xref: /linux/fs/namespace.c (revision 04eeb606a8383b306f4bc6991da8231b5f3924b0)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 	if (mnt) {
197 		int err;
198 
199 		err = mnt_alloc_id(mnt);
200 		if (err)
201 			goto out_free_cache;
202 
203 		if (name) {
204 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 			if (!mnt->mnt_devname)
206 				goto out_free_id;
207 		}
208 
209 #ifdef CONFIG_SMP
210 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 		if (!mnt->mnt_pcp)
212 			goto out_free_devname;
213 
214 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 		mnt->mnt_count = 1;
217 		mnt->mnt_writers = 0;
218 #endif
219 
220 		INIT_HLIST_NODE(&mnt->mnt_hash);
221 		INIT_LIST_HEAD(&mnt->mnt_child);
222 		INIT_LIST_HEAD(&mnt->mnt_mounts);
223 		INIT_LIST_HEAD(&mnt->mnt_list);
224 		INIT_LIST_HEAD(&mnt->mnt_expire);
225 		INIT_LIST_HEAD(&mnt->mnt_share);
226 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 		INIT_LIST_HEAD(&mnt->mnt_slave);
228 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
229 #ifdef CONFIG_FSNOTIFY
230 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
231 #endif
232 	}
233 	return mnt;
234 
235 #ifdef CONFIG_SMP
236 out_free_devname:
237 	kfree(mnt->mnt_devname);
238 #endif
239 out_free_id:
240 	mnt_free_id(mnt);
241 out_free_cache:
242 	kmem_cache_free(mnt_cache, mnt);
243 	return NULL;
244 }
245 
246 /*
247  * Most r/o checks on a fs are for operations that take
248  * discrete amounts of time, like a write() or unlink().
249  * We must keep track of when those operations start
250  * (for permission checks) and when they end, so that
251  * we can determine when writes are able to occur to
252  * a filesystem.
253  */
254 /*
255  * __mnt_is_readonly: check whether a mount is read-only
256  * @mnt: the mount to check for its write status
257  *
258  * This shouldn't be used directly ouside of the VFS.
259  * It does not guarantee that the filesystem will stay
260  * r/w, just that it is right *now*.  This can not and
261  * should not be used in place of IS_RDONLY(inode).
262  * mnt_want/drop_write() will _keep_ the filesystem
263  * r/w.
264  */
265 int __mnt_is_readonly(struct vfsmount *mnt)
266 {
267 	if (mnt->mnt_flags & MNT_READONLY)
268 		return 1;
269 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 		return 1;
271 	return 0;
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 
275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 	mnt->mnt_writers++;
281 #endif
282 }
283 
284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers--;
290 #endif
291 }
292 
293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	unsigned int count = 0;
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 	}
302 
303 	return count;
304 #else
305 	return mnt->mnt_writers;
306 #endif
307 }
308 
309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 	if (mnt->mnt_sb->s_readonly_remount)
312 		return 1;
313 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 	smp_rmb();
315 	return __mnt_is_readonly(mnt);
316 }
317 
318 /*
319  * Most r/o & frozen checks on a fs are for operations that take discrete
320  * amounts of time, like a write() or unlink().  We must keep track of when
321  * those operations start (for permission checks) and when they end, so that we
322  * can determine when writes are able to occur to a filesystem.
323  */
324 /**
325  * __mnt_want_write - get write access to a mount without freeze protection
326  * @m: the mount on which to take a write
327  *
328  * This tells the low-level filesystem that a write is about to be performed to
329  * it, and makes sure that writes are allowed (mnt it read-write) before
330  * returning success. This operation does not protect against filesystem being
331  * frozen. When the write operation is finished, __mnt_drop_write() must be
332  * called. This is effectively a refcount.
333  */
334 int __mnt_want_write(struct vfsmount *m)
335 {
336 	struct mount *mnt = real_mount(m);
337 	int ret = 0;
338 
339 	preempt_disable();
340 	mnt_inc_writers(mnt);
341 	/*
342 	 * The store to mnt_inc_writers must be visible before we pass
343 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 	 * incremented count after it has set MNT_WRITE_HOLD.
345 	 */
346 	smp_mb();
347 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 		cpu_relax();
349 	/*
350 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 	 * be set to match its requirements. So we must not load that until
352 	 * MNT_WRITE_HOLD is cleared.
353 	 */
354 	smp_rmb();
355 	if (mnt_is_readonly(m)) {
356 		mnt_dec_writers(mnt);
357 		ret = -EROFS;
358 	}
359 	preempt_enable();
360 
361 	return ret;
362 }
363 
364 /**
365  * mnt_want_write - get write access to a mount
366  * @m: the mount on which to take a write
367  *
368  * This tells the low-level filesystem that a write is about to be performed to
369  * it, and makes sure that writes are allowed (mount is read-write, filesystem
370  * is not frozen) before returning success.  When the write operation is
371  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
372  */
373 int mnt_want_write(struct vfsmount *m)
374 {
375 	int ret;
376 
377 	sb_start_write(m->mnt_sb);
378 	ret = __mnt_want_write(m);
379 	if (ret)
380 		sb_end_write(m->mnt_sb);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384 
385 /**
386  * mnt_clone_write - get write access to a mount
387  * @mnt: the mount on which to take a write
388  *
389  * This is effectively like mnt_want_write, except
390  * it must only be used to take an extra write reference
391  * on a mountpoint that we already know has a write reference
392  * on it. This allows some optimisation.
393  *
394  * After finished, mnt_drop_write must be called as usual to
395  * drop the reference.
396  */
397 int mnt_clone_write(struct vfsmount *mnt)
398 {
399 	/* superblock may be r/o */
400 	if (__mnt_is_readonly(mnt))
401 		return -EROFS;
402 	preempt_disable();
403 	mnt_inc_writers(real_mount(mnt));
404 	preempt_enable();
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(mnt_clone_write);
408 
409 /**
410  * __mnt_want_write_file - get write access to a file's mount
411  * @file: the file who's mount on which to take a write
412  *
413  * This is like __mnt_want_write, but it takes a file and can
414  * do some optimisations if the file is open for write already
415  */
416 int __mnt_want_write_file(struct file *file)
417 {
418 	if (!(file->f_mode & FMODE_WRITER))
419 		return __mnt_want_write(file->f_path.mnt);
420 	else
421 		return mnt_clone_write(file->f_path.mnt);
422 }
423 
424 /**
425  * mnt_want_write_file - get write access to a file's mount
426  * @file: the file who's mount on which to take a write
427  *
428  * This is like mnt_want_write, but it takes a file and can
429  * do some optimisations if the file is open for write already
430  */
431 int mnt_want_write_file(struct file *file)
432 {
433 	int ret;
434 
435 	sb_start_write(file->f_path.mnt->mnt_sb);
436 	ret = __mnt_want_write_file(file);
437 	if (ret)
438 		sb_end_write(file->f_path.mnt->mnt_sb);
439 	return ret;
440 }
441 EXPORT_SYMBOL_GPL(mnt_want_write_file);
442 
443 /**
444  * __mnt_drop_write - give up write access to a mount
445  * @mnt: the mount on which to give up write access
446  *
447  * Tells the low-level filesystem that we are done
448  * performing writes to it.  Must be matched with
449  * __mnt_want_write() call above.
450  */
451 void __mnt_drop_write(struct vfsmount *mnt)
452 {
453 	preempt_disable();
454 	mnt_dec_writers(real_mount(mnt));
455 	preempt_enable();
456 }
457 
458 /**
459  * mnt_drop_write - give up write access to a mount
460  * @mnt: the mount on which to give up write access
461  *
462  * Tells the low-level filesystem that we are done performing writes to it and
463  * also allows filesystem to be frozen again.  Must be matched with
464  * mnt_want_write() call above.
465  */
466 void mnt_drop_write(struct vfsmount *mnt)
467 {
468 	__mnt_drop_write(mnt);
469 	sb_end_write(mnt->mnt_sb);
470 }
471 EXPORT_SYMBOL_GPL(mnt_drop_write);
472 
473 void __mnt_drop_write_file(struct file *file)
474 {
475 	__mnt_drop_write(file->f_path.mnt);
476 }
477 
478 void mnt_drop_write_file(struct file *file)
479 {
480 	mnt_drop_write(file->f_path.mnt);
481 }
482 EXPORT_SYMBOL(mnt_drop_write_file);
483 
484 static int mnt_make_readonly(struct mount *mnt)
485 {
486 	int ret = 0;
487 
488 	lock_mount_hash();
489 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
490 	/*
491 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 	 * should be visible before we do.
493 	 */
494 	smp_mb();
495 
496 	/*
497 	 * With writers on hold, if this value is zero, then there are
498 	 * definitely no active writers (although held writers may subsequently
499 	 * increment the count, they'll have to wait, and decrement it after
500 	 * seeing MNT_READONLY).
501 	 *
502 	 * It is OK to have counter incremented on one CPU and decremented on
503 	 * another: the sum will add up correctly. The danger would be when we
504 	 * sum up each counter, if we read a counter before it is incremented,
505 	 * but then read another CPU's count which it has been subsequently
506 	 * decremented from -- we would see more decrements than we should.
507 	 * MNT_WRITE_HOLD protects against this scenario, because
508 	 * mnt_want_write first increments count, then smp_mb, then spins on
509 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 	 * we're counting up here.
511 	 */
512 	if (mnt_get_writers(mnt) > 0)
513 		ret = -EBUSY;
514 	else
515 		mnt->mnt.mnt_flags |= MNT_READONLY;
516 	/*
517 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 	 * that become unheld will see MNT_READONLY.
519 	 */
520 	smp_wmb();
521 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 	unlock_mount_hash();
523 	return ret;
524 }
525 
526 static void __mnt_unmake_readonly(struct mount *mnt)
527 {
528 	lock_mount_hash();
529 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
530 	unlock_mount_hash();
531 }
532 
533 int sb_prepare_remount_readonly(struct super_block *sb)
534 {
535 	struct mount *mnt;
536 	int err = 0;
537 
538 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
539 	if (atomic_long_read(&sb->s_remove_count))
540 		return -EBUSY;
541 
542 	lock_mount_hash();
543 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 			smp_mb();
547 			if (mnt_get_writers(mnt) > 0) {
548 				err = -EBUSY;
549 				break;
550 			}
551 		}
552 	}
553 	if (!err && atomic_long_read(&sb->s_remove_count))
554 		err = -EBUSY;
555 
556 	if (!err) {
557 		sb->s_readonly_remount = 1;
558 		smp_wmb();
559 	}
560 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 	}
564 	unlock_mount_hash();
565 
566 	return err;
567 }
568 
569 static void free_vfsmnt(struct mount *mnt)
570 {
571 	kfree(mnt->mnt_devname);
572 #ifdef CONFIG_SMP
573 	free_percpu(mnt->mnt_pcp);
574 #endif
575 	kmem_cache_free(mnt_cache, mnt);
576 }
577 
578 static void delayed_free_vfsmnt(struct rcu_head *head)
579 {
580 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581 }
582 
583 /* call under rcu_read_lock */
584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585 {
586 	struct mount *mnt;
587 	if (read_seqretry(&mount_lock, seq))
588 		return false;
589 	if (bastard == NULL)
590 		return true;
591 	mnt = real_mount(bastard);
592 	mnt_add_count(mnt, 1);
593 	if (likely(!read_seqretry(&mount_lock, seq)))
594 		return true;
595 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 		mnt_add_count(mnt, -1);
597 		return false;
598 	}
599 	rcu_read_unlock();
600 	mntput(bastard);
601 	rcu_read_lock();
602 	return false;
603 }
604 
605 /*
606  * find the first mount at @dentry on vfsmount @mnt.
607  * call under rcu_read_lock()
608  */
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 {
611 	struct hlist_head *head = m_hash(mnt, dentry);
612 	struct mount *p;
613 
614 	hlist_for_each_entry_rcu(p, head, mnt_hash)
615 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 			return p;
617 	return NULL;
618 }
619 
620 /*
621  * find the last mount at @dentry on vfsmount @mnt.
622  * mount_lock must be held.
623  */
624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 	struct mount *p, *res;
627 	res = p = __lookup_mnt(mnt, dentry);
628 	if (!p)
629 		goto out;
630 	hlist_for_each_entry_continue(p, mnt_hash) {
631 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 			break;
633 		res = p;
634 	}
635 out:
636 	return res;
637 }
638 
639 /*
640  * lookup_mnt - Return the first child mount mounted at path
641  *
642  * "First" means first mounted chronologically.  If you create the
643  * following mounts:
644  *
645  * mount /dev/sda1 /mnt
646  * mount /dev/sda2 /mnt
647  * mount /dev/sda3 /mnt
648  *
649  * Then lookup_mnt() on the base /mnt dentry in the root mount will
650  * return successively the root dentry and vfsmount of /dev/sda1, then
651  * /dev/sda2, then /dev/sda3, then NULL.
652  *
653  * lookup_mnt takes a reference to the found vfsmount.
654  */
655 struct vfsmount *lookup_mnt(struct path *path)
656 {
657 	struct mount *child_mnt;
658 	struct vfsmount *m;
659 	unsigned seq;
660 
661 	rcu_read_lock();
662 	do {
663 		seq = read_seqbegin(&mount_lock);
664 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 		m = child_mnt ? &child_mnt->mnt : NULL;
666 	} while (!legitimize_mnt(m, seq));
667 	rcu_read_unlock();
668 	return m;
669 }
670 
671 /*
672  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673  *                         current mount namespace.
674  *
675  * The common case is dentries are not mountpoints at all and that
676  * test is handled inline.  For the slow case when we are actually
677  * dealing with a mountpoint of some kind, walk through all of the
678  * mounts in the current mount namespace and test to see if the dentry
679  * is a mountpoint.
680  *
681  * The mount_hashtable is not usable in the context because we
682  * need to identify all mounts that may be in the current mount
683  * namespace not just a mount that happens to have some specified
684  * parent mount.
685  */
686 bool __is_local_mountpoint(struct dentry *dentry)
687 {
688 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 	struct mount *mnt;
690 	bool is_covered = false;
691 
692 	if (!d_mountpoint(dentry))
693 		goto out;
694 
695 	down_read(&namespace_sem);
696 	list_for_each_entry(mnt, &ns->list, mnt_list) {
697 		is_covered = (mnt->mnt_mountpoint == dentry);
698 		if (is_covered)
699 			break;
700 	}
701 	up_read(&namespace_sem);
702 out:
703 	return is_covered;
704 }
705 
706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
707 {
708 	struct hlist_head *chain = mp_hash(dentry);
709 	struct mountpoint *mp;
710 
711 	hlist_for_each_entry(mp, chain, m_hash) {
712 		if (mp->m_dentry == dentry) {
713 			/* might be worth a WARN_ON() */
714 			if (d_unlinked(dentry))
715 				return ERR_PTR(-ENOENT);
716 			mp->m_count++;
717 			return mp;
718 		}
719 	}
720 	return NULL;
721 }
722 
723 static struct mountpoint *new_mountpoint(struct dentry *dentry)
724 {
725 	struct hlist_head *chain = mp_hash(dentry);
726 	struct mountpoint *mp;
727 	int ret;
728 
729 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 	if (!mp)
731 		return ERR_PTR(-ENOMEM);
732 
733 	ret = d_set_mounted(dentry);
734 	if (ret) {
735 		kfree(mp);
736 		return ERR_PTR(ret);
737 	}
738 
739 	mp->m_dentry = dentry;
740 	mp->m_count = 1;
741 	hlist_add_head(&mp->m_hash, chain);
742 	INIT_HLIST_HEAD(&mp->m_list);
743 	return mp;
744 }
745 
746 static void put_mountpoint(struct mountpoint *mp)
747 {
748 	if (!--mp->m_count) {
749 		struct dentry *dentry = mp->m_dentry;
750 		BUG_ON(!hlist_empty(&mp->m_list));
751 		spin_lock(&dentry->d_lock);
752 		dentry->d_flags &= ~DCACHE_MOUNTED;
753 		spin_unlock(&dentry->d_lock);
754 		hlist_del(&mp->m_hash);
755 		kfree(mp);
756 	}
757 }
758 
759 static inline int check_mnt(struct mount *mnt)
760 {
761 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
762 }
763 
764 /*
765  * vfsmount lock must be held for write
766  */
767 static void touch_mnt_namespace(struct mnt_namespace *ns)
768 {
769 	if (ns) {
770 		ns->event = ++event;
771 		wake_up_interruptible(&ns->poll);
772 	}
773 }
774 
775 /*
776  * vfsmount lock must be held for write
777  */
778 static void __touch_mnt_namespace(struct mnt_namespace *ns)
779 {
780 	if (ns && ns->event != event) {
781 		ns->event = event;
782 		wake_up_interruptible(&ns->poll);
783 	}
784 }
785 
786 /*
787  * vfsmount lock must be held for write
788  */
789 static void detach_mnt(struct mount *mnt, struct path *old_path)
790 {
791 	old_path->dentry = mnt->mnt_mountpoint;
792 	old_path->mnt = &mnt->mnt_parent->mnt;
793 	mnt->mnt_parent = mnt;
794 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
795 	list_del_init(&mnt->mnt_child);
796 	hlist_del_init_rcu(&mnt->mnt_hash);
797 	hlist_del_init(&mnt->mnt_mp_list);
798 	put_mountpoint(mnt->mnt_mp);
799 	mnt->mnt_mp = NULL;
800 }
801 
802 /*
803  * vfsmount lock must be held for write
804  */
805 void mnt_set_mountpoint(struct mount *mnt,
806 			struct mountpoint *mp,
807 			struct mount *child_mnt)
808 {
809 	mp->m_count++;
810 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
811 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
812 	child_mnt->mnt_parent = mnt;
813 	child_mnt->mnt_mp = mp;
814 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static void attach_mnt(struct mount *mnt,
821 			struct mount *parent,
822 			struct mountpoint *mp)
823 {
824 	mnt_set_mountpoint(parent, mp, mnt);
825 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
826 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
827 }
828 
829 static void attach_shadowed(struct mount *mnt,
830 			struct mount *parent,
831 			struct mount *shadows)
832 {
833 	if (shadows) {
834 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
835 		list_add(&mnt->mnt_child, &shadows->mnt_child);
836 	} else {
837 		hlist_add_head_rcu(&mnt->mnt_hash,
838 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 	}
841 }
842 
843 /*
844  * vfsmount lock must be held for write
845  */
846 static void commit_tree(struct mount *mnt, struct mount *shadows)
847 {
848 	struct mount *parent = mnt->mnt_parent;
849 	struct mount *m;
850 	LIST_HEAD(head);
851 	struct mnt_namespace *n = parent->mnt_ns;
852 
853 	BUG_ON(parent == mnt);
854 
855 	list_add_tail(&head, &mnt->mnt_list);
856 	list_for_each_entry(m, &head, mnt_list)
857 		m->mnt_ns = n;
858 
859 	list_splice(&head, n->list.prev);
860 
861 	attach_shadowed(mnt, parent, shadows);
862 	touch_mnt_namespace(n);
863 }
864 
865 static struct mount *next_mnt(struct mount *p, struct mount *root)
866 {
867 	struct list_head *next = p->mnt_mounts.next;
868 	if (next == &p->mnt_mounts) {
869 		while (1) {
870 			if (p == root)
871 				return NULL;
872 			next = p->mnt_child.next;
873 			if (next != &p->mnt_parent->mnt_mounts)
874 				break;
875 			p = p->mnt_parent;
876 		}
877 	}
878 	return list_entry(next, struct mount, mnt_child);
879 }
880 
881 static struct mount *skip_mnt_tree(struct mount *p)
882 {
883 	struct list_head *prev = p->mnt_mounts.prev;
884 	while (prev != &p->mnt_mounts) {
885 		p = list_entry(prev, struct mount, mnt_child);
886 		prev = p->mnt_mounts.prev;
887 	}
888 	return p;
889 }
890 
891 struct vfsmount *
892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893 {
894 	struct mount *mnt;
895 	struct dentry *root;
896 
897 	if (!type)
898 		return ERR_PTR(-ENODEV);
899 
900 	mnt = alloc_vfsmnt(name);
901 	if (!mnt)
902 		return ERR_PTR(-ENOMEM);
903 
904 	if (flags & MS_KERNMOUNT)
905 		mnt->mnt.mnt_flags = MNT_INTERNAL;
906 
907 	root = mount_fs(type, flags, name, data);
908 	if (IS_ERR(root)) {
909 		mnt_free_id(mnt);
910 		free_vfsmnt(mnt);
911 		return ERR_CAST(root);
912 	}
913 
914 	mnt->mnt.mnt_root = root;
915 	mnt->mnt.mnt_sb = root->d_sb;
916 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 	mnt->mnt_parent = mnt;
918 	lock_mount_hash();
919 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
920 	unlock_mount_hash();
921 	return &mnt->mnt;
922 }
923 EXPORT_SYMBOL_GPL(vfs_kern_mount);
924 
925 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
926 					int flag)
927 {
928 	struct super_block *sb = old->mnt.mnt_sb;
929 	struct mount *mnt;
930 	int err;
931 
932 	mnt = alloc_vfsmnt(old->mnt_devname);
933 	if (!mnt)
934 		return ERR_PTR(-ENOMEM);
935 
936 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
937 		mnt->mnt_group_id = 0; /* not a peer of original */
938 	else
939 		mnt->mnt_group_id = old->mnt_group_id;
940 
941 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 		err = mnt_alloc_group_id(mnt);
943 		if (err)
944 			goto out_free;
945 	}
946 
947 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
948 	/* Don't allow unprivileged users to change mount flags */
949 	if (flag & CL_UNPRIVILEGED) {
950 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951 
952 		if (mnt->mnt.mnt_flags & MNT_READONLY)
953 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954 
955 		if (mnt->mnt.mnt_flags & MNT_NODEV)
956 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957 
958 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960 
961 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 	}
964 
965 	/* Don't allow unprivileged users to reveal what is under a mount */
966 	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
967 		mnt->mnt.mnt_flags |= MNT_LOCKED;
968 
969 	atomic_inc(&sb->s_active);
970 	mnt->mnt.mnt_sb = sb;
971 	mnt->mnt.mnt_root = dget(root);
972 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 	mnt->mnt_parent = mnt;
974 	lock_mount_hash();
975 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
976 	unlock_mount_hash();
977 
978 	if ((flag & CL_SLAVE) ||
979 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
980 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
981 		mnt->mnt_master = old;
982 		CLEAR_MNT_SHARED(mnt);
983 	} else if (!(flag & CL_PRIVATE)) {
984 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
985 			list_add(&mnt->mnt_share, &old->mnt_share);
986 		if (IS_MNT_SLAVE(old))
987 			list_add(&mnt->mnt_slave, &old->mnt_slave);
988 		mnt->mnt_master = old->mnt_master;
989 	}
990 	if (flag & CL_MAKE_SHARED)
991 		set_mnt_shared(mnt);
992 
993 	/* stick the duplicate mount on the same expiry list
994 	 * as the original if that was on one */
995 	if (flag & CL_EXPIRE) {
996 		if (!list_empty(&old->mnt_expire))
997 			list_add(&mnt->mnt_expire, &old->mnt_expire);
998 	}
999 
1000 	return mnt;
1001 
1002  out_free:
1003 	mnt_free_id(mnt);
1004 	free_vfsmnt(mnt);
1005 	return ERR_PTR(err);
1006 }
1007 
1008 static void cleanup_mnt(struct mount *mnt)
1009 {
1010 	/*
1011 	 * This probably indicates that somebody messed
1012 	 * up a mnt_want/drop_write() pair.  If this
1013 	 * happens, the filesystem was probably unable
1014 	 * to make r/w->r/o transitions.
1015 	 */
1016 	/*
1017 	 * The locking used to deal with mnt_count decrement provides barriers,
1018 	 * so mnt_get_writers() below is safe.
1019 	 */
1020 	WARN_ON(mnt_get_writers(mnt));
1021 	if (unlikely(mnt->mnt_pins.first))
1022 		mnt_pin_kill(mnt);
1023 	fsnotify_vfsmount_delete(&mnt->mnt);
1024 	dput(mnt->mnt.mnt_root);
1025 	deactivate_super(mnt->mnt.mnt_sb);
1026 	mnt_free_id(mnt);
1027 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1028 }
1029 
1030 static void __cleanup_mnt(struct rcu_head *head)
1031 {
1032 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1033 }
1034 
1035 static LLIST_HEAD(delayed_mntput_list);
1036 static void delayed_mntput(struct work_struct *unused)
1037 {
1038 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1039 	struct llist_node *next;
1040 
1041 	for (; node; node = next) {
1042 		next = llist_next(node);
1043 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1044 	}
1045 }
1046 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1047 
1048 static void mntput_no_expire(struct mount *mnt)
1049 {
1050 	rcu_read_lock();
1051 	mnt_add_count(mnt, -1);
1052 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1053 		rcu_read_unlock();
1054 		return;
1055 	}
1056 	lock_mount_hash();
1057 	if (mnt_get_count(mnt)) {
1058 		rcu_read_unlock();
1059 		unlock_mount_hash();
1060 		return;
1061 	}
1062 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1063 		rcu_read_unlock();
1064 		unlock_mount_hash();
1065 		return;
1066 	}
1067 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1068 	rcu_read_unlock();
1069 
1070 	list_del(&mnt->mnt_instance);
1071 	unlock_mount_hash();
1072 
1073 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1074 		struct task_struct *task = current;
1075 		if (likely(!(task->flags & PF_KTHREAD))) {
1076 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1077 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1078 				return;
1079 		}
1080 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1081 			schedule_delayed_work(&delayed_mntput_work, 1);
1082 		return;
1083 	}
1084 	cleanup_mnt(mnt);
1085 }
1086 
1087 void mntput(struct vfsmount *mnt)
1088 {
1089 	if (mnt) {
1090 		struct mount *m = real_mount(mnt);
1091 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1092 		if (unlikely(m->mnt_expiry_mark))
1093 			m->mnt_expiry_mark = 0;
1094 		mntput_no_expire(m);
1095 	}
1096 }
1097 EXPORT_SYMBOL(mntput);
1098 
1099 struct vfsmount *mntget(struct vfsmount *mnt)
1100 {
1101 	if (mnt)
1102 		mnt_add_count(real_mount(mnt), 1);
1103 	return mnt;
1104 }
1105 EXPORT_SYMBOL(mntget);
1106 
1107 struct vfsmount *mnt_clone_internal(struct path *path)
1108 {
1109 	struct mount *p;
1110 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1111 	if (IS_ERR(p))
1112 		return ERR_CAST(p);
1113 	p->mnt.mnt_flags |= MNT_INTERNAL;
1114 	return &p->mnt;
1115 }
1116 
1117 static inline void mangle(struct seq_file *m, const char *s)
1118 {
1119 	seq_escape(m, s, " \t\n\\");
1120 }
1121 
1122 /*
1123  * Simple .show_options callback for filesystems which don't want to
1124  * implement more complex mount option showing.
1125  *
1126  * See also save_mount_options().
1127  */
1128 int generic_show_options(struct seq_file *m, struct dentry *root)
1129 {
1130 	const char *options;
1131 
1132 	rcu_read_lock();
1133 	options = rcu_dereference(root->d_sb->s_options);
1134 
1135 	if (options != NULL && options[0]) {
1136 		seq_putc(m, ',');
1137 		mangle(m, options);
1138 	}
1139 	rcu_read_unlock();
1140 
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL(generic_show_options);
1144 
1145 /*
1146  * If filesystem uses generic_show_options(), this function should be
1147  * called from the fill_super() callback.
1148  *
1149  * The .remount_fs callback usually needs to be handled in a special
1150  * way, to make sure, that previous options are not overwritten if the
1151  * remount fails.
1152  *
1153  * Also note, that if the filesystem's .remount_fs function doesn't
1154  * reset all options to their default value, but changes only newly
1155  * given options, then the displayed options will not reflect reality
1156  * any more.
1157  */
1158 void save_mount_options(struct super_block *sb, char *options)
1159 {
1160 	BUG_ON(sb->s_options);
1161 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1162 }
1163 EXPORT_SYMBOL(save_mount_options);
1164 
1165 void replace_mount_options(struct super_block *sb, char *options)
1166 {
1167 	char *old = sb->s_options;
1168 	rcu_assign_pointer(sb->s_options, options);
1169 	if (old) {
1170 		synchronize_rcu();
1171 		kfree(old);
1172 	}
1173 }
1174 EXPORT_SYMBOL(replace_mount_options);
1175 
1176 #ifdef CONFIG_PROC_FS
1177 /* iterator; we want it to have access to namespace_sem, thus here... */
1178 static void *m_start(struct seq_file *m, loff_t *pos)
1179 {
1180 	struct proc_mounts *p = proc_mounts(m);
1181 
1182 	down_read(&namespace_sem);
1183 	if (p->cached_event == p->ns->event) {
1184 		void *v = p->cached_mount;
1185 		if (*pos == p->cached_index)
1186 			return v;
1187 		if (*pos == p->cached_index + 1) {
1188 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1189 			return p->cached_mount = v;
1190 		}
1191 	}
1192 
1193 	p->cached_event = p->ns->event;
1194 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1195 	p->cached_index = *pos;
1196 	return p->cached_mount;
1197 }
1198 
1199 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1200 {
1201 	struct proc_mounts *p = proc_mounts(m);
1202 
1203 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1204 	p->cached_index = *pos;
1205 	return p->cached_mount;
1206 }
1207 
1208 static void m_stop(struct seq_file *m, void *v)
1209 {
1210 	up_read(&namespace_sem);
1211 }
1212 
1213 static int m_show(struct seq_file *m, void *v)
1214 {
1215 	struct proc_mounts *p = proc_mounts(m);
1216 	struct mount *r = list_entry(v, struct mount, mnt_list);
1217 	return p->show(m, &r->mnt);
1218 }
1219 
1220 const struct seq_operations mounts_op = {
1221 	.start	= m_start,
1222 	.next	= m_next,
1223 	.stop	= m_stop,
1224 	.show	= m_show,
1225 };
1226 #endif  /* CONFIG_PROC_FS */
1227 
1228 /**
1229  * may_umount_tree - check if a mount tree is busy
1230  * @mnt: root of mount tree
1231  *
1232  * This is called to check if a tree of mounts has any
1233  * open files, pwds, chroots or sub mounts that are
1234  * busy.
1235  */
1236 int may_umount_tree(struct vfsmount *m)
1237 {
1238 	struct mount *mnt = real_mount(m);
1239 	int actual_refs = 0;
1240 	int minimum_refs = 0;
1241 	struct mount *p;
1242 	BUG_ON(!m);
1243 
1244 	/* write lock needed for mnt_get_count */
1245 	lock_mount_hash();
1246 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1247 		actual_refs += mnt_get_count(p);
1248 		minimum_refs += 2;
1249 	}
1250 	unlock_mount_hash();
1251 
1252 	if (actual_refs > minimum_refs)
1253 		return 0;
1254 
1255 	return 1;
1256 }
1257 
1258 EXPORT_SYMBOL(may_umount_tree);
1259 
1260 /**
1261  * may_umount - check if a mount point is busy
1262  * @mnt: root of mount
1263  *
1264  * This is called to check if a mount point has any
1265  * open files, pwds, chroots or sub mounts. If the
1266  * mount has sub mounts this will return busy
1267  * regardless of whether the sub mounts are busy.
1268  *
1269  * Doesn't take quota and stuff into account. IOW, in some cases it will
1270  * give false negatives. The main reason why it's here is that we need
1271  * a non-destructive way to look for easily umountable filesystems.
1272  */
1273 int may_umount(struct vfsmount *mnt)
1274 {
1275 	int ret = 1;
1276 	down_read(&namespace_sem);
1277 	lock_mount_hash();
1278 	if (propagate_mount_busy(real_mount(mnt), 2))
1279 		ret = 0;
1280 	unlock_mount_hash();
1281 	up_read(&namespace_sem);
1282 	return ret;
1283 }
1284 
1285 EXPORT_SYMBOL(may_umount);
1286 
1287 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1288 
1289 static void namespace_unlock(void)
1290 {
1291 	struct mount *mnt;
1292 	struct hlist_head head = unmounted;
1293 
1294 	if (likely(hlist_empty(&head))) {
1295 		up_write(&namespace_sem);
1296 		return;
1297 	}
1298 
1299 	head.first->pprev = &head.first;
1300 	INIT_HLIST_HEAD(&unmounted);
1301 
1302 	/* undo decrements we'd done in umount_tree() */
1303 	hlist_for_each_entry(mnt, &head, mnt_hash)
1304 		if (mnt->mnt_ex_mountpoint.mnt)
1305 			mntget(mnt->mnt_ex_mountpoint.mnt);
1306 
1307 	up_write(&namespace_sem);
1308 
1309 	synchronize_rcu();
1310 
1311 	while (!hlist_empty(&head)) {
1312 		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1313 		hlist_del_init(&mnt->mnt_hash);
1314 		if (mnt->mnt_ex_mountpoint.mnt)
1315 			path_put(&mnt->mnt_ex_mountpoint);
1316 		mntput(&mnt->mnt);
1317 	}
1318 }
1319 
1320 static inline void namespace_lock(void)
1321 {
1322 	down_write(&namespace_sem);
1323 }
1324 
1325 /*
1326  * mount_lock must be held
1327  * namespace_sem must be held for write
1328  * how = 0 => just this tree, don't propagate
1329  * how = 1 => propagate; we know that nobody else has reference to any victims
1330  * how = 2 => lazy umount
1331  */
1332 void umount_tree(struct mount *mnt, int how)
1333 {
1334 	HLIST_HEAD(tmp_list);
1335 	struct mount *p;
1336 	struct mount *last = NULL;
1337 
1338 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1339 		hlist_del_init_rcu(&p->mnt_hash);
1340 		hlist_add_head(&p->mnt_hash, &tmp_list);
1341 	}
1342 
1343 	hlist_for_each_entry(p, &tmp_list, mnt_hash)
1344 		list_del_init(&p->mnt_child);
1345 
1346 	if (how)
1347 		propagate_umount(&tmp_list);
1348 
1349 	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1350 		list_del_init(&p->mnt_expire);
1351 		list_del_init(&p->mnt_list);
1352 		__touch_mnt_namespace(p->mnt_ns);
1353 		p->mnt_ns = NULL;
1354 		if (how < 2)
1355 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1356 		if (mnt_has_parent(p)) {
1357 			hlist_del_init(&p->mnt_mp_list);
1358 			put_mountpoint(p->mnt_mp);
1359 			mnt_add_count(p->mnt_parent, -1);
1360 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1361 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1362 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1363 			p->mnt_mountpoint = p->mnt.mnt_root;
1364 			p->mnt_parent = p;
1365 			p->mnt_mp = NULL;
1366 		}
1367 		change_mnt_propagation(p, MS_PRIVATE);
1368 		last = p;
1369 	}
1370 	if (last) {
1371 		last->mnt_hash.next = unmounted.first;
1372 		unmounted.first = tmp_list.first;
1373 		unmounted.first->pprev = &unmounted.first;
1374 	}
1375 }
1376 
1377 static void shrink_submounts(struct mount *mnt);
1378 
1379 static int do_umount(struct mount *mnt, int flags)
1380 {
1381 	struct super_block *sb = mnt->mnt.mnt_sb;
1382 	int retval;
1383 
1384 	retval = security_sb_umount(&mnt->mnt, flags);
1385 	if (retval)
1386 		return retval;
1387 
1388 	/*
1389 	 * Allow userspace to request a mountpoint be expired rather than
1390 	 * unmounting unconditionally. Unmount only happens if:
1391 	 *  (1) the mark is already set (the mark is cleared by mntput())
1392 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1393 	 */
1394 	if (flags & MNT_EXPIRE) {
1395 		if (&mnt->mnt == current->fs->root.mnt ||
1396 		    flags & (MNT_FORCE | MNT_DETACH))
1397 			return -EINVAL;
1398 
1399 		/*
1400 		 * probably don't strictly need the lock here if we examined
1401 		 * all race cases, but it's a slowpath.
1402 		 */
1403 		lock_mount_hash();
1404 		if (mnt_get_count(mnt) != 2) {
1405 			unlock_mount_hash();
1406 			return -EBUSY;
1407 		}
1408 		unlock_mount_hash();
1409 
1410 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1411 			return -EAGAIN;
1412 	}
1413 
1414 	/*
1415 	 * If we may have to abort operations to get out of this
1416 	 * mount, and they will themselves hold resources we must
1417 	 * allow the fs to do things. In the Unix tradition of
1418 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1419 	 * might fail to complete on the first run through as other tasks
1420 	 * must return, and the like. Thats for the mount program to worry
1421 	 * about for the moment.
1422 	 */
1423 
1424 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1425 		sb->s_op->umount_begin(sb);
1426 	}
1427 
1428 	/*
1429 	 * No sense to grab the lock for this test, but test itself looks
1430 	 * somewhat bogus. Suggestions for better replacement?
1431 	 * Ho-hum... In principle, we might treat that as umount + switch
1432 	 * to rootfs. GC would eventually take care of the old vfsmount.
1433 	 * Actually it makes sense, especially if rootfs would contain a
1434 	 * /reboot - static binary that would close all descriptors and
1435 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1436 	 */
1437 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1438 		/*
1439 		 * Special case for "unmounting" root ...
1440 		 * we just try to remount it readonly.
1441 		 */
1442 		if (!capable(CAP_SYS_ADMIN))
1443 			return -EPERM;
1444 		down_write(&sb->s_umount);
1445 		if (!(sb->s_flags & MS_RDONLY))
1446 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1447 		up_write(&sb->s_umount);
1448 		return retval;
1449 	}
1450 
1451 	namespace_lock();
1452 	lock_mount_hash();
1453 	event++;
1454 
1455 	if (flags & MNT_DETACH) {
1456 		if (!list_empty(&mnt->mnt_list))
1457 			umount_tree(mnt, 2);
1458 		retval = 0;
1459 	} else {
1460 		shrink_submounts(mnt);
1461 		retval = -EBUSY;
1462 		if (!propagate_mount_busy(mnt, 2)) {
1463 			if (!list_empty(&mnt->mnt_list))
1464 				umount_tree(mnt, 1);
1465 			retval = 0;
1466 		}
1467 	}
1468 	unlock_mount_hash();
1469 	namespace_unlock();
1470 	return retval;
1471 }
1472 
1473 /*
1474  * __detach_mounts - lazily unmount all mounts on the specified dentry
1475  *
1476  * During unlink, rmdir, and d_drop it is possible to loose the path
1477  * to an existing mountpoint, and wind up leaking the mount.
1478  * detach_mounts allows lazily unmounting those mounts instead of
1479  * leaking them.
1480  *
1481  * The caller may hold dentry->d_inode->i_mutex.
1482  */
1483 void __detach_mounts(struct dentry *dentry)
1484 {
1485 	struct mountpoint *mp;
1486 	struct mount *mnt;
1487 
1488 	namespace_lock();
1489 	mp = lookup_mountpoint(dentry);
1490 	if (!mp)
1491 		goto out_unlock;
1492 
1493 	lock_mount_hash();
1494 	while (!hlist_empty(&mp->m_list)) {
1495 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1496 		umount_tree(mnt, 2);
1497 	}
1498 	unlock_mount_hash();
1499 	put_mountpoint(mp);
1500 out_unlock:
1501 	namespace_unlock();
1502 }
1503 
1504 /*
1505  * Is the caller allowed to modify his namespace?
1506  */
1507 static inline bool may_mount(void)
1508 {
1509 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1510 }
1511 
1512 /*
1513  * Now umount can handle mount points as well as block devices.
1514  * This is important for filesystems which use unnamed block devices.
1515  *
1516  * We now support a flag for forced unmount like the other 'big iron'
1517  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1518  */
1519 
1520 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1521 {
1522 	struct path path;
1523 	struct mount *mnt;
1524 	int retval;
1525 	int lookup_flags = 0;
1526 
1527 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1528 		return -EINVAL;
1529 
1530 	if (!may_mount())
1531 		return -EPERM;
1532 
1533 	if (!(flags & UMOUNT_NOFOLLOW))
1534 		lookup_flags |= LOOKUP_FOLLOW;
1535 
1536 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1537 	if (retval)
1538 		goto out;
1539 	mnt = real_mount(path.mnt);
1540 	retval = -EINVAL;
1541 	if (path.dentry != path.mnt->mnt_root)
1542 		goto dput_and_out;
1543 	if (!check_mnt(mnt))
1544 		goto dput_and_out;
1545 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1546 		goto dput_and_out;
1547 
1548 	retval = do_umount(mnt, flags);
1549 dput_and_out:
1550 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1551 	dput(path.dentry);
1552 	mntput_no_expire(mnt);
1553 out:
1554 	return retval;
1555 }
1556 
1557 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1558 
1559 /*
1560  *	The 2.0 compatible umount. No flags.
1561  */
1562 SYSCALL_DEFINE1(oldumount, char __user *, name)
1563 {
1564 	return sys_umount(name, 0);
1565 }
1566 
1567 #endif
1568 
1569 static bool is_mnt_ns_file(struct dentry *dentry)
1570 {
1571 	/* Is this a proxy for a mount namespace? */
1572 	struct inode *inode = dentry->d_inode;
1573 	struct proc_ns *ei;
1574 
1575 	if (!proc_ns_inode(inode))
1576 		return false;
1577 
1578 	ei = get_proc_ns(inode);
1579 	if (ei->ns_ops != &mntns_operations)
1580 		return false;
1581 
1582 	return true;
1583 }
1584 
1585 static bool mnt_ns_loop(struct dentry *dentry)
1586 {
1587 	/* Could bind mounting the mount namespace inode cause a
1588 	 * mount namespace loop?
1589 	 */
1590 	struct mnt_namespace *mnt_ns;
1591 	if (!is_mnt_ns_file(dentry))
1592 		return false;
1593 
1594 	mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1595 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1596 }
1597 
1598 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1599 					int flag)
1600 {
1601 	struct mount *res, *p, *q, *r, *parent;
1602 
1603 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1604 		return ERR_PTR(-EINVAL);
1605 
1606 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1607 		return ERR_PTR(-EINVAL);
1608 
1609 	res = q = clone_mnt(mnt, dentry, flag);
1610 	if (IS_ERR(q))
1611 		return q;
1612 
1613 	q->mnt.mnt_flags &= ~MNT_LOCKED;
1614 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1615 
1616 	p = mnt;
1617 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1618 		struct mount *s;
1619 		if (!is_subdir(r->mnt_mountpoint, dentry))
1620 			continue;
1621 
1622 		for (s = r; s; s = next_mnt(s, r)) {
1623 			struct mount *t = NULL;
1624 			if (!(flag & CL_COPY_UNBINDABLE) &&
1625 			    IS_MNT_UNBINDABLE(s)) {
1626 				s = skip_mnt_tree(s);
1627 				continue;
1628 			}
1629 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1630 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1631 				s = skip_mnt_tree(s);
1632 				continue;
1633 			}
1634 			while (p != s->mnt_parent) {
1635 				p = p->mnt_parent;
1636 				q = q->mnt_parent;
1637 			}
1638 			p = s;
1639 			parent = q;
1640 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1641 			if (IS_ERR(q))
1642 				goto out;
1643 			lock_mount_hash();
1644 			list_add_tail(&q->mnt_list, &res->mnt_list);
1645 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1646 			if (!list_empty(&parent->mnt_mounts)) {
1647 				t = list_last_entry(&parent->mnt_mounts,
1648 					struct mount, mnt_child);
1649 				if (t->mnt_mp != p->mnt_mp)
1650 					t = NULL;
1651 			}
1652 			attach_shadowed(q, parent, t);
1653 			unlock_mount_hash();
1654 		}
1655 	}
1656 	return res;
1657 out:
1658 	if (res) {
1659 		lock_mount_hash();
1660 		umount_tree(res, 0);
1661 		unlock_mount_hash();
1662 	}
1663 	return q;
1664 }
1665 
1666 /* Caller should check returned pointer for errors */
1667 
1668 struct vfsmount *collect_mounts(struct path *path)
1669 {
1670 	struct mount *tree;
1671 	namespace_lock();
1672 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1673 			 CL_COPY_ALL | CL_PRIVATE);
1674 	namespace_unlock();
1675 	if (IS_ERR(tree))
1676 		return ERR_CAST(tree);
1677 	return &tree->mnt;
1678 }
1679 
1680 void drop_collected_mounts(struct vfsmount *mnt)
1681 {
1682 	namespace_lock();
1683 	lock_mount_hash();
1684 	umount_tree(real_mount(mnt), 0);
1685 	unlock_mount_hash();
1686 	namespace_unlock();
1687 }
1688 
1689 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1690 		   struct vfsmount *root)
1691 {
1692 	struct mount *mnt;
1693 	int res = f(root, arg);
1694 	if (res)
1695 		return res;
1696 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1697 		res = f(&mnt->mnt, arg);
1698 		if (res)
1699 			return res;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1705 {
1706 	struct mount *p;
1707 
1708 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1709 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1710 			mnt_release_group_id(p);
1711 	}
1712 }
1713 
1714 static int invent_group_ids(struct mount *mnt, bool recurse)
1715 {
1716 	struct mount *p;
1717 
1718 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1719 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1720 			int err = mnt_alloc_group_id(p);
1721 			if (err) {
1722 				cleanup_group_ids(mnt, p);
1723 				return err;
1724 			}
1725 		}
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  *  @source_mnt : mount tree to be attached
1733  *  @nd         : place the mount tree @source_mnt is attached
1734  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1735  *  		   store the parent mount and mountpoint dentry.
1736  *  		   (done when source_mnt is moved)
1737  *
1738  *  NOTE: in the table below explains the semantics when a source mount
1739  *  of a given type is attached to a destination mount of a given type.
1740  * ---------------------------------------------------------------------------
1741  * |         BIND MOUNT OPERATION                                            |
1742  * |**************************************************************************
1743  * | source-->| shared        |       private  |       slave    | unbindable |
1744  * | dest     |               |                |                |            |
1745  * |   |      |               |                |                |            |
1746  * |   v      |               |                |                |            |
1747  * |**************************************************************************
1748  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1749  * |          |               |                |                |            |
1750  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1751  * ***************************************************************************
1752  * A bind operation clones the source mount and mounts the clone on the
1753  * destination mount.
1754  *
1755  * (++)  the cloned mount is propagated to all the mounts in the propagation
1756  * 	 tree of the destination mount and the cloned mount is added to
1757  * 	 the peer group of the source mount.
1758  * (+)   the cloned mount is created under the destination mount and is marked
1759  *       as shared. The cloned mount is added to the peer group of the source
1760  *       mount.
1761  * (+++) the mount is propagated to all the mounts in the propagation tree
1762  *       of the destination mount and the cloned mount is made slave
1763  *       of the same master as that of the source mount. The cloned mount
1764  *       is marked as 'shared and slave'.
1765  * (*)   the cloned mount is made a slave of the same master as that of the
1766  * 	 source mount.
1767  *
1768  * ---------------------------------------------------------------------------
1769  * |         		MOVE MOUNT OPERATION                                 |
1770  * |**************************************************************************
1771  * | source-->| shared        |       private  |       slave    | unbindable |
1772  * | dest     |               |                |                |            |
1773  * |   |      |               |                |                |            |
1774  * |   v      |               |                |                |            |
1775  * |**************************************************************************
1776  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1777  * |          |               |                |                |            |
1778  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1779  * ***************************************************************************
1780  *
1781  * (+)  the mount is moved to the destination. And is then propagated to
1782  * 	all the mounts in the propagation tree of the destination mount.
1783  * (+*)  the mount is moved to the destination.
1784  * (+++)  the mount is moved to the destination and is then propagated to
1785  * 	all the mounts belonging to the destination mount's propagation tree.
1786  * 	the mount is marked as 'shared and slave'.
1787  * (*)	the mount continues to be a slave at the new location.
1788  *
1789  * if the source mount is a tree, the operations explained above is
1790  * applied to each mount in the tree.
1791  * Must be called without spinlocks held, since this function can sleep
1792  * in allocations.
1793  */
1794 static int attach_recursive_mnt(struct mount *source_mnt,
1795 			struct mount *dest_mnt,
1796 			struct mountpoint *dest_mp,
1797 			struct path *parent_path)
1798 {
1799 	HLIST_HEAD(tree_list);
1800 	struct mount *child, *p;
1801 	struct hlist_node *n;
1802 	int err;
1803 
1804 	if (IS_MNT_SHARED(dest_mnt)) {
1805 		err = invent_group_ids(source_mnt, true);
1806 		if (err)
1807 			goto out;
1808 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1809 		lock_mount_hash();
1810 		if (err)
1811 			goto out_cleanup_ids;
1812 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1813 			set_mnt_shared(p);
1814 	} else {
1815 		lock_mount_hash();
1816 	}
1817 	if (parent_path) {
1818 		detach_mnt(source_mnt, parent_path);
1819 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1820 		touch_mnt_namespace(source_mnt->mnt_ns);
1821 	} else {
1822 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1823 		commit_tree(source_mnt, NULL);
1824 	}
1825 
1826 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1827 		struct mount *q;
1828 		hlist_del_init(&child->mnt_hash);
1829 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1830 				      child->mnt_mountpoint);
1831 		commit_tree(child, q);
1832 	}
1833 	unlock_mount_hash();
1834 
1835 	return 0;
1836 
1837  out_cleanup_ids:
1838 	while (!hlist_empty(&tree_list)) {
1839 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1840 		umount_tree(child, 0);
1841 	}
1842 	unlock_mount_hash();
1843 	cleanup_group_ids(source_mnt, NULL);
1844  out:
1845 	return err;
1846 }
1847 
1848 static struct mountpoint *lock_mount(struct path *path)
1849 {
1850 	struct vfsmount *mnt;
1851 	struct dentry *dentry = path->dentry;
1852 retry:
1853 	mutex_lock(&dentry->d_inode->i_mutex);
1854 	if (unlikely(cant_mount(dentry))) {
1855 		mutex_unlock(&dentry->d_inode->i_mutex);
1856 		return ERR_PTR(-ENOENT);
1857 	}
1858 	namespace_lock();
1859 	mnt = lookup_mnt(path);
1860 	if (likely(!mnt)) {
1861 		struct mountpoint *mp = lookup_mountpoint(dentry);
1862 		if (!mp)
1863 			mp = new_mountpoint(dentry);
1864 		if (IS_ERR(mp)) {
1865 			namespace_unlock();
1866 			mutex_unlock(&dentry->d_inode->i_mutex);
1867 			return mp;
1868 		}
1869 		return mp;
1870 	}
1871 	namespace_unlock();
1872 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1873 	path_put(path);
1874 	path->mnt = mnt;
1875 	dentry = path->dentry = dget(mnt->mnt_root);
1876 	goto retry;
1877 }
1878 
1879 static void unlock_mount(struct mountpoint *where)
1880 {
1881 	struct dentry *dentry = where->m_dentry;
1882 	put_mountpoint(where);
1883 	namespace_unlock();
1884 	mutex_unlock(&dentry->d_inode->i_mutex);
1885 }
1886 
1887 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1888 {
1889 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1890 		return -EINVAL;
1891 
1892 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1893 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1894 		return -ENOTDIR;
1895 
1896 	return attach_recursive_mnt(mnt, p, mp, NULL);
1897 }
1898 
1899 /*
1900  * Sanity check the flags to change_mnt_propagation.
1901  */
1902 
1903 static int flags_to_propagation_type(int flags)
1904 {
1905 	int type = flags & ~(MS_REC | MS_SILENT);
1906 
1907 	/* Fail if any non-propagation flags are set */
1908 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1909 		return 0;
1910 	/* Only one propagation flag should be set */
1911 	if (!is_power_of_2(type))
1912 		return 0;
1913 	return type;
1914 }
1915 
1916 /*
1917  * recursively change the type of the mountpoint.
1918  */
1919 static int do_change_type(struct path *path, int flag)
1920 {
1921 	struct mount *m;
1922 	struct mount *mnt = real_mount(path->mnt);
1923 	int recurse = flag & MS_REC;
1924 	int type;
1925 	int err = 0;
1926 
1927 	if (path->dentry != path->mnt->mnt_root)
1928 		return -EINVAL;
1929 
1930 	type = flags_to_propagation_type(flag);
1931 	if (!type)
1932 		return -EINVAL;
1933 
1934 	namespace_lock();
1935 	if (type == MS_SHARED) {
1936 		err = invent_group_ids(mnt, recurse);
1937 		if (err)
1938 			goto out_unlock;
1939 	}
1940 
1941 	lock_mount_hash();
1942 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1943 		change_mnt_propagation(m, type);
1944 	unlock_mount_hash();
1945 
1946  out_unlock:
1947 	namespace_unlock();
1948 	return err;
1949 }
1950 
1951 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1952 {
1953 	struct mount *child;
1954 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1955 		if (!is_subdir(child->mnt_mountpoint, dentry))
1956 			continue;
1957 
1958 		if (child->mnt.mnt_flags & MNT_LOCKED)
1959 			return true;
1960 	}
1961 	return false;
1962 }
1963 
1964 /*
1965  * do loopback mount.
1966  */
1967 static int do_loopback(struct path *path, const char *old_name,
1968 				int recurse)
1969 {
1970 	struct path old_path;
1971 	struct mount *mnt = NULL, *old, *parent;
1972 	struct mountpoint *mp;
1973 	int err;
1974 	if (!old_name || !*old_name)
1975 		return -EINVAL;
1976 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1977 	if (err)
1978 		return err;
1979 
1980 	err = -EINVAL;
1981 	if (mnt_ns_loop(old_path.dentry))
1982 		goto out;
1983 
1984 	mp = lock_mount(path);
1985 	err = PTR_ERR(mp);
1986 	if (IS_ERR(mp))
1987 		goto out;
1988 
1989 	old = real_mount(old_path.mnt);
1990 	parent = real_mount(path->mnt);
1991 
1992 	err = -EINVAL;
1993 	if (IS_MNT_UNBINDABLE(old))
1994 		goto out2;
1995 
1996 	if (!check_mnt(parent) || !check_mnt(old))
1997 		goto out2;
1998 
1999 	if (!recurse && has_locked_children(old, old_path.dentry))
2000 		goto out2;
2001 
2002 	if (recurse)
2003 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2004 	else
2005 		mnt = clone_mnt(old, old_path.dentry, 0);
2006 
2007 	if (IS_ERR(mnt)) {
2008 		err = PTR_ERR(mnt);
2009 		goto out2;
2010 	}
2011 
2012 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2013 
2014 	err = graft_tree(mnt, parent, mp);
2015 	if (err) {
2016 		lock_mount_hash();
2017 		umount_tree(mnt, 0);
2018 		unlock_mount_hash();
2019 	}
2020 out2:
2021 	unlock_mount(mp);
2022 out:
2023 	path_put(&old_path);
2024 	return err;
2025 }
2026 
2027 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2028 {
2029 	int error = 0;
2030 	int readonly_request = 0;
2031 
2032 	if (ms_flags & MS_RDONLY)
2033 		readonly_request = 1;
2034 	if (readonly_request == __mnt_is_readonly(mnt))
2035 		return 0;
2036 
2037 	if (readonly_request)
2038 		error = mnt_make_readonly(real_mount(mnt));
2039 	else
2040 		__mnt_unmake_readonly(real_mount(mnt));
2041 	return error;
2042 }
2043 
2044 /*
2045  * change filesystem flags. dir should be a physical root of filesystem.
2046  * If you've mounted a non-root directory somewhere and want to do remount
2047  * on it - tough luck.
2048  */
2049 static int do_remount(struct path *path, int flags, int mnt_flags,
2050 		      void *data)
2051 {
2052 	int err;
2053 	struct super_block *sb = path->mnt->mnt_sb;
2054 	struct mount *mnt = real_mount(path->mnt);
2055 
2056 	if (!check_mnt(mnt))
2057 		return -EINVAL;
2058 
2059 	if (path->dentry != path->mnt->mnt_root)
2060 		return -EINVAL;
2061 
2062 	/* Don't allow changing of locked mnt flags.
2063 	 *
2064 	 * No locks need to be held here while testing the various
2065 	 * MNT_LOCK flags because those flags can never be cleared
2066 	 * once they are set.
2067 	 */
2068 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2069 	    !(mnt_flags & MNT_READONLY)) {
2070 		return -EPERM;
2071 	}
2072 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2073 	    !(mnt_flags & MNT_NODEV)) {
2074 		return -EPERM;
2075 	}
2076 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2077 	    !(mnt_flags & MNT_NOSUID)) {
2078 		return -EPERM;
2079 	}
2080 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2081 	    !(mnt_flags & MNT_NOEXEC)) {
2082 		return -EPERM;
2083 	}
2084 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2085 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2086 		return -EPERM;
2087 	}
2088 
2089 	err = security_sb_remount(sb, data);
2090 	if (err)
2091 		return err;
2092 
2093 	down_write(&sb->s_umount);
2094 	if (flags & MS_BIND)
2095 		err = change_mount_flags(path->mnt, flags);
2096 	else if (!capable(CAP_SYS_ADMIN))
2097 		err = -EPERM;
2098 	else
2099 		err = do_remount_sb(sb, flags, data, 0);
2100 	if (!err) {
2101 		lock_mount_hash();
2102 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2103 		mnt->mnt.mnt_flags = mnt_flags;
2104 		touch_mnt_namespace(mnt->mnt_ns);
2105 		unlock_mount_hash();
2106 	}
2107 	up_write(&sb->s_umount);
2108 	return err;
2109 }
2110 
2111 static inline int tree_contains_unbindable(struct mount *mnt)
2112 {
2113 	struct mount *p;
2114 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2115 		if (IS_MNT_UNBINDABLE(p))
2116 			return 1;
2117 	}
2118 	return 0;
2119 }
2120 
2121 static int do_move_mount(struct path *path, const char *old_name)
2122 {
2123 	struct path old_path, parent_path;
2124 	struct mount *p;
2125 	struct mount *old;
2126 	struct mountpoint *mp;
2127 	int err;
2128 	if (!old_name || !*old_name)
2129 		return -EINVAL;
2130 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2131 	if (err)
2132 		return err;
2133 
2134 	mp = lock_mount(path);
2135 	err = PTR_ERR(mp);
2136 	if (IS_ERR(mp))
2137 		goto out;
2138 
2139 	old = real_mount(old_path.mnt);
2140 	p = real_mount(path->mnt);
2141 
2142 	err = -EINVAL;
2143 	if (!check_mnt(p) || !check_mnt(old))
2144 		goto out1;
2145 
2146 	if (old->mnt.mnt_flags & MNT_LOCKED)
2147 		goto out1;
2148 
2149 	err = -EINVAL;
2150 	if (old_path.dentry != old_path.mnt->mnt_root)
2151 		goto out1;
2152 
2153 	if (!mnt_has_parent(old))
2154 		goto out1;
2155 
2156 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2157 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
2158 		goto out1;
2159 	/*
2160 	 * Don't move a mount residing in a shared parent.
2161 	 */
2162 	if (IS_MNT_SHARED(old->mnt_parent))
2163 		goto out1;
2164 	/*
2165 	 * Don't move a mount tree containing unbindable mounts to a destination
2166 	 * mount which is shared.
2167 	 */
2168 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2169 		goto out1;
2170 	err = -ELOOP;
2171 	for (; mnt_has_parent(p); p = p->mnt_parent)
2172 		if (p == old)
2173 			goto out1;
2174 
2175 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2176 	if (err)
2177 		goto out1;
2178 
2179 	/* if the mount is moved, it should no longer be expire
2180 	 * automatically */
2181 	list_del_init(&old->mnt_expire);
2182 out1:
2183 	unlock_mount(mp);
2184 out:
2185 	if (!err)
2186 		path_put(&parent_path);
2187 	path_put(&old_path);
2188 	return err;
2189 }
2190 
2191 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2192 {
2193 	int err;
2194 	const char *subtype = strchr(fstype, '.');
2195 	if (subtype) {
2196 		subtype++;
2197 		err = -EINVAL;
2198 		if (!subtype[0])
2199 			goto err;
2200 	} else
2201 		subtype = "";
2202 
2203 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2204 	err = -ENOMEM;
2205 	if (!mnt->mnt_sb->s_subtype)
2206 		goto err;
2207 	return mnt;
2208 
2209  err:
2210 	mntput(mnt);
2211 	return ERR_PTR(err);
2212 }
2213 
2214 /*
2215  * add a mount into a namespace's mount tree
2216  */
2217 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2218 {
2219 	struct mountpoint *mp;
2220 	struct mount *parent;
2221 	int err;
2222 
2223 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2224 
2225 	mp = lock_mount(path);
2226 	if (IS_ERR(mp))
2227 		return PTR_ERR(mp);
2228 
2229 	parent = real_mount(path->mnt);
2230 	err = -EINVAL;
2231 	if (unlikely(!check_mnt(parent))) {
2232 		/* that's acceptable only for automounts done in private ns */
2233 		if (!(mnt_flags & MNT_SHRINKABLE))
2234 			goto unlock;
2235 		/* ... and for those we'd better have mountpoint still alive */
2236 		if (!parent->mnt_ns)
2237 			goto unlock;
2238 	}
2239 
2240 	/* Refuse the same filesystem on the same mount point */
2241 	err = -EBUSY;
2242 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2243 	    path->mnt->mnt_root == path->dentry)
2244 		goto unlock;
2245 
2246 	err = -EINVAL;
2247 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2248 		goto unlock;
2249 
2250 	newmnt->mnt.mnt_flags = mnt_flags;
2251 	err = graft_tree(newmnt, parent, mp);
2252 
2253 unlock:
2254 	unlock_mount(mp);
2255 	return err;
2256 }
2257 
2258 /*
2259  * create a new mount for userspace and request it to be added into the
2260  * namespace's tree
2261  */
2262 static int do_new_mount(struct path *path, const char *fstype, int flags,
2263 			int mnt_flags, const char *name, void *data)
2264 {
2265 	struct file_system_type *type;
2266 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2267 	struct vfsmount *mnt;
2268 	int err;
2269 
2270 	if (!fstype)
2271 		return -EINVAL;
2272 
2273 	type = get_fs_type(fstype);
2274 	if (!type)
2275 		return -ENODEV;
2276 
2277 	if (user_ns != &init_user_ns) {
2278 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2279 			put_filesystem(type);
2280 			return -EPERM;
2281 		}
2282 		/* Only in special cases allow devices from mounts
2283 		 * created outside the initial user namespace.
2284 		 */
2285 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2286 			flags |= MS_NODEV;
2287 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2288 		}
2289 	}
2290 
2291 	mnt = vfs_kern_mount(type, flags, name, data);
2292 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2293 	    !mnt->mnt_sb->s_subtype)
2294 		mnt = fs_set_subtype(mnt, fstype);
2295 
2296 	put_filesystem(type);
2297 	if (IS_ERR(mnt))
2298 		return PTR_ERR(mnt);
2299 
2300 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2301 	if (err)
2302 		mntput(mnt);
2303 	return err;
2304 }
2305 
2306 int finish_automount(struct vfsmount *m, struct path *path)
2307 {
2308 	struct mount *mnt = real_mount(m);
2309 	int err;
2310 	/* The new mount record should have at least 2 refs to prevent it being
2311 	 * expired before we get a chance to add it
2312 	 */
2313 	BUG_ON(mnt_get_count(mnt) < 2);
2314 
2315 	if (m->mnt_sb == path->mnt->mnt_sb &&
2316 	    m->mnt_root == path->dentry) {
2317 		err = -ELOOP;
2318 		goto fail;
2319 	}
2320 
2321 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2322 	if (!err)
2323 		return 0;
2324 fail:
2325 	/* remove m from any expiration list it may be on */
2326 	if (!list_empty(&mnt->mnt_expire)) {
2327 		namespace_lock();
2328 		list_del_init(&mnt->mnt_expire);
2329 		namespace_unlock();
2330 	}
2331 	mntput(m);
2332 	mntput(m);
2333 	return err;
2334 }
2335 
2336 /**
2337  * mnt_set_expiry - Put a mount on an expiration list
2338  * @mnt: The mount to list.
2339  * @expiry_list: The list to add the mount to.
2340  */
2341 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2342 {
2343 	namespace_lock();
2344 
2345 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2346 
2347 	namespace_unlock();
2348 }
2349 EXPORT_SYMBOL(mnt_set_expiry);
2350 
2351 /*
2352  * process a list of expirable mountpoints with the intent of discarding any
2353  * mountpoints that aren't in use and haven't been touched since last we came
2354  * here
2355  */
2356 void mark_mounts_for_expiry(struct list_head *mounts)
2357 {
2358 	struct mount *mnt, *next;
2359 	LIST_HEAD(graveyard);
2360 
2361 	if (list_empty(mounts))
2362 		return;
2363 
2364 	namespace_lock();
2365 	lock_mount_hash();
2366 
2367 	/* extract from the expiration list every vfsmount that matches the
2368 	 * following criteria:
2369 	 * - only referenced by its parent vfsmount
2370 	 * - still marked for expiry (marked on the last call here; marks are
2371 	 *   cleared by mntput())
2372 	 */
2373 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2374 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2375 			propagate_mount_busy(mnt, 1))
2376 			continue;
2377 		list_move(&mnt->mnt_expire, &graveyard);
2378 	}
2379 	while (!list_empty(&graveyard)) {
2380 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2381 		touch_mnt_namespace(mnt->mnt_ns);
2382 		umount_tree(mnt, 1);
2383 	}
2384 	unlock_mount_hash();
2385 	namespace_unlock();
2386 }
2387 
2388 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2389 
2390 /*
2391  * Ripoff of 'select_parent()'
2392  *
2393  * search the list of submounts for a given mountpoint, and move any
2394  * shrinkable submounts to the 'graveyard' list.
2395  */
2396 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2397 {
2398 	struct mount *this_parent = parent;
2399 	struct list_head *next;
2400 	int found = 0;
2401 
2402 repeat:
2403 	next = this_parent->mnt_mounts.next;
2404 resume:
2405 	while (next != &this_parent->mnt_mounts) {
2406 		struct list_head *tmp = next;
2407 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2408 
2409 		next = tmp->next;
2410 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2411 			continue;
2412 		/*
2413 		 * Descend a level if the d_mounts list is non-empty.
2414 		 */
2415 		if (!list_empty(&mnt->mnt_mounts)) {
2416 			this_parent = mnt;
2417 			goto repeat;
2418 		}
2419 
2420 		if (!propagate_mount_busy(mnt, 1)) {
2421 			list_move_tail(&mnt->mnt_expire, graveyard);
2422 			found++;
2423 		}
2424 	}
2425 	/*
2426 	 * All done at this level ... ascend and resume the search
2427 	 */
2428 	if (this_parent != parent) {
2429 		next = this_parent->mnt_child.next;
2430 		this_parent = this_parent->mnt_parent;
2431 		goto resume;
2432 	}
2433 	return found;
2434 }
2435 
2436 /*
2437  * process a list of expirable mountpoints with the intent of discarding any
2438  * submounts of a specific parent mountpoint
2439  *
2440  * mount_lock must be held for write
2441  */
2442 static void shrink_submounts(struct mount *mnt)
2443 {
2444 	LIST_HEAD(graveyard);
2445 	struct mount *m;
2446 
2447 	/* extract submounts of 'mountpoint' from the expiration list */
2448 	while (select_submounts(mnt, &graveyard)) {
2449 		while (!list_empty(&graveyard)) {
2450 			m = list_first_entry(&graveyard, struct mount,
2451 						mnt_expire);
2452 			touch_mnt_namespace(m->mnt_ns);
2453 			umount_tree(m, 1);
2454 		}
2455 	}
2456 }
2457 
2458 /*
2459  * Some copy_from_user() implementations do not return the exact number of
2460  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2461  * Note that this function differs from copy_from_user() in that it will oops
2462  * on bad values of `to', rather than returning a short copy.
2463  */
2464 static long exact_copy_from_user(void *to, const void __user * from,
2465 				 unsigned long n)
2466 {
2467 	char *t = to;
2468 	const char __user *f = from;
2469 	char c;
2470 
2471 	if (!access_ok(VERIFY_READ, from, n))
2472 		return n;
2473 
2474 	while (n) {
2475 		if (__get_user(c, f)) {
2476 			memset(t, 0, n);
2477 			break;
2478 		}
2479 		*t++ = c;
2480 		f++;
2481 		n--;
2482 	}
2483 	return n;
2484 }
2485 
2486 int copy_mount_options(const void __user * data, unsigned long *where)
2487 {
2488 	int i;
2489 	unsigned long page;
2490 	unsigned long size;
2491 
2492 	*where = 0;
2493 	if (!data)
2494 		return 0;
2495 
2496 	if (!(page = __get_free_page(GFP_KERNEL)))
2497 		return -ENOMEM;
2498 
2499 	/* We only care that *some* data at the address the user
2500 	 * gave us is valid.  Just in case, we'll zero
2501 	 * the remainder of the page.
2502 	 */
2503 	/* copy_from_user cannot cross TASK_SIZE ! */
2504 	size = TASK_SIZE - (unsigned long)data;
2505 	if (size > PAGE_SIZE)
2506 		size = PAGE_SIZE;
2507 
2508 	i = size - exact_copy_from_user((void *)page, data, size);
2509 	if (!i) {
2510 		free_page(page);
2511 		return -EFAULT;
2512 	}
2513 	if (i != PAGE_SIZE)
2514 		memset((char *)page + i, 0, PAGE_SIZE - i);
2515 	*where = page;
2516 	return 0;
2517 }
2518 
2519 char *copy_mount_string(const void __user *data)
2520 {
2521 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2522 }
2523 
2524 /*
2525  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2526  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2527  *
2528  * data is a (void *) that can point to any structure up to
2529  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2530  * information (or be NULL).
2531  *
2532  * Pre-0.97 versions of mount() didn't have a flags word.
2533  * When the flags word was introduced its top half was required
2534  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2535  * Therefore, if this magic number is present, it carries no information
2536  * and must be discarded.
2537  */
2538 long do_mount(const char *dev_name, const char __user *dir_name,
2539 		const char *type_page, unsigned long flags, void *data_page)
2540 {
2541 	struct path path;
2542 	int retval = 0;
2543 	int mnt_flags = 0;
2544 
2545 	/* Discard magic */
2546 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2547 		flags &= ~MS_MGC_MSK;
2548 
2549 	/* Basic sanity checks */
2550 	if (data_page)
2551 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2552 
2553 	/* ... and get the mountpoint */
2554 	retval = user_path(dir_name, &path);
2555 	if (retval)
2556 		return retval;
2557 
2558 	retval = security_sb_mount(dev_name, &path,
2559 				   type_page, flags, data_page);
2560 	if (!retval && !may_mount())
2561 		retval = -EPERM;
2562 	if (retval)
2563 		goto dput_out;
2564 
2565 	/* Default to relatime unless overriden */
2566 	if (!(flags & MS_NOATIME))
2567 		mnt_flags |= MNT_RELATIME;
2568 
2569 	/* Separate the per-mountpoint flags */
2570 	if (flags & MS_NOSUID)
2571 		mnt_flags |= MNT_NOSUID;
2572 	if (flags & MS_NODEV)
2573 		mnt_flags |= MNT_NODEV;
2574 	if (flags & MS_NOEXEC)
2575 		mnt_flags |= MNT_NOEXEC;
2576 	if (flags & MS_NOATIME)
2577 		mnt_flags |= MNT_NOATIME;
2578 	if (flags & MS_NODIRATIME)
2579 		mnt_flags |= MNT_NODIRATIME;
2580 	if (flags & MS_STRICTATIME)
2581 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2582 	if (flags & MS_RDONLY)
2583 		mnt_flags |= MNT_READONLY;
2584 
2585 	/* The default atime for remount is preservation */
2586 	if ((flags & MS_REMOUNT) &&
2587 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2588 		       MS_STRICTATIME)) == 0)) {
2589 		mnt_flags &= ~MNT_ATIME_MASK;
2590 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2591 	}
2592 
2593 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2594 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2595 		   MS_STRICTATIME);
2596 
2597 	if (flags & MS_REMOUNT)
2598 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2599 				    data_page);
2600 	else if (flags & MS_BIND)
2601 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2602 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2603 		retval = do_change_type(&path, flags);
2604 	else if (flags & MS_MOVE)
2605 		retval = do_move_mount(&path, dev_name);
2606 	else
2607 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2608 				      dev_name, data_page);
2609 dput_out:
2610 	path_put(&path);
2611 	return retval;
2612 }
2613 
2614 static void free_mnt_ns(struct mnt_namespace *ns)
2615 {
2616 	proc_free_inum(ns->proc_inum);
2617 	put_user_ns(ns->user_ns);
2618 	kfree(ns);
2619 }
2620 
2621 /*
2622  * Assign a sequence number so we can detect when we attempt to bind
2623  * mount a reference to an older mount namespace into the current
2624  * mount namespace, preventing reference counting loops.  A 64bit
2625  * number incrementing at 10Ghz will take 12,427 years to wrap which
2626  * is effectively never, so we can ignore the possibility.
2627  */
2628 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2629 
2630 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2631 {
2632 	struct mnt_namespace *new_ns;
2633 	int ret;
2634 
2635 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2636 	if (!new_ns)
2637 		return ERR_PTR(-ENOMEM);
2638 	ret = proc_alloc_inum(&new_ns->proc_inum);
2639 	if (ret) {
2640 		kfree(new_ns);
2641 		return ERR_PTR(ret);
2642 	}
2643 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2644 	atomic_set(&new_ns->count, 1);
2645 	new_ns->root = NULL;
2646 	INIT_LIST_HEAD(&new_ns->list);
2647 	init_waitqueue_head(&new_ns->poll);
2648 	new_ns->event = 0;
2649 	new_ns->user_ns = get_user_ns(user_ns);
2650 	return new_ns;
2651 }
2652 
2653 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2654 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2655 {
2656 	struct mnt_namespace *new_ns;
2657 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2658 	struct mount *p, *q;
2659 	struct mount *old;
2660 	struct mount *new;
2661 	int copy_flags;
2662 
2663 	BUG_ON(!ns);
2664 
2665 	if (likely(!(flags & CLONE_NEWNS))) {
2666 		get_mnt_ns(ns);
2667 		return ns;
2668 	}
2669 
2670 	old = ns->root;
2671 
2672 	new_ns = alloc_mnt_ns(user_ns);
2673 	if (IS_ERR(new_ns))
2674 		return new_ns;
2675 
2676 	namespace_lock();
2677 	/* First pass: copy the tree topology */
2678 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2679 	if (user_ns != ns->user_ns)
2680 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2681 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2682 	if (IS_ERR(new)) {
2683 		namespace_unlock();
2684 		free_mnt_ns(new_ns);
2685 		return ERR_CAST(new);
2686 	}
2687 	new_ns->root = new;
2688 	list_add_tail(&new_ns->list, &new->mnt_list);
2689 
2690 	/*
2691 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2692 	 * as belonging to new namespace.  We have already acquired a private
2693 	 * fs_struct, so tsk->fs->lock is not needed.
2694 	 */
2695 	p = old;
2696 	q = new;
2697 	while (p) {
2698 		q->mnt_ns = new_ns;
2699 		if (new_fs) {
2700 			if (&p->mnt == new_fs->root.mnt) {
2701 				new_fs->root.mnt = mntget(&q->mnt);
2702 				rootmnt = &p->mnt;
2703 			}
2704 			if (&p->mnt == new_fs->pwd.mnt) {
2705 				new_fs->pwd.mnt = mntget(&q->mnt);
2706 				pwdmnt = &p->mnt;
2707 			}
2708 		}
2709 		p = next_mnt(p, old);
2710 		q = next_mnt(q, new);
2711 		if (!q)
2712 			break;
2713 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2714 			p = next_mnt(p, old);
2715 	}
2716 	namespace_unlock();
2717 
2718 	if (rootmnt)
2719 		mntput(rootmnt);
2720 	if (pwdmnt)
2721 		mntput(pwdmnt);
2722 
2723 	return new_ns;
2724 }
2725 
2726 /**
2727  * create_mnt_ns - creates a private namespace and adds a root filesystem
2728  * @mnt: pointer to the new root filesystem mountpoint
2729  */
2730 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2731 {
2732 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2733 	if (!IS_ERR(new_ns)) {
2734 		struct mount *mnt = real_mount(m);
2735 		mnt->mnt_ns = new_ns;
2736 		new_ns->root = mnt;
2737 		list_add(&mnt->mnt_list, &new_ns->list);
2738 	} else {
2739 		mntput(m);
2740 	}
2741 	return new_ns;
2742 }
2743 
2744 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2745 {
2746 	struct mnt_namespace *ns;
2747 	struct super_block *s;
2748 	struct path path;
2749 	int err;
2750 
2751 	ns = create_mnt_ns(mnt);
2752 	if (IS_ERR(ns))
2753 		return ERR_CAST(ns);
2754 
2755 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2756 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2757 
2758 	put_mnt_ns(ns);
2759 
2760 	if (err)
2761 		return ERR_PTR(err);
2762 
2763 	/* trade a vfsmount reference for active sb one */
2764 	s = path.mnt->mnt_sb;
2765 	atomic_inc(&s->s_active);
2766 	mntput(path.mnt);
2767 	/* lock the sucker */
2768 	down_write(&s->s_umount);
2769 	/* ... and return the root of (sub)tree on it */
2770 	return path.dentry;
2771 }
2772 EXPORT_SYMBOL(mount_subtree);
2773 
2774 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2775 		char __user *, type, unsigned long, flags, void __user *, data)
2776 {
2777 	int ret;
2778 	char *kernel_type;
2779 	char *kernel_dev;
2780 	unsigned long data_page;
2781 
2782 	kernel_type = copy_mount_string(type);
2783 	ret = PTR_ERR(kernel_type);
2784 	if (IS_ERR(kernel_type))
2785 		goto out_type;
2786 
2787 	kernel_dev = copy_mount_string(dev_name);
2788 	ret = PTR_ERR(kernel_dev);
2789 	if (IS_ERR(kernel_dev))
2790 		goto out_dev;
2791 
2792 	ret = copy_mount_options(data, &data_page);
2793 	if (ret < 0)
2794 		goto out_data;
2795 
2796 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2797 		(void *) data_page);
2798 
2799 	free_page(data_page);
2800 out_data:
2801 	kfree(kernel_dev);
2802 out_dev:
2803 	kfree(kernel_type);
2804 out_type:
2805 	return ret;
2806 }
2807 
2808 /*
2809  * Return true if path is reachable from root
2810  *
2811  * namespace_sem or mount_lock is held
2812  */
2813 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2814 			 const struct path *root)
2815 {
2816 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2817 		dentry = mnt->mnt_mountpoint;
2818 		mnt = mnt->mnt_parent;
2819 	}
2820 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2821 }
2822 
2823 int path_is_under(struct path *path1, struct path *path2)
2824 {
2825 	int res;
2826 	read_seqlock_excl(&mount_lock);
2827 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2828 	read_sequnlock_excl(&mount_lock);
2829 	return res;
2830 }
2831 EXPORT_SYMBOL(path_is_under);
2832 
2833 /*
2834  * pivot_root Semantics:
2835  * Moves the root file system of the current process to the directory put_old,
2836  * makes new_root as the new root file system of the current process, and sets
2837  * root/cwd of all processes which had them on the current root to new_root.
2838  *
2839  * Restrictions:
2840  * The new_root and put_old must be directories, and  must not be on the
2841  * same file  system as the current process root. The put_old  must  be
2842  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2843  * pointed to by put_old must yield the same directory as new_root. No other
2844  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2845  *
2846  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2847  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2848  * in this situation.
2849  *
2850  * Notes:
2851  *  - we don't move root/cwd if they are not at the root (reason: if something
2852  *    cared enough to change them, it's probably wrong to force them elsewhere)
2853  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2854  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2855  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2856  *    first.
2857  */
2858 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2859 		const char __user *, put_old)
2860 {
2861 	struct path new, old, parent_path, root_parent, root;
2862 	struct mount *new_mnt, *root_mnt, *old_mnt;
2863 	struct mountpoint *old_mp, *root_mp;
2864 	int error;
2865 
2866 	if (!may_mount())
2867 		return -EPERM;
2868 
2869 	error = user_path_dir(new_root, &new);
2870 	if (error)
2871 		goto out0;
2872 
2873 	error = user_path_dir(put_old, &old);
2874 	if (error)
2875 		goto out1;
2876 
2877 	error = security_sb_pivotroot(&old, &new);
2878 	if (error)
2879 		goto out2;
2880 
2881 	get_fs_root(current->fs, &root);
2882 	old_mp = lock_mount(&old);
2883 	error = PTR_ERR(old_mp);
2884 	if (IS_ERR(old_mp))
2885 		goto out3;
2886 
2887 	error = -EINVAL;
2888 	new_mnt = real_mount(new.mnt);
2889 	root_mnt = real_mount(root.mnt);
2890 	old_mnt = real_mount(old.mnt);
2891 	if (IS_MNT_SHARED(old_mnt) ||
2892 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2893 		IS_MNT_SHARED(root_mnt->mnt_parent))
2894 		goto out4;
2895 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2896 		goto out4;
2897 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2898 		goto out4;
2899 	error = -ENOENT;
2900 	if (d_unlinked(new.dentry))
2901 		goto out4;
2902 	error = -EBUSY;
2903 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2904 		goto out4; /* loop, on the same file system  */
2905 	error = -EINVAL;
2906 	if (root.mnt->mnt_root != root.dentry)
2907 		goto out4; /* not a mountpoint */
2908 	if (!mnt_has_parent(root_mnt))
2909 		goto out4; /* not attached */
2910 	root_mp = root_mnt->mnt_mp;
2911 	if (new.mnt->mnt_root != new.dentry)
2912 		goto out4; /* not a mountpoint */
2913 	if (!mnt_has_parent(new_mnt))
2914 		goto out4; /* not attached */
2915 	/* make sure we can reach put_old from new_root */
2916 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2917 		goto out4;
2918 	/* make certain new is below the root */
2919 	if (!is_path_reachable(new_mnt, new.dentry, &root))
2920 		goto out4;
2921 	root_mp->m_count++; /* pin it so it won't go away */
2922 	lock_mount_hash();
2923 	detach_mnt(new_mnt, &parent_path);
2924 	detach_mnt(root_mnt, &root_parent);
2925 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2926 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2927 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2928 	}
2929 	/* mount old root on put_old */
2930 	attach_mnt(root_mnt, old_mnt, old_mp);
2931 	/* mount new_root on / */
2932 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2933 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2934 	unlock_mount_hash();
2935 	chroot_fs_refs(&root, &new);
2936 	put_mountpoint(root_mp);
2937 	error = 0;
2938 out4:
2939 	unlock_mount(old_mp);
2940 	if (!error) {
2941 		path_put(&root_parent);
2942 		path_put(&parent_path);
2943 	}
2944 out3:
2945 	path_put(&root);
2946 out2:
2947 	path_put(&old);
2948 out1:
2949 	path_put(&new);
2950 out0:
2951 	return error;
2952 }
2953 
2954 static void __init init_mount_tree(void)
2955 {
2956 	struct vfsmount *mnt;
2957 	struct mnt_namespace *ns;
2958 	struct path root;
2959 	struct file_system_type *type;
2960 
2961 	type = get_fs_type("rootfs");
2962 	if (!type)
2963 		panic("Can't find rootfs type");
2964 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2965 	put_filesystem(type);
2966 	if (IS_ERR(mnt))
2967 		panic("Can't create rootfs");
2968 
2969 	ns = create_mnt_ns(mnt);
2970 	if (IS_ERR(ns))
2971 		panic("Can't allocate initial namespace");
2972 
2973 	init_task.nsproxy->mnt_ns = ns;
2974 	get_mnt_ns(ns);
2975 
2976 	root.mnt = mnt;
2977 	root.dentry = mnt->mnt_root;
2978 
2979 	set_fs_pwd(current->fs, &root);
2980 	set_fs_root(current->fs, &root);
2981 }
2982 
2983 void __init mnt_init(void)
2984 {
2985 	unsigned u;
2986 	int err;
2987 
2988 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2989 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2990 
2991 	mount_hashtable = alloc_large_system_hash("Mount-cache",
2992 				sizeof(struct hlist_head),
2993 				mhash_entries, 19,
2994 				0,
2995 				&m_hash_shift, &m_hash_mask, 0, 0);
2996 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2997 				sizeof(struct hlist_head),
2998 				mphash_entries, 19,
2999 				0,
3000 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3001 
3002 	if (!mount_hashtable || !mountpoint_hashtable)
3003 		panic("Failed to allocate mount hash table\n");
3004 
3005 	for (u = 0; u <= m_hash_mask; u++)
3006 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3007 	for (u = 0; u <= mp_hash_mask; u++)
3008 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3009 
3010 	kernfs_init();
3011 
3012 	err = sysfs_init();
3013 	if (err)
3014 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3015 			__func__, err);
3016 	fs_kobj = kobject_create_and_add("fs", NULL);
3017 	if (!fs_kobj)
3018 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3019 	init_rootfs();
3020 	init_mount_tree();
3021 }
3022 
3023 void put_mnt_ns(struct mnt_namespace *ns)
3024 {
3025 	if (!atomic_dec_and_test(&ns->count))
3026 		return;
3027 	drop_collected_mounts(&ns->root->mnt);
3028 	free_mnt_ns(ns);
3029 }
3030 
3031 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3032 {
3033 	struct vfsmount *mnt;
3034 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3035 	if (!IS_ERR(mnt)) {
3036 		/*
3037 		 * it is a longterm mount, don't release mnt until
3038 		 * we unmount before file sys is unregistered
3039 		*/
3040 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3041 	}
3042 	return mnt;
3043 }
3044 EXPORT_SYMBOL_GPL(kern_mount_data);
3045 
3046 void kern_unmount(struct vfsmount *mnt)
3047 {
3048 	/* release long term mount so mount point can be released */
3049 	if (!IS_ERR_OR_NULL(mnt)) {
3050 		real_mount(mnt)->mnt_ns = NULL;
3051 		synchronize_rcu();	/* yecchhh... */
3052 		mntput(mnt);
3053 	}
3054 }
3055 EXPORT_SYMBOL(kern_unmount);
3056 
3057 bool our_mnt(struct vfsmount *mnt)
3058 {
3059 	return check_mnt(real_mount(mnt));
3060 }
3061 
3062 bool current_chrooted(void)
3063 {
3064 	/* Does the current process have a non-standard root */
3065 	struct path ns_root;
3066 	struct path fs_root;
3067 	bool chrooted;
3068 
3069 	/* Find the namespace root */
3070 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3071 	ns_root.dentry = ns_root.mnt->mnt_root;
3072 	path_get(&ns_root);
3073 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3074 		;
3075 
3076 	get_fs_root(current->fs, &fs_root);
3077 
3078 	chrooted = !path_equal(&fs_root, &ns_root);
3079 
3080 	path_put(&fs_root);
3081 	path_put(&ns_root);
3082 
3083 	return chrooted;
3084 }
3085 
3086 bool fs_fully_visible(struct file_system_type *type)
3087 {
3088 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3089 	struct mount *mnt;
3090 	bool visible = false;
3091 
3092 	if (unlikely(!ns))
3093 		return false;
3094 
3095 	down_read(&namespace_sem);
3096 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3097 		struct mount *child;
3098 		if (mnt->mnt.mnt_sb->s_type != type)
3099 			continue;
3100 
3101 		/* This mount is not fully visible if there are any child mounts
3102 		 * that cover anything except for empty directories.
3103 		 */
3104 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3105 			struct inode *inode = child->mnt_mountpoint->d_inode;
3106 			if (!S_ISDIR(inode->i_mode))
3107 				goto next;
3108 			if (inode->i_nlink > 2)
3109 				goto next;
3110 		}
3111 		visible = true;
3112 		goto found;
3113 	next:	;
3114 	}
3115 found:
3116 	up_read(&namespace_sem);
3117 	return visible;
3118 }
3119 
3120 static void *mntns_get(struct task_struct *task)
3121 {
3122 	struct mnt_namespace *ns = NULL;
3123 	struct nsproxy *nsproxy;
3124 
3125 	task_lock(task);
3126 	nsproxy = task->nsproxy;
3127 	if (nsproxy) {
3128 		ns = nsproxy->mnt_ns;
3129 		get_mnt_ns(ns);
3130 	}
3131 	task_unlock(task);
3132 
3133 	return ns;
3134 }
3135 
3136 static void mntns_put(void *ns)
3137 {
3138 	put_mnt_ns(ns);
3139 }
3140 
3141 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3142 {
3143 	struct fs_struct *fs = current->fs;
3144 	struct mnt_namespace *mnt_ns = ns;
3145 	struct path root;
3146 
3147 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3148 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3149 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3150 		return -EPERM;
3151 
3152 	if (fs->users != 1)
3153 		return -EINVAL;
3154 
3155 	get_mnt_ns(mnt_ns);
3156 	put_mnt_ns(nsproxy->mnt_ns);
3157 	nsproxy->mnt_ns = mnt_ns;
3158 
3159 	/* Find the root */
3160 	root.mnt    = &mnt_ns->root->mnt;
3161 	root.dentry = mnt_ns->root->mnt.mnt_root;
3162 	path_get(&root);
3163 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3164 		;
3165 
3166 	/* Update the pwd and root */
3167 	set_fs_pwd(fs, &root);
3168 	set_fs_root(fs, &root);
3169 
3170 	path_put(&root);
3171 	return 0;
3172 }
3173 
3174 static unsigned int mntns_inum(void *ns)
3175 {
3176 	struct mnt_namespace *mnt_ns = ns;
3177 	return mnt_ns->proc_inum;
3178 }
3179 
3180 const struct proc_ns_operations mntns_operations = {
3181 	.name		= "mnt",
3182 	.type		= CLONE_NEWNS,
3183 	.get		= mntns_get,
3184 	.put		= mntns_put,
3185 	.install	= mntns_install,
3186 	.inum		= mntns_inum,
3187 };
3188