
457 			 * This prevents priority inversion, if the task
458 			 * setting MNT_WRITE_HOLD got preempted on a remote
459 			 * CPU, and it prevents life lock if the task setting
460 			 * MNT_WRITE_HOLD has a lower priority and is bound to
461 			 * the same CPU as the task that is spinning here.
462 			 */
463 			preempt_enable();
464 			lock_mount_hash();
465 			unlock_mount_hash();
466 			preempt_disable();
467 		}
468 	}
469 	/*
470 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
471 	 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
472 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
473 	 * mnt_is_readonly() and bail in case we are racing with remount
474 	 * read-only.
475 	 */
476 	smp_rmb();
477 	if (mnt_is_readonly(m)) {
478 		mnt_dec_writers(mnt);
479 		ret = -EROFS;
480 	}
481 	preempt_enable();
482 
483 	return ret;
484 }
485 EXPORT_SYMBOL_GPL(mnt_get_write_access);
486 
487 /**
488  * mnt_want_write - get write access to a mount
489  * @m: the mount on which to take a write
490  *
491  * This tells the low-level filesystem that a write is about to be performed to
492  * it, and makes sure that writes are allowed (mount is read-write, filesystem
493  * is not frozen) before returning success.  When the write operation is
494  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
495  */
496 int mnt_want_write(struct vfsmount *m)
497 {
498 	int ret;
499 
500 	sb_start_write(m->mnt_sb);
501 	ret = mnt_get_write_access(m);
502 	if (ret)
503 		sb_end_write(m->mnt_sb);
504 	return ret;
505 }
506 EXPORT_SYMBOL_GPL(mnt_want_write);
507 
508 /**
509  * mnt_get_write_access_file - get write access to a file's mount
510  * @file: the file who's mount on which to take a write
511  *
512  * This is like mnt_get_write_access, but if @file is already open for write it
513  * skips incrementing mnt_writers (since the open file already has a reference)
514  * and instead only does the check for emergency r/o remounts.  This must be
515  * paired with mnt_put_write_access_file.
516  */
517 int mnt_get_write_access_file(struct file *file)
518 {
519 	if (file->f_mode & FMODE_WRITER) {
520 		/*
521 		 * Superblock may have become readonly while there are still
522 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
523 		 */
524 		if (__mnt_is_readonly(file->f_path.mnt))
525 			return -EROFS;
526 		return 0;
527 	}
528 	return mnt_get_write_access(file->f_path.mnt);
529 }
530 
531 /**
532  * mnt_want_write_file - get write access to a file's mount
533  * @file: the file who's mount on which to take a write
534  *
535  * This is like mnt_want_write, but if the file is already open for writing it
536  * skips incrementing mnt_writers (since the open file already has a reference)
537  * and instead only does the freeze protection and the check for emergency r/o
538  * remounts.  This must be paired with mnt_drop_write_file.
539  */
540 int mnt_want_write_file(struct file *file)
541 {
542 	int ret;
543 
544 	sb_start_write(file_inode(file)->i_sb);
545 	ret = mnt_get_write_access_file(file);
546 	if (ret)
547 		sb_end_write(file_inode(file)->i_sb);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(mnt_want_write_file);
551 
552 /**
553  * mnt_put_write_access - give up write access to a mount
554  * @mnt: the mount on which to give up write access
555  *
556  * Tells the low-level filesystem that we are done
557  * performing writes to it.  Must be matched with
558  * mnt_get_write_access() call above.
559  */
560 void mnt_put_write_access(struct vfsmount *mnt)
561 {
562 	preempt_disable();
563 	mnt_dec_writers(real_mount(mnt));
564 	preempt_enable();
565 }
566 EXPORT_SYMBOL_GPL(mnt_put_write_access);
567 
568 /**
569  * mnt_drop_write - give up write access to a mount
570  * @mnt: the mount on which to give up write access
571  *
572  * Tells the low-level filesystem that we are done performing writes to it and
573  * also allows filesystem to be frozen again.  Must be matched with
574  * mnt_want_write() call above.
575  */
576 void mnt_drop_write(struct vfsmount *mnt)
577 {
578 	mnt_put_write_access(mnt);
579 	sb_end_write(mnt->mnt_sb);
580 }
581 EXPORT_SYMBOL_GPL(mnt_drop_write);
582 
583 void mnt_put_write_access_file(struct file *file)
584 {
585 	if (!(file->f_mode & FMODE_WRITER))
586 		mnt_put_write_access(file->f_path.mnt);
587 }
588 
589 void mnt_drop_write_file(struct file *file)
590 {
591 	mnt_put_write_access_file(file);
592 	sb_end_write(file_inode(file)->i_sb);
593 }
594 EXPORT_SYMBOL(mnt_drop_write_file);
595 
596 /**
597  * mnt_hold_writers - prevent write access to the given mount
598  * @mnt: mnt to prevent write access to
599  *
600  * Prevents write access to @mnt if there are no active writers for @mnt.
601  * This function needs to be called and return successfully before changing
602  * properties of @mnt that need to remain stable for callers with write access
603  * to @mnt.
604  *
605  * After this functions has been called successfully callers must pair it with
606  * a call to mnt_unhold_writers() in order to stop preventing write access to
607  * @mnt.
608  *
609  * Context: This function expects lock_mount_hash() to be held serializing
610  *          setting MNT_WRITE_HOLD.
611  * Return: On success 0 is returned.
612  *	   On error, -EBUSY is returned.
613  */
614 static inline int mnt_hold_writers(struct mount *mnt)
615 {
616 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
617 	/*
618 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
619 	 * should be visible before we do.
620 	 */
621 	smp_mb();
622 
623 	/*
624 	 * With writers on hold, if this value is zero, then there are
625 	 * definitely no active writers (although held writers may subsequently
626 	 * increment the count, they'll have to wait, and decrement it after
627 	 * seeing MNT_READONLY).
628 	 *
629 	 * It is OK to have counter incremented on one CPU and decremented on
630 	 * another: the sum will add up correctly. The danger would be when we
631 	 * sum up each counter, if we read a counter before it is incremented,
632 	 * but then read another CPU's count which it has been subsequently
633 	 * decremented from -- we would see more decrements than we should.
634 	 * MNT_WRITE_HOLD protects against this scenario, because
635 	 * mnt_want_write first increments count, then smp_mb, then spins on
636 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
637 	 * we're counting up here.
638 	 */
639 	if (mnt_get_writers(mnt) > 0)
640 		return -EBUSY;
641 
642 	return 0;
643 }
644 
645 /**
646  * mnt_unhold_writers - stop preventing write access to the given mount
647  * @mnt: mnt to stop preventing write access to
648  *
649  * Stop preventing write access to @mnt allowing callers to gain write access
650  * to @mnt again.
651  *
652  * This function can only be called after a successful call to
653  * mnt_hold_writers().
654  *
655  * Context: This function expects lock_mount_hash() to be held.
656  */
657 static inline void mnt_unhold_writers(struct mount *mnt)
658 {
659 	/*
660 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
661 	 * that become unheld will see MNT_READONLY.
662 	 */
663 	smp_wmb();
664 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
665 }
666 
667 static int mnt_make_readonly(struct mount *mnt)
668 {
669 	int ret;
670 
671 	ret = mnt_hold_writers(mnt);
672 	if (!ret)
673 		mnt->mnt.mnt_flags |= MNT_READONLY;
674 	mnt_unhold_writers(mnt);
675 	return ret;
676 }
677 
678 int sb_prepare_remount_readonly(struct super_block *sb)
679 {
680 	struct mount *mnt;
681 	int err = 0;
682 
683 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
684 	if (atomic_long_read(&sb->s_remove_count))
685 		return -EBUSY;
686 
687 	lock_mount_hash();
688 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
689 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
690 			err = mnt_hold_writers(mnt);
691 			if (err)
692 				break;
693 		}
694 	}
695 	if (!err && atomic_long_read(&sb->s_remove_count))
696 		err = -EBUSY;
697 
698 	if (!err)
699 		sb_start_ro_state_change(sb);
700 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
701 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
702 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
703 	}
704 	unlock_mount_hash();
705 
706 	return err;
707 }
708 
709 static void free_vfsmnt(struct mount *mnt)
710 {
711 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
712 	kfree_const(mnt->mnt_devname);
713 #ifdef CONFIG_SMP
714 	free_percpu(mnt->mnt_pcp);
715 #endif
716 	kmem_cache_free(mnt_cache, mnt);
717 }
718 
719 static void delayed_free_vfsmnt(struct rcu_head *head)
720 {
721 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
722 }
723 
724 /* call under rcu_read_lock */
725 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
726 {
727 	struct mount *mnt;
728 	if (read_seqretry(&mount_lock, seq))
729 		return 1;
730 	if (bastard == NULL)
731 		return 0;
732 	mnt = real_mount(bastard);
733 	mnt_add_count(mnt, 1);
734 	smp_mb();		// see mntput_no_expire() and do_umount()
735 	if (likely(!read_seqretry(&mount_lock, seq)))
736 		return 0;
737 	lock_mount_hash();
738 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
739 		mnt_add_count(mnt, -1);
740 		unlock_mount_hash();
741 		return 1;
742 	}
743 	unlock_mount_hash();
744 	/* caller will mntput() */
745 	return -1;
746 }
747 
748 /* call under rcu_read_lock */
749 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
750 {
751 	int res = __legitimize_mnt(bastard, seq);
752 	if (likely(!res))
753 		return true;
754 	if (unlikely(res < 0)) {
755 		rcu_read_unlock();
756 		mntput(bastard);
757 		rcu_read_lock();
758 	}
759 	return false;
760 }
761 
762 /**
763  * __lookup_mnt - find first child mount
764  * @mnt:	parent mount
765  * @dentry:	mountpoint
766  *
767  * If @mnt has a child mount @c mounted @dentry find and return it.
768  *
769  * Note that the child mount @c need not be unique. There are cases
770  * where shadow mounts are created. For example, during mount
771  * propagation when a source mount @mnt whose root got overmounted by a
772  * mount @o after path lookup but before @namespace_sem could be
773  * acquired gets copied and propagated. So @mnt gets copied including
774  * @o. When @mnt is propagated to a destination mount @d that already
775  * has another mount @n mounted at the same mountpoint then the source
776  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
777  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
778  * on @dentry.
779  *
780  * Return: The first child of @mnt mounted @dentry or NULL.
781  */
782 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
783 {
784 	struct hlist_head *head = m_hash(mnt, dentry);
785 	struct mount *p;
786 
787 	hlist_for_each_entry_rcu(p, head, mnt_hash)
788 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
789 			return p;
790 	return NULL;
791 }
792 
793 /*
794  * lookup_mnt - Return the first child mount mounted at path
795  *
796  * "First" means first mounted chronologically.  If you create the
797  * following mounts:
798  *
799  * mount /dev/sda1 /mnt
800  * mount /dev/sda2 /mnt
801  * mount /dev/sda3 /mnt
802  *
803  * Then lookup_mnt() on the base /mnt dentry in the root mount will
804  * return successively the root dentry and vfsmount of /dev/sda1, then
805  * /dev/sda2, then /dev/sda3, then NULL.
806  *
807  * lookup_mnt takes a reference to the found vfsmount.
808  */
809 struct vfsmount *lookup_mnt(const struct path *path)
810 {
811 	struct mount *child_mnt;
812 	struct vfsmount *m;
813 	unsigned seq;
814 
815 	rcu_read_lock();
816 	do {
817 		seq = read_seqbegin(&mount_lock);
818 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
819 		m = child_mnt ? &child_mnt->mnt : NULL;
820 	} while (!legitimize_mnt(m, seq));
821 	rcu_read_unlock();
822 	return m;
823 }
824 
825 /*
826  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
827  *                         current mount namespace.
828  *
829  * The common case is dentries are not mountpoints at all and that
830  * test is handled inline.  For the slow case when we are actually
831  * dealing with a mountpoint of some kind, walk through all of the
832  * mounts in the current mount namespace and test to see if the dentry
833  * is a mountpoint.
834  *
835  * The mount_hashtable is not usable in the context because we
836  * need to identify all mounts that may be in the current mount
837  * namespace not just a mount that happens to have some specified
838  * parent mount.
839  */
840 bool __is_local_mountpoint(const struct dentry *dentry)
841 {
842 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
843 	struct mount *mnt, *n;
844 	bool is_covered = false;
845 
846 	down_read(&namespace_sem);
847 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
848 		is_covered = (mnt->mnt_mountpoint == dentry);
849 		if (is_covered)
850 			break;
851 	}
852 	up_read(&namespace_sem);
853 
854 	return is_covered;
855 }
856 
857 struct pinned_mountpoint {
858 	struct hlist_node node;
859 	struct mountpoint *mp;
860 };
861 
862 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
863 {
864 	struct hlist_head *chain = mp_hash(dentry);
865 	struct mountpoint *mp;
866 
867 	hlist_for_each_entry(mp, chain, m_hash) {
868 		if (mp->m_dentry == dentry) {
869 			hlist_add_head(&m->node, &mp->m_list);
870 			m->mp = mp;
871 			return true;
872 		}
873 	}
874 	return false;
875 }
876 
877 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
878 {
879 	struct mountpoint *mp __free(kfree) = NULL;
880 	bool found;
881 	int ret;
882 
883 	if (d_mountpoint(dentry)) {
884 		/* might be worth a WARN_ON() */
885 		if (d_unlinked(dentry))
886 			return -ENOENT;
887 mountpoint:
888 		read_seqlock_excl(&mount_lock);
889 		found = lookup_mountpoint(dentry, m);
890 		read_sequnlock_excl(&mount_lock);
891 		if (found)
892 			return 0;
893 	}
894 
895 	if (!mp)
896 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
897 	if (!mp)
898 		return -ENOMEM;
899 
900 	/* Exactly one processes may set d_mounted */
901 	ret = d_set_mounted(dentry);
902 
903 	/* Someone else set d_mounted? */
904 	if (ret == -EBUSY)
905 		goto mountpoint;
906 
907 	/* The dentry is not available as a mountpoint? */
908 	if (ret)
909 		return ret;
910 
911 	/* Add the new mountpoint to the hash table */
912 	read_seqlock_excl(&mount_lock);
913 	mp->m_dentry = dget(dentry);
914 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
915 	INIT_HLIST_HEAD(&mp->m_list);
916 	hlist_add_head(&m->node, &mp->m_list);
917 	m->mp = no_free_ptr(mp);
918 	read_sequnlock_excl(&mount_lock);
919 	return 0;
920 }
921 
922 /*
923  * vfsmount lock must be held.  Additionally, the caller is responsible
924  * for serializing calls for given disposal list.
925  */
926 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
927 {
928 	if (hlist_empty(&mp->m_list)) {
929 		struct dentry *dentry = mp->m_dentry;
930 		spin_lock(&dentry->d_lock);
931 		dentry->d_flags &= ~DCACHE_MOUNTED;
932 		spin_unlock(&dentry->d_lock);
933 		dput_to_list(dentry, list);
934 		hlist_del(&mp->m_hash);
935 		kfree(mp);
936 	}
937 }
938 
939 /*
940  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
941  */
942 static void unpin_mountpoint(struct pinned_mountpoint *m)
943 {
944 	if (m->mp) {
945 		hlist_del(&m->node);
946 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
947 	}
948 }
949 
950 static inline int check_mnt(struct mount *mnt)
951 {
952 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
953 }
954 
955 static inline bool check_anonymous_mnt(struct mount *mnt)
956 {
957 	u64 seq;
958 
959 	if (!is_anon_ns(mnt->mnt_ns))
960 		return false;
961 
962 	seq = mnt->mnt_ns->seq_origin;
963 	return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
964 }
965 
966 /*
967  * vfsmount lock must be held for write
968  */
969 static void touch_mnt_namespace(struct mnt_namespace *ns)
970 {
971 	if (ns) {
972 		ns->event = ++event;
973 		wake_up_interruptible(&ns->poll);
974 	}
975 }
976 
977 /*
978  * vfsmount lock must be held for write
979  */
980 static void __touch_mnt_namespace(struct mnt_namespace *ns)
981 {
982 	if (ns && ns->event != event) {
983 		ns->event = event;
984 		wake_up_interruptible(&ns->poll);
985 	}
986 }
987 
988 /*
989  * locks: mount_lock[write_seqlock]
990  */
991 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
992 {
993 	struct mountpoint *mp;
994 	struct mount *parent = mnt->mnt_parent;
995 	if (unlikely(parent->overmount == mnt))
996 		parent->overmount = NULL;
997 	mnt->mnt_parent = mnt;
998 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
999 	list_del_init(&mnt->mnt_child);
1000 	hlist_del_init_rcu(&mnt->mnt_hash);
1001 	hlist_del_init(&mnt->mnt_mp_list);
1002 	mp = mnt->mnt_mp;
1003 	mnt->mnt_mp = NULL;
1004 	maybe_free_mountpoint(mp, shrink_list);
1005 }
1006 
1007 /*
1008  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1009  */
1010 static void umount_mnt(struct mount *mnt)
1011 {
1012 	__umount_mnt(mnt, &ex_mountpoints);
1013 }
1014 
1015 /*
1016  * vfsmount lock must be held for write
1017  */
1018 void mnt_set_mountpoint(struct mount *mnt,
1019 			struct mountpoint *mp,
1020 			struct mount *child_mnt)
1021 {
1022 	child_mnt->mnt_mountpoint = mp->m_dentry;
1023 	child_mnt->mnt_parent = mnt;
1024 	child_mnt->mnt_mp = mp;
1025 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1026 }
1027 
1028 static void make_visible(struct mount *mnt)
1029 {
1030 	struct mount *parent = mnt->mnt_parent;
1031 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1032 		parent->overmount = mnt;
1033 	hlist_add_head_rcu(&mnt->mnt_hash,
1034 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1035 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1036 }
1037 
1038 /**
1039  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1040  *              list of child mounts
1041  * @parent:  the parent
1042  * @mnt:     the new mount
1043  * @mp:      the new mountpoint
1044  *
1045  * Mount @mnt at @mp on @parent. Then attach @mnt
1046  * to @parent's child mount list and to @mount_hashtable.
1047  *
1048  * Note, when make_visible() is called @mnt->mnt_parent already points
1049  * to the correct parent.
1050  *
1051  * Context: This function expects namespace_lock() and lock_mount_hash()
1052  *          to have been acquired in that order.
1053  */
1054 static void attach_mnt(struct mount *mnt, struct mount *parent,
1055 		       struct mountpoint *mp)
1056 {
1057 	mnt_set_mountpoint(parent, mp, mnt);
1058 	make_visible(mnt);
1059 }
1060 
1061 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1062 {
1063 	struct mountpoint *old_mp = mnt->mnt_mp;
1064 
1065 	list_del_init(&mnt->mnt_child);
1066 	hlist_del_init(&mnt->mnt_mp_list);
1067 	hlist_del_init_rcu(&mnt->mnt_hash);
1068 
1069 	attach_mnt(mnt, parent, mp);
1070 
1071 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1072 }
1073 
1074 static inline struct mount *node_to_mount(struct rb_node *node)
1075 {
1076 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1077 }
1078 
1079 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1080 {
1081 	struct rb_node **link = &ns->mounts.rb_node;
1082 	struct rb_node *parent = NULL;
1083 	bool mnt_first_node = true, mnt_last_node = true;
1084 
1085 	WARN_ON(mnt_ns_attached(mnt));
1086 	mnt->mnt_ns = ns;
1087 	while (*link) {
1088 		parent = *link;
1089 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1090 			link = &parent->rb_left;
1091 			mnt_last_node = false;
1092 		} else {
1093 			link = &parent->rb_right;
1094 			mnt_first_node = false;
1095 		}
1096 	}
1097 
1098 	if (mnt_last_node)
1099 		ns->mnt_last_node = &mnt->mnt_node;
1100 	if (mnt_first_node)
1101 		ns->mnt_first_node = &mnt->mnt_node;
1102 	rb_link_node(&mnt->mnt_node, parent, link);
1103 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1104 
1105 	mnt_notify_add(mnt);
1106 }
1107 
1108 static struct mount *next_mnt(struct mount *p, struct mount *root)
1109 {
1110 	struct list_head *next = p->mnt_mounts.next;
1111 	if (next == &p->mnt_mounts) {
1112 		while (1) {
1113 			if (p == root)
1114 				return NULL;
1115 			next = p->mnt_child.next;
1116 			if (next != &p->mnt_parent->mnt_mounts)
1117 				break;
1118 			p = p->mnt_parent;
1119 		}
1120 	}
1121 	return list_entry(next, struct mount, mnt_child);
1122 }
1123 
1124 static struct mount *skip_mnt_tree(struct mount *p)
1125 {
1126 	struct list_head *prev = p->mnt_mounts.prev;
1127 	while (prev != &p->mnt_mounts) {
1128 		p = list_entry(prev, struct mount, mnt_child);
1129 		prev = p->mnt_mounts.prev;
1130 	}
1131 	return p;
1132 }
1133 
1134 /*
1135  * vfsmount lock must be held for write
1136  */
1137 static void commit_tree(struct mount *mnt)
1138 {
1139 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1140 
1141 	if (!mnt_ns_attached(mnt)) {
1142 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1143 			mnt_add_to_ns(n, m);
1144 		n->nr_mounts += n->pending_mounts;
1145 		n->pending_mounts = 0;
1146 	}
1147 
1148 	make_visible(mnt);
1149 	touch_mnt_namespace(n);
1150 }
1151 
1152 /**
1153  * vfs_create_mount - Create a mount for a configured superblock
1154  * @fc: The configuration context with the superblock attached
1155  *
1156  * Create a mount to an already configured superblock.  If necessary, the
1157  * caller should invoke vfs_get_tree() before calling this.
1158  *
1159  * Note that this does not attach the mount to anything.
1160  */
1161 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1162 {
1163 	struct mount *mnt;
1164 
1165 	if (!fc->root)
1166 		return ERR_PTR(-EINVAL);
1167 
1168 	mnt = alloc_vfsmnt(fc->source);
1169 	if (!mnt)
1170 		return ERR_PTR(-ENOMEM);
1171 
1172 	if (fc->sb_flags & SB_KERNMOUNT)
1173 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1174 
1175 	atomic_inc(&fc->root->d_sb->s_active);
1176 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1177 	mnt->mnt.mnt_root	= dget(fc->root);
1178 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1179 	mnt->mnt_parent		= mnt;
1180 
1181 	lock_mount_hash();
1182 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1183 	unlock_mount_hash();
1184 	return &mnt->mnt;
1185 }
1186 EXPORT_SYMBOL(vfs_create_mount);
1187 
1188 struct vfsmount *fc_mount(struct fs_context *fc)
1189 {
1190 	int err = vfs_get_tree(fc);
1191 	if (!err) {
1192 		up_write(&fc->root->d_sb->s_umount);
1193 		return vfs_create_mount(fc);
1194 	}
1195 	return ERR_PTR(err);
1196 }
1197 EXPORT_SYMBOL(fc_mount);
1198 
1199 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1200 {
1201 	struct vfsmount *mnt = fc_mount(fc);
1202 	if (!IS_ERR(mnt))
1203 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1204 	return mnt;
1205 }
1206 EXPORT_SYMBOL(fc_mount_longterm);
1207 
1208 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1209 				int flags, const char *name,
1210 				void *data)
1211 {
1212 	struct fs_context *fc;
1213 	struct vfsmount *mnt;
1214 	int ret = 0;
1215 
1216 	if (!type)
1217 		return ERR_PTR(-EINVAL);
1218 
1219 	fc = fs_context_for_mount(type, flags);
1220 	if (IS_ERR(fc))
1221 		return ERR_CAST(fc);
1222 
1223 	if (name)
1224 		ret = vfs_parse_fs_string(fc, "source",
1225 					  name, strlen(name));
1226 	if (!ret)
1227 		ret = parse_monolithic_mount_data(fc, data);
1228 	if (!ret)
1229 		mnt = fc_mount(fc);
1230 	else
1231 		mnt = ERR_PTR(ret);
1232 
1233 	put_fs_context(fc);
1234 	return mnt;
1235 }
1236 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1237 
1238 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1239 					int flag)
1240 {
1241 	struct super_block *sb = old->mnt.mnt_sb;
1242 	struct mount *mnt;
1243 	int err;
1244 
1245 	mnt = alloc_vfsmnt(old->mnt_devname);
1246 	if (!mnt)
1247 		return ERR_PTR(-ENOMEM);
1248 
1249 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1250 			     ~MNT_INTERNAL_FLAGS;
1251 
1252 	if (flag & (CL_SLAVE | CL_PRIVATE))
1253 		mnt->mnt_group_id = 0; /* not a peer of original */
1254 	else
1255 		mnt->mnt_group_id = old->mnt_group_id;
1256 
1257 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1258 		err = mnt_alloc_group_id(mnt);
1259 		if (err)
1260 			goto out_free;
1261 	}
1262 
1263 	if (mnt->mnt_group_id)
1264 		set_mnt_shared(mnt);
1265 
1266 	atomic_inc(&sb->s_active);
1267 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1268 
1269 	mnt->mnt.mnt_sb = sb;
1270 	mnt->mnt.mnt_root = dget(root);
1271 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1272 	mnt->mnt_parent = mnt;
1273 	lock_mount_hash();
1274 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1275 	unlock_mount_hash();
1276 
1277 	if (flag & CL_PRIVATE)	// we are done with it
1278 		return mnt;
1279 
1280 	if (peers(mnt, old))
1281 		list_add(&mnt->mnt_share, &old->mnt_share);
1282 
1283 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 		mnt->mnt_master = old;
1286 	} else if (IS_MNT_SLAVE(old)) {
1287 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 		mnt->mnt_master = old->mnt_master;
1289 	}
1290 	return mnt;
1291 
1292  out_free:
1293 	mnt_free_id(mnt);
1294 	free_vfsmnt(mnt);
1295 	return ERR_PTR(err);
1296 }
1297 
1298 static void cleanup_mnt(struct mount *mnt)
1299 {
1300 	struct hlist_node *p;
1301 	struct mount *m;
1302 	/*
1303 	 * The warning here probably indicates that somebody messed
1304 	 * up a mnt_want/drop_write() pair.  If this happens, the
1305 	 * filesystem was probably unable to make r/w->r/o transitions.
1306 	 * The locking used to deal with mnt_count decrement provides barriers,
1307 	 * so mnt_get_writers() below is safe.
1308 	 */
1309 	WARN_ON(mnt_get_writers(mnt));
1310 	if (unlikely(mnt->mnt_pins.first))
1311 		mnt_pin_kill(mnt);
1312 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 		hlist_del(&m->mnt_umount);
1314 		mntput(&m->mnt);
1315 	}
1316 	fsnotify_vfsmount_delete(&mnt->mnt);
1317 	dput(mnt->mnt.mnt_root);
1318 	deactivate_super(mnt->mnt.mnt_sb);
1319 	mnt_free_id(mnt);
1320 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321 }
1322 
1323 static void __cleanup_mnt(struct rcu_head *head)
1324 {
1325 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326 }
1327 
1328 static LLIST_HEAD(delayed_mntput_list);
1329 static void delayed_mntput(struct work_struct *unused)
1330 {
1331 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 	struct mount *m, *t;
1333 
1334 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 		cleanup_mnt(m);
1336 }
1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338 
1339 static void mntput_no_expire(struct mount *mnt)
1340 {
1341 	LIST_HEAD(list);
1342 	int count;
1343 
1344 	rcu_read_lock();
1345 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1346 		/*
1347 		 * Since we don't do lock_mount_hash() here,
1348 		 * ->mnt_ns can change under us.  However, if it's
1349 		 * non-NULL, then there's a reference that won't
1350 		 * be dropped until after an RCU delay done after
1351 		 * turning ->mnt_ns NULL.  So if we observe it
1352 		 * non-NULL under rcu_read_lock(), the reference
1353 		 * we are dropping is not the final one.
1354 		 */
1355 		mnt_add_count(mnt, -1);
1356 		rcu_read_unlock();
1357 		return;
1358 	}
1359 	lock_mount_hash();
1360 	/*
1361 	 * make sure that if __legitimize_mnt() has not seen us grab
1362 	 * mount_lock, we'll see their refcount increment here.
1363 	 */
1364 	smp_mb();
1365 	mnt_add_count(mnt, -1);
1366 	count = mnt_get_count(mnt);
1367 	if (count != 0) {
1368 		WARN_ON(count < 0);
1369 		rcu_read_unlock();
1370 		unlock_mount_hash();
1371 		return;
1372 	}
1373 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1374 		rcu_read_unlock();
1375 		unlock_mount_hash();
1376 		return;
1377 	}
1378 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1379 	rcu_read_unlock();
1380 
1381 	list_del(&mnt->mnt_instance);
1382 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1383 		list_del(&mnt->mnt_expire);
1384 
1385 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1386 		struct mount *p, *tmp;
1387 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1388 			__umount_mnt(p, &list);
1389 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1390 		}
1391 	}
1392 	unlock_mount_hash();
1393 	shrink_dentry_list(&list);
1394 
1395 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1396 		struct task_struct *task = current;
1397 		if (likely(!(task->flags & PF_KTHREAD))) {
1398 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1399 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1400 				return;
1401 		}
1402 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1403 			schedule_delayed_work(&delayed_mntput_work, 1);
1404 		return;
1405 	}
1406 	cleanup_mnt(mnt);
1407 }
1408 
1409 void mntput(struct vfsmount *mnt)
1410 {
1411 	if (mnt) {
1412 		struct mount *m = real_mount(mnt);
1413 		/* avoid cacheline pingpong */
1414 		if (unlikely(m->mnt_expiry_mark))
1415 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1416 		mntput_no_expire(m);
1417 	}
1418 }
1419 EXPORT_SYMBOL(mntput);
1420 
1421 struct vfsmount *mntget(struct vfsmount *mnt)
1422 {
1423 	if (mnt)
1424 		mnt_add_count(real_mount(mnt), 1);
1425 	return mnt;
1426 }
1427 EXPORT_SYMBOL(mntget);
1428 
1429 /*
1430  * Make a mount point inaccessible to new lookups.
1431  * Because there may still be current users, the caller MUST WAIT
1432  * for an RCU grace period before destroying the mount point.
1433  */
1434 void mnt_make_shortterm(struct vfsmount *mnt)
1435 {
1436 	if (mnt)
1437 		real_mount(mnt)->mnt_ns = NULL;
1438 }
1439 
1440 /**
1441  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1442  * @path: path to check
1443  *
1444  *  d_mountpoint() can only be used reliably to establish if a dentry is
1445  *  not mounted in any namespace and that common case is handled inline.
1446  *  d_mountpoint() isn't aware of the possibility there may be multiple
1447  *  mounts using a given dentry in a different namespace. This function
1448  *  checks if the passed in path is a mountpoint rather than the dentry
1449  *  alone.
1450  */
1451 bool path_is_mountpoint(const struct path *path)
1452 {
1453 	unsigned seq;
1454 	bool res;
1455 
1456 	if (!d_mountpoint(path->dentry))
1457 		return false;
1458 
1459 	rcu_read_lock();
1460 	do {
1461 		seq = read_seqbegin(&mount_lock);
1462 		res = __path_is_mountpoint(path);
1463 	} while (read_seqretry(&mount_lock, seq));
1464 	rcu_read_unlock();
1465 
1466 	return res;
1467 }
1468 EXPORT_SYMBOL(path_is_mountpoint);
1469 
1470 struct vfsmount *mnt_clone_internal(const struct path *path)
1471 {
1472 	struct mount *p;
1473 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1474 	if (IS_ERR(p))
1475 		return ERR_CAST(p);
1476 	p->mnt.mnt_flags |= MNT_INTERNAL;
1477 	return &p->mnt;
1478 }
1479 
1480 /*
1481  * Returns the mount which either has the specified mnt_id, or has the next
1482  * smallest id afer the specified one.
1483  */
1484 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1485 {
1486 	struct rb_node *node = ns->mounts.rb_node;
1487 	struct mount *ret = NULL;
1488 
1489 	while (node) {
1490 		struct mount *m = node_to_mount(node);
1491 
1492 		if (mnt_id <= m->mnt_id_unique) {
1493 			ret = node_to_mount(node);
1494 			if (mnt_id == m->mnt_id_unique)
1495 				break;
1496 			node = node->rb_left;
1497 		} else {
1498 			node = node->rb_right;
1499 		}
1500 	}
1501 	return ret;
1502 }
1503 
1504 /*
1505  * Returns the mount which either has the specified mnt_id, or has the next
1506  * greater id before the specified one.
1507  */
1508 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1509 {
1510 	struct rb_node *node = ns->mounts.rb_node;
1511 	struct mount *ret = NULL;
1512 
1513 	while (node) {
1514 		struct mount *m = node_to_mount(node);
1515 
1516 		if (mnt_id >= m->mnt_id_unique) {
1517 			ret = node_to_mount(node);
1518 			if (mnt_id == m->mnt_id_unique)
1519 				break;
1520 			node = node->rb_right;
1521 		} else {
1522 			node = node->rb_left;
1523 		}
1524 	}
1525 	return ret;
1526 }
1527 
1528 #ifdef CONFIG_PROC_FS
1529 
1530 /* iterator; we want it to have access to namespace_sem, thus here... */
1531 static void *m_start(struct seq_file *m, loff_t *pos)
1532 {
1533 	struct proc_mounts *p = m->private;
1534 
1535 	down_read(&namespace_sem);
1536 
1537 	return mnt_find_id_at(p->ns, *pos);
1538 }
1539 
1540 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1541 {
1542 	struct mount *next = NULL, *mnt = v;
1543 	struct rb_node *node = rb_next(&mnt->mnt_node);
1544 
1545 	++*pos;
1546 	if (node) {
1547 		next = node_to_mount(node);
1548 		*pos = next->mnt_id_unique;
1549 	}
1550 	return next;
1551 }
1552 
1553 static void m_stop(struct seq_file *m, void *v)
1554 {
1555 	up_read(&namespace_sem);
1556 }
1557 
1558 static int m_show(struct seq_file *m, void *v)
1559 {
1560 	struct proc_mounts *p = m->private;
1561 	struct mount *r = v;
1562 	return p->show(m, &r->mnt);
1563 }
1564 
1565 const struct seq_operations mounts_op = {
1566 	.start	= m_start,
1567 	.next	= m_next,
1568 	.stop	= m_stop,
1569 	.show	= m_show,
1570 };
1571 
1572 #endif  /* CONFIG_PROC_FS */
1573 
1574 /**
1575  * may_umount_tree - check if a mount tree is busy
1576  * @m: root of mount tree
1577  *
1578  * This is called to check if a tree of mounts has any
1579  * open files, pwds, chroots or sub mounts that are
1580  * busy.
1581  */
1582 int may_umount_tree(struct vfsmount *m)
1583 {
1584 	struct mount *mnt = real_mount(m);
1585 	bool busy = false;
1586 
1587 	/* write lock needed for mnt_get_count */
1588 	lock_mount_hash();
1589 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1590 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1591 			busy = true;
1592 			break;
1593 		}
1594 	}
1595 	unlock_mount_hash();
1596 
1597 	return !busy;
1598 }
1599 
1600 EXPORT_SYMBOL(may_umount_tree);
1601 
1602 /**
1603  * may_umount - check if a mount point is busy
1604  * @mnt: root of mount
1605  *
1606  * This is called to check if a mount point has any
1607  * open files, pwds, chroots or sub mounts. If the
1608  * mount has sub mounts this will return busy
1609  * regardless of whether the sub mounts are busy.
1610  *
1611  * Doesn't take quota and stuff into account. IOW, in some cases it will
1612  * give false negatives. The main reason why it's here is that we need
1613  * a non-destructive way to look for easily umountable filesystems.
1614  */
1615 int may_umount(struct vfsmount *mnt)
1616 {
1617 	int ret = 1;
1618 	down_read(&namespace_sem);
1619 	lock_mount_hash();
1620 	if (propagate_mount_busy(real_mount(mnt), 2))
1621 		ret = 0;
1622 	unlock_mount_hash();
1623 	up_read(&namespace_sem);
1624 	return ret;
1625 }
1626 
1627 EXPORT_SYMBOL(may_umount);
1628 
1629 #ifdef CONFIG_FSNOTIFY
1630 static void mnt_notify(struct mount *p)
1631 {
1632 	if (!p->prev_ns && p->mnt_ns) {
1633 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1634 	} else if (p->prev_ns && !p->mnt_ns) {
1635 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1636 	} else if (p->prev_ns == p->mnt_ns) {
1637 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1638 	} else {
1639 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1640 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1641 	}
1642 	p->prev_ns = p->mnt_ns;
1643 }
1644 
1645 static void notify_mnt_list(void)
1646 {
1647 	struct mount *m, *tmp;
1648 	/*
1649 	 * Notify about mounts that were added/reparented/detached/remain
1650 	 * connected after unmount.
1651 	 */
1652 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1653 		mnt_notify(m);
1654 		list_del_init(&m->to_notify);
1655 	}
1656 }
1657 
1658 static bool need_notify_mnt_list(void)
1659 {
1660 	return !list_empty(&notify_list);
1661 }
1662 #else
1663 static void notify_mnt_list(void)
1664 {
1665 }
1666 
1667 static bool need_notify_mnt_list(void)
1668 {
1669 	return false;
1670 }
1671 #endif
1672 
1673 static void free_mnt_ns(struct mnt_namespace *);
1674 static void namespace_unlock(void)
1675 {
1676 	struct hlist_head head;
1677 	struct hlist_node *p;
1678 	struct mount *m;
1679 	struct mnt_namespace *ns = emptied_ns;
1680 	LIST_HEAD(list);
1681 
1682 	hlist_move_list(&unmounted, &head);
1683 	list_splice_init(&ex_mountpoints, &list);
1684 	emptied_ns = NULL;
1685 
1686 	if (need_notify_mnt_list()) {
1687 		/*
1688 		 * No point blocking out concurrent readers while notifications
1689 		 * are sent. This will also allow statmount()/listmount() to run
1690 		 * concurrently.
1691 		 */
1692 		downgrade_write(&namespace_sem);
1693 		notify_mnt_list();
1694 		up_read(&namespace_sem);
1695 	} else {
1696 		up_write(&namespace_sem);
1697 	}
1698 	if (unlikely(ns)) {
1699 		/* Make sure we notice when we leak mounts. */
1700 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1701 		free_mnt_ns(ns);
1702 	}
1703 
1704 	shrink_dentry_list(&list);
1705 
1706 	if (likely(hlist_empty(&head)))
1707 		return;
1708 
1709 	synchronize_rcu_expedited();
1710 
1711 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1712 		hlist_del(&m->mnt_umount);
1713 		mntput(&m->mnt);
1714 	}
1715 }
1716 
1717 static inline void namespace_lock(void)
1718 {
1719 	down_write(&namespace_sem);
1720 }
1721 
1722 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1723 
1724 enum umount_tree_flags {
1725 	UMOUNT_SYNC = 1,
1726 	UMOUNT_PROPAGATE = 2,
1727 	UMOUNT_CONNECTED = 4,
1728 };
1729 
1730 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1731 {
1732 	/* Leaving mounts connected is only valid for lazy umounts */
1733 	if (how & UMOUNT_SYNC)
1734 		return true;
1735 
1736 	/* A mount without a parent has nothing to be connected to */
1737 	if (!mnt_has_parent(mnt))
1738 		return true;
1739 
1740 	/* Because the reference counting rules change when mounts are
1741 	 * unmounted and connected, umounted mounts may not be
1742 	 * connected to mounted mounts.
1743 	 */
1744 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1745 		return true;
1746 
1747 	/* Has it been requested that the mount remain connected? */
1748 	if (how & UMOUNT_CONNECTED)
1749 		return false;
1750 
1751 	/* Is the mount locked such that it needs to remain connected? */
1752 	if (IS_MNT_LOCKED(mnt))
1753 		return false;
1754 
1755 	/* By default disconnect the mount */
1756 	return true;
1757 }
1758 
1759 /*
1760  * mount_lock must be held
1761  * namespace_sem must be held for write
1762  */
1763 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1764 {
1765 	LIST_HEAD(tmp_list);
1766 	struct mount *p;
1767 
1768 	if (how & UMOUNT_PROPAGATE)
1769 		propagate_mount_unlock(mnt);
1770 
1771 	/* Gather the mounts to umount */
1772 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1773 		p->mnt.mnt_flags |= MNT_UMOUNT;
1774 		if (mnt_ns_attached(p))
1775 			move_from_ns(p);
1776 		list_add_tail(&p->mnt_list, &tmp_list);
1777 	}
1778 
1779 	/* Hide the mounts from mnt_mounts */
1780 	list_for_each_entry(p, &tmp_list, mnt_list) {
1781 		list_del_init(&p->mnt_child);
1782 	}
1783 
1784 	/* Add propagated mounts to the tmp_list */
1785 	if (how & UMOUNT_PROPAGATE)
1786 		propagate_umount(&tmp_list);
1787 
1788 	while (!list_empty(&tmp_list)) {
1789 		struct mnt_namespace *ns;
1790 		bool disconnect;
1791 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1792 		list_del_init(&p->mnt_expire);
1793 		list_del_init(&p->mnt_list);
1794 		ns = p->mnt_ns;
1795 		if (ns) {
1796 			ns->nr_mounts--;
1797 			__touch_mnt_namespace(ns);
1798 		}
1799 		p->mnt_ns = NULL;
1800 		if (how & UMOUNT_SYNC)
1801 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1802 
1803 		disconnect = disconnect_mount(p, how);
1804 		if (mnt_has_parent(p)) {
1805 			if (!disconnect) {
1806 				/* Don't forget about p */
1807 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1808 			} else {
1809 				umount_mnt(p);
1810 			}
1811 		}
1812 		change_mnt_propagation(p, MS_PRIVATE);
1813 		if (disconnect)
1814 			hlist_add_head(&p->mnt_umount, &unmounted);
1815 
1816 		/*
1817 		 * At this point p->mnt_ns is NULL, notification will be queued
1818 		 * only if
1819 		 *
1820 		 *  - p->prev_ns is non-NULL *and*
1821 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1822 		 *
1823 		 * This will preclude queuing the mount if this is a cleanup
1824 		 * after a failed copy_tree() or destruction of an anonymous
1825 		 * namespace, etc.
1826 		 */
1827 		mnt_notify_add(p);
1828 	}
1829 }
1830 
1831 static void shrink_submounts(struct mount *mnt);
1832 
1833 static int do_umount_root(struct super_block *sb)
1834 {
1835 	int ret = 0;
1836 
1837 	down_write(&sb->s_umount);
1838 	if (!sb_rdonly(sb)) {
1839 		struct fs_context *fc;
1840 
1841 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1842 						SB_RDONLY);
1843 		if (IS_ERR(fc)) {
1844 			ret = PTR_ERR(fc);
1845 		} else {
1846 			ret = parse_monolithic_mount_data(fc, NULL);
1847 			if (!ret)
1848 				ret = reconfigure_super(fc);
1849 			put_fs_context(fc);
1850 		}
1851 	}
1852 	up_write(&sb->s_umount);
1853 	return ret;
1854 }
1855 
1856 static int do_umount(struct mount *mnt, int flags)
1857 {
1858 	struct super_block *sb = mnt->mnt.mnt_sb;
1859 	int retval;
1860 
1861 	retval = security_sb_umount(&mnt->mnt, flags);
1862 	if (retval)
1863 		return retval;
1864 
1865 	/*
1866 	 * Allow userspace to request a mountpoint be expired rather than
1867 	 * unmounting unconditionally. Unmount only happens if:
1868 	 *  (1) the mark is already set (the mark is cleared by mntput())
1869 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1870 	 */
1871 	if (flags & MNT_EXPIRE) {
1872 		if (&mnt->mnt == current->fs->root.mnt ||
1873 		    flags & (MNT_FORCE | MNT_DETACH))
1874 			return -EINVAL;
1875 
1876 		/*
1877 		 * probably don't strictly need the lock here if we examined
1878 		 * all race cases, but it's a slowpath.
1879 		 */
1880 		lock_mount_hash();
1881 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1882 			unlock_mount_hash();
1883 			return -EBUSY;
1884 		}
1885 		unlock_mount_hash();
1886 
1887 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1888 			return -EAGAIN;
1889 	}
1890 
1891 	/*
1892 	 * If we may have to abort operations to get out of this
1893 	 * mount, and they will themselves hold resources we must
1894 	 * allow the fs to do things. In the Unix tradition of
1895 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1896 	 * might fail to complete on the first run through as other tasks
1897 	 * must return, and the like. Thats for the mount program to worry
1898 	 * about for the moment.
1899 	 */
1900 
1901 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1902 		sb->s_op->umount_begin(sb);
1903 	}
1904 
1905 	/*
1906 	 * No sense to grab the lock for this test, but test itself looks
1907 	 * somewhat bogus. Suggestions for better replacement?
1908 	 * Ho-hum... In principle, we might treat that as umount + switch
1909 	 * to rootfs. GC would eventually take care of the old vfsmount.
1910 	 * Actually it makes sense, especially if rootfs would contain a
1911 	 * /reboot - static binary that would close all descriptors and
1912 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1913 	 */
1914 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1915 		/*
1916 		 * Special case for "unmounting" root ...
1917 		 * we just try to remount it readonly.
1918 		 */
1919 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1920 			return -EPERM;
1921 		return do_umount_root(sb);
1922 	}
1923 
1924 	namespace_lock();
1925 	lock_mount_hash();
1926 
1927 	/* Repeat the earlier racy checks, now that we are holding the locks */
1928 	retval = -EINVAL;
1929 	if (!check_mnt(mnt))
1930 		goto out;
1931 
1932 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1933 		goto out;
1934 
1935 	if (!mnt_has_parent(mnt)) /* not the absolute root */
1936 		goto out;
1937 
1938 	event++;
1939 	if (flags & MNT_DETACH) {
1940 		umount_tree(mnt, UMOUNT_PROPAGATE);
1941 		retval = 0;
1942 	} else {
1943 		smp_mb(); // paired with __legitimize_mnt()
1944 		shrink_submounts(mnt);
1945 		retval = -EBUSY;
1946 		if (!propagate_mount_busy(mnt, 2)) {
1947 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1948 			retval = 0;
1949 		}
1950 	}
1951 out:
1952 	unlock_mount_hash();
1953 	namespace_unlock();
1954 	return retval;
1955 }
1956 
1957 /*
1958  * __detach_mounts - lazily unmount all mounts on the specified dentry
1959  *
1960  * During unlink, rmdir, and d_drop it is possible to loose the path
1961  * to an existing mountpoint, and wind up leaking the mount.
1962  * detach_mounts allows lazily unmounting those mounts instead of
1963  * leaking them.
1964  *
1965  * The caller may hold dentry->d_inode->i_rwsem.
1966  */
1967 void __detach_mounts(struct dentry *dentry)
1968 {
1969 	struct pinned_mountpoint mp = {};
1970 	struct mount *mnt;
1971 
1972 	namespace_lock();
1973 	lock_mount_hash();
1974 	if (!lookup_mountpoint(dentry, &mp))
1975 		goto out_unlock;
1976 
1977 	event++;
1978 	while (mp.node.next) {
1979 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1980 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1981 			umount_mnt(mnt);
1982 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1983 		}
1984 		else umount_tree(mnt, UMOUNT_CONNECTED);
1985 	}
1986 	unpin_mountpoint(&mp);
1987 out_unlock:
1988 	unlock_mount_hash();
1989 	namespace_unlock();
1990 }
1991 
1992 /*
1993  * Is the caller allowed to modify his namespace?
1994  */
1995 bool may_mount(void)
1996 {
1997 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1998 }
1999 
2000 static void warn_mandlock(void)
2001 {
2002 	pr_warn_once("=======================================================\n"
2003 		     "WARNING: The mand mount option has been deprecated and\n"
2004 		     "         and is ignored by this kernel. Remove the mand\n"
2005 		     "         option from the mount to silence this warning.\n"
2006 		     "=======================================================\n");
2007 }
2008 
2009 static int can_umount(const struct path *path, int flags)
2010 {
2011 	struct mount *mnt = real_mount(path->mnt);
2012 	struct super_block *sb = path->dentry->d_sb;
2013 
2014 	if (!may_mount())
2015 		return -EPERM;
2016 	if (!path_mounted(path))
2017 		return -EINVAL;
2018 	if (!check_mnt(mnt))
2019 		return -EINVAL;
2020 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2021 		return -EINVAL;
2022 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2023 		return -EPERM;
2024 	return 0;
2025 }
2026 
2027 // caller is responsible for flags being sane
2028 int path_umount(struct path *path, int flags)
2029 {
2030 	struct mount *mnt = real_mount(path->mnt);
2031 	int ret;
2032 
2033 	ret = can_umount(path, flags);
2034 	if (!ret)
2035 		ret = do_umount(mnt, flags);
2036 
2037 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2038 	dput(path->dentry);
2039 	mntput_no_expire(mnt);
2040 	return ret;
2041 }
2042 
2043 static int ksys_umount(char __user *name, int flags)
2044 {
2045 	int lookup_flags = LOOKUP_MOUNTPOINT;
2046 	struct path path;
2047 	int ret;
2048 
2049 	// basic validity checks done first
2050 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2051 		return -EINVAL;
2052 
2053 	if (!(flags & UMOUNT_NOFOLLOW))
2054 		lookup_flags |= LOOKUP_FOLLOW;
2055 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2056 	if (ret)
2057 		return ret;
2058 	return path_umount(&path, flags);
2059 }
2060 
2061 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2062 {
2063 	return ksys_umount(name, flags);
2064 }
2065 
2066 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2067 
2068 /*
2069  *	The 2.0 compatible umount. No flags.
2070  */
2071 SYSCALL_DEFINE1(oldumount, char __user *, name)
2072 {
2073 	return ksys_umount(name, 0);
2074 }
2075 
2076 #endif
2077 
2078 static bool is_mnt_ns_file(struct dentry *dentry)
2079 {
2080 	struct ns_common *ns;
2081 
2082 	/* Is this a proxy for a mount namespace? */
2083 	if (dentry->d_op != &ns_dentry_operations)
2084 		return false;
2085 
2086 	ns = d_inode(dentry)->i_private;
2087 
2088 	return ns->ops == &mntns_operations;
2089 }
2090 
2091 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2092 {
2093 	return &mnt->ns;
2094 }
2095 
2096 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2097 {
2098 	struct ns_common *ns;
2099 
2100 	guard(rcu)();
2101 
2102 	for (;;) {
2103 		ns = ns_tree_adjoined_rcu(mntns, previous);
2104 		if (IS_ERR(ns))
2105 			return ERR_CAST(ns);
2106 
2107 		mntns = to_mnt_ns(ns);
2108 
2109 		/*
2110 		 * The last passive reference count is put with RCU
2111 		 * delay so accessing the mount namespace is not just
2112 		 * safe but all relevant members are still valid.
2113 		 */
2114 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2115 			continue;
2116 
2117 		/*
2118 		 * We need an active reference count as we're persisting
2119 		 * the mount namespace and it might already be on its
2120 		 * deathbed.
2121 		 */
2122 		if (!ns_ref_get(mntns))
2123 			continue;
2124 
2125 		return mntns;
2126 	}
2127 }
2128 
2129 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2130 {
2131 	if (!is_mnt_ns_file(dentry))
2132 		return NULL;
2133 
2134 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2135 }
2136 
2137 static bool mnt_ns_loop(struct dentry *dentry)
2138 {
2139 	/* Could bind mounting the mount namespace inode cause a
2140 	 * mount namespace loop?
2141 	 */
2142 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2143 
2144 	if (!mnt_ns)
2145 		return false;
2146 
2147 	return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2148 }
2149 
2150 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2151 					int flag)
2152 {
2153 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2154 		*dst_parent, *dst_mnt;
2155 
2156 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2157 		return ERR_PTR(-EINVAL);
2158 
2159 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2163 	if (IS_ERR(dst_mnt))
2164 		return dst_mnt;
2165 
2166 	src_parent = src_root;
2167 
2168 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2169 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2170 			continue;
2171 
2172 		for (src_mnt = src_root_child; src_mnt;
2173 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2174 			if (!(flag & CL_COPY_UNBINDABLE) &&
2175 			    IS_MNT_UNBINDABLE(src_mnt)) {
2176 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2177 					/* Both unbindable and locked. */
2178 					dst_mnt = ERR_PTR(-EPERM);
2179 					goto out;
2180 				} else {
2181 					src_mnt = skip_mnt_tree(src_mnt);
2182 					continue;
2183 				}
2184 			}
2185 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2186 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2187 				src_mnt = skip_mnt_tree(src_mnt);
2188 				continue;
2189 			}
2190 			while (src_parent != src_mnt->mnt_parent) {
2191 				src_parent = src_parent->mnt_parent;
2192 				dst_mnt = dst_mnt->mnt_parent;
2193 			}
2194 
2195 			src_parent = src_mnt;
2196 			dst_parent = dst_mnt;
2197 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2198 			if (IS_ERR(dst_mnt))
2199 				goto out;
2200 			lock_mount_hash();
2201 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2202 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2203 			if (unlikely(flag & CL_EXPIRE)) {
2204 				/* stick the duplicate mount on the same expiry
2205 				 * list as the original if that was on one */
2206 				if (!list_empty(&src_mnt->mnt_expire))
2207 					list_add(&dst_mnt->mnt_expire,
2208 						 &src_mnt->mnt_expire);
2209 			}
2210 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2211 			unlock_mount_hash();
2212 		}
2213 	}
2214 	return res;
2215 
2216 out:
2217 	if (res) {
2218 		lock_mount_hash();
2219 		umount_tree(res, UMOUNT_SYNC);
2220 		unlock_mount_hash();
2221 	}
2222 	return dst_mnt;
2223 }
2224 
2225 static inline bool extend_array(struct path **res, struct path **to_free,
2226 				unsigned n, unsigned *count, unsigned new_count)
2227 {
2228 	struct path *p;
2229 
2230 	if (likely(n < *count))
2231 		return true;
2232 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2233 	if (p && *count)
2234 		memcpy(p, *res, *count * sizeof(struct path));
2235 	*count = new_count;
2236 	kfree(*to_free);
2237 	*to_free = *res = p;
2238 	return p;
2239 }
2240 
2241 struct path *collect_paths(const struct path *path,
2242 			      struct path *prealloc, unsigned count)
2243 {
2244 	struct mount *root = real_mount(path->mnt);
2245 	struct mount *child;
2246 	struct path *res = prealloc, *to_free = NULL;
2247 	unsigned n = 0;
2248 
2249 	guard(rwsem_read)(&namespace_sem);
2250 
2251 	if (!check_mnt(root))
2252 		return ERR_PTR(-EINVAL);
2253 	if (!extend_array(&res, &to_free, 0, &count, 32))
2254 		return ERR_PTR(-ENOMEM);
2255 	res[n++] = *path;
2256 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2257 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2258 			continue;
2259 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2260 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2261 				return ERR_PTR(-ENOMEM);
2262 			res[n].mnt = &m->mnt;
2263 			res[n].dentry = m->mnt.mnt_root;
2264 			n++;
2265 		}
2266 	}
2267 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2268 		return ERR_PTR(-ENOMEM);
2269 	memset(res + n, 0, (count - n) * sizeof(struct path));
2270 	for (struct path *p = res; p->mnt; p++)
2271 		path_get(p);
2272 	return res;
2273 }
2274 
2275 void drop_collected_paths(struct path *paths, struct path *prealloc)
2276 {
2277 	for (struct path *p = paths; p->mnt; p++)
2278 		path_put(p);
2279 	if (paths != prealloc)
2280 		kfree(paths);
2281 }
2282 
2283 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2284 
2285 void dissolve_on_fput(struct vfsmount *mnt)
2286 {
2287 	struct mount *m = real_mount(mnt);
2288 
2289 	/*
2290 	 * m used to be the root of anon namespace; if it still is one,
2291 	 * we need to dissolve the mount tree and free that namespace.
2292 	 * Let's try to avoid taking namespace_sem if we can determine
2293 	 * that there's nothing to do without it - rcu_read_lock() is
2294 	 * enough to make anon_ns_root() memory-safe and once m has
2295 	 * left its namespace, it's no longer our concern, since it will
2296 	 * never become a root of anon ns again.
2297 	 */
2298 
2299 	scoped_guard(rcu) {
2300 		if (!anon_ns_root(m))
2301 			return;
2302 	}
2303 
2304 	scoped_guard(namespace_lock, &namespace_sem) {
2305 		if (!anon_ns_root(m))
2306 			return;
2307 
2308 		emptied_ns = m->mnt_ns;
2309 		lock_mount_hash();
2310 		umount_tree(m, UMOUNT_CONNECTED);
2311 		unlock_mount_hash();
2312 	}
2313 }
2314 
2315 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2316 {
2317 	struct mount *child;
2318 
2319 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2320 		if (!is_subdir(child->mnt_mountpoint, dentry))
2321 			continue;
2322 
2323 		if (child->mnt.mnt_flags & MNT_LOCKED)
2324 			return true;
2325 	}
2326 	return false;
2327 }
2328 
2329 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2330 {
2331 	bool res;
2332 
2333 	read_seqlock_excl(&mount_lock);
2334 	res = __has_locked_children(mnt, dentry);
2335 	read_sequnlock_excl(&mount_lock);
2336 	return res;
2337 }
2338 
2339 /*
2340  * Check that there aren't references to earlier/same mount namespaces in the
2341  * specified subtree.  Such references can act as pins for mount namespaces
2342  * that aren't checked by the mount-cycle checking code, thereby allowing
2343  * cycles to be made.
2344  */
2345 static bool check_for_nsfs_mounts(struct mount *subtree)
2346 {
2347 	struct mount *p;
2348 	bool ret = false;
2349 
2350 	lock_mount_hash();
2351 	for (p = subtree; p; p = next_mnt(p, subtree))
2352 		if (mnt_ns_loop(p->mnt.mnt_root))
2353 			goto out;
2354 
2355 	ret = true;
2356 out:
2357 	unlock_mount_hash();
2358 	return ret;
2359 }
2360 
2361 /**
2362  * clone_private_mount - create a private clone of a path
2363  * @path: path to clone
2364  *
2365  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2366  * will not be attached anywhere in the namespace and will be private (i.e.
2367  * changes to the originating mount won't be propagated into this).
2368  *
2369  * This assumes caller has called or done the equivalent of may_mount().
2370  *
2371  * Release with mntput().
2372  */
2373 struct vfsmount *clone_private_mount(const struct path *path)
2374 {
2375 	struct mount *old_mnt = real_mount(path->mnt);
2376 	struct mount *new_mnt;
2377 
2378 	guard(rwsem_read)(&namespace_sem);
2379 
2380 	if (IS_MNT_UNBINDABLE(old_mnt))
2381 		return ERR_PTR(-EINVAL);
2382 
2383 	/*
2384 	 * Make sure the source mount is acceptable.
2385 	 * Anything mounted in our mount namespace is allowed.
2386 	 * Otherwise, it must be the root of an anonymous mount
2387 	 * namespace, and we need to make sure no namespace
2388 	 * loops get created.
2389 	 */
2390 	if (!check_mnt(old_mnt)) {
2391 		if (!anon_ns_root(old_mnt))
2392 			return ERR_PTR(-EINVAL);
2393 
2394 		if (!check_for_nsfs_mounts(old_mnt))
2395 			return ERR_PTR(-EINVAL);
2396 	}
2397 
2398 	if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2399 		return ERR_PTR(-EPERM);
2400 
2401 	if (__has_locked_children(old_mnt, path->dentry))
2402 		return ERR_PTR(-EINVAL);
2403 
2404 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2405 	if (IS_ERR(new_mnt))
2406 		return ERR_PTR(-EINVAL);
2407 
2408 	/* Longterm mount to be removed by kern_unmount*() */
2409 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2410 	return &new_mnt->mnt;
2411 }
2412 EXPORT_SYMBOL_GPL(clone_private_mount);
2413 
2414 static void lock_mnt_tree(struct mount *mnt)
2415 {
2416 	struct mount *p;
2417 
2418 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2419 		int flags = p->mnt.mnt_flags;
2420 		/* Don't allow unprivileged users to change mount flags */
2421 		flags |= MNT_LOCK_ATIME;
2422 
2423 		if (flags & MNT_READONLY)
2424 			flags |= MNT_LOCK_READONLY;
2425 
2426 		if (flags & MNT_NODEV)
2427 			flags |= MNT_LOCK_NODEV;
2428 
2429 		if (flags & MNT_NOSUID)
2430 			flags |= MNT_LOCK_NOSUID;
2431 
2432 		if (flags & MNT_NOEXEC)
2433 			flags |= MNT_LOCK_NOEXEC;
2434 		/* Don't allow unprivileged users to reveal what is under a mount */
2435 		if (list_empty(&p->mnt_expire) && p != mnt)
2436 			flags |= MNT_LOCKED;
2437 		p->mnt.mnt_flags = flags;
2438 	}
2439 }
2440 
2441 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2442 {
2443 	struct mount *p;
2444 
2445 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2446 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2447 			mnt_release_group_id(p);
2448 	}
2449 }
2450 
2451 static int invent_group_ids(struct mount *mnt, bool recurse)
2452 {
2453 	struct mount *p;
2454 
2455 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2456 		if (!p->mnt_group_id) {
2457 			int err = mnt_alloc_group_id(p);
2458 			if (err) {
2459 				cleanup_group_ids(mnt, p);
2460 				return err;
2461 			}
2462 		}
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2469 {
2470 	unsigned int max = READ_ONCE(sysctl_mount_max);
2471 	unsigned int mounts = 0;
2472 	struct mount *p;
2473 
2474 	if (ns->nr_mounts >= max)
2475 		return -ENOSPC;
2476 	max -= ns->nr_mounts;
2477 	if (ns->pending_mounts >= max)
2478 		return -ENOSPC;
2479 	max -= ns->pending_mounts;
2480 
2481 	for (p = mnt; p; p = next_mnt(p, mnt))
2482 		mounts++;
2483 
2484 	if (mounts > max)
2485 		return -ENOSPC;
2486 
2487 	ns->pending_mounts += mounts;
2488 	return 0;
2489 }
2490 
2491 enum mnt_tree_flags_t {
2492 	MNT_TREE_BENEATH = BIT(0),
2493 	MNT_TREE_PROPAGATION = BIT(1),
2494 };
2495 
2496 /**
2497  * attach_recursive_mnt - attach a source mount tree
2498  * @source_mnt: mount tree to be attached
2499  * @dest_mnt:   mount that @source_mnt will be mounted on
2500  * @dest_mp:    the mountpoint @source_mnt will be mounted at
2501  *
2502  *  NOTE: in the table below explains the semantics when a source mount
2503  *  of a given type is attached to a destination mount of a given type.
2504  * ---------------------------------------------------------------------------
2505  * |         BIND MOUNT OPERATION                                            |
2506  * |**************************************************************************
2507  * | source-->| shared        |       private  |       slave    | unbindable |
2508  * | dest     |               |                |                |            |
2509  * |   |      |               |                |                |            |
2510  * |   v      |               |                |                |            |
2511  * |**************************************************************************
2512  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2513  * |          |               |                |                |            |
2514  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2515  * ***************************************************************************
2516  * A bind operation clones the source mount and mounts the clone on the
2517  * destination mount.
2518  *
2519  * (++)  the cloned mount is propagated to all the mounts in the propagation
2520  * 	 tree of the destination mount and the cloned mount is added to
2521  * 	 the peer group of the source mount.
2522  * (+)   the cloned mount is created under the destination mount and is marked
2523  *       as shared. The cloned mount is added to the peer group of the source
2524  *       mount.
2525  * (+++) the mount is propagated to all the mounts in the propagation tree
2526  *       of the destination mount and the cloned mount is made slave
2527  *       of the same master as that of the source mount. The cloned mount
2528  *       is marked as 'shared and slave'.
2529  * (*)   the cloned mount is made a slave of the same master as that of the
2530  * 	 source mount.
2531  *
2532  * ---------------------------------------------------------------------------
2533  * |         		MOVE MOUNT OPERATION                                 |
2534  * |**************************************************************************
2535  * | source-->| shared        |       private  |       slave    | unbindable |
2536  * | dest     |               |                |                |            |
2537  * |   |      |               |                |                |            |
2538  * |   v      |               |                |                |            |
2539  * |**************************************************************************
2540  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2541  * |          |               |                |                |            |
2542  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2543  * ***************************************************************************
2544  *
2545  * (+)  the mount is moved to the destination. And is then propagated to
2546  * 	all the mounts in the propagation tree of the destination mount.
2547  * (+*)  the mount is moved to the destination.
2548  * (+++)  the mount is moved to the destination and is then propagated to
2549  * 	all the mounts belonging to the destination mount's propagation tree.
2550  * 	the mount is marked as 'shared and slave'.
2551  * (*)	the mount continues to be a slave at the new location.
2552  *
2553  * if the source mount is a tree, the operations explained above is
2554  * applied to each mount in the tree.
2555  * Must be called without spinlocks held, since this function can sleep
2556  * in allocations.
2557  *
2558  * Context: The function expects namespace_lock() to be held.
2559  * Return: If @source_mnt was successfully attached 0 is returned.
2560  *         Otherwise a negative error code is returned.
2561  */
2562 static int attach_recursive_mnt(struct mount *source_mnt,
2563 				struct mount *dest_mnt,
2564 				struct mountpoint *dest_mp)
2565 {
2566 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2567 	HLIST_HEAD(tree_list);
2568 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2569 	struct pinned_mountpoint root = {};
2570 	struct mountpoint *shorter = NULL;
2571 	struct mount *child, *p;
2572 	struct mount *top;
2573 	struct hlist_node *n;
2574 	int err = 0;
2575 	bool moving = mnt_has_parent(source_mnt);
2576 
2577 	/*
2578 	 * Preallocate a mountpoint in case the new mounts need to be
2579 	 * mounted beneath mounts on the same mountpoint.
2580 	 */
2581 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2582 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2583 			shorter = top->mnt_mp;
2584 	}
2585 	err = get_mountpoint(top->mnt.mnt_root, &root);
2586 	if (err)
2587 		return err;
2588 
2589 	/* Is there space to add these mounts to the mount namespace? */
2590 	if (!moving) {
2591 		err = count_mounts(ns, source_mnt);
2592 		if (err)
2593 			goto out;
2594 	}
2595 
2596 	if (IS_MNT_SHARED(dest_mnt)) {
2597 		err = invent_group_ids(source_mnt, true);
2598 		if (err)
2599 			goto out;
2600 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2601 	}
2602 	lock_mount_hash();
2603 	if (err)
2604 		goto out_cleanup_ids;
2605 
2606 	if (IS_MNT_SHARED(dest_mnt)) {
2607 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2608 			set_mnt_shared(p);
2609 	}
2610 
2611 	if (moving) {
2612 		umount_mnt(source_mnt);
2613 		mnt_notify_add(source_mnt);
2614 		/* if the mount is moved, it should no longer be expired
2615 		 * automatically */
2616 		list_del_init(&source_mnt->mnt_expire);
2617 	} else {
2618 		if (source_mnt->mnt_ns) {
2619 			/* move from anon - the caller will destroy */
2620 			emptied_ns = source_mnt->mnt_ns;
2621 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2622 				move_from_ns(p);
2623 		}
2624 	}
2625 
2626 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2627 	/*
2628 	 * Now the original copy is in the same state as the secondaries -
2629 	 * its root attached to mountpoint, but not hashed and all mounts
2630 	 * in it are either in our namespace or in no namespace at all.
2631 	 * Add the original to the list of copies and deal with the
2632 	 * rest of work for all of them uniformly.
2633 	 */
2634 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2635 
2636 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2637 		struct mount *q;
2638 		hlist_del_init(&child->mnt_hash);
2639 		/* Notice when we are propagating across user namespaces */
2640 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2641 			lock_mnt_tree(child);
2642 		q = __lookup_mnt(&child->mnt_parent->mnt,
2643 				 child->mnt_mountpoint);
2644 		commit_tree(child);
2645 		if (q) {
2646 			struct mountpoint *mp = root.mp;
2647 			struct mount *r = child;
2648 			while (unlikely(r->overmount))
2649 				r = r->overmount;
2650 			if (unlikely(shorter) && child != source_mnt)
2651 				mp = shorter;
2652 			mnt_change_mountpoint(r, mp, q);
2653 		}
2654 	}
2655 	unpin_mountpoint(&root);
2656 	unlock_mount_hash();
2657 
2658 	return 0;
2659 
2660  out_cleanup_ids:
2661 	while (!hlist_empty(&tree_list)) {
2662 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2663 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2664 		umount_tree(child, UMOUNT_SYNC);
2665 	}
2666 	unlock_mount_hash();
2667 	cleanup_group_ids(source_mnt, NULL);
2668  out:
2669 	ns->pending_mounts = 0;
2670 
2671 	read_seqlock_excl(&mount_lock);
2672 	unpin_mountpoint(&root);
2673 	read_sequnlock_excl(&mount_lock);
2674 
2675 	return err;
2676 }
2677 
2678 /**
2679  * do_lock_mount - lock mount and mountpoint
2680  * @path:    target path
2681  * @beneath: whether the intention is to mount beneath @path
2682  *
2683  * Follow the mount stack on @path until the top mount @mnt is found. If
2684  * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2685  * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2686  * until nothing is stacked on top of it anymore.
2687  *
2688  * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2689  * against concurrent removal of the new mountpoint from another mount
2690  * namespace.
2691  *
2692  * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2693  * @mp on @mnt->mnt_parent must be acquired. This protects against a
2694  * concurrent unlink of @mp->mnt_dentry from another mount namespace
2695  * where @mnt doesn't have a child mount mounted @mp. A concurrent
2696  * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2697  * on top of it for @beneath.
2698  *
2699  * In addition, @beneath needs to make sure that @mnt hasn't been
2700  * unmounted or moved from its current mountpoint in between dropping
2701  * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2702  * being unmounted would be detected later by e.g., calling
2703  * check_mnt(mnt) in the function it's called from. For the @beneath
2704  * case however, it's useful to detect it directly in do_lock_mount().
2705  * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2706  * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2707  * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2708  *
2709  * Return: Either the target mountpoint on the top mount or the top
2710  *         mount's mountpoint.
2711  */
2712 static int do_lock_mount(struct path *path, struct pinned_mountpoint *pinned, bool beneath)
2713 {
2714 	struct vfsmount *mnt = path->mnt;
2715 	struct dentry *dentry;
2716 	struct path under = {};
2717 	int err = -ENOENT;
2718 
2719 	for (;;) {
2720 		struct mount *m = real_mount(mnt);
2721 
2722 		if (beneath) {
2723 			path_put(&under);
2724 			read_seqlock_excl(&mount_lock);
2725 			under.mnt = mntget(&m->mnt_parent->mnt);
2726 			under.dentry = dget(m->mnt_mountpoint);
2727 			read_sequnlock_excl(&mount_lock);
2728 			dentry = under.dentry;
2729 		} else {
2730 			dentry = path->dentry;
2731 		}
2732 
2733 		inode_lock(dentry->d_inode);
2734 		namespace_lock();
2735 
2736 		if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2737 			break;		// not to be mounted on
2738 
2739 		if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2740 				        &m->mnt_parent->mnt != under.mnt)) {
2741 			namespace_unlock();
2742 			inode_unlock(dentry->d_inode);
2743 			continue;	// got moved
2744 		}
2745 
2746 		mnt = lookup_mnt(path);
2747 		if (unlikely(mnt)) {
2748 			namespace_unlock();
2749 			inode_unlock(dentry->d_inode);
2750 			path_put(path);
2751 			path->mnt = mnt;
2752 			path->dentry = dget(mnt->mnt_root);
2753 			continue;	// got overmounted
2754 		}
2755 		err = get_mountpoint(dentry, pinned);
2756 		if (err)
2757 			break;
2758 		if (beneath) {
2759 			/*
2760 			 * @under duplicates the references that will stay
2761 			 * at least until namespace_unlock(), so the path_put()
2762 			 * below is safe (and OK to do under namespace_lock -
2763 			 * we are not dropping the final references here).
2764 			 */
2765 			path_put(&under);
2766 		}
2767 		return 0;
2768 	}
2769 	namespace_unlock();
2770 	inode_unlock(dentry->d_inode);
2771 	if (beneath)
2772 		path_put(&under);
2773 	return err;
2774 }
2775 
2776 static inline int lock_mount(struct path *path, struct pinned_mountpoint *m)
2777 {
2778 	return do_lock_mount(path, m, false);
2779 }
2780 
2781 static void unlock_mount(struct pinned_mountpoint *m)
2782 {
2783 	inode_unlock(m->mp->m_dentry->d_inode);
2784 	read_seqlock_excl(&mount_lock);
2785 	unpin_mountpoint(m);
2786 	read_sequnlock_excl(&mount_lock);
2787 	namespace_unlock();
2788 }
2789 
2790 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2791 {
2792 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2793 		return -EINVAL;
2794 
2795 	if (d_is_dir(mp->m_dentry) !=
2796 	      d_is_dir(mnt->mnt.mnt_root))
2797 		return -ENOTDIR;
2798 
2799 	return attach_recursive_mnt(mnt, p, mp);
2800 }
2801 
2802 static int may_change_propagation(const struct mount *m)
2803 {
2804         struct mnt_namespace *ns = m->mnt_ns;
2805 
2806 	 // it must be mounted in some namespace
2807 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2808 		 return -EINVAL;
2809 	 // and the caller must be admin in userns of that namespace
2810 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2811 		 return -EPERM;
2812 	 return 0;
2813 }
2814 
2815 /*
2816  * Sanity check the flags to change_mnt_propagation.
2817  */
2818 
2819 static int flags_to_propagation_type(int ms_flags)
2820 {
2821 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2822 
2823 	/* Fail if any non-propagation flags are set */
2824 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2825 		return 0;
2826 	/* Only one propagation flag should be set */
2827 	if (!is_power_of_2(type))
2828 		return 0;
2829 	return type;
2830 }
2831 
2832 /*
2833  * recursively change the type of the mountpoint.
2834  */
2835 static int do_change_type(struct path *path, int ms_flags)
2836 {
2837 	struct mount *m;
2838 	struct mount *mnt = real_mount(path->mnt);
2839 	int recurse = ms_flags & MS_REC;
2840 	int type;
2841 	int err = 0;
2842 
2843 	if (!path_mounted(path))
2844 		return -EINVAL;
2845 
2846 	type = flags_to_propagation_type(ms_flags);
2847 	if (!type)
2848 		return -EINVAL;
2849 
2850 	namespace_lock();
2851 	err = may_change_propagation(mnt);
2852 	if (err)
2853 		goto out_unlock;
2854 
2855 	if (type == MS_SHARED) {
2856 		err = invent_group_ids(mnt, recurse);
2857 		if (err)
2858 			goto out_unlock;
2859 	}
2860 
2861 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2862 		change_mnt_propagation(m, type);
2863 
2864  out_unlock:
2865 	namespace_unlock();
2866 	return err;
2867 }
2868 
2869 /* may_copy_tree() - check if a mount tree can be copied
2870  * @path: path to the mount tree to be copied
2871  *
2872  * This helper checks if the caller may copy the mount tree starting
2873  * from @path->mnt. The caller may copy the mount tree under the
2874  * following circumstances:
2875  *
2876  * (1) The caller is located in the mount namespace of the mount tree.
2877  *     This also implies that the mount does not belong to an anonymous
2878  *     mount namespace.
2879  * (2) The caller tries to copy an nfs mount referring to a mount
2880  *     namespace, i.e., the caller is trying to copy a mount namespace
2881  *     entry from nsfs.
2882  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2883  * (4) The caller is trying to copy a mount tree that belongs to an
2884  *     anonymous mount namespace.
2885  *
2886  *     For that to be safe, this helper enforces that the origin mount
2887  *     namespace the anonymous mount namespace was created from is the
2888  *     same as the caller's mount namespace by comparing the sequence
2889  *     numbers.
2890  *
2891  *     This is not strictly necessary. The current semantics of the new
2892  *     mount api enforce that the caller must be located in the same
2893  *     mount namespace as the mount tree it interacts with. Using the
2894  *     origin sequence number preserves these semantics even for
2895  *     anonymous mount namespaces. However, one could envision extending
2896  *     the api to directly operate across mount namespace if needed.
2897  *
2898  *     The ownership of a non-anonymous mount namespace such as the
2899  *     caller's cannot change.
2900  *     => We know that the caller's mount namespace is stable.
2901  *
2902  *     If the origin sequence number of the anonymous mount namespace is
2903  *     the same as the sequence number of the caller's mount namespace.
2904  *     => The owning namespaces are the same.
2905  *
2906  *     ==> The earlier capability check on the owning namespace of the
2907  *         caller's mount namespace ensures that the caller has the
2908  *         ability to copy the mount tree.
2909  *
2910  * Returns true if the mount tree can be copied, false otherwise.
2911  */
2912 static inline bool may_copy_tree(struct path *path)
2913 {
2914 	struct mount *mnt = real_mount(path->mnt);
2915 	const struct dentry_operations *d_op;
2916 
2917 	if (check_mnt(mnt))
2918 		return true;
2919 
2920 	d_op = path->dentry->d_op;
2921 	if (d_op == &ns_dentry_operations)
2922 		return true;
2923 
2924 	if (d_op == &pidfs_dentry_operations)
2925 		return true;
2926 
2927 	if (!is_mounted(path->mnt))
2928 		return false;
2929 
2930 	return check_anonymous_mnt(mnt);
2931 }
2932 
2933 
2934 static struct mount *__do_loopback(struct path *old_path, int recurse)
2935 {
2936 	struct mount *old = real_mount(old_path->mnt);
2937 
2938 	if (IS_MNT_UNBINDABLE(old))
2939 		return ERR_PTR(-EINVAL);
2940 
2941 	if (!may_copy_tree(old_path))
2942 		return ERR_PTR(-EINVAL);
2943 
2944 	if (!recurse && __has_locked_children(old, old_path->dentry))
2945 		return ERR_PTR(-EINVAL);
2946 
2947 	if (recurse)
2948 		return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2949 	else
2950 		return clone_mnt(old, old_path->dentry, 0);
2951 }
2952 
2953 /*
2954  * do loopback mount.
2955  */
2956 static int do_loopback(struct path *path, const char *old_name,
2957 				int recurse)
2958 {
2959 	struct path old_path;
2960 	struct mount *mnt = NULL, *parent;
2961 	struct pinned_mountpoint mp = {};
2962 	int err;
2963 	if (!old_name || !*old_name)
2964 		return -EINVAL;
2965 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2966 	if (err)
2967 		return err;
2968 
2969 	err = -EINVAL;
2970 	if (mnt_ns_loop(old_path.dentry))
2971 		goto out;
2972 
2973 	err = lock_mount(path, &mp);
2974 	if (err)
2975 		goto out;
2976 
2977 	parent = real_mount(path->mnt);
2978 	if (!check_mnt(parent))
2979 		goto out2;
2980 
2981 	mnt = __do_loopback(&old_path, recurse);
2982 	if (IS_ERR(mnt)) {
2983 		err = PTR_ERR(mnt);
2984 		goto out2;
2985 	}
2986 
2987 	err = graft_tree(mnt, parent, mp.mp);
2988 	if (err) {
2989 		lock_mount_hash();
2990 		umount_tree(mnt, UMOUNT_SYNC);
2991 		unlock_mount_hash();
2992 	}
2993 out2:
2994 	unlock_mount(&mp);
2995 out:
2996 	path_put(&old_path);
2997 	return err;
2998 }
2999 
3000 static struct file *open_detached_copy(struct path *path, bool recursive)
3001 {
3002 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3003 	struct user_namespace *user_ns = mnt_ns->user_ns;
3004 	struct mount *mnt, *p;
3005 	struct file *file;
3006 
3007 	ns = alloc_mnt_ns(user_ns, true);
3008 	if (IS_ERR(ns))
3009 		return ERR_CAST(ns);
3010 
3011 	namespace_lock();
3012 
3013 	/*
3014 	 * Record the sequence number of the source mount namespace.
3015 	 * This needs to hold namespace_sem to ensure that the mount
3016 	 * doesn't get attached.
3017 	 */
3018 	if (is_mounted(path->mnt)) {
3019 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3020 		if (is_anon_ns(src_mnt_ns))
3021 			ns->seq_origin = src_mnt_ns->seq_origin;
3022 		else
3023 			ns->seq_origin = src_mnt_ns->ns.ns_id;
3024 	}
3025 
3026 	mnt = __do_loopback(path, recursive);
3027 	if (IS_ERR(mnt)) {
3028 		namespace_unlock();
3029 		free_mnt_ns(ns);
3030 		return ERR_CAST(mnt);
3031 	}
3032 
3033 	lock_mount_hash();
3034 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3035 		mnt_add_to_ns(ns, p);
3036 		ns->nr_mounts++;
3037 	}
3038 	ns->root = mnt;
3039 	mntget(&mnt->mnt);
3040 	unlock_mount_hash();
3041 	namespace_unlock();
3042 
3043 	mntput(path->mnt);
3044 	path->mnt = &mnt->mnt;
3045 	file = dentry_open(path, O_PATH, current_cred());
3046 	if (IS_ERR(file))
3047 		dissolve_on_fput(path->mnt);
3048 	else
3049 		file->f_mode |= FMODE_NEED_UNMOUNT;
3050 	return file;
3051 }
3052 
3053 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3054 {
3055 	int ret;
3056 	struct path path __free(path_put) = {};
3057 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3058 	bool detached = flags & OPEN_TREE_CLONE;
3059 
3060 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3061 
3062 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3063 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3064 		      OPEN_TREE_CLOEXEC))
3065 		return ERR_PTR(-EINVAL);
3066 
3067 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3068 		return ERR_PTR(-EINVAL);
3069 
3070 	if (flags & AT_NO_AUTOMOUNT)
3071 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3072 	if (flags & AT_SYMLINK_NOFOLLOW)
3073 		lookup_flags &= ~LOOKUP_FOLLOW;
3074 	if (flags & AT_EMPTY_PATH)
3075 		lookup_flags |= LOOKUP_EMPTY;
3076 
3077 	if (detached && !may_mount())
3078 		return ERR_PTR(-EPERM);
3079 
3080 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3081 	if (unlikely(ret))
3082 		return ERR_PTR(ret);
3083 
3084 	if (detached)
3085 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3086 
3087 	return dentry_open(&path, O_PATH, current_cred());
3088 }
3089 
3090 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3091 {
3092 	int fd;
3093 	struct file *file __free(fput) = NULL;
3094 
3095 	file = vfs_open_tree(dfd, filename, flags);
3096 	if (IS_ERR(file))
3097 		return PTR_ERR(file);
3098 
3099 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3100 	if (fd < 0)
3101 		return fd;
3102 
3103 	fd_install(fd, no_free_ptr(file));
3104 	return fd;
3105 }
3106 
3107 /*
3108  * Don't allow locked mount flags to be cleared.
3109  *
3110  * No locks need to be held here while testing the various MNT_LOCK
3111  * flags because those flags can never be cleared once they are set.
3112  */
3113 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3114 {
3115 	unsigned int fl = mnt->mnt.mnt_flags;
3116 
3117 	if ((fl & MNT_LOCK_READONLY) &&
3118 	    !(mnt_flags & MNT_READONLY))
3119 		return false;
3120 
3121 	if ((fl & MNT_LOCK_NODEV) &&
3122 	    !(mnt_flags & MNT_NODEV))
3123 		return false;
3124 
3125 	if ((fl & MNT_LOCK_NOSUID) &&
3126 	    !(mnt_flags & MNT_NOSUID))
3127 		return false;
3128 
3129 	if ((fl & MNT_LOCK_NOEXEC) &&
3130 	    !(mnt_flags & MNT_NOEXEC))
3131 		return false;
3132 
3133 	if ((fl & MNT_LOCK_ATIME) &&
3134 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3135 		return false;
3136 
3137 	return true;
3138 }
3139 
3140 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3141 {
3142 	bool readonly_request = (mnt_flags & MNT_READONLY);
3143 
3144 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3145 		return 0;
3146 
3147 	if (readonly_request)
3148 		return mnt_make_readonly(mnt);
3149 
3150 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3151 	return 0;
3152 }
3153 
3154 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3155 {
3156 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3157 	mnt->mnt.mnt_flags = mnt_flags;
3158 	touch_mnt_namespace(mnt->mnt_ns);
3159 }
3160 
3161 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3162 {
3163 	struct super_block *sb = mnt->mnt_sb;
3164 
3165 	if (!__mnt_is_readonly(mnt) &&
3166 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3167 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3168 		char *buf, *mntpath;
3169 
3170 		buf = (char *)__get_free_page(GFP_KERNEL);
3171 		if (buf)
3172 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3173 		else
3174 			mntpath = ERR_PTR(-ENOMEM);
3175 		if (IS_ERR(mntpath))
3176 			mntpath = "(unknown)";
3177 
3178 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3179 			sb->s_type->name,
3180 			is_mounted(mnt) ? "remounted" : "mounted",
3181 			mntpath, &sb->s_time_max,
3182 			(unsigned long long)sb->s_time_max);
3183 
3184 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3185 		if (buf)
3186 			free_page((unsigned long)buf);
3187 	}
3188 }
3189 
3190 /*
3191  * Handle reconfiguration of the mountpoint only without alteration of the
3192  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3193  * to mount(2).
3194  */
3195 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3196 {
3197 	struct super_block *sb = path->mnt->mnt_sb;
3198 	struct mount *mnt = real_mount(path->mnt);
3199 	int ret;
3200 
3201 	if (!check_mnt(mnt))
3202 		return -EINVAL;
3203 
3204 	if (!path_mounted(path))
3205 		return -EINVAL;
3206 
3207 	if (!can_change_locked_flags(mnt, mnt_flags))
3208 		return -EPERM;
3209 
3210 	/*
3211 	 * We're only checking whether the superblock is read-only not
3212 	 * changing it, so only take down_read(&sb->s_umount).
3213 	 */
3214 	down_read(&sb->s_umount);
3215 	lock_mount_hash();
3216 	ret = change_mount_ro_state(mnt, mnt_flags);
3217 	if (ret == 0)
3218 		set_mount_attributes(mnt, mnt_flags);
3219 	unlock_mount_hash();
3220 	up_read(&sb->s_umount);
3221 
3222 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3223 
3224 	return ret;
3225 }
3226 
3227 /*
3228  * change filesystem flags. dir should be a physical root of filesystem.
3229  * If you've mounted a non-root directory somewhere and want to do remount
3230  * on it - tough luck.
3231  */
3232 static int do_remount(struct path *path, int sb_flags,
3233 		      int mnt_flags, void *data)
3234 {
3235 	int err;
3236 	struct super_block *sb = path->mnt->mnt_sb;
3237 	struct mount *mnt = real_mount(path->mnt);
3238 	struct fs_context *fc;
3239 
3240 	if (!check_mnt(mnt))
3241 		return -EINVAL;
3242 
3243 	if (!path_mounted(path))
3244 		return -EINVAL;
3245 
3246 	if (!can_change_locked_flags(mnt, mnt_flags))
3247 		return -EPERM;
3248 
3249 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3250 	if (IS_ERR(fc))
3251 		return PTR_ERR(fc);
3252 
3253 	/*
3254 	 * Indicate to the filesystem that the remount request is coming
3255 	 * from the legacy mount system call.
3256 	 */
3257 	fc->oldapi = true;
3258 
3259 	err = parse_monolithic_mount_data(fc, data);
3260 	if (!err) {
3261 		down_write(&sb->s_umount);
3262 		err = -EPERM;
3263 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3264 			err = reconfigure_super(fc);
3265 			if (!err) {
3266 				lock_mount_hash();
3267 				set_mount_attributes(mnt, mnt_flags);
3268 				unlock_mount_hash();
3269 			}
3270 		}
3271 		up_write(&sb->s_umount);
3272 	}
3273 
3274 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3275 
3276 	put_fs_context(fc);
3277 	return err;
3278 }
3279 
3280 static inline int tree_contains_unbindable(struct mount *mnt)
3281 {
3282 	struct mount *p;
3283 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3284 		if (IS_MNT_UNBINDABLE(p))
3285 			return 1;
3286 	}
3287 	return 0;
3288 }
3289 
3290 static int do_set_group(struct path *from_path, struct path *to_path)
3291 {
3292 	struct mount *from, *to;
3293 	int err;
3294 
3295 	from = real_mount(from_path->mnt);
3296 	to = real_mount(to_path->mnt);
3297 
3298 	namespace_lock();
3299 
3300 	err = may_change_propagation(from);
3301 	if (err)
3302 		goto out;
3303 	err = may_change_propagation(to);
3304 	if (err)
3305 		goto out;
3306 
3307 	err = -EINVAL;
3308 	/* To and From paths should be mount roots */
3309 	if (!path_mounted(from_path))
3310 		goto out;
3311 	if (!path_mounted(to_path))
3312 		goto out;
3313 
3314 	/* Setting sharing groups is only allowed across same superblock */
3315 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3316 		goto out;
3317 
3318 	/* From mount root should be wider than To mount root */
3319 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3320 		goto out;
3321 
3322 	/* From mount should not have locked children in place of To's root */
3323 	if (__has_locked_children(from, to->mnt.mnt_root))
3324 		goto out;
3325 
3326 	/* Setting sharing groups is only allowed on private mounts */
3327 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3328 		goto out;
3329 
3330 	/* From should not be private */
3331 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3332 		goto out;
3333 
3334 	if (IS_MNT_SLAVE(from)) {
3335 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3336 		to->mnt_master = from->mnt_master;
3337 	}
3338 
3339 	if (IS_MNT_SHARED(from)) {
3340 		to->mnt_group_id = from->mnt_group_id;
3341 		list_add(&to->mnt_share, &from->mnt_share);
3342 		set_mnt_shared(to);
3343 	}
3344 
3345 	err = 0;
3346 out:
3347 	namespace_unlock();
3348 	return err;
3349 }
3350 
3351 /**
3352  * path_overmounted - check if path is overmounted
3353  * @path: path to check
3354  *
3355  * Check if path is overmounted, i.e., if there's a mount on top of
3356  * @path->mnt with @path->dentry as mountpoint.
3357  *
3358  * Context: namespace_sem must be held at least shared.
3359  * MUST NOT be called under lock_mount_hash() (there one should just
3360  * call __lookup_mnt() and check if it returns NULL).
3361  * Return: If path is overmounted true is returned, false if not.
3362  */
3363 static inline bool path_overmounted(const struct path *path)
3364 {
3365 	unsigned seq = read_seqbegin(&mount_lock);
3366 	bool no_child;
3367 
3368 	rcu_read_lock();
3369 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3370 	rcu_read_unlock();
3371 	if (need_seqretry(&mount_lock, seq)) {
3372 		read_seqlock_excl(&mount_lock);
3373 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3374 		read_sequnlock_excl(&mount_lock);
3375 	}
3376 	return unlikely(!no_child);
3377 }
3378 
3379 /*
3380  * Check if there is a possibly empty chain of descent from p1 to p2.
3381  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3382  */
3383 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3384 {
3385 	while (p2 != p1 && mnt_has_parent(p2))
3386 		p2 = p2->mnt_parent;
3387 	return p2 == p1;
3388 }
3389 
3390 /**
3391  * can_move_mount_beneath - check that we can mount beneath the top mount
3392  * @from: mount to mount beneath
3393  * @to:   mount under which to mount
3394  * @mp:   mountpoint of @to
3395  *
3396  * - Make sure that @to->dentry is actually the root of a mount under
3397  *   which we can mount another mount.
3398  * - Make sure that nothing can be mounted beneath the caller's current
3399  *   root or the rootfs of the namespace.
3400  * - Make sure that the caller can unmount the topmost mount ensuring
3401  *   that the caller could reveal the underlying mountpoint.
3402  * - Ensure that nothing has been mounted on top of @from before we
3403  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3404  * - Prevent mounting beneath a mount if the propagation relationship
3405  *   between the source mount, parent mount, and top mount would lead to
3406  *   nonsensical mount trees.
3407  *
3408  * Context: This function expects namespace_lock() to be held.
3409  * Return: On success 0, and on error a negative error code is returned.
3410  */
3411 static int can_move_mount_beneath(const struct path *from,
3412 				  const struct path *to,
3413 				  const struct mountpoint *mp)
3414 {
3415 	struct mount *mnt_from = real_mount(from->mnt),
3416 		     *mnt_to = real_mount(to->mnt),
3417 		     *parent_mnt_to = mnt_to->mnt_parent;
3418 
3419 	if (!mnt_has_parent(mnt_to))
3420 		return -EINVAL;
3421 
3422 	if (!path_mounted(to))
3423 		return -EINVAL;
3424 
3425 	if (IS_MNT_LOCKED(mnt_to))
3426 		return -EINVAL;
3427 
3428 	/* Avoid creating shadow mounts during mount propagation. */
3429 	if (path_overmounted(from))
3430 		return -EINVAL;
3431 
3432 	/*
3433 	 * Mounting beneath the rootfs only makes sense when the
3434 	 * semantics of pivot_root(".", ".") are used.
3435 	 */
3436 	if (&mnt_to->mnt == current->fs->root.mnt)
3437 		return -EINVAL;
3438 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3439 		return -EINVAL;
3440 
3441 	if (mount_is_ancestor(mnt_to, mnt_from))
3442 		return -EINVAL;
3443 
3444 	/*
3445 	 * If the parent mount propagates to the child mount this would
3446 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3447 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3448 	 * defeats the whole purpose of mounting beneath another mount.
3449 	 */
3450 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3451 		return -EINVAL;
3452 
3453 	/*
3454 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3455 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3456 	 * Afterwards @mnt_from would be mounted on top of
3457 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3458 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3459 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3460 	 * remounted on top of @c. Afterwards, @mnt_from would be
3461 	 * covered by a copy @c of @mnt_from and @c would be covered by
3462 	 * @mnt_from itself. This defeats the whole purpose of mounting
3463 	 * @mnt_from beneath @mnt_to.
3464 	 */
3465 	if (check_mnt(mnt_from) &&
3466 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3467 		return -EINVAL;
3468 
3469 	return 0;
3470 }
3471 
3472 /* may_use_mount() - check if a mount tree can be used
3473  * @mnt: vfsmount to be used
3474  *
3475  * This helper checks if the caller may use the mount tree starting
3476  * from @path->mnt. The caller may use the mount tree under the
3477  * following circumstances:
3478  *
3479  * (1) The caller is located in the mount namespace of the mount tree.
3480  *     This also implies that the mount does not belong to an anonymous
3481  *     mount namespace.
3482  * (2) The caller is trying to use a mount tree that belongs to an
3483  *     anonymous mount namespace.
3484  *
3485  *     For that to be safe, this helper enforces that the origin mount
3486  *     namespace the anonymous mount namespace was created from is the
3487  *     same as the caller's mount namespace by comparing the sequence
3488  *     numbers.
3489  *
3490  *     The ownership of a non-anonymous mount namespace such as the
3491  *     caller's cannot change.
3492  *     => We know that the caller's mount namespace is stable.
3493  *
3494  *     If the origin sequence number of the anonymous mount namespace is
3495  *     the same as the sequence number of the caller's mount namespace.
3496  *     => The owning namespaces are the same.
3497  *
3498  *     ==> The earlier capability check on the owning namespace of the
3499  *         caller's mount namespace ensures that the caller has the
3500  *         ability to use the mount tree.
3501  *
3502  * Returns true if the mount tree can be used, false otherwise.
3503  */
3504 static inline bool may_use_mount(struct mount *mnt)
3505 {
3506 	if (check_mnt(mnt))
3507 		return true;
3508 
3509 	/*
3510 	 * Make sure that noone unmounted the target path or somehow
3511 	 * managed to get their hands on something purely kernel
3512 	 * internal.
3513 	 */
3514 	if (!is_mounted(&mnt->mnt))
3515 		return false;
3516 
3517 	return check_anonymous_mnt(mnt);
3518 }
3519 
3520 static int do_move_mount(struct path *old_path,
3521 			 struct path *new_path, enum mnt_tree_flags_t flags)
3522 {
3523 	struct mnt_namespace *ns;
3524 	struct mount *p;
3525 	struct mount *old;
3526 	struct mount *parent;
3527 	struct pinned_mountpoint mp;
3528 	int err;
3529 	bool beneath = flags & MNT_TREE_BENEATH;
3530 
3531 	err = do_lock_mount(new_path, &mp, beneath);
3532 	if (err)
3533 		return err;
3534 
3535 	old = real_mount(old_path->mnt);
3536 	p = real_mount(new_path->mnt);
3537 	parent = old->mnt_parent;
3538 	ns = old->mnt_ns;
3539 
3540 	err = -EINVAL;
3541 
3542 	if (check_mnt(old)) {
3543 		/* if the source is in our namespace... */
3544 		/* ... it should be detachable from parent */
3545 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3546 			goto out;
3547 		/* ... and the target should be in our namespace */
3548 		if (!check_mnt(p))
3549 			goto out;
3550 		/* parent of the source should not be shared */
3551 		if (IS_MNT_SHARED(parent))
3552 			goto out;
3553 	} else {
3554 		/*
3555 		 * otherwise the source must be the root of some anon namespace.
3556 		 */
3557 		if (!anon_ns_root(old))
3558 			goto out;
3559 		/*
3560 		 * Bail out early if the target is within the same namespace -
3561 		 * subsequent checks would've rejected that, but they lose
3562 		 * some corner cases if we check it early.
3563 		 */
3564 		if (ns == p->mnt_ns)
3565 			goto out;
3566 		/*
3567 		 * Target should be either in our namespace or in an acceptable
3568 		 * anon namespace, sensu check_anonymous_mnt().
3569 		 */
3570 		if (!may_use_mount(p))
3571 			goto out;
3572 	}
3573 
3574 	if (!path_mounted(old_path))
3575 		goto out;
3576 
3577 	if (d_is_dir(new_path->dentry) !=
3578 	    d_is_dir(old_path->dentry))
3579 		goto out;
3580 
3581 	if (beneath) {
3582 		err = can_move_mount_beneath(old_path, new_path, mp.mp);
3583 		if (err)
3584 			goto out;
3585 
3586 		err = -EINVAL;
3587 		p = p->mnt_parent;
3588 	}
3589 
3590 	/*
3591 	 * Don't move a mount tree containing unbindable mounts to a destination
3592 	 * mount which is shared.
3593 	 */
3594 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3595 		goto out;
3596 	err = -ELOOP;
3597 	if (!check_for_nsfs_mounts(old))
3598 		goto out;
3599 	if (mount_is_ancestor(old, p))
3600 		goto out;
3601 
3602 	err = attach_recursive_mnt(old, p, mp.mp);
3603 out:
3604 	unlock_mount(&mp);
3605 	return err;
3606 }
3607 
3608 static int do_move_mount_old(struct path *path, const char *old_name)
3609 {
3610 	struct path old_path;
3611 	int err;
3612 
3613 	if (!old_name || !*old_name)
3614 		return -EINVAL;
3615 
3616 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3617 	if (err)
3618 		return err;
3619 
3620 	err = do_move_mount(&old_path, path, 0);
3621 	path_put(&old_path);
3622 	return err;
3623 }
3624 
3625 /*
3626  * add a mount into a namespace's mount tree
3627  */
3628 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3629 			const struct path *path, int mnt_flags)
3630 {
3631 	struct mount *parent = real_mount(path->mnt);
3632 
3633 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3634 
3635 	if (unlikely(!check_mnt(parent))) {
3636 		/* that's acceptable only for automounts done in private ns */
3637 		if (!(mnt_flags & MNT_SHRINKABLE))
3638 			return -EINVAL;
3639 		/* ... and for those we'd better have mountpoint still alive */
3640 		if (!parent->mnt_ns)
3641 			return -EINVAL;
3642 	}
3643 
3644 	/* Refuse the same filesystem on the same mount point */
3645 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3646 		return -EBUSY;
3647 
3648 	if (d_is_symlink(newmnt->mnt.mnt_root))
3649 		return -EINVAL;
3650 
3651 	newmnt->mnt.mnt_flags = mnt_flags;
3652 	return graft_tree(newmnt, parent, mp);
3653 }
3654 
3655 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3656 
3657 /*
3658  * Create a new mount using a superblock configuration and request it
3659  * be added to the namespace tree.
3660  */
3661 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3662 			   unsigned int mnt_flags)
3663 {
3664 	struct vfsmount *mnt;
3665 	struct pinned_mountpoint mp = {};
3666 	struct super_block *sb = fc->root->d_sb;
3667 	int error;
3668 
3669 	error = security_sb_kern_mount(sb);
3670 	if (!error && mount_too_revealing(sb, &mnt_flags)) {
3671 		errorfcp(fc, "VFS", "Mount too revealing");
3672 		error = -EPERM;
3673 	}
3674 
3675 	if (unlikely(error)) {
3676 		fc_drop_locked(fc);
3677 		return error;
3678 	}
3679 
3680 	up_write(&sb->s_umount);
3681 
3682 	mnt = vfs_create_mount(fc);
3683 	if (IS_ERR(mnt))
3684 		return PTR_ERR(mnt);
3685 
3686 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3687 
3688 	error = lock_mount(mountpoint, &mp);
3689 	if (!error) {
3690 		error = do_add_mount(real_mount(mnt), mp.mp,
3691 				     mountpoint, mnt_flags);
3692 		unlock_mount(&mp);
3693 	}
3694 	if (error < 0)
3695 		mntput(mnt);
3696 	return error;
3697 }
3698 
3699 /*
3700  * create a new mount for userspace and request it to be added into the
3701  * namespace's tree
3702  */
3703 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3704 			int mnt_flags, const char *name, void *data)
3705 {
3706 	struct file_system_type *type;
3707 	struct fs_context *fc;
3708 	const char *subtype = NULL;
3709 	int err = 0;
3710 
3711 	if (!fstype)
3712 		return -EINVAL;
3713 
3714 	type = get_fs_type(fstype);
3715 	if (!type)
3716 		return -ENODEV;
3717 
3718 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3719 		subtype = strchr(fstype, '.');
3720 		if (subtype) {
3721 			subtype++;
3722 			if (!*subtype) {
3723 				put_filesystem(type);
3724 				return -EINVAL;
3725 			}
3726 		}
3727 	}
3728 
3729 	fc = fs_context_for_mount(type, sb_flags);
3730 	put_filesystem(type);
3731 	if (IS_ERR(fc))
3732 		return PTR_ERR(fc);
3733 
3734 	/*
3735 	 * Indicate to the filesystem that the mount request is coming
3736 	 * from the legacy mount system call.
3737 	 */
3738 	fc->oldapi = true;
3739 
3740 	if (subtype)
3741 		err = vfs_parse_fs_string(fc, "subtype",
3742 					  subtype, strlen(subtype));
3743 	if (!err && name)
3744 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3745 	if (!err)
3746 		err = parse_monolithic_mount_data(fc, data);
3747 	if (!err && !mount_capable(fc))
3748 		err = -EPERM;
3749 	if (!err)
3750 		err = vfs_get_tree(fc);
3751 	if (!err)
3752 		err = do_new_mount_fc(fc, path, mnt_flags);
3753 
3754 	put_fs_context(fc);
3755 	return err;
3756 }
3757 
3758 int finish_automount(struct vfsmount *m, const struct path *path)
3759 {
3760 	struct dentry *dentry = path->dentry;
3761 	struct pinned_mountpoint mp = {};
3762 	struct mount *mnt;
3763 	int err;
3764 
3765 	if (!m)
3766 		return 0;
3767 	if (IS_ERR(m))
3768 		return PTR_ERR(m);
3769 
3770 	mnt = real_mount(m);
3771 
3772 	if (m->mnt_sb == path->mnt->mnt_sb &&
3773 	    m->mnt_root == dentry) {
3774 		err = -ELOOP;
3775 		goto discard;
3776 	}
3777 
3778 	/*
3779 	 * we don't want to use lock_mount() - in this case finding something
3780 	 * that overmounts our mountpoint to be means "quitely drop what we've
3781 	 * got", not "try to mount it on top".
3782 	 */
3783 	inode_lock(dentry->d_inode);
3784 	namespace_lock();
3785 	if (unlikely(cant_mount(dentry))) {
3786 		err = -ENOENT;
3787 		goto discard_locked;
3788 	}
3789 	if (path_overmounted(path)) {
3790 		err = 0;
3791 		goto discard_locked;
3792 	}
3793 	err = get_mountpoint(dentry, &mp);
3794 	if (err)
3795 		goto discard_locked;
3796 
3797 	err = do_add_mount(mnt, mp.mp, path,
3798 			   path->mnt->mnt_flags | MNT_SHRINKABLE);
3799 	unlock_mount(&mp);
3800 	if (unlikely(err))
3801 		goto discard;
3802 	return 0;
3803 
3804 discard_locked:
3805 	namespace_unlock();
3806 	inode_unlock(dentry->d_inode);
3807 discard:
3808 	mntput(m);
3809 	return err;
3810 }
3811 
3812 /**
3813  * mnt_set_expiry - Put a mount on an expiration list
3814  * @mnt: The mount to list.
3815  * @expiry_list: The list to add the mount to.
3816  */
3817 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3818 {
3819 	read_seqlock_excl(&mount_lock);
3820 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3821 	read_sequnlock_excl(&mount_lock);
3822 }
3823 EXPORT_SYMBOL(mnt_set_expiry);
3824 
3825 /*
3826  * process a list of expirable mountpoints with the intent of discarding any
3827  * mountpoints that aren't in use and haven't been touched since last we came
3828  * here
3829  */
3830 void mark_mounts_for_expiry(struct list_head *mounts)
3831 {
3832 	struct mount *mnt, *next;
3833 	LIST_HEAD(graveyard);
3834 
3835 	if (list_empty(mounts))
3836 		return;
3837 
3838 	namespace_lock();
3839 	lock_mount_hash();
3840 
3841 	/* extract from the expiration list every vfsmount that matches the
3842 	 * following criteria:
3843 	 * - already mounted
3844 	 * - only referenced by its parent vfsmount
3845 	 * - still marked for expiry (marked on the last call here; marks are
3846 	 *   cleared by mntput())
3847 	 */
3848 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3849 		if (!is_mounted(&mnt->mnt))
3850 			continue;
3851 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3852 			propagate_mount_busy(mnt, 1))
3853 			continue;
3854 		list_move(&mnt->mnt_expire, &graveyard);
3855 	}
3856 	while (!list_empty(&graveyard)) {
3857 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3858 		touch_mnt_namespace(mnt->mnt_ns);
3859 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3860 	}
3861 	unlock_mount_hash();
3862 	namespace_unlock();
3863 }
3864 
3865 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3866 
3867 /*
3868  * Ripoff of 'select_parent()'
3869  *
3870  * search the list of submounts for a given mountpoint, and move any
3871  * shrinkable submounts to the 'graveyard' list.
3872  */
3873 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3874 {
3875 	struct mount *this_parent = parent;
3876 	struct list_head *next;
3877 	int found = 0;
3878 
3879 repeat:
3880 	next = this_parent->mnt_mounts.next;
3881 resume:
3882 	while (next != &this_parent->mnt_mounts) {
3883 		struct list_head *tmp = next;
3884 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3885 
3886 		next = tmp->next;
3887 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3888 			continue;
3889 		/*
3890 		 * Descend a level if the d_mounts list is non-empty.
3891 		 */
3892 		if (!list_empty(&mnt->mnt_mounts)) {
3893 			this_parent = mnt;
3894 			goto repeat;
3895 		}
3896 
3897 		if (!propagate_mount_busy(mnt, 1)) {
3898 			list_move_tail(&mnt->mnt_expire, graveyard);
3899 			found++;
3900 		}
3901 	}
3902 	/*
3903 	 * All done at this level ... ascend and resume the search
3904 	 */
3905 	if (this_parent != parent) {
3906 		next = this_parent->mnt_child.next;
3907 		this_parent = this_parent->mnt_parent;
3908 		goto resume;
3909 	}
3910 	return found;
3911 }
3912 
3913 /*
3914  * process a list of expirable mountpoints with the intent of discarding any
3915  * submounts of a specific parent mountpoint
3916  *
3917  * mount_lock must be held for write
3918  */
3919 static void shrink_submounts(struct mount *mnt)
3920 {
3921 	LIST_HEAD(graveyard);
3922 	struct mount *m;
3923 
3924 	/* extract submounts of 'mountpoint' from the expiration list */
3925 	while (select_submounts(mnt, &graveyard)) {
3926 		while (!list_empty(&graveyard)) {
3927 			m = list_first_entry(&graveyard, struct mount,
3928 						mnt_expire);
3929 			touch_mnt_namespace(m->mnt_ns);
3930 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3931 		}
3932 	}
3933 }
3934 
3935 static void *copy_mount_options(const void __user * data)
3936 {
3937 	char *copy;
3938 	unsigned left, offset;
3939 
3940 	if (!data)
3941 		return NULL;
3942 
3943 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3944 	if (!copy)
3945 		return ERR_PTR(-ENOMEM);
3946 
3947 	left = copy_from_user(copy, data, PAGE_SIZE);
3948 
3949 	/*
3950 	 * Not all architectures have an exact copy_from_user(). Resort to
3951 	 * byte at a time.
3952 	 */
3953 	offset = PAGE_SIZE - left;
3954 	while (left) {
3955 		char c;
3956 		if (get_user(c, (const char __user *)data + offset))
3957 			break;
3958 		copy[offset] = c;
3959 		left--;
3960 		offset++;
3961 	}
3962 
3963 	if (left == PAGE_SIZE) {
3964 		kfree(copy);
3965 		return ERR_PTR(-EFAULT);
3966 	}
3967 
3968 	return copy;
3969 }
3970 
3971 static char *copy_mount_string(const void __user *data)
3972 {
3973 	return data ? strndup_user(data, PATH_MAX) : NULL;
3974 }
3975 
3976 /*
3977  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3978  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3979  *
3980  * data is a (void *) that can point to any structure up to
3981  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3982  * information (or be NULL).
3983  *
3984  * Pre-0.97 versions of mount() didn't have a flags word.
3985  * When the flags word was introduced its top half was required
3986  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3987  * Therefore, if this magic number is present, it carries no information
3988  * and must be discarded.
3989  */
3990 int path_mount(const char *dev_name, struct path *path,
3991 		const char *type_page, unsigned long flags, void *data_page)
3992 {
3993 	unsigned int mnt_flags = 0, sb_flags;
3994 	int ret;
3995 
3996 	/* Discard magic */
3997 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3998 		flags &= ~MS_MGC_MSK;
3999 
4000 	/* Basic sanity checks */
4001 	if (data_page)
4002 		((char *)data_page)[PAGE_SIZE - 1] = 0;
4003 
4004 	if (flags & MS_NOUSER)
4005 		return -EINVAL;
4006 
4007 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4008 	if (ret)
4009 		return ret;
4010 	if (!may_mount())
4011 		return -EPERM;
4012 	if (flags & SB_MANDLOCK)
4013 		warn_mandlock();
4014 
4015 	/* Default to relatime unless overriden */
4016 	if (!(flags & MS_NOATIME))
4017 		mnt_flags |= MNT_RELATIME;
4018 
4019 	/* Separate the per-mountpoint flags */
4020 	if (flags & MS_NOSUID)
4021 		mnt_flags |= MNT_NOSUID;
4022 	if (flags & MS_NODEV)
4023 		mnt_flags |= MNT_NODEV;
4024 	if (flags & MS_NOEXEC)
4025 		mnt_flags |= MNT_NOEXEC;
4026 	if (flags & MS_NOATIME)
4027 		mnt_flags |= MNT_NOATIME;
4028 	if (flags & MS_NODIRATIME)
4029 		mnt_flags |= MNT_NODIRATIME;
4030 	if (flags & MS_STRICTATIME)
4031 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4032 	if (flags & MS_RDONLY)
4033 		mnt_flags |= MNT_READONLY;
4034 	if (flags & MS_NOSYMFOLLOW)
4035 		mnt_flags |= MNT_NOSYMFOLLOW;
4036 
4037 	/* The default atime for remount is preservation */
4038 	if ((flags & MS_REMOUNT) &&
4039 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4040 		       MS_STRICTATIME)) == 0)) {
4041 		mnt_flags &= ~MNT_ATIME_MASK;
4042 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4043 	}
4044 
4045 	sb_flags = flags & (SB_RDONLY |
4046 			    SB_SYNCHRONOUS |
4047 			    SB_MANDLOCK |
4048 			    SB_DIRSYNC |
4049 			    SB_SILENT |
4050 			    SB_POSIXACL |
4051 			    SB_LAZYTIME |
4052 			    SB_I_VERSION);
4053 
4054 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4055 		return do_reconfigure_mnt(path, mnt_flags);
4056 	if (flags & MS_REMOUNT)
4057 		return do_remount(path, sb_flags, mnt_flags, data_page);
4058 	if (flags & MS_BIND)
4059 		return do_loopback(path, dev_name, flags & MS_REC);
4060 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4061 		return do_change_type(path, flags);
4062 	if (flags & MS_MOVE)
4063 		return do_move_mount_old(path, dev_name);
4064 
4065 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4066 			    data_page);
4067 }
4068 
4069 int do_mount(const char *dev_name, const char __user *dir_name,
4070 		const char *type_page, unsigned long flags, void *data_page)
4071 {
4072 	struct path path;
4073 	int ret;
4074 
4075 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4076 	if (ret)
4077 		return ret;
4078 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
4079 	path_put(&path);
4080 	return ret;
4081 }
4082 
4083 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4084 {
4085 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4086 }
4087 
4088 static void dec_mnt_namespaces(struct ucounts *ucounts)
4089 {
4090 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4091 }
4092 
4093 static void free_mnt_ns(struct mnt_namespace *ns)
4094 {
4095 	if (!is_anon_ns(ns))
4096 		ns_common_free(ns);
4097 	dec_mnt_namespaces(ns->ucounts);
4098 	mnt_ns_tree_remove(ns);
4099 }
4100 
4101 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4102 {
4103 	struct mnt_namespace *new_ns;
4104 	struct ucounts *ucounts;
4105 	int ret;
4106 
4107 	ucounts = inc_mnt_namespaces(user_ns);
4108 	if (!ucounts)
4109 		return ERR_PTR(-ENOSPC);
4110 
4111 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4112 	if (!new_ns) {
4113 		dec_mnt_namespaces(ucounts);
4114 		return ERR_PTR(-ENOMEM);
4115 	}
4116 
4117 	if (anon)
4118 		ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4119 	else
4120 		ret = ns_common_init(new_ns);
4121 	if (ret) {
4122 		kfree(new_ns);
4123 		dec_mnt_namespaces(ucounts);
4124 		return ERR_PTR(ret);
4125 	}
4126 	if (!anon)
4127 		ns_tree_gen_id(&new_ns->ns);
4128 	refcount_set(&new_ns->passive, 1);
4129 	new_ns->mounts = RB_ROOT;
4130 	init_waitqueue_head(&new_ns->poll);
4131 	new_ns->user_ns = get_user_ns(user_ns);
4132 	new_ns->ucounts = ucounts;
4133 	return new_ns;
4134 }
4135 
4136 __latent_entropy
4137 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4138 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4139 {
4140 	struct mnt_namespace *new_ns;
4141 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4142 	struct mount *p, *q;
4143 	struct mount *old;
4144 	struct mount *new;
4145 	int copy_flags;
4146 
4147 	BUG_ON(!ns);
4148 
4149 	if (likely(!(flags & CLONE_NEWNS))) {
4150 		get_mnt_ns(ns);
4151 		return ns;
4152 	}
4153 
4154 	old = ns->root;
4155 
4156 	new_ns = alloc_mnt_ns(user_ns, false);
4157 	if (IS_ERR(new_ns))
4158 		return new_ns;
4159 
4160 	namespace_lock();
4161 	/* First pass: copy the tree topology */
4162 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4163 	if (user_ns != ns->user_ns)
4164 		copy_flags |= CL_SLAVE;
4165 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4166 	if (IS_ERR(new)) {
4167 		namespace_unlock();
4168 		ns_common_free(ns);
4169 		dec_mnt_namespaces(new_ns->ucounts);
4170 		mnt_ns_release(new_ns);
4171 		return ERR_CAST(new);
4172 	}
4173 	if (user_ns != ns->user_ns) {
4174 		lock_mount_hash();
4175 		lock_mnt_tree(new);
4176 		unlock_mount_hash();
4177 	}
4178 	new_ns->root = new;
4179 
4180 	/*
4181 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4182 	 * as belonging to new namespace.  We have already acquired a private
4183 	 * fs_struct, so tsk->fs->lock is not needed.
4184 	 */
4185 	p = old;
4186 	q = new;
4187 	while (p) {
4188 		mnt_add_to_ns(new_ns, q);
4189 		new_ns->nr_mounts++;
4190 		if (new_fs) {
4191 			if (&p->mnt == new_fs->root.mnt) {
4192 				new_fs->root.mnt = mntget(&q->mnt);
4193 				rootmnt = &p->mnt;
4194 			}
4195 			if (&p->mnt == new_fs->pwd.mnt) {
4196 				new_fs->pwd.mnt = mntget(&q->mnt);
4197 				pwdmnt = &p->mnt;
4198 			}
4199 		}
4200 		p = next_mnt(p, old);
4201 		q = next_mnt(q, new);
4202 		if (!q)
4203 			break;
4204 		// an mntns binding we'd skipped?
4205 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4206 			p = next_mnt(skip_mnt_tree(p), old);
4207 	}
4208 	namespace_unlock();
4209 
4210 	if (rootmnt)
4211 		mntput(rootmnt);
4212 	if (pwdmnt)
4213 		mntput(pwdmnt);
4214 
4215 	ns_tree_add_raw(new_ns);
4216 	return new_ns;
4217 }
4218 
4219 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4220 {
4221 	struct mount *mnt = real_mount(m);
4222 	struct mnt_namespace *ns;
4223 	struct super_block *s;
4224 	struct path path;
4225 	int err;
4226 
4227 	ns = alloc_mnt_ns(&init_user_ns, true);
4228 	if (IS_ERR(ns)) {
4229 		mntput(m);
4230 		return ERR_CAST(ns);
4231 	}
4232 	ns->root = mnt;
4233 	ns->nr_mounts++;
4234 	mnt_add_to_ns(ns, mnt);
4235 
4236 	err = vfs_path_lookup(m->mnt_root, m,
4237 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4238 
4239 	put_mnt_ns(ns);
4240 
4241 	if (err)
4242 		return ERR_PTR(err);
4243 
4244 	/* trade a vfsmount reference for active sb one */
4245 	s = path.mnt->mnt_sb;
4246 	atomic_inc(&s->s_active);
4247 	mntput(path.mnt);
4248 	/* lock the sucker */
4249 	down_write(&s->s_umount);
4250 	/* ... and return the root of (sub)tree on it */
4251 	return path.dentry;
4252 }
4253 EXPORT_SYMBOL(mount_subtree);
4254 
4255 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4256 		char __user *, type, unsigned long, flags, void __user *, data)
4257 {
4258 	int ret;
4259 	char *kernel_type;
4260 	char *kernel_dev;
4261 	void *options;
4262 
4263 	kernel_type = copy_mount_string(type);
4264 	ret = PTR_ERR(kernel_type);
4265 	if (IS_ERR(kernel_type))
4266 		goto out_type;
4267 
4268 	kernel_dev = copy_mount_string(dev_name);
4269 	ret = PTR_ERR(kernel_dev);
4270 	if (IS_ERR(kernel_dev))
4271 		goto out_dev;
4272 
4273 	options = copy_mount_options(data);
4274 	ret = PTR_ERR(options);
4275 	if (IS_ERR(options))
4276 		goto out_data;
4277 
4278 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4279 
4280 	kfree(options);
4281 out_data:
4282 	kfree(kernel_dev);
4283 out_dev:
4284 	kfree(kernel_type);
4285 out_type:
4286 	return ret;
4287 }
4288 
4289 #define FSMOUNT_VALID_FLAGS                                                    \
4290 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4291 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4292 	 MOUNT_ATTR_NOSYMFOLLOW)
4293 
4294 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4295 
4296 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4297 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4298 
4299 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4300 {
4301 	unsigned int mnt_flags = 0;
4302 
4303 	if (attr_flags & MOUNT_ATTR_RDONLY)
4304 		mnt_flags |= MNT_READONLY;
4305 	if (attr_flags & MOUNT_ATTR_NOSUID)
4306 		mnt_flags |= MNT_NOSUID;
4307 	if (attr_flags & MOUNT_ATTR_NODEV)
4308 		mnt_flags |= MNT_NODEV;
4309 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4310 		mnt_flags |= MNT_NOEXEC;
4311 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4312 		mnt_flags |= MNT_NODIRATIME;
4313 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4314 		mnt_flags |= MNT_NOSYMFOLLOW;
4315 
4316 	return mnt_flags;
4317 }
4318 
4319 /*
4320  * Create a kernel mount representation for a new, prepared superblock
4321  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4322  */
4323 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4324 		unsigned int, attr_flags)
4325 {
4326 	struct mnt_namespace *ns;
4327 	struct fs_context *fc;
4328 	struct file *file;
4329 	struct path newmount;
4330 	struct mount *mnt;
4331 	unsigned int mnt_flags = 0;
4332 	long ret;
4333 
4334 	if (!may_mount())
4335 		return -EPERM;
4336 
4337 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4338 		return -EINVAL;
4339 
4340 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4341 		return -EINVAL;
4342 
4343 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4344 
4345 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4346 	case MOUNT_ATTR_STRICTATIME:
4347 		break;
4348 	case MOUNT_ATTR_NOATIME:
4349 		mnt_flags |= MNT_NOATIME;
4350 		break;
4351 	case MOUNT_ATTR_RELATIME:
4352 		mnt_flags |= MNT_RELATIME;
4353 		break;
4354 	default:
4355 		return -EINVAL;
4356 	}
4357 
4358 	CLASS(fd, f)(fs_fd);
4359 	if (fd_empty(f))
4360 		return -EBADF;
4361 
4362 	if (fd_file(f)->f_op != &fscontext_fops)
4363 		return -EINVAL;
4364 
4365 	fc = fd_file(f)->private_data;
4366 
4367 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4368 	if (ret < 0)
4369 		return ret;
4370 
4371 	/* There must be a valid superblock or we can't mount it */
4372 	ret = -EINVAL;
4373 	if (!fc->root)
4374 		goto err_unlock;
4375 
4376 	ret = -EPERM;
4377 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4378 		errorfcp(fc, "VFS", "Mount too revealing");
4379 		goto err_unlock;
4380 	}
4381 
4382 	ret = -EBUSY;
4383 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4384 		goto err_unlock;
4385 
4386 	if (fc->sb_flags & SB_MANDLOCK)
4387 		warn_mandlock();
4388 
4389 	newmount.mnt = vfs_create_mount(fc);
4390 	if (IS_ERR(newmount.mnt)) {
4391 		ret = PTR_ERR(newmount.mnt);
4392 		goto err_unlock;
4393 	}
4394 	newmount.dentry = dget(fc->root);
4395 	newmount.mnt->mnt_flags = mnt_flags;
4396 
4397 	/* We've done the mount bit - now move the file context into more or
4398 	 * less the same state as if we'd done an fspick().  We don't want to
4399 	 * do any memory allocation or anything like that at this point as we
4400 	 * don't want to have to handle any errors incurred.
4401 	 */
4402 	vfs_clean_context(fc);
4403 
4404 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4405 	if (IS_ERR(ns)) {
4406 		ret = PTR_ERR(ns);
4407 		goto err_path;
4408 	}
4409 	mnt = real_mount(newmount.mnt);
4410 	ns->root = mnt;
4411 	ns->nr_mounts = 1;
4412 	mnt_add_to_ns(ns, mnt);
4413 	mntget(newmount.mnt);
4414 
4415 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4416 	 * it, not just simply put it.
4417 	 */
4418 	file = dentry_open(&newmount, O_PATH, fc->cred);
4419 	if (IS_ERR(file)) {
4420 		dissolve_on_fput(newmount.mnt);
4421 		ret = PTR_ERR(file);
4422 		goto err_path;
4423 	}
4424 	file->f_mode |= FMODE_NEED_UNMOUNT;
4425 
4426 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4427 	if (ret >= 0)
4428 		fd_install(ret, file);
4429 	else
4430 		fput(file);
4431 
4432 err_path:
4433 	path_put(&newmount);
4434 err_unlock:
4435 	mutex_unlock(&fc->uapi_mutex);
4436 	return ret;
4437 }
4438 
4439 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4440 				 enum mnt_tree_flags_t mflags)
4441 {
4442 	int ret;
4443 
4444 	ret = security_move_mount(from_path, to_path);
4445 	if (ret)
4446 		return ret;
4447 
4448 	if (mflags & MNT_TREE_PROPAGATION)
4449 		return do_set_group(from_path, to_path);
4450 
4451 	return do_move_mount(from_path, to_path, mflags);
4452 }
4453 
4454 /*
4455  * Move a mount from one place to another.  In combination with
4456  * fsopen()/fsmount() this is used to install a new mount and in combination
4457  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4458  * a mount subtree.
4459  *
4460  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4461  */
4462 SYSCALL_DEFINE5(move_mount,
4463 		int, from_dfd, const char __user *, from_pathname,
4464 		int, to_dfd, const char __user *, to_pathname,
4465 		unsigned int, flags)
4466 {
4467 	struct path to_path __free(path_put) = {};
4468 	struct path from_path __free(path_put) = {};
4469 	struct filename *to_name __free(putname) = NULL;
4470 	struct filename *from_name __free(putname) = NULL;
4471 	unsigned int lflags, uflags;
4472 	enum mnt_tree_flags_t mflags = 0;
4473 	int ret = 0;
4474 
4475 	if (!may_mount())
4476 		return -EPERM;
4477 
4478 	if (flags & ~MOVE_MOUNT__MASK)
4479 		return -EINVAL;
4480 
4481 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4482 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4483 		return -EINVAL;
4484 
4485 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4486 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4487 
4488 	uflags = 0;
4489 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4490 		uflags = AT_EMPTY_PATH;
4491 
4492 	to_name = getname_maybe_null(to_pathname, uflags);
4493 	if (IS_ERR(to_name))
4494 		return PTR_ERR(to_name);
4495 
4496 	if (!to_name && to_dfd >= 0) {
4497 		CLASS(fd_raw, f_to)(to_dfd);
4498 		if (fd_empty(f_to))
4499 			return -EBADF;
4500 
4501 		to_path = fd_file(f_to)->f_path;
4502 		path_get(&to_path);
4503 	} else {
4504 		lflags = 0;
4505 		if (flags & MOVE_MOUNT_T_SYMLINKS)
4506 			lflags |= LOOKUP_FOLLOW;
4507 		if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4508 			lflags |= LOOKUP_AUTOMOUNT;
4509 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4510 		if (ret)
4511 			return ret;
4512 	}
4513 
4514 	uflags = 0;
4515 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4516 		uflags = AT_EMPTY_PATH;
4517 
4518 	from_name = getname_maybe_null(from_pathname, uflags);
4519 	if (IS_ERR(from_name))
4520 		return PTR_ERR(from_name);
4521 
4522 	if (!from_name && from_dfd >= 0) {
4523 		CLASS(fd_raw, f_from)(from_dfd);
4524 		if (fd_empty(f_from))
4525 			return -EBADF;
4526 
4527 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4528 	}
4529 
4530 	lflags = 0;
4531 	if (flags & MOVE_MOUNT_F_SYMLINKS)
4532 		lflags |= LOOKUP_FOLLOW;
4533 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4534 		lflags |= LOOKUP_AUTOMOUNT;
4535 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4536 	if (ret)
4537 		return ret;
4538 
4539 	return vfs_move_mount(&from_path, &to_path, mflags);
4540 }
4541 
4542 /*
4543  * Return true if path is reachable from root
4544  *
4545  * namespace_sem or mount_lock is held
4546  */
4547 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4548 			 const struct path *root)
4549 {
4550 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4551 		dentry = mnt->mnt_mountpoint;
4552 		mnt = mnt->mnt_parent;
4553 	}
4554 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4555 }
4556 
4557 bool path_is_under(const struct path *path1, const struct path *path2)
4558 {
4559 	bool res;
4560 	read_seqlock_excl(&mount_lock);
4561 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4562 	read_sequnlock_excl(&mount_lock);
4563 	return res;
4564 }
4565 EXPORT_SYMBOL(path_is_under);
4566 
4567 /*
4568  * pivot_root Semantics:
4569  * Moves the root file system of the current process to the directory put_old,
4570  * makes new_root as the new root file system of the current process, and sets
4571  * root/cwd of all processes which had them on the current root to new_root.
4572  *
4573  * Restrictions:
4574  * The new_root and put_old must be directories, and  must not be on the
4575  * same file  system as the current process root. The put_old  must  be
4576  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4577  * pointed to by put_old must yield the same directory as new_root. No other
4578  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4579  *
4580  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4581  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4582  * in this situation.
4583  *
4584  * Notes:
4585  *  - we don't move root/cwd if they are not at the root (reason: if something
4586  *    cared enough to change them, it's probably wrong to force them elsewhere)
4587  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4588  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4589  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4590  *    first.
4591  */
4592 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4593 		const char __user *, put_old)
4594 {
4595 	struct path new, old, root;
4596 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4597 	struct pinned_mountpoint old_mp = {};
4598 	int error;
4599 
4600 	if (!may_mount())
4601 		return -EPERM;
4602 
4603 	error = user_path_at(AT_FDCWD, new_root,
4604 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4605 	if (error)
4606 		goto out0;
4607 
4608 	error = user_path_at(AT_FDCWD, put_old,
4609 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4610 	if (error)
4611 		goto out1;
4612 
4613 	error = security_sb_pivotroot(&old, &new);
4614 	if (error)
4615 		goto out2;
4616 
4617 	get_fs_root(current->fs, &root);
4618 	error = lock_mount(&old, &old_mp);
4619 	if (error)
4620 		goto out3;
4621 
4622 	error = -EINVAL;
4623 	new_mnt = real_mount(new.mnt);
4624 	root_mnt = real_mount(root.mnt);
4625 	old_mnt = real_mount(old.mnt);
4626 	ex_parent = new_mnt->mnt_parent;
4627 	root_parent = root_mnt->mnt_parent;
4628 	if (IS_MNT_SHARED(old_mnt) ||
4629 		IS_MNT_SHARED(ex_parent) ||
4630 		IS_MNT_SHARED(root_parent))
4631 		goto out4;
4632 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4633 		goto out4;
4634 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4635 		goto out4;
4636 	error = -ENOENT;
4637 	if (d_unlinked(new.dentry))
4638 		goto out4;
4639 	error = -EBUSY;
4640 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4641 		goto out4; /* loop, on the same file system  */
4642 	error = -EINVAL;
4643 	if (!path_mounted(&root))
4644 		goto out4; /* not a mountpoint */
4645 	if (!mnt_has_parent(root_mnt))
4646 		goto out4; /* absolute root */
4647 	if (!path_mounted(&new))
4648 		goto out4; /* not a mountpoint */
4649 	if (!mnt_has_parent(new_mnt))
4650 		goto out4; /* absolute root */
4651 	/* make sure we can reach put_old from new_root */
4652 	if (!is_path_reachable(old_mnt, old.dentry, &new))
4653 		goto out4;
4654 	/* make certain new is below the root */
4655 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4656 		goto out4;
4657 	lock_mount_hash();
4658 	umount_mnt(new_mnt);
4659 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4660 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4661 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4662 	}
4663 	/* mount new_root on / */
4664 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4665 	umount_mnt(root_mnt);
4666 	/* mount old root on put_old */
4667 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4668 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4669 	/* A moved mount should not expire automatically */
4670 	list_del_init(&new_mnt->mnt_expire);
4671 	unlock_mount_hash();
4672 	mnt_notify_add(root_mnt);
4673 	mnt_notify_add(new_mnt);
4674 	chroot_fs_refs(&root, &new);
4675 	error = 0;
4676 out4:
4677 	unlock_mount(&old_mp);
4678 out3:
4679 	path_put(&root);
4680 out2:
4681 	path_put(&old);
4682 out1:
4683 	path_put(&new);
4684 out0:
4685 	return error;
4686 }
4687 
4688 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4689 {
4690 	unsigned int flags = mnt->mnt.mnt_flags;
4691 
4692 	/*  flags to clear */
4693 	flags &= ~kattr->attr_clr;
4694 	/* flags to raise */
4695 	flags |= kattr->attr_set;
4696 
4697 	return flags;
4698 }
4699 
4700 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4701 {
4702 	struct vfsmount *m = &mnt->mnt;
4703 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4704 
4705 	if (!kattr->mnt_idmap)
4706 		return 0;
4707 
4708 	/*
4709 	 * Creating an idmapped mount with the filesystem wide idmapping
4710 	 * doesn't make sense so block that. We don't allow mushy semantics.
4711 	 */
4712 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4713 		return -EINVAL;
4714 
4715 	/*
4716 	 * We only allow an mount to change it's idmapping if it has
4717 	 * never been accessible to userspace.
4718 	 */
4719 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4720 		return -EPERM;
4721 
4722 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4723 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4724 		return -EINVAL;
4725 
4726 	/* The filesystem has turned off idmapped mounts. */
4727 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4728 		return -EINVAL;
4729 
4730 	/* We're not controlling the superblock. */
4731 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4732 		return -EPERM;
4733 
4734 	/* Mount has already been visible in the filesystem hierarchy. */
4735 	if (!is_anon_ns(mnt->mnt_ns))
4736 		return -EINVAL;
4737 
4738 	return 0;
4739 }
4740 
4741 /**
4742  * mnt_allow_writers() - check whether the attribute change allows writers
4743  * @kattr: the new mount attributes
4744  * @mnt: the mount to which @kattr will be applied
4745  *
4746  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4747  *
4748  * Return: true if writers need to be held, false if not
4749  */
4750 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4751 				     const struct mount *mnt)
4752 {
4753 	return (!(kattr->attr_set & MNT_READONLY) ||
4754 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4755 	       !kattr->mnt_idmap;
4756 }
4757 
4758 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4759 {
4760 	struct mount *m;
4761 	int err;
4762 
4763 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4764 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4765 			err = -EPERM;
4766 			break;
4767 		}
4768 
4769 		err = can_idmap_mount(kattr, m);
4770 		if (err)
4771 			break;
4772 
4773 		if (!mnt_allow_writers(kattr, m)) {
4774 			err = mnt_hold_writers(m);
4775 			if (err)
4776 				break;
4777 		}
4778 
4779 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4780 			return 0;
4781 	}
4782 
4783 	if (err) {
4784 		struct mount *p;
4785 
4786 		/*
4787 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4788 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4789 		 * mounts and needs to take care to include the first mount.
4790 		 */
4791 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4792 			/* If we had to hold writers unblock them. */
4793 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4794 				mnt_unhold_writers(p);
4795 
4796 			/*
4797 			 * We're done once the first mount we changed got
4798 			 * MNT_WRITE_HOLD unset.
4799 			 */
4800 			if (p == m)
4801 				break;
4802 		}
4803 	}
4804 	return err;
4805 }
4806 
4807 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4808 {
4809 	struct mnt_idmap *old_idmap;
4810 
4811 	if (!kattr->mnt_idmap)
4812 		return;
4813 
4814 	old_idmap = mnt_idmap(&mnt->mnt);
4815 
4816 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4817 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4818 	mnt_idmap_put(old_idmap);
4819 }
4820 
4821 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4822 {
4823 	struct mount *m;
4824 
4825 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4826 		unsigned int flags;
4827 
4828 		do_idmap_mount(kattr, m);
4829 		flags = recalc_flags(kattr, m);
4830 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4831 
4832 		/* If we had to hold writers unblock them. */
4833 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4834 			mnt_unhold_writers(m);
4835 
4836 		if (kattr->propagation)
4837 			change_mnt_propagation(m, kattr->propagation);
4838 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4839 			break;
4840 	}
4841 	touch_mnt_namespace(mnt->mnt_ns);
4842 }
4843 
4844 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4845 {
4846 	struct mount *mnt = real_mount(path->mnt);
4847 	int err = 0;
4848 
4849 	if (!path_mounted(path))
4850 		return -EINVAL;
4851 
4852 	if (kattr->mnt_userns) {
4853 		struct mnt_idmap *mnt_idmap;
4854 
4855 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4856 		if (IS_ERR(mnt_idmap))
4857 			return PTR_ERR(mnt_idmap);
4858 		kattr->mnt_idmap = mnt_idmap;
4859 	}
4860 
4861 	if (kattr->propagation) {
4862 		/*
4863 		 * Only take namespace_lock() if we're actually changing
4864 		 * propagation.
4865 		 */
4866 		namespace_lock();
4867 		if (kattr->propagation == MS_SHARED) {
4868 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4869 			if (err) {
4870 				namespace_unlock();
4871 				return err;
4872 			}
4873 		}
4874 	}
4875 
4876 	err = -EINVAL;
4877 	lock_mount_hash();
4878 
4879 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4880 		goto out;
4881 
4882 	/*
4883 	 * First, we get the mount tree in a shape where we can change mount
4884 	 * properties without failure. If we succeeded to do so we commit all
4885 	 * changes and if we failed we clean up.
4886 	 */
4887 	err = mount_setattr_prepare(kattr, mnt);
4888 	if (!err)
4889 		mount_setattr_commit(kattr, mnt);
4890 
4891 out:
4892 	unlock_mount_hash();
4893 
4894 	if (kattr->propagation) {
4895 		if (err)
4896 			cleanup_group_ids(mnt, NULL);
4897 		namespace_unlock();
4898 	}
4899 
4900 	return err;
4901 }
4902 
4903 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4904 				struct mount_kattr *kattr)
4905 {
4906 	struct ns_common *ns;
4907 	struct user_namespace *mnt_userns;
4908 
4909 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4910 		return 0;
4911 
4912 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4913 		/*
4914 		 * We can only remove an idmapping if it's never been
4915 		 * exposed to userspace.
4916 		 */
4917 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4918 			return -EINVAL;
4919 
4920 		/*
4921 		 * Removal of idmappings is equivalent to setting
4922 		 * nop_mnt_idmap.
4923 		 */
4924 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4925 			kattr->mnt_idmap = &nop_mnt_idmap;
4926 			return 0;
4927 		}
4928 	}
4929 
4930 	if (attr->userns_fd > INT_MAX)
4931 		return -EINVAL;
4932 
4933 	CLASS(fd, f)(attr->userns_fd);
4934 	if (fd_empty(f))
4935 		return -EBADF;
4936 
4937 	if (!proc_ns_file(fd_file(f)))
4938 		return -EINVAL;
4939 
4940 	ns = get_proc_ns(file_inode(fd_file(f)));
4941 	if (ns->ns_type != CLONE_NEWUSER)
4942 		return -EINVAL;
4943 
4944 	/*
4945 	 * The initial idmapping cannot be used to create an idmapped
4946 	 * mount. We use the initial idmapping as an indicator of a mount
4947 	 * that is not idmapped. It can simply be passed into helpers that
4948 	 * are aware of idmapped mounts as a convenient shortcut. A user
4949 	 * can just create a dedicated identity mapping to achieve the same
4950 	 * result.
4951 	 */
4952 	mnt_userns = container_of(ns, struct user_namespace, ns);
4953 	if (mnt_userns == &init_user_ns)
4954 		return -EPERM;
4955 
4956 	/* We're not controlling the target namespace. */
4957 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4958 		return -EPERM;
4959 
4960 	kattr->mnt_userns = get_user_ns(mnt_userns);
4961 	return 0;
4962 }
4963 
4964 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4965 			     struct mount_kattr *kattr)
4966 {
4967 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4968 		return -EINVAL;
4969 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4970 		return -EINVAL;
4971 	kattr->propagation = attr->propagation;
4972 
4973 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4974 		return -EINVAL;
4975 
4976 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4977 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4978 
4979 	/*
4980 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4981 	 * users wanting to transition to a different atime setting cannot
4982 	 * simply specify the atime setting in @attr_set, but must also
4983 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4984 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4985 	 * @attr_clr and that @attr_set can't have any atime bits set if
4986 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4987 	 */
4988 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4989 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4990 			return -EINVAL;
4991 
4992 		/*
4993 		 * Clear all previous time settings as they are mutually
4994 		 * exclusive.
4995 		 */
4996 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4997 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4998 		case MOUNT_ATTR_RELATIME:
4999 			kattr->attr_set |= MNT_RELATIME;
5000 			break;
5001 		case MOUNT_ATTR_NOATIME:
5002 			kattr->attr_set |= MNT_NOATIME;
5003 			break;
5004 		case MOUNT_ATTR_STRICTATIME:
5005 			break;
5006 		default:
5007 			return -EINVAL;
5008 		}
5009 	} else {
5010 		if (attr->attr_set & MOUNT_ATTR__ATIME)
5011 			return -EINVAL;
5012 	}
5013 
5014 	return build_mount_idmapped(attr, usize, kattr);
5015 }
5016 
5017 static void finish_mount_kattr(struct mount_kattr *kattr)
5018 {
5019 	if (kattr->mnt_userns) {
5020 		put_user_ns(kattr->mnt_userns);
5021 		kattr->mnt_userns = NULL;
5022 	}
5023 
5024 	if (kattr->mnt_idmap)
5025 		mnt_idmap_put(kattr->mnt_idmap);
5026 }
5027 
5028 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5029 			       struct mount_kattr *kattr)
5030 {
5031 	int ret;
5032 	struct mount_attr attr;
5033 
5034 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5035 
5036 	if (unlikely(usize > PAGE_SIZE))
5037 		return -E2BIG;
5038 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5039 		return -EINVAL;
5040 
5041 	if (!may_mount())
5042 		return -EPERM;
5043 
5044 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5045 	if (ret)
5046 		return ret;
5047 
5048 	/* Don't bother walking through the mounts if this is a nop. */
5049 	if (attr.attr_set == 0 &&
5050 	    attr.attr_clr == 0 &&
5051 	    attr.propagation == 0)
5052 		return 0; /* Tell caller to not bother. */
5053 
5054 	ret = build_mount_kattr(&attr, usize, kattr);
5055 	if (ret < 0)
5056 		return ret;
5057 
5058 	return 1;
5059 }
5060 
5061 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5062 		unsigned int, flags, struct mount_attr __user *, uattr,
5063 		size_t, usize)
5064 {
5065 	int err;
5066 	struct path target;
5067 	struct mount_kattr kattr;
5068 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5069 
5070 	if (flags & ~(AT_EMPTY_PATH |
5071 		      AT_RECURSIVE |
5072 		      AT_SYMLINK_NOFOLLOW |
5073 		      AT_NO_AUTOMOUNT))
5074 		return -EINVAL;
5075 
5076 	if (flags & AT_NO_AUTOMOUNT)
5077 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5078 	if (flags & AT_SYMLINK_NOFOLLOW)
5079 		lookup_flags &= ~LOOKUP_FOLLOW;
5080 	if (flags & AT_EMPTY_PATH)
5081 		lookup_flags |= LOOKUP_EMPTY;
5082 
5083 	kattr = (struct mount_kattr) {
5084 		.lookup_flags	= lookup_flags,
5085 	};
5086 
5087 	if (flags & AT_RECURSIVE)
5088 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5089 
5090 	err = wants_mount_setattr(uattr, usize, &kattr);
5091 	if (err <= 0)
5092 		return err;
5093 
5094 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5095 	if (!err) {
5096 		err = do_mount_setattr(&target, &kattr);
5097 		path_put(&target);
5098 	}
5099 	finish_mount_kattr(&kattr);
5100 	return err;
5101 }
5102 
5103 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5104 		unsigned, flags, struct mount_attr __user *, uattr,
5105 		size_t, usize)
5106 {
5107 	struct file __free(fput) *file = NULL;
5108 	int fd;
5109 
5110 	if (!uattr && usize)
5111 		return -EINVAL;
5112 
5113 	file = vfs_open_tree(dfd, filename, flags);
5114 	if (IS_ERR(file))
5115 		return PTR_ERR(file);
5116 
5117 	if (uattr) {
5118 		int ret;
5119 		struct mount_kattr kattr = {};
5120 
5121 		if (flags & OPEN_TREE_CLONE)
5122 			kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5123 		if (flags & AT_RECURSIVE)
5124 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5125 
5126 		ret = wants_mount_setattr(uattr, usize, &kattr);
5127 		if (ret > 0) {
5128 			ret = do_mount_setattr(&file->f_path, &kattr);
5129 			finish_mount_kattr(&kattr);
5130 		}
5131 		if (ret)
5132 			return ret;
5133 	}
5134 
5135 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
5136 	if (fd < 0)
5137 		return fd;
5138 
5139 	fd_install(fd, no_free_ptr(file));
5140 	return fd;
5141 }
5142 
5143 int show_path(struct seq_file *m, struct dentry *root)
5144 {
5145 	if (root->d_sb->s_op->show_path)
5146 		return root->d_sb->s_op->show_path(m, root);
5147 
5148 	seq_dentry(m, root, " \t\n\\");
5149 	return 0;
5150 }
5151 
5152 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5153 {
5154 	struct mount *mnt = mnt_find_id_at(ns, id);
5155 
5156 	if (!mnt || mnt->mnt_id_unique != id)
5157 		return NULL;
5158 
5159 	return &mnt->mnt;
5160 }
5161 
5162 struct kstatmount {
5163 	struct statmount __user *buf;
5164 	size_t bufsize;
5165 	struct vfsmount *mnt;
5166 	struct mnt_idmap *idmap;
5167 	u64 mask;
5168 	struct path root;
5169 	struct seq_file seq;
5170 
5171 	/* Must be last --ends in a flexible-array member. */
5172 	struct statmount sm;
5173 };
5174 
5175 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5176 {
5177 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5178 	u64 attr_flags = 0;
5179 
5180 	if (mnt_flags & MNT_READONLY)
5181 		attr_flags |= MOUNT_ATTR_RDONLY;
5182 	if (mnt_flags & MNT_NOSUID)
5183 		attr_flags |= MOUNT_ATTR_NOSUID;
5184 	if (mnt_flags & MNT_NODEV)
5185 		attr_flags |= MOUNT_ATTR_NODEV;
5186 	if (mnt_flags & MNT_NOEXEC)
5187 		attr_flags |= MOUNT_ATTR_NOEXEC;
5188 	if (mnt_flags & MNT_NODIRATIME)
5189 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5190 	if (mnt_flags & MNT_NOSYMFOLLOW)
5191 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5192 
5193 	if (mnt_flags & MNT_NOATIME)
5194 		attr_flags |= MOUNT_ATTR_NOATIME;
5195 	else if (mnt_flags & MNT_RELATIME)
5196 		attr_flags |= MOUNT_ATTR_RELATIME;
5197 	else
5198 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5199 
5200 	if (is_idmapped_mnt(mnt))
5201 		attr_flags |= MOUNT_ATTR_IDMAP;
5202 
5203 	return attr_flags;
5204 }
5205 
5206 static u64 mnt_to_propagation_flags(struct mount *m)
5207 {
5208 	u64 propagation = 0;
5209 
5210 	if (IS_MNT_SHARED(m))
5211 		propagation |= MS_SHARED;
5212 	if (IS_MNT_SLAVE(m))
5213 		propagation |= MS_SLAVE;
5214 	if (IS_MNT_UNBINDABLE(m))
5215 		propagation |= MS_UNBINDABLE;
5216 	if (!propagation)
5217 		propagation |= MS_PRIVATE;
5218 
5219 	return propagation;
5220 }
5221 
5222 static void statmount_sb_basic(struct kstatmount *s)
5223 {
5224 	struct super_block *sb = s->mnt->mnt_sb;
5225 
5226 	s->sm.mask |= STATMOUNT_SB_BASIC;
5227 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5228 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5229 	s->sm.sb_magic = sb->s_magic;
5230 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5231 }
5232 
5233 static void statmount_mnt_basic(struct kstatmount *s)
5234 {
5235 	struct mount *m = real_mount(s->mnt);
5236 
5237 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5238 	s->sm.mnt_id = m->mnt_id_unique;
5239 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5240 	s->sm.mnt_id_old = m->mnt_id;
5241 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5242 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5243 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5244 	s->sm.mnt_peer_group = m->mnt_group_id;
5245 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5246 }
5247 
5248 static void statmount_propagate_from(struct kstatmount *s)
5249 {
5250 	struct mount *m = real_mount(s->mnt);
5251 
5252 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5253 	if (IS_MNT_SLAVE(m))
5254 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5255 }
5256 
5257 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5258 {
5259 	int ret;
5260 	size_t start = seq->count;
5261 
5262 	ret = show_path(seq, s->mnt->mnt_root);
5263 	if (ret)
5264 		return ret;
5265 
5266 	if (unlikely(seq_has_overflowed(seq)))
5267 		return -EAGAIN;
5268 
5269 	/*
5270          * Unescape the result. It would be better if supplied string was not
5271          * escaped in the first place, but that's a pretty invasive change.
5272          */
5273 	seq->buf[seq->count] = '\0';
5274 	seq->count = start;
5275 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5276 	return 0;
5277 }
5278 
5279 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5280 {
5281 	struct vfsmount *mnt = s->mnt;
5282 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5283 	int err;
5284 
5285 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5286 	return err == SEQ_SKIP ? 0 : err;
5287 }
5288 
5289 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5290 {
5291 	struct super_block *sb = s->mnt->mnt_sb;
5292 
5293 	seq_puts(seq, sb->s_type->name);
5294 	return 0;
5295 }
5296 
5297 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5298 {
5299 	struct super_block *sb = s->mnt->mnt_sb;
5300 
5301 	if (sb->s_subtype)
5302 		seq_puts(seq, sb->s_subtype);
5303 }
5304 
5305 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5306 {
5307 	struct super_block *sb = s->mnt->mnt_sb;
5308 	struct mount *r = real_mount(s->mnt);
5309 
5310 	if (sb->s_op->show_devname) {
5311 		size_t start = seq->count;
5312 		int ret;
5313 
5314 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5315 		if (ret)
5316 			return ret;
5317 
5318 		if (unlikely(seq_has_overflowed(seq)))
5319 			return -EAGAIN;
5320 
5321 		/* Unescape the result */
5322 		seq->buf[seq->count] = '\0';
5323 		seq->count = start;
5324 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5325 	} else {
5326 		seq_puts(seq, r->mnt_devname);
5327 	}
5328 	return 0;
5329 }
5330 
5331 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5332 {
5333 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5334 	s->sm.mnt_ns_id = ns->ns.ns_id;
5335 }
5336 
5337 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5338 {
5339 	struct vfsmount *mnt = s->mnt;
5340 	struct super_block *sb = mnt->mnt_sb;
5341 	size_t start = seq->count;
5342 	int err;
5343 
5344 	err = security_sb_show_options(seq, sb);
5345 	if (err)
5346 		return err;
5347 
5348 	if (sb->s_op->show_options) {
5349 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5350 		if (err)
5351 			return err;
5352 	}
5353 
5354 	if (unlikely(seq_has_overflowed(seq)))
5355 		return -EAGAIN;
5356 
5357 	if (seq->count == start)
5358 		return 0;
5359 
5360 	/* skip leading comma */
5361 	memmove(seq->buf + start, seq->buf + start + 1,
5362 		seq->count - start - 1);
5363 	seq->count--;
5364 
5365 	return 0;
5366 }
5367 
5368 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5369 {
5370 	char *buf_end, *opt_end, *src, *dst;
5371 	int count = 0;
5372 
5373 	if (unlikely(seq_has_overflowed(seq)))
5374 		return -EAGAIN;
5375 
5376 	buf_end = seq->buf + seq->count;
5377 	dst = seq->buf + start;
5378 	src = dst + 1;	/* skip initial comma */
5379 
5380 	if (src >= buf_end) {
5381 		seq->count = start;
5382 		return 0;
5383 	}
5384 
5385 	*buf_end = '\0';
5386 	for (; src < buf_end; src = opt_end + 1) {
5387 		opt_end = strchrnul(src, ',');
5388 		*opt_end = '\0';
5389 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5390 		if (WARN_ON_ONCE(++count == INT_MAX))
5391 			return -EOVERFLOW;
5392 	}
5393 	seq->count = dst - 1 - seq->buf;
5394 	return count;
5395 }
5396 
5397 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5398 {
5399 	struct vfsmount *mnt = s->mnt;
5400 	struct super_block *sb = mnt->mnt_sb;
5401 	size_t start = seq->count;
5402 	int err;
5403 
5404 	if (!sb->s_op->show_options)
5405 		return 0;
5406 
5407 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5408 	if (err)
5409 		return err;
5410 
5411 	err = statmount_opt_process(seq, start);
5412 	if (err < 0)
5413 		return err;
5414 
5415 	s->sm.opt_num = err;
5416 	return 0;
5417 }
5418 
5419 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5420 {
5421 	struct vfsmount *mnt = s->mnt;
5422 	struct super_block *sb = mnt->mnt_sb;
5423 	size_t start = seq->count;
5424 	int err;
5425 
5426 	err = security_sb_show_options(seq, sb);
5427 	if (err)
5428 		return err;
5429 
5430 	err = statmount_opt_process(seq, start);
5431 	if (err < 0)
5432 		return err;
5433 
5434 	s->sm.opt_sec_num = err;
5435 	return 0;
5436 }
5437 
5438 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5439 {
5440 	int ret;
5441 
5442 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5443 	if (ret < 0)
5444 		return ret;
5445 
5446 	s->sm.mnt_uidmap_num = ret;
5447 	/*
5448 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5449 	 * mappings. This allows userspace to distinguish between a
5450 	 * non-idmapped mount and an idmapped mount where none of the
5451 	 * individual mappings are valid in the caller's idmapping.
5452 	 */
5453 	if (is_valid_mnt_idmap(s->idmap))
5454 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5455 	return 0;
5456 }
5457 
5458 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5459 {
5460 	int ret;
5461 
5462 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5463 	if (ret < 0)
5464 		return ret;
5465 
5466 	s->sm.mnt_gidmap_num = ret;
5467 	/*
5468 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5469 	 * mappings. This allows userspace to distinguish between a
5470 	 * non-idmapped mount and an idmapped mount where none of the
5471 	 * individual mappings are valid in the caller's idmapping.
5472 	 */
5473 	if (is_valid_mnt_idmap(s->idmap))
5474 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5475 	return 0;
5476 }
5477 
5478 static int statmount_string(struct kstatmount *s, u64 flag)
5479 {
5480 	int ret = 0;
5481 	size_t kbufsize;
5482 	struct seq_file *seq = &s->seq;
5483 	struct statmount *sm = &s->sm;
5484 	u32 start, *offp;
5485 
5486 	/* Reserve an empty string at the beginning for any unset offsets */
5487 	if (!seq->count)
5488 		seq_putc(seq, 0);
5489 
5490 	start = seq->count;
5491 
5492 	switch (flag) {
5493 	case STATMOUNT_FS_TYPE:
5494 		offp = &sm->fs_type;
5495 		ret = statmount_fs_type(s, seq);
5496 		break;
5497 	case STATMOUNT_MNT_ROOT:
5498 		offp = &sm->mnt_root;
5499 		ret = statmount_mnt_root(s, seq);
5500 		break;
5501 	case STATMOUNT_MNT_POINT:
5502 		offp = &sm->mnt_point;
5503 		ret = statmount_mnt_point(s, seq);
5504 		break;
5505 	case STATMOUNT_MNT_OPTS:
5506 		offp = &sm->mnt_opts;
5507 		ret = statmount_mnt_opts(s, seq);
5508 		break;
5509 	case STATMOUNT_OPT_ARRAY:
5510 		offp = &sm->opt_array;
5511 		ret = statmount_opt_array(s, seq);
5512 		break;
5513 	case STATMOUNT_OPT_SEC_ARRAY:
5514 		offp = &sm->opt_sec_array;
5515 		ret = statmount_opt_sec_array(s, seq);
5516 		break;
5517 	case STATMOUNT_FS_SUBTYPE:
5518 		offp = &sm->fs_subtype;
5519 		statmount_fs_subtype(s, seq);
5520 		break;
5521 	case STATMOUNT_SB_SOURCE:
5522 		offp = &sm->sb_source;
5523 		ret = statmount_sb_source(s, seq);
5524 		break;
5525 	case STATMOUNT_MNT_UIDMAP:
5526 		sm->mnt_uidmap = start;
5527 		ret = statmount_mnt_uidmap(s, seq);
5528 		break;
5529 	case STATMOUNT_MNT_GIDMAP:
5530 		sm->mnt_gidmap = start;
5531 		ret = statmount_mnt_gidmap(s, seq);
5532 		break;
5533 	default:
5534 		WARN_ON_ONCE(true);
5535 		return -EINVAL;
5536 	}
5537 
5538 	/*
5539 	 * If nothing was emitted, return to avoid setting the flag
5540 	 * and terminating the buffer.
5541 	 */
5542 	if (seq->count == start)
5543 		return ret;
5544 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5545 		return -EOVERFLOW;
5546 	if (kbufsize >= s->bufsize)
5547 		return -EOVERFLOW;
5548 
5549 	/* signal a retry */
5550 	if (unlikely(seq_has_overflowed(seq)))
5551 		return -EAGAIN;
5552 
5553 	if (ret)
5554 		return ret;
5555 
5556 	seq->buf[seq->count++] = '\0';
5557 	sm->mask |= flag;
5558 	*offp = start;
5559 	return 0;
5560 }
5561 
5562 static int copy_statmount_to_user(struct kstatmount *s)
5563 {
5564 	struct statmount *sm = &s->sm;
5565 	struct seq_file *seq = &s->seq;
5566 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5567 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5568 
5569 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5570 		return -EFAULT;
5571 
5572 	/* Return the number of bytes copied to the buffer */
5573 	sm->size = copysize + seq->count;
5574 	if (copy_to_user(s->buf, sm, copysize))
5575 		return -EFAULT;
5576 
5577 	return 0;
5578 }
5579 
5580 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5581 {
5582 	struct rb_node *node;
5583 
5584 	if (reverse)
5585 		node = rb_prev(&curr->mnt_node);
5586 	else
5587 		node = rb_next(&curr->mnt_node);
5588 
5589 	return node_to_mount(node);
5590 }
5591 
5592 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5593 {
5594 	struct mount *first, *child;
5595 
5596 	rwsem_assert_held(&namespace_sem);
5597 
5598 	/* We're looking at our own ns, just use get_fs_root. */
5599 	if (ns == current->nsproxy->mnt_ns) {
5600 		get_fs_root(current->fs, root);
5601 		return 0;
5602 	}
5603 
5604 	/*
5605 	 * We have to find the first mount in our ns and use that, however it
5606 	 * may not exist, so handle that properly.
5607 	 */
5608 	if (mnt_ns_empty(ns))
5609 		return -ENOENT;
5610 
5611 	first = child = ns->root;
5612 	for (;;) {
5613 		child = listmnt_next(child, false);
5614 		if (!child)
5615 			return -ENOENT;
5616 		if (child->mnt_parent == first)
5617 			break;
5618 	}
5619 
5620 	root->mnt = mntget(&child->mnt);
5621 	root->dentry = dget(root->mnt->mnt_root);
5622 	return 0;
5623 }
5624 
5625 /* This must be updated whenever a new flag is added */
5626 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5627 			     STATMOUNT_MNT_BASIC | \
5628 			     STATMOUNT_PROPAGATE_FROM | \
5629 			     STATMOUNT_MNT_ROOT | \
5630 			     STATMOUNT_MNT_POINT | \
5631 			     STATMOUNT_FS_TYPE | \
5632 			     STATMOUNT_MNT_NS_ID | \
5633 			     STATMOUNT_MNT_OPTS | \
5634 			     STATMOUNT_FS_SUBTYPE | \
5635 			     STATMOUNT_SB_SOURCE | \
5636 			     STATMOUNT_OPT_ARRAY | \
5637 			     STATMOUNT_OPT_SEC_ARRAY | \
5638 			     STATMOUNT_SUPPORTED_MASK | \
5639 			     STATMOUNT_MNT_UIDMAP | \
5640 			     STATMOUNT_MNT_GIDMAP)
5641 
5642 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5643 			struct mnt_namespace *ns)
5644 {
5645 	struct mount *m;
5646 	int err;
5647 
5648 	/* Has the namespace already been emptied? */
5649 	if (mnt_ns_id && mnt_ns_empty(ns))
5650 		return -ENOENT;
5651 
5652 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5653 	if (!s->mnt)
5654 		return -ENOENT;
5655 
5656 	err = grab_requested_root(ns, &s->root);
5657 	if (err)
5658 		return err;
5659 
5660 	/*
5661 	 * Don't trigger audit denials. We just want to determine what
5662 	 * mounts to show users.
5663 	 */
5664 	m = real_mount(s->mnt);
5665 	if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5666 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5667 		return -EPERM;
5668 
5669 	err = security_sb_statfs(s->mnt->mnt_root);
5670 	if (err)
5671 		return err;
5672 
5673 	/*
5674 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5675 	 * can change concurrently as we only hold the read-side of the
5676 	 * namespace semaphore and mount properties may change with only
5677 	 * the mount lock held.
5678 	 *
5679 	 * We could sample the mount lock sequence counter to detect
5680 	 * those changes and retry. But it's not worth it. Worst that
5681 	 * happens is that the mnt->mnt_idmap pointer is already changed
5682 	 * while mnt->mnt_flags isn't or vica versa. So what.
5683 	 *
5684 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5685 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5686 	 * torn read/write. That's all we care about right now.
5687 	 */
5688 	s->idmap = mnt_idmap(s->mnt);
5689 	if (s->mask & STATMOUNT_MNT_BASIC)
5690 		statmount_mnt_basic(s);
5691 
5692 	if (s->mask & STATMOUNT_SB_BASIC)
5693 		statmount_sb_basic(s);
5694 
5695 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5696 		statmount_propagate_from(s);
5697 
5698 	if (s->mask & STATMOUNT_FS_TYPE)
5699 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5700 
5701 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5702 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5703 
5704 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5705 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5706 
5707 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5708 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5709 
5710 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5711 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5712 
5713 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5714 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5715 
5716 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5717 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5718 
5719 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5720 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5721 
5722 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5723 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5724 
5725 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5726 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5727 
5728 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5729 		statmount_mnt_ns_id(s, ns);
5730 
5731 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5732 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5733 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5734 	}
5735 
5736 	if (err)
5737 		return err;
5738 
5739 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5740 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5741 
5742 	return 0;
5743 }
5744 
5745 static inline bool retry_statmount(const long ret, size_t *seq_size)
5746 {
5747 	if (likely(ret != -EAGAIN))
5748 		return false;
5749 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5750 		return false;
5751 	if (unlikely(*seq_size > MAX_RW_COUNT))
5752 		return false;
5753 	return true;
5754 }
5755 
5756 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5757 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5758 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5759 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5760 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5761 
5762 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5763 			      struct statmount __user *buf, size_t bufsize,
5764 			      size_t seq_size)
5765 {
5766 	if (!access_ok(buf, bufsize))
5767 		return -EFAULT;
5768 
5769 	memset(ks, 0, sizeof(*ks));
5770 	ks->mask = kreq->param;
5771 	ks->buf = buf;
5772 	ks->bufsize = bufsize;
5773 
5774 	if (ks->mask & STATMOUNT_STRING_REQ) {
5775 		if (bufsize == sizeof(ks->sm))
5776 			return -EOVERFLOW;
5777 
5778 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5779 		if (!ks->seq.buf)
5780 			return -ENOMEM;
5781 
5782 		ks->seq.size = seq_size;
5783 	}
5784 
5785 	return 0;
5786 }
5787 
5788 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5789 			   struct mnt_id_req *kreq)
5790 {
5791 	int ret;
5792 	size_t usize;
5793 
5794 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5795 
5796 	ret = get_user(usize, &req->size);
5797 	if (ret)
5798 		return -EFAULT;
5799 	if (unlikely(usize > PAGE_SIZE))
5800 		return -E2BIG;
5801 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5802 		return -EINVAL;
5803 	memset(kreq, 0, sizeof(*kreq));
5804 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5805 	if (ret)
5806 		return ret;
5807 	if (kreq->spare != 0)
5808 		return -EINVAL;
5809 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5810 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5811 		return -EINVAL;
5812 	return 0;
5813 }
5814 
5815 /*
5816  * If the user requested a specific mount namespace id, look that up and return
5817  * that, or if not simply grab a passive reference on our mount namespace and
5818  * return that.
5819  */
5820 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5821 {
5822 	struct mnt_namespace *mnt_ns;
5823 
5824 	if (kreq->mnt_ns_id && kreq->spare)
5825 		return ERR_PTR(-EINVAL);
5826 
5827 	if (kreq->mnt_ns_id)
5828 		return lookup_mnt_ns(kreq->mnt_ns_id);
5829 
5830 	if (kreq->spare) {
5831 		struct ns_common *ns;
5832 
5833 		CLASS(fd, f)(kreq->spare);
5834 		if (fd_empty(f))
5835 			return ERR_PTR(-EBADF);
5836 
5837 		if (!proc_ns_file(fd_file(f)))
5838 			return ERR_PTR(-EINVAL);
5839 
5840 		ns = get_proc_ns(file_inode(fd_file(f)));
5841 		if (ns->ns_type != CLONE_NEWNS)
5842 			return ERR_PTR(-EINVAL);
5843 
5844 		mnt_ns = to_mnt_ns(ns);
5845 	} else {
5846 		mnt_ns = current->nsproxy->mnt_ns;
5847 	}
5848 
5849 	refcount_inc(&mnt_ns->passive);
5850 	return mnt_ns;
5851 }
5852 
5853 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5854 		struct statmount __user *, buf, size_t, bufsize,
5855 		unsigned int, flags)
5856 {
5857 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5858 	struct kstatmount *ks __free(kfree) = NULL;
5859 	struct mnt_id_req kreq;
5860 	/* We currently support retrieval of 3 strings. */
5861 	size_t seq_size = 3 * PATH_MAX;
5862 	int ret;
5863 
5864 	if (flags)
5865 		return -EINVAL;
5866 
5867 	ret = copy_mnt_id_req(req, &kreq);
5868 	if (ret)
5869 		return ret;
5870 
5871 	ns = grab_requested_mnt_ns(&kreq);
5872 	if (!ns)
5873 		return -ENOENT;
5874 
5875 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5876 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5877 		return -ENOENT;
5878 
5879 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5880 	if (!ks)
5881 		return -ENOMEM;
5882 
5883 retry:
5884 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5885 	if (ret)
5886 		return ret;
5887 
5888 	scoped_guard(rwsem_read, &namespace_sem)
5889 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5890 
5891 	if (!ret)
5892 		ret = copy_statmount_to_user(ks);
5893 	kvfree(ks->seq.buf);
5894 	path_put(&ks->root);
5895 	if (retry_statmount(ret, &seq_size))
5896 		goto retry;
5897 	return ret;
5898 }
5899 
5900 struct klistmount {
5901 	u64 last_mnt_id;
5902 	u64 mnt_parent_id;
5903 	u64 *kmnt_ids;
5904 	u32 nr_mnt_ids;
5905 	struct mnt_namespace *ns;
5906 	struct path root;
5907 };
5908 
5909 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5910 {
5911 	struct mnt_namespace *ns = kls->ns;
5912 	u64 mnt_parent_id = kls->mnt_parent_id;
5913 	u64 last_mnt_id = kls->last_mnt_id;
5914 	u64 *mnt_ids = kls->kmnt_ids;
5915 	size_t nr_mnt_ids = kls->nr_mnt_ids;
5916 	struct path orig;
5917 	struct mount *r, *first;
5918 	ssize_t ret;
5919 
5920 	rwsem_assert_held(&namespace_sem);
5921 
5922 	ret = grab_requested_root(ns, &kls->root);
5923 	if (ret)
5924 		return ret;
5925 
5926 	if (mnt_parent_id == LSMT_ROOT) {
5927 		orig = kls->root;
5928 	} else {
5929 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5930 		if (!orig.mnt)
5931 			return -ENOENT;
5932 		orig.dentry = orig.mnt->mnt_root;
5933 	}
5934 
5935 	/*
5936 	 * Don't trigger audit denials. We just want to determine what
5937 	 * mounts to show users.
5938 	 */
5939 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5940 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5941 		return -EPERM;
5942 
5943 	ret = security_sb_statfs(orig.dentry);
5944 	if (ret)
5945 		return ret;
5946 
5947 	if (!last_mnt_id) {
5948 		if (reverse)
5949 			first = node_to_mount(ns->mnt_last_node);
5950 		else
5951 			first = node_to_mount(ns->mnt_first_node);
5952 	} else {
5953 		if (reverse)
5954 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5955 		else
5956 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5957 	}
5958 
5959 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5960 		if (r->mnt_id_unique == mnt_parent_id)
5961 			continue;
5962 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5963 			continue;
5964 		*mnt_ids = r->mnt_id_unique;
5965 		mnt_ids++;
5966 		nr_mnt_ids--;
5967 		ret++;
5968 	}
5969 	return ret;
5970 }
5971 
5972 static void __free_klistmount_free(const struct klistmount *kls)
5973 {
5974 	path_put(&kls->root);
5975 	kvfree(kls->kmnt_ids);
5976 	mnt_ns_release(kls->ns);
5977 }
5978 
5979 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5980 				     size_t nr_mnt_ids)
5981 {
5982 
5983 	u64 last_mnt_id = kreq->param;
5984 
5985 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5986 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5987 		return -EINVAL;
5988 
5989 	kls->last_mnt_id = last_mnt_id;
5990 
5991 	kls->nr_mnt_ids = nr_mnt_ids;
5992 	kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5993 				       GFP_KERNEL_ACCOUNT);
5994 	if (!kls->kmnt_ids)
5995 		return -ENOMEM;
5996 
5997 	kls->ns = grab_requested_mnt_ns(kreq);
5998 	if (!kls->ns)
5999 		return -ENOENT;
6000 
6001 	kls->mnt_parent_id = kreq->mnt_id;
6002 	return 0;
6003 }
6004 
6005 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6006 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6007 {
6008 	struct klistmount kls __free(klistmount_free) = {};
6009 	const size_t maxcount = 1000000;
6010 	struct mnt_id_req kreq;
6011 	ssize_t ret;
6012 
6013 	if (flags & ~LISTMOUNT_REVERSE)
6014 		return -EINVAL;
6015 
6016 	/*
6017 	 * If the mount namespace really has more than 1 million mounts the
6018 	 * caller must iterate over the mount namespace (and reconsider their
6019 	 * system design...).
6020 	 */
6021 	if (unlikely(nr_mnt_ids > maxcount))
6022 		return -EOVERFLOW;
6023 
6024 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6025 		return -EFAULT;
6026 
6027 	ret = copy_mnt_id_req(req, &kreq);
6028 	if (ret)
6029 		return ret;
6030 
6031 	ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
6032 	if (ret)
6033 		return ret;
6034 
6035 	if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
6036 	    !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
6037 		return -ENOENT;
6038 
6039 	/*
6040 	 * We only need to guard against mount topology changes as
6041 	 * listmount() doesn't care about any mount properties.
6042 	 */
6043 	scoped_guard(rwsem_read, &namespace_sem)
6044 		ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
6045 	if (ret <= 0)
6046 		return ret;
6047 
6048 	if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
6049 		return -EFAULT;
6050 
6051 	return ret;
6052 }
6053 
6054 struct mnt_namespace init_mnt_ns = {
6055 	.ns.inum	= ns_init_inum(&init_mnt_ns),
6056 	.ns.ops		= &mntns_operations,
6057 	.user_ns	= &init_user_ns,
6058 	.ns.__ns_ref	= REFCOUNT_INIT(1),
6059 	.ns.ns_type	= ns_common_type(&init_mnt_ns),
6060 	.passive	= REFCOUNT_INIT(1),
6061 	.mounts		= RB_ROOT,
6062 	.poll		= __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
6063 };
6064 
6065 static void __init init_mount_tree(void)
6066 {
6067 	struct vfsmount *mnt;
6068 	struct mount *m;
6069 	struct path root;
6070 
6071 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
6072 	if (IS_ERR(mnt))
6073 		panic("Can't create rootfs");
6074 
6075 	m = real_mount(mnt);
6076 	init_mnt_ns.root = m;
6077 	init_mnt_ns.nr_mounts = 1;
6078 	mnt_add_to_ns(&init_mnt_ns, m);
6079 	init_task.nsproxy->mnt_ns = &init_mnt_ns;
6080 	get_mnt_ns(&init_mnt_ns);
6081 
6082 	root.mnt = mnt;
6083 	root.dentry = mnt->mnt_root;
6084 
6085 	set_fs_pwd(current->fs, &root);
6086 	set_fs_root(current->fs, &root);
6087 
6088 	ns_tree_add(&init_mnt_ns);
6089 }
6090 
6091 void __init mnt_init(void)
6092 {
6093 	int err;
6094 
6095 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6096 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6097 
6098 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6099 				sizeof(struct hlist_head),
6100 				mhash_entries, 19,
6101 				HASH_ZERO,
6102 				&m_hash_shift, &m_hash_mask, 0, 0);
6103 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6104 				sizeof(struct hlist_head),
6105 				mphash_entries, 19,
6106 				HASH_ZERO,
6107 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6108 
6109 	if (!mount_hashtable || !mountpoint_hashtable)
6110 		panic("Failed to allocate mount hash table\n");
6111 
6112 	kernfs_init();
6113 
6114 	err = sysfs_init();
6115 	if (err)
6116 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6117 			__func__, err);
6118 	fs_kobj = kobject_create_and_add("fs", NULL);
6119 	if (!fs_kobj)
6120 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6121 	shmem_init();
6122 	init_rootfs();
6123 	init_mount_tree();
6124 }
6125 
6126 void put_mnt_ns(struct mnt_namespace *ns)
6127 {
6128 	if (!ns_ref_put(ns))
6129 		return;
6130 	namespace_lock();
6131 	emptied_ns = ns;
6132 	lock_mount_hash();
6133 	umount_tree(ns->root, 0);
6134 	unlock_mount_hash();
6135 	namespace_unlock();
6136 }
6137 
6138 struct vfsmount *kern_mount(struct file_system_type *type)
6139 {
6140 	struct vfsmount *mnt;
6141 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6142 	if (!IS_ERR(mnt)) {
6143 		/*
6144 		 * it is a longterm mount, don't release mnt until
6145 		 * we unmount before file sys is unregistered
6146 		*/
6147 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6148 	}
6149 	return mnt;
6150 }
6151 EXPORT_SYMBOL_GPL(kern_mount);
6152 
6153 void kern_unmount(struct vfsmount *mnt)
6154 {
6155 	/* release long term mount so mount point can be released */
6156 	if (!IS_ERR(mnt)) {
6157 		mnt_make_shortterm(mnt);
6158 		synchronize_rcu();	/* yecchhh... */
6159 		mntput(mnt);
6160 	}
6161 }
6162 EXPORT_SYMBOL(kern_unmount);
6163 
6164 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6165 {
6166 	unsigned int i;
6167 
6168 	for (i = 0; i < num; i++)
6169 		mnt_make_shortterm(mnt[i]);
6170 	synchronize_rcu_expedited();
6171 	for (i = 0; i < num; i++)
6172 		mntput(mnt[i]);
6173 }
6174 EXPORT_SYMBOL(kern_unmount_array);
6175 
6176 bool our_mnt(struct vfsmount *mnt)
6177 {
6178 	return check_mnt(real_mount(mnt));
6179 }
6180 
6181 bool current_chrooted(void)
6182 {
6183 	/* Does the current process have a non-standard root */
6184 	struct path ns_root;
6185 	struct path fs_root;
6186 	bool chrooted;
6187 
6188 	/* Find the namespace root */
6189 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
6190 	ns_root.dentry = ns_root.mnt->mnt_root;
6191 	path_get(&ns_root);
6192 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6193 		;
6194 
6195 	get_fs_root(current->fs, &fs_root);
6196 
6197 	chrooted = !path_equal(&fs_root, &ns_root);
6198 
6199 	path_put(&fs_root);
6200 	path_put(&ns_root);
6201 
6202 	return chrooted;
6203 }
6204 
6205 static bool mnt_already_visible(struct mnt_namespace *ns,
6206 				const struct super_block *sb,
6207 				int *new_mnt_flags)
6208 {
6209 	int new_flags = *new_mnt_flags;
6210 	struct mount *mnt, *n;
6211 	bool visible = false;
6212 
6213 	down_read(&namespace_sem);
6214 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6215 		struct mount *child;
6216 		int mnt_flags;
6217 
6218 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6219 			continue;
6220 
6221 		/* This mount is not fully visible if it's root directory
6222 		 * is not the root directory of the filesystem.
6223 		 */
6224 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6225 			continue;
6226 
6227 		/* A local view of the mount flags */
6228 		mnt_flags = mnt->mnt.mnt_flags;
6229 
6230 		/* Don't miss readonly hidden in the superblock flags */
6231 		if (sb_rdonly(mnt->mnt.mnt_sb))
6232 			mnt_flags |= MNT_LOCK_READONLY;
6233 
6234 		/* Verify the mount flags are equal to or more permissive
6235 		 * than the proposed new mount.
6236 		 */
6237 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6238 		    !(new_flags & MNT_READONLY))
6239 			continue;
6240 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6241 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6242 			continue;
6243 
6244 		/* This mount is not fully visible if there are any
6245 		 * locked child mounts that cover anything except for
6246 		 * empty directories.
6247 		 */
6248 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6249 			struct inode *inode = child->mnt_mountpoint->d_inode;
6250 			/* Only worry about locked mounts */
6251 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6252 				continue;
6253 			/* Is the directory permanently empty? */
6254 			if (!is_empty_dir_inode(inode))
6255 				goto next;
6256 		}
6257 		/* Preserve the locked attributes */
6258 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6259 					       MNT_LOCK_ATIME);
6260 		visible = true;
6261 		goto found;
6262 	next:	;
6263 	}
6264 found:
6265 	up_read(&namespace_sem);
6266 	return visible;
6267 }
6268 
6269 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6270 {
6271 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6272 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6273 	unsigned long s_iflags;
6274 
6275 	if (ns->user_ns == &init_user_ns)
6276 		return false;
6277 
6278 	/* Can this filesystem be too revealing? */
6279 	s_iflags = sb->s_iflags;
6280 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6281 		return false;
6282 
6283 	if ((s_iflags & required_iflags) != required_iflags) {
6284 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6285 			  required_iflags);
6286 		return true;
6287 	}
6288 
6289 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6290 }
6291 
6292 bool mnt_may_suid(struct vfsmount *mnt)
6293 {
6294 	/*
6295 	 * Foreign mounts (accessed via fchdir or through /proc
6296 	 * symlinks) are always treated as if they are nosuid.  This
6297 	 * prevents namespaces from trusting potentially unsafe
6298 	 * suid/sgid bits, file caps, or security labels that originate
6299 	 * in other namespaces.
6300 	 */
6301 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6302 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6303 }
6304 
6305 static struct ns_common *mntns_get(struct task_struct *task)
6306 {
6307 	struct ns_common *ns = NULL;
6308 	struct nsproxy *nsproxy;
6309 
6310 	task_lock(task);
6311 	nsproxy = task->nsproxy;
6312 	if (nsproxy) {
6313 		ns = &nsproxy->mnt_ns->ns;
6314 		get_mnt_ns(to_mnt_ns(ns));
6315 	}
6316 	task_unlock(task);
6317 
6318 	return ns;
6319 }
6320 
6321 static void mntns_put(struct ns_common *ns)
6322 {
6323 	put_mnt_ns(to_mnt_ns(ns));
6324 }
6325 
6326 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6327 {
6328 	struct nsproxy *nsproxy = nsset->nsproxy;
6329 	struct fs_struct *fs = nsset->fs;
6330 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6331 	struct user_namespace *user_ns = nsset->cred->user_ns;
6332 	struct path root;
6333 	int err;
6334 
6335 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6336 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6337 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6338 		return -EPERM;
6339 
6340 	if (is_anon_ns(mnt_ns))
6341 		return -EINVAL;
6342 
6343 	if (fs->users != 1)
6344 		return -EINVAL;
6345 
6346 	get_mnt_ns(mnt_ns);
6347 	old_mnt_ns = nsproxy->mnt_ns;
6348 	nsproxy->mnt_ns = mnt_ns;
6349 
6350 	/* Find the root */
6351 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6352 				"/", LOOKUP_DOWN, &root);
6353 	if (err) {
6354 		/* revert to old namespace */
6355 		nsproxy->mnt_ns = old_mnt_ns;
6356 		put_mnt_ns(mnt_ns);
6357 		return err;
6358 	}
6359 
6360 	put_mnt_ns(old_mnt_ns);
6361 
6362 	/* Update the pwd and root */
6363 	set_fs_pwd(fs, &root);
6364 	set_fs_root(fs, &root);
6365 
6366 	path_put(&root);
6367 	return 0;
6368 }
6369 
6370 static struct user_namespace *mntns_owner(struct ns_common *ns)
6371 {
6372 	return to_mnt_ns(ns)->user_ns;
6373 }
6374 
6375 const struct proc_ns_operations mntns_operations = {
6376 	.name		= "mnt",
6377 	.get		= mntns_get,
6378 	.put		= mntns_put,
6379 	.install	= mntns_install,
6380 	.owner		= mntns_owner,
6381 };
6382 
6383 #ifdef CONFIG_SYSCTL
6384 static const struct ctl_table fs_namespace_sysctls[] = {
6385 	{
6386 		.procname	= "mount-max",
6387 		.data		= &sysctl_mount_max,
6388 		.maxlen		= sizeof(unsigned int),
6389 		.mode		= 0644,
6390 		.proc_handler	= proc_dointvec_minmax,
6391 		.extra1		= SYSCTL_ONE,
6392 	},
6393 };
6394 
6395 static int __init init_fs_namespace_sysctls(void)
6396 {
6397 	register_sysctl_init("fs", fs_namespace_sysctls);
6398 	return 0;
6399 }
6400 fs_initcall(init_fs_namespace_sysctls);
6401 
6402 #endif /* CONFIG_SYSCTL */
6403