1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 }; 86 87 /* /sys/fs */ 88 struct kobject *fs_kobj; 89 EXPORT_SYMBOL_GPL(fs_kobj); 90 91 /* 92 * vfsmount lock may be taken for read to prevent changes to the 93 * vfsmount hash, ie. during mountpoint lookups or walking back 94 * up the tree. 95 * 96 * It should be taken for write in all cases where the vfsmount 97 * tree or hash is modified or when a vfsmount structure is modified. 98 */ 99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 100 101 static inline void lock_mount_hash(void) 102 { 103 write_seqlock(&mount_lock); 104 } 105 106 static inline void unlock_mount_hash(void) 107 { 108 write_sequnlock(&mount_lock); 109 } 110 111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 112 { 113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 115 tmp = tmp + (tmp >> m_hash_shift); 116 return &mount_hashtable[tmp & m_hash_mask]; 117 } 118 119 static inline struct hlist_head *mp_hash(struct dentry *dentry) 120 { 121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 122 tmp = tmp + (tmp >> mp_hash_shift); 123 return &mountpoint_hashtable[tmp & mp_hash_mask]; 124 } 125 126 static int mnt_alloc_id(struct mount *mnt) 127 { 128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 129 130 if (res < 0) 131 return res; 132 mnt->mnt_id = res; 133 return 0; 134 } 135 136 static void mnt_free_id(struct mount *mnt) 137 { 138 ida_free(&mnt_id_ida, mnt->mnt_id); 139 } 140 141 /* 142 * Allocate a new peer group ID 143 */ 144 static int mnt_alloc_group_id(struct mount *mnt) 145 { 146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 147 148 if (res < 0) 149 return res; 150 mnt->mnt_group_id = res; 151 return 0; 152 } 153 154 /* 155 * Release a peer group ID 156 */ 157 void mnt_release_group_id(struct mount *mnt) 158 { 159 ida_free(&mnt_group_ida, mnt->mnt_group_id); 160 mnt->mnt_group_id = 0; 161 } 162 163 /* 164 * vfsmount lock must be held for read 165 */ 166 static inline void mnt_add_count(struct mount *mnt, int n) 167 { 168 #ifdef CONFIG_SMP 169 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 170 #else 171 preempt_disable(); 172 mnt->mnt_count += n; 173 preempt_enable(); 174 #endif 175 } 176 177 /* 178 * vfsmount lock must be held for write 179 */ 180 int mnt_get_count(struct mount *mnt) 181 { 182 #ifdef CONFIG_SMP 183 int count = 0; 184 int cpu; 185 186 for_each_possible_cpu(cpu) { 187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 188 } 189 190 return count; 191 #else 192 return mnt->mnt_count; 193 #endif 194 } 195 196 static struct mount *alloc_vfsmnt(const char *name) 197 { 198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 199 if (mnt) { 200 int err; 201 202 err = mnt_alloc_id(mnt); 203 if (err) 204 goto out_free_cache; 205 206 if (name) { 207 mnt->mnt_devname = kstrdup_const(name, 208 GFP_KERNEL_ACCOUNT); 209 if (!mnt->mnt_devname) 210 goto out_free_id; 211 } 212 213 #ifdef CONFIG_SMP 214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 215 if (!mnt->mnt_pcp) 216 goto out_free_devname; 217 218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 219 #else 220 mnt->mnt_count = 1; 221 mnt->mnt_writers = 0; 222 #endif 223 224 INIT_HLIST_NODE(&mnt->mnt_hash); 225 INIT_LIST_HEAD(&mnt->mnt_child); 226 INIT_LIST_HEAD(&mnt->mnt_mounts); 227 INIT_LIST_HEAD(&mnt->mnt_list); 228 INIT_LIST_HEAD(&mnt->mnt_expire); 229 INIT_LIST_HEAD(&mnt->mnt_share); 230 INIT_LIST_HEAD(&mnt->mnt_slave_list); 231 INIT_LIST_HEAD(&mnt->mnt_slave); 232 INIT_HLIST_NODE(&mnt->mnt_mp_list); 233 INIT_LIST_HEAD(&mnt->mnt_umounting); 234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 235 mnt->mnt.mnt_userns = &init_user_ns; 236 } 237 return mnt; 238 239 #ifdef CONFIG_SMP 240 out_free_devname: 241 kfree_const(mnt->mnt_devname); 242 #endif 243 out_free_id: 244 mnt_free_id(mnt); 245 out_free_cache: 246 kmem_cache_free(mnt_cache, mnt); 247 return NULL; 248 } 249 250 /* 251 * Most r/o checks on a fs are for operations that take 252 * discrete amounts of time, like a write() or unlink(). 253 * We must keep track of when those operations start 254 * (for permission checks) and when they end, so that 255 * we can determine when writes are able to occur to 256 * a filesystem. 257 */ 258 /* 259 * __mnt_is_readonly: check whether a mount is read-only 260 * @mnt: the mount to check for its write status 261 * 262 * This shouldn't be used directly ouside of the VFS. 263 * It does not guarantee that the filesystem will stay 264 * r/w, just that it is right *now*. This can not and 265 * should not be used in place of IS_RDONLY(inode). 266 * mnt_want/drop_write() will _keep_ the filesystem 267 * r/w. 268 */ 269 bool __mnt_is_readonly(struct vfsmount *mnt) 270 { 271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 272 } 273 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 274 275 static inline void mnt_inc_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 279 #else 280 mnt->mnt_writers++; 281 #endif 282 } 283 284 static inline void mnt_dec_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers--; 290 #endif 291 } 292 293 static unsigned int mnt_get_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 unsigned int count = 0; 297 int cpu; 298 299 for_each_possible_cpu(cpu) { 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 301 } 302 303 return count; 304 #else 305 return mnt->mnt_writers; 306 #endif 307 } 308 309 static int mnt_is_readonly(struct vfsmount *mnt) 310 { 311 if (mnt->mnt_sb->s_readonly_remount) 312 return 1; 313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 314 smp_rmb(); 315 return __mnt_is_readonly(mnt); 316 } 317 318 /* 319 * Most r/o & frozen checks on a fs are for operations that take discrete 320 * amounts of time, like a write() or unlink(). We must keep track of when 321 * those operations start (for permission checks) and when they end, so that we 322 * can determine when writes are able to occur to a filesystem. 323 */ 324 /** 325 * __mnt_want_write - get write access to a mount without freeze protection 326 * @m: the mount on which to take a write 327 * 328 * This tells the low-level filesystem that a write is about to be performed to 329 * it, and makes sure that writes are allowed (mnt it read-write) before 330 * returning success. This operation does not protect against filesystem being 331 * frozen. When the write operation is finished, __mnt_drop_write() must be 332 * called. This is effectively a refcount. 333 */ 334 int __mnt_want_write(struct vfsmount *m) 335 { 336 struct mount *mnt = real_mount(m); 337 int ret = 0; 338 339 preempt_disable(); 340 mnt_inc_writers(mnt); 341 /* 342 * The store to mnt_inc_writers must be visible before we pass 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 344 * incremented count after it has set MNT_WRITE_HOLD. 345 */ 346 smp_mb(); 347 might_lock(&mount_lock.lock); 348 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 349 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 350 cpu_relax(); 351 } else { 352 /* 353 * This prevents priority inversion, if the task 354 * setting MNT_WRITE_HOLD got preempted on a remote 355 * CPU, and it prevents life lock if the task setting 356 * MNT_WRITE_HOLD has a lower priority and is bound to 357 * the same CPU as the task that is spinning here. 358 */ 359 preempt_enable(); 360 lock_mount_hash(); 361 unlock_mount_hash(); 362 preempt_disable(); 363 } 364 } 365 /* 366 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 367 * be set to match its requirements. So we must not load that until 368 * MNT_WRITE_HOLD is cleared. 369 */ 370 smp_rmb(); 371 if (mnt_is_readonly(m)) { 372 mnt_dec_writers(mnt); 373 ret = -EROFS; 374 } 375 preempt_enable(); 376 377 return ret; 378 } 379 380 /** 381 * mnt_want_write - get write access to a mount 382 * @m: the mount on which to take a write 383 * 384 * This tells the low-level filesystem that a write is about to be performed to 385 * it, and makes sure that writes are allowed (mount is read-write, filesystem 386 * is not frozen) before returning success. When the write operation is 387 * finished, mnt_drop_write() must be called. This is effectively a refcount. 388 */ 389 int mnt_want_write(struct vfsmount *m) 390 { 391 int ret; 392 393 sb_start_write(m->mnt_sb); 394 ret = __mnt_want_write(m); 395 if (ret) 396 sb_end_write(m->mnt_sb); 397 return ret; 398 } 399 EXPORT_SYMBOL_GPL(mnt_want_write); 400 401 /** 402 * __mnt_want_write_file - get write access to a file's mount 403 * @file: the file who's mount on which to take a write 404 * 405 * This is like __mnt_want_write, but if the file is already open for writing it 406 * skips incrementing mnt_writers (since the open file already has a reference) 407 * and instead only does the check for emergency r/o remounts. This must be 408 * paired with __mnt_drop_write_file. 409 */ 410 int __mnt_want_write_file(struct file *file) 411 { 412 if (file->f_mode & FMODE_WRITER) { 413 /* 414 * Superblock may have become readonly while there are still 415 * writable fd's, e.g. due to a fs error with errors=remount-ro 416 */ 417 if (__mnt_is_readonly(file->f_path.mnt)) 418 return -EROFS; 419 return 0; 420 } 421 return __mnt_want_write(file->f_path.mnt); 422 } 423 424 /** 425 * mnt_want_write_file - get write access to a file's mount 426 * @file: the file who's mount on which to take a write 427 * 428 * This is like mnt_want_write, but if the file is already open for writing it 429 * skips incrementing mnt_writers (since the open file already has a reference) 430 * and instead only does the freeze protection and the check for emergency r/o 431 * remounts. This must be paired with mnt_drop_write_file. 432 */ 433 int mnt_want_write_file(struct file *file) 434 { 435 int ret; 436 437 sb_start_write(file_inode(file)->i_sb); 438 ret = __mnt_want_write_file(file); 439 if (ret) 440 sb_end_write(file_inode(file)->i_sb); 441 return ret; 442 } 443 EXPORT_SYMBOL_GPL(mnt_want_write_file); 444 445 /** 446 * __mnt_drop_write - give up write access to a mount 447 * @mnt: the mount on which to give up write access 448 * 449 * Tells the low-level filesystem that we are done 450 * performing writes to it. Must be matched with 451 * __mnt_want_write() call above. 452 */ 453 void __mnt_drop_write(struct vfsmount *mnt) 454 { 455 preempt_disable(); 456 mnt_dec_writers(real_mount(mnt)); 457 preempt_enable(); 458 } 459 460 /** 461 * mnt_drop_write - give up write access to a mount 462 * @mnt: the mount on which to give up write access 463 * 464 * Tells the low-level filesystem that we are done performing writes to it and 465 * also allows filesystem to be frozen again. Must be matched with 466 * mnt_want_write() call above. 467 */ 468 void mnt_drop_write(struct vfsmount *mnt) 469 { 470 __mnt_drop_write(mnt); 471 sb_end_write(mnt->mnt_sb); 472 } 473 EXPORT_SYMBOL_GPL(mnt_drop_write); 474 475 void __mnt_drop_write_file(struct file *file) 476 { 477 if (!(file->f_mode & FMODE_WRITER)) 478 __mnt_drop_write(file->f_path.mnt); 479 } 480 481 void mnt_drop_write_file(struct file *file) 482 { 483 __mnt_drop_write_file(file); 484 sb_end_write(file_inode(file)->i_sb); 485 } 486 EXPORT_SYMBOL(mnt_drop_write_file); 487 488 /** 489 * mnt_hold_writers - prevent write access to the given mount 490 * @mnt: mnt to prevent write access to 491 * 492 * Prevents write access to @mnt if there are no active writers for @mnt. 493 * This function needs to be called and return successfully before changing 494 * properties of @mnt that need to remain stable for callers with write access 495 * to @mnt. 496 * 497 * After this functions has been called successfully callers must pair it with 498 * a call to mnt_unhold_writers() in order to stop preventing write access to 499 * @mnt. 500 * 501 * Context: This function expects lock_mount_hash() to be held serializing 502 * setting MNT_WRITE_HOLD. 503 * Return: On success 0 is returned. 504 * On error, -EBUSY is returned. 505 */ 506 static inline int mnt_hold_writers(struct mount *mnt) 507 { 508 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 509 /* 510 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 511 * should be visible before we do. 512 */ 513 smp_mb(); 514 515 /* 516 * With writers on hold, if this value is zero, then there are 517 * definitely no active writers (although held writers may subsequently 518 * increment the count, they'll have to wait, and decrement it after 519 * seeing MNT_READONLY). 520 * 521 * It is OK to have counter incremented on one CPU and decremented on 522 * another: the sum will add up correctly. The danger would be when we 523 * sum up each counter, if we read a counter before it is incremented, 524 * but then read another CPU's count which it has been subsequently 525 * decremented from -- we would see more decrements than we should. 526 * MNT_WRITE_HOLD protects against this scenario, because 527 * mnt_want_write first increments count, then smp_mb, then spins on 528 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 529 * we're counting up here. 530 */ 531 if (mnt_get_writers(mnt) > 0) 532 return -EBUSY; 533 534 return 0; 535 } 536 537 /** 538 * mnt_unhold_writers - stop preventing write access to the given mount 539 * @mnt: mnt to stop preventing write access to 540 * 541 * Stop preventing write access to @mnt allowing callers to gain write access 542 * to @mnt again. 543 * 544 * This function can only be called after a successful call to 545 * mnt_hold_writers(). 546 * 547 * Context: This function expects lock_mount_hash() to be held. 548 */ 549 static inline void mnt_unhold_writers(struct mount *mnt) 550 { 551 /* 552 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 553 * that become unheld will see MNT_READONLY. 554 */ 555 smp_wmb(); 556 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 557 } 558 559 static int mnt_make_readonly(struct mount *mnt) 560 { 561 int ret; 562 563 ret = mnt_hold_writers(mnt); 564 if (!ret) 565 mnt->mnt.mnt_flags |= MNT_READONLY; 566 mnt_unhold_writers(mnt); 567 return ret; 568 } 569 570 int sb_prepare_remount_readonly(struct super_block *sb) 571 { 572 struct mount *mnt; 573 int err = 0; 574 575 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 576 if (atomic_long_read(&sb->s_remove_count)) 577 return -EBUSY; 578 579 lock_mount_hash(); 580 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 581 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 582 err = mnt_hold_writers(mnt); 583 if (err) 584 break; 585 } 586 } 587 if (!err && atomic_long_read(&sb->s_remove_count)) 588 err = -EBUSY; 589 590 if (!err) { 591 sb->s_readonly_remount = 1; 592 smp_wmb(); 593 } 594 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 595 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 596 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 597 } 598 unlock_mount_hash(); 599 600 return err; 601 } 602 603 static void free_vfsmnt(struct mount *mnt) 604 { 605 struct user_namespace *mnt_userns; 606 607 mnt_userns = mnt_user_ns(&mnt->mnt); 608 if (!initial_idmapping(mnt_userns)) 609 put_user_ns(mnt_userns); 610 kfree_const(mnt->mnt_devname); 611 #ifdef CONFIG_SMP 612 free_percpu(mnt->mnt_pcp); 613 #endif 614 kmem_cache_free(mnt_cache, mnt); 615 } 616 617 static void delayed_free_vfsmnt(struct rcu_head *head) 618 { 619 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 620 } 621 622 /* call under rcu_read_lock */ 623 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 624 { 625 struct mount *mnt; 626 if (read_seqretry(&mount_lock, seq)) 627 return 1; 628 if (bastard == NULL) 629 return 0; 630 mnt = real_mount(bastard); 631 mnt_add_count(mnt, 1); 632 smp_mb(); // see mntput_no_expire() 633 if (likely(!read_seqretry(&mount_lock, seq))) 634 return 0; 635 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 636 mnt_add_count(mnt, -1); 637 return 1; 638 } 639 lock_mount_hash(); 640 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 641 mnt_add_count(mnt, -1); 642 unlock_mount_hash(); 643 return 1; 644 } 645 unlock_mount_hash(); 646 /* caller will mntput() */ 647 return -1; 648 } 649 650 /* call under rcu_read_lock */ 651 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 652 { 653 int res = __legitimize_mnt(bastard, seq); 654 if (likely(!res)) 655 return true; 656 if (unlikely(res < 0)) { 657 rcu_read_unlock(); 658 mntput(bastard); 659 rcu_read_lock(); 660 } 661 return false; 662 } 663 664 /* 665 * find the first mount at @dentry on vfsmount @mnt. 666 * call under rcu_read_lock() 667 */ 668 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 669 { 670 struct hlist_head *head = m_hash(mnt, dentry); 671 struct mount *p; 672 673 hlist_for_each_entry_rcu(p, head, mnt_hash) 674 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 675 return p; 676 return NULL; 677 } 678 679 /* 680 * lookup_mnt - Return the first child mount mounted at path 681 * 682 * "First" means first mounted chronologically. If you create the 683 * following mounts: 684 * 685 * mount /dev/sda1 /mnt 686 * mount /dev/sda2 /mnt 687 * mount /dev/sda3 /mnt 688 * 689 * Then lookup_mnt() on the base /mnt dentry in the root mount will 690 * return successively the root dentry and vfsmount of /dev/sda1, then 691 * /dev/sda2, then /dev/sda3, then NULL. 692 * 693 * lookup_mnt takes a reference to the found vfsmount. 694 */ 695 struct vfsmount *lookup_mnt(const struct path *path) 696 { 697 struct mount *child_mnt; 698 struct vfsmount *m; 699 unsigned seq; 700 701 rcu_read_lock(); 702 do { 703 seq = read_seqbegin(&mount_lock); 704 child_mnt = __lookup_mnt(path->mnt, path->dentry); 705 m = child_mnt ? &child_mnt->mnt : NULL; 706 } while (!legitimize_mnt(m, seq)); 707 rcu_read_unlock(); 708 return m; 709 } 710 711 static inline void lock_ns_list(struct mnt_namespace *ns) 712 { 713 spin_lock(&ns->ns_lock); 714 } 715 716 static inline void unlock_ns_list(struct mnt_namespace *ns) 717 { 718 spin_unlock(&ns->ns_lock); 719 } 720 721 static inline bool mnt_is_cursor(struct mount *mnt) 722 { 723 return mnt->mnt.mnt_flags & MNT_CURSOR; 724 } 725 726 /* 727 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 728 * current mount namespace. 729 * 730 * The common case is dentries are not mountpoints at all and that 731 * test is handled inline. For the slow case when we are actually 732 * dealing with a mountpoint of some kind, walk through all of the 733 * mounts in the current mount namespace and test to see if the dentry 734 * is a mountpoint. 735 * 736 * The mount_hashtable is not usable in the context because we 737 * need to identify all mounts that may be in the current mount 738 * namespace not just a mount that happens to have some specified 739 * parent mount. 740 */ 741 bool __is_local_mountpoint(struct dentry *dentry) 742 { 743 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 744 struct mount *mnt; 745 bool is_covered = false; 746 747 down_read(&namespace_sem); 748 lock_ns_list(ns); 749 list_for_each_entry(mnt, &ns->list, mnt_list) { 750 if (mnt_is_cursor(mnt)) 751 continue; 752 is_covered = (mnt->mnt_mountpoint == dentry); 753 if (is_covered) 754 break; 755 } 756 unlock_ns_list(ns); 757 up_read(&namespace_sem); 758 759 return is_covered; 760 } 761 762 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 763 { 764 struct hlist_head *chain = mp_hash(dentry); 765 struct mountpoint *mp; 766 767 hlist_for_each_entry(mp, chain, m_hash) { 768 if (mp->m_dentry == dentry) { 769 mp->m_count++; 770 return mp; 771 } 772 } 773 return NULL; 774 } 775 776 static struct mountpoint *get_mountpoint(struct dentry *dentry) 777 { 778 struct mountpoint *mp, *new = NULL; 779 int ret; 780 781 if (d_mountpoint(dentry)) { 782 /* might be worth a WARN_ON() */ 783 if (d_unlinked(dentry)) 784 return ERR_PTR(-ENOENT); 785 mountpoint: 786 read_seqlock_excl(&mount_lock); 787 mp = lookup_mountpoint(dentry); 788 read_sequnlock_excl(&mount_lock); 789 if (mp) 790 goto done; 791 } 792 793 if (!new) 794 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 795 if (!new) 796 return ERR_PTR(-ENOMEM); 797 798 799 /* Exactly one processes may set d_mounted */ 800 ret = d_set_mounted(dentry); 801 802 /* Someone else set d_mounted? */ 803 if (ret == -EBUSY) 804 goto mountpoint; 805 806 /* The dentry is not available as a mountpoint? */ 807 mp = ERR_PTR(ret); 808 if (ret) 809 goto done; 810 811 /* Add the new mountpoint to the hash table */ 812 read_seqlock_excl(&mount_lock); 813 new->m_dentry = dget(dentry); 814 new->m_count = 1; 815 hlist_add_head(&new->m_hash, mp_hash(dentry)); 816 INIT_HLIST_HEAD(&new->m_list); 817 read_sequnlock_excl(&mount_lock); 818 819 mp = new; 820 new = NULL; 821 done: 822 kfree(new); 823 return mp; 824 } 825 826 /* 827 * vfsmount lock must be held. Additionally, the caller is responsible 828 * for serializing calls for given disposal list. 829 */ 830 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 831 { 832 if (!--mp->m_count) { 833 struct dentry *dentry = mp->m_dentry; 834 BUG_ON(!hlist_empty(&mp->m_list)); 835 spin_lock(&dentry->d_lock); 836 dentry->d_flags &= ~DCACHE_MOUNTED; 837 spin_unlock(&dentry->d_lock); 838 dput_to_list(dentry, list); 839 hlist_del(&mp->m_hash); 840 kfree(mp); 841 } 842 } 843 844 /* called with namespace_lock and vfsmount lock */ 845 static void put_mountpoint(struct mountpoint *mp) 846 { 847 __put_mountpoint(mp, &ex_mountpoints); 848 } 849 850 static inline int check_mnt(struct mount *mnt) 851 { 852 return mnt->mnt_ns == current->nsproxy->mnt_ns; 853 } 854 855 /* 856 * vfsmount lock must be held for write 857 */ 858 static void touch_mnt_namespace(struct mnt_namespace *ns) 859 { 860 if (ns) { 861 ns->event = ++event; 862 wake_up_interruptible(&ns->poll); 863 } 864 } 865 866 /* 867 * vfsmount lock must be held for write 868 */ 869 static void __touch_mnt_namespace(struct mnt_namespace *ns) 870 { 871 if (ns && ns->event != event) { 872 ns->event = event; 873 wake_up_interruptible(&ns->poll); 874 } 875 } 876 877 /* 878 * vfsmount lock must be held for write 879 */ 880 static struct mountpoint *unhash_mnt(struct mount *mnt) 881 { 882 struct mountpoint *mp; 883 mnt->mnt_parent = mnt; 884 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 885 list_del_init(&mnt->mnt_child); 886 hlist_del_init_rcu(&mnt->mnt_hash); 887 hlist_del_init(&mnt->mnt_mp_list); 888 mp = mnt->mnt_mp; 889 mnt->mnt_mp = NULL; 890 return mp; 891 } 892 893 /* 894 * vfsmount lock must be held for write 895 */ 896 static void umount_mnt(struct mount *mnt) 897 { 898 put_mountpoint(unhash_mnt(mnt)); 899 } 900 901 /* 902 * vfsmount lock must be held for write 903 */ 904 void mnt_set_mountpoint(struct mount *mnt, 905 struct mountpoint *mp, 906 struct mount *child_mnt) 907 { 908 mp->m_count++; 909 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 910 child_mnt->mnt_mountpoint = mp->m_dentry; 911 child_mnt->mnt_parent = mnt; 912 child_mnt->mnt_mp = mp; 913 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 914 } 915 916 static void __attach_mnt(struct mount *mnt, struct mount *parent) 917 { 918 hlist_add_head_rcu(&mnt->mnt_hash, 919 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 920 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 921 } 922 923 /* 924 * vfsmount lock must be held for write 925 */ 926 static void attach_mnt(struct mount *mnt, 927 struct mount *parent, 928 struct mountpoint *mp) 929 { 930 mnt_set_mountpoint(parent, mp, mnt); 931 __attach_mnt(mnt, parent); 932 } 933 934 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 935 { 936 struct mountpoint *old_mp = mnt->mnt_mp; 937 struct mount *old_parent = mnt->mnt_parent; 938 939 list_del_init(&mnt->mnt_child); 940 hlist_del_init(&mnt->mnt_mp_list); 941 hlist_del_init_rcu(&mnt->mnt_hash); 942 943 attach_mnt(mnt, parent, mp); 944 945 put_mountpoint(old_mp); 946 mnt_add_count(old_parent, -1); 947 } 948 949 /* 950 * vfsmount lock must be held for write 951 */ 952 static void commit_tree(struct mount *mnt) 953 { 954 struct mount *parent = mnt->mnt_parent; 955 struct mount *m; 956 LIST_HEAD(head); 957 struct mnt_namespace *n = parent->mnt_ns; 958 959 BUG_ON(parent == mnt); 960 961 list_add_tail(&head, &mnt->mnt_list); 962 list_for_each_entry(m, &head, mnt_list) 963 m->mnt_ns = n; 964 965 list_splice(&head, n->list.prev); 966 967 n->mounts += n->pending_mounts; 968 n->pending_mounts = 0; 969 970 __attach_mnt(mnt, parent); 971 touch_mnt_namespace(n); 972 } 973 974 static struct mount *next_mnt(struct mount *p, struct mount *root) 975 { 976 struct list_head *next = p->mnt_mounts.next; 977 if (next == &p->mnt_mounts) { 978 while (1) { 979 if (p == root) 980 return NULL; 981 next = p->mnt_child.next; 982 if (next != &p->mnt_parent->mnt_mounts) 983 break; 984 p = p->mnt_parent; 985 } 986 } 987 return list_entry(next, struct mount, mnt_child); 988 } 989 990 static struct mount *skip_mnt_tree(struct mount *p) 991 { 992 struct list_head *prev = p->mnt_mounts.prev; 993 while (prev != &p->mnt_mounts) { 994 p = list_entry(prev, struct mount, mnt_child); 995 prev = p->mnt_mounts.prev; 996 } 997 return p; 998 } 999 1000 /** 1001 * vfs_create_mount - Create a mount for a configured superblock 1002 * @fc: The configuration context with the superblock attached 1003 * 1004 * Create a mount to an already configured superblock. If necessary, the 1005 * caller should invoke vfs_get_tree() before calling this. 1006 * 1007 * Note that this does not attach the mount to anything. 1008 */ 1009 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1010 { 1011 struct mount *mnt; 1012 struct user_namespace *fs_userns; 1013 1014 if (!fc->root) 1015 return ERR_PTR(-EINVAL); 1016 1017 mnt = alloc_vfsmnt(fc->source ?: "none"); 1018 if (!mnt) 1019 return ERR_PTR(-ENOMEM); 1020 1021 if (fc->sb_flags & SB_KERNMOUNT) 1022 mnt->mnt.mnt_flags = MNT_INTERNAL; 1023 1024 atomic_inc(&fc->root->d_sb->s_active); 1025 mnt->mnt.mnt_sb = fc->root->d_sb; 1026 mnt->mnt.mnt_root = dget(fc->root); 1027 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1028 mnt->mnt_parent = mnt; 1029 1030 fs_userns = mnt->mnt.mnt_sb->s_user_ns; 1031 if (!initial_idmapping(fs_userns)) 1032 mnt->mnt.mnt_userns = get_user_ns(fs_userns); 1033 1034 lock_mount_hash(); 1035 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1036 unlock_mount_hash(); 1037 return &mnt->mnt; 1038 } 1039 EXPORT_SYMBOL(vfs_create_mount); 1040 1041 struct vfsmount *fc_mount(struct fs_context *fc) 1042 { 1043 int err = vfs_get_tree(fc); 1044 if (!err) { 1045 up_write(&fc->root->d_sb->s_umount); 1046 return vfs_create_mount(fc); 1047 } 1048 return ERR_PTR(err); 1049 } 1050 EXPORT_SYMBOL(fc_mount); 1051 1052 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1053 int flags, const char *name, 1054 void *data) 1055 { 1056 struct fs_context *fc; 1057 struct vfsmount *mnt; 1058 int ret = 0; 1059 1060 if (!type) 1061 return ERR_PTR(-EINVAL); 1062 1063 fc = fs_context_for_mount(type, flags); 1064 if (IS_ERR(fc)) 1065 return ERR_CAST(fc); 1066 1067 if (name) 1068 ret = vfs_parse_fs_string(fc, "source", 1069 name, strlen(name)); 1070 if (!ret) 1071 ret = parse_monolithic_mount_data(fc, data); 1072 if (!ret) 1073 mnt = fc_mount(fc); 1074 else 1075 mnt = ERR_PTR(ret); 1076 1077 put_fs_context(fc); 1078 return mnt; 1079 } 1080 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1081 1082 struct vfsmount * 1083 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1084 const char *name, void *data) 1085 { 1086 /* Until it is worked out how to pass the user namespace 1087 * through from the parent mount to the submount don't support 1088 * unprivileged mounts with submounts. 1089 */ 1090 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1091 return ERR_PTR(-EPERM); 1092 1093 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1094 } 1095 EXPORT_SYMBOL_GPL(vfs_submount); 1096 1097 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1098 int flag) 1099 { 1100 struct super_block *sb = old->mnt.mnt_sb; 1101 struct mount *mnt; 1102 int err; 1103 1104 mnt = alloc_vfsmnt(old->mnt_devname); 1105 if (!mnt) 1106 return ERR_PTR(-ENOMEM); 1107 1108 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1109 mnt->mnt_group_id = 0; /* not a peer of original */ 1110 else 1111 mnt->mnt_group_id = old->mnt_group_id; 1112 1113 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1114 err = mnt_alloc_group_id(mnt); 1115 if (err) 1116 goto out_free; 1117 } 1118 1119 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1120 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1121 1122 atomic_inc(&sb->s_active); 1123 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt); 1124 if (!initial_idmapping(mnt->mnt.mnt_userns)) 1125 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns); 1126 mnt->mnt.mnt_sb = sb; 1127 mnt->mnt.mnt_root = dget(root); 1128 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1129 mnt->mnt_parent = mnt; 1130 lock_mount_hash(); 1131 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1132 unlock_mount_hash(); 1133 1134 if ((flag & CL_SLAVE) || 1135 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1136 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1137 mnt->mnt_master = old; 1138 CLEAR_MNT_SHARED(mnt); 1139 } else if (!(flag & CL_PRIVATE)) { 1140 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1141 list_add(&mnt->mnt_share, &old->mnt_share); 1142 if (IS_MNT_SLAVE(old)) 1143 list_add(&mnt->mnt_slave, &old->mnt_slave); 1144 mnt->mnt_master = old->mnt_master; 1145 } else { 1146 CLEAR_MNT_SHARED(mnt); 1147 } 1148 if (flag & CL_MAKE_SHARED) 1149 set_mnt_shared(mnt); 1150 1151 /* stick the duplicate mount on the same expiry list 1152 * as the original if that was on one */ 1153 if (flag & CL_EXPIRE) { 1154 if (!list_empty(&old->mnt_expire)) 1155 list_add(&mnt->mnt_expire, &old->mnt_expire); 1156 } 1157 1158 return mnt; 1159 1160 out_free: 1161 mnt_free_id(mnt); 1162 free_vfsmnt(mnt); 1163 return ERR_PTR(err); 1164 } 1165 1166 static void cleanup_mnt(struct mount *mnt) 1167 { 1168 struct hlist_node *p; 1169 struct mount *m; 1170 /* 1171 * The warning here probably indicates that somebody messed 1172 * up a mnt_want/drop_write() pair. If this happens, the 1173 * filesystem was probably unable to make r/w->r/o transitions. 1174 * The locking used to deal with mnt_count decrement provides barriers, 1175 * so mnt_get_writers() below is safe. 1176 */ 1177 WARN_ON(mnt_get_writers(mnt)); 1178 if (unlikely(mnt->mnt_pins.first)) 1179 mnt_pin_kill(mnt); 1180 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1181 hlist_del(&m->mnt_umount); 1182 mntput(&m->mnt); 1183 } 1184 fsnotify_vfsmount_delete(&mnt->mnt); 1185 dput(mnt->mnt.mnt_root); 1186 deactivate_super(mnt->mnt.mnt_sb); 1187 mnt_free_id(mnt); 1188 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1189 } 1190 1191 static void __cleanup_mnt(struct rcu_head *head) 1192 { 1193 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1194 } 1195 1196 static LLIST_HEAD(delayed_mntput_list); 1197 static void delayed_mntput(struct work_struct *unused) 1198 { 1199 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1200 struct mount *m, *t; 1201 1202 llist_for_each_entry_safe(m, t, node, mnt_llist) 1203 cleanup_mnt(m); 1204 } 1205 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1206 1207 static void mntput_no_expire(struct mount *mnt) 1208 { 1209 LIST_HEAD(list); 1210 int count; 1211 1212 rcu_read_lock(); 1213 if (likely(READ_ONCE(mnt->mnt_ns))) { 1214 /* 1215 * Since we don't do lock_mount_hash() here, 1216 * ->mnt_ns can change under us. However, if it's 1217 * non-NULL, then there's a reference that won't 1218 * be dropped until after an RCU delay done after 1219 * turning ->mnt_ns NULL. So if we observe it 1220 * non-NULL under rcu_read_lock(), the reference 1221 * we are dropping is not the final one. 1222 */ 1223 mnt_add_count(mnt, -1); 1224 rcu_read_unlock(); 1225 return; 1226 } 1227 lock_mount_hash(); 1228 /* 1229 * make sure that if __legitimize_mnt() has not seen us grab 1230 * mount_lock, we'll see their refcount increment here. 1231 */ 1232 smp_mb(); 1233 mnt_add_count(mnt, -1); 1234 count = mnt_get_count(mnt); 1235 if (count != 0) { 1236 WARN_ON(count < 0); 1237 rcu_read_unlock(); 1238 unlock_mount_hash(); 1239 return; 1240 } 1241 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1242 rcu_read_unlock(); 1243 unlock_mount_hash(); 1244 return; 1245 } 1246 mnt->mnt.mnt_flags |= MNT_DOOMED; 1247 rcu_read_unlock(); 1248 1249 list_del(&mnt->mnt_instance); 1250 1251 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1252 struct mount *p, *tmp; 1253 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1254 __put_mountpoint(unhash_mnt(p), &list); 1255 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1256 } 1257 } 1258 unlock_mount_hash(); 1259 shrink_dentry_list(&list); 1260 1261 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1262 struct task_struct *task = current; 1263 if (likely(!(task->flags & PF_KTHREAD))) { 1264 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1265 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1266 return; 1267 } 1268 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1269 schedule_delayed_work(&delayed_mntput_work, 1); 1270 return; 1271 } 1272 cleanup_mnt(mnt); 1273 } 1274 1275 void mntput(struct vfsmount *mnt) 1276 { 1277 if (mnt) { 1278 struct mount *m = real_mount(mnt); 1279 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1280 if (unlikely(m->mnt_expiry_mark)) 1281 m->mnt_expiry_mark = 0; 1282 mntput_no_expire(m); 1283 } 1284 } 1285 EXPORT_SYMBOL(mntput); 1286 1287 struct vfsmount *mntget(struct vfsmount *mnt) 1288 { 1289 if (mnt) 1290 mnt_add_count(real_mount(mnt), 1); 1291 return mnt; 1292 } 1293 EXPORT_SYMBOL(mntget); 1294 1295 /** 1296 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1297 * @path: path to check 1298 * 1299 * d_mountpoint() can only be used reliably to establish if a dentry is 1300 * not mounted in any namespace and that common case is handled inline. 1301 * d_mountpoint() isn't aware of the possibility there may be multiple 1302 * mounts using a given dentry in a different namespace. This function 1303 * checks if the passed in path is a mountpoint rather than the dentry 1304 * alone. 1305 */ 1306 bool path_is_mountpoint(const struct path *path) 1307 { 1308 unsigned seq; 1309 bool res; 1310 1311 if (!d_mountpoint(path->dentry)) 1312 return false; 1313 1314 rcu_read_lock(); 1315 do { 1316 seq = read_seqbegin(&mount_lock); 1317 res = __path_is_mountpoint(path); 1318 } while (read_seqretry(&mount_lock, seq)); 1319 rcu_read_unlock(); 1320 1321 return res; 1322 } 1323 EXPORT_SYMBOL(path_is_mountpoint); 1324 1325 struct vfsmount *mnt_clone_internal(const struct path *path) 1326 { 1327 struct mount *p; 1328 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1329 if (IS_ERR(p)) 1330 return ERR_CAST(p); 1331 p->mnt.mnt_flags |= MNT_INTERNAL; 1332 return &p->mnt; 1333 } 1334 1335 #ifdef CONFIG_PROC_FS 1336 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1337 struct list_head *p) 1338 { 1339 struct mount *mnt, *ret = NULL; 1340 1341 lock_ns_list(ns); 1342 list_for_each_continue(p, &ns->list) { 1343 mnt = list_entry(p, typeof(*mnt), mnt_list); 1344 if (!mnt_is_cursor(mnt)) { 1345 ret = mnt; 1346 break; 1347 } 1348 } 1349 unlock_ns_list(ns); 1350 1351 return ret; 1352 } 1353 1354 /* iterator; we want it to have access to namespace_sem, thus here... */ 1355 static void *m_start(struct seq_file *m, loff_t *pos) 1356 { 1357 struct proc_mounts *p = m->private; 1358 struct list_head *prev; 1359 1360 down_read(&namespace_sem); 1361 if (!*pos) { 1362 prev = &p->ns->list; 1363 } else { 1364 prev = &p->cursor.mnt_list; 1365 1366 /* Read after we'd reached the end? */ 1367 if (list_empty(prev)) 1368 return NULL; 1369 } 1370 1371 return mnt_list_next(p->ns, prev); 1372 } 1373 1374 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1375 { 1376 struct proc_mounts *p = m->private; 1377 struct mount *mnt = v; 1378 1379 ++*pos; 1380 return mnt_list_next(p->ns, &mnt->mnt_list); 1381 } 1382 1383 static void m_stop(struct seq_file *m, void *v) 1384 { 1385 struct proc_mounts *p = m->private; 1386 struct mount *mnt = v; 1387 1388 lock_ns_list(p->ns); 1389 if (mnt) 1390 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1391 else 1392 list_del_init(&p->cursor.mnt_list); 1393 unlock_ns_list(p->ns); 1394 up_read(&namespace_sem); 1395 } 1396 1397 static int m_show(struct seq_file *m, void *v) 1398 { 1399 struct proc_mounts *p = m->private; 1400 struct mount *r = v; 1401 return p->show(m, &r->mnt); 1402 } 1403 1404 const struct seq_operations mounts_op = { 1405 .start = m_start, 1406 .next = m_next, 1407 .stop = m_stop, 1408 .show = m_show, 1409 }; 1410 1411 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1412 { 1413 down_read(&namespace_sem); 1414 lock_ns_list(ns); 1415 list_del(&cursor->mnt_list); 1416 unlock_ns_list(ns); 1417 up_read(&namespace_sem); 1418 } 1419 #endif /* CONFIG_PROC_FS */ 1420 1421 /** 1422 * may_umount_tree - check if a mount tree is busy 1423 * @m: root of mount tree 1424 * 1425 * This is called to check if a tree of mounts has any 1426 * open files, pwds, chroots or sub mounts that are 1427 * busy. 1428 */ 1429 int may_umount_tree(struct vfsmount *m) 1430 { 1431 struct mount *mnt = real_mount(m); 1432 int actual_refs = 0; 1433 int minimum_refs = 0; 1434 struct mount *p; 1435 BUG_ON(!m); 1436 1437 /* write lock needed for mnt_get_count */ 1438 lock_mount_hash(); 1439 for (p = mnt; p; p = next_mnt(p, mnt)) { 1440 actual_refs += mnt_get_count(p); 1441 minimum_refs += 2; 1442 } 1443 unlock_mount_hash(); 1444 1445 if (actual_refs > minimum_refs) 1446 return 0; 1447 1448 return 1; 1449 } 1450 1451 EXPORT_SYMBOL(may_umount_tree); 1452 1453 /** 1454 * may_umount - check if a mount point is busy 1455 * @mnt: root of mount 1456 * 1457 * This is called to check if a mount point has any 1458 * open files, pwds, chroots or sub mounts. If the 1459 * mount has sub mounts this will return busy 1460 * regardless of whether the sub mounts are busy. 1461 * 1462 * Doesn't take quota and stuff into account. IOW, in some cases it will 1463 * give false negatives. The main reason why it's here is that we need 1464 * a non-destructive way to look for easily umountable filesystems. 1465 */ 1466 int may_umount(struct vfsmount *mnt) 1467 { 1468 int ret = 1; 1469 down_read(&namespace_sem); 1470 lock_mount_hash(); 1471 if (propagate_mount_busy(real_mount(mnt), 2)) 1472 ret = 0; 1473 unlock_mount_hash(); 1474 up_read(&namespace_sem); 1475 return ret; 1476 } 1477 1478 EXPORT_SYMBOL(may_umount); 1479 1480 static void namespace_unlock(void) 1481 { 1482 struct hlist_head head; 1483 struct hlist_node *p; 1484 struct mount *m; 1485 LIST_HEAD(list); 1486 1487 hlist_move_list(&unmounted, &head); 1488 list_splice_init(&ex_mountpoints, &list); 1489 1490 up_write(&namespace_sem); 1491 1492 shrink_dentry_list(&list); 1493 1494 if (likely(hlist_empty(&head))) 1495 return; 1496 1497 synchronize_rcu_expedited(); 1498 1499 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1500 hlist_del(&m->mnt_umount); 1501 mntput(&m->mnt); 1502 } 1503 } 1504 1505 static inline void namespace_lock(void) 1506 { 1507 down_write(&namespace_sem); 1508 } 1509 1510 enum umount_tree_flags { 1511 UMOUNT_SYNC = 1, 1512 UMOUNT_PROPAGATE = 2, 1513 UMOUNT_CONNECTED = 4, 1514 }; 1515 1516 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1517 { 1518 /* Leaving mounts connected is only valid for lazy umounts */ 1519 if (how & UMOUNT_SYNC) 1520 return true; 1521 1522 /* A mount without a parent has nothing to be connected to */ 1523 if (!mnt_has_parent(mnt)) 1524 return true; 1525 1526 /* Because the reference counting rules change when mounts are 1527 * unmounted and connected, umounted mounts may not be 1528 * connected to mounted mounts. 1529 */ 1530 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1531 return true; 1532 1533 /* Has it been requested that the mount remain connected? */ 1534 if (how & UMOUNT_CONNECTED) 1535 return false; 1536 1537 /* Is the mount locked such that it needs to remain connected? */ 1538 if (IS_MNT_LOCKED(mnt)) 1539 return false; 1540 1541 /* By default disconnect the mount */ 1542 return true; 1543 } 1544 1545 /* 1546 * mount_lock must be held 1547 * namespace_sem must be held for write 1548 */ 1549 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1550 { 1551 LIST_HEAD(tmp_list); 1552 struct mount *p; 1553 1554 if (how & UMOUNT_PROPAGATE) 1555 propagate_mount_unlock(mnt); 1556 1557 /* Gather the mounts to umount */ 1558 for (p = mnt; p; p = next_mnt(p, mnt)) { 1559 p->mnt.mnt_flags |= MNT_UMOUNT; 1560 list_move(&p->mnt_list, &tmp_list); 1561 } 1562 1563 /* Hide the mounts from mnt_mounts */ 1564 list_for_each_entry(p, &tmp_list, mnt_list) { 1565 list_del_init(&p->mnt_child); 1566 } 1567 1568 /* Add propogated mounts to the tmp_list */ 1569 if (how & UMOUNT_PROPAGATE) 1570 propagate_umount(&tmp_list); 1571 1572 while (!list_empty(&tmp_list)) { 1573 struct mnt_namespace *ns; 1574 bool disconnect; 1575 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1576 list_del_init(&p->mnt_expire); 1577 list_del_init(&p->mnt_list); 1578 ns = p->mnt_ns; 1579 if (ns) { 1580 ns->mounts--; 1581 __touch_mnt_namespace(ns); 1582 } 1583 p->mnt_ns = NULL; 1584 if (how & UMOUNT_SYNC) 1585 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1586 1587 disconnect = disconnect_mount(p, how); 1588 if (mnt_has_parent(p)) { 1589 mnt_add_count(p->mnt_parent, -1); 1590 if (!disconnect) { 1591 /* Don't forget about p */ 1592 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1593 } else { 1594 umount_mnt(p); 1595 } 1596 } 1597 change_mnt_propagation(p, MS_PRIVATE); 1598 if (disconnect) 1599 hlist_add_head(&p->mnt_umount, &unmounted); 1600 } 1601 } 1602 1603 static void shrink_submounts(struct mount *mnt); 1604 1605 static int do_umount_root(struct super_block *sb) 1606 { 1607 int ret = 0; 1608 1609 down_write(&sb->s_umount); 1610 if (!sb_rdonly(sb)) { 1611 struct fs_context *fc; 1612 1613 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1614 SB_RDONLY); 1615 if (IS_ERR(fc)) { 1616 ret = PTR_ERR(fc); 1617 } else { 1618 ret = parse_monolithic_mount_data(fc, NULL); 1619 if (!ret) 1620 ret = reconfigure_super(fc); 1621 put_fs_context(fc); 1622 } 1623 } 1624 up_write(&sb->s_umount); 1625 return ret; 1626 } 1627 1628 static int do_umount(struct mount *mnt, int flags) 1629 { 1630 struct super_block *sb = mnt->mnt.mnt_sb; 1631 int retval; 1632 1633 retval = security_sb_umount(&mnt->mnt, flags); 1634 if (retval) 1635 return retval; 1636 1637 /* 1638 * Allow userspace to request a mountpoint be expired rather than 1639 * unmounting unconditionally. Unmount only happens if: 1640 * (1) the mark is already set (the mark is cleared by mntput()) 1641 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1642 */ 1643 if (flags & MNT_EXPIRE) { 1644 if (&mnt->mnt == current->fs->root.mnt || 1645 flags & (MNT_FORCE | MNT_DETACH)) 1646 return -EINVAL; 1647 1648 /* 1649 * probably don't strictly need the lock here if we examined 1650 * all race cases, but it's a slowpath. 1651 */ 1652 lock_mount_hash(); 1653 if (mnt_get_count(mnt) != 2) { 1654 unlock_mount_hash(); 1655 return -EBUSY; 1656 } 1657 unlock_mount_hash(); 1658 1659 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1660 return -EAGAIN; 1661 } 1662 1663 /* 1664 * If we may have to abort operations to get out of this 1665 * mount, and they will themselves hold resources we must 1666 * allow the fs to do things. In the Unix tradition of 1667 * 'Gee thats tricky lets do it in userspace' the umount_begin 1668 * might fail to complete on the first run through as other tasks 1669 * must return, and the like. Thats for the mount program to worry 1670 * about for the moment. 1671 */ 1672 1673 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1674 sb->s_op->umount_begin(sb); 1675 } 1676 1677 /* 1678 * No sense to grab the lock for this test, but test itself looks 1679 * somewhat bogus. Suggestions for better replacement? 1680 * Ho-hum... In principle, we might treat that as umount + switch 1681 * to rootfs. GC would eventually take care of the old vfsmount. 1682 * Actually it makes sense, especially if rootfs would contain a 1683 * /reboot - static binary that would close all descriptors and 1684 * call reboot(9). Then init(8) could umount root and exec /reboot. 1685 */ 1686 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1687 /* 1688 * Special case for "unmounting" root ... 1689 * we just try to remount it readonly. 1690 */ 1691 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1692 return -EPERM; 1693 return do_umount_root(sb); 1694 } 1695 1696 namespace_lock(); 1697 lock_mount_hash(); 1698 1699 /* Recheck MNT_LOCKED with the locks held */ 1700 retval = -EINVAL; 1701 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1702 goto out; 1703 1704 event++; 1705 if (flags & MNT_DETACH) { 1706 if (!list_empty(&mnt->mnt_list)) 1707 umount_tree(mnt, UMOUNT_PROPAGATE); 1708 retval = 0; 1709 } else { 1710 shrink_submounts(mnt); 1711 retval = -EBUSY; 1712 if (!propagate_mount_busy(mnt, 2)) { 1713 if (!list_empty(&mnt->mnt_list)) 1714 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1715 retval = 0; 1716 } 1717 } 1718 out: 1719 unlock_mount_hash(); 1720 namespace_unlock(); 1721 return retval; 1722 } 1723 1724 /* 1725 * __detach_mounts - lazily unmount all mounts on the specified dentry 1726 * 1727 * During unlink, rmdir, and d_drop it is possible to loose the path 1728 * to an existing mountpoint, and wind up leaking the mount. 1729 * detach_mounts allows lazily unmounting those mounts instead of 1730 * leaking them. 1731 * 1732 * The caller may hold dentry->d_inode->i_mutex. 1733 */ 1734 void __detach_mounts(struct dentry *dentry) 1735 { 1736 struct mountpoint *mp; 1737 struct mount *mnt; 1738 1739 namespace_lock(); 1740 lock_mount_hash(); 1741 mp = lookup_mountpoint(dentry); 1742 if (!mp) 1743 goto out_unlock; 1744 1745 event++; 1746 while (!hlist_empty(&mp->m_list)) { 1747 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1748 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1749 umount_mnt(mnt); 1750 hlist_add_head(&mnt->mnt_umount, &unmounted); 1751 } 1752 else umount_tree(mnt, UMOUNT_CONNECTED); 1753 } 1754 put_mountpoint(mp); 1755 out_unlock: 1756 unlock_mount_hash(); 1757 namespace_unlock(); 1758 } 1759 1760 /* 1761 * Is the caller allowed to modify his namespace? 1762 */ 1763 static inline bool may_mount(void) 1764 { 1765 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1766 } 1767 1768 static void warn_mandlock(void) 1769 { 1770 pr_warn_once("=======================================================\n" 1771 "WARNING: The mand mount option has been deprecated and\n" 1772 " and is ignored by this kernel. Remove the mand\n" 1773 " option from the mount to silence this warning.\n" 1774 "=======================================================\n"); 1775 } 1776 1777 static int can_umount(const struct path *path, int flags) 1778 { 1779 struct mount *mnt = real_mount(path->mnt); 1780 1781 if (!may_mount()) 1782 return -EPERM; 1783 if (path->dentry != path->mnt->mnt_root) 1784 return -EINVAL; 1785 if (!check_mnt(mnt)) 1786 return -EINVAL; 1787 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1788 return -EINVAL; 1789 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1790 return -EPERM; 1791 return 0; 1792 } 1793 1794 // caller is responsible for flags being sane 1795 int path_umount(struct path *path, int flags) 1796 { 1797 struct mount *mnt = real_mount(path->mnt); 1798 int ret; 1799 1800 ret = can_umount(path, flags); 1801 if (!ret) 1802 ret = do_umount(mnt, flags); 1803 1804 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1805 dput(path->dentry); 1806 mntput_no_expire(mnt); 1807 return ret; 1808 } 1809 1810 static int ksys_umount(char __user *name, int flags) 1811 { 1812 int lookup_flags = LOOKUP_MOUNTPOINT; 1813 struct path path; 1814 int ret; 1815 1816 // basic validity checks done first 1817 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1818 return -EINVAL; 1819 1820 if (!(flags & UMOUNT_NOFOLLOW)) 1821 lookup_flags |= LOOKUP_FOLLOW; 1822 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1823 if (ret) 1824 return ret; 1825 return path_umount(&path, flags); 1826 } 1827 1828 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1829 { 1830 return ksys_umount(name, flags); 1831 } 1832 1833 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1834 1835 /* 1836 * The 2.0 compatible umount. No flags. 1837 */ 1838 SYSCALL_DEFINE1(oldumount, char __user *, name) 1839 { 1840 return ksys_umount(name, 0); 1841 } 1842 1843 #endif 1844 1845 static bool is_mnt_ns_file(struct dentry *dentry) 1846 { 1847 /* Is this a proxy for a mount namespace? */ 1848 return dentry->d_op == &ns_dentry_operations && 1849 dentry->d_fsdata == &mntns_operations; 1850 } 1851 1852 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1853 { 1854 return container_of(ns, struct mnt_namespace, ns); 1855 } 1856 1857 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1858 { 1859 return &mnt->ns; 1860 } 1861 1862 static bool mnt_ns_loop(struct dentry *dentry) 1863 { 1864 /* Could bind mounting the mount namespace inode cause a 1865 * mount namespace loop? 1866 */ 1867 struct mnt_namespace *mnt_ns; 1868 if (!is_mnt_ns_file(dentry)) 1869 return false; 1870 1871 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1872 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1873 } 1874 1875 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1876 int flag) 1877 { 1878 struct mount *res, *p, *q, *r, *parent; 1879 1880 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1881 return ERR_PTR(-EINVAL); 1882 1883 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1884 return ERR_PTR(-EINVAL); 1885 1886 res = q = clone_mnt(mnt, dentry, flag); 1887 if (IS_ERR(q)) 1888 return q; 1889 1890 q->mnt_mountpoint = mnt->mnt_mountpoint; 1891 1892 p = mnt; 1893 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1894 struct mount *s; 1895 if (!is_subdir(r->mnt_mountpoint, dentry)) 1896 continue; 1897 1898 for (s = r; s; s = next_mnt(s, r)) { 1899 if (!(flag & CL_COPY_UNBINDABLE) && 1900 IS_MNT_UNBINDABLE(s)) { 1901 if (s->mnt.mnt_flags & MNT_LOCKED) { 1902 /* Both unbindable and locked. */ 1903 q = ERR_PTR(-EPERM); 1904 goto out; 1905 } else { 1906 s = skip_mnt_tree(s); 1907 continue; 1908 } 1909 } 1910 if (!(flag & CL_COPY_MNT_NS_FILE) && 1911 is_mnt_ns_file(s->mnt.mnt_root)) { 1912 s = skip_mnt_tree(s); 1913 continue; 1914 } 1915 while (p != s->mnt_parent) { 1916 p = p->mnt_parent; 1917 q = q->mnt_parent; 1918 } 1919 p = s; 1920 parent = q; 1921 q = clone_mnt(p, p->mnt.mnt_root, flag); 1922 if (IS_ERR(q)) 1923 goto out; 1924 lock_mount_hash(); 1925 list_add_tail(&q->mnt_list, &res->mnt_list); 1926 attach_mnt(q, parent, p->mnt_mp); 1927 unlock_mount_hash(); 1928 } 1929 } 1930 return res; 1931 out: 1932 if (res) { 1933 lock_mount_hash(); 1934 umount_tree(res, UMOUNT_SYNC); 1935 unlock_mount_hash(); 1936 } 1937 return q; 1938 } 1939 1940 /* Caller should check returned pointer for errors */ 1941 1942 struct vfsmount *collect_mounts(const struct path *path) 1943 { 1944 struct mount *tree; 1945 namespace_lock(); 1946 if (!check_mnt(real_mount(path->mnt))) 1947 tree = ERR_PTR(-EINVAL); 1948 else 1949 tree = copy_tree(real_mount(path->mnt), path->dentry, 1950 CL_COPY_ALL | CL_PRIVATE); 1951 namespace_unlock(); 1952 if (IS_ERR(tree)) 1953 return ERR_CAST(tree); 1954 return &tree->mnt; 1955 } 1956 1957 static void free_mnt_ns(struct mnt_namespace *); 1958 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1959 1960 void dissolve_on_fput(struct vfsmount *mnt) 1961 { 1962 struct mnt_namespace *ns; 1963 namespace_lock(); 1964 lock_mount_hash(); 1965 ns = real_mount(mnt)->mnt_ns; 1966 if (ns) { 1967 if (is_anon_ns(ns)) 1968 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 1969 else 1970 ns = NULL; 1971 } 1972 unlock_mount_hash(); 1973 namespace_unlock(); 1974 if (ns) 1975 free_mnt_ns(ns); 1976 } 1977 1978 void drop_collected_mounts(struct vfsmount *mnt) 1979 { 1980 namespace_lock(); 1981 lock_mount_hash(); 1982 umount_tree(real_mount(mnt), 0); 1983 unlock_mount_hash(); 1984 namespace_unlock(); 1985 } 1986 1987 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1988 { 1989 struct mount *child; 1990 1991 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1992 if (!is_subdir(child->mnt_mountpoint, dentry)) 1993 continue; 1994 1995 if (child->mnt.mnt_flags & MNT_LOCKED) 1996 return true; 1997 } 1998 return false; 1999 } 2000 2001 /** 2002 * clone_private_mount - create a private clone of a path 2003 * @path: path to clone 2004 * 2005 * This creates a new vfsmount, which will be the clone of @path. The new mount 2006 * will not be attached anywhere in the namespace and will be private (i.e. 2007 * changes to the originating mount won't be propagated into this). 2008 * 2009 * Release with mntput(). 2010 */ 2011 struct vfsmount *clone_private_mount(const struct path *path) 2012 { 2013 struct mount *old_mnt = real_mount(path->mnt); 2014 struct mount *new_mnt; 2015 2016 down_read(&namespace_sem); 2017 if (IS_MNT_UNBINDABLE(old_mnt)) 2018 goto invalid; 2019 2020 if (!check_mnt(old_mnt)) 2021 goto invalid; 2022 2023 if (has_locked_children(old_mnt, path->dentry)) 2024 goto invalid; 2025 2026 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2027 up_read(&namespace_sem); 2028 2029 if (IS_ERR(new_mnt)) 2030 return ERR_CAST(new_mnt); 2031 2032 /* Longterm mount to be removed by kern_unmount*() */ 2033 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2034 2035 return &new_mnt->mnt; 2036 2037 invalid: 2038 up_read(&namespace_sem); 2039 return ERR_PTR(-EINVAL); 2040 } 2041 EXPORT_SYMBOL_GPL(clone_private_mount); 2042 2043 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2044 struct vfsmount *root) 2045 { 2046 struct mount *mnt; 2047 int res = f(root, arg); 2048 if (res) 2049 return res; 2050 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2051 res = f(&mnt->mnt, arg); 2052 if (res) 2053 return res; 2054 } 2055 return 0; 2056 } 2057 2058 static void lock_mnt_tree(struct mount *mnt) 2059 { 2060 struct mount *p; 2061 2062 for (p = mnt; p; p = next_mnt(p, mnt)) { 2063 int flags = p->mnt.mnt_flags; 2064 /* Don't allow unprivileged users to change mount flags */ 2065 flags |= MNT_LOCK_ATIME; 2066 2067 if (flags & MNT_READONLY) 2068 flags |= MNT_LOCK_READONLY; 2069 2070 if (flags & MNT_NODEV) 2071 flags |= MNT_LOCK_NODEV; 2072 2073 if (flags & MNT_NOSUID) 2074 flags |= MNT_LOCK_NOSUID; 2075 2076 if (flags & MNT_NOEXEC) 2077 flags |= MNT_LOCK_NOEXEC; 2078 /* Don't allow unprivileged users to reveal what is under a mount */ 2079 if (list_empty(&p->mnt_expire)) 2080 flags |= MNT_LOCKED; 2081 p->mnt.mnt_flags = flags; 2082 } 2083 } 2084 2085 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2086 { 2087 struct mount *p; 2088 2089 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2090 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2091 mnt_release_group_id(p); 2092 } 2093 } 2094 2095 static int invent_group_ids(struct mount *mnt, bool recurse) 2096 { 2097 struct mount *p; 2098 2099 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2100 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2101 int err = mnt_alloc_group_id(p); 2102 if (err) { 2103 cleanup_group_ids(mnt, p); 2104 return err; 2105 } 2106 } 2107 } 2108 2109 return 0; 2110 } 2111 2112 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2113 { 2114 unsigned int max = READ_ONCE(sysctl_mount_max); 2115 unsigned int mounts = 0, old, pending, sum; 2116 struct mount *p; 2117 2118 for (p = mnt; p; p = next_mnt(p, mnt)) 2119 mounts++; 2120 2121 old = ns->mounts; 2122 pending = ns->pending_mounts; 2123 sum = old + pending; 2124 if ((old > sum) || 2125 (pending > sum) || 2126 (max < sum) || 2127 (mounts > (max - sum))) 2128 return -ENOSPC; 2129 2130 ns->pending_mounts = pending + mounts; 2131 return 0; 2132 } 2133 2134 /* 2135 * @source_mnt : mount tree to be attached 2136 * @nd : place the mount tree @source_mnt is attached 2137 * @parent_nd : if non-null, detach the source_mnt from its parent and 2138 * store the parent mount and mountpoint dentry. 2139 * (done when source_mnt is moved) 2140 * 2141 * NOTE: in the table below explains the semantics when a source mount 2142 * of a given type is attached to a destination mount of a given type. 2143 * --------------------------------------------------------------------------- 2144 * | BIND MOUNT OPERATION | 2145 * |************************************************************************** 2146 * | source-->| shared | private | slave | unbindable | 2147 * | dest | | | | | 2148 * | | | | | | | 2149 * | v | | | | | 2150 * |************************************************************************** 2151 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2152 * | | | | | | 2153 * |non-shared| shared (+) | private | slave (*) | invalid | 2154 * *************************************************************************** 2155 * A bind operation clones the source mount and mounts the clone on the 2156 * destination mount. 2157 * 2158 * (++) the cloned mount is propagated to all the mounts in the propagation 2159 * tree of the destination mount and the cloned mount is added to 2160 * the peer group of the source mount. 2161 * (+) the cloned mount is created under the destination mount and is marked 2162 * as shared. The cloned mount is added to the peer group of the source 2163 * mount. 2164 * (+++) the mount is propagated to all the mounts in the propagation tree 2165 * of the destination mount and the cloned mount is made slave 2166 * of the same master as that of the source mount. The cloned mount 2167 * is marked as 'shared and slave'. 2168 * (*) the cloned mount is made a slave of the same master as that of the 2169 * source mount. 2170 * 2171 * --------------------------------------------------------------------------- 2172 * | MOVE MOUNT OPERATION | 2173 * |************************************************************************** 2174 * | source-->| shared | private | slave | unbindable | 2175 * | dest | | | | | 2176 * | | | | | | | 2177 * | v | | | | | 2178 * |************************************************************************** 2179 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2180 * | | | | | | 2181 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2182 * *************************************************************************** 2183 * 2184 * (+) the mount is moved to the destination. And is then propagated to 2185 * all the mounts in the propagation tree of the destination mount. 2186 * (+*) the mount is moved to the destination. 2187 * (+++) the mount is moved to the destination and is then propagated to 2188 * all the mounts belonging to the destination mount's propagation tree. 2189 * the mount is marked as 'shared and slave'. 2190 * (*) the mount continues to be a slave at the new location. 2191 * 2192 * if the source mount is a tree, the operations explained above is 2193 * applied to each mount in the tree. 2194 * Must be called without spinlocks held, since this function can sleep 2195 * in allocations. 2196 */ 2197 static int attach_recursive_mnt(struct mount *source_mnt, 2198 struct mount *dest_mnt, 2199 struct mountpoint *dest_mp, 2200 bool moving) 2201 { 2202 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2203 HLIST_HEAD(tree_list); 2204 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2205 struct mountpoint *smp; 2206 struct mount *child, *p; 2207 struct hlist_node *n; 2208 int err; 2209 2210 /* Preallocate a mountpoint in case the new mounts need 2211 * to be tucked under other mounts. 2212 */ 2213 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2214 if (IS_ERR(smp)) 2215 return PTR_ERR(smp); 2216 2217 /* Is there space to add these mounts to the mount namespace? */ 2218 if (!moving) { 2219 err = count_mounts(ns, source_mnt); 2220 if (err) 2221 goto out; 2222 } 2223 2224 if (IS_MNT_SHARED(dest_mnt)) { 2225 err = invent_group_ids(source_mnt, true); 2226 if (err) 2227 goto out; 2228 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2229 lock_mount_hash(); 2230 if (err) 2231 goto out_cleanup_ids; 2232 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2233 set_mnt_shared(p); 2234 } else { 2235 lock_mount_hash(); 2236 } 2237 if (moving) { 2238 unhash_mnt(source_mnt); 2239 attach_mnt(source_mnt, dest_mnt, dest_mp); 2240 touch_mnt_namespace(source_mnt->mnt_ns); 2241 } else { 2242 if (source_mnt->mnt_ns) { 2243 /* move from anon - the caller will destroy */ 2244 list_del_init(&source_mnt->mnt_ns->list); 2245 } 2246 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2247 commit_tree(source_mnt); 2248 } 2249 2250 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2251 struct mount *q; 2252 hlist_del_init(&child->mnt_hash); 2253 q = __lookup_mnt(&child->mnt_parent->mnt, 2254 child->mnt_mountpoint); 2255 if (q) 2256 mnt_change_mountpoint(child, smp, q); 2257 /* Notice when we are propagating across user namespaces */ 2258 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2259 lock_mnt_tree(child); 2260 child->mnt.mnt_flags &= ~MNT_LOCKED; 2261 commit_tree(child); 2262 } 2263 put_mountpoint(smp); 2264 unlock_mount_hash(); 2265 2266 return 0; 2267 2268 out_cleanup_ids: 2269 while (!hlist_empty(&tree_list)) { 2270 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2271 child->mnt_parent->mnt_ns->pending_mounts = 0; 2272 umount_tree(child, UMOUNT_SYNC); 2273 } 2274 unlock_mount_hash(); 2275 cleanup_group_ids(source_mnt, NULL); 2276 out: 2277 ns->pending_mounts = 0; 2278 2279 read_seqlock_excl(&mount_lock); 2280 put_mountpoint(smp); 2281 read_sequnlock_excl(&mount_lock); 2282 2283 return err; 2284 } 2285 2286 static struct mountpoint *lock_mount(struct path *path) 2287 { 2288 struct vfsmount *mnt; 2289 struct dentry *dentry = path->dentry; 2290 retry: 2291 inode_lock(dentry->d_inode); 2292 if (unlikely(cant_mount(dentry))) { 2293 inode_unlock(dentry->d_inode); 2294 return ERR_PTR(-ENOENT); 2295 } 2296 namespace_lock(); 2297 mnt = lookup_mnt(path); 2298 if (likely(!mnt)) { 2299 struct mountpoint *mp = get_mountpoint(dentry); 2300 if (IS_ERR(mp)) { 2301 namespace_unlock(); 2302 inode_unlock(dentry->d_inode); 2303 return mp; 2304 } 2305 return mp; 2306 } 2307 namespace_unlock(); 2308 inode_unlock(path->dentry->d_inode); 2309 path_put(path); 2310 path->mnt = mnt; 2311 dentry = path->dentry = dget(mnt->mnt_root); 2312 goto retry; 2313 } 2314 2315 static void unlock_mount(struct mountpoint *where) 2316 { 2317 struct dentry *dentry = where->m_dentry; 2318 2319 read_seqlock_excl(&mount_lock); 2320 put_mountpoint(where); 2321 read_sequnlock_excl(&mount_lock); 2322 2323 namespace_unlock(); 2324 inode_unlock(dentry->d_inode); 2325 } 2326 2327 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2328 { 2329 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2330 return -EINVAL; 2331 2332 if (d_is_dir(mp->m_dentry) != 2333 d_is_dir(mnt->mnt.mnt_root)) 2334 return -ENOTDIR; 2335 2336 return attach_recursive_mnt(mnt, p, mp, false); 2337 } 2338 2339 /* 2340 * Sanity check the flags to change_mnt_propagation. 2341 */ 2342 2343 static int flags_to_propagation_type(int ms_flags) 2344 { 2345 int type = ms_flags & ~(MS_REC | MS_SILENT); 2346 2347 /* Fail if any non-propagation flags are set */ 2348 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2349 return 0; 2350 /* Only one propagation flag should be set */ 2351 if (!is_power_of_2(type)) 2352 return 0; 2353 return type; 2354 } 2355 2356 /* 2357 * recursively change the type of the mountpoint. 2358 */ 2359 static int do_change_type(struct path *path, int ms_flags) 2360 { 2361 struct mount *m; 2362 struct mount *mnt = real_mount(path->mnt); 2363 int recurse = ms_flags & MS_REC; 2364 int type; 2365 int err = 0; 2366 2367 if (path->dentry != path->mnt->mnt_root) 2368 return -EINVAL; 2369 2370 type = flags_to_propagation_type(ms_flags); 2371 if (!type) 2372 return -EINVAL; 2373 2374 namespace_lock(); 2375 if (type == MS_SHARED) { 2376 err = invent_group_ids(mnt, recurse); 2377 if (err) 2378 goto out_unlock; 2379 } 2380 2381 lock_mount_hash(); 2382 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2383 change_mnt_propagation(m, type); 2384 unlock_mount_hash(); 2385 2386 out_unlock: 2387 namespace_unlock(); 2388 return err; 2389 } 2390 2391 static struct mount *__do_loopback(struct path *old_path, int recurse) 2392 { 2393 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2394 2395 if (IS_MNT_UNBINDABLE(old)) 2396 return mnt; 2397 2398 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2399 return mnt; 2400 2401 if (!recurse && has_locked_children(old, old_path->dentry)) 2402 return mnt; 2403 2404 if (recurse) 2405 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2406 else 2407 mnt = clone_mnt(old, old_path->dentry, 0); 2408 2409 if (!IS_ERR(mnt)) 2410 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2411 2412 return mnt; 2413 } 2414 2415 /* 2416 * do loopback mount. 2417 */ 2418 static int do_loopback(struct path *path, const char *old_name, 2419 int recurse) 2420 { 2421 struct path old_path; 2422 struct mount *mnt = NULL, *parent; 2423 struct mountpoint *mp; 2424 int err; 2425 if (!old_name || !*old_name) 2426 return -EINVAL; 2427 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2428 if (err) 2429 return err; 2430 2431 err = -EINVAL; 2432 if (mnt_ns_loop(old_path.dentry)) 2433 goto out; 2434 2435 mp = lock_mount(path); 2436 if (IS_ERR(mp)) { 2437 err = PTR_ERR(mp); 2438 goto out; 2439 } 2440 2441 parent = real_mount(path->mnt); 2442 if (!check_mnt(parent)) 2443 goto out2; 2444 2445 mnt = __do_loopback(&old_path, recurse); 2446 if (IS_ERR(mnt)) { 2447 err = PTR_ERR(mnt); 2448 goto out2; 2449 } 2450 2451 err = graft_tree(mnt, parent, mp); 2452 if (err) { 2453 lock_mount_hash(); 2454 umount_tree(mnt, UMOUNT_SYNC); 2455 unlock_mount_hash(); 2456 } 2457 out2: 2458 unlock_mount(mp); 2459 out: 2460 path_put(&old_path); 2461 return err; 2462 } 2463 2464 static struct file *open_detached_copy(struct path *path, bool recursive) 2465 { 2466 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2467 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2468 struct mount *mnt, *p; 2469 struct file *file; 2470 2471 if (IS_ERR(ns)) 2472 return ERR_CAST(ns); 2473 2474 namespace_lock(); 2475 mnt = __do_loopback(path, recursive); 2476 if (IS_ERR(mnt)) { 2477 namespace_unlock(); 2478 free_mnt_ns(ns); 2479 return ERR_CAST(mnt); 2480 } 2481 2482 lock_mount_hash(); 2483 for (p = mnt; p; p = next_mnt(p, mnt)) { 2484 p->mnt_ns = ns; 2485 ns->mounts++; 2486 } 2487 ns->root = mnt; 2488 list_add_tail(&ns->list, &mnt->mnt_list); 2489 mntget(&mnt->mnt); 2490 unlock_mount_hash(); 2491 namespace_unlock(); 2492 2493 mntput(path->mnt); 2494 path->mnt = &mnt->mnt; 2495 file = dentry_open(path, O_PATH, current_cred()); 2496 if (IS_ERR(file)) 2497 dissolve_on_fput(path->mnt); 2498 else 2499 file->f_mode |= FMODE_NEED_UNMOUNT; 2500 return file; 2501 } 2502 2503 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2504 { 2505 struct file *file; 2506 struct path path; 2507 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2508 bool detached = flags & OPEN_TREE_CLONE; 2509 int error; 2510 int fd; 2511 2512 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2513 2514 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2515 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2516 OPEN_TREE_CLOEXEC)) 2517 return -EINVAL; 2518 2519 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2520 return -EINVAL; 2521 2522 if (flags & AT_NO_AUTOMOUNT) 2523 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2524 if (flags & AT_SYMLINK_NOFOLLOW) 2525 lookup_flags &= ~LOOKUP_FOLLOW; 2526 if (flags & AT_EMPTY_PATH) 2527 lookup_flags |= LOOKUP_EMPTY; 2528 2529 if (detached && !may_mount()) 2530 return -EPERM; 2531 2532 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2533 if (fd < 0) 2534 return fd; 2535 2536 error = user_path_at(dfd, filename, lookup_flags, &path); 2537 if (unlikely(error)) { 2538 file = ERR_PTR(error); 2539 } else { 2540 if (detached) 2541 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2542 else 2543 file = dentry_open(&path, O_PATH, current_cred()); 2544 path_put(&path); 2545 } 2546 if (IS_ERR(file)) { 2547 put_unused_fd(fd); 2548 return PTR_ERR(file); 2549 } 2550 fd_install(fd, file); 2551 return fd; 2552 } 2553 2554 /* 2555 * Don't allow locked mount flags to be cleared. 2556 * 2557 * No locks need to be held here while testing the various MNT_LOCK 2558 * flags because those flags can never be cleared once they are set. 2559 */ 2560 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2561 { 2562 unsigned int fl = mnt->mnt.mnt_flags; 2563 2564 if ((fl & MNT_LOCK_READONLY) && 2565 !(mnt_flags & MNT_READONLY)) 2566 return false; 2567 2568 if ((fl & MNT_LOCK_NODEV) && 2569 !(mnt_flags & MNT_NODEV)) 2570 return false; 2571 2572 if ((fl & MNT_LOCK_NOSUID) && 2573 !(mnt_flags & MNT_NOSUID)) 2574 return false; 2575 2576 if ((fl & MNT_LOCK_NOEXEC) && 2577 !(mnt_flags & MNT_NOEXEC)) 2578 return false; 2579 2580 if ((fl & MNT_LOCK_ATIME) && 2581 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2582 return false; 2583 2584 return true; 2585 } 2586 2587 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2588 { 2589 bool readonly_request = (mnt_flags & MNT_READONLY); 2590 2591 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2592 return 0; 2593 2594 if (readonly_request) 2595 return mnt_make_readonly(mnt); 2596 2597 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2598 return 0; 2599 } 2600 2601 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2602 { 2603 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2604 mnt->mnt.mnt_flags = mnt_flags; 2605 touch_mnt_namespace(mnt->mnt_ns); 2606 } 2607 2608 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2609 { 2610 struct super_block *sb = mnt->mnt_sb; 2611 2612 if (!__mnt_is_readonly(mnt) && 2613 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2614 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2615 char *buf = (char *)__get_free_page(GFP_KERNEL); 2616 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2617 struct tm tm; 2618 2619 time64_to_tm(sb->s_time_max, 0, &tm); 2620 2621 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", 2622 sb->s_type->name, 2623 is_mounted(mnt) ? "remounted" : "mounted", 2624 mntpath, 2625 tm.tm_year+1900, (unsigned long long)sb->s_time_max); 2626 2627 free_page((unsigned long)buf); 2628 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2629 } 2630 } 2631 2632 /* 2633 * Handle reconfiguration of the mountpoint only without alteration of the 2634 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2635 * to mount(2). 2636 */ 2637 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2638 { 2639 struct super_block *sb = path->mnt->mnt_sb; 2640 struct mount *mnt = real_mount(path->mnt); 2641 int ret; 2642 2643 if (!check_mnt(mnt)) 2644 return -EINVAL; 2645 2646 if (path->dentry != mnt->mnt.mnt_root) 2647 return -EINVAL; 2648 2649 if (!can_change_locked_flags(mnt, mnt_flags)) 2650 return -EPERM; 2651 2652 /* 2653 * We're only checking whether the superblock is read-only not 2654 * changing it, so only take down_read(&sb->s_umount). 2655 */ 2656 down_read(&sb->s_umount); 2657 lock_mount_hash(); 2658 ret = change_mount_ro_state(mnt, mnt_flags); 2659 if (ret == 0) 2660 set_mount_attributes(mnt, mnt_flags); 2661 unlock_mount_hash(); 2662 up_read(&sb->s_umount); 2663 2664 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2665 2666 return ret; 2667 } 2668 2669 /* 2670 * change filesystem flags. dir should be a physical root of filesystem. 2671 * If you've mounted a non-root directory somewhere and want to do remount 2672 * on it - tough luck. 2673 */ 2674 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2675 int mnt_flags, void *data) 2676 { 2677 int err; 2678 struct super_block *sb = path->mnt->mnt_sb; 2679 struct mount *mnt = real_mount(path->mnt); 2680 struct fs_context *fc; 2681 2682 if (!check_mnt(mnt)) 2683 return -EINVAL; 2684 2685 if (path->dentry != path->mnt->mnt_root) 2686 return -EINVAL; 2687 2688 if (!can_change_locked_flags(mnt, mnt_flags)) 2689 return -EPERM; 2690 2691 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2692 if (IS_ERR(fc)) 2693 return PTR_ERR(fc); 2694 2695 fc->oldapi = true; 2696 err = parse_monolithic_mount_data(fc, data); 2697 if (!err) { 2698 down_write(&sb->s_umount); 2699 err = -EPERM; 2700 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2701 err = reconfigure_super(fc); 2702 if (!err) { 2703 lock_mount_hash(); 2704 set_mount_attributes(mnt, mnt_flags); 2705 unlock_mount_hash(); 2706 } 2707 } 2708 up_write(&sb->s_umount); 2709 } 2710 2711 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2712 2713 put_fs_context(fc); 2714 return err; 2715 } 2716 2717 static inline int tree_contains_unbindable(struct mount *mnt) 2718 { 2719 struct mount *p; 2720 for (p = mnt; p; p = next_mnt(p, mnt)) { 2721 if (IS_MNT_UNBINDABLE(p)) 2722 return 1; 2723 } 2724 return 0; 2725 } 2726 2727 /* 2728 * Check that there aren't references to earlier/same mount namespaces in the 2729 * specified subtree. Such references can act as pins for mount namespaces 2730 * that aren't checked by the mount-cycle checking code, thereby allowing 2731 * cycles to be made. 2732 */ 2733 static bool check_for_nsfs_mounts(struct mount *subtree) 2734 { 2735 struct mount *p; 2736 bool ret = false; 2737 2738 lock_mount_hash(); 2739 for (p = subtree; p; p = next_mnt(p, subtree)) 2740 if (mnt_ns_loop(p->mnt.mnt_root)) 2741 goto out; 2742 2743 ret = true; 2744 out: 2745 unlock_mount_hash(); 2746 return ret; 2747 } 2748 2749 static int do_set_group(struct path *from_path, struct path *to_path) 2750 { 2751 struct mount *from, *to; 2752 int err; 2753 2754 from = real_mount(from_path->mnt); 2755 to = real_mount(to_path->mnt); 2756 2757 namespace_lock(); 2758 2759 err = -EINVAL; 2760 /* To and From must be mounted */ 2761 if (!is_mounted(&from->mnt)) 2762 goto out; 2763 if (!is_mounted(&to->mnt)) 2764 goto out; 2765 2766 err = -EPERM; 2767 /* We should be allowed to modify mount namespaces of both mounts */ 2768 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2769 goto out; 2770 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2771 goto out; 2772 2773 err = -EINVAL; 2774 /* To and From paths should be mount roots */ 2775 if (from_path->dentry != from_path->mnt->mnt_root) 2776 goto out; 2777 if (to_path->dentry != to_path->mnt->mnt_root) 2778 goto out; 2779 2780 /* Setting sharing groups is only allowed across same superblock */ 2781 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2782 goto out; 2783 2784 /* From mount root should be wider than To mount root */ 2785 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2786 goto out; 2787 2788 /* From mount should not have locked children in place of To's root */ 2789 if (has_locked_children(from, to->mnt.mnt_root)) 2790 goto out; 2791 2792 /* Setting sharing groups is only allowed on private mounts */ 2793 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2794 goto out; 2795 2796 /* From should not be private */ 2797 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2798 goto out; 2799 2800 if (IS_MNT_SLAVE(from)) { 2801 struct mount *m = from->mnt_master; 2802 2803 list_add(&to->mnt_slave, &m->mnt_slave_list); 2804 to->mnt_master = m; 2805 } 2806 2807 if (IS_MNT_SHARED(from)) { 2808 to->mnt_group_id = from->mnt_group_id; 2809 list_add(&to->mnt_share, &from->mnt_share); 2810 lock_mount_hash(); 2811 set_mnt_shared(to); 2812 unlock_mount_hash(); 2813 } 2814 2815 err = 0; 2816 out: 2817 namespace_unlock(); 2818 return err; 2819 } 2820 2821 static int do_move_mount(struct path *old_path, struct path *new_path) 2822 { 2823 struct mnt_namespace *ns; 2824 struct mount *p; 2825 struct mount *old; 2826 struct mount *parent; 2827 struct mountpoint *mp, *old_mp; 2828 int err; 2829 bool attached; 2830 2831 mp = lock_mount(new_path); 2832 if (IS_ERR(mp)) 2833 return PTR_ERR(mp); 2834 2835 old = real_mount(old_path->mnt); 2836 p = real_mount(new_path->mnt); 2837 parent = old->mnt_parent; 2838 attached = mnt_has_parent(old); 2839 old_mp = old->mnt_mp; 2840 ns = old->mnt_ns; 2841 2842 err = -EINVAL; 2843 /* The mountpoint must be in our namespace. */ 2844 if (!check_mnt(p)) 2845 goto out; 2846 2847 /* The thing moved must be mounted... */ 2848 if (!is_mounted(&old->mnt)) 2849 goto out; 2850 2851 /* ... and either ours or the root of anon namespace */ 2852 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2853 goto out; 2854 2855 if (old->mnt.mnt_flags & MNT_LOCKED) 2856 goto out; 2857 2858 if (old_path->dentry != old_path->mnt->mnt_root) 2859 goto out; 2860 2861 if (d_is_dir(new_path->dentry) != 2862 d_is_dir(old_path->dentry)) 2863 goto out; 2864 /* 2865 * Don't move a mount residing in a shared parent. 2866 */ 2867 if (attached && IS_MNT_SHARED(parent)) 2868 goto out; 2869 /* 2870 * Don't move a mount tree containing unbindable mounts to a destination 2871 * mount which is shared. 2872 */ 2873 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2874 goto out; 2875 err = -ELOOP; 2876 if (!check_for_nsfs_mounts(old)) 2877 goto out; 2878 for (; mnt_has_parent(p); p = p->mnt_parent) 2879 if (p == old) 2880 goto out; 2881 2882 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2883 attached); 2884 if (err) 2885 goto out; 2886 2887 /* if the mount is moved, it should no longer be expire 2888 * automatically */ 2889 list_del_init(&old->mnt_expire); 2890 if (attached) 2891 put_mountpoint(old_mp); 2892 out: 2893 unlock_mount(mp); 2894 if (!err) { 2895 if (attached) 2896 mntput_no_expire(parent); 2897 else 2898 free_mnt_ns(ns); 2899 } 2900 return err; 2901 } 2902 2903 static int do_move_mount_old(struct path *path, const char *old_name) 2904 { 2905 struct path old_path; 2906 int err; 2907 2908 if (!old_name || !*old_name) 2909 return -EINVAL; 2910 2911 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2912 if (err) 2913 return err; 2914 2915 err = do_move_mount(&old_path, path); 2916 path_put(&old_path); 2917 return err; 2918 } 2919 2920 /* 2921 * add a mount into a namespace's mount tree 2922 */ 2923 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2924 struct path *path, int mnt_flags) 2925 { 2926 struct mount *parent = real_mount(path->mnt); 2927 2928 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2929 2930 if (unlikely(!check_mnt(parent))) { 2931 /* that's acceptable only for automounts done in private ns */ 2932 if (!(mnt_flags & MNT_SHRINKABLE)) 2933 return -EINVAL; 2934 /* ... and for those we'd better have mountpoint still alive */ 2935 if (!parent->mnt_ns) 2936 return -EINVAL; 2937 } 2938 2939 /* Refuse the same filesystem on the same mount point */ 2940 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2941 path->mnt->mnt_root == path->dentry) 2942 return -EBUSY; 2943 2944 if (d_is_symlink(newmnt->mnt.mnt_root)) 2945 return -EINVAL; 2946 2947 newmnt->mnt.mnt_flags = mnt_flags; 2948 return graft_tree(newmnt, parent, mp); 2949 } 2950 2951 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2952 2953 /* 2954 * Create a new mount using a superblock configuration and request it 2955 * be added to the namespace tree. 2956 */ 2957 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2958 unsigned int mnt_flags) 2959 { 2960 struct vfsmount *mnt; 2961 struct mountpoint *mp; 2962 struct super_block *sb = fc->root->d_sb; 2963 int error; 2964 2965 error = security_sb_kern_mount(sb); 2966 if (!error && mount_too_revealing(sb, &mnt_flags)) 2967 error = -EPERM; 2968 2969 if (unlikely(error)) { 2970 fc_drop_locked(fc); 2971 return error; 2972 } 2973 2974 up_write(&sb->s_umount); 2975 2976 mnt = vfs_create_mount(fc); 2977 if (IS_ERR(mnt)) 2978 return PTR_ERR(mnt); 2979 2980 mnt_warn_timestamp_expiry(mountpoint, mnt); 2981 2982 mp = lock_mount(mountpoint); 2983 if (IS_ERR(mp)) { 2984 mntput(mnt); 2985 return PTR_ERR(mp); 2986 } 2987 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 2988 unlock_mount(mp); 2989 if (error < 0) 2990 mntput(mnt); 2991 return error; 2992 } 2993 2994 /* 2995 * create a new mount for userspace and request it to be added into the 2996 * namespace's tree 2997 */ 2998 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 2999 int mnt_flags, const char *name, void *data) 3000 { 3001 struct file_system_type *type; 3002 struct fs_context *fc; 3003 const char *subtype = NULL; 3004 int err = 0; 3005 3006 if (!fstype) 3007 return -EINVAL; 3008 3009 type = get_fs_type(fstype); 3010 if (!type) 3011 return -ENODEV; 3012 3013 if (type->fs_flags & FS_HAS_SUBTYPE) { 3014 subtype = strchr(fstype, '.'); 3015 if (subtype) { 3016 subtype++; 3017 if (!*subtype) { 3018 put_filesystem(type); 3019 return -EINVAL; 3020 } 3021 } 3022 } 3023 3024 fc = fs_context_for_mount(type, sb_flags); 3025 put_filesystem(type); 3026 if (IS_ERR(fc)) 3027 return PTR_ERR(fc); 3028 3029 if (subtype) 3030 err = vfs_parse_fs_string(fc, "subtype", 3031 subtype, strlen(subtype)); 3032 if (!err && name) 3033 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3034 if (!err) 3035 err = parse_monolithic_mount_data(fc, data); 3036 if (!err && !mount_capable(fc)) 3037 err = -EPERM; 3038 if (!err) 3039 err = vfs_get_tree(fc); 3040 if (!err) 3041 err = do_new_mount_fc(fc, path, mnt_flags); 3042 3043 put_fs_context(fc); 3044 return err; 3045 } 3046 3047 int finish_automount(struct vfsmount *m, struct path *path) 3048 { 3049 struct dentry *dentry = path->dentry; 3050 struct mountpoint *mp; 3051 struct mount *mnt; 3052 int err; 3053 3054 if (!m) 3055 return 0; 3056 if (IS_ERR(m)) 3057 return PTR_ERR(m); 3058 3059 mnt = real_mount(m); 3060 /* The new mount record should have at least 2 refs to prevent it being 3061 * expired before we get a chance to add it 3062 */ 3063 BUG_ON(mnt_get_count(mnt) < 2); 3064 3065 if (m->mnt_sb == path->mnt->mnt_sb && 3066 m->mnt_root == dentry) { 3067 err = -ELOOP; 3068 goto discard; 3069 } 3070 3071 /* 3072 * we don't want to use lock_mount() - in this case finding something 3073 * that overmounts our mountpoint to be means "quitely drop what we've 3074 * got", not "try to mount it on top". 3075 */ 3076 inode_lock(dentry->d_inode); 3077 namespace_lock(); 3078 if (unlikely(cant_mount(dentry))) { 3079 err = -ENOENT; 3080 goto discard_locked; 3081 } 3082 rcu_read_lock(); 3083 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3084 rcu_read_unlock(); 3085 err = 0; 3086 goto discard_locked; 3087 } 3088 rcu_read_unlock(); 3089 mp = get_mountpoint(dentry); 3090 if (IS_ERR(mp)) { 3091 err = PTR_ERR(mp); 3092 goto discard_locked; 3093 } 3094 3095 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3096 unlock_mount(mp); 3097 if (unlikely(err)) 3098 goto discard; 3099 mntput(m); 3100 return 0; 3101 3102 discard_locked: 3103 namespace_unlock(); 3104 inode_unlock(dentry->d_inode); 3105 discard: 3106 /* remove m from any expiration list it may be on */ 3107 if (!list_empty(&mnt->mnt_expire)) { 3108 namespace_lock(); 3109 list_del_init(&mnt->mnt_expire); 3110 namespace_unlock(); 3111 } 3112 mntput(m); 3113 mntput(m); 3114 return err; 3115 } 3116 3117 /** 3118 * mnt_set_expiry - Put a mount on an expiration list 3119 * @mnt: The mount to list. 3120 * @expiry_list: The list to add the mount to. 3121 */ 3122 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3123 { 3124 namespace_lock(); 3125 3126 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3127 3128 namespace_unlock(); 3129 } 3130 EXPORT_SYMBOL(mnt_set_expiry); 3131 3132 /* 3133 * process a list of expirable mountpoints with the intent of discarding any 3134 * mountpoints that aren't in use and haven't been touched since last we came 3135 * here 3136 */ 3137 void mark_mounts_for_expiry(struct list_head *mounts) 3138 { 3139 struct mount *mnt, *next; 3140 LIST_HEAD(graveyard); 3141 3142 if (list_empty(mounts)) 3143 return; 3144 3145 namespace_lock(); 3146 lock_mount_hash(); 3147 3148 /* extract from the expiration list every vfsmount that matches the 3149 * following criteria: 3150 * - only referenced by its parent vfsmount 3151 * - still marked for expiry (marked on the last call here; marks are 3152 * cleared by mntput()) 3153 */ 3154 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3155 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3156 propagate_mount_busy(mnt, 1)) 3157 continue; 3158 list_move(&mnt->mnt_expire, &graveyard); 3159 } 3160 while (!list_empty(&graveyard)) { 3161 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3162 touch_mnt_namespace(mnt->mnt_ns); 3163 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3164 } 3165 unlock_mount_hash(); 3166 namespace_unlock(); 3167 } 3168 3169 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3170 3171 /* 3172 * Ripoff of 'select_parent()' 3173 * 3174 * search the list of submounts for a given mountpoint, and move any 3175 * shrinkable submounts to the 'graveyard' list. 3176 */ 3177 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3178 { 3179 struct mount *this_parent = parent; 3180 struct list_head *next; 3181 int found = 0; 3182 3183 repeat: 3184 next = this_parent->mnt_mounts.next; 3185 resume: 3186 while (next != &this_parent->mnt_mounts) { 3187 struct list_head *tmp = next; 3188 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3189 3190 next = tmp->next; 3191 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3192 continue; 3193 /* 3194 * Descend a level if the d_mounts list is non-empty. 3195 */ 3196 if (!list_empty(&mnt->mnt_mounts)) { 3197 this_parent = mnt; 3198 goto repeat; 3199 } 3200 3201 if (!propagate_mount_busy(mnt, 1)) { 3202 list_move_tail(&mnt->mnt_expire, graveyard); 3203 found++; 3204 } 3205 } 3206 /* 3207 * All done at this level ... ascend and resume the search 3208 */ 3209 if (this_parent != parent) { 3210 next = this_parent->mnt_child.next; 3211 this_parent = this_parent->mnt_parent; 3212 goto resume; 3213 } 3214 return found; 3215 } 3216 3217 /* 3218 * process a list of expirable mountpoints with the intent of discarding any 3219 * submounts of a specific parent mountpoint 3220 * 3221 * mount_lock must be held for write 3222 */ 3223 static void shrink_submounts(struct mount *mnt) 3224 { 3225 LIST_HEAD(graveyard); 3226 struct mount *m; 3227 3228 /* extract submounts of 'mountpoint' from the expiration list */ 3229 while (select_submounts(mnt, &graveyard)) { 3230 while (!list_empty(&graveyard)) { 3231 m = list_first_entry(&graveyard, struct mount, 3232 mnt_expire); 3233 touch_mnt_namespace(m->mnt_ns); 3234 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3235 } 3236 } 3237 } 3238 3239 static void *copy_mount_options(const void __user * data) 3240 { 3241 char *copy; 3242 unsigned left, offset; 3243 3244 if (!data) 3245 return NULL; 3246 3247 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3248 if (!copy) 3249 return ERR_PTR(-ENOMEM); 3250 3251 left = copy_from_user(copy, data, PAGE_SIZE); 3252 3253 /* 3254 * Not all architectures have an exact copy_from_user(). Resort to 3255 * byte at a time. 3256 */ 3257 offset = PAGE_SIZE - left; 3258 while (left) { 3259 char c; 3260 if (get_user(c, (const char __user *)data + offset)) 3261 break; 3262 copy[offset] = c; 3263 left--; 3264 offset++; 3265 } 3266 3267 if (left == PAGE_SIZE) { 3268 kfree(copy); 3269 return ERR_PTR(-EFAULT); 3270 } 3271 3272 return copy; 3273 } 3274 3275 static char *copy_mount_string(const void __user *data) 3276 { 3277 return data ? strndup_user(data, PATH_MAX) : NULL; 3278 } 3279 3280 /* 3281 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3282 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3283 * 3284 * data is a (void *) that can point to any structure up to 3285 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3286 * information (or be NULL). 3287 * 3288 * Pre-0.97 versions of mount() didn't have a flags word. 3289 * When the flags word was introduced its top half was required 3290 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3291 * Therefore, if this magic number is present, it carries no information 3292 * and must be discarded. 3293 */ 3294 int path_mount(const char *dev_name, struct path *path, 3295 const char *type_page, unsigned long flags, void *data_page) 3296 { 3297 unsigned int mnt_flags = 0, sb_flags; 3298 int ret; 3299 3300 /* Discard magic */ 3301 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3302 flags &= ~MS_MGC_MSK; 3303 3304 /* Basic sanity checks */ 3305 if (data_page) 3306 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3307 3308 if (flags & MS_NOUSER) 3309 return -EINVAL; 3310 3311 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3312 if (ret) 3313 return ret; 3314 if (!may_mount()) 3315 return -EPERM; 3316 if (flags & SB_MANDLOCK) 3317 warn_mandlock(); 3318 3319 /* Default to relatime unless overriden */ 3320 if (!(flags & MS_NOATIME)) 3321 mnt_flags |= MNT_RELATIME; 3322 3323 /* Separate the per-mountpoint flags */ 3324 if (flags & MS_NOSUID) 3325 mnt_flags |= MNT_NOSUID; 3326 if (flags & MS_NODEV) 3327 mnt_flags |= MNT_NODEV; 3328 if (flags & MS_NOEXEC) 3329 mnt_flags |= MNT_NOEXEC; 3330 if (flags & MS_NOATIME) 3331 mnt_flags |= MNT_NOATIME; 3332 if (flags & MS_NODIRATIME) 3333 mnt_flags |= MNT_NODIRATIME; 3334 if (flags & MS_STRICTATIME) 3335 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3336 if (flags & MS_RDONLY) 3337 mnt_flags |= MNT_READONLY; 3338 if (flags & MS_NOSYMFOLLOW) 3339 mnt_flags |= MNT_NOSYMFOLLOW; 3340 3341 /* The default atime for remount is preservation */ 3342 if ((flags & MS_REMOUNT) && 3343 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3344 MS_STRICTATIME)) == 0)) { 3345 mnt_flags &= ~MNT_ATIME_MASK; 3346 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3347 } 3348 3349 sb_flags = flags & (SB_RDONLY | 3350 SB_SYNCHRONOUS | 3351 SB_MANDLOCK | 3352 SB_DIRSYNC | 3353 SB_SILENT | 3354 SB_POSIXACL | 3355 SB_LAZYTIME | 3356 SB_I_VERSION); 3357 3358 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3359 return do_reconfigure_mnt(path, mnt_flags); 3360 if (flags & MS_REMOUNT) 3361 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3362 if (flags & MS_BIND) 3363 return do_loopback(path, dev_name, flags & MS_REC); 3364 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3365 return do_change_type(path, flags); 3366 if (flags & MS_MOVE) 3367 return do_move_mount_old(path, dev_name); 3368 3369 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3370 data_page); 3371 } 3372 3373 long do_mount(const char *dev_name, const char __user *dir_name, 3374 const char *type_page, unsigned long flags, void *data_page) 3375 { 3376 struct path path; 3377 int ret; 3378 3379 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3380 if (ret) 3381 return ret; 3382 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3383 path_put(&path); 3384 return ret; 3385 } 3386 3387 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3388 { 3389 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3390 } 3391 3392 static void dec_mnt_namespaces(struct ucounts *ucounts) 3393 { 3394 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3395 } 3396 3397 static void free_mnt_ns(struct mnt_namespace *ns) 3398 { 3399 if (!is_anon_ns(ns)) 3400 ns_free_inum(&ns->ns); 3401 dec_mnt_namespaces(ns->ucounts); 3402 put_user_ns(ns->user_ns); 3403 kfree(ns); 3404 } 3405 3406 /* 3407 * Assign a sequence number so we can detect when we attempt to bind 3408 * mount a reference to an older mount namespace into the current 3409 * mount namespace, preventing reference counting loops. A 64bit 3410 * number incrementing at 10Ghz will take 12,427 years to wrap which 3411 * is effectively never, so we can ignore the possibility. 3412 */ 3413 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3414 3415 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3416 { 3417 struct mnt_namespace *new_ns; 3418 struct ucounts *ucounts; 3419 int ret; 3420 3421 ucounts = inc_mnt_namespaces(user_ns); 3422 if (!ucounts) 3423 return ERR_PTR(-ENOSPC); 3424 3425 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3426 if (!new_ns) { 3427 dec_mnt_namespaces(ucounts); 3428 return ERR_PTR(-ENOMEM); 3429 } 3430 if (!anon) { 3431 ret = ns_alloc_inum(&new_ns->ns); 3432 if (ret) { 3433 kfree(new_ns); 3434 dec_mnt_namespaces(ucounts); 3435 return ERR_PTR(ret); 3436 } 3437 } 3438 new_ns->ns.ops = &mntns_operations; 3439 if (!anon) 3440 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3441 refcount_set(&new_ns->ns.count, 1); 3442 INIT_LIST_HEAD(&new_ns->list); 3443 init_waitqueue_head(&new_ns->poll); 3444 spin_lock_init(&new_ns->ns_lock); 3445 new_ns->user_ns = get_user_ns(user_ns); 3446 new_ns->ucounts = ucounts; 3447 return new_ns; 3448 } 3449 3450 __latent_entropy 3451 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3452 struct user_namespace *user_ns, struct fs_struct *new_fs) 3453 { 3454 struct mnt_namespace *new_ns; 3455 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3456 struct mount *p, *q; 3457 struct mount *old; 3458 struct mount *new; 3459 int copy_flags; 3460 3461 BUG_ON(!ns); 3462 3463 if (likely(!(flags & CLONE_NEWNS))) { 3464 get_mnt_ns(ns); 3465 return ns; 3466 } 3467 3468 old = ns->root; 3469 3470 new_ns = alloc_mnt_ns(user_ns, false); 3471 if (IS_ERR(new_ns)) 3472 return new_ns; 3473 3474 namespace_lock(); 3475 /* First pass: copy the tree topology */ 3476 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3477 if (user_ns != ns->user_ns) 3478 copy_flags |= CL_SHARED_TO_SLAVE; 3479 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3480 if (IS_ERR(new)) { 3481 namespace_unlock(); 3482 free_mnt_ns(new_ns); 3483 return ERR_CAST(new); 3484 } 3485 if (user_ns != ns->user_ns) { 3486 lock_mount_hash(); 3487 lock_mnt_tree(new); 3488 unlock_mount_hash(); 3489 } 3490 new_ns->root = new; 3491 list_add_tail(&new_ns->list, &new->mnt_list); 3492 3493 /* 3494 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3495 * as belonging to new namespace. We have already acquired a private 3496 * fs_struct, so tsk->fs->lock is not needed. 3497 */ 3498 p = old; 3499 q = new; 3500 while (p) { 3501 q->mnt_ns = new_ns; 3502 new_ns->mounts++; 3503 if (new_fs) { 3504 if (&p->mnt == new_fs->root.mnt) { 3505 new_fs->root.mnt = mntget(&q->mnt); 3506 rootmnt = &p->mnt; 3507 } 3508 if (&p->mnt == new_fs->pwd.mnt) { 3509 new_fs->pwd.mnt = mntget(&q->mnt); 3510 pwdmnt = &p->mnt; 3511 } 3512 } 3513 p = next_mnt(p, old); 3514 q = next_mnt(q, new); 3515 if (!q) 3516 break; 3517 while (p->mnt.mnt_root != q->mnt.mnt_root) 3518 p = next_mnt(p, old); 3519 } 3520 namespace_unlock(); 3521 3522 if (rootmnt) 3523 mntput(rootmnt); 3524 if (pwdmnt) 3525 mntput(pwdmnt); 3526 3527 return new_ns; 3528 } 3529 3530 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3531 { 3532 struct mount *mnt = real_mount(m); 3533 struct mnt_namespace *ns; 3534 struct super_block *s; 3535 struct path path; 3536 int err; 3537 3538 ns = alloc_mnt_ns(&init_user_ns, true); 3539 if (IS_ERR(ns)) { 3540 mntput(m); 3541 return ERR_CAST(ns); 3542 } 3543 mnt->mnt_ns = ns; 3544 ns->root = mnt; 3545 ns->mounts++; 3546 list_add(&mnt->mnt_list, &ns->list); 3547 3548 err = vfs_path_lookup(m->mnt_root, m, 3549 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3550 3551 put_mnt_ns(ns); 3552 3553 if (err) 3554 return ERR_PTR(err); 3555 3556 /* trade a vfsmount reference for active sb one */ 3557 s = path.mnt->mnt_sb; 3558 atomic_inc(&s->s_active); 3559 mntput(path.mnt); 3560 /* lock the sucker */ 3561 down_write(&s->s_umount); 3562 /* ... and return the root of (sub)tree on it */ 3563 return path.dentry; 3564 } 3565 EXPORT_SYMBOL(mount_subtree); 3566 3567 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3568 char __user *, type, unsigned long, flags, void __user *, data) 3569 { 3570 int ret; 3571 char *kernel_type; 3572 char *kernel_dev; 3573 void *options; 3574 3575 kernel_type = copy_mount_string(type); 3576 ret = PTR_ERR(kernel_type); 3577 if (IS_ERR(kernel_type)) 3578 goto out_type; 3579 3580 kernel_dev = copy_mount_string(dev_name); 3581 ret = PTR_ERR(kernel_dev); 3582 if (IS_ERR(kernel_dev)) 3583 goto out_dev; 3584 3585 options = copy_mount_options(data); 3586 ret = PTR_ERR(options); 3587 if (IS_ERR(options)) 3588 goto out_data; 3589 3590 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3591 3592 kfree(options); 3593 out_data: 3594 kfree(kernel_dev); 3595 out_dev: 3596 kfree(kernel_type); 3597 out_type: 3598 return ret; 3599 } 3600 3601 #define FSMOUNT_VALID_FLAGS \ 3602 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3603 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3604 MOUNT_ATTR_NOSYMFOLLOW) 3605 3606 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3607 3608 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3609 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3610 3611 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3612 { 3613 unsigned int mnt_flags = 0; 3614 3615 if (attr_flags & MOUNT_ATTR_RDONLY) 3616 mnt_flags |= MNT_READONLY; 3617 if (attr_flags & MOUNT_ATTR_NOSUID) 3618 mnt_flags |= MNT_NOSUID; 3619 if (attr_flags & MOUNT_ATTR_NODEV) 3620 mnt_flags |= MNT_NODEV; 3621 if (attr_flags & MOUNT_ATTR_NOEXEC) 3622 mnt_flags |= MNT_NOEXEC; 3623 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3624 mnt_flags |= MNT_NODIRATIME; 3625 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3626 mnt_flags |= MNT_NOSYMFOLLOW; 3627 3628 return mnt_flags; 3629 } 3630 3631 /* 3632 * Create a kernel mount representation for a new, prepared superblock 3633 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3634 */ 3635 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3636 unsigned int, attr_flags) 3637 { 3638 struct mnt_namespace *ns; 3639 struct fs_context *fc; 3640 struct file *file; 3641 struct path newmount; 3642 struct mount *mnt; 3643 struct fd f; 3644 unsigned int mnt_flags = 0; 3645 long ret; 3646 3647 if (!may_mount()) 3648 return -EPERM; 3649 3650 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3651 return -EINVAL; 3652 3653 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3654 return -EINVAL; 3655 3656 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3657 3658 switch (attr_flags & MOUNT_ATTR__ATIME) { 3659 case MOUNT_ATTR_STRICTATIME: 3660 break; 3661 case MOUNT_ATTR_NOATIME: 3662 mnt_flags |= MNT_NOATIME; 3663 break; 3664 case MOUNT_ATTR_RELATIME: 3665 mnt_flags |= MNT_RELATIME; 3666 break; 3667 default: 3668 return -EINVAL; 3669 } 3670 3671 f = fdget(fs_fd); 3672 if (!f.file) 3673 return -EBADF; 3674 3675 ret = -EINVAL; 3676 if (f.file->f_op != &fscontext_fops) 3677 goto err_fsfd; 3678 3679 fc = f.file->private_data; 3680 3681 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3682 if (ret < 0) 3683 goto err_fsfd; 3684 3685 /* There must be a valid superblock or we can't mount it */ 3686 ret = -EINVAL; 3687 if (!fc->root) 3688 goto err_unlock; 3689 3690 ret = -EPERM; 3691 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3692 pr_warn("VFS: Mount too revealing\n"); 3693 goto err_unlock; 3694 } 3695 3696 ret = -EBUSY; 3697 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3698 goto err_unlock; 3699 3700 if (fc->sb_flags & SB_MANDLOCK) 3701 warn_mandlock(); 3702 3703 newmount.mnt = vfs_create_mount(fc); 3704 if (IS_ERR(newmount.mnt)) { 3705 ret = PTR_ERR(newmount.mnt); 3706 goto err_unlock; 3707 } 3708 newmount.dentry = dget(fc->root); 3709 newmount.mnt->mnt_flags = mnt_flags; 3710 3711 /* We've done the mount bit - now move the file context into more or 3712 * less the same state as if we'd done an fspick(). We don't want to 3713 * do any memory allocation or anything like that at this point as we 3714 * don't want to have to handle any errors incurred. 3715 */ 3716 vfs_clean_context(fc); 3717 3718 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3719 if (IS_ERR(ns)) { 3720 ret = PTR_ERR(ns); 3721 goto err_path; 3722 } 3723 mnt = real_mount(newmount.mnt); 3724 mnt->mnt_ns = ns; 3725 ns->root = mnt; 3726 ns->mounts = 1; 3727 list_add(&mnt->mnt_list, &ns->list); 3728 mntget(newmount.mnt); 3729 3730 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3731 * it, not just simply put it. 3732 */ 3733 file = dentry_open(&newmount, O_PATH, fc->cred); 3734 if (IS_ERR(file)) { 3735 dissolve_on_fput(newmount.mnt); 3736 ret = PTR_ERR(file); 3737 goto err_path; 3738 } 3739 file->f_mode |= FMODE_NEED_UNMOUNT; 3740 3741 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3742 if (ret >= 0) 3743 fd_install(ret, file); 3744 else 3745 fput(file); 3746 3747 err_path: 3748 path_put(&newmount); 3749 err_unlock: 3750 mutex_unlock(&fc->uapi_mutex); 3751 err_fsfd: 3752 fdput(f); 3753 return ret; 3754 } 3755 3756 /* 3757 * Move a mount from one place to another. In combination with 3758 * fsopen()/fsmount() this is used to install a new mount and in combination 3759 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3760 * a mount subtree. 3761 * 3762 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3763 */ 3764 SYSCALL_DEFINE5(move_mount, 3765 int, from_dfd, const char __user *, from_pathname, 3766 int, to_dfd, const char __user *, to_pathname, 3767 unsigned int, flags) 3768 { 3769 struct path from_path, to_path; 3770 unsigned int lflags; 3771 int ret = 0; 3772 3773 if (!may_mount()) 3774 return -EPERM; 3775 3776 if (flags & ~MOVE_MOUNT__MASK) 3777 return -EINVAL; 3778 3779 /* If someone gives a pathname, they aren't permitted to move 3780 * from an fd that requires unmount as we can't get at the flag 3781 * to clear it afterwards. 3782 */ 3783 lflags = 0; 3784 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3785 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3786 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3787 3788 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3789 if (ret < 0) 3790 return ret; 3791 3792 lflags = 0; 3793 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3794 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3795 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3796 3797 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3798 if (ret < 0) 3799 goto out_from; 3800 3801 ret = security_move_mount(&from_path, &to_path); 3802 if (ret < 0) 3803 goto out_to; 3804 3805 if (flags & MOVE_MOUNT_SET_GROUP) 3806 ret = do_set_group(&from_path, &to_path); 3807 else 3808 ret = do_move_mount(&from_path, &to_path); 3809 3810 out_to: 3811 path_put(&to_path); 3812 out_from: 3813 path_put(&from_path); 3814 return ret; 3815 } 3816 3817 /* 3818 * Return true if path is reachable from root 3819 * 3820 * namespace_sem or mount_lock is held 3821 */ 3822 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3823 const struct path *root) 3824 { 3825 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3826 dentry = mnt->mnt_mountpoint; 3827 mnt = mnt->mnt_parent; 3828 } 3829 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3830 } 3831 3832 bool path_is_under(const struct path *path1, const struct path *path2) 3833 { 3834 bool res; 3835 read_seqlock_excl(&mount_lock); 3836 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3837 read_sequnlock_excl(&mount_lock); 3838 return res; 3839 } 3840 EXPORT_SYMBOL(path_is_under); 3841 3842 /* 3843 * pivot_root Semantics: 3844 * Moves the root file system of the current process to the directory put_old, 3845 * makes new_root as the new root file system of the current process, and sets 3846 * root/cwd of all processes which had them on the current root to new_root. 3847 * 3848 * Restrictions: 3849 * The new_root and put_old must be directories, and must not be on the 3850 * same file system as the current process root. The put_old must be 3851 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3852 * pointed to by put_old must yield the same directory as new_root. No other 3853 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3854 * 3855 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3856 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3857 * in this situation. 3858 * 3859 * Notes: 3860 * - we don't move root/cwd if they are not at the root (reason: if something 3861 * cared enough to change them, it's probably wrong to force them elsewhere) 3862 * - it's okay to pick a root that isn't the root of a file system, e.g. 3863 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3864 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3865 * first. 3866 */ 3867 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3868 const char __user *, put_old) 3869 { 3870 struct path new, old, root; 3871 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3872 struct mountpoint *old_mp, *root_mp; 3873 int error; 3874 3875 if (!may_mount()) 3876 return -EPERM; 3877 3878 error = user_path_at(AT_FDCWD, new_root, 3879 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3880 if (error) 3881 goto out0; 3882 3883 error = user_path_at(AT_FDCWD, put_old, 3884 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3885 if (error) 3886 goto out1; 3887 3888 error = security_sb_pivotroot(&old, &new); 3889 if (error) 3890 goto out2; 3891 3892 get_fs_root(current->fs, &root); 3893 old_mp = lock_mount(&old); 3894 error = PTR_ERR(old_mp); 3895 if (IS_ERR(old_mp)) 3896 goto out3; 3897 3898 error = -EINVAL; 3899 new_mnt = real_mount(new.mnt); 3900 root_mnt = real_mount(root.mnt); 3901 old_mnt = real_mount(old.mnt); 3902 ex_parent = new_mnt->mnt_parent; 3903 root_parent = root_mnt->mnt_parent; 3904 if (IS_MNT_SHARED(old_mnt) || 3905 IS_MNT_SHARED(ex_parent) || 3906 IS_MNT_SHARED(root_parent)) 3907 goto out4; 3908 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3909 goto out4; 3910 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3911 goto out4; 3912 error = -ENOENT; 3913 if (d_unlinked(new.dentry)) 3914 goto out4; 3915 error = -EBUSY; 3916 if (new_mnt == root_mnt || old_mnt == root_mnt) 3917 goto out4; /* loop, on the same file system */ 3918 error = -EINVAL; 3919 if (root.mnt->mnt_root != root.dentry) 3920 goto out4; /* not a mountpoint */ 3921 if (!mnt_has_parent(root_mnt)) 3922 goto out4; /* not attached */ 3923 if (new.mnt->mnt_root != new.dentry) 3924 goto out4; /* not a mountpoint */ 3925 if (!mnt_has_parent(new_mnt)) 3926 goto out4; /* not attached */ 3927 /* make sure we can reach put_old from new_root */ 3928 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3929 goto out4; 3930 /* make certain new is below the root */ 3931 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3932 goto out4; 3933 lock_mount_hash(); 3934 umount_mnt(new_mnt); 3935 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3936 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3937 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3938 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3939 } 3940 /* mount old root on put_old */ 3941 attach_mnt(root_mnt, old_mnt, old_mp); 3942 /* mount new_root on / */ 3943 attach_mnt(new_mnt, root_parent, root_mp); 3944 mnt_add_count(root_parent, -1); 3945 touch_mnt_namespace(current->nsproxy->mnt_ns); 3946 /* A moved mount should not expire automatically */ 3947 list_del_init(&new_mnt->mnt_expire); 3948 put_mountpoint(root_mp); 3949 unlock_mount_hash(); 3950 chroot_fs_refs(&root, &new); 3951 error = 0; 3952 out4: 3953 unlock_mount(old_mp); 3954 if (!error) 3955 mntput_no_expire(ex_parent); 3956 out3: 3957 path_put(&root); 3958 out2: 3959 path_put(&old); 3960 out1: 3961 path_put(&new); 3962 out0: 3963 return error; 3964 } 3965 3966 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 3967 { 3968 unsigned int flags = mnt->mnt.mnt_flags; 3969 3970 /* flags to clear */ 3971 flags &= ~kattr->attr_clr; 3972 /* flags to raise */ 3973 flags |= kattr->attr_set; 3974 3975 return flags; 3976 } 3977 3978 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 3979 { 3980 struct vfsmount *m = &mnt->mnt; 3981 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 3982 3983 if (!kattr->mnt_userns) 3984 return 0; 3985 3986 /* 3987 * Creating an idmapped mount with the filesystem wide idmapping 3988 * doesn't make sense so block that. We don't allow mushy semantics. 3989 */ 3990 if (kattr->mnt_userns == fs_userns) 3991 return -EINVAL; 3992 3993 /* 3994 * Once a mount has been idmapped we don't allow it to change its 3995 * mapping. It makes things simpler and callers can just create 3996 * another bind-mount they can idmap if they want to. 3997 */ 3998 if (is_idmapped_mnt(m)) 3999 return -EPERM; 4000 4001 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4002 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4003 return -EINVAL; 4004 4005 /* We're not controlling the superblock. */ 4006 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4007 return -EPERM; 4008 4009 /* Mount has already been visible in the filesystem hierarchy. */ 4010 if (!is_anon_ns(mnt->mnt_ns)) 4011 return -EINVAL; 4012 4013 return 0; 4014 } 4015 4016 /** 4017 * mnt_allow_writers() - check whether the attribute change allows writers 4018 * @kattr: the new mount attributes 4019 * @mnt: the mount to which @kattr will be applied 4020 * 4021 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4022 * 4023 * Return: true if writers need to be held, false if not 4024 */ 4025 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4026 const struct mount *mnt) 4027 { 4028 return !(kattr->attr_set & MNT_READONLY) || 4029 (mnt->mnt.mnt_flags & MNT_READONLY); 4030 } 4031 4032 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4033 { 4034 struct mount *m; 4035 int err; 4036 4037 for (m = mnt; m; m = next_mnt(m, mnt)) { 4038 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4039 err = -EPERM; 4040 break; 4041 } 4042 4043 err = can_idmap_mount(kattr, m); 4044 if (err) 4045 break; 4046 4047 if (!mnt_allow_writers(kattr, m)) { 4048 err = mnt_hold_writers(m); 4049 if (err) 4050 break; 4051 } 4052 4053 if (!kattr->recurse) 4054 return 0; 4055 } 4056 4057 if (err) { 4058 struct mount *p; 4059 4060 for (p = mnt; p != m; p = next_mnt(p, mnt)) { 4061 /* If we had to hold writers unblock them. */ 4062 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4063 mnt_unhold_writers(p); 4064 } 4065 } 4066 return err; 4067 } 4068 4069 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4070 { 4071 struct user_namespace *mnt_userns, *old_mnt_userns; 4072 4073 if (!kattr->mnt_userns) 4074 return; 4075 4076 /* 4077 * We're the only ones able to change the mount's idmapping. So 4078 * mnt->mnt.mnt_userns is stable and we can retrieve it directly. 4079 */ 4080 old_mnt_userns = mnt->mnt.mnt_userns; 4081 4082 mnt_userns = get_user_ns(kattr->mnt_userns); 4083 /* Pairs with smp_load_acquire() in mnt_user_ns(). */ 4084 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns); 4085 4086 /* 4087 * If this is an idmapped filesystem drop the reference we've taken 4088 * in vfs_create_mount() before. 4089 */ 4090 if (!initial_idmapping(old_mnt_userns)) 4091 put_user_ns(old_mnt_userns); 4092 } 4093 4094 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4095 { 4096 struct mount *m; 4097 4098 for (m = mnt; m; m = next_mnt(m, mnt)) { 4099 unsigned int flags; 4100 4101 do_idmap_mount(kattr, m); 4102 flags = recalc_flags(kattr, m); 4103 WRITE_ONCE(m->mnt.mnt_flags, flags); 4104 4105 /* If we had to hold writers unblock them. */ 4106 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4107 mnt_unhold_writers(m); 4108 4109 if (kattr->propagation) 4110 change_mnt_propagation(m, kattr->propagation); 4111 if (!kattr->recurse) 4112 break; 4113 } 4114 touch_mnt_namespace(mnt->mnt_ns); 4115 } 4116 4117 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4118 { 4119 struct mount *mnt = real_mount(path->mnt); 4120 int err = 0; 4121 4122 if (path->dentry != mnt->mnt.mnt_root) 4123 return -EINVAL; 4124 4125 if (kattr->propagation) { 4126 /* 4127 * Only take namespace_lock() if we're actually changing 4128 * propagation. 4129 */ 4130 namespace_lock(); 4131 if (kattr->propagation == MS_SHARED) { 4132 err = invent_group_ids(mnt, kattr->recurse); 4133 if (err) { 4134 namespace_unlock(); 4135 return err; 4136 } 4137 } 4138 } 4139 4140 err = -EINVAL; 4141 lock_mount_hash(); 4142 4143 /* Ensure that this isn't anything purely vfs internal. */ 4144 if (!is_mounted(&mnt->mnt)) 4145 goto out; 4146 4147 /* 4148 * If this is an attached mount make sure it's located in the callers 4149 * mount namespace. If it's not don't let the caller interact with it. 4150 * If this is a detached mount make sure it has an anonymous mount 4151 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE. 4152 */ 4153 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns))) 4154 goto out; 4155 4156 /* 4157 * First, we get the mount tree in a shape where we can change mount 4158 * properties without failure. If we succeeded to do so we commit all 4159 * changes and if we failed we clean up. 4160 */ 4161 err = mount_setattr_prepare(kattr, mnt); 4162 if (!err) 4163 mount_setattr_commit(kattr, mnt); 4164 4165 out: 4166 unlock_mount_hash(); 4167 4168 if (kattr->propagation) { 4169 namespace_unlock(); 4170 if (err) 4171 cleanup_group_ids(mnt, NULL); 4172 } 4173 4174 return err; 4175 } 4176 4177 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4178 struct mount_kattr *kattr, unsigned int flags) 4179 { 4180 int err = 0; 4181 struct ns_common *ns; 4182 struct user_namespace *mnt_userns; 4183 struct file *file; 4184 4185 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4186 return 0; 4187 4188 /* 4189 * We currently do not support clearing an idmapped mount. If this ever 4190 * is a use-case we can revisit this but for now let's keep it simple 4191 * and not allow it. 4192 */ 4193 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4194 return -EINVAL; 4195 4196 if (attr->userns_fd > INT_MAX) 4197 return -EINVAL; 4198 4199 file = fget(attr->userns_fd); 4200 if (!file) 4201 return -EBADF; 4202 4203 if (!proc_ns_file(file)) { 4204 err = -EINVAL; 4205 goto out_fput; 4206 } 4207 4208 ns = get_proc_ns(file_inode(file)); 4209 if (ns->ops->type != CLONE_NEWUSER) { 4210 err = -EINVAL; 4211 goto out_fput; 4212 } 4213 4214 /* 4215 * The initial idmapping cannot be used to create an idmapped 4216 * mount. We use the initial idmapping as an indicator of a mount 4217 * that is not idmapped. It can simply be passed into helpers that 4218 * are aware of idmapped mounts as a convenient shortcut. A user 4219 * can just create a dedicated identity mapping to achieve the same 4220 * result. 4221 */ 4222 mnt_userns = container_of(ns, struct user_namespace, ns); 4223 if (initial_idmapping(mnt_userns)) { 4224 err = -EPERM; 4225 goto out_fput; 4226 } 4227 kattr->mnt_userns = get_user_ns(mnt_userns); 4228 4229 out_fput: 4230 fput(file); 4231 return err; 4232 } 4233 4234 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4235 struct mount_kattr *kattr, unsigned int flags) 4236 { 4237 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4238 4239 if (flags & AT_NO_AUTOMOUNT) 4240 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4241 if (flags & AT_SYMLINK_NOFOLLOW) 4242 lookup_flags &= ~LOOKUP_FOLLOW; 4243 if (flags & AT_EMPTY_PATH) 4244 lookup_flags |= LOOKUP_EMPTY; 4245 4246 *kattr = (struct mount_kattr) { 4247 .lookup_flags = lookup_flags, 4248 .recurse = !!(flags & AT_RECURSIVE), 4249 }; 4250 4251 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4252 return -EINVAL; 4253 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4254 return -EINVAL; 4255 kattr->propagation = attr->propagation; 4256 4257 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4258 return -EINVAL; 4259 4260 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4261 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4262 4263 /* 4264 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4265 * users wanting to transition to a different atime setting cannot 4266 * simply specify the atime setting in @attr_set, but must also 4267 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4268 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4269 * @attr_clr and that @attr_set can't have any atime bits set if 4270 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4271 */ 4272 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4273 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4274 return -EINVAL; 4275 4276 /* 4277 * Clear all previous time settings as they are mutually 4278 * exclusive. 4279 */ 4280 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4281 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4282 case MOUNT_ATTR_RELATIME: 4283 kattr->attr_set |= MNT_RELATIME; 4284 break; 4285 case MOUNT_ATTR_NOATIME: 4286 kattr->attr_set |= MNT_NOATIME; 4287 break; 4288 case MOUNT_ATTR_STRICTATIME: 4289 break; 4290 default: 4291 return -EINVAL; 4292 } 4293 } else { 4294 if (attr->attr_set & MOUNT_ATTR__ATIME) 4295 return -EINVAL; 4296 } 4297 4298 return build_mount_idmapped(attr, usize, kattr, flags); 4299 } 4300 4301 static void finish_mount_kattr(struct mount_kattr *kattr) 4302 { 4303 put_user_ns(kattr->mnt_userns); 4304 kattr->mnt_userns = NULL; 4305 } 4306 4307 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4308 unsigned int, flags, struct mount_attr __user *, uattr, 4309 size_t, usize) 4310 { 4311 int err; 4312 struct path target; 4313 struct mount_attr attr; 4314 struct mount_kattr kattr; 4315 4316 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4317 4318 if (flags & ~(AT_EMPTY_PATH | 4319 AT_RECURSIVE | 4320 AT_SYMLINK_NOFOLLOW | 4321 AT_NO_AUTOMOUNT)) 4322 return -EINVAL; 4323 4324 if (unlikely(usize > PAGE_SIZE)) 4325 return -E2BIG; 4326 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4327 return -EINVAL; 4328 4329 if (!may_mount()) 4330 return -EPERM; 4331 4332 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4333 if (err) 4334 return err; 4335 4336 /* Don't bother walking through the mounts if this is a nop. */ 4337 if (attr.attr_set == 0 && 4338 attr.attr_clr == 0 && 4339 attr.propagation == 0) 4340 return 0; 4341 4342 err = build_mount_kattr(&attr, usize, &kattr, flags); 4343 if (err) 4344 return err; 4345 4346 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4347 if (!err) { 4348 err = do_mount_setattr(&target, &kattr); 4349 path_put(&target); 4350 } 4351 finish_mount_kattr(&kattr); 4352 return err; 4353 } 4354 4355 static void __init init_mount_tree(void) 4356 { 4357 struct vfsmount *mnt; 4358 struct mount *m; 4359 struct mnt_namespace *ns; 4360 struct path root; 4361 4362 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4363 if (IS_ERR(mnt)) 4364 panic("Can't create rootfs"); 4365 4366 ns = alloc_mnt_ns(&init_user_ns, false); 4367 if (IS_ERR(ns)) 4368 panic("Can't allocate initial namespace"); 4369 m = real_mount(mnt); 4370 m->mnt_ns = ns; 4371 ns->root = m; 4372 ns->mounts = 1; 4373 list_add(&m->mnt_list, &ns->list); 4374 init_task.nsproxy->mnt_ns = ns; 4375 get_mnt_ns(ns); 4376 4377 root.mnt = mnt; 4378 root.dentry = mnt->mnt_root; 4379 mnt->mnt_flags |= MNT_LOCKED; 4380 4381 set_fs_pwd(current->fs, &root); 4382 set_fs_root(current->fs, &root); 4383 } 4384 4385 void __init mnt_init(void) 4386 { 4387 int err; 4388 4389 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4390 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4391 4392 mount_hashtable = alloc_large_system_hash("Mount-cache", 4393 sizeof(struct hlist_head), 4394 mhash_entries, 19, 4395 HASH_ZERO, 4396 &m_hash_shift, &m_hash_mask, 0, 0); 4397 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4398 sizeof(struct hlist_head), 4399 mphash_entries, 19, 4400 HASH_ZERO, 4401 &mp_hash_shift, &mp_hash_mask, 0, 0); 4402 4403 if (!mount_hashtable || !mountpoint_hashtable) 4404 panic("Failed to allocate mount hash table\n"); 4405 4406 kernfs_init(); 4407 4408 err = sysfs_init(); 4409 if (err) 4410 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4411 __func__, err); 4412 fs_kobj = kobject_create_and_add("fs", NULL); 4413 if (!fs_kobj) 4414 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4415 shmem_init(); 4416 init_rootfs(); 4417 init_mount_tree(); 4418 } 4419 4420 void put_mnt_ns(struct mnt_namespace *ns) 4421 { 4422 if (!refcount_dec_and_test(&ns->ns.count)) 4423 return; 4424 drop_collected_mounts(&ns->root->mnt); 4425 free_mnt_ns(ns); 4426 } 4427 4428 struct vfsmount *kern_mount(struct file_system_type *type) 4429 { 4430 struct vfsmount *mnt; 4431 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4432 if (!IS_ERR(mnt)) { 4433 /* 4434 * it is a longterm mount, don't release mnt until 4435 * we unmount before file sys is unregistered 4436 */ 4437 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4438 } 4439 return mnt; 4440 } 4441 EXPORT_SYMBOL_GPL(kern_mount); 4442 4443 void kern_unmount(struct vfsmount *mnt) 4444 { 4445 /* release long term mount so mount point can be released */ 4446 if (!IS_ERR_OR_NULL(mnt)) { 4447 real_mount(mnt)->mnt_ns = NULL; 4448 synchronize_rcu(); /* yecchhh... */ 4449 mntput(mnt); 4450 } 4451 } 4452 EXPORT_SYMBOL(kern_unmount); 4453 4454 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4455 { 4456 unsigned int i; 4457 4458 for (i = 0; i < num; i++) 4459 if (mnt[i]) 4460 real_mount(mnt[i])->mnt_ns = NULL; 4461 synchronize_rcu_expedited(); 4462 for (i = 0; i < num; i++) 4463 mntput(mnt[i]); 4464 } 4465 EXPORT_SYMBOL(kern_unmount_array); 4466 4467 bool our_mnt(struct vfsmount *mnt) 4468 { 4469 return check_mnt(real_mount(mnt)); 4470 } 4471 4472 bool current_chrooted(void) 4473 { 4474 /* Does the current process have a non-standard root */ 4475 struct path ns_root; 4476 struct path fs_root; 4477 bool chrooted; 4478 4479 /* Find the namespace root */ 4480 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4481 ns_root.dentry = ns_root.mnt->mnt_root; 4482 path_get(&ns_root); 4483 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4484 ; 4485 4486 get_fs_root(current->fs, &fs_root); 4487 4488 chrooted = !path_equal(&fs_root, &ns_root); 4489 4490 path_put(&fs_root); 4491 path_put(&ns_root); 4492 4493 return chrooted; 4494 } 4495 4496 static bool mnt_already_visible(struct mnt_namespace *ns, 4497 const struct super_block *sb, 4498 int *new_mnt_flags) 4499 { 4500 int new_flags = *new_mnt_flags; 4501 struct mount *mnt; 4502 bool visible = false; 4503 4504 down_read(&namespace_sem); 4505 lock_ns_list(ns); 4506 list_for_each_entry(mnt, &ns->list, mnt_list) { 4507 struct mount *child; 4508 int mnt_flags; 4509 4510 if (mnt_is_cursor(mnt)) 4511 continue; 4512 4513 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4514 continue; 4515 4516 /* This mount is not fully visible if it's root directory 4517 * is not the root directory of the filesystem. 4518 */ 4519 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4520 continue; 4521 4522 /* A local view of the mount flags */ 4523 mnt_flags = mnt->mnt.mnt_flags; 4524 4525 /* Don't miss readonly hidden in the superblock flags */ 4526 if (sb_rdonly(mnt->mnt.mnt_sb)) 4527 mnt_flags |= MNT_LOCK_READONLY; 4528 4529 /* Verify the mount flags are equal to or more permissive 4530 * than the proposed new mount. 4531 */ 4532 if ((mnt_flags & MNT_LOCK_READONLY) && 4533 !(new_flags & MNT_READONLY)) 4534 continue; 4535 if ((mnt_flags & MNT_LOCK_ATIME) && 4536 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4537 continue; 4538 4539 /* This mount is not fully visible if there are any 4540 * locked child mounts that cover anything except for 4541 * empty directories. 4542 */ 4543 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4544 struct inode *inode = child->mnt_mountpoint->d_inode; 4545 /* Only worry about locked mounts */ 4546 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4547 continue; 4548 /* Is the directory permanetly empty? */ 4549 if (!is_empty_dir_inode(inode)) 4550 goto next; 4551 } 4552 /* Preserve the locked attributes */ 4553 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4554 MNT_LOCK_ATIME); 4555 visible = true; 4556 goto found; 4557 next: ; 4558 } 4559 found: 4560 unlock_ns_list(ns); 4561 up_read(&namespace_sem); 4562 return visible; 4563 } 4564 4565 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4566 { 4567 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4568 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4569 unsigned long s_iflags; 4570 4571 if (ns->user_ns == &init_user_ns) 4572 return false; 4573 4574 /* Can this filesystem be too revealing? */ 4575 s_iflags = sb->s_iflags; 4576 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4577 return false; 4578 4579 if ((s_iflags & required_iflags) != required_iflags) { 4580 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4581 required_iflags); 4582 return true; 4583 } 4584 4585 return !mnt_already_visible(ns, sb, new_mnt_flags); 4586 } 4587 4588 bool mnt_may_suid(struct vfsmount *mnt) 4589 { 4590 /* 4591 * Foreign mounts (accessed via fchdir or through /proc 4592 * symlinks) are always treated as if they are nosuid. This 4593 * prevents namespaces from trusting potentially unsafe 4594 * suid/sgid bits, file caps, or security labels that originate 4595 * in other namespaces. 4596 */ 4597 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4598 current_in_userns(mnt->mnt_sb->s_user_ns); 4599 } 4600 4601 static struct ns_common *mntns_get(struct task_struct *task) 4602 { 4603 struct ns_common *ns = NULL; 4604 struct nsproxy *nsproxy; 4605 4606 task_lock(task); 4607 nsproxy = task->nsproxy; 4608 if (nsproxy) { 4609 ns = &nsproxy->mnt_ns->ns; 4610 get_mnt_ns(to_mnt_ns(ns)); 4611 } 4612 task_unlock(task); 4613 4614 return ns; 4615 } 4616 4617 static void mntns_put(struct ns_common *ns) 4618 { 4619 put_mnt_ns(to_mnt_ns(ns)); 4620 } 4621 4622 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4623 { 4624 struct nsproxy *nsproxy = nsset->nsproxy; 4625 struct fs_struct *fs = nsset->fs; 4626 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4627 struct user_namespace *user_ns = nsset->cred->user_ns; 4628 struct path root; 4629 int err; 4630 4631 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4632 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4633 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4634 return -EPERM; 4635 4636 if (is_anon_ns(mnt_ns)) 4637 return -EINVAL; 4638 4639 if (fs->users != 1) 4640 return -EINVAL; 4641 4642 get_mnt_ns(mnt_ns); 4643 old_mnt_ns = nsproxy->mnt_ns; 4644 nsproxy->mnt_ns = mnt_ns; 4645 4646 /* Find the root */ 4647 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4648 "/", LOOKUP_DOWN, &root); 4649 if (err) { 4650 /* revert to old namespace */ 4651 nsproxy->mnt_ns = old_mnt_ns; 4652 put_mnt_ns(mnt_ns); 4653 return err; 4654 } 4655 4656 put_mnt_ns(old_mnt_ns); 4657 4658 /* Update the pwd and root */ 4659 set_fs_pwd(fs, &root); 4660 set_fs_root(fs, &root); 4661 4662 path_put(&root); 4663 return 0; 4664 } 4665 4666 static struct user_namespace *mntns_owner(struct ns_common *ns) 4667 { 4668 return to_mnt_ns(ns)->user_ns; 4669 } 4670 4671 const struct proc_ns_operations mntns_operations = { 4672 .name = "mnt", 4673 .type = CLONE_NEWNS, 4674 .get = mntns_get, 4675 .put = mntns_put, 4676 .install = mntns_install, 4677 .owner = mntns_owner, 4678 }; 4679 4680 #ifdef CONFIG_SYSCTL 4681 static struct ctl_table fs_namespace_sysctls[] = { 4682 { 4683 .procname = "mount-max", 4684 .data = &sysctl_mount_max, 4685 .maxlen = sizeof(unsigned int), 4686 .mode = 0644, 4687 .proc_handler = proc_dointvec_minmax, 4688 .extra1 = SYSCTL_ONE, 4689 }, 4690 { } 4691 }; 4692 4693 static int __init init_fs_namespace_sysctls(void) 4694 { 4695 register_sysctl_init("fs", fs_namespace_sysctls); 4696 return 0; 4697 } 4698 fs_initcall(init_fs_namespace_sysctls); 4699 4700 #endif /* CONFIG_SYSCTL */ 4701