1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 static unsigned int m_hash_mask __read_mostly; 31 static unsigned int m_hash_shift __read_mostly; 32 static unsigned int mp_hash_mask __read_mostly; 33 static unsigned int mp_hash_shift __read_mostly; 34 35 static __initdata unsigned long mhash_entries; 36 static int __init set_mhash_entries(char *str) 37 { 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42 } 43 __setup("mhash_entries=", set_mhash_entries); 44 45 static __initdata unsigned long mphash_entries; 46 static int __init set_mphash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mphash_entries=", set_mphash_entries); 54 55 static u64 event; 56 static DEFINE_IDA(mnt_id_ida); 57 static DEFINE_IDA(mnt_group_ida); 58 static DEFINE_SPINLOCK(mnt_id_lock); 59 static int mnt_id_start = 0; 60 static int mnt_group_start = 1; 61 62 static struct hlist_head *mount_hashtable __read_mostly; 63 static struct hlist_head *mountpoint_hashtable __read_mostly; 64 static struct kmem_cache *mnt_cache __read_mostly; 65 static DECLARE_RWSEM(namespace_sem); 66 67 /* /sys/fs */ 68 struct kobject *fs_kobj; 69 EXPORT_SYMBOL_GPL(fs_kobj); 70 71 /* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82 { 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87 } 88 89 static inline struct hlist_head *mp_hash(struct dentry *dentry) 90 { 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94 } 95 96 /* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static struct mount *alloc_vfsmnt(const char *name) 194 { 195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 196 if (mnt) { 197 int err; 198 199 err = mnt_alloc_id(mnt); 200 if (err) 201 goto out_free_cache; 202 203 if (name) { 204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 205 if (!mnt->mnt_devname) 206 goto out_free_id; 207 } 208 209 #ifdef CONFIG_SMP 210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 211 if (!mnt->mnt_pcp) 212 goto out_free_devname; 213 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 215 #else 216 mnt->mnt_count = 1; 217 mnt->mnt_writers = 0; 218 #endif 219 220 INIT_HLIST_NODE(&mnt->mnt_hash); 221 INIT_LIST_HEAD(&mnt->mnt_child); 222 INIT_LIST_HEAD(&mnt->mnt_mounts); 223 INIT_LIST_HEAD(&mnt->mnt_list); 224 INIT_LIST_HEAD(&mnt->mnt_expire); 225 INIT_LIST_HEAD(&mnt->mnt_share); 226 INIT_LIST_HEAD(&mnt->mnt_slave_list); 227 INIT_LIST_HEAD(&mnt->mnt_slave); 228 INIT_HLIST_NODE(&mnt->mnt_mp_list); 229 #ifdef CONFIG_FSNOTIFY 230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 231 #endif 232 } 233 return mnt; 234 235 #ifdef CONFIG_SMP 236 out_free_devname: 237 kfree(mnt->mnt_devname); 238 #endif 239 out_free_id: 240 mnt_free_id(mnt); 241 out_free_cache: 242 kmem_cache_free(mnt_cache, mnt); 243 return NULL; 244 } 245 246 /* 247 * Most r/o checks on a fs are for operations that take 248 * discrete amounts of time, like a write() or unlink(). 249 * We must keep track of when those operations start 250 * (for permission checks) and when they end, so that 251 * we can determine when writes are able to occur to 252 * a filesystem. 253 */ 254 /* 255 * __mnt_is_readonly: check whether a mount is read-only 256 * @mnt: the mount to check for its write status 257 * 258 * This shouldn't be used directly ouside of the VFS. 259 * It does not guarantee that the filesystem will stay 260 * r/w, just that it is right *now*. This can not and 261 * should not be used in place of IS_RDONLY(inode). 262 * mnt_want/drop_write() will _keep_ the filesystem 263 * r/w. 264 */ 265 int __mnt_is_readonly(struct vfsmount *mnt) 266 { 267 if (mnt->mnt_flags & MNT_READONLY) 268 return 1; 269 if (mnt->mnt_sb->s_flags & MS_RDONLY) 270 return 1; 271 return 0; 272 } 273 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 274 275 static inline void mnt_inc_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 279 #else 280 mnt->mnt_writers++; 281 #endif 282 } 283 284 static inline void mnt_dec_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers--; 290 #endif 291 } 292 293 static unsigned int mnt_get_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 unsigned int count = 0; 297 int cpu; 298 299 for_each_possible_cpu(cpu) { 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 301 } 302 303 return count; 304 #else 305 return mnt->mnt_writers; 306 #endif 307 } 308 309 static int mnt_is_readonly(struct vfsmount *mnt) 310 { 311 if (mnt->mnt_sb->s_readonly_remount) 312 return 1; 313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 314 smp_rmb(); 315 return __mnt_is_readonly(mnt); 316 } 317 318 /* 319 * Most r/o & frozen checks on a fs are for operations that take discrete 320 * amounts of time, like a write() or unlink(). We must keep track of when 321 * those operations start (for permission checks) and when they end, so that we 322 * can determine when writes are able to occur to a filesystem. 323 */ 324 /** 325 * __mnt_want_write - get write access to a mount without freeze protection 326 * @m: the mount on which to take a write 327 * 328 * This tells the low-level filesystem that a write is about to be performed to 329 * it, and makes sure that writes are allowed (mnt it read-write) before 330 * returning success. This operation does not protect against filesystem being 331 * frozen. When the write operation is finished, __mnt_drop_write() must be 332 * called. This is effectively a refcount. 333 */ 334 int __mnt_want_write(struct vfsmount *m) 335 { 336 struct mount *mnt = real_mount(m); 337 int ret = 0; 338 339 preempt_disable(); 340 mnt_inc_writers(mnt); 341 /* 342 * The store to mnt_inc_writers must be visible before we pass 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 344 * incremented count after it has set MNT_WRITE_HOLD. 345 */ 346 smp_mb(); 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 348 cpu_relax(); 349 /* 350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 351 * be set to match its requirements. So we must not load that until 352 * MNT_WRITE_HOLD is cleared. 353 */ 354 smp_rmb(); 355 if (mnt_is_readonly(m)) { 356 mnt_dec_writers(mnt); 357 ret = -EROFS; 358 } 359 preempt_enable(); 360 361 return ret; 362 } 363 364 /** 365 * mnt_want_write - get write access to a mount 366 * @m: the mount on which to take a write 367 * 368 * This tells the low-level filesystem that a write is about to be performed to 369 * it, and makes sure that writes are allowed (mount is read-write, filesystem 370 * is not frozen) before returning success. When the write operation is 371 * finished, mnt_drop_write() must be called. This is effectively a refcount. 372 */ 373 int mnt_want_write(struct vfsmount *m) 374 { 375 int ret; 376 377 sb_start_write(m->mnt_sb); 378 ret = __mnt_want_write(m); 379 if (ret) 380 sb_end_write(m->mnt_sb); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(mnt_want_write); 384 385 /** 386 * mnt_clone_write - get write access to a mount 387 * @mnt: the mount on which to take a write 388 * 389 * This is effectively like mnt_want_write, except 390 * it must only be used to take an extra write reference 391 * on a mountpoint that we already know has a write reference 392 * on it. This allows some optimisation. 393 * 394 * After finished, mnt_drop_write must be called as usual to 395 * drop the reference. 396 */ 397 int mnt_clone_write(struct vfsmount *mnt) 398 { 399 /* superblock may be r/o */ 400 if (__mnt_is_readonly(mnt)) 401 return -EROFS; 402 preempt_disable(); 403 mnt_inc_writers(real_mount(mnt)); 404 preempt_enable(); 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(mnt_clone_write); 408 409 /** 410 * __mnt_want_write_file - get write access to a file's mount 411 * @file: the file who's mount on which to take a write 412 * 413 * This is like __mnt_want_write, but it takes a file and can 414 * do some optimisations if the file is open for write already 415 */ 416 int __mnt_want_write_file(struct file *file) 417 { 418 if (!(file->f_mode & FMODE_WRITER)) 419 return __mnt_want_write(file->f_path.mnt); 420 else 421 return mnt_clone_write(file->f_path.mnt); 422 } 423 424 /** 425 * mnt_want_write_file - get write access to a file's mount 426 * @file: the file who's mount on which to take a write 427 * 428 * This is like mnt_want_write, but it takes a file and can 429 * do some optimisations if the file is open for write already 430 */ 431 int mnt_want_write_file(struct file *file) 432 { 433 int ret; 434 435 sb_start_write(file->f_path.mnt->mnt_sb); 436 ret = __mnt_want_write_file(file); 437 if (ret) 438 sb_end_write(file->f_path.mnt->mnt_sb); 439 return ret; 440 } 441 EXPORT_SYMBOL_GPL(mnt_want_write_file); 442 443 /** 444 * __mnt_drop_write - give up write access to a mount 445 * @mnt: the mount on which to give up write access 446 * 447 * Tells the low-level filesystem that we are done 448 * performing writes to it. Must be matched with 449 * __mnt_want_write() call above. 450 */ 451 void __mnt_drop_write(struct vfsmount *mnt) 452 { 453 preempt_disable(); 454 mnt_dec_writers(real_mount(mnt)); 455 preempt_enable(); 456 } 457 458 /** 459 * mnt_drop_write - give up write access to a mount 460 * @mnt: the mount on which to give up write access 461 * 462 * Tells the low-level filesystem that we are done performing writes to it and 463 * also allows filesystem to be frozen again. Must be matched with 464 * mnt_want_write() call above. 465 */ 466 void mnt_drop_write(struct vfsmount *mnt) 467 { 468 __mnt_drop_write(mnt); 469 sb_end_write(mnt->mnt_sb); 470 } 471 EXPORT_SYMBOL_GPL(mnt_drop_write); 472 473 void __mnt_drop_write_file(struct file *file) 474 { 475 __mnt_drop_write(file->f_path.mnt); 476 } 477 478 void mnt_drop_write_file(struct file *file) 479 { 480 mnt_drop_write(file->f_path.mnt); 481 } 482 EXPORT_SYMBOL(mnt_drop_write_file); 483 484 static int mnt_make_readonly(struct mount *mnt) 485 { 486 int ret = 0; 487 488 lock_mount_hash(); 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 490 /* 491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 492 * should be visible before we do. 493 */ 494 smp_mb(); 495 496 /* 497 * With writers on hold, if this value is zero, then there are 498 * definitely no active writers (although held writers may subsequently 499 * increment the count, they'll have to wait, and decrement it after 500 * seeing MNT_READONLY). 501 * 502 * It is OK to have counter incremented on one CPU and decremented on 503 * another: the sum will add up correctly. The danger would be when we 504 * sum up each counter, if we read a counter before it is incremented, 505 * but then read another CPU's count which it has been subsequently 506 * decremented from -- we would see more decrements than we should. 507 * MNT_WRITE_HOLD protects against this scenario, because 508 * mnt_want_write first increments count, then smp_mb, then spins on 509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 510 * we're counting up here. 511 */ 512 if (mnt_get_writers(mnt) > 0) 513 ret = -EBUSY; 514 else 515 mnt->mnt.mnt_flags |= MNT_READONLY; 516 /* 517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 518 * that become unheld will see MNT_READONLY. 519 */ 520 smp_wmb(); 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 522 unlock_mount_hash(); 523 return ret; 524 } 525 526 static void __mnt_unmake_readonly(struct mount *mnt) 527 { 528 lock_mount_hash(); 529 mnt->mnt.mnt_flags &= ~MNT_READONLY; 530 unlock_mount_hash(); 531 } 532 533 int sb_prepare_remount_readonly(struct super_block *sb) 534 { 535 struct mount *mnt; 536 int err = 0; 537 538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 539 if (atomic_long_read(&sb->s_remove_count)) 540 return -EBUSY; 541 542 lock_mount_hash(); 543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 546 smp_mb(); 547 if (mnt_get_writers(mnt) > 0) { 548 err = -EBUSY; 549 break; 550 } 551 } 552 } 553 if (!err && atomic_long_read(&sb->s_remove_count)) 554 err = -EBUSY; 555 556 if (!err) { 557 sb->s_readonly_remount = 1; 558 smp_wmb(); 559 } 560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 563 } 564 unlock_mount_hash(); 565 566 return err; 567 } 568 569 static void free_vfsmnt(struct mount *mnt) 570 { 571 kfree(mnt->mnt_devname); 572 #ifdef CONFIG_SMP 573 free_percpu(mnt->mnt_pcp); 574 #endif 575 kmem_cache_free(mnt_cache, mnt); 576 } 577 578 static void delayed_free_vfsmnt(struct rcu_head *head) 579 { 580 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 581 } 582 583 /* call under rcu_read_lock */ 584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 585 { 586 struct mount *mnt; 587 if (read_seqretry(&mount_lock, seq)) 588 return false; 589 if (bastard == NULL) 590 return true; 591 mnt = real_mount(bastard); 592 mnt_add_count(mnt, 1); 593 if (likely(!read_seqretry(&mount_lock, seq))) 594 return true; 595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 596 mnt_add_count(mnt, -1); 597 return false; 598 } 599 rcu_read_unlock(); 600 mntput(bastard); 601 rcu_read_lock(); 602 return false; 603 } 604 605 /* 606 * find the first mount at @dentry on vfsmount @mnt. 607 * call under rcu_read_lock() 608 */ 609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 610 { 611 struct hlist_head *head = m_hash(mnt, dentry); 612 struct mount *p; 613 614 hlist_for_each_entry_rcu(p, head, mnt_hash) 615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 616 return p; 617 return NULL; 618 } 619 620 /* 621 * find the last mount at @dentry on vfsmount @mnt. 622 * mount_lock must be held. 623 */ 624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 625 { 626 struct mount *p, *res; 627 res = p = __lookup_mnt(mnt, dentry); 628 if (!p) 629 goto out; 630 hlist_for_each_entry_continue(p, mnt_hash) { 631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 632 break; 633 res = p; 634 } 635 out: 636 return res; 637 } 638 639 /* 640 * lookup_mnt - Return the first child mount mounted at path 641 * 642 * "First" means first mounted chronologically. If you create the 643 * following mounts: 644 * 645 * mount /dev/sda1 /mnt 646 * mount /dev/sda2 /mnt 647 * mount /dev/sda3 /mnt 648 * 649 * Then lookup_mnt() on the base /mnt dentry in the root mount will 650 * return successively the root dentry and vfsmount of /dev/sda1, then 651 * /dev/sda2, then /dev/sda3, then NULL. 652 * 653 * lookup_mnt takes a reference to the found vfsmount. 654 */ 655 struct vfsmount *lookup_mnt(struct path *path) 656 { 657 struct mount *child_mnt; 658 struct vfsmount *m; 659 unsigned seq; 660 661 rcu_read_lock(); 662 do { 663 seq = read_seqbegin(&mount_lock); 664 child_mnt = __lookup_mnt(path->mnt, path->dentry); 665 m = child_mnt ? &child_mnt->mnt : NULL; 666 } while (!legitimize_mnt(m, seq)); 667 rcu_read_unlock(); 668 return m; 669 } 670 671 /* 672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 673 * current mount namespace. 674 * 675 * The common case is dentries are not mountpoints at all and that 676 * test is handled inline. For the slow case when we are actually 677 * dealing with a mountpoint of some kind, walk through all of the 678 * mounts in the current mount namespace and test to see if the dentry 679 * is a mountpoint. 680 * 681 * The mount_hashtable is not usable in the context because we 682 * need to identify all mounts that may be in the current mount 683 * namespace not just a mount that happens to have some specified 684 * parent mount. 685 */ 686 bool __is_local_mountpoint(struct dentry *dentry) 687 { 688 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 689 struct mount *mnt; 690 bool is_covered = false; 691 692 if (!d_mountpoint(dentry)) 693 goto out; 694 695 down_read(&namespace_sem); 696 list_for_each_entry(mnt, &ns->list, mnt_list) { 697 is_covered = (mnt->mnt_mountpoint == dentry); 698 if (is_covered) 699 break; 700 } 701 up_read(&namespace_sem); 702 out: 703 return is_covered; 704 } 705 706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 707 { 708 struct hlist_head *chain = mp_hash(dentry); 709 struct mountpoint *mp; 710 711 hlist_for_each_entry(mp, chain, m_hash) { 712 if (mp->m_dentry == dentry) { 713 /* might be worth a WARN_ON() */ 714 if (d_unlinked(dentry)) 715 return ERR_PTR(-ENOENT); 716 mp->m_count++; 717 return mp; 718 } 719 } 720 return NULL; 721 } 722 723 static struct mountpoint *new_mountpoint(struct dentry *dentry) 724 { 725 struct hlist_head *chain = mp_hash(dentry); 726 struct mountpoint *mp; 727 int ret; 728 729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 730 if (!mp) 731 return ERR_PTR(-ENOMEM); 732 733 ret = d_set_mounted(dentry); 734 if (ret) { 735 kfree(mp); 736 return ERR_PTR(ret); 737 } 738 739 mp->m_dentry = dentry; 740 mp->m_count = 1; 741 hlist_add_head(&mp->m_hash, chain); 742 INIT_HLIST_HEAD(&mp->m_list); 743 return mp; 744 } 745 746 static void put_mountpoint(struct mountpoint *mp) 747 { 748 if (!--mp->m_count) { 749 struct dentry *dentry = mp->m_dentry; 750 BUG_ON(!hlist_empty(&mp->m_list)); 751 spin_lock(&dentry->d_lock); 752 dentry->d_flags &= ~DCACHE_MOUNTED; 753 spin_unlock(&dentry->d_lock); 754 hlist_del(&mp->m_hash); 755 kfree(mp); 756 } 757 } 758 759 static inline int check_mnt(struct mount *mnt) 760 { 761 return mnt->mnt_ns == current->nsproxy->mnt_ns; 762 } 763 764 /* 765 * vfsmount lock must be held for write 766 */ 767 static void touch_mnt_namespace(struct mnt_namespace *ns) 768 { 769 if (ns) { 770 ns->event = ++event; 771 wake_up_interruptible(&ns->poll); 772 } 773 } 774 775 /* 776 * vfsmount lock must be held for write 777 */ 778 static void __touch_mnt_namespace(struct mnt_namespace *ns) 779 { 780 if (ns && ns->event != event) { 781 ns->event = event; 782 wake_up_interruptible(&ns->poll); 783 } 784 } 785 786 /* 787 * vfsmount lock must be held for write 788 */ 789 static void detach_mnt(struct mount *mnt, struct path *old_path) 790 { 791 old_path->dentry = mnt->mnt_mountpoint; 792 old_path->mnt = &mnt->mnt_parent->mnt; 793 mnt->mnt_parent = mnt; 794 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 795 list_del_init(&mnt->mnt_child); 796 hlist_del_init_rcu(&mnt->mnt_hash); 797 hlist_del_init(&mnt->mnt_mp_list); 798 put_mountpoint(mnt->mnt_mp); 799 mnt->mnt_mp = NULL; 800 } 801 802 /* 803 * vfsmount lock must be held for write 804 */ 805 void mnt_set_mountpoint(struct mount *mnt, 806 struct mountpoint *mp, 807 struct mount *child_mnt) 808 { 809 mp->m_count++; 810 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 811 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 812 child_mnt->mnt_parent = mnt; 813 child_mnt->mnt_mp = mp; 814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static void attach_mnt(struct mount *mnt, 821 struct mount *parent, 822 struct mountpoint *mp) 823 { 824 mnt_set_mountpoint(parent, mp, mnt); 825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 827 } 828 829 static void attach_shadowed(struct mount *mnt, 830 struct mount *parent, 831 struct mount *shadows) 832 { 833 if (shadows) { 834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 835 list_add(&mnt->mnt_child, &shadows->mnt_child); 836 } else { 837 hlist_add_head_rcu(&mnt->mnt_hash, 838 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 840 } 841 } 842 843 /* 844 * vfsmount lock must be held for write 845 */ 846 static void commit_tree(struct mount *mnt, struct mount *shadows) 847 { 848 struct mount *parent = mnt->mnt_parent; 849 struct mount *m; 850 LIST_HEAD(head); 851 struct mnt_namespace *n = parent->mnt_ns; 852 853 BUG_ON(parent == mnt); 854 855 list_add_tail(&head, &mnt->mnt_list); 856 list_for_each_entry(m, &head, mnt_list) 857 m->mnt_ns = n; 858 859 list_splice(&head, n->list.prev); 860 861 attach_shadowed(mnt, parent, shadows); 862 touch_mnt_namespace(n); 863 } 864 865 static struct mount *next_mnt(struct mount *p, struct mount *root) 866 { 867 struct list_head *next = p->mnt_mounts.next; 868 if (next == &p->mnt_mounts) { 869 while (1) { 870 if (p == root) 871 return NULL; 872 next = p->mnt_child.next; 873 if (next != &p->mnt_parent->mnt_mounts) 874 break; 875 p = p->mnt_parent; 876 } 877 } 878 return list_entry(next, struct mount, mnt_child); 879 } 880 881 static struct mount *skip_mnt_tree(struct mount *p) 882 { 883 struct list_head *prev = p->mnt_mounts.prev; 884 while (prev != &p->mnt_mounts) { 885 p = list_entry(prev, struct mount, mnt_child); 886 prev = p->mnt_mounts.prev; 887 } 888 return p; 889 } 890 891 struct vfsmount * 892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 893 { 894 struct mount *mnt; 895 struct dentry *root; 896 897 if (!type) 898 return ERR_PTR(-ENODEV); 899 900 mnt = alloc_vfsmnt(name); 901 if (!mnt) 902 return ERR_PTR(-ENOMEM); 903 904 if (flags & MS_KERNMOUNT) 905 mnt->mnt.mnt_flags = MNT_INTERNAL; 906 907 root = mount_fs(type, flags, name, data); 908 if (IS_ERR(root)) { 909 mnt_free_id(mnt); 910 free_vfsmnt(mnt); 911 return ERR_CAST(root); 912 } 913 914 mnt->mnt.mnt_root = root; 915 mnt->mnt.mnt_sb = root->d_sb; 916 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 917 mnt->mnt_parent = mnt; 918 lock_mount_hash(); 919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 920 unlock_mount_hash(); 921 return &mnt->mnt; 922 } 923 EXPORT_SYMBOL_GPL(vfs_kern_mount); 924 925 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 926 int flag) 927 { 928 struct super_block *sb = old->mnt.mnt_sb; 929 struct mount *mnt; 930 int err; 931 932 mnt = alloc_vfsmnt(old->mnt_devname); 933 if (!mnt) 934 return ERR_PTR(-ENOMEM); 935 936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 937 mnt->mnt_group_id = 0; /* not a peer of original */ 938 else 939 mnt->mnt_group_id = old->mnt_group_id; 940 941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 942 err = mnt_alloc_group_id(mnt); 943 if (err) 944 goto out_free; 945 } 946 947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 948 /* Don't allow unprivileged users to change mount flags */ 949 if (flag & CL_UNPRIVILEGED) { 950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 951 952 if (mnt->mnt.mnt_flags & MNT_READONLY) 953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 954 955 if (mnt->mnt.mnt_flags & MNT_NODEV) 956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 957 958 if (mnt->mnt.mnt_flags & MNT_NOSUID) 959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 960 961 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 963 } 964 965 /* Don't allow unprivileged users to reveal what is under a mount */ 966 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire)) 967 mnt->mnt.mnt_flags |= MNT_LOCKED; 968 969 atomic_inc(&sb->s_active); 970 mnt->mnt.mnt_sb = sb; 971 mnt->mnt.mnt_root = dget(root); 972 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 973 mnt->mnt_parent = mnt; 974 lock_mount_hash(); 975 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 976 unlock_mount_hash(); 977 978 if ((flag & CL_SLAVE) || 979 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 980 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 981 mnt->mnt_master = old; 982 CLEAR_MNT_SHARED(mnt); 983 } else if (!(flag & CL_PRIVATE)) { 984 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 985 list_add(&mnt->mnt_share, &old->mnt_share); 986 if (IS_MNT_SLAVE(old)) 987 list_add(&mnt->mnt_slave, &old->mnt_slave); 988 mnt->mnt_master = old->mnt_master; 989 } 990 if (flag & CL_MAKE_SHARED) 991 set_mnt_shared(mnt); 992 993 /* stick the duplicate mount on the same expiry list 994 * as the original if that was on one */ 995 if (flag & CL_EXPIRE) { 996 if (!list_empty(&old->mnt_expire)) 997 list_add(&mnt->mnt_expire, &old->mnt_expire); 998 } 999 1000 return mnt; 1001 1002 out_free: 1003 mnt_free_id(mnt); 1004 free_vfsmnt(mnt); 1005 return ERR_PTR(err); 1006 } 1007 1008 static void cleanup_mnt(struct mount *mnt) 1009 { 1010 /* 1011 * This probably indicates that somebody messed 1012 * up a mnt_want/drop_write() pair. If this 1013 * happens, the filesystem was probably unable 1014 * to make r/w->r/o transitions. 1015 */ 1016 /* 1017 * The locking used to deal with mnt_count decrement provides barriers, 1018 * so mnt_get_writers() below is safe. 1019 */ 1020 WARN_ON(mnt_get_writers(mnt)); 1021 if (unlikely(mnt->mnt_pins.first)) 1022 mnt_pin_kill(mnt); 1023 fsnotify_vfsmount_delete(&mnt->mnt); 1024 dput(mnt->mnt.mnt_root); 1025 deactivate_super(mnt->mnt.mnt_sb); 1026 mnt_free_id(mnt); 1027 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1028 } 1029 1030 static void __cleanup_mnt(struct rcu_head *head) 1031 { 1032 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1033 } 1034 1035 static LLIST_HEAD(delayed_mntput_list); 1036 static void delayed_mntput(struct work_struct *unused) 1037 { 1038 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1039 struct llist_node *next; 1040 1041 for (; node; node = next) { 1042 next = llist_next(node); 1043 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1044 } 1045 } 1046 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1047 1048 static void mntput_no_expire(struct mount *mnt) 1049 { 1050 rcu_read_lock(); 1051 mnt_add_count(mnt, -1); 1052 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1053 rcu_read_unlock(); 1054 return; 1055 } 1056 lock_mount_hash(); 1057 if (mnt_get_count(mnt)) { 1058 rcu_read_unlock(); 1059 unlock_mount_hash(); 1060 return; 1061 } 1062 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1063 rcu_read_unlock(); 1064 unlock_mount_hash(); 1065 return; 1066 } 1067 mnt->mnt.mnt_flags |= MNT_DOOMED; 1068 rcu_read_unlock(); 1069 1070 list_del(&mnt->mnt_instance); 1071 unlock_mount_hash(); 1072 1073 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1074 struct task_struct *task = current; 1075 if (likely(!(task->flags & PF_KTHREAD))) { 1076 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1077 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1078 return; 1079 } 1080 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1081 schedule_delayed_work(&delayed_mntput_work, 1); 1082 return; 1083 } 1084 cleanup_mnt(mnt); 1085 } 1086 1087 void mntput(struct vfsmount *mnt) 1088 { 1089 if (mnt) { 1090 struct mount *m = real_mount(mnt); 1091 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1092 if (unlikely(m->mnt_expiry_mark)) 1093 m->mnt_expiry_mark = 0; 1094 mntput_no_expire(m); 1095 } 1096 } 1097 EXPORT_SYMBOL(mntput); 1098 1099 struct vfsmount *mntget(struct vfsmount *mnt) 1100 { 1101 if (mnt) 1102 mnt_add_count(real_mount(mnt), 1); 1103 return mnt; 1104 } 1105 EXPORT_SYMBOL(mntget); 1106 1107 struct vfsmount *mnt_clone_internal(struct path *path) 1108 { 1109 struct mount *p; 1110 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1111 if (IS_ERR(p)) 1112 return ERR_CAST(p); 1113 p->mnt.mnt_flags |= MNT_INTERNAL; 1114 return &p->mnt; 1115 } 1116 1117 static inline void mangle(struct seq_file *m, const char *s) 1118 { 1119 seq_escape(m, s, " \t\n\\"); 1120 } 1121 1122 /* 1123 * Simple .show_options callback for filesystems which don't want to 1124 * implement more complex mount option showing. 1125 * 1126 * See also save_mount_options(). 1127 */ 1128 int generic_show_options(struct seq_file *m, struct dentry *root) 1129 { 1130 const char *options; 1131 1132 rcu_read_lock(); 1133 options = rcu_dereference(root->d_sb->s_options); 1134 1135 if (options != NULL && options[0]) { 1136 seq_putc(m, ','); 1137 mangle(m, options); 1138 } 1139 rcu_read_unlock(); 1140 1141 return 0; 1142 } 1143 EXPORT_SYMBOL(generic_show_options); 1144 1145 /* 1146 * If filesystem uses generic_show_options(), this function should be 1147 * called from the fill_super() callback. 1148 * 1149 * The .remount_fs callback usually needs to be handled in a special 1150 * way, to make sure, that previous options are not overwritten if the 1151 * remount fails. 1152 * 1153 * Also note, that if the filesystem's .remount_fs function doesn't 1154 * reset all options to their default value, but changes only newly 1155 * given options, then the displayed options will not reflect reality 1156 * any more. 1157 */ 1158 void save_mount_options(struct super_block *sb, char *options) 1159 { 1160 BUG_ON(sb->s_options); 1161 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1162 } 1163 EXPORT_SYMBOL(save_mount_options); 1164 1165 void replace_mount_options(struct super_block *sb, char *options) 1166 { 1167 char *old = sb->s_options; 1168 rcu_assign_pointer(sb->s_options, options); 1169 if (old) { 1170 synchronize_rcu(); 1171 kfree(old); 1172 } 1173 } 1174 EXPORT_SYMBOL(replace_mount_options); 1175 1176 #ifdef CONFIG_PROC_FS 1177 /* iterator; we want it to have access to namespace_sem, thus here... */ 1178 static void *m_start(struct seq_file *m, loff_t *pos) 1179 { 1180 struct proc_mounts *p = proc_mounts(m); 1181 1182 down_read(&namespace_sem); 1183 if (p->cached_event == p->ns->event) { 1184 void *v = p->cached_mount; 1185 if (*pos == p->cached_index) 1186 return v; 1187 if (*pos == p->cached_index + 1) { 1188 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1189 return p->cached_mount = v; 1190 } 1191 } 1192 1193 p->cached_event = p->ns->event; 1194 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1195 p->cached_index = *pos; 1196 return p->cached_mount; 1197 } 1198 1199 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1200 { 1201 struct proc_mounts *p = proc_mounts(m); 1202 1203 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1204 p->cached_index = *pos; 1205 return p->cached_mount; 1206 } 1207 1208 static void m_stop(struct seq_file *m, void *v) 1209 { 1210 up_read(&namespace_sem); 1211 } 1212 1213 static int m_show(struct seq_file *m, void *v) 1214 { 1215 struct proc_mounts *p = proc_mounts(m); 1216 struct mount *r = list_entry(v, struct mount, mnt_list); 1217 return p->show(m, &r->mnt); 1218 } 1219 1220 const struct seq_operations mounts_op = { 1221 .start = m_start, 1222 .next = m_next, 1223 .stop = m_stop, 1224 .show = m_show, 1225 }; 1226 #endif /* CONFIG_PROC_FS */ 1227 1228 /** 1229 * may_umount_tree - check if a mount tree is busy 1230 * @mnt: root of mount tree 1231 * 1232 * This is called to check if a tree of mounts has any 1233 * open files, pwds, chroots or sub mounts that are 1234 * busy. 1235 */ 1236 int may_umount_tree(struct vfsmount *m) 1237 { 1238 struct mount *mnt = real_mount(m); 1239 int actual_refs = 0; 1240 int minimum_refs = 0; 1241 struct mount *p; 1242 BUG_ON(!m); 1243 1244 /* write lock needed for mnt_get_count */ 1245 lock_mount_hash(); 1246 for (p = mnt; p; p = next_mnt(p, mnt)) { 1247 actual_refs += mnt_get_count(p); 1248 minimum_refs += 2; 1249 } 1250 unlock_mount_hash(); 1251 1252 if (actual_refs > minimum_refs) 1253 return 0; 1254 1255 return 1; 1256 } 1257 1258 EXPORT_SYMBOL(may_umount_tree); 1259 1260 /** 1261 * may_umount - check if a mount point is busy 1262 * @mnt: root of mount 1263 * 1264 * This is called to check if a mount point has any 1265 * open files, pwds, chroots or sub mounts. If the 1266 * mount has sub mounts this will return busy 1267 * regardless of whether the sub mounts are busy. 1268 * 1269 * Doesn't take quota and stuff into account. IOW, in some cases it will 1270 * give false negatives. The main reason why it's here is that we need 1271 * a non-destructive way to look for easily umountable filesystems. 1272 */ 1273 int may_umount(struct vfsmount *mnt) 1274 { 1275 int ret = 1; 1276 down_read(&namespace_sem); 1277 lock_mount_hash(); 1278 if (propagate_mount_busy(real_mount(mnt), 2)) 1279 ret = 0; 1280 unlock_mount_hash(); 1281 up_read(&namespace_sem); 1282 return ret; 1283 } 1284 1285 EXPORT_SYMBOL(may_umount); 1286 1287 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1288 1289 static void namespace_unlock(void) 1290 { 1291 struct mount *mnt; 1292 struct hlist_head head = unmounted; 1293 1294 if (likely(hlist_empty(&head))) { 1295 up_write(&namespace_sem); 1296 return; 1297 } 1298 1299 head.first->pprev = &head.first; 1300 INIT_HLIST_HEAD(&unmounted); 1301 1302 /* undo decrements we'd done in umount_tree() */ 1303 hlist_for_each_entry(mnt, &head, mnt_hash) 1304 if (mnt->mnt_ex_mountpoint.mnt) 1305 mntget(mnt->mnt_ex_mountpoint.mnt); 1306 1307 up_write(&namespace_sem); 1308 1309 synchronize_rcu(); 1310 1311 while (!hlist_empty(&head)) { 1312 mnt = hlist_entry(head.first, struct mount, mnt_hash); 1313 hlist_del_init(&mnt->mnt_hash); 1314 if (mnt->mnt_ex_mountpoint.mnt) 1315 path_put(&mnt->mnt_ex_mountpoint); 1316 mntput(&mnt->mnt); 1317 } 1318 } 1319 1320 static inline void namespace_lock(void) 1321 { 1322 down_write(&namespace_sem); 1323 } 1324 1325 /* 1326 * mount_lock must be held 1327 * namespace_sem must be held for write 1328 * how = 0 => just this tree, don't propagate 1329 * how = 1 => propagate; we know that nobody else has reference to any victims 1330 * how = 2 => lazy umount 1331 */ 1332 void umount_tree(struct mount *mnt, int how) 1333 { 1334 HLIST_HEAD(tmp_list); 1335 struct mount *p; 1336 struct mount *last = NULL; 1337 1338 for (p = mnt; p; p = next_mnt(p, mnt)) { 1339 hlist_del_init_rcu(&p->mnt_hash); 1340 hlist_add_head(&p->mnt_hash, &tmp_list); 1341 } 1342 1343 hlist_for_each_entry(p, &tmp_list, mnt_hash) 1344 list_del_init(&p->mnt_child); 1345 1346 if (how) 1347 propagate_umount(&tmp_list); 1348 1349 hlist_for_each_entry(p, &tmp_list, mnt_hash) { 1350 list_del_init(&p->mnt_expire); 1351 list_del_init(&p->mnt_list); 1352 __touch_mnt_namespace(p->mnt_ns); 1353 p->mnt_ns = NULL; 1354 if (how < 2) 1355 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1356 if (mnt_has_parent(p)) { 1357 hlist_del_init(&p->mnt_mp_list); 1358 put_mountpoint(p->mnt_mp); 1359 mnt_add_count(p->mnt_parent, -1); 1360 /* move the reference to mountpoint into ->mnt_ex_mountpoint */ 1361 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint; 1362 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt; 1363 p->mnt_mountpoint = p->mnt.mnt_root; 1364 p->mnt_parent = p; 1365 p->mnt_mp = NULL; 1366 } 1367 change_mnt_propagation(p, MS_PRIVATE); 1368 last = p; 1369 } 1370 if (last) { 1371 last->mnt_hash.next = unmounted.first; 1372 unmounted.first = tmp_list.first; 1373 unmounted.first->pprev = &unmounted.first; 1374 } 1375 } 1376 1377 static void shrink_submounts(struct mount *mnt); 1378 1379 static int do_umount(struct mount *mnt, int flags) 1380 { 1381 struct super_block *sb = mnt->mnt.mnt_sb; 1382 int retval; 1383 1384 retval = security_sb_umount(&mnt->mnt, flags); 1385 if (retval) 1386 return retval; 1387 1388 /* 1389 * Allow userspace to request a mountpoint be expired rather than 1390 * unmounting unconditionally. Unmount only happens if: 1391 * (1) the mark is already set (the mark is cleared by mntput()) 1392 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1393 */ 1394 if (flags & MNT_EXPIRE) { 1395 if (&mnt->mnt == current->fs->root.mnt || 1396 flags & (MNT_FORCE | MNT_DETACH)) 1397 return -EINVAL; 1398 1399 /* 1400 * probably don't strictly need the lock here if we examined 1401 * all race cases, but it's a slowpath. 1402 */ 1403 lock_mount_hash(); 1404 if (mnt_get_count(mnt) != 2) { 1405 unlock_mount_hash(); 1406 return -EBUSY; 1407 } 1408 unlock_mount_hash(); 1409 1410 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1411 return -EAGAIN; 1412 } 1413 1414 /* 1415 * If we may have to abort operations to get out of this 1416 * mount, and they will themselves hold resources we must 1417 * allow the fs to do things. In the Unix tradition of 1418 * 'Gee thats tricky lets do it in userspace' the umount_begin 1419 * might fail to complete on the first run through as other tasks 1420 * must return, and the like. Thats for the mount program to worry 1421 * about for the moment. 1422 */ 1423 1424 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1425 sb->s_op->umount_begin(sb); 1426 } 1427 1428 /* 1429 * No sense to grab the lock for this test, but test itself looks 1430 * somewhat bogus. Suggestions for better replacement? 1431 * Ho-hum... In principle, we might treat that as umount + switch 1432 * to rootfs. GC would eventually take care of the old vfsmount. 1433 * Actually it makes sense, especially if rootfs would contain a 1434 * /reboot - static binary that would close all descriptors and 1435 * call reboot(9). Then init(8) could umount root and exec /reboot. 1436 */ 1437 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1438 /* 1439 * Special case for "unmounting" root ... 1440 * we just try to remount it readonly. 1441 */ 1442 if (!capable(CAP_SYS_ADMIN)) 1443 return -EPERM; 1444 down_write(&sb->s_umount); 1445 if (!(sb->s_flags & MS_RDONLY)) 1446 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1447 up_write(&sb->s_umount); 1448 return retval; 1449 } 1450 1451 namespace_lock(); 1452 lock_mount_hash(); 1453 event++; 1454 1455 if (flags & MNT_DETACH) { 1456 if (!list_empty(&mnt->mnt_list)) 1457 umount_tree(mnt, 2); 1458 retval = 0; 1459 } else { 1460 shrink_submounts(mnt); 1461 retval = -EBUSY; 1462 if (!propagate_mount_busy(mnt, 2)) { 1463 if (!list_empty(&mnt->mnt_list)) 1464 umount_tree(mnt, 1); 1465 retval = 0; 1466 } 1467 } 1468 unlock_mount_hash(); 1469 namespace_unlock(); 1470 return retval; 1471 } 1472 1473 /* 1474 * __detach_mounts - lazily unmount all mounts on the specified dentry 1475 * 1476 * During unlink, rmdir, and d_drop it is possible to loose the path 1477 * to an existing mountpoint, and wind up leaking the mount. 1478 * detach_mounts allows lazily unmounting those mounts instead of 1479 * leaking them. 1480 * 1481 * The caller may hold dentry->d_inode->i_mutex. 1482 */ 1483 void __detach_mounts(struct dentry *dentry) 1484 { 1485 struct mountpoint *mp; 1486 struct mount *mnt; 1487 1488 namespace_lock(); 1489 mp = lookup_mountpoint(dentry); 1490 if (!mp) 1491 goto out_unlock; 1492 1493 lock_mount_hash(); 1494 while (!hlist_empty(&mp->m_list)) { 1495 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1496 umount_tree(mnt, 2); 1497 } 1498 unlock_mount_hash(); 1499 put_mountpoint(mp); 1500 out_unlock: 1501 namespace_unlock(); 1502 } 1503 1504 /* 1505 * Is the caller allowed to modify his namespace? 1506 */ 1507 static inline bool may_mount(void) 1508 { 1509 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1510 } 1511 1512 /* 1513 * Now umount can handle mount points as well as block devices. 1514 * This is important for filesystems which use unnamed block devices. 1515 * 1516 * We now support a flag for forced unmount like the other 'big iron' 1517 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1518 */ 1519 1520 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1521 { 1522 struct path path; 1523 struct mount *mnt; 1524 int retval; 1525 int lookup_flags = 0; 1526 1527 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1528 return -EINVAL; 1529 1530 if (!may_mount()) 1531 return -EPERM; 1532 1533 if (!(flags & UMOUNT_NOFOLLOW)) 1534 lookup_flags |= LOOKUP_FOLLOW; 1535 1536 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1537 if (retval) 1538 goto out; 1539 mnt = real_mount(path.mnt); 1540 retval = -EINVAL; 1541 if (path.dentry != path.mnt->mnt_root) 1542 goto dput_and_out; 1543 if (!check_mnt(mnt)) 1544 goto dput_and_out; 1545 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1546 goto dput_and_out; 1547 1548 retval = do_umount(mnt, flags); 1549 dput_and_out: 1550 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1551 dput(path.dentry); 1552 mntput_no_expire(mnt); 1553 out: 1554 return retval; 1555 } 1556 1557 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1558 1559 /* 1560 * The 2.0 compatible umount. No flags. 1561 */ 1562 SYSCALL_DEFINE1(oldumount, char __user *, name) 1563 { 1564 return sys_umount(name, 0); 1565 } 1566 1567 #endif 1568 1569 static bool is_mnt_ns_file(struct dentry *dentry) 1570 { 1571 /* Is this a proxy for a mount namespace? */ 1572 struct inode *inode = dentry->d_inode; 1573 struct proc_ns *ei; 1574 1575 if (!proc_ns_inode(inode)) 1576 return false; 1577 1578 ei = get_proc_ns(inode); 1579 if (ei->ns_ops != &mntns_operations) 1580 return false; 1581 1582 return true; 1583 } 1584 1585 static bool mnt_ns_loop(struct dentry *dentry) 1586 { 1587 /* Could bind mounting the mount namespace inode cause a 1588 * mount namespace loop? 1589 */ 1590 struct mnt_namespace *mnt_ns; 1591 if (!is_mnt_ns_file(dentry)) 1592 return false; 1593 1594 mnt_ns = get_proc_ns(dentry->d_inode)->ns; 1595 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1596 } 1597 1598 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1599 int flag) 1600 { 1601 struct mount *res, *p, *q, *r, *parent; 1602 1603 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1604 return ERR_PTR(-EINVAL); 1605 1606 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1607 return ERR_PTR(-EINVAL); 1608 1609 res = q = clone_mnt(mnt, dentry, flag); 1610 if (IS_ERR(q)) 1611 return q; 1612 1613 q->mnt.mnt_flags &= ~MNT_LOCKED; 1614 q->mnt_mountpoint = mnt->mnt_mountpoint; 1615 1616 p = mnt; 1617 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1618 struct mount *s; 1619 if (!is_subdir(r->mnt_mountpoint, dentry)) 1620 continue; 1621 1622 for (s = r; s; s = next_mnt(s, r)) { 1623 struct mount *t = NULL; 1624 if (!(flag & CL_COPY_UNBINDABLE) && 1625 IS_MNT_UNBINDABLE(s)) { 1626 s = skip_mnt_tree(s); 1627 continue; 1628 } 1629 if (!(flag & CL_COPY_MNT_NS_FILE) && 1630 is_mnt_ns_file(s->mnt.mnt_root)) { 1631 s = skip_mnt_tree(s); 1632 continue; 1633 } 1634 while (p != s->mnt_parent) { 1635 p = p->mnt_parent; 1636 q = q->mnt_parent; 1637 } 1638 p = s; 1639 parent = q; 1640 q = clone_mnt(p, p->mnt.mnt_root, flag); 1641 if (IS_ERR(q)) 1642 goto out; 1643 lock_mount_hash(); 1644 list_add_tail(&q->mnt_list, &res->mnt_list); 1645 mnt_set_mountpoint(parent, p->mnt_mp, q); 1646 if (!list_empty(&parent->mnt_mounts)) { 1647 t = list_last_entry(&parent->mnt_mounts, 1648 struct mount, mnt_child); 1649 if (t->mnt_mp != p->mnt_mp) 1650 t = NULL; 1651 } 1652 attach_shadowed(q, parent, t); 1653 unlock_mount_hash(); 1654 } 1655 } 1656 return res; 1657 out: 1658 if (res) { 1659 lock_mount_hash(); 1660 umount_tree(res, 0); 1661 unlock_mount_hash(); 1662 } 1663 return q; 1664 } 1665 1666 /* Caller should check returned pointer for errors */ 1667 1668 struct vfsmount *collect_mounts(struct path *path) 1669 { 1670 struct mount *tree; 1671 namespace_lock(); 1672 tree = copy_tree(real_mount(path->mnt), path->dentry, 1673 CL_COPY_ALL | CL_PRIVATE); 1674 namespace_unlock(); 1675 if (IS_ERR(tree)) 1676 return ERR_CAST(tree); 1677 return &tree->mnt; 1678 } 1679 1680 void drop_collected_mounts(struct vfsmount *mnt) 1681 { 1682 namespace_lock(); 1683 lock_mount_hash(); 1684 umount_tree(real_mount(mnt), 0); 1685 unlock_mount_hash(); 1686 namespace_unlock(); 1687 } 1688 1689 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1690 struct vfsmount *root) 1691 { 1692 struct mount *mnt; 1693 int res = f(root, arg); 1694 if (res) 1695 return res; 1696 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1697 res = f(&mnt->mnt, arg); 1698 if (res) 1699 return res; 1700 } 1701 return 0; 1702 } 1703 1704 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1705 { 1706 struct mount *p; 1707 1708 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1709 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1710 mnt_release_group_id(p); 1711 } 1712 } 1713 1714 static int invent_group_ids(struct mount *mnt, bool recurse) 1715 { 1716 struct mount *p; 1717 1718 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1719 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1720 int err = mnt_alloc_group_id(p); 1721 if (err) { 1722 cleanup_group_ids(mnt, p); 1723 return err; 1724 } 1725 } 1726 } 1727 1728 return 0; 1729 } 1730 1731 /* 1732 * @source_mnt : mount tree to be attached 1733 * @nd : place the mount tree @source_mnt is attached 1734 * @parent_nd : if non-null, detach the source_mnt from its parent and 1735 * store the parent mount and mountpoint dentry. 1736 * (done when source_mnt is moved) 1737 * 1738 * NOTE: in the table below explains the semantics when a source mount 1739 * of a given type is attached to a destination mount of a given type. 1740 * --------------------------------------------------------------------------- 1741 * | BIND MOUNT OPERATION | 1742 * |************************************************************************** 1743 * | source-->| shared | private | slave | unbindable | 1744 * | dest | | | | | 1745 * | | | | | | | 1746 * | v | | | | | 1747 * |************************************************************************** 1748 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1749 * | | | | | | 1750 * |non-shared| shared (+) | private | slave (*) | invalid | 1751 * *************************************************************************** 1752 * A bind operation clones the source mount and mounts the clone on the 1753 * destination mount. 1754 * 1755 * (++) the cloned mount is propagated to all the mounts in the propagation 1756 * tree of the destination mount and the cloned mount is added to 1757 * the peer group of the source mount. 1758 * (+) the cloned mount is created under the destination mount and is marked 1759 * as shared. The cloned mount is added to the peer group of the source 1760 * mount. 1761 * (+++) the mount is propagated to all the mounts in the propagation tree 1762 * of the destination mount and the cloned mount is made slave 1763 * of the same master as that of the source mount. The cloned mount 1764 * is marked as 'shared and slave'. 1765 * (*) the cloned mount is made a slave of the same master as that of the 1766 * source mount. 1767 * 1768 * --------------------------------------------------------------------------- 1769 * | MOVE MOUNT OPERATION | 1770 * |************************************************************************** 1771 * | source-->| shared | private | slave | unbindable | 1772 * | dest | | | | | 1773 * | | | | | | | 1774 * | v | | | | | 1775 * |************************************************************************** 1776 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1777 * | | | | | | 1778 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1779 * *************************************************************************** 1780 * 1781 * (+) the mount is moved to the destination. And is then propagated to 1782 * all the mounts in the propagation tree of the destination mount. 1783 * (+*) the mount is moved to the destination. 1784 * (+++) the mount is moved to the destination and is then propagated to 1785 * all the mounts belonging to the destination mount's propagation tree. 1786 * the mount is marked as 'shared and slave'. 1787 * (*) the mount continues to be a slave at the new location. 1788 * 1789 * if the source mount is a tree, the operations explained above is 1790 * applied to each mount in the tree. 1791 * Must be called without spinlocks held, since this function can sleep 1792 * in allocations. 1793 */ 1794 static int attach_recursive_mnt(struct mount *source_mnt, 1795 struct mount *dest_mnt, 1796 struct mountpoint *dest_mp, 1797 struct path *parent_path) 1798 { 1799 HLIST_HEAD(tree_list); 1800 struct mount *child, *p; 1801 struct hlist_node *n; 1802 int err; 1803 1804 if (IS_MNT_SHARED(dest_mnt)) { 1805 err = invent_group_ids(source_mnt, true); 1806 if (err) 1807 goto out; 1808 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1809 lock_mount_hash(); 1810 if (err) 1811 goto out_cleanup_ids; 1812 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1813 set_mnt_shared(p); 1814 } else { 1815 lock_mount_hash(); 1816 } 1817 if (parent_path) { 1818 detach_mnt(source_mnt, parent_path); 1819 attach_mnt(source_mnt, dest_mnt, dest_mp); 1820 touch_mnt_namespace(source_mnt->mnt_ns); 1821 } else { 1822 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1823 commit_tree(source_mnt, NULL); 1824 } 1825 1826 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1827 struct mount *q; 1828 hlist_del_init(&child->mnt_hash); 1829 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1830 child->mnt_mountpoint); 1831 commit_tree(child, q); 1832 } 1833 unlock_mount_hash(); 1834 1835 return 0; 1836 1837 out_cleanup_ids: 1838 while (!hlist_empty(&tree_list)) { 1839 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1840 umount_tree(child, 0); 1841 } 1842 unlock_mount_hash(); 1843 cleanup_group_ids(source_mnt, NULL); 1844 out: 1845 return err; 1846 } 1847 1848 static struct mountpoint *lock_mount(struct path *path) 1849 { 1850 struct vfsmount *mnt; 1851 struct dentry *dentry = path->dentry; 1852 retry: 1853 mutex_lock(&dentry->d_inode->i_mutex); 1854 if (unlikely(cant_mount(dentry))) { 1855 mutex_unlock(&dentry->d_inode->i_mutex); 1856 return ERR_PTR(-ENOENT); 1857 } 1858 namespace_lock(); 1859 mnt = lookup_mnt(path); 1860 if (likely(!mnt)) { 1861 struct mountpoint *mp = lookup_mountpoint(dentry); 1862 if (!mp) 1863 mp = new_mountpoint(dentry); 1864 if (IS_ERR(mp)) { 1865 namespace_unlock(); 1866 mutex_unlock(&dentry->d_inode->i_mutex); 1867 return mp; 1868 } 1869 return mp; 1870 } 1871 namespace_unlock(); 1872 mutex_unlock(&path->dentry->d_inode->i_mutex); 1873 path_put(path); 1874 path->mnt = mnt; 1875 dentry = path->dentry = dget(mnt->mnt_root); 1876 goto retry; 1877 } 1878 1879 static void unlock_mount(struct mountpoint *where) 1880 { 1881 struct dentry *dentry = where->m_dentry; 1882 put_mountpoint(where); 1883 namespace_unlock(); 1884 mutex_unlock(&dentry->d_inode->i_mutex); 1885 } 1886 1887 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1888 { 1889 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1890 return -EINVAL; 1891 1892 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1893 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1894 return -ENOTDIR; 1895 1896 return attach_recursive_mnt(mnt, p, mp, NULL); 1897 } 1898 1899 /* 1900 * Sanity check the flags to change_mnt_propagation. 1901 */ 1902 1903 static int flags_to_propagation_type(int flags) 1904 { 1905 int type = flags & ~(MS_REC | MS_SILENT); 1906 1907 /* Fail if any non-propagation flags are set */ 1908 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1909 return 0; 1910 /* Only one propagation flag should be set */ 1911 if (!is_power_of_2(type)) 1912 return 0; 1913 return type; 1914 } 1915 1916 /* 1917 * recursively change the type of the mountpoint. 1918 */ 1919 static int do_change_type(struct path *path, int flag) 1920 { 1921 struct mount *m; 1922 struct mount *mnt = real_mount(path->mnt); 1923 int recurse = flag & MS_REC; 1924 int type; 1925 int err = 0; 1926 1927 if (path->dentry != path->mnt->mnt_root) 1928 return -EINVAL; 1929 1930 type = flags_to_propagation_type(flag); 1931 if (!type) 1932 return -EINVAL; 1933 1934 namespace_lock(); 1935 if (type == MS_SHARED) { 1936 err = invent_group_ids(mnt, recurse); 1937 if (err) 1938 goto out_unlock; 1939 } 1940 1941 lock_mount_hash(); 1942 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1943 change_mnt_propagation(m, type); 1944 unlock_mount_hash(); 1945 1946 out_unlock: 1947 namespace_unlock(); 1948 return err; 1949 } 1950 1951 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1952 { 1953 struct mount *child; 1954 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1955 if (!is_subdir(child->mnt_mountpoint, dentry)) 1956 continue; 1957 1958 if (child->mnt.mnt_flags & MNT_LOCKED) 1959 return true; 1960 } 1961 return false; 1962 } 1963 1964 /* 1965 * do loopback mount. 1966 */ 1967 static int do_loopback(struct path *path, const char *old_name, 1968 int recurse) 1969 { 1970 struct path old_path; 1971 struct mount *mnt = NULL, *old, *parent; 1972 struct mountpoint *mp; 1973 int err; 1974 if (!old_name || !*old_name) 1975 return -EINVAL; 1976 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 1977 if (err) 1978 return err; 1979 1980 err = -EINVAL; 1981 if (mnt_ns_loop(old_path.dentry)) 1982 goto out; 1983 1984 mp = lock_mount(path); 1985 err = PTR_ERR(mp); 1986 if (IS_ERR(mp)) 1987 goto out; 1988 1989 old = real_mount(old_path.mnt); 1990 parent = real_mount(path->mnt); 1991 1992 err = -EINVAL; 1993 if (IS_MNT_UNBINDABLE(old)) 1994 goto out2; 1995 1996 if (!check_mnt(parent) || !check_mnt(old)) 1997 goto out2; 1998 1999 if (!recurse && has_locked_children(old, old_path.dentry)) 2000 goto out2; 2001 2002 if (recurse) 2003 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2004 else 2005 mnt = clone_mnt(old, old_path.dentry, 0); 2006 2007 if (IS_ERR(mnt)) { 2008 err = PTR_ERR(mnt); 2009 goto out2; 2010 } 2011 2012 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2013 2014 err = graft_tree(mnt, parent, mp); 2015 if (err) { 2016 lock_mount_hash(); 2017 umount_tree(mnt, 0); 2018 unlock_mount_hash(); 2019 } 2020 out2: 2021 unlock_mount(mp); 2022 out: 2023 path_put(&old_path); 2024 return err; 2025 } 2026 2027 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2028 { 2029 int error = 0; 2030 int readonly_request = 0; 2031 2032 if (ms_flags & MS_RDONLY) 2033 readonly_request = 1; 2034 if (readonly_request == __mnt_is_readonly(mnt)) 2035 return 0; 2036 2037 if (readonly_request) 2038 error = mnt_make_readonly(real_mount(mnt)); 2039 else 2040 __mnt_unmake_readonly(real_mount(mnt)); 2041 return error; 2042 } 2043 2044 /* 2045 * change filesystem flags. dir should be a physical root of filesystem. 2046 * If you've mounted a non-root directory somewhere and want to do remount 2047 * on it - tough luck. 2048 */ 2049 static int do_remount(struct path *path, int flags, int mnt_flags, 2050 void *data) 2051 { 2052 int err; 2053 struct super_block *sb = path->mnt->mnt_sb; 2054 struct mount *mnt = real_mount(path->mnt); 2055 2056 if (!check_mnt(mnt)) 2057 return -EINVAL; 2058 2059 if (path->dentry != path->mnt->mnt_root) 2060 return -EINVAL; 2061 2062 /* Don't allow changing of locked mnt flags. 2063 * 2064 * No locks need to be held here while testing the various 2065 * MNT_LOCK flags because those flags can never be cleared 2066 * once they are set. 2067 */ 2068 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2069 !(mnt_flags & MNT_READONLY)) { 2070 return -EPERM; 2071 } 2072 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2073 !(mnt_flags & MNT_NODEV)) { 2074 return -EPERM; 2075 } 2076 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2077 !(mnt_flags & MNT_NOSUID)) { 2078 return -EPERM; 2079 } 2080 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2081 !(mnt_flags & MNT_NOEXEC)) { 2082 return -EPERM; 2083 } 2084 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2085 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2086 return -EPERM; 2087 } 2088 2089 err = security_sb_remount(sb, data); 2090 if (err) 2091 return err; 2092 2093 down_write(&sb->s_umount); 2094 if (flags & MS_BIND) 2095 err = change_mount_flags(path->mnt, flags); 2096 else if (!capable(CAP_SYS_ADMIN)) 2097 err = -EPERM; 2098 else 2099 err = do_remount_sb(sb, flags, data, 0); 2100 if (!err) { 2101 lock_mount_hash(); 2102 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2103 mnt->mnt.mnt_flags = mnt_flags; 2104 touch_mnt_namespace(mnt->mnt_ns); 2105 unlock_mount_hash(); 2106 } 2107 up_write(&sb->s_umount); 2108 return err; 2109 } 2110 2111 static inline int tree_contains_unbindable(struct mount *mnt) 2112 { 2113 struct mount *p; 2114 for (p = mnt; p; p = next_mnt(p, mnt)) { 2115 if (IS_MNT_UNBINDABLE(p)) 2116 return 1; 2117 } 2118 return 0; 2119 } 2120 2121 static int do_move_mount(struct path *path, const char *old_name) 2122 { 2123 struct path old_path, parent_path; 2124 struct mount *p; 2125 struct mount *old; 2126 struct mountpoint *mp; 2127 int err; 2128 if (!old_name || !*old_name) 2129 return -EINVAL; 2130 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2131 if (err) 2132 return err; 2133 2134 mp = lock_mount(path); 2135 err = PTR_ERR(mp); 2136 if (IS_ERR(mp)) 2137 goto out; 2138 2139 old = real_mount(old_path.mnt); 2140 p = real_mount(path->mnt); 2141 2142 err = -EINVAL; 2143 if (!check_mnt(p) || !check_mnt(old)) 2144 goto out1; 2145 2146 if (old->mnt.mnt_flags & MNT_LOCKED) 2147 goto out1; 2148 2149 err = -EINVAL; 2150 if (old_path.dentry != old_path.mnt->mnt_root) 2151 goto out1; 2152 2153 if (!mnt_has_parent(old)) 2154 goto out1; 2155 2156 if (S_ISDIR(path->dentry->d_inode->i_mode) != 2157 S_ISDIR(old_path.dentry->d_inode->i_mode)) 2158 goto out1; 2159 /* 2160 * Don't move a mount residing in a shared parent. 2161 */ 2162 if (IS_MNT_SHARED(old->mnt_parent)) 2163 goto out1; 2164 /* 2165 * Don't move a mount tree containing unbindable mounts to a destination 2166 * mount which is shared. 2167 */ 2168 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2169 goto out1; 2170 err = -ELOOP; 2171 for (; mnt_has_parent(p); p = p->mnt_parent) 2172 if (p == old) 2173 goto out1; 2174 2175 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2176 if (err) 2177 goto out1; 2178 2179 /* if the mount is moved, it should no longer be expire 2180 * automatically */ 2181 list_del_init(&old->mnt_expire); 2182 out1: 2183 unlock_mount(mp); 2184 out: 2185 if (!err) 2186 path_put(&parent_path); 2187 path_put(&old_path); 2188 return err; 2189 } 2190 2191 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2192 { 2193 int err; 2194 const char *subtype = strchr(fstype, '.'); 2195 if (subtype) { 2196 subtype++; 2197 err = -EINVAL; 2198 if (!subtype[0]) 2199 goto err; 2200 } else 2201 subtype = ""; 2202 2203 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2204 err = -ENOMEM; 2205 if (!mnt->mnt_sb->s_subtype) 2206 goto err; 2207 return mnt; 2208 2209 err: 2210 mntput(mnt); 2211 return ERR_PTR(err); 2212 } 2213 2214 /* 2215 * add a mount into a namespace's mount tree 2216 */ 2217 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2218 { 2219 struct mountpoint *mp; 2220 struct mount *parent; 2221 int err; 2222 2223 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2224 2225 mp = lock_mount(path); 2226 if (IS_ERR(mp)) 2227 return PTR_ERR(mp); 2228 2229 parent = real_mount(path->mnt); 2230 err = -EINVAL; 2231 if (unlikely(!check_mnt(parent))) { 2232 /* that's acceptable only for automounts done in private ns */ 2233 if (!(mnt_flags & MNT_SHRINKABLE)) 2234 goto unlock; 2235 /* ... and for those we'd better have mountpoint still alive */ 2236 if (!parent->mnt_ns) 2237 goto unlock; 2238 } 2239 2240 /* Refuse the same filesystem on the same mount point */ 2241 err = -EBUSY; 2242 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2243 path->mnt->mnt_root == path->dentry) 2244 goto unlock; 2245 2246 err = -EINVAL; 2247 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2248 goto unlock; 2249 2250 newmnt->mnt.mnt_flags = mnt_flags; 2251 err = graft_tree(newmnt, parent, mp); 2252 2253 unlock: 2254 unlock_mount(mp); 2255 return err; 2256 } 2257 2258 /* 2259 * create a new mount for userspace and request it to be added into the 2260 * namespace's tree 2261 */ 2262 static int do_new_mount(struct path *path, const char *fstype, int flags, 2263 int mnt_flags, const char *name, void *data) 2264 { 2265 struct file_system_type *type; 2266 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2267 struct vfsmount *mnt; 2268 int err; 2269 2270 if (!fstype) 2271 return -EINVAL; 2272 2273 type = get_fs_type(fstype); 2274 if (!type) 2275 return -ENODEV; 2276 2277 if (user_ns != &init_user_ns) { 2278 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2279 put_filesystem(type); 2280 return -EPERM; 2281 } 2282 /* Only in special cases allow devices from mounts 2283 * created outside the initial user namespace. 2284 */ 2285 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2286 flags |= MS_NODEV; 2287 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2288 } 2289 } 2290 2291 mnt = vfs_kern_mount(type, flags, name, data); 2292 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2293 !mnt->mnt_sb->s_subtype) 2294 mnt = fs_set_subtype(mnt, fstype); 2295 2296 put_filesystem(type); 2297 if (IS_ERR(mnt)) 2298 return PTR_ERR(mnt); 2299 2300 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2301 if (err) 2302 mntput(mnt); 2303 return err; 2304 } 2305 2306 int finish_automount(struct vfsmount *m, struct path *path) 2307 { 2308 struct mount *mnt = real_mount(m); 2309 int err; 2310 /* The new mount record should have at least 2 refs to prevent it being 2311 * expired before we get a chance to add it 2312 */ 2313 BUG_ON(mnt_get_count(mnt) < 2); 2314 2315 if (m->mnt_sb == path->mnt->mnt_sb && 2316 m->mnt_root == path->dentry) { 2317 err = -ELOOP; 2318 goto fail; 2319 } 2320 2321 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2322 if (!err) 2323 return 0; 2324 fail: 2325 /* remove m from any expiration list it may be on */ 2326 if (!list_empty(&mnt->mnt_expire)) { 2327 namespace_lock(); 2328 list_del_init(&mnt->mnt_expire); 2329 namespace_unlock(); 2330 } 2331 mntput(m); 2332 mntput(m); 2333 return err; 2334 } 2335 2336 /** 2337 * mnt_set_expiry - Put a mount on an expiration list 2338 * @mnt: The mount to list. 2339 * @expiry_list: The list to add the mount to. 2340 */ 2341 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2342 { 2343 namespace_lock(); 2344 2345 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2346 2347 namespace_unlock(); 2348 } 2349 EXPORT_SYMBOL(mnt_set_expiry); 2350 2351 /* 2352 * process a list of expirable mountpoints with the intent of discarding any 2353 * mountpoints that aren't in use and haven't been touched since last we came 2354 * here 2355 */ 2356 void mark_mounts_for_expiry(struct list_head *mounts) 2357 { 2358 struct mount *mnt, *next; 2359 LIST_HEAD(graveyard); 2360 2361 if (list_empty(mounts)) 2362 return; 2363 2364 namespace_lock(); 2365 lock_mount_hash(); 2366 2367 /* extract from the expiration list every vfsmount that matches the 2368 * following criteria: 2369 * - only referenced by its parent vfsmount 2370 * - still marked for expiry (marked on the last call here; marks are 2371 * cleared by mntput()) 2372 */ 2373 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2374 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2375 propagate_mount_busy(mnt, 1)) 2376 continue; 2377 list_move(&mnt->mnt_expire, &graveyard); 2378 } 2379 while (!list_empty(&graveyard)) { 2380 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2381 touch_mnt_namespace(mnt->mnt_ns); 2382 umount_tree(mnt, 1); 2383 } 2384 unlock_mount_hash(); 2385 namespace_unlock(); 2386 } 2387 2388 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2389 2390 /* 2391 * Ripoff of 'select_parent()' 2392 * 2393 * search the list of submounts for a given mountpoint, and move any 2394 * shrinkable submounts to the 'graveyard' list. 2395 */ 2396 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2397 { 2398 struct mount *this_parent = parent; 2399 struct list_head *next; 2400 int found = 0; 2401 2402 repeat: 2403 next = this_parent->mnt_mounts.next; 2404 resume: 2405 while (next != &this_parent->mnt_mounts) { 2406 struct list_head *tmp = next; 2407 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2408 2409 next = tmp->next; 2410 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2411 continue; 2412 /* 2413 * Descend a level if the d_mounts list is non-empty. 2414 */ 2415 if (!list_empty(&mnt->mnt_mounts)) { 2416 this_parent = mnt; 2417 goto repeat; 2418 } 2419 2420 if (!propagate_mount_busy(mnt, 1)) { 2421 list_move_tail(&mnt->mnt_expire, graveyard); 2422 found++; 2423 } 2424 } 2425 /* 2426 * All done at this level ... ascend and resume the search 2427 */ 2428 if (this_parent != parent) { 2429 next = this_parent->mnt_child.next; 2430 this_parent = this_parent->mnt_parent; 2431 goto resume; 2432 } 2433 return found; 2434 } 2435 2436 /* 2437 * process a list of expirable mountpoints with the intent of discarding any 2438 * submounts of a specific parent mountpoint 2439 * 2440 * mount_lock must be held for write 2441 */ 2442 static void shrink_submounts(struct mount *mnt) 2443 { 2444 LIST_HEAD(graveyard); 2445 struct mount *m; 2446 2447 /* extract submounts of 'mountpoint' from the expiration list */ 2448 while (select_submounts(mnt, &graveyard)) { 2449 while (!list_empty(&graveyard)) { 2450 m = list_first_entry(&graveyard, struct mount, 2451 mnt_expire); 2452 touch_mnt_namespace(m->mnt_ns); 2453 umount_tree(m, 1); 2454 } 2455 } 2456 } 2457 2458 /* 2459 * Some copy_from_user() implementations do not return the exact number of 2460 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2461 * Note that this function differs from copy_from_user() in that it will oops 2462 * on bad values of `to', rather than returning a short copy. 2463 */ 2464 static long exact_copy_from_user(void *to, const void __user * from, 2465 unsigned long n) 2466 { 2467 char *t = to; 2468 const char __user *f = from; 2469 char c; 2470 2471 if (!access_ok(VERIFY_READ, from, n)) 2472 return n; 2473 2474 while (n) { 2475 if (__get_user(c, f)) { 2476 memset(t, 0, n); 2477 break; 2478 } 2479 *t++ = c; 2480 f++; 2481 n--; 2482 } 2483 return n; 2484 } 2485 2486 int copy_mount_options(const void __user * data, unsigned long *where) 2487 { 2488 int i; 2489 unsigned long page; 2490 unsigned long size; 2491 2492 *where = 0; 2493 if (!data) 2494 return 0; 2495 2496 if (!(page = __get_free_page(GFP_KERNEL))) 2497 return -ENOMEM; 2498 2499 /* We only care that *some* data at the address the user 2500 * gave us is valid. Just in case, we'll zero 2501 * the remainder of the page. 2502 */ 2503 /* copy_from_user cannot cross TASK_SIZE ! */ 2504 size = TASK_SIZE - (unsigned long)data; 2505 if (size > PAGE_SIZE) 2506 size = PAGE_SIZE; 2507 2508 i = size - exact_copy_from_user((void *)page, data, size); 2509 if (!i) { 2510 free_page(page); 2511 return -EFAULT; 2512 } 2513 if (i != PAGE_SIZE) 2514 memset((char *)page + i, 0, PAGE_SIZE - i); 2515 *where = page; 2516 return 0; 2517 } 2518 2519 char *copy_mount_string(const void __user *data) 2520 { 2521 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2522 } 2523 2524 /* 2525 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2526 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2527 * 2528 * data is a (void *) that can point to any structure up to 2529 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2530 * information (or be NULL). 2531 * 2532 * Pre-0.97 versions of mount() didn't have a flags word. 2533 * When the flags word was introduced its top half was required 2534 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2535 * Therefore, if this magic number is present, it carries no information 2536 * and must be discarded. 2537 */ 2538 long do_mount(const char *dev_name, const char __user *dir_name, 2539 const char *type_page, unsigned long flags, void *data_page) 2540 { 2541 struct path path; 2542 int retval = 0; 2543 int mnt_flags = 0; 2544 2545 /* Discard magic */ 2546 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2547 flags &= ~MS_MGC_MSK; 2548 2549 /* Basic sanity checks */ 2550 if (data_page) 2551 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2552 2553 /* ... and get the mountpoint */ 2554 retval = user_path(dir_name, &path); 2555 if (retval) 2556 return retval; 2557 2558 retval = security_sb_mount(dev_name, &path, 2559 type_page, flags, data_page); 2560 if (!retval && !may_mount()) 2561 retval = -EPERM; 2562 if (retval) 2563 goto dput_out; 2564 2565 /* Default to relatime unless overriden */ 2566 if (!(flags & MS_NOATIME)) 2567 mnt_flags |= MNT_RELATIME; 2568 2569 /* Separate the per-mountpoint flags */ 2570 if (flags & MS_NOSUID) 2571 mnt_flags |= MNT_NOSUID; 2572 if (flags & MS_NODEV) 2573 mnt_flags |= MNT_NODEV; 2574 if (flags & MS_NOEXEC) 2575 mnt_flags |= MNT_NOEXEC; 2576 if (flags & MS_NOATIME) 2577 mnt_flags |= MNT_NOATIME; 2578 if (flags & MS_NODIRATIME) 2579 mnt_flags |= MNT_NODIRATIME; 2580 if (flags & MS_STRICTATIME) 2581 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2582 if (flags & MS_RDONLY) 2583 mnt_flags |= MNT_READONLY; 2584 2585 /* The default atime for remount is preservation */ 2586 if ((flags & MS_REMOUNT) && 2587 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2588 MS_STRICTATIME)) == 0)) { 2589 mnt_flags &= ~MNT_ATIME_MASK; 2590 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2591 } 2592 2593 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2594 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2595 MS_STRICTATIME); 2596 2597 if (flags & MS_REMOUNT) 2598 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2599 data_page); 2600 else if (flags & MS_BIND) 2601 retval = do_loopback(&path, dev_name, flags & MS_REC); 2602 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2603 retval = do_change_type(&path, flags); 2604 else if (flags & MS_MOVE) 2605 retval = do_move_mount(&path, dev_name); 2606 else 2607 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2608 dev_name, data_page); 2609 dput_out: 2610 path_put(&path); 2611 return retval; 2612 } 2613 2614 static void free_mnt_ns(struct mnt_namespace *ns) 2615 { 2616 proc_free_inum(ns->proc_inum); 2617 put_user_ns(ns->user_ns); 2618 kfree(ns); 2619 } 2620 2621 /* 2622 * Assign a sequence number so we can detect when we attempt to bind 2623 * mount a reference to an older mount namespace into the current 2624 * mount namespace, preventing reference counting loops. A 64bit 2625 * number incrementing at 10Ghz will take 12,427 years to wrap which 2626 * is effectively never, so we can ignore the possibility. 2627 */ 2628 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2629 2630 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2631 { 2632 struct mnt_namespace *new_ns; 2633 int ret; 2634 2635 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2636 if (!new_ns) 2637 return ERR_PTR(-ENOMEM); 2638 ret = proc_alloc_inum(&new_ns->proc_inum); 2639 if (ret) { 2640 kfree(new_ns); 2641 return ERR_PTR(ret); 2642 } 2643 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2644 atomic_set(&new_ns->count, 1); 2645 new_ns->root = NULL; 2646 INIT_LIST_HEAD(&new_ns->list); 2647 init_waitqueue_head(&new_ns->poll); 2648 new_ns->event = 0; 2649 new_ns->user_ns = get_user_ns(user_ns); 2650 return new_ns; 2651 } 2652 2653 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2654 struct user_namespace *user_ns, struct fs_struct *new_fs) 2655 { 2656 struct mnt_namespace *new_ns; 2657 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2658 struct mount *p, *q; 2659 struct mount *old; 2660 struct mount *new; 2661 int copy_flags; 2662 2663 BUG_ON(!ns); 2664 2665 if (likely(!(flags & CLONE_NEWNS))) { 2666 get_mnt_ns(ns); 2667 return ns; 2668 } 2669 2670 old = ns->root; 2671 2672 new_ns = alloc_mnt_ns(user_ns); 2673 if (IS_ERR(new_ns)) 2674 return new_ns; 2675 2676 namespace_lock(); 2677 /* First pass: copy the tree topology */ 2678 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2679 if (user_ns != ns->user_ns) 2680 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2681 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2682 if (IS_ERR(new)) { 2683 namespace_unlock(); 2684 free_mnt_ns(new_ns); 2685 return ERR_CAST(new); 2686 } 2687 new_ns->root = new; 2688 list_add_tail(&new_ns->list, &new->mnt_list); 2689 2690 /* 2691 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2692 * as belonging to new namespace. We have already acquired a private 2693 * fs_struct, so tsk->fs->lock is not needed. 2694 */ 2695 p = old; 2696 q = new; 2697 while (p) { 2698 q->mnt_ns = new_ns; 2699 if (new_fs) { 2700 if (&p->mnt == new_fs->root.mnt) { 2701 new_fs->root.mnt = mntget(&q->mnt); 2702 rootmnt = &p->mnt; 2703 } 2704 if (&p->mnt == new_fs->pwd.mnt) { 2705 new_fs->pwd.mnt = mntget(&q->mnt); 2706 pwdmnt = &p->mnt; 2707 } 2708 } 2709 p = next_mnt(p, old); 2710 q = next_mnt(q, new); 2711 if (!q) 2712 break; 2713 while (p->mnt.mnt_root != q->mnt.mnt_root) 2714 p = next_mnt(p, old); 2715 } 2716 namespace_unlock(); 2717 2718 if (rootmnt) 2719 mntput(rootmnt); 2720 if (pwdmnt) 2721 mntput(pwdmnt); 2722 2723 return new_ns; 2724 } 2725 2726 /** 2727 * create_mnt_ns - creates a private namespace and adds a root filesystem 2728 * @mnt: pointer to the new root filesystem mountpoint 2729 */ 2730 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2731 { 2732 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2733 if (!IS_ERR(new_ns)) { 2734 struct mount *mnt = real_mount(m); 2735 mnt->mnt_ns = new_ns; 2736 new_ns->root = mnt; 2737 list_add(&mnt->mnt_list, &new_ns->list); 2738 } else { 2739 mntput(m); 2740 } 2741 return new_ns; 2742 } 2743 2744 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2745 { 2746 struct mnt_namespace *ns; 2747 struct super_block *s; 2748 struct path path; 2749 int err; 2750 2751 ns = create_mnt_ns(mnt); 2752 if (IS_ERR(ns)) 2753 return ERR_CAST(ns); 2754 2755 err = vfs_path_lookup(mnt->mnt_root, mnt, 2756 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2757 2758 put_mnt_ns(ns); 2759 2760 if (err) 2761 return ERR_PTR(err); 2762 2763 /* trade a vfsmount reference for active sb one */ 2764 s = path.mnt->mnt_sb; 2765 atomic_inc(&s->s_active); 2766 mntput(path.mnt); 2767 /* lock the sucker */ 2768 down_write(&s->s_umount); 2769 /* ... and return the root of (sub)tree on it */ 2770 return path.dentry; 2771 } 2772 EXPORT_SYMBOL(mount_subtree); 2773 2774 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2775 char __user *, type, unsigned long, flags, void __user *, data) 2776 { 2777 int ret; 2778 char *kernel_type; 2779 char *kernel_dev; 2780 unsigned long data_page; 2781 2782 kernel_type = copy_mount_string(type); 2783 ret = PTR_ERR(kernel_type); 2784 if (IS_ERR(kernel_type)) 2785 goto out_type; 2786 2787 kernel_dev = copy_mount_string(dev_name); 2788 ret = PTR_ERR(kernel_dev); 2789 if (IS_ERR(kernel_dev)) 2790 goto out_dev; 2791 2792 ret = copy_mount_options(data, &data_page); 2793 if (ret < 0) 2794 goto out_data; 2795 2796 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, 2797 (void *) data_page); 2798 2799 free_page(data_page); 2800 out_data: 2801 kfree(kernel_dev); 2802 out_dev: 2803 kfree(kernel_type); 2804 out_type: 2805 return ret; 2806 } 2807 2808 /* 2809 * Return true if path is reachable from root 2810 * 2811 * namespace_sem or mount_lock is held 2812 */ 2813 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2814 const struct path *root) 2815 { 2816 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2817 dentry = mnt->mnt_mountpoint; 2818 mnt = mnt->mnt_parent; 2819 } 2820 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2821 } 2822 2823 int path_is_under(struct path *path1, struct path *path2) 2824 { 2825 int res; 2826 read_seqlock_excl(&mount_lock); 2827 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2828 read_sequnlock_excl(&mount_lock); 2829 return res; 2830 } 2831 EXPORT_SYMBOL(path_is_under); 2832 2833 /* 2834 * pivot_root Semantics: 2835 * Moves the root file system of the current process to the directory put_old, 2836 * makes new_root as the new root file system of the current process, and sets 2837 * root/cwd of all processes which had them on the current root to new_root. 2838 * 2839 * Restrictions: 2840 * The new_root and put_old must be directories, and must not be on the 2841 * same file system as the current process root. The put_old must be 2842 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2843 * pointed to by put_old must yield the same directory as new_root. No other 2844 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2845 * 2846 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2847 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2848 * in this situation. 2849 * 2850 * Notes: 2851 * - we don't move root/cwd if they are not at the root (reason: if something 2852 * cared enough to change them, it's probably wrong to force them elsewhere) 2853 * - it's okay to pick a root that isn't the root of a file system, e.g. 2854 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2855 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2856 * first. 2857 */ 2858 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2859 const char __user *, put_old) 2860 { 2861 struct path new, old, parent_path, root_parent, root; 2862 struct mount *new_mnt, *root_mnt, *old_mnt; 2863 struct mountpoint *old_mp, *root_mp; 2864 int error; 2865 2866 if (!may_mount()) 2867 return -EPERM; 2868 2869 error = user_path_dir(new_root, &new); 2870 if (error) 2871 goto out0; 2872 2873 error = user_path_dir(put_old, &old); 2874 if (error) 2875 goto out1; 2876 2877 error = security_sb_pivotroot(&old, &new); 2878 if (error) 2879 goto out2; 2880 2881 get_fs_root(current->fs, &root); 2882 old_mp = lock_mount(&old); 2883 error = PTR_ERR(old_mp); 2884 if (IS_ERR(old_mp)) 2885 goto out3; 2886 2887 error = -EINVAL; 2888 new_mnt = real_mount(new.mnt); 2889 root_mnt = real_mount(root.mnt); 2890 old_mnt = real_mount(old.mnt); 2891 if (IS_MNT_SHARED(old_mnt) || 2892 IS_MNT_SHARED(new_mnt->mnt_parent) || 2893 IS_MNT_SHARED(root_mnt->mnt_parent)) 2894 goto out4; 2895 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2896 goto out4; 2897 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2898 goto out4; 2899 error = -ENOENT; 2900 if (d_unlinked(new.dentry)) 2901 goto out4; 2902 error = -EBUSY; 2903 if (new_mnt == root_mnt || old_mnt == root_mnt) 2904 goto out4; /* loop, on the same file system */ 2905 error = -EINVAL; 2906 if (root.mnt->mnt_root != root.dentry) 2907 goto out4; /* not a mountpoint */ 2908 if (!mnt_has_parent(root_mnt)) 2909 goto out4; /* not attached */ 2910 root_mp = root_mnt->mnt_mp; 2911 if (new.mnt->mnt_root != new.dentry) 2912 goto out4; /* not a mountpoint */ 2913 if (!mnt_has_parent(new_mnt)) 2914 goto out4; /* not attached */ 2915 /* make sure we can reach put_old from new_root */ 2916 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2917 goto out4; 2918 /* make certain new is below the root */ 2919 if (!is_path_reachable(new_mnt, new.dentry, &root)) 2920 goto out4; 2921 root_mp->m_count++; /* pin it so it won't go away */ 2922 lock_mount_hash(); 2923 detach_mnt(new_mnt, &parent_path); 2924 detach_mnt(root_mnt, &root_parent); 2925 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2926 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2927 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2928 } 2929 /* mount old root on put_old */ 2930 attach_mnt(root_mnt, old_mnt, old_mp); 2931 /* mount new_root on / */ 2932 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2933 touch_mnt_namespace(current->nsproxy->mnt_ns); 2934 unlock_mount_hash(); 2935 chroot_fs_refs(&root, &new); 2936 put_mountpoint(root_mp); 2937 error = 0; 2938 out4: 2939 unlock_mount(old_mp); 2940 if (!error) { 2941 path_put(&root_parent); 2942 path_put(&parent_path); 2943 } 2944 out3: 2945 path_put(&root); 2946 out2: 2947 path_put(&old); 2948 out1: 2949 path_put(&new); 2950 out0: 2951 return error; 2952 } 2953 2954 static void __init init_mount_tree(void) 2955 { 2956 struct vfsmount *mnt; 2957 struct mnt_namespace *ns; 2958 struct path root; 2959 struct file_system_type *type; 2960 2961 type = get_fs_type("rootfs"); 2962 if (!type) 2963 panic("Can't find rootfs type"); 2964 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2965 put_filesystem(type); 2966 if (IS_ERR(mnt)) 2967 panic("Can't create rootfs"); 2968 2969 ns = create_mnt_ns(mnt); 2970 if (IS_ERR(ns)) 2971 panic("Can't allocate initial namespace"); 2972 2973 init_task.nsproxy->mnt_ns = ns; 2974 get_mnt_ns(ns); 2975 2976 root.mnt = mnt; 2977 root.dentry = mnt->mnt_root; 2978 2979 set_fs_pwd(current->fs, &root); 2980 set_fs_root(current->fs, &root); 2981 } 2982 2983 void __init mnt_init(void) 2984 { 2985 unsigned u; 2986 int err; 2987 2988 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 2989 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2990 2991 mount_hashtable = alloc_large_system_hash("Mount-cache", 2992 sizeof(struct hlist_head), 2993 mhash_entries, 19, 2994 0, 2995 &m_hash_shift, &m_hash_mask, 0, 0); 2996 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 2997 sizeof(struct hlist_head), 2998 mphash_entries, 19, 2999 0, 3000 &mp_hash_shift, &mp_hash_mask, 0, 0); 3001 3002 if (!mount_hashtable || !mountpoint_hashtable) 3003 panic("Failed to allocate mount hash table\n"); 3004 3005 for (u = 0; u <= m_hash_mask; u++) 3006 INIT_HLIST_HEAD(&mount_hashtable[u]); 3007 for (u = 0; u <= mp_hash_mask; u++) 3008 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3009 3010 kernfs_init(); 3011 3012 err = sysfs_init(); 3013 if (err) 3014 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3015 __func__, err); 3016 fs_kobj = kobject_create_and_add("fs", NULL); 3017 if (!fs_kobj) 3018 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3019 init_rootfs(); 3020 init_mount_tree(); 3021 } 3022 3023 void put_mnt_ns(struct mnt_namespace *ns) 3024 { 3025 if (!atomic_dec_and_test(&ns->count)) 3026 return; 3027 drop_collected_mounts(&ns->root->mnt); 3028 free_mnt_ns(ns); 3029 } 3030 3031 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3032 { 3033 struct vfsmount *mnt; 3034 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3035 if (!IS_ERR(mnt)) { 3036 /* 3037 * it is a longterm mount, don't release mnt until 3038 * we unmount before file sys is unregistered 3039 */ 3040 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3041 } 3042 return mnt; 3043 } 3044 EXPORT_SYMBOL_GPL(kern_mount_data); 3045 3046 void kern_unmount(struct vfsmount *mnt) 3047 { 3048 /* release long term mount so mount point can be released */ 3049 if (!IS_ERR_OR_NULL(mnt)) { 3050 real_mount(mnt)->mnt_ns = NULL; 3051 synchronize_rcu(); /* yecchhh... */ 3052 mntput(mnt); 3053 } 3054 } 3055 EXPORT_SYMBOL(kern_unmount); 3056 3057 bool our_mnt(struct vfsmount *mnt) 3058 { 3059 return check_mnt(real_mount(mnt)); 3060 } 3061 3062 bool current_chrooted(void) 3063 { 3064 /* Does the current process have a non-standard root */ 3065 struct path ns_root; 3066 struct path fs_root; 3067 bool chrooted; 3068 3069 /* Find the namespace root */ 3070 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3071 ns_root.dentry = ns_root.mnt->mnt_root; 3072 path_get(&ns_root); 3073 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3074 ; 3075 3076 get_fs_root(current->fs, &fs_root); 3077 3078 chrooted = !path_equal(&fs_root, &ns_root); 3079 3080 path_put(&fs_root); 3081 path_put(&ns_root); 3082 3083 return chrooted; 3084 } 3085 3086 bool fs_fully_visible(struct file_system_type *type) 3087 { 3088 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3089 struct mount *mnt; 3090 bool visible = false; 3091 3092 if (unlikely(!ns)) 3093 return false; 3094 3095 down_read(&namespace_sem); 3096 list_for_each_entry(mnt, &ns->list, mnt_list) { 3097 struct mount *child; 3098 if (mnt->mnt.mnt_sb->s_type != type) 3099 continue; 3100 3101 /* This mount is not fully visible if there are any child mounts 3102 * that cover anything except for empty directories. 3103 */ 3104 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3105 struct inode *inode = child->mnt_mountpoint->d_inode; 3106 if (!S_ISDIR(inode->i_mode)) 3107 goto next; 3108 if (inode->i_nlink > 2) 3109 goto next; 3110 } 3111 visible = true; 3112 goto found; 3113 next: ; 3114 } 3115 found: 3116 up_read(&namespace_sem); 3117 return visible; 3118 } 3119 3120 static void *mntns_get(struct task_struct *task) 3121 { 3122 struct mnt_namespace *ns = NULL; 3123 struct nsproxy *nsproxy; 3124 3125 task_lock(task); 3126 nsproxy = task->nsproxy; 3127 if (nsproxy) { 3128 ns = nsproxy->mnt_ns; 3129 get_mnt_ns(ns); 3130 } 3131 task_unlock(task); 3132 3133 return ns; 3134 } 3135 3136 static void mntns_put(void *ns) 3137 { 3138 put_mnt_ns(ns); 3139 } 3140 3141 static int mntns_install(struct nsproxy *nsproxy, void *ns) 3142 { 3143 struct fs_struct *fs = current->fs; 3144 struct mnt_namespace *mnt_ns = ns; 3145 struct path root; 3146 3147 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3148 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3149 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3150 return -EPERM; 3151 3152 if (fs->users != 1) 3153 return -EINVAL; 3154 3155 get_mnt_ns(mnt_ns); 3156 put_mnt_ns(nsproxy->mnt_ns); 3157 nsproxy->mnt_ns = mnt_ns; 3158 3159 /* Find the root */ 3160 root.mnt = &mnt_ns->root->mnt; 3161 root.dentry = mnt_ns->root->mnt.mnt_root; 3162 path_get(&root); 3163 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3164 ; 3165 3166 /* Update the pwd and root */ 3167 set_fs_pwd(fs, &root); 3168 set_fs_root(fs, &root); 3169 3170 path_put(&root); 3171 return 0; 3172 } 3173 3174 static unsigned int mntns_inum(void *ns) 3175 { 3176 struct mnt_namespace *mnt_ns = ns; 3177 return mnt_ns->proc_inum; 3178 } 3179 3180 const struct proc_ns_operations mntns_operations = { 3181 .name = "mnt", 3182 .type = CLONE_NEWNS, 3183 .get = mntns_get, 3184 .put = mntns_put, 3185 .install = mntns_install, 3186 .inum = mntns_inum, 3187 }; 3188