1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/pidfs.h> 36 #include <linux/nstree.h> 37 38 #include "pnode.h" 39 #include "internal.h" 40 41 /* Maximum number of mounts in a mount namespace */ 42 static unsigned int sysctl_mount_max __read_mostly = 100000; 43 44 static unsigned int m_hash_mask __ro_after_init; 45 static unsigned int m_hash_shift __ro_after_init; 46 static unsigned int mp_hash_mask __ro_after_init; 47 static unsigned int mp_hash_shift __ro_after_init; 48 49 static __initdata unsigned long mhash_entries; 50 static int __init set_mhash_entries(char *str) 51 { 52 if (!str) 53 return 0; 54 mhash_entries = simple_strtoul(str, &str, 0); 55 return 1; 56 } 57 __setup("mhash_entries=", set_mhash_entries); 58 59 static __initdata unsigned long mphash_entries; 60 static int __init set_mphash_entries(char *str) 61 { 62 if (!str) 63 return 0; 64 mphash_entries = simple_strtoul(str, &str, 0); 65 return 1; 66 } 67 __setup("mphash_entries=", set_mphash_entries); 68 69 static char * __initdata initramfs_options; 70 static int __init initramfs_options_setup(char *str) 71 { 72 initramfs_options = str; 73 return 1; 74 } 75 76 __setup("initramfs_options=", initramfs_options_setup); 77 78 static u64 event; 79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC); 80 static DEFINE_IDA(mnt_group_ida); 81 82 /* Don't allow confusion with old 32bit mount ID */ 83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET; 85 86 static struct hlist_head *mount_hashtable __ro_after_init; 87 static struct hlist_head *mountpoint_hashtable __ro_after_init; 88 static struct kmem_cache *mnt_cache __ro_after_init; 89 static DECLARE_RWSEM(namespace_sem); 90 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */ 93 94 static inline void namespace_lock(void); 95 static void namespace_unlock(void); 96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock()) 97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem), 98 up_read(&namespace_sem)) 99 100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T)) 101 102 #ifdef CONFIG_FSNOTIFY 103 LIST_HEAD(notify_list); /* protected by namespace_sem */ 104 #endif 105 106 enum mount_kattr_flags_t { 107 MOUNT_KATTR_RECURSE = (1 << 0), 108 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1), 109 }; 110 111 struct mount_kattr { 112 unsigned int attr_set; 113 unsigned int attr_clr; 114 unsigned int propagation; 115 unsigned int lookup_flags; 116 enum mount_kattr_flags_t kflags; 117 struct user_namespace *mnt_userns; 118 struct mnt_idmap *mnt_idmap; 119 }; 120 121 /* /sys/fs */ 122 struct kobject *fs_kobj __ro_after_init; 123 EXPORT_SYMBOL_GPL(fs_kobj); 124 125 /* 126 * vfsmount lock may be taken for read to prevent changes to the 127 * vfsmount hash, ie. during mountpoint lookups or walking back 128 * up the tree. 129 * 130 * It should be taken for write in all cases where the vfsmount 131 * tree or hash is modified or when a vfsmount structure is modified. 132 */ 133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 134 135 static void mnt_ns_release(struct mnt_namespace *ns) 136 { 137 /* keep alive for {list,stat}mount() */ 138 if (ns && refcount_dec_and_test(&ns->passive)) { 139 fsnotify_mntns_delete(ns); 140 put_user_ns(ns->user_ns); 141 kfree(ns); 142 } 143 } 144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, 145 if (!IS_ERR(_T)) mnt_ns_release(_T)) 146 147 static void mnt_ns_release_rcu(struct rcu_head *rcu) 148 { 149 mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu)); 150 } 151 152 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 153 { 154 /* remove from global mount namespace list */ 155 if (ns_tree_active(ns)) 156 ns_tree_remove(ns); 157 158 call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu); 159 } 160 161 /* 162 * Lookup a mount namespace by id and take a passive reference count. Taking a 163 * passive reference means the mount namespace can be emptied if e.g., the last 164 * task holding an active reference exits. To access the mounts of the 165 * namespace the @namespace_sem must first be acquired. If the namespace has 166 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 167 * see that the mount rbtree of the namespace is empty. 168 * 169 * Note the lookup is lockless protected by a sequence counter. We only 170 * need to guard against false negatives as false positives aren't 171 * possible. So if we didn't find a mount namespace and the sequence 172 * counter has changed we need to retry. If the sequence counter is 173 * still the same we know the search actually failed. 174 */ 175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 176 { 177 struct mnt_namespace *mnt_ns; 178 struct ns_common *ns; 179 180 guard(rcu)(); 181 ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS); 182 if (!ns) 183 return NULL; 184 185 /* 186 * The last reference count is put with RCU delay so we can 187 * unconditonally acquire a reference here. 188 */ 189 mnt_ns = container_of(ns, struct mnt_namespace, ns); 190 refcount_inc(&mnt_ns->passive); 191 return mnt_ns; 192 } 193 194 static inline void lock_mount_hash(void) 195 { 196 write_seqlock(&mount_lock); 197 } 198 199 static inline void unlock_mount_hash(void) 200 { 201 write_sequnlock(&mount_lock); 202 } 203 204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 205 { 206 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 207 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 208 tmp = tmp + (tmp >> m_hash_shift); 209 return &mount_hashtable[tmp & m_hash_mask]; 210 } 211 212 static inline struct hlist_head *mp_hash(struct dentry *dentry) 213 { 214 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 215 tmp = tmp + (tmp >> mp_hash_shift); 216 return &mountpoint_hashtable[tmp & mp_hash_mask]; 217 } 218 219 static int mnt_alloc_id(struct mount *mnt) 220 { 221 int res; 222 223 xa_lock(&mnt_id_xa); 224 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL); 225 if (!res) 226 mnt->mnt_id_unique = ++mnt_id_ctr; 227 xa_unlock(&mnt_id_xa); 228 return res; 229 } 230 231 static void mnt_free_id(struct mount *mnt) 232 { 233 xa_erase(&mnt_id_xa, mnt->mnt_id); 234 } 235 236 /* 237 * Allocate a new peer group ID 238 */ 239 static int mnt_alloc_group_id(struct mount *mnt) 240 { 241 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 242 243 if (res < 0) 244 return res; 245 mnt->mnt_group_id = res; 246 return 0; 247 } 248 249 /* 250 * Release a peer group ID 251 */ 252 void mnt_release_group_id(struct mount *mnt) 253 { 254 ida_free(&mnt_group_ida, mnt->mnt_group_id); 255 mnt->mnt_group_id = 0; 256 } 257 258 /* 259 * vfsmount lock must be held for read 260 */ 261 static inline void mnt_add_count(struct mount *mnt, int n) 262 { 263 #ifdef CONFIG_SMP 264 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 265 #else 266 preempt_disable(); 267 mnt->mnt_count += n; 268 preempt_enable(); 269 #endif 270 } 271 272 /* 273 * vfsmount lock must be held for write 274 */ 275 int mnt_get_count(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 int count = 0; 279 int cpu; 280 281 for_each_possible_cpu(cpu) { 282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 283 } 284 285 return count; 286 #else 287 return mnt->mnt_count; 288 #endif 289 } 290 291 static struct mount *alloc_vfsmnt(const char *name) 292 { 293 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 294 if (mnt) { 295 int err; 296 297 err = mnt_alloc_id(mnt); 298 if (err) 299 goto out_free_cache; 300 301 if (name) 302 mnt->mnt_devname = kstrdup_const(name, 303 GFP_KERNEL_ACCOUNT); 304 else 305 mnt->mnt_devname = "none"; 306 if (!mnt->mnt_devname) 307 goto out_free_id; 308 309 #ifdef CONFIG_SMP 310 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 311 if (!mnt->mnt_pcp) 312 goto out_free_devname; 313 314 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 315 #else 316 mnt->mnt_count = 1; 317 mnt->mnt_writers = 0; 318 #endif 319 320 INIT_HLIST_NODE(&mnt->mnt_hash); 321 INIT_LIST_HEAD(&mnt->mnt_child); 322 INIT_LIST_HEAD(&mnt->mnt_mounts); 323 INIT_LIST_HEAD(&mnt->mnt_list); 324 INIT_LIST_HEAD(&mnt->mnt_expire); 325 INIT_LIST_HEAD(&mnt->mnt_share); 326 INIT_HLIST_HEAD(&mnt->mnt_slave_list); 327 INIT_HLIST_NODE(&mnt->mnt_slave); 328 INIT_HLIST_NODE(&mnt->mnt_mp_list); 329 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 330 RB_CLEAR_NODE(&mnt->mnt_node); 331 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 332 } 333 return mnt; 334 335 #ifdef CONFIG_SMP 336 out_free_devname: 337 kfree_const(mnt->mnt_devname); 338 #endif 339 out_free_id: 340 mnt_free_id(mnt); 341 out_free_cache: 342 kmem_cache_free(mnt_cache, mnt); 343 return NULL; 344 } 345 346 /* 347 * Most r/o checks on a fs are for operations that take 348 * discrete amounts of time, like a write() or unlink(). 349 * We must keep track of when those operations start 350 * (for permission checks) and when they end, so that 351 * we can determine when writes are able to occur to 352 * a filesystem. 353 */ 354 /* 355 * __mnt_is_readonly: check whether a mount is read-only 356 * @mnt: the mount to check for its write status 357 * 358 * This shouldn't be used directly ouside of the VFS. 359 * It does not guarantee that the filesystem will stay 360 * r/w, just that it is right *now*. This can not and 361 * should not be used in place of IS_RDONLY(inode). 362 * mnt_want/drop_write() will _keep_ the filesystem 363 * r/w. 364 */ 365 bool __mnt_is_readonly(const struct vfsmount *mnt) 366 { 367 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 368 } 369 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 370 371 static inline void mnt_inc_writers(struct mount *mnt) 372 { 373 #ifdef CONFIG_SMP 374 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 375 #else 376 mnt->mnt_writers++; 377 #endif 378 } 379 380 static inline void mnt_dec_writers(struct mount *mnt) 381 { 382 #ifdef CONFIG_SMP 383 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 384 #else 385 mnt->mnt_writers--; 386 #endif 387 } 388 389 static unsigned int mnt_get_writers(struct mount *mnt) 390 { 391 #ifdef CONFIG_SMP 392 unsigned int count = 0; 393 int cpu; 394 395 for_each_possible_cpu(cpu) { 396 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 397 } 398 399 return count; 400 #else 401 return mnt->mnt_writers; 402 #endif 403 } 404 405 static int mnt_is_readonly(const struct vfsmount *mnt) 406 { 407 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 408 return 1; 409 /* 410 * The barrier pairs with the barrier in sb_start_ro_state_change() 411 * making sure if we don't see s_readonly_remount set yet, we also will 412 * not see any superblock / mount flag changes done by remount. 413 * It also pairs with the barrier in sb_end_ro_state_change() 414 * assuring that if we see s_readonly_remount already cleared, we will 415 * see the values of superblock / mount flags updated by remount. 416 */ 417 smp_rmb(); 418 return __mnt_is_readonly(mnt); 419 } 420 421 /* 422 * Most r/o & frozen checks on a fs are for operations that take discrete 423 * amounts of time, like a write() or unlink(). We must keep track of when 424 * those operations start (for permission checks) and when they end, so that we 425 * can determine when writes are able to occur to a filesystem. 426 */ 427 /** 428 * mnt_get_write_access - get write access to a mount without freeze protection 429 * @m: the mount on which to take a write 430 * 431 * This tells the low-level filesystem that a write is about to be performed to 432 * it, and makes sure that writes are allowed (mnt it read-write) before 433 * returning success. This operation does not protect against filesystem being 434 * frozen. When the write operation is finished, mnt_put_write_access() must be 435 * called. This is effectively a refcount. 436 */ 437 int mnt_get_write_access(struct vfsmount *m) 438 { 439 struct mount *mnt = real_mount(m); 440 int ret = 0; 441 442 preempt_disable(); 443 mnt_inc_writers(mnt); 444 /* 445 * The store to mnt_inc_writers must be visible before we pass 446 * WRITE_HOLD loop below, so that the slowpath can see our 447 * incremented count after it has set WRITE_HOLD. 448 */ 449 smp_mb(); 450 might_lock(&mount_lock.lock); 451 while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) { 452 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 453 cpu_relax(); 454 } else { 455 /* 456 * This prevents priority inversion, if the task 457 * setting WRITE_HOLD got preempted on a remote 458 * CPU, and it prevents life lock if the task setting 459 * WRITE_HOLD has a lower priority and is bound to 460 * the same CPU as the task that is spinning here. 461 */ 462 preempt_enable(); 463 read_seqlock_excl(&mount_lock); 464 read_sequnlock_excl(&mount_lock); 465 preempt_disable(); 466 } 467 } 468 /* 469 * The barrier pairs with the barrier sb_start_ro_state_change() making 470 * sure that if we see WRITE_HOLD cleared, we will also see 471 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 472 * mnt_is_readonly() and bail in case we are racing with remount 473 * read-only. 474 */ 475 smp_rmb(); 476 if (mnt_is_readonly(m)) { 477 mnt_dec_writers(mnt); 478 ret = -EROFS; 479 } 480 preempt_enable(); 481 482 return ret; 483 } 484 EXPORT_SYMBOL_GPL(mnt_get_write_access); 485 486 /** 487 * mnt_want_write - get write access to a mount 488 * @m: the mount on which to take a write 489 * 490 * This tells the low-level filesystem that a write is about to be performed to 491 * it, and makes sure that writes are allowed (mount is read-write, filesystem 492 * is not frozen) before returning success. When the write operation is 493 * finished, mnt_drop_write() must be called. This is effectively a refcount. 494 */ 495 int mnt_want_write(struct vfsmount *m) 496 { 497 int ret; 498 499 sb_start_write(m->mnt_sb); 500 ret = mnt_get_write_access(m); 501 if (ret) 502 sb_end_write(m->mnt_sb); 503 return ret; 504 } 505 EXPORT_SYMBOL_GPL(mnt_want_write); 506 507 /** 508 * mnt_get_write_access_file - get write access to a file's mount 509 * @file: the file who's mount on which to take a write 510 * 511 * This is like mnt_get_write_access, but if @file is already open for write it 512 * skips incrementing mnt_writers (since the open file already has a reference) 513 * and instead only does the check for emergency r/o remounts. This must be 514 * paired with mnt_put_write_access_file. 515 */ 516 int mnt_get_write_access_file(struct file *file) 517 { 518 if (file->f_mode & FMODE_WRITER) { 519 /* 520 * Superblock may have become readonly while there are still 521 * writable fd's, e.g. due to a fs error with errors=remount-ro 522 */ 523 if (__mnt_is_readonly(file->f_path.mnt)) 524 return -EROFS; 525 return 0; 526 } 527 return mnt_get_write_access(file->f_path.mnt); 528 } 529 530 /** 531 * mnt_want_write_file - get write access to a file's mount 532 * @file: the file who's mount on which to take a write 533 * 534 * This is like mnt_want_write, but if the file is already open for writing it 535 * skips incrementing mnt_writers (since the open file already has a reference) 536 * and instead only does the freeze protection and the check for emergency r/o 537 * remounts. This must be paired with mnt_drop_write_file. 538 */ 539 int mnt_want_write_file(struct file *file) 540 { 541 int ret; 542 543 sb_start_write(file_inode(file)->i_sb); 544 ret = mnt_get_write_access_file(file); 545 if (ret) 546 sb_end_write(file_inode(file)->i_sb); 547 return ret; 548 } 549 EXPORT_SYMBOL_GPL(mnt_want_write_file); 550 551 /** 552 * mnt_put_write_access - give up write access to a mount 553 * @mnt: the mount on which to give up write access 554 * 555 * Tells the low-level filesystem that we are done 556 * performing writes to it. Must be matched with 557 * mnt_get_write_access() call above. 558 */ 559 void mnt_put_write_access(struct vfsmount *mnt) 560 { 561 preempt_disable(); 562 mnt_dec_writers(real_mount(mnt)); 563 preempt_enable(); 564 } 565 EXPORT_SYMBOL_GPL(mnt_put_write_access); 566 567 /** 568 * mnt_drop_write - give up write access to a mount 569 * @mnt: the mount on which to give up write access 570 * 571 * Tells the low-level filesystem that we are done performing writes to it and 572 * also allows filesystem to be frozen again. Must be matched with 573 * mnt_want_write() call above. 574 */ 575 void mnt_drop_write(struct vfsmount *mnt) 576 { 577 mnt_put_write_access(mnt); 578 sb_end_write(mnt->mnt_sb); 579 } 580 EXPORT_SYMBOL_GPL(mnt_drop_write); 581 582 void mnt_put_write_access_file(struct file *file) 583 { 584 if (!(file->f_mode & FMODE_WRITER)) 585 mnt_put_write_access(file->f_path.mnt); 586 } 587 588 void mnt_drop_write_file(struct file *file) 589 { 590 mnt_put_write_access_file(file); 591 sb_end_write(file_inode(file)->i_sb); 592 } 593 EXPORT_SYMBOL(mnt_drop_write_file); 594 595 /** 596 * mnt_hold_writers - prevent write access to the given mount 597 * @mnt: mnt to prevent write access to 598 * 599 * Prevents write access to @mnt if there are no active writers for @mnt. 600 * This function needs to be called and return successfully before changing 601 * properties of @mnt that need to remain stable for callers with write access 602 * to @mnt. 603 * 604 * After this functions has been called successfully callers must pair it with 605 * a call to mnt_unhold_writers() in order to stop preventing write access to 606 * @mnt. 607 * 608 * Context: This function expects to be in mount_locked_reader scope serializing 609 * setting WRITE_HOLD. 610 * Return: On success 0 is returned. 611 * On error, -EBUSY is returned. 612 */ 613 static inline int mnt_hold_writers(struct mount *mnt) 614 { 615 set_write_hold(mnt); 616 /* 617 * After storing WRITE_HOLD, we'll read the counters. This store 618 * should be visible before we do. 619 */ 620 smp_mb(); 621 622 /* 623 * With writers on hold, if this value is zero, then there are 624 * definitely no active writers (although held writers may subsequently 625 * increment the count, they'll have to wait, and decrement it after 626 * seeing MNT_READONLY). 627 * 628 * It is OK to have counter incremented on one CPU and decremented on 629 * another: the sum will add up correctly. The danger would be when we 630 * sum up each counter, if we read a counter before it is incremented, 631 * but then read another CPU's count which it has been subsequently 632 * decremented from -- we would see more decrements than we should. 633 * WRITE_HOLD protects against this scenario, because 634 * mnt_want_write first increments count, then smp_mb, then spins on 635 * WRITE_HOLD, so it can't be decremented by another CPU while 636 * we're counting up here. 637 */ 638 if (mnt_get_writers(mnt) > 0) 639 return -EBUSY; 640 641 return 0; 642 } 643 644 /** 645 * mnt_unhold_writers - stop preventing write access to the given mount 646 * @mnt: mnt to stop preventing write access to 647 * 648 * Stop preventing write access to @mnt allowing callers to gain write access 649 * to @mnt again. 650 * 651 * This function can only be called after a call to mnt_hold_writers(). 652 * 653 * Context: This function expects to be in the same mount_locked_reader scope 654 * as the matching mnt_hold_writers(). 655 */ 656 static inline void mnt_unhold_writers(struct mount *mnt) 657 { 658 if (!test_write_hold(mnt)) 659 return; 660 /* 661 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers 662 * that become unheld will see MNT_READONLY. 663 */ 664 smp_wmb(); 665 clear_write_hold(mnt); 666 } 667 668 static inline void mnt_del_instance(struct mount *m) 669 { 670 struct mount **p = m->mnt_pprev_for_sb; 671 struct mount *next = m->mnt_next_for_sb; 672 673 if (next) 674 next->mnt_pprev_for_sb = p; 675 *p = next; 676 } 677 678 static inline void mnt_add_instance(struct mount *m, struct super_block *s) 679 { 680 struct mount *first = s->s_mounts; 681 682 if (first) 683 first->mnt_pprev_for_sb = &m->mnt_next_for_sb; 684 m->mnt_next_for_sb = first; 685 m->mnt_pprev_for_sb = &s->s_mounts; 686 s->s_mounts = m; 687 } 688 689 static int mnt_make_readonly(struct mount *mnt) 690 { 691 int ret; 692 693 ret = mnt_hold_writers(mnt); 694 if (!ret) 695 mnt->mnt.mnt_flags |= MNT_READONLY; 696 mnt_unhold_writers(mnt); 697 return ret; 698 } 699 700 int sb_prepare_remount_readonly(struct super_block *sb) 701 { 702 int err = 0; 703 704 /* Racy optimization. Recheck the counter under WRITE_HOLD */ 705 if (atomic_long_read(&sb->s_remove_count)) 706 return -EBUSY; 707 708 guard(mount_locked_reader)(); 709 710 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) { 711 if (!(m->mnt.mnt_flags & MNT_READONLY)) { 712 err = mnt_hold_writers(m); 713 if (err) 714 break; 715 } 716 } 717 if (!err && atomic_long_read(&sb->s_remove_count)) 718 err = -EBUSY; 719 720 if (!err) 721 sb_start_ro_state_change(sb); 722 for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) { 723 if (test_write_hold(m)) 724 clear_write_hold(m); 725 } 726 727 return err; 728 } 729 730 static void free_vfsmnt(struct mount *mnt) 731 { 732 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 733 kfree_const(mnt->mnt_devname); 734 #ifdef CONFIG_SMP 735 free_percpu(mnt->mnt_pcp); 736 #endif 737 kmem_cache_free(mnt_cache, mnt); 738 } 739 740 static void delayed_free_vfsmnt(struct rcu_head *head) 741 { 742 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 743 } 744 745 /* call under rcu_read_lock */ 746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 747 { 748 struct mount *mnt; 749 if (read_seqretry(&mount_lock, seq)) 750 return 1; 751 if (bastard == NULL) 752 return 0; 753 mnt = real_mount(bastard); 754 mnt_add_count(mnt, 1); 755 smp_mb(); // see mntput_no_expire() and do_umount() 756 if (likely(!read_seqretry(&mount_lock, seq))) 757 return 0; 758 lock_mount_hash(); 759 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) { 760 mnt_add_count(mnt, -1); 761 unlock_mount_hash(); 762 return 1; 763 } 764 unlock_mount_hash(); 765 /* caller will mntput() */ 766 return -1; 767 } 768 769 /* call under rcu_read_lock */ 770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 771 { 772 int res = __legitimize_mnt(bastard, seq); 773 if (likely(!res)) 774 return true; 775 if (unlikely(res < 0)) { 776 rcu_read_unlock(); 777 mntput(bastard); 778 rcu_read_lock(); 779 } 780 return false; 781 } 782 783 /** 784 * __lookup_mnt - mount hash lookup 785 * @mnt: parent mount 786 * @dentry: dentry of mountpoint 787 * 788 * If @mnt has a child mount @c mounted on @dentry find and return it. 789 * Caller must either hold the spinlock component of @mount_lock or 790 * hold rcu_read_lock(), sample the seqcount component before the call 791 * and recheck it afterwards. 792 * 793 * Return: The child of @mnt mounted on @dentry or %NULL. 794 */ 795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 796 { 797 struct hlist_head *head = m_hash(mnt, dentry); 798 struct mount *p; 799 800 hlist_for_each_entry_rcu(p, head, mnt_hash) 801 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 802 return p; 803 return NULL; 804 } 805 806 /** 807 * lookup_mnt - Return the child mount mounted at given location 808 * @path: location in the namespace 809 * 810 * Acquires and returns a new reference to mount at given location 811 * or %NULL if nothing is mounted there. 812 */ 813 struct vfsmount *lookup_mnt(const struct path *path) 814 { 815 struct mount *child_mnt; 816 struct vfsmount *m; 817 unsigned seq; 818 819 rcu_read_lock(); 820 do { 821 seq = read_seqbegin(&mount_lock); 822 child_mnt = __lookup_mnt(path->mnt, path->dentry); 823 m = child_mnt ? &child_mnt->mnt : NULL; 824 } while (!legitimize_mnt(m, seq)); 825 rcu_read_unlock(); 826 return m; 827 } 828 829 /* 830 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 831 * current mount namespace. 832 * 833 * The common case is dentries are not mountpoints at all and that 834 * test is handled inline. For the slow case when we are actually 835 * dealing with a mountpoint of some kind, walk through all of the 836 * mounts in the current mount namespace and test to see if the dentry 837 * is a mountpoint. 838 * 839 * The mount_hashtable is not usable in the context because we 840 * need to identify all mounts that may be in the current mount 841 * namespace not just a mount that happens to have some specified 842 * parent mount. 843 */ 844 bool __is_local_mountpoint(const struct dentry *dentry) 845 { 846 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 847 struct mount *mnt, *n; 848 849 guard(namespace_shared)(); 850 851 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) 852 if (mnt->mnt_mountpoint == dentry) 853 return true; 854 855 return false; 856 } 857 858 struct pinned_mountpoint { 859 struct hlist_node node; 860 struct mountpoint *mp; 861 struct mount *parent; 862 }; 863 864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) 865 { 866 struct hlist_head *chain = mp_hash(dentry); 867 struct mountpoint *mp; 868 869 hlist_for_each_entry(mp, chain, m_hash) { 870 if (mp->m_dentry == dentry) { 871 hlist_add_head(&m->node, &mp->m_list); 872 m->mp = mp; 873 return true; 874 } 875 } 876 return false; 877 } 878 879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m) 880 { 881 struct mountpoint *mp __free(kfree) = NULL; 882 bool found; 883 int ret; 884 885 if (d_mountpoint(dentry)) { 886 /* might be worth a WARN_ON() */ 887 if (d_unlinked(dentry)) 888 return -ENOENT; 889 mountpoint: 890 read_seqlock_excl(&mount_lock); 891 found = lookup_mountpoint(dentry, m); 892 read_sequnlock_excl(&mount_lock); 893 if (found) 894 return 0; 895 } 896 897 if (!mp) 898 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 899 if (!mp) 900 return -ENOMEM; 901 902 /* Exactly one processes may set d_mounted */ 903 ret = d_set_mounted(dentry); 904 905 /* Someone else set d_mounted? */ 906 if (ret == -EBUSY) 907 goto mountpoint; 908 909 /* The dentry is not available as a mountpoint? */ 910 if (ret) 911 return ret; 912 913 /* Add the new mountpoint to the hash table */ 914 read_seqlock_excl(&mount_lock); 915 mp->m_dentry = dget(dentry); 916 hlist_add_head(&mp->m_hash, mp_hash(dentry)); 917 INIT_HLIST_HEAD(&mp->m_list); 918 hlist_add_head(&m->node, &mp->m_list); 919 m->mp = no_free_ptr(mp); 920 read_sequnlock_excl(&mount_lock); 921 return 0; 922 } 923 924 /* 925 * vfsmount lock must be held. Additionally, the caller is responsible 926 * for serializing calls for given disposal list. 927 */ 928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list) 929 { 930 if (hlist_empty(&mp->m_list)) { 931 struct dentry *dentry = mp->m_dentry; 932 spin_lock(&dentry->d_lock); 933 dentry->d_flags &= ~DCACHE_MOUNTED; 934 spin_unlock(&dentry->d_lock); 935 dput_to_list(dentry, list); 936 hlist_del(&mp->m_hash); 937 kfree(mp); 938 } 939 } 940 941 /* 942 * locks: mount_lock [read_seqlock_excl], namespace_sem [excl] 943 */ 944 static void unpin_mountpoint(struct pinned_mountpoint *m) 945 { 946 if (m->mp) { 947 hlist_del(&m->node); 948 maybe_free_mountpoint(m->mp, &ex_mountpoints); 949 } 950 } 951 952 static inline int check_mnt(const struct mount *mnt) 953 { 954 return mnt->mnt_ns == current->nsproxy->mnt_ns; 955 } 956 957 static inline bool check_anonymous_mnt(struct mount *mnt) 958 { 959 u64 seq; 960 961 if (!is_anon_ns(mnt->mnt_ns)) 962 return false; 963 964 seq = mnt->mnt_ns->seq_origin; 965 return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id); 966 } 967 968 /* 969 * vfsmount lock must be held for write 970 */ 971 static void touch_mnt_namespace(struct mnt_namespace *ns) 972 { 973 if (ns) { 974 ns->event = ++event; 975 wake_up_interruptible(&ns->poll); 976 } 977 } 978 979 /* 980 * vfsmount lock must be held for write 981 */ 982 static void __touch_mnt_namespace(struct mnt_namespace *ns) 983 { 984 if (ns && ns->event != event) { 985 ns->event = event; 986 wake_up_interruptible(&ns->poll); 987 } 988 } 989 990 /* 991 * locks: mount_lock[write_seqlock] 992 */ 993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list) 994 { 995 struct mountpoint *mp; 996 struct mount *parent = mnt->mnt_parent; 997 if (unlikely(parent->overmount == mnt)) 998 parent->overmount = NULL; 999 mnt->mnt_parent = mnt; 1000 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1001 list_del_init(&mnt->mnt_child); 1002 hlist_del_init_rcu(&mnt->mnt_hash); 1003 hlist_del_init(&mnt->mnt_mp_list); 1004 mp = mnt->mnt_mp; 1005 mnt->mnt_mp = NULL; 1006 maybe_free_mountpoint(mp, shrink_list); 1007 } 1008 1009 /* 1010 * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints) 1011 */ 1012 static void umount_mnt(struct mount *mnt) 1013 { 1014 __umount_mnt(mnt, &ex_mountpoints); 1015 } 1016 1017 /* 1018 * vfsmount lock must be held for write 1019 */ 1020 void mnt_set_mountpoint(struct mount *mnt, 1021 struct mountpoint *mp, 1022 struct mount *child_mnt) 1023 { 1024 child_mnt->mnt_mountpoint = mp->m_dentry; 1025 child_mnt->mnt_parent = mnt; 1026 child_mnt->mnt_mp = mp; 1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1028 } 1029 1030 static void make_visible(struct mount *mnt) 1031 { 1032 struct mount *parent = mnt->mnt_parent; 1033 if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root)) 1034 parent->overmount = mnt; 1035 hlist_add_head_rcu(&mnt->mnt_hash, 1036 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1037 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1038 } 1039 1040 /** 1041 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1042 * list of child mounts 1043 * @parent: the parent 1044 * @mnt: the new mount 1045 * @mp: the new mountpoint 1046 * 1047 * Mount @mnt at @mp on @parent. Then attach @mnt 1048 * to @parent's child mount list and to @mount_hashtable. 1049 * 1050 * Note, when make_visible() is called @mnt->mnt_parent already points 1051 * to the correct parent. 1052 * 1053 * Context: This function expects namespace_lock() and lock_mount_hash() 1054 * to have been acquired in that order. 1055 */ 1056 static void attach_mnt(struct mount *mnt, struct mount *parent, 1057 struct mountpoint *mp) 1058 { 1059 mnt_set_mountpoint(parent, mp, mnt); 1060 make_visible(mnt); 1061 } 1062 1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1064 { 1065 struct mountpoint *old_mp = mnt->mnt_mp; 1066 1067 list_del_init(&mnt->mnt_child); 1068 hlist_del_init(&mnt->mnt_mp_list); 1069 hlist_del_init_rcu(&mnt->mnt_hash); 1070 1071 attach_mnt(mnt, parent, mp); 1072 1073 maybe_free_mountpoint(old_mp, &ex_mountpoints); 1074 } 1075 1076 static inline struct mount *node_to_mount(struct rb_node *node) 1077 { 1078 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1079 } 1080 1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1082 { 1083 struct rb_node **link = &ns->mounts.rb_node; 1084 struct rb_node *parent = NULL; 1085 bool mnt_first_node = true, mnt_last_node = true; 1086 1087 WARN_ON(mnt_ns_attached(mnt)); 1088 mnt->mnt_ns = ns; 1089 while (*link) { 1090 parent = *link; 1091 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) { 1092 link = &parent->rb_left; 1093 mnt_last_node = false; 1094 } else { 1095 link = &parent->rb_right; 1096 mnt_first_node = false; 1097 } 1098 } 1099 1100 if (mnt_last_node) 1101 ns->mnt_last_node = &mnt->mnt_node; 1102 if (mnt_first_node) 1103 ns->mnt_first_node = &mnt->mnt_node; 1104 rb_link_node(&mnt->mnt_node, parent, link); 1105 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1106 1107 mnt_notify_add(mnt); 1108 } 1109 1110 static struct mount *next_mnt(struct mount *p, struct mount *root) 1111 { 1112 struct list_head *next = p->mnt_mounts.next; 1113 if (next == &p->mnt_mounts) { 1114 while (1) { 1115 if (p == root) 1116 return NULL; 1117 next = p->mnt_child.next; 1118 if (next != &p->mnt_parent->mnt_mounts) 1119 break; 1120 p = p->mnt_parent; 1121 } 1122 } 1123 return list_entry(next, struct mount, mnt_child); 1124 } 1125 1126 static struct mount *skip_mnt_tree(struct mount *p) 1127 { 1128 struct list_head *prev = p->mnt_mounts.prev; 1129 while (prev != &p->mnt_mounts) { 1130 p = list_entry(prev, struct mount, mnt_child); 1131 prev = p->mnt_mounts.prev; 1132 } 1133 return p; 1134 } 1135 1136 /* 1137 * vfsmount lock must be held for write 1138 */ 1139 static void commit_tree(struct mount *mnt) 1140 { 1141 struct mnt_namespace *n = mnt->mnt_parent->mnt_ns; 1142 1143 if (!mnt_ns_attached(mnt)) { 1144 for (struct mount *m = mnt; m; m = next_mnt(m, mnt)) 1145 mnt_add_to_ns(n, m); 1146 n->nr_mounts += n->pending_mounts; 1147 n->pending_mounts = 0; 1148 } 1149 1150 make_visible(mnt); 1151 touch_mnt_namespace(n); 1152 } 1153 1154 static void setup_mnt(struct mount *m, struct dentry *root) 1155 { 1156 struct super_block *s = root->d_sb; 1157 1158 atomic_inc(&s->s_active); 1159 m->mnt.mnt_sb = s; 1160 m->mnt.mnt_root = dget(root); 1161 m->mnt_mountpoint = m->mnt.mnt_root; 1162 m->mnt_parent = m; 1163 1164 guard(mount_locked_reader)(); 1165 mnt_add_instance(m, s); 1166 } 1167 1168 /** 1169 * vfs_create_mount - Create a mount for a configured superblock 1170 * @fc: The configuration context with the superblock attached 1171 * 1172 * Create a mount to an already configured superblock. If necessary, the 1173 * caller should invoke vfs_get_tree() before calling this. 1174 * 1175 * Note that this does not attach the mount to anything. 1176 */ 1177 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1178 { 1179 struct mount *mnt; 1180 1181 if (!fc->root) 1182 return ERR_PTR(-EINVAL); 1183 1184 mnt = alloc_vfsmnt(fc->source); 1185 if (!mnt) 1186 return ERR_PTR(-ENOMEM); 1187 1188 if (fc->sb_flags & SB_KERNMOUNT) 1189 mnt->mnt.mnt_flags = MNT_INTERNAL; 1190 1191 setup_mnt(mnt, fc->root); 1192 1193 return &mnt->mnt; 1194 } 1195 EXPORT_SYMBOL(vfs_create_mount); 1196 1197 struct vfsmount *fc_mount(struct fs_context *fc) 1198 { 1199 int err = vfs_get_tree(fc); 1200 if (!err) { 1201 up_write(&fc->root->d_sb->s_umount); 1202 return vfs_create_mount(fc); 1203 } 1204 return ERR_PTR(err); 1205 } 1206 EXPORT_SYMBOL(fc_mount); 1207 1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc) 1209 { 1210 struct vfsmount *mnt = fc_mount(fc); 1211 if (!IS_ERR(mnt)) 1212 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 1213 return mnt; 1214 } 1215 EXPORT_SYMBOL(fc_mount_longterm); 1216 1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1218 int flags, const char *name, 1219 void *data) 1220 { 1221 struct fs_context *fc; 1222 struct vfsmount *mnt; 1223 int ret = 0; 1224 1225 if (!type) 1226 return ERR_PTR(-EINVAL); 1227 1228 fc = fs_context_for_mount(type, flags); 1229 if (IS_ERR(fc)) 1230 return ERR_CAST(fc); 1231 1232 if (name) 1233 ret = vfs_parse_fs_string(fc, "source", name); 1234 if (!ret) 1235 ret = parse_monolithic_mount_data(fc, data); 1236 if (!ret) 1237 mnt = fc_mount(fc); 1238 else 1239 mnt = ERR_PTR(ret); 1240 1241 put_fs_context(fc); 1242 return mnt; 1243 } 1244 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1245 1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1247 int flag) 1248 { 1249 struct mount *mnt; 1250 int err; 1251 1252 mnt = alloc_vfsmnt(old->mnt_devname); 1253 if (!mnt) 1254 return ERR_PTR(-ENOMEM); 1255 1256 mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) & 1257 ~MNT_INTERNAL_FLAGS; 1258 1259 if (flag & (CL_SLAVE | CL_PRIVATE)) 1260 mnt->mnt_group_id = 0; /* not a peer of original */ 1261 else 1262 mnt->mnt_group_id = old->mnt_group_id; 1263 1264 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1265 err = mnt_alloc_group_id(mnt); 1266 if (err) 1267 goto out_free; 1268 } 1269 1270 if (mnt->mnt_group_id) 1271 set_mnt_shared(mnt); 1272 1273 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1274 1275 setup_mnt(mnt, root); 1276 1277 if (flag & CL_PRIVATE) // we are done with it 1278 return mnt; 1279 1280 if (peers(mnt, old)) 1281 list_add(&mnt->mnt_share, &old->mnt_share); 1282 1283 if ((flag & CL_SLAVE) && old->mnt_group_id) { 1284 hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list); 1285 mnt->mnt_master = old; 1286 } else if (IS_MNT_SLAVE(old)) { 1287 hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave); 1288 mnt->mnt_master = old->mnt_master; 1289 } 1290 return mnt; 1291 1292 out_free: 1293 mnt_free_id(mnt); 1294 free_vfsmnt(mnt); 1295 return ERR_PTR(err); 1296 } 1297 1298 static void cleanup_mnt(struct mount *mnt) 1299 { 1300 struct hlist_node *p; 1301 struct mount *m; 1302 /* 1303 * The warning here probably indicates that somebody messed 1304 * up a mnt_want/drop_write() pair. If this happens, the 1305 * filesystem was probably unable to make r/w->r/o transitions. 1306 * The locking used to deal with mnt_count decrement provides barriers, 1307 * so mnt_get_writers() below is safe. 1308 */ 1309 WARN_ON(mnt_get_writers(mnt)); 1310 if (unlikely(mnt->mnt_pins.first)) 1311 mnt_pin_kill(mnt); 1312 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1313 hlist_del(&m->mnt_umount); 1314 mntput(&m->mnt); 1315 } 1316 fsnotify_vfsmount_delete(&mnt->mnt); 1317 dput(mnt->mnt.mnt_root); 1318 deactivate_super(mnt->mnt.mnt_sb); 1319 mnt_free_id(mnt); 1320 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1321 } 1322 1323 static void __cleanup_mnt(struct rcu_head *head) 1324 { 1325 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1326 } 1327 1328 static LLIST_HEAD(delayed_mntput_list); 1329 static void delayed_mntput(struct work_struct *unused) 1330 { 1331 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1332 struct mount *m, *t; 1333 1334 llist_for_each_entry_safe(m, t, node, mnt_llist) 1335 cleanup_mnt(m); 1336 } 1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1338 1339 static void noinline mntput_no_expire_slowpath(struct mount *mnt) 1340 { 1341 LIST_HEAD(list); 1342 int count; 1343 1344 VFS_BUG_ON(mnt->mnt_ns); 1345 lock_mount_hash(); 1346 /* 1347 * make sure that if __legitimize_mnt() has not seen us grab 1348 * mount_lock, we'll see their refcount increment here. 1349 */ 1350 smp_mb(); 1351 mnt_add_count(mnt, -1); 1352 count = mnt_get_count(mnt); 1353 if (count != 0) { 1354 WARN_ON(count < 0); 1355 rcu_read_unlock(); 1356 unlock_mount_hash(); 1357 return; 1358 } 1359 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1360 rcu_read_unlock(); 1361 unlock_mount_hash(); 1362 return; 1363 } 1364 mnt->mnt.mnt_flags |= MNT_DOOMED; 1365 rcu_read_unlock(); 1366 1367 mnt_del_instance(mnt); 1368 if (unlikely(!list_empty(&mnt->mnt_expire))) 1369 list_del(&mnt->mnt_expire); 1370 1371 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1372 struct mount *p, *tmp; 1373 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1374 __umount_mnt(p, &list); 1375 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1376 } 1377 } 1378 unlock_mount_hash(); 1379 shrink_dentry_list(&list); 1380 1381 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1382 struct task_struct *task = current; 1383 if (likely(!(task->flags & PF_KTHREAD))) { 1384 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1385 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1386 return; 1387 } 1388 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1389 schedule_delayed_work(&delayed_mntput_work, 1); 1390 return; 1391 } 1392 cleanup_mnt(mnt); 1393 } 1394 1395 static void mntput_no_expire(struct mount *mnt) 1396 { 1397 rcu_read_lock(); 1398 if (likely(READ_ONCE(mnt->mnt_ns))) { 1399 /* 1400 * Since we don't do lock_mount_hash() here, 1401 * ->mnt_ns can change under us. However, if it's 1402 * non-NULL, then there's a reference that won't 1403 * be dropped until after an RCU delay done after 1404 * turning ->mnt_ns NULL. So if we observe it 1405 * non-NULL under rcu_read_lock(), the reference 1406 * we are dropping is not the final one. 1407 */ 1408 mnt_add_count(mnt, -1); 1409 rcu_read_unlock(); 1410 return; 1411 } 1412 mntput_no_expire_slowpath(mnt); 1413 } 1414 1415 void mntput(struct vfsmount *mnt) 1416 { 1417 if (mnt) { 1418 struct mount *m = real_mount(mnt); 1419 /* avoid cacheline pingpong */ 1420 if (unlikely(m->mnt_expiry_mark)) 1421 WRITE_ONCE(m->mnt_expiry_mark, 0); 1422 mntput_no_expire(m); 1423 } 1424 } 1425 EXPORT_SYMBOL(mntput); 1426 1427 struct vfsmount *mntget(struct vfsmount *mnt) 1428 { 1429 if (mnt) 1430 mnt_add_count(real_mount(mnt), 1); 1431 return mnt; 1432 } 1433 EXPORT_SYMBOL(mntget); 1434 1435 /* 1436 * Make a mount point inaccessible to new lookups. 1437 * Because there may still be current users, the caller MUST WAIT 1438 * for an RCU grace period before destroying the mount point. 1439 */ 1440 void mnt_make_shortterm(struct vfsmount *mnt) 1441 { 1442 if (mnt) 1443 real_mount(mnt)->mnt_ns = NULL; 1444 } 1445 1446 /** 1447 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1448 * @path: path to check 1449 * 1450 * d_mountpoint() can only be used reliably to establish if a dentry is 1451 * not mounted in any namespace and that common case is handled inline. 1452 * d_mountpoint() isn't aware of the possibility there may be multiple 1453 * mounts using a given dentry in a different namespace. This function 1454 * checks if the passed in path is a mountpoint rather than the dentry 1455 * alone. 1456 */ 1457 bool path_is_mountpoint(const struct path *path) 1458 { 1459 unsigned seq; 1460 bool res; 1461 1462 if (!d_mountpoint(path->dentry)) 1463 return false; 1464 1465 rcu_read_lock(); 1466 do { 1467 seq = read_seqbegin(&mount_lock); 1468 res = __path_is_mountpoint(path); 1469 } while (read_seqretry(&mount_lock, seq)); 1470 rcu_read_unlock(); 1471 1472 return res; 1473 } 1474 EXPORT_SYMBOL(path_is_mountpoint); 1475 1476 struct vfsmount *mnt_clone_internal(const struct path *path) 1477 { 1478 struct mount *p; 1479 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1480 if (IS_ERR(p)) 1481 return ERR_CAST(p); 1482 p->mnt.mnt_flags |= MNT_INTERNAL; 1483 return &p->mnt; 1484 } 1485 1486 /* 1487 * Returns the mount which either has the specified mnt_id, or has the next 1488 * smallest id afer the specified one. 1489 */ 1490 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1491 { 1492 struct rb_node *node = ns->mounts.rb_node; 1493 struct mount *ret = NULL; 1494 1495 while (node) { 1496 struct mount *m = node_to_mount(node); 1497 1498 if (mnt_id <= m->mnt_id_unique) { 1499 ret = node_to_mount(node); 1500 if (mnt_id == m->mnt_id_unique) 1501 break; 1502 node = node->rb_left; 1503 } else { 1504 node = node->rb_right; 1505 } 1506 } 1507 return ret; 1508 } 1509 1510 /* 1511 * Returns the mount which either has the specified mnt_id, or has the next 1512 * greater id before the specified one. 1513 */ 1514 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1515 { 1516 struct rb_node *node = ns->mounts.rb_node; 1517 struct mount *ret = NULL; 1518 1519 while (node) { 1520 struct mount *m = node_to_mount(node); 1521 1522 if (mnt_id >= m->mnt_id_unique) { 1523 ret = node_to_mount(node); 1524 if (mnt_id == m->mnt_id_unique) 1525 break; 1526 node = node->rb_right; 1527 } else { 1528 node = node->rb_left; 1529 } 1530 } 1531 return ret; 1532 } 1533 1534 #ifdef CONFIG_PROC_FS 1535 1536 /* iterator; we want it to have access to namespace_sem, thus here... */ 1537 static void *m_start(struct seq_file *m, loff_t *pos) 1538 { 1539 struct proc_mounts *p = m->private; 1540 1541 down_read(&namespace_sem); 1542 1543 return mnt_find_id_at(p->ns, *pos); 1544 } 1545 1546 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1547 { 1548 struct mount *next = NULL, *mnt = v; 1549 struct rb_node *node = rb_next(&mnt->mnt_node); 1550 1551 ++*pos; 1552 if (node) { 1553 next = node_to_mount(node); 1554 *pos = next->mnt_id_unique; 1555 } 1556 return next; 1557 } 1558 1559 static void m_stop(struct seq_file *m, void *v) 1560 { 1561 up_read(&namespace_sem); 1562 } 1563 1564 static int m_show(struct seq_file *m, void *v) 1565 { 1566 struct proc_mounts *p = m->private; 1567 struct mount *r = v; 1568 return p->show(m, &r->mnt); 1569 } 1570 1571 const struct seq_operations mounts_op = { 1572 .start = m_start, 1573 .next = m_next, 1574 .stop = m_stop, 1575 .show = m_show, 1576 }; 1577 1578 #endif /* CONFIG_PROC_FS */ 1579 1580 /** 1581 * may_umount_tree - check if a mount tree is busy 1582 * @m: root of mount tree 1583 * 1584 * This is called to check if a tree of mounts has any 1585 * open files, pwds, chroots or sub mounts that are 1586 * busy. 1587 */ 1588 int may_umount_tree(struct vfsmount *m) 1589 { 1590 struct mount *mnt = real_mount(m); 1591 bool busy = false; 1592 1593 /* write lock needed for mnt_get_count */ 1594 lock_mount_hash(); 1595 for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) { 1596 if (mnt_get_count(p) > (p == mnt ? 2 : 1)) { 1597 busy = true; 1598 break; 1599 } 1600 } 1601 unlock_mount_hash(); 1602 1603 return !busy; 1604 } 1605 1606 EXPORT_SYMBOL(may_umount_tree); 1607 1608 /** 1609 * may_umount - check if a mount point is busy 1610 * @mnt: root of mount 1611 * 1612 * This is called to check if a mount point has any 1613 * open files, pwds, chroots or sub mounts. If the 1614 * mount has sub mounts this will return busy 1615 * regardless of whether the sub mounts are busy. 1616 * 1617 * Doesn't take quota and stuff into account. IOW, in some cases it will 1618 * give false negatives. The main reason why it's here is that we need 1619 * a non-destructive way to look for easily umountable filesystems. 1620 */ 1621 int may_umount(struct vfsmount *mnt) 1622 { 1623 int ret = 1; 1624 down_read(&namespace_sem); 1625 lock_mount_hash(); 1626 if (propagate_mount_busy(real_mount(mnt), 2)) 1627 ret = 0; 1628 unlock_mount_hash(); 1629 up_read(&namespace_sem); 1630 return ret; 1631 } 1632 1633 EXPORT_SYMBOL(may_umount); 1634 1635 #ifdef CONFIG_FSNOTIFY 1636 static void mnt_notify(struct mount *p) 1637 { 1638 if (!p->prev_ns && p->mnt_ns) { 1639 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1640 } else if (p->prev_ns && !p->mnt_ns) { 1641 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1642 } else if (p->prev_ns == p->mnt_ns) { 1643 fsnotify_mnt_move(p->mnt_ns, &p->mnt); 1644 } else { 1645 fsnotify_mnt_detach(p->prev_ns, &p->mnt); 1646 fsnotify_mnt_attach(p->mnt_ns, &p->mnt); 1647 } 1648 p->prev_ns = p->mnt_ns; 1649 } 1650 1651 static void notify_mnt_list(void) 1652 { 1653 struct mount *m, *tmp; 1654 /* 1655 * Notify about mounts that were added/reparented/detached/remain 1656 * connected after unmount. 1657 */ 1658 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) { 1659 mnt_notify(m); 1660 list_del_init(&m->to_notify); 1661 } 1662 } 1663 1664 static bool need_notify_mnt_list(void) 1665 { 1666 return !list_empty(¬ify_list); 1667 } 1668 #else 1669 static void notify_mnt_list(void) 1670 { 1671 } 1672 1673 static bool need_notify_mnt_list(void) 1674 { 1675 return false; 1676 } 1677 #endif 1678 1679 static void free_mnt_ns(struct mnt_namespace *); 1680 static void namespace_unlock(void) 1681 { 1682 struct hlist_head head; 1683 struct hlist_node *p; 1684 struct mount *m; 1685 struct mnt_namespace *ns = emptied_ns; 1686 LIST_HEAD(list); 1687 1688 hlist_move_list(&unmounted, &head); 1689 list_splice_init(&ex_mountpoints, &list); 1690 emptied_ns = NULL; 1691 1692 if (need_notify_mnt_list()) { 1693 /* 1694 * No point blocking out concurrent readers while notifications 1695 * are sent. This will also allow statmount()/listmount() to run 1696 * concurrently. 1697 */ 1698 downgrade_write(&namespace_sem); 1699 notify_mnt_list(); 1700 up_read(&namespace_sem); 1701 } else { 1702 up_write(&namespace_sem); 1703 } 1704 if (unlikely(ns)) { 1705 /* Make sure we notice when we leak mounts. */ 1706 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); 1707 free_mnt_ns(ns); 1708 } 1709 1710 shrink_dentry_list(&list); 1711 1712 if (likely(hlist_empty(&head))) 1713 return; 1714 1715 synchronize_rcu_expedited(); 1716 1717 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1718 hlist_del(&m->mnt_umount); 1719 mntput(&m->mnt); 1720 } 1721 } 1722 1723 static inline void namespace_lock(void) 1724 { 1725 down_write(&namespace_sem); 1726 } 1727 1728 enum umount_tree_flags { 1729 UMOUNT_SYNC = 1, 1730 UMOUNT_PROPAGATE = 2, 1731 UMOUNT_CONNECTED = 4, 1732 }; 1733 1734 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1735 { 1736 /* Leaving mounts connected is only valid for lazy umounts */ 1737 if (how & UMOUNT_SYNC) 1738 return true; 1739 1740 /* A mount without a parent has nothing to be connected to */ 1741 if (!mnt_has_parent(mnt)) 1742 return true; 1743 1744 /* Because the reference counting rules change when mounts are 1745 * unmounted and connected, umounted mounts may not be 1746 * connected to mounted mounts. 1747 */ 1748 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1749 return true; 1750 1751 /* Has it been requested that the mount remain connected? */ 1752 if (how & UMOUNT_CONNECTED) 1753 return false; 1754 1755 /* Is the mount locked such that it needs to remain connected? */ 1756 if (IS_MNT_LOCKED(mnt)) 1757 return false; 1758 1759 /* By default disconnect the mount */ 1760 return true; 1761 } 1762 1763 /* 1764 * mount_lock must be held 1765 * namespace_sem must be held for write 1766 */ 1767 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1768 { 1769 LIST_HEAD(tmp_list); 1770 struct mount *p; 1771 1772 if (how & UMOUNT_PROPAGATE) 1773 propagate_mount_unlock(mnt); 1774 1775 /* Gather the mounts to umount */ 1776 for (p = mnt; p; p = next_mnt(p, mnt)) { 1777 p->mnt.mnt_flags |= MNT_UMOUNT; 1778 if (mnt_ns_attached(p)) 1779 move_from_ns(p); 1780 list_add_tail(&p->mnt_list, &tmp_list); 1781 } 1782 1783 /* Hide the mounts from mnt_mounts */ 1784 list_for_each_entry(p, &tmp_list, mnt_list) { 1785 list_del_init(&p->mnt_child); 1786 } 1787 1788 /* Add propagated mounts to the tmp_list */ 1789 if (how & UMOUNT_PROPAGATE) 1790 propagate_umount(&tmp_list); 1791 1792 bulk_make_private(&tmp_list); 1793 1794 while (!list_empty(&tmp_list)) { 1795 struct mnt_namespace *ns; 1796 bool disconnect; 1797 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1798 list_del_init(&p->mnt_expire); 1799 list_del_init(&p->mnt_list); 1800 ns = p->mnt_ns; 1801 if (ns) { 1802 ns->nr_mounts--; 1803 __touch_mnt_namespace(ns); 1804 } 1805 p->mnt_ns = NULL; 1806 if (how & UMOUNT_SYNC) 1807 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1808 1809 disconnect = disconnect_mount(p, how); 1810 if (mnt_has_parent(p)) { 1811 if (!disconnect) { 1812 /* Don't forget about p */ 1813 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1814 } else { 1815 umount_mnt(p); 1816 } 1817 } 1818 if (disconnect) 1819 hlist_add_head(&p->mnt_umount, &unmounted); 1820 1821 /* 1822 * At this point p->mnt_ns is NULL, notification will be queued 1823 * only if 1824 * 1825 * - p->prev_ns is non-NULL *and* 1826 * - p->prev_ns->n_fsnotify_marks is non-NULL 1827 * 1828 * This will preclude queuing the mount if this is a cleanup 1829 * after a failed copy_tree() or destruction of an anonymous 1830 * namespace, etc. 1831 */ 1832 mnt_notify_add(p); 1833 } 1834 } 1835 1836 static void shrink_submounts(struct mount *mnt); 1837 1838 static int do_umount_root(struct super_block *sb) 1839 { 1840 int ret = 0; 1841 1842 down_write(&sb->s_umount); 1843 if (!sb_rdonly(sb)) { 1844 struct fs_context *fc; 1845 1846 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1847 SB_RDONLY); 1848 if (IS_ERR(fc)) { 1849 ret = PTR_ERR(fc); 1850 } else { 1851 ret = parse_monolithic_mount_data(fc, NULL); 1852 if (!ret) 1853 ret = reconfigure_super(fc); 1854 put_fs_context(fc); 1855 } 1856 } 1857 up_write(&sb->s_umount); 1858 return ret; 1859 } 1860 1861 static int do_umount(struct mount *mnt, int flags) 1862 { 1863 struct super_block *sb = mnt->mnt.mnt_sb; 1864 int retval; 1865 1866 retval = security_sb_umount(&mnt->mnt, flags); 1867 if (retval) 1868 return retval; 1869 1870 /* 1871 * Allow userspace to request a mountpoint be expired rather than 1872 * unmounting unconditionally. Unmount only happens if: 1873 * (1) the mark is already set (the mark is cleared by mntput()) 1874 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1875 */ 1876 if (flags & MNT_EXPIRE) { 1877 if (&mnt->mnt == current->fs->root.mnt || 1878 flags & (MNT_FORCE | MNT_DETACH)) 1879 return -EINVAL; 1880 1881 /* 1882 * probably don't strictly need the lock here if we examined 1883 * all race cases, but it's a slowpath. 1884 */ 1885 lock_mount_hash(); 1886 if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) { 1887 unlock_mount_hash(); 1888 return -EBUSY; 1889 } 1890 unlock_mount_hash(); 1891 1892 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1893 return -EAGAIN; 1894 } 1895 1896 /* 1897 * If we may have to abort operations to get out of this 1898 * mount, and they will themselves hold resources we must 1899 * allow the fs to do things. In the Unix tradition of 1900 * 'Gee thats tricky lets do it in userspace' the umount_begin 1901 * might fail to complete on the first run through as other tasks 1902 * must return, and the like. Thats for the mount program to worry 1903 * about for the moment. 1904 */ 1905 1906 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1907 sb->s_op->umount_begin(sb); 1908 } 1909 1910 /* 1911 * No sense to grab the lock for this test, but test itself looks 1912 * somewhat bogus. Suggestions for better replacement? 1913 * Ho-hum... In principle, we might treat that as umount + switch 1914 * to rootfs. GC would eventually take care of the old vfsmount. 1915 * Actually it makes sense, especially if rootfs would contain a 1916 * /reboot - static binary that would close all descriptors and 1917 * call reboot(9). Then init(8) could umount root and exec /reboot. 1918 */ 1919 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1920 /* 1921 * Special case for "unmounting" root ... 1922 * we just try to remount it readonly. 1923 */ 1924 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1925 return -EPERM; 1926 return do_umount_root(sb); 1927 } 1928 1929 namespace_lock(); 1930 lock_mount_hash(); 1931 1932 /* Repeat the earlier racy checks, now that we are holding the locks */ 1933 retval = -EINVAL; 1934 if (!check_mnt(mnt)) 1935 goto out; 1936 1937 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1938 goto out; 1939 1940 if (!mnt_has_parent(mnt)) /* not the absolute root */ 1941 goto out; 1942 1943 event++; 1944 if (flags & MNT_DETACH) { 1945 umount_tree(mnt, UMOUNT_PROPAGATE); 1946 retval = 0; 1947 } else { 1948 smp_mb(); // paired with __legitimize_mnt() 1949 shrink_submounts(mnt); 1950 retval = -EBUSY; 1951 if (!propagate_mount_busy(mnt, 2)) { 1952 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1953 retval = 0; 1954 } 1955 } 1956 out: 1957 unlock_mount_hash(); 1958 namespace_unlock(); 1959 return retval; 1960 } 1961 1962 /* 1963 * __detach_mounts - lazily unmount all mounts on the specified dentry 1964 * 1965 * During unlink, rmdir, and d_drop it is possible to loose the path 1966 * to an existing mountpoint, and wind up leaking the mount. 1967 * detach_mounts allows lazily unmounting those mounts instead of 1968 * leaking them. 1969 * 1970 * The caller may hold dentry->d_inode->i_rwsem. 1971 */ 1972 void __detach_mounts(struct dentry *dentry) 1973 { 1974 struct pinned_mountpoint mp = {}; 1975 struct mount *mnt; 1976 1977 guard(namespace_excl)(); 1978 guard(mount_writer)(); 1979 1980 if (!lookup_mountpoint(dentry, &mp)) 1981 return; 1982 1983 event++; 1984 while (mp.node.next) { 1985 mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list); 1986 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1987 umount_mnt(mnt); 1988 hlist_add_head(&mnt->mnt_umount, &unmounted); 1989 } 1990 else umount_tree(mnt, UMOUNT_CONNECTED); 1991 } 1992 unpin_mountpoint(&mp); 1993 } 1994 1995 /* 1996 * Is the caller allowed to modify his namespace? 1997 */ 1998 bool may_mount(void) 1999 { 2000 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 2001 } 2002 2003 static void warn_mandlock(void) 2004 { 2005 pr_warn_once("=======================================================\n" 2006 "WARNING: The mand mount option has been deprecated and\n" 2007 " and is ignored by this kernel. Remove the mand\n" 2008 " option from the mount to silence this warning.\n" 2009 "=======================================================\n"); 2010 } 2011 2012 static int can_umount(const struct path *path, int flags) 2013 { 2014 struct mount *mnt = real_mount(path->mnt); 2015 struct super_block *sb = path->dentry->d_sb; 2016 2017 if (!may_mount()) 2018 return -EPERM; 2019 if (!path_mounted(path)) 2020 return -EINVAL; 2021 if (!check_mnt(mnt)) 2022 return -EINVAL; 2023 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 2024 return -EINVAL; 2025 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 2026 return -EPERM; 2027 return 0; 2028 } 2029 2030 // caller is responsible for flags being sane 2031 int path_umount(const struct path *path, int flags) 2032 { 2033 struct mount *mnt = real_mount(path->mnt); 2034 int ret; 2035 2036 ret = can_umount(path, flags); 2037 if (!ret) 2038 ret = do_umount(mnt, flags); 2039 2040 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2041 dput(path->dentry); 2042 mntput_no_expire(mnt); 2043 return ret; 2044 } 2045 2046 static int ksys_umount(char __user *name, int flags) 2047 { 2048 int lookup_flags = LOOKUP_MOUNTPOINT; 2049 struct path path; 2050 int ret; 2051 2052 // basic validity checks done first 2053 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2054 return -EINVAL; 2055 2056 if (!(flags & UMOUNT_NOFOLLOW)) 2057 lookup_flags |= LOOKUP_FOLLOW; 2058 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2059 if (ret) 2060 return ret; 2061 return path_umount(&path, flags); 2062 } 2063 2064 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2065 { 2066 return ksys_umount(name, flags); 2067 } 2068 2069 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2070 2071 /* 2072 * The 2.0 compatible umount. No flags. 2073 */ 2074 SYSCALL_DEFINE1(oldumount, char __user *, name) 2075 { 2076 return ksys_umount(name, 0); 2077 } 2078 2079 #endif 2080 2081 static bool is_mnt_ns_file(struct dentry *dentry) 2082 { 2083 struct ns_common *ns; 2084 2085 /* Is this a proxy for a mount namespace? */ 2086 if (dentry->d_op != &ns_dentry_operations) 2087 return false; 2088 2089 ns = d_inode(dentry)->i_private; 2090 2091 return ns->ops == &mntns_operations; 2092 } 2093 2094 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2095 { 2096 return &mnt->ns; 2097 } 2098 2099 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous) 2100 { 2101 struct ns_common *ns; 2102 2103 guard(rcu)(); 2104 2105 for (;;) { 2106 ns = ns_tree_adjoined_rcu(mntns, previous); 2107 if (IS_ERR(ns)) 2108 return ERR_CAST(ns); 2109 2110 mntns = to_mnt_ns(ns); 2111 2112 /* 2113 * The last passive reference count is put with RCU 2114 * delay so accessing the mount namespace is not just 2115 * safe but all relevant members are still valid. 2116 */ 2117 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) 2118 continue; 2119 2120 /* 2121 * We need an active reference count as we're persisting 2122 * the mount namespace and it might already be on its 2123 * deathbed. 2124 */ 2125 if (!ns_ref_get(mntns)) 2126 continue; 2127 2128 return mntns; 2129 } 2130 } 2131 2132 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry) 2133 { 2134 if (!is_mnt_ns_file(dentry)) 2135 return NULL; 2136 2137 return to_mnt_ns(get_proc_ns(dentry->d_inode)); 2138 } 2139 2140 static bool mnt_ns_loop(struct dentry *dentry) 2141 { 2142 /* Could bind mounting the mount namespace inode cause a 2143 * mount namespace loop? 2144 */ 2145 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry); 2146 2147 if (!mnt_ns) 2148 return false; 2149 2150 return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id; 2151 } 2152 2153 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2154 int flag) 2155 { 2156 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2157 *dst_parent, *dst_mnt; 2158 2159 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2160 return ERR_PTR(-EINVAL); 2161 2162 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2163 return ERR_PTR(-EINVAL); 2164 2165 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2166 if (IS_ERR(dst_mnt)) 2167 return dst_mnt; 2168 2169 src_parent = src_root; 2170 2171 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2172 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2173 continue; 2174 2175 for (src_mnt = src_root_child; src_mnt; 2176 src_mnt = next_mnt(src_mnt, src_root_child)) { 2177 if (!(flag & CL_COPY_UNBINDABLE) && 2178 IS_MNT_UNBINDABLE(src_mnt)) { 2179 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2180 /* Both unbindable and locked. */ 2181 dst_mnt = ERR_PTR(-EPERM); 2182 goto out; 2183 } else { 2184 src_mnt = skip_mnt_tree(src_mnt); 2185 continue; 2186 } 2187 } 2188 if (!(flag & CL_COPY_MNT_NS_FILE) && 2189 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2190 src_mnt = skip_mnt_tree(src_mnt); 2191 continue; 2192 } 2193 while (src_parent != src_mnt->mnt_parent) { 2194 src_parent = src_parent->mnt_parent; 2195 dst_mnt = dst_mnt->mnt_parent; 2196 } 2197 2198 src_parent = src_mnt; 2199 dst_parent = dst_mnt; 2200 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2201 if (IS_ERR(dst_mnt)) 2202 goto out; 2203 lock_mount_hash(); 2204 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) 2205 dst_mnt->mnt.mnt_flags |= MNT_LOCKED; 2206 if (unlikely(flag & CL_EXPIRE)) { 2207 /* stick the duplicate mount on the same expiry 2208 * list as the original if that was on one */ 2209 if (!list_empty(&src_mnt->mnt_expire)) 2210 list_add(&dst_mnt->mnt_expire, 2211 &src_mnt->mnt_expire); 2212 } 2213 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp); 2214 unlock_mount_hash(); 2215 } 2216 } 2217 return res; 2218 2219 out: 2220 if (res) { 2221 lock_mount_hash(); 2222 umount_tree(res, UMOUNT_SYNC); 2223 unlock_mount_hash(); 2224 } 2225 return dst_mnt; 2226 } 2227 2228 static inline bool extend_array(struct path **res, struct path **to_free, 2229 unsigned n, unsigned *count, unsigned new_count) 2230 { 2231 struct path *p; 2232 2233 if (likely(n < *count)) 2234 return true; 2235 p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL); 2236 if (p && *count) 2237 memcpy(p, *res, *count * sizeof(struct path)); 2238 *count = new_count; 2239 kfree(*to_free); 2240 *to_free = *res = p; 2241 return p; 2242 } 2243 2244 const struct path *collect_paths(const struct path *path, 2245 struct path *prealloc, unsigned count) 2246 { 2247 struct mount *root = real_mount(path->mnt); 2248 struct mount *child; 2249 struct path *res = prealloc, *to_free = NULL; 2250 unsigned n = 0; 2251 2252 guard(namespace_shared)(); 2253 2254 if (!check_mnt(root)) 2255 return ERR_PTR(-EINVAL); 2256 if (!extend_array(&res, &to_free, 0, &count, 32)) 2257 return ERR_PTR(-ENOMEM); 2258 res[n++] = *path; 2259 list_for_each_entry(child, &root->mnt_mounts, mnt_child) { 2260 if (!is_subdir(child->mnt_mountpoint, path->dentry)) 2261 continue; 2262 for (struct mount *m = child; m; m = next_mnt(m, child)) { 2263 if (!extend_array(&res, &to_free, n, &count, 2 * count)) 2264 return ERR_PTR(-ENOMEM); 2265 res[n].mnt = &m->mnt; 2266 res[n].dentry = m->mnt.mnt_root; 2267 n++; 2268 } 2269 } 2270 if (!extend_array(&res, &to_free, n, &count, count + 1)) 2271 return ERR_PTR(-ENOMEM); 2272 memset(res + n, 0, (count - n) * sizeof(struct path)); 2273 for (struct path *p = res; p->mnt; p++) 2274 path_get(p); 2275 return res; 2276 } 2277 2278 void drop_collected_paths(const struct path *paths, const struct path *prealloc) 2279 { 2280 for (const struct path *p = paths; p->mnt; p++) 2281 path_put(p); 2282 if (paths != prealloc) 2283 kfree(paths); 2284 } 2285 2286 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2287 2288 void dissolve_on_fput(struct vfsmount *mnt) 2289 { 2290 struct mount *m = real_mount(mnt); 2291 2292 /* 2293 * m used to be the root of anon namespace; if it still is one, 2294 * we need to dissolve the mount tree and free that namespace. 2295 * Let's try to avoid taking namespace_sem if we can determine 2296 * that there's nothing to do without it - rcu_read_lock() is 2297 * enough to make anon_ns_root() memory-safe and once m has 2298 * left its namespace, it's no longer our concern, since it will 2299 * never become a root of anon ns again. 2300 */ 2301 2302 scoped_guard(rcu) { 2303 if (!anon_ns_root(m)) 2304 return; 2305 } 2306 2307 scoped_guard(namespace_excl) { 2308 if (!anon_ns_root(m)) 2309 return; 2310 2311 emptied_ns = m->mnt_ns; 2312 lock_mount_hash(); 2313 umount_tree(m, UMOUNT_CONNECTED); 2314 unlock_mount_hash(); 2315 } 2316 } 2317 2318 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */ 2319 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry) 2320 { 2321 struct mount *child; 2322 2323 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2324 if (!is_subdir(child->mnt_mountpoint, dentry)) 2325 continue; 2326 2327 if (child->mnt.mnt_flags & MNT_LOCKED) 2328 return true; 2329 } 2330 return false; 2331 } 2332 2333 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2334 { 2335 guard(mount_locked_reader)(); 2336 return __has_locked_children(mnt, dentry); 2337 } 2338 2339 /* 2340 * Check that there aren't references to earlier/same mount namespaces in the 2341 * specified subtree. Such references can act as pins for mount namespaces 2342 * that aren't checked by the mount-cycle checking code, thereby allowing 2343 * cycles to be made. 2344 * 2345 * locks: mount_locked_reader || namespace_shared && pinned(subtree) 2346 */ 2347 static bool check_for_nsfs_mounts(struct mount *subtree) 2348 { 2349 for (struct mount *p = subtree; p; p = next_mnt(p, subtree)) 2350 if (mnt_ns_loop(p->mnt.mnt_root)) 2351 return false; 2352 return true; 2353 } 2354 2355 /** 2356 * clone_private_mount - create a private clone of a path 2357 * @path: path to clone 2358 * 2359 * This creates a new vfsmount, which will be the clone of @path. The new mount 2360 * will not be attached anywhere in the namespace and will be private (i.e. 2361 * changes to the originating mount won't be propagated into this). 2362 * 2363 * This assumes caller has called or done the equivalent of may_mount(). 2364 * 2365 * Release with mntput(). 2366 */ 2367 struct vfsmount *clone_private_mount(const struct path *path) 2368 { 2369 struct mount *old_mnt = real_mount(path->mnt); 2370 struct mount *new_mnt; 2371 2372 guard(namespace_shared)(); 2373 2374 if (IS_MNT_UNBINDABLE(old_mnt)) 2375 return ERR_PTR(-EINVAL); 2376 2377 /* 2378 * Make sure the source mount is acceptable. 2379 * Anything mounted in our mount namespace is allowed. 2380 * Otherwise, it must be the root of an anonymous mount 2381 * namespace, and we need to make sure no namespace 2382 * loops get created. 2383 */ 2384 if (!check_mnt(old_mnt)) { 2385 if (!anon_ns_root(old_mnt)) 2386 return ERR_PTR(-EINVAL); 2387 2388 if (!check_for_nsfs_mounts(old_mnt)) 2389 return ERR_PTR(-EINVAL); 2390 } 2391 2392 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2393 return ERR_PTR(-EPERM); 2394 2395 if (__has_locked_children(old_mnt, path->dentry)) 2396 return ERR_PTR(-EINVAL); 2397 2398 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2399 if (IS_ERR(new_mnt)) 2400 return ERR_PTR(-EINVAL); 2401 2402 /* Longterm mount to be removed by kern_unmount*() */ 2403 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2404 return &new_mnt->mnt; 2405 } 2406 EXPORT_SYMBOL_GPL(clone_private_mount); 2407 2408 static void lock_mnt_tree(struct mount *mnt) 2409 { 2410 struct mount *p; 2411 2412 for (p = mnt; p; p = next_mnt(p, mnt)) { 2413 int flags = p->mnt.mnt_flags; 2414 /* Don't allow unprivileged users to change mount flags */ 2415 flags |= MNT_LOCK_ATIME; 2416 2417 if (flags & MNT_READONLY) 2418 flags |= MNT_LOCK_READONLY; 2419 2420 if (flags & MNT_NODEV) 2421 flags |= MNT_LOCK_NODEV; 2422 2423 if (flags & MNT_NOSUID) 2424 flags |= MNT_LOCK_NOSUID; 2425 2426 if (flags & MNT_NOEXEC) 2427 flags |= MNT_LOCK_NOEXEC; 2428 /* Don't allow unprivileged users to reveal what is under a mount */ 2429 if (list_empty(&p->mnt_expire) && p != mnt) 2430 flags |= MNT_LOCKED; 2431 p->mnt.mnt_flags = flags; 2432 } 2433 } 2434 2435 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2436 { 2437 struct mount *p; 2438 2439 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2440 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2441 mnt_release_group_id(p); 2442 } 2443 } 2444 2445 static int invent_group_ids(struct mount *mnt, bool recurse) 2446 { 2447 struct mount *p; 2448 2449 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2450 if (!p->mnt_group_id) { 2451 int err = mnt_alloc_group_id(p); 2452 if (err) { 2453 cleanup_group_ids(mnt, p); 2454 return err; 2455 } 2456 } 2457 } 2458 2459 return 0; 2460 } 2461 2462 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2463 { 2464 unsigned int max = READ_ONCE(sysctl_mount_max); 2465 unsigned int mounts = 0; 2466 struct mount *p; 2467 2468 if (ns->nr_mounts >= max) 2469 return -ENOSPC; 2470 max -= ns->nr_mounts; 2471 if (ns->pending_mounts >= max) 2472 return -ENOSPC; 2473 max -= ns->pending_mounts; 2474 2475 for (p = mnt; p; p = next_mnt(p, mnt)) 2476 mounts++; 2477 2478 if (mounts > max) 2479 return -ENOSPC; 2480 2481 ns->pending_mounts += mounts; 2482 return 0; 2483 } 2484 2485 enum mnt_tree_flags_t { 2486 MNT_TREE_BENEATH = BIT(0), 2487 MNT_TREE_PROPAGATION = BIT(1), 2488 }; 2489 2490 /** 2491 * attach_recursive_mnt - attach a source mount tree 2492 * @source_mnt: mount tree to be attached 2493 * @dest: the context for mounting at the place where the tree should go 2494 * 2495 * NOTE: in the table below explains the semantics when a source mount 2496 * of a given type is attached to a destination mount of a given type. 2497 * --------------------------------------------------------------------------- 2498 * | BIND MOUNT OPERATION | 2499 * |************************************************************************** 2500 * | source-->| shared | private | slave | unbindable | 2501 * | dest | | | | | 2502 * | | | | | | | 2503 * | v | | | | | 2504 * |************************************************************************** 2505 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2506 * | | | | | | 2507 * |non-shared| shared (+) | private | slave (*) | invalid | 2508 * *************************************************************************** 2509 * A bind operation clones the source mount and mounts the clone on the 2510 * destination mount. 2511 * 2512 * (++) the cloned mount is propagated to all the mounts in the propagation 2513 * tree of the destination mount and the cloned mount is added to 2514 * the peer group of the source mount. 2515 * (+) the cloned mount is created under the destination mount and is marked 2516 * as shared. The cloned mount is added to the peer group of the source 2517 * mount. 2518 * (+++) the mount is propagated to all the mounts in the propagation tree 2519 * of the destination mount and the cloned mount is made slave 2520 * of the same master as that of the source mount. The cloned mount 2521 * is marked as 'shared and slave'. 2522 * (*) the cloned mount is made a slave of the same master as that of the 2523 * source mount. 2524 * 2525 * --------------------------------------------------------------------------- 2526 * | MOVE MOUNT OPERATION | 2527 * |************************************************************************** 2528 * | source-->| shared | private | slave | unbindable | 2529 * | dest | | | | | 2530 * | | | | | | | 2531 * | v | | | | | 2532 * |************************************************************************** 2533 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2534 * | | | | | | 2535 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2536 * *************************************************************************** 2537 * 2538 * (+) the mount is moved to the destination. And is then propagated to 2539 * all the mounts in the propagation tree of the destination mount. 2540 * (+*) the mount is moved to the destination. 2541 * (+++) the mount is moved to the destination and is then propagated to 2542 * all the mounts belonging to the destination mount's propagation tree. 2543 * the mount is marked as 'shared and slave'. 2544 * (*) the mount continues to be a slave at the new location. 2545 * 2546 * if the source mount is a tree, the operations explained above is 2547 * applied to each mount in the tree. 2548 * Must be called without spinlocks held, since this function can sleep 2549 * in allocations. 2550 * 2551 * Context: The function expects namespace_lock() to be held. 2552 * Return: If @source_mnt was successfully attached 0 is returned. 2553 * Otherwise a negative error code is returned. 2554 */ 2555 static int attach_recursive_mnt(struct mount *source_mnt, 2556 const struct pinned_mountpoint *dest) 2557 { 2558 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2559 struct mount *dest_mnt = dest->parent; 2560 struct mountpoint *dest_mp = dest->mp; 2561 HLIST_HEAD(tree_list); 2562 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2563 struct pinned_mountpoint root = {}; 2564 struct mountpoint *shorter = NULL; 2565 struct mount *child, *p; 2566 struct mount *top; 2567 struct hlist_node *n; 2568 int err = 0; 2569 bool moving = mnt_has_parent(source_mnt); 2570 2571 /* 2572 * Preallocate a mountpoint in case the new mounts need to be 2573 * mounted beneath mounts on the same mountpoint. 2574 */ 2575 for (top = source_mnt; unlikely(top->overmount); top = top->overmount) { 2576 if (!shorter && is_mnt_ns_file(top->mnt.mnt_root)) 2577 shorter = top->mnt_mp; 2578 } 2579 err = get_mountpoint(top->mnt.mnt_root, &root); 2580 if (err) 2581 return err; 2582 2583 /* Is there space to add these mounts to the mount namespace? */ 2584 if (!moving) { 2585 err = count_mounts(ns, source_mnt); 2586 if (err) 2587 goto out; 2588 } 2589 2590 if (IS_MNT_SHARED(dest_mnt)) { 2591 err = invent_group_ids(source_mnt, true); 2592 if (err) 2593 goto out; 2594 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2595 } 2596 lock_mount_hash(); 2597 if (err) 2598 goto out_cleanup_ids; 2599 2600 if (IS_MNT_SHARED(dest_mnt)) { 2601 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2602 set_mnt_shared(p); 2603 } 2604 2605 if (moving) { 2606 umount_mnt(source_mnt); 2607 mnt_notify_add(source_mnt); 2608 /* if the mount is moved, it should no longer be expired 2609 * automatically */ 2610 list_del_init(&source_mnt->mnt_expire); 2611 } else { 2612 if (source_mnt->mnt_ns) { 2613 /* move from anon - the caller will destroy */ 2614 emptied_ns = source_mnt->mnt_ns; 2615 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2616 move_from_ns(p); 2617 } 2618 } 2619 2620 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2621 /* 2622 * Now the original copy is in the same state as the secondaries - 2623 * its root attached to mountpoint, but not hashed and all mounts 2624 * in it are either in our namespace or in no namespace at all. 2625 * Add the original to the list of copies and deal with the 2626 * rest of work for all of them uniformly. 2627 */ 2628 hlist_add_head(&source_mnt->mnt_hash, &tree_list); 2629 2630 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2631 struct mount *q; 2632 hlist_del_init(&child->mnt_hash); 2633 /* Notice when we are propagating across user namespaces */ 2634 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2635 lock_mnt_tree(child); 2636 q = __lookup_mnt(&child->mnt_parent->mnt, 2637 child->mnt_mountpoint); 2638 commit_tree(child); 2639 if (q) { 2640 struct mount *r = topmost_overmount(child); 2641 struct mountpoint *mp = root.mp; 2642 2643 if (unlikely(shorter) && child != source_mnt) 2644 mp = shorter; 2645 mnt_change_mountpoint(r, mp, q); 2646 } 2647 } 2648 unpin_mountpoint(&root); 2649 unlock_mount_hash(); 2650 2651 return 0; 2652 2653 out_cleanup_ids: 2654 while (!hlist_empty(&tree_list)) { 2655 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2656 child->mnt_parent->mnt_ns->pending_mounts = 0; 2657 umount_tree(child, UMOUNT_SYNC); 2658 } 2659 unlock_mount_hash(); 2660 cleanup_group_ids(source_mnt, NULL); 2661 out: 2662 ns->pending_mounts = 0; 2663 2664 read_seqlock_excl(&mount_lock); 2665 unpin_mountpoint(&root); 2666 read_sequnlock_excl(&mount_lock); 2667 2668 return err; 2669 } 2670 2671 static inline struct mount *where_to_mount(const struct path *path, 2672 struct dentry **dentry, 2673 bool beneath) 2674 { 2675 struct mount *m; 2676 2677 if (unlikely(beneath)) { 2678 m = topmost_overmount(real_mount(path->mnt)); 2679 *dentry = m->mnt_mountpoint; 2680 return m->mnt_parent; 2681 } 2682 m = __lookup_mnt(path->mnt, path->dentry); 2683 if (unlikely(m)) { 2684 m = topmost_overmount(m); 2685 *dentry = m->mnt.mnt_root; 2686 return m; 2687 } 2688 *dentry = path->dentry; 2689 return real_mount(path->mnt); 2690 } 2691 2692 /** 2693 * do_lock_mount - acquire environment for mounting 2694 * @path: target path 2695 * @res: context to set up 2696 * @beneath: whether the intention is to mount beneath @path 2697 * 2698 * To mount something at given location, we need 2699 * namespace_sem locked exclusive 2700 * inode of dentry we are mounting on locked exclusive 2701 * struct mountpoint for that dentry 2702 * struct mount we are mounting on 2703 * 2704 * Results are stored in caller-supplied context (pinned_mountpoint); 2705 * on success we have res->parent and res->mp pointing to parent and 2706 * mountpoint respectively and res->node inserted into the ->m_list 2707 * of the mountpoint, making sure the mountpoint won't disappear. 2708 * On failure we have res->parent set to ERR_PTR(-E...), res->mp 2709 * left NULL, res->node - empty. 2710 * In case of success do_lock_mount returns with locks acquired (in 2711 * proper order - inode lock nests outside of namespace_sem). 2712 * 2713 * Request to mount on overmounted location is treated as "mount on 2714 * top of whatever's overmounting it"; request to mount beneath 2715 * a location - "mount immediately beneath the topmost mount at that 2716 * place". 2717 * 2718 * In all cases the location must not have been unmounted and the 2719 * chosen mountpoint must be allowed to be mounted on. For "beneath" 2720 * case we also require the location to be at the root of a mount 2721 * that has a parent (i.e. is not a root of some namespace). 2722 */ 2723 static void do_lock_mount(const struct path *path, 2724 struct pinned_mountpoint *res, 2725 bool beneath) 2726 { 2727 int err; 2728 2729 if (unlikely(beneath) && !path_mounted(path)) { 2730 res->parent = ERR_PTR(-EINVAL); 2731 return; 2732 } 2733 2734 do { 2735 struct dentry *dentry, *d; 2736 struct mount *m, *n; 2737 2738 scoped_guard(mount_locked_reader) { 2739 m = where_to_mount(path, &dentry, beneath); 2740 if (&m->mnt != path->mnt) { 2741 mntget(&m->mnt); 2742 dget(dentry); 2743 } 2744 } 2745 2746 inode_lock(dentry->d_inode); 2747 namespace_lock(); 2748 2749 // check if the chain of mounts (if any) has changed. 2750 scoped_guard(mount_locked_reader) 2751 n = where_to_mount(path, &d, beneath); 2752 2753 if (unlikely(n != m || dentry != d)) 2754 err = -EAGAIN; // something moved, retry 2755 else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt))) 2756 err = -ENOENT; // not to be mounted on 2757 else if (beneath && &m->mnt == path->mnt && !m->overmount) 2758 err = -EINVAL; 2759 else 2760 err = get_mountpoint(dentry, res); 2761 2762 if (unlikely(err)) { 2763 res->parent = ERR_PTR(err); 2764 namespace_unlock(); 2765 inode_unlock(dentry->d_inode); 2766 } else { 2767 res->parent = m; 2768 } 2769 /* 2770 * Drop the temporary references. This is subtle - on success 2771 * we are doing that under namespace_sem, which would normally 2772 * be forbidden. However, in that case we are guaranteed that 2773 * refcounts won't reach zero, since we know that path->mnt 2774 * is mounted and thus all mounts reachable from it are pinned 2775 * and stable, along with their mountpoints and roots. 2776 */ 2777 if (&m->mnt != path->mnt) { 2778 dput(dentry); 2779 mntput(&m->mnt); 2780 } 2781 } while (err == -EAGAIN); 2782 } 2783 2784 static void __unlock_mount(struct pinned_mountpoint *m) 2785 { 2786 inode_unlock(m->mp->m_dentry->d_inode); 2787 read_seqlock_excl(&mount_lock); 2788 unpin_mountpoint(m); 2789 read_sequnlock_excl(&mount_lock); 2790 namespace_unlock(); 2791 } 2792 2793 static inline void unlock_mount(struct pinned_mountpoint *m) 2794 { 2795 if (!IS_ERR(m->parent)) 2796 __unlock_mount(m); 2797 } 2798 2799 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \ 2800 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \ 2801 do_lock_mount((path), &mp, (beneath)) 2802 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false) 2803 #define LOCK_MOUNT_EXACT(mp, path) \ 2804 struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \ 2805 lock_mount_exact((path), &mp) 2806 2807 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp) 2808 { 2809 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2810 return -EINVAL; 2811 2812 if (d_is_dir(mp->mp->m_dentry) != 2813 d_is_dir(mnt->mnt.mnt_root)) 2814 return -ENOTDIR; 2815 2816 return attach_recursive_mnt(mnt, mp); 2817 } 2818 2819 static int may_change_propagation(const struct mount *m) 2820 { 2821 struct mnt_namespace *ns = m->mnt_ns; 2822 2823 // it must be mounted in some namespace 2824 if (IS_ERR_OR_NULL(ns)) // is_mounted() 2825 return -EINVAL; 2826 // and the caller must be admin in userns of that namespace 2827 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) 2828 return -EPERM; 2829 return 0; 2830 } 2831 2832 /* 2833 * Sanity check the flags to change_mnt_propagation. 2834 */ 2835 2836 static int flags_to_propagation_type(int ms_flags) 2837 { 2838 int type = ms_flags & ~(MS_REC | MS_SILENT); 2839 2840 /* Fail if any non-propagation flags are set */ 2841 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2842 return 0; 2843 /* Only one propagation flag should be set */ 2844 if (!is_power_of_2(type)) 2845 return 0; 2846 return type; 2847 } 2848 2849 /* 2850 * recursively change the type of the mountpoint. 2851 */ 2852 static int do_change_type(const struct path *path, int ms_flags) 2853 { 2854 struct mount *m; 2855 struct mount *mnt = real_mount(path->mnt); 2856 int recurse = ms_flags & MS_REC; 2857 int type; 2858 int err; 2859 2860 if (!path_mounted(path)) 2861 return -EINVAL; 2862 2863 type = flags_to_propagation_type(ms_flags); 2864 if (!type) 2865 return -EINVAL; 2866 2867 guard(namespace_excl)(); 2868 2869 err = may_change_propagation(mnt); 2870 if (err) 2871 return err; 2872 2873 if (type == MS_SHARED) { 2874 err = invent_group_ids(mnt, recurse); 2875 if (err) 2876 return err; 2877 } 2878 2879 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2880 change_mnt_propagation(m, type); 2881 2882 return 0; 2883 } 2884 2885 /* may_copy_tree() - check if a mount tree can be copied 2886 * @path: path to the mount tree to be copied 2887 * 2888 * This helper checks if the caller may copy the mount tree starting 2889 * from @path->mnt. The caller may copy the mount tree under the 2890 * following circumstances: 2891 * 2892 * (1) The caller is located in the mount namespace of the mount tree. 2893 * This also implies that the mount does not belong to an anonymous 2894 * mount namespace. 2895 * (2) The caller tries to copy an nfs mount referring to a mount 2896 * namespace, i.e., the caller is trying to copy a mount namespace 2897 * entry from nsfs. 2898 * (3) The caller tries to copy a pidfs mount referring to a pidfd. 2899 * (4) The caller is trying to copy a mount tree that belongs to an 2900 * anonymous mount namespace. 2901 * 2902 * For that to be safe, this helper enforces that the origin mount 2903 * namespace the anonymous mount namespace was created from is the 2904 * same as the caller's mount namespace by comparing the sequence 2905 * numbers. 2906 * 2907 * This is not strictly necessary. The current semantics of the new 2908 * mount api enforce that the caller must be located in the same 2909 * mount namespace as the mount tree it interacts with. Using the 2910 * origin sequence number preserves these semantics even for 2911 * anonymous mount namespaces. However, one could envision extending 2912 * the api to directly operate across mount namespace if needed. 2913 * 2914 * The ownership of a non-anonymous mount namespace such as the 2915 * caller's cannot change. 2916 * => We know that the caller's mount namespace is stable. 2917 * 2918 * If the origin sequence number of the anonymous mount namespace is 2919 * the same as the sequence number of the caller's mount namespace. 2920 * => The owning namespaces are the same. 2921 * 2922 * ==> The earlier capability check on the owning namespace of the 2923 * caller's mount namespace ensures that the caller has the 2924 * ability to copy the mount tree. 2925 * 2926 * Returns true if the mount tree can be copied, false otherwise. 2927 */ 2928 static inline bool may_copy_tree(const struct path *path) 2929 { 2930 struct mount *mnt = real_mount(path->mnt); 2931 const struct dentry_operations *d_op; 2932 2933 if (check_mnt(mnt)) 2934 return true; 2935 2936 d_op = path->dentry->d_op; 2937 if (d_op == &ns_dentry_operations) 2938 return true; 2939 2940 if (d_op == &pidfs_dentry_operations) 2941 return true; 2942 2943 if (!is_mounted(path->mnt)) 2944 return false; 2945 2946 return check_anonymous_mnt(mnt); 2947 } 2948 2949 2950 static struct mount *__do_loopback(const struct path *old_path, int recurse) 2951 { 2952 struct mount *old = real_mount(old_path->mnt); 2953 2954 if (IS_MNT_UNBINDABLE(old)) 2955 return ERR_PTR(-EINVAL); 2956 2957 if (!may_copy_tree(old_path)) 2958 return ERR_PTR(-EINVAL); 2959 2960 if (!recurse && __has_locked_children(old, old_path->dentry)) 2961 return ERR_PTR(-EINVAL); 2962 2963 if (recurse) 2964 return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2965 else 2966 return clone_mnt(old, old_path->dentry, 0); 2967 } 2968 2969 /* 2970 * do loopback mount. 2971 */ 2972 static int do_loopback(const struct path *path, const char *old_name, 2973 int recurse) 2974 { 2975 struct path old_path __free(path_put) = {}; 2976 struct mount *mnt = NULL; 2977 int err; 2978 if (!old_name || !*old_name) 2979 return -EINVAL; 2980 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2981 if (err) 2982 return err; 2983 2984 if (mnt_ns_loop(old_path.dentry)) 2985 return -EINVAL; 2986 2987 LOCK_MOUNT(mp, path); 2988 if (IS_ERR(mp.parent)) 2989 return PTR_ERR(mp.parent); 2990 2991 if (!check_mnt(mp.parent)) 2992 return -EINVAL; 2993 2994 mnt = __do_loopback(&old_path, recurse); 2995 if (IS_ERR(mnt)) 2996 return PTR_ERR(mnt); 2997 2998 err = graft_tree(mnt, &mp); 2999 if (err) { 3000 lock_mount_hash(); 3001 umount_tree(mnt, UMOUNT_SYNC); 3002 unlock_mount_hash(); 3003 } 3004 return err; 3005 } 3006 3007 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive) 3008 { 3009 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; 3010 struct user_namespace *user_ns = mnt_ns->user_ns; 3011 struct mount *mnt, *p; 3012 3013 ns = alloc_mnt_ns(user_ns, true); 3014 if (IS_ERR(ns)) 3015 return ns; 3016 3017 guard(namespace_excl)(); 3018 3019 /* 3020 * Record the sequence number of the source mount namespace. 3021 * This needs to hold namespace_sem to ensure that the mount 3022 * doesn't get attached. 3023 */ 3024 if (is_mounted(path->mnt)) { 3025 src_mnt_ns = real_mount(path->mnt)->mnt_ns; 3026 if (is_anon_ns(src_mnt_ns)) 3027 ns->seq_origin = src_mnt_ns->seq_origin; 3028 else 3029 ns->seq_origin = src_mnt_ns->ns.ns_id; 3030 } 3031 3032 mnt = __do_loopback(path, recursive); 3033 if (IS_ERR(mnt)) { 3034 emptied_ns = ns; 3035 return ERR_CAST(mnt); 3036 } 3037 3038 for (p = mnt; p; p = next_mnt(p, mnt)) { 3039 mnt_add_to_ns(ns, p); 3040 ns->nr_mounts++; 3041 } 3042 ns->root = mnt; 3043 return ns; 3044 } 3045 3046 static struct file *open_detached_copy(struct path *path, bool recursive) 3047 { 3048 struct mnt_namespace *ns = get_detached_copy(path, recursive); 3049 struct file *file; 3050 3051 if (IS_ERR(ns)) 3052 return ERR_CAST(ns); 3053 3054 mntput(path->mnt); 3055 path->mnt = mntget(&ns->root->mnt); 3056 file = dentry_open(path, O_PATH, current_cred()); 3057 if (IS_ERR(file)) 3058 dissolve_on_fput(path->mnt); 3059 else 3060 file->f_mode |= FMODE_NEED_UNMOUNT; 3061 return file; 3062 } 3063 3064 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags) 3065 { 3066 int ret; 3067 struct path path __free(path_put) = {}; 3068 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 3069 bool detached = flags & OPEN_TREE_CLONE; 3070 3071 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 3072 3073 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 3074 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 3075 OPEN_TREE_CLOEXEC)) 3076 return ERR_PTR(-EINVAL); 3077 3078 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 3079 return ERR_PTR(-EINVAL); 3080 3081 if (flags & AT_NO_AUTOMOUNT) 3082 lookup_flags &= ~LOOKUP_AUTOMOUNT; 3083 if (flags & AT_SYMLINK_NOFOLLOW) 3084 lookup_flags &= ~LOOKUP_FOLLOW; 3085 if (flags & AT_EMPTY_PATH) 3086 lookup_flags |= LOOKUP_EMPTY; 3087 3088 if (detached && !may_mount()) 3089 return ERR_PTR(-EPERM); 3090 3091 ret = user_path_at(dfd, filename, lookup_flags, &path); 3092 if (unlikely(ret)) 3093 return ERR_PTR(ret); 3094 3095 if (detached) 3096 return open_detached_copy(&path, flags & AT_RECURSIVE); 3097 3098 return dentry_open(&path, O_PATH, current_cred()); 3099 } 3100 3101 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 3102 { 3103 int fd; 3104 struct file *file __free(fput) = NULL; 3105 3106 file = vfs_open_tree(dfd, filename, flags); 3107 if (IS_ERR(file)) 3108 return PTR_ERR(file); 3109 3110 fd = get_unused_fd_flags(flags & O_CLOEXEC); 3111 if (fd < 0) 3112 return fd; 3113 3114 fd_install(fd, no_free_ptr(file)); 3115 return fd; 3116 } 3117 3118 /* 3119 * Don't allow locked mount flags to be cleared. 3120 * 3121 * No locks need to be held here while testing the various MNT_LOCK 3122 * flags because those flags can never be cleared once they are set. 3123 */ 3124 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 3125 { 3126 unsigned int fl = mnt->mnt.mnt_flags; 3127 3128 if ((fl & MNT_LOCK_READONLY) && 3129 !(mnt_flags & MNT_READONLY)) 3130 return false; 3131 3132 if ((fl & MNT_LOCK_NODEV) && 3133 !(mnt_flags & MNT_NODEV)) 3134 return false; 3135 3136 if ((fl & MNT_LOCK_NOSUID) && 3137 !(mnt_flags & MNT_NOSUID)) 3138 return false; 3139 3140 if ((fl & MNT_LOCK_NOEXEC) && 3141 !(mnt_flags & MNT_NOEXEC)) 3142 return false; 3143 3144 if ((fl & MNT_LOCK_ATIME) && 3145 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 3146 return false; 3147 3148 return true; 3149 } 3150 3151 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 3152 { 3153 bool readonly_request = (mnt_flags & MNT_READONLY); 3154 3155 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 3156 return 0; 3157 3158 if (readonly_request) 3159 return mnt_make_readonly(mnt); 3160 3161 mnt->mnt.mnt_flags &= ~MNT_READONLY; 3162 return 0; 3163 } 3164 3165 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 3166 { 3167 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 3168 mnt->mnt.mnt_flags = mnt_flags; 3169 touch_mnt_namespace(mnt->mnt_ns); 3170 } 3171 3172 static void mnt_warn_timestamp_expiry(const struct path *mountpoint, 3173 struct vfsmount *mnt) 3174 { 3175 struct super_block *sb = mnt->mnt_sb; 3176 3177 if (!__mnt_is_readonly(mnt) && 3178 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 3179 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 3180 char *buf, *mntpath; 3181 3182 buf = (char *)__get_free_page(GFP_KERNEL); 3183 if (buf) 3184 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 3185 else 3186 mntpath = ERR_PTR(-ENOMEM); 3187 if (IS_ERR(mntpath)) 3188 mntpath = "(unknown)"; 3189 3190 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 3191 sb->s_type->name, 3192 is_mounted(mnt) ? "remounted" : "mounted", 3193 mntpath, &sb->s_time_max, 3194 (unsigned long long)sb->s_time_max); 3195 3196 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 3197 if (buf) 3198 free_page((unsigned long)buf); 3199 } 3200 } 3201 3202 /* 3203 * Handle reconfiguration of the mountpoint only without alteration of the 3204 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 3205 * to mount(2). 3206 */ 3207 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags) 3208 { 3209 struct super_block *sb = path->mnt->mnt_sb; 3210 struct mount *mnt = real_mount(path->mnt); 3211 int ret; 3212 3213 if (!check_mnt(mnt)) 3214 return -EINVAL; 3215 3216 if (!path_mounted(path)) 3217 return -EINVAL; 3218 3219 if (!can_change_locked_flags(mnt, mnt_flags)) 3220 return -EPERM; 3221 3222 /* 3223 * We're only checking whether the superblock is read-only not 3224 * changing it, so only take down_read(&sb->s_umount). 3225 */ 3226 down_read(&sb->s_umount); 3227 lock_mount_hash(); 3228 ret = change_mount_ro_state(mnt, mnt_flags); 3229 if (ret == 0) 3230 set_mount_attributes(mnt, mnt_flags); 3231 unlock_mount_hash(); 3232 up_read(&sb->s_umount); 3233 3234 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3235 3236 return ret; 3237 } 3238 3239 /* 3240 * change filesystem flags. dir should be a physical root of filesystem. 3241 * If you've mounted a non-root directory somewhere and want to do remount 3242 * on it - tough luck. 3243 */ 3244 static int do_remount(const struct path *path, int sb_flags, 3245 int mnt_flags, void *data) 3246 { 3247 int err; 3248 struct super_block *sb = path->mnt->mnt_sb; 3249 struct mount *mnt = real_mount(path->mnt); 3250 struct fs_context *fc; 3251 3252 if (!check_mnt(mnt)) 3253 return -EINVAL; 3254 3255 if (!path_mounted(path)) 3256 return -EINVAL; 3257 3258 if (!can_change_locked_flags(mnt, mnt_flags)) 3259 return -EPERM; 3260 3261 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3262 if (IS_ERR(fc)) 3263 return PTR_ERR(fc); 3264 3265 /* 3266 * Indicate to the filesystem that the remount request is coming 3267 * from the legacy mount system call. 3268 */ 3269 fc->oldapi = true; 3270 3271 err = parse_monolithic_mount_data(fc, data); 3272 if (!err) { 3273 down_write(&sb->s_umount); 3274 err = -EPERM; 3275 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3276 err = reconfigure_super(fc); 3277 if (!err) { 3278 lock_mount_hash(); 3279 set_mount_attributes(mnt, mnt_flags); 3280 unlock_mount_hash(); 3281 } 3282 } 3283 up_write(&sb->s_umount); 3284 } 3285 3286 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3287 3288 put_fs_context(fc); 3289 return err; 3290 } 3291 3292 static inline int tree_contains_unbindable(struct mount *mnt) 3293 { 3294 struct mount *p; 3295 for (p = mnt; p; p = next_mnt(p, mnt)) { 3296 if (IS_MNT_UNBINDABLE(p)) 3297 return 1; 3298 } 3299 return 0; 3300 } 3301 3302 static int do_set_group(const struct path *from_path, const struct path *to_path) 3303 { 3304 struct mount *from = real_mount(from_path->mnt); 3305 struct mount *to = real_mount(to_path->mnt); 3306 int err; 3307 3308 guard(namespace_excl)(); 3309 3310 err = may_change_propagation(from); 3311 if (err) 3312 return err; 3313 err = may_change_propagation(to); 3314 if (err) 3315 return err; 3316 3317 /* To and From paths should be mount roots */ 3318 if (!path_mounted(from_path)) 3319 return -EINVAL; 3320 if (!path_mounted(to_path)) 3321 return -EINVAL; 3322 3323 /* Setting sharing groups is only allowed across same superblock */ 3324 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3325 return -EINVAL; 3326 3327 /* From mount root should be wider than To mount root */ 3328 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3329 return -EINVAL; 3330 3331 /* From mount should not have locked children in place of To's root */ 3332 if (__has_locked_children(from, to->mnt.mnt_root)) 3333 return -EINVAL; 3334 3335 /* Setting sharing groups is only allowed on private mounts */ 3336 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3337 return -EINVAL; 3338 3339 /* From should not be private */ 3340 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3341 return -EINVAL; 3342 3343 if (IS_MNT_SLAVE(from)) { 3344 hlist_add_behind(&to->mnt_slave, &from->mnt_slave); 3345 to->mnt_master = from->mnt_master; 3346 } 3347 3348 if (IS_MNT_SHARED(from)) { 3349 to->mnt_group_id = from->mnt_group_id; 3350 list_add(&to->mnt_share, &from->mnt_share); 3351 set_mnt_shared(to); 3352 } 3353 return 0; 3354 } 3355 3356 /** 3357 * path_overmounted - check if path is overmounted 3358 * @path: path to check 3359 * 3360 * Check if path is overmounted, i.e., if there's a mount on top of 3361 * @path->mnt with @path->dentry as mountpoint. 3362 * 3363 * Context: namespace_sem must be held at least shared. 3364 * MUST NOT be called under lock_mount_hash() (there one should just 3365 * call __lookup_mnt() and check if it returns NULL). 3366 * Return: If path is overmounted true is returned, false if not. 3367 */ 3368 static inline bool path_overmounted(const struct path *path) 3369 { 3370 unsigned seq = read_seqbegin(&mount_lock); 3371 bool no_child; 3372 3373 rcu_read_lock(); 3374 no_child = !__lookup_mnt(path->mnt, path->dentry); 3375 rcu_read_unlock(); 3376 if (need_seqretry(&mount_lock, seq)) { 3377 read_seqlock_excl(&mount_lock); 3378 no_child = !__lookup_mnt(path->mnt, path->dentry); 3379 read_sequnlock_excl(&mount_lock); 3380 } 3381 return unlikely(!no_child); 3382 } 3383 3384 /* 3385 * Check if there is a possibly empty chain of descent from p1 to p2. 3386 * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl). 3387 */ 3388 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2) 3389 { 3390 while (p2 != p1 && mnt_has_parent(p2)) 3391 p2 = p2->mnt_parent; 3392 return p2 == p1; 3393 } 3394 3395 /** 3396 * can_move_mount_beneath - check that we can mount beneath the top mount 3397 * @mnt_from: mount we are trying to move 3398 * @mnt_to: mount under which to mount 3399 * @mp: mountpoint of @mnt_to 3400 * 3401 * - Make sure that nothing can be mounted beneath the caller's current 3402 * root or the rootfs of the namespace. 3403 * - Make sure that the caller can unmount the topmost mount ensuring 3404 * that the caller could reveal the underlying mountpoint. 3405 * - Ensure that nothing has been mounted on top of @mnt_from before we 3406 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3407 * - Prevent mounting beneath a mount if the propagation relationship 3408 * between the source mount, parent mount, and top mount would lead to 3409 * nonsensical mount trees. 3410 * 3411 * Context: This function expects namespace_lock() to be held. 3412 * Return: On success 0, and on error a negative error code is returned. 3413 */ 3414 static int can_move_mount_beneath(const struct mount *mnt_from, 3415 const struct mount *mnt_to, 3416 const struct mountpoint *mp) 3417 { 3418 struct mount *parent_mnt_to = mnt_to->mnt_parent; 3419 3420 if (IS_MNT_LOCKED(mnt_to)) 3421 return -EINVAL; 3422 3423 /* Avoid creating shadow mounts during mount propagation. */ 3424 if (mnt_from->overmount) 3425 return -EINVAL; 3426 3427 /* 3428 * Mounting beneath the rootfs only makes sense when the 3429 * semantics of pivot_root(".", ".") are used. 3430 */ 3431 if (&mnt_to->mnt == current->fs->root.mnt) 3432 return -EINVAL; 3433 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3434 return -EINVAL; 3435 3436 if (mount_is_ancestor(mnt_to, mnt_from)) 3437 return -EINVAL; 3438 3439 /* 3440 * If the parent mount propagates to the child mount this would 3441 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3442 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3443 * defeats the whole purpose of mounting beneath another mount. 3444 */ 3445 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3446 return -EINVAL; 3447 3448 /* 3449 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3450 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3451 * Afterwards @mnt_from would be mounted on top of 3452 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3453 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3454 * already mounted on @mnt_from, @mnt_to would ultimately be 3455 * remounted on top of @c. Afterwards, @mnt_from would be 3456 * covered by a copy @c of @mnt_from and @c would be covered by 3457 * @mnt_from itself. This defeats the whole purpose of mounting 3458 * @mnt_from beneath @mnt_to. 3459 */ 3460 if (check_mnt(mnt_from) && 3461 propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3462 return -EINVAL; 3463 3464 return 0; 3465 } 3466 3467 /* may_use_mount() - check if a mount tree can be used 3468 * @mnt: vfsmount to be used 3469 * 3470 * This helper checks if the caller may use the mount tree starting 3471 * from @path->mnt. The caller may use the mount tree under the 3472 * following circumstances: 3473 * 3474 * (1) The caller is located in the mount namespace of the mount tree. 3475 * This also implies that the mount does not belong to an anonymous 3476 * mount namespace. 3477 * (2) The caller is trying to use a mount tree that belongs to an 3478 * anonymous mount namespace. 3479 * 3480 * For that to be safe, this helper enforces that the origin mount 3481 * namespace the anonymous mount namespace was created from is the 3482 * same as the caller's mount namespace by comparing the sequence 3483 * numbers. 3484 * 3485 * The ownership of a non-anonymous mount namespace such as the 3486 * caller's cannot change. 3487 * => We know that the caller's mount namespace is stable. 3488 * 3489 * If the origin sequence number of the anonymous mount namespace is 3490 * the same as the sequence number of the caller's mount namespace. 3491 * => The owning namespaces are the same. 3492 * 3493 * ==> The earlier capability check on the owning namespace of the 3494 * caller's mount namespace ensures that the caller has the 3495 * ability to use the mount tree. 3496 * 3497 * Returns true if the mount tree can be used, false otherwise. 3498 */ 3499 static inline bool may_use_mount(struct mount *mnt) 3500 { 3501 if (check_mnt(mnt)) 3502 return true; 3503 3504 /* 3505 * Make sure that noone unmounted the target path or somehow 3506 * managed to get their hands on something purely kernel 3507 * internal. 3508 */ 3509 if (!is_mounted(&mnt->mnt)) 3510 return false; 3511 3512 return check_anonymous_mnt(mnt); 3513 } 3514 3515 static int do_move_mount(const struct path *old_path, 3516 const struct path *new_path, 3517 enum mnt_tree_flags_t flags) 3518 { 3519 struct mount *old = real_mount(old_path->mnt); 3520 int err; 3521 bool beneath = flags & MNT_TREE_BENEATH; 3522 3523 if (!path_mounted(old_path)) 3524 return -EINVAL; 3525 3526 if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) 3527 return -EINVAL; 3528 3529 LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath); 3530 if (IS_ERR(mp.parent)) 3531 return PTR_ERR(mp.parent); 3532 3533 if (check_mnt(old)) { 3534 /* if the source is in our namespace... */ 3535 /* ... it should be detachable from parent */ 3536 if (!mnt_has_parent(old) || IS_MNT_LOCKED(old)) 3537 return -EINVAL; 3538 /* ... which should not be shared */ 3539 if (IS_MNT_SHARED(old->mnt_parent)) 3540 return -EINVAL; 3541 /* ... and the target should be in our namespace */ 3542 if (!check_mnt(mp.parent)) 3543 return -EINVAL; 3544 } else { 3545 /* 3546 * otherwise the source must be the root of some anon namespace. 3547 */ 3548 if (!anon_ns_root(old)) 3549 return -EINVAL; 3550 /* 3551 * Bail out early if the target is within the same namespace - 3552 * subsequent checks would've rejected that, but they lose 3553 * some corner cases if we check it early. 3554 */ 3555 if (old->mnt_ns == mp.parent->mnt_ns) 3556 return -EINVAL; 3557 /* 3558 * Target should be either in our namespace or in an acceptable 3559 * anon namespace, sensu check_anonymous_mnt(). 3560 */ 3561 if (!may_use_mount(mp.parent)) 3562 return -EINVAL; 3563 } 3564 3565 if (beneath) { 3566 struct mount *over = real_mount(new_path->mnt); 3567 3568 if (mp.parent != over->mnt_parent) 3569 over = mp.parent->overmount; 3570 err = can_move_mount_beneath(old, over, mp.mp); 3571 if (err) 3572 return err; 3573 } 3574 3575 /* 3576 * Don't move a mount tree containing unbindable mounts to a destination 3577 * mount which is shared. 3578 */ 3579 if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old)) 3580 return -EINVAL; 3581 if (!check_for_nsfs_mounts(old)) 3582 return -ELOOP; 3583 if (mount_is_ancestor(old, mp.parent)) 3584 return -ELOOP; 3585 3586 return attach_recursive_mnt(old, &mp); 3587 } 3588 3589 static int do_move_mount_old(const struct path *path, const char *old_name) 3590 { 3591 struct path old_path __free(path_put) = {}; 3592 int err; 3593 3594 if (!old_name || !*old_name) 3595 return -EINVAL; 3596 3597 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3598 if (err) 3599 return err; 3600 3601 return do_move_mount(&old_path, path, 0); 3602 } 3603 3604 /* 3605 * add a mount into a namespace's mount tree 3606 */ 3607 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp, 3608 int mnt_flags) 3609 { 3610 struct mount *parent = mp->parent; 3611 3612 if (IS_ERR(parent)) 3613 return PTR_ERR(parent); 3614 3615 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3616 3617 if (unlikely(!check_mnt(parent))) { 3618 /* that's acceptable only for automounts done in private ns */ 3619 if (!(mnt_flags & MNT_SHRINKABLE)) 3620 return -EINVAL; 3621 /* ... and for those we'd better have mountpoint still alive */ 3622 if (!parent->mnt_ns) 3623 return -EINVAL; 3624 } 3625 3626 /* Refuse the same filesystem on the same mount point */ 3627 if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb && 3628 parent->mnt.mnt_root == mp->mp->m_dentry) 3629 return -EBUSY; 3630 3631 if (d_is_symlink(newmnt->mnt.mnt_root)) 3632 return -EINVAL; 3633 3634 newmnt->mnt.mnt_flags = mnt_flags; 3635 return graft_tree(newmnt, mp); 3636 } 3637 3638 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3639 3640 /* 3641 * Create a new mount using a superblock configuration and request it 3642 * be added to the namespace tree. 3643 */ 3644 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint, 3645 unsigned int mnt_flags) 3646 { 3647 struct super_block *sb; 3648 struct vfsmount *mnt __free(mntput) = fc_mount(fc); 3649 int error; 3650 3651 if (IS_ERR(mnt)) 3652 return PTR_ERR(mnt); 3653 3654 sb = fc->root->d_sb; 3655 error = security_sb_kern_mount(sb); 3656 if (unlikely(error)) 3657 return error; 3658 3659 if (unlikely(mount_too_revealing(sb, &mnt_flags))) { 3660 errorfcp(fc, "VFS", "Mount too revealing"); 3661 return -EPERM; 3662 } 3663 3664 mnt_warn_timestamp_expiry(mountpoint, mnt); 3665 3666 LOCK_MOUNT(mp, mountpoint); 3667 error = do_add_mount(real_mount(mnt), &mp, mnt_flags); 3668 if (!error) 3669 retain_and_null_ptr(mnt); // consumed on success 3670 return error; 3671 } 3672 3673 /* 3674 * create a new mount for userspace and request it to be added into the 3675 * namespace's tree 3676 */ 3677 static int do_new_mount(const struct path *path, const char *fstype, 3678 int sb_flags, int mnt_flags, 3679 const char *name, void *data) 3680 { 3681 struct file_system_type *type; 3682 struct fs_context *fc; 3683 const char *subtype = NULL; 3684 int err = 0; 3685 3686 if (!fstype) 3687 return -EINVAL; 3688 3689 type = get_fs_type(fstype); 3690 if (!type) 3691 return -ENODEV; 3692 3693 if (type->fs_flags & FS_HAS_SUBTYPE) { 3694 subtype = strchr(fstype, '.'); 3695 if (subtype) { 3696 subtype++; 3697 if (!*subtype) { 3698 put_filesystem(type); 3699 return -EINVAL; 3700 } 3701 } 3702 } 3703 3704 fc = fs_context_for_mount(type, sb_flags); 3705 put_filesystem(type); 3706 if (IS_ERR(fc)) 3707 return PTR_ERR(fc); 3708 3709 /* 3710 * Indicate to the filesystem that the mount request is coming 3711 * from the legacy mount system call. 3712 */ 3713 fc->oldapi = true; 3714 3715 if (subtype) 3716 err = vfs_parse_fs_string(fc, "subtype", subtype); 3717 if (!err && name) 3718 err = vfs_parse_fs_string(fc, "source", name); 3719 if (!err) 3720 err = parse_monolithic_mount_data(fc, data); 3721 if (!err && !mount_capable(fc)) 3722 err = -EPERM; 3723 if (!err) 3724 err = do_new_mount_fc(fc, path, mnt_flags); 3725 3726 put_fs_context(fc); 3727 return err; 3728 } 3729 3730 static void lock_mount_exact(const struct path *path, 3731 struct pinned_mountpoint *mp) 3732 { 3733 struct dentry *dentry = path->dentry; 3734 int err; 3735 3736 inode_lock(dentry->d_inode); 3737 namespace_lock(); 3738 if (unlikely(cant_mount(dentry))) 3739 err = -ENOENT; 3740 else if (path_overmounted(path)) 3741 err = -EBUSY; 3742 else 3743 err = get_mountpoint(dentry, mp); 3744 if (unlikely(err)) { 3745 namespace_unlock(); 3746 inode_unlock(dentry->d_inode); 3747 mp->parent = ERR_PTR(err); 3748 } else { 3749 mp->parent = real_mount(path->mnt); 3750 } 3751 } 3752 3753 int finish_automount(struct vfsmount *__m, const struct path *path) 3754 { 3755 struct vfsmount *m __free(mntput) = __m; 3756 struct mount *mnt; 3757 int err; 3758 3759 if (!m) 3760 return 0; 3761 if (IS_ERR(m)) 3762 return PTR_ERR(m); 3763 3764 mnt = real_mount(m); 3765 3766 if (m->mnt_root == path->dentry) 3767 return -ELOOP; 3768 3769 /* 3770 * we don't want to use LOCK_MOUNT() - in this case finding something 3771 * that overmounts our mountpoint to be means "quitely drop what we've 3772 * got", not "try to mount it on top". 3773 */ 3774 LOCK_MOUNT_EXACT(mp, path); 3775 if (mp.parent == ERR_PTR(-EBUSY)) 3776 return 0; 3777 3778 err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE); 3779 if (likely(!err)) 3780 retain_and_null_ptr(m); 3781 return err; 3782 } 3783 3784 /** 3785 * mnt_set_expiry - Put a mount on an expiration list 3786 * @mnt: The mount to list. 3787 * @expiry_list: The list to add the mount to. 3788 */ 3789 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3790 { 3791 guard(mount_locked_reader)(); 3792 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3793 } 3794 EXPORT_SYMBOL(mnt_set_expiry); 3795 3796 /* 3797 * process a list of expirable mountpoints with the intent of discarding any 3798 * mountpoints that aren't in use and haven't been touched since last we came 3799 * here 3800 */ 3801 void mark_mounts_for_expiry(struct list_head *mounts) 3802 { 3803 struct mount *mnt, *next; 3804 LIST_HEAD(graveyard); 3805 3806 if (list_empty(mounts)) 3807 return; 3808 3809 guard(namespace_excl)(); 3810 guard(mount_writer)(); 3811 3812 /* extract from the expiration list every vfsmount that matches the 3813 * following criteria: 3814 * - already mounted 3815 * - only referenced by its parent vfsmount 3816 * - still marked for expiry (marked on the last call here; marks are 3817 * cleared by mntput()) 3818 */ 3819 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3820 if (!is_mounted(&mnt->mnt)) 3821 continue; 3822 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3823 propagate_mount_busy(mnt, 1)) 3824 continue; 3825 list_move(&mnt->mnt_expire, &graveyard); 3826 } 3827 while (!list_empty(&graveyard)) { 3828 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3829 touch_mnt_namespace(mnt->mnt_ns); 3830 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3831 } 3832 } 3833 3834 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3835 3836 /* 3837 * Ripoff of 'select_parent()' 3838 * 3839 * search the list of submounts for a given mountpoint, and move any 3840 * shrinkable submounts to the 'graveyard' list. 3841 */ 3842 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3843 { 3844 struct mount *this_parent = parent; 3845 struct list_head *next; 3846 int found = 0; 3847 3848 repeat: 3849 next = this_parent->mnt_mounts.next; 3850 resume: 3851 while (next != &this_parent->mnt_mounts) { 3852 struct list_head *tmp = next; 3853 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3854 3855 next = tmp->next; 3856 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3857 continue; 3858 /* 3859 * Descend a level if the d_mounts list is non-empty. 3860 */ 3861 if (!list_empty(&mnt->mnt_mounts)) { 3862 this_parent = mnt; 3863 goto repeat; 3864 } 3865 3866 if (!propagate_mount_busy(mnt, 1)) { 3867 list_move_tail(&mnt->mnt_expire, graveyard); 3868 found++; 3869 } 3870 } 3871 /* 3872 * All done at this level ... ascend and resume the search 3873 */ 3874 if (this_parent != parent) { 3875 next = this_parent->mnt_child.next; 3876 this_parent = this_parent->mnt_parent; 3877 goto resume; 3878 } 3879 return found; 3880 } 3881 3882 /* 3883 * process a list of expirable mountpoints with the intent of discarding any 3884 * submounts of a specific parent mountpoint 3885 * 3886 * mount_lock must be held for write 3887 */ 3888 static void shrink_submounts(struct mount *mnt) 3889 { 3890 LIST_HEAD(graveyard); 3891 struct mount *m; 3892 3893 /* extract submounts of 'mountpoint' from the expiration list */ 3894 while (select_submounts(mnt, &graveyard)) { 3895 while (!list_empty(&graveyard)) { 3896 m = list_first_entry(&graveyard, struct mount, 3897 mnt_expire); 3898 touch_mnt_namespace(m->mnt_ns); 3899 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3900 } 3901 } 3902 } 3903 3904 static void *copy_mount_options(const void __user * data) 3905 { 3906 char *copy; 3907 unsigned left, offset; 3908 3909 if (!data) 3910 return NULL; 3911 3912 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3913 if (!copy) 3914 return ERR_PTR(-ENOMEM); 3915 3916 left = copy_from_user(copy, data, PAGE_SIZE); 3917 3918 /* 3919 * Not all architectures have an exact copy_from_user(). Resort to 3920 * byte at a time. 3921 */ 3922 offset = PAGE_SIZE - left; 3923 while (left) { 3924 char c; 3925 if (get_user(c, (const char __user *)data + offset)) 3926 break; 3927 copy[offset] = c; 3928 left--; 3929 offset++; 3930 } 3931 3932 if (left == PAGE_SIZE) { 3933 kfree(copy); 3934 return ERR_PTR(-EFAULT); 3935 } 3936 3937 return copy; 3938 } 3939 3940 static char *copy_mount_string(const void __user *data) 3941 { 3942 return data ? strndup_user(data, PATH_MAX) : NULL; 3943 } 3944 3945 /* 3946 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3947 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3948 * 3949 * data is a (void *) that can point to any structure up to 3950 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3951 * information (or be NULL). 3952 * 3953 * Pre-0.97 versions of mount() didn't have a flags word. 3954 * When the flags word was introduced its top half was required 3955 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3956 * Therefore, if this magic number is present, it carries no information 3957 * and must be discarded. 3958 */ 3959 int path_mount(const char *dev_name, const struct path *path, 3960 const char *type_page, unsigned long flags, void *data_page) 3961 { 3962 unsigned int mnt_flags = 0, sb_flags; 3963 int ret; 3964 3965 /* Discard magic */ 3966 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3967 flags &= ~MS_MGC_MSK; 3968 3969 /* Basic sanity checks */ 3970 if (data_page) 3971 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3972 3973 if (flags & MS_NOUSER) 3974 return -EINVAL; 3975 3976 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3977 if (ret) 3978 return ret; 3979 if (!may_mount()) 3980 return -EPERM; 3981 if (flags & SB_MANDLOCK) 3982 warn_mandlock(); 3983 3984 /* Default to relatime unless overriden */ 3985 if (!(flags & MS_NOATIME)) 3986 mnt_flags |= MNT_RELATIME; 3987 3988 /* Separate the per-mountpoint flags */ 3989 if (flags & MS_NOSUID) 3990 mnt_flags |= MNT_NOSUID; 3991 if (flags & MS_NODEV) 3992 mnt_flags |= MNT_NODEV; 3993 if (flags & MS_NOEXEC) 3994 mnt_flags |= MNT_NOEXEC; 3995 if (flags & MS_NOATIME) 3996 mnt_flags |= MNT_NOATIME; 3997 if (flags & MS_NODIRATIME) 3998 mnt_flags |= MNT_NODIRATIME; 3999 if (flags & MS_STRICTATIME) 4000 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 4001 if (flags & MS_RDONLY) 4002 mnt_flags |= MNT_READONLY; 4003 if (flags & MS_NOSYMFOLLOW) 4004 mnt_flags |= MNT_NOSYMFOLLOW; 4005 4006 /* The default atime for remount is preservation */ 4007 if ((flags & MS_REMOUNT) && 4008 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 4009 MS_STRICTATIME)) == 0)) { 4010 mnt_flags &= ~MNT_ATIME_MASK; 4011 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 4012 } 4013 4014 sb_flags = flags & (SB_RDONLY | 4015 SB_SYNCHRONOUS | 4016 SB_MANDLOCK | 4017 SB_DIRSYNC | 4018 SB_SILENT | 4019 SB_POSIXACL | 4020 SB_LAZYTIME | 4021 SB_I_VERSION); 4022 4023 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 4024 return do_reconfigure_mnt(path, mnt_flags); 4025 if (flags & MS_REMOUNT) 4026 return do_remount(path, sb_flags, mnt_flags, data_page); 4027 if (flags & MS_BIND) 4028 return do_loopback(path, dev_name, flags & MS_REC); 4029 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 4030 return do_change_type(path, flags); 4031 if (flags & MS_MOVE) 4032 return do_move_mount_old(path, dev_name); 4033 4034 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 4035 data_page); 4036 } 4037 4038 int do_mount(const char *dev_name, const char __user *dir_name, 4039 const char *type_page, unsigned long flags, void *data_page) 4040 { 4041 struct path path __free(path_put) = {}; 4042 int ret; 4043 4044 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 4045 if (ret) 4046 return ret; 4047 return path_mount(dev_name, &path, type_page, flags, data_page); 4048 } 4049 4050 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 4051 { 4052 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 4053 } 4054 4055 static void dec_mnt_namespaces(struct ucounts *ucounts) 4056 { 4057 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 4058 } 4059 4060 static void free_mnt_ns(struct mnt_namespace *ns) 4061 { 4062 if (!is_anon_ns(ns)) 4063 ns_common_free(ns); 4064 dec_mnt_namespaces(ns->ucounts); 4065 mnt_ns_tree_remove(ns); 4066 } 4067 4068 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 4069 { 4070 struct mnt_namespace *new_ns; 4071 struct ucounts *ucounts; 4072 int ret; 4073 4074 ucounts = inc_mnt_namespaces(user_ns); 4075 if (!ucounts) 4076 return ERR_PTR(-ENOSPC); 4077 4078 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 4079 if (!new_ns) { 4080 dec_mnt_namespaces(ucounts); 4081 return ERR_PTR(-ENOMEM); 4082 } 4083 4084 if (anon) 4085 ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO); 4086 else 4087 ret = ns_common_init(new_ns); 4088 if (ret) { 4089 kfree(new_ns); 4090 dec_mnt_namespaces(ucounts); 4091 return ERR_PTR(ret); 4092 } 4093 ns_tree_gen_id(new_ns); 4094 4095 new_ns->is_anon = anon; 4096 refcount_set(&new_ns->passive, 1); 4097 new_ns->mounts = RB_ROOT; 4098 init_waitqueue_head(&new_ns->poll); 4099 new_ns->user_ns = get_user_ns(user_ns); 4100 new_ns->ucounts = ucounts; 4101 return new_ns; 4102 } 4103 4104 __latent_entropy 4105 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns, 4106 struct user_namespace *user_ns, struct fs_struct *new_fs) 4107 { 4108 struct mnt_namespace *new_ns; 4109 struct vfsmount *rootmnt __free(mntput) = NULL; 4110 struct vfsmount *pwdmnt __free(mntput) = NULL; 4111 struct mount *p, *q; 4112 struct mount *old; 4113 struct mount *new; 4114 int copy_flags; 4115 4116 BUG_ON(!ns); 4117 4118 if (likely(!(flags & CLONE_NEWNS))) { 4119 get_mnt_ns(ns); 4120 return ns; 4121 } 4122 4123 old = ns->root; 4124 4125 new_ns = alloc_mnt_ns(user_ns, false); 4126 if (IS_ERR(new_ns)) 4127 return new_ns; 4128 4129 guard(namespace_excl)(); 4130 /* First pass: copy the tree topology */ 4131 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 4132 if (user_ns != ns->user_ns) 4133 copy_flags |= CL_SLAVE; 4134 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 4135 if (IS_ERR(new)) { 4136 emptied_ns = new_ns; 4137 return ERR_CAST(new); 4138 } 4139 if (user_ns != ns->user_ns) { 4140 guard(mount_writer)(); 4141 lock_mnt_tree(new); 4142 } 4143 new_ns->root = new; 4144 4145 /* 4146 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 4147 * as belonging to new namespace. We have already acquired a private 4148 * fs_struct, so tsk->fs->lock is not needed. 4149 */ 4150 p = old; 4151 q = new; 4152 while (p) { 4153 mnt_add_to_ns(new_ns, q); 4154 new_ns->nr_mounts++; 4155 if (new_fs) { 4156 if (&p->mnt == new_fs->root.mnt) { 4157 new_fs->root.mnt = mntget(&q->mnt); 4158 rootmnt = &p->mnt; 4159 } 4160 if (&p->mnt == new_fs->pwd.mnt) { 4161 new_fs->pwd.mnt = mntget(&q->mnt); 4162 pwdmnt = &p->mnt; 4163 } 4164 } 4165 p = next_mnt(p, old); 4166 q = next_mnt(q, new); 4167 if (!q) 4168 break; 4169 // an mntns binding we'd skipped? 4170 while (p->mnt.mnt_root != q->mnt.mnt_root) 4171 p = next_mnt(skip_mnt_tree(p), old); 4172 } 4173 ns_tree_add_raw(new_ns); 4174 return new_ns; 4175 } 4176 4177 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 4178 { 4179 struct mount *mnt = real_mount(m); 4180 struct mnt_namespace *ns; 4181 struct super_block *s; 4182 struct path path; 4183 int err; 4184 4185 ns = alloc_mnt_ns(&init_user_ns, true); 4186 if (IS_ERR(ns)) { 4187 mntput(m); 4188 return ERR_CAST(ns); 4189 } 4190 ns->root = mnt; 4191 ns->nr_mounts++; 4192 mnt_add_to_ns(ns, mnt); 4193 4194 err = vfs_path_lookup(m->mnt_root, m, 4195 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 4196 4197 put_mnt_ns(ns); 4198 4199 if (err) 4200 return ERR_PTR(err); 4201 4202 /* trade a vfsmount reference for active sb one */ 4203 s = path.mnt->mnt_sb; 4204 atomic_inc(&s->s_active); 4205 mntput(path.mnt); 4206 /* lock the sucker */ 4207 down_write(&s->s_umount); 4208 /* ... and return the root of (sub)tree on it */ 4209 return path.dentry; 4210 } 4211 EXPORT_SYMBOL(mount_subtree); 4212 4213 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4214 char __user *, type, unsigned long, flags, void __user *, data) 4215 { 4216 int ret; 4217 char *kernel_type; 4218 char *kernel_dev; 4219 void *options; 4220 4221 kernel_type = copy_mount_string(type); 4222 ret = PTR_ERR(kernel_type); 4223 if (IS_ERR(kernel_type)) 4224 goto out_type; 4225 4226 kernel_dev = copy_mount_string(dev_name); 4227 ret = PTR_ERR(kernel_dev); 4228 if (IS_ERR(kernel_dev)) 4229 goto out_dev; 4230 4231 options = copy_mount_options(data); 4232 ret = PTR_ERR(options); 4233 if (IS_ERR(options)) 4234 goto out_data; 4235 4236 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4237 4238 kfree(options); 4239 out_data: 4240 kfree(kernel_dev); 4241 out_dev: 4242 kfree(kernel_type); 4243 out_type: 4244 return ret; 4245 } 4246 4247 #define FSMOUNT_VALID_FLAGS \ 4248 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4249 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4250 MOUNT_ATTR_NOSYMFOLLOW) 4251 4252 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4253 4254 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4255 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4256 4257 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4258 { 4259 unsigned int mnt_flags = 0; 4260 4261 if (attr_flags & MOUNT_ATTR_RDONLY) 4262 mnt_flags |= MNT_READONLY; 4263 if (attr_flags & MOUNT_ATTR_NOSUID) 4264 mnt_flags |= MNT_NOSUID; 4265 if (attr_flags & MOUNT_ATTR_NODEV) 4266 mnt_flags |= MNT_NODEV; 4267 if (attr_flags & MOUNT_ATTR_NOEXEC) 4268 mnt_flags |= MNT_NOEXEC; 4269 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4270 mnt_flags |= MNT_NODIRATIME; 4271 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4272 mnt_flags |= MNT_NOSYMFOLLOW; 4273 4274 return mnt_flags; 4275 } 4276 4277 /* 4278 * Create a kernel mount representation for a new, prepared superblock 4279 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4280 */ 4281 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4282 unsigned int, attr_flags) 4283 { 4284 struct mnt_namespace *ns; 4285 struct fs_context *fc; 4286 struct file *file; 4287 struct path newmount; 4288 struct mount *mnt; 4289 unsigned int mnt_flags = 0; 4290 long ret; 4291 4292 if (!may_mount()) 4293 return -EPERM; 4294 4295 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4296 return -EINVAL; 4297 4298 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4299 return -EINVAL; 4300 4301 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4302 4303 switch (attr_flags & MOUNT_ATTR__ATIME) { 4304 case MOUNT_ATTR_STRICTATIME: 4305 break; 4306 case MOUNT_ATTR_NOATIME: 4307 mnt_flags |= MNT_NOATIME; 4308 break; 4309 case MOUNT_ATTR_RELATIME: 4310 mnt_flags |= MNT_RELATIME; 4311 break; 4312 default: 4313 return -EINVAL; 4314 } 4315 4316 CLASS(fd, f)(fs_fd); 4317 if (fd_empty(f)) 4318 return -EBADF; 4319 4320 if (fd_file(f)->f_op != &fscontext_fops) 4321 return -EINVAL; 4322 4323 fc = fd_file(f)->private_data; 4324 4325 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4326 if (ret < 0) 4327 return ret; 4328 4329 /* There must be a valid superblock or we can't mount it */ 4330 ret = -EINVAL; 4331 if (!fc->root) 4332 goto err_unlock; 4333 4334 ret = -EPERM; 4335 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4336 errorfcp(fc, "VFS", "Mount too revealing"); 4337 goto err_unlock; 4338 } 4339 4340 ret = -EBUSY; 4341 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4342 goto err_unlock; 4343 4344 if (fc->sb_flags & SB_MANDLOCK) 4345 warn_mandlock(); 4346 4347 newmount.mnt = vfs_create_mount(fc); 4348 if (IS_ERR(newmount.mnt)) { 4349 ret = PTR_ERR(newmount.mnt); 4350 goto err_unlock; 4351 } 4352 newmount.dentry = dget(fc->root); 4353 newmount.mnt->mnt_flags = mnt_flags; 4354 4355 /* We've done the mount bit - now move the file context into more or 4356 * less the same state as if we'd done an fspick(). We don't want to 4357 * do any memory allocation or anything like that at this point as we 4358 * don't want to have to handle any errors incurred. 4359 */ 4360 vfs_clean_context(fc); 4361 4362 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4363 if (IS_ERR(ns)) { 4364 ret = PTR_ERR(ns); 4365 goto err_path; 4366 } 4367 mnt = real_mount(newmount.mnt); 4368 ns->root = mnt; 4369 ns->nr_mounts = 1; 4370 mnt_add_to_ns(ns, mnt); 4371 mntget(newmount.mnt); 4372 4373 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4374 * it, not just simply put it. 4375 */ 4376 file = dentry_open(&newmount, O_PATH, fc->cred); 4377 if (IS_ERR(file)) { 4378 dissolve_on_fput(newmount.mnt); 4379 ret = PTR_ERR(file); 4380 goto err_path; 4381 } 4382 file->f_mode |= FMODE_NEED_UNMOUNT; 4383 4384 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4385 if (ret >= 0) 4386 fd_install(ret, file); 4387 else 4388 fput(file); 4389 4390 err_path: 4391 path_put(&newmount); 4392 err_unlock: 4393 mutex_unlock(&fc->uapi_mutex); 4394 return ret; 4395 } 4396 4397 static inline int vfs_move_mount(const struct path *from_path, 4398 const struct path *to_path, 4399 enum mnt_tree_flags_t mflags) 4400 { 4401 int ret; 4402 4403 ret = security_move_mount(from_path, to_path); 4404 if (ret) 4405 return ret; 4406 4407 if (mflags & MNT_TREE_PROPAGATION) 4408 return do_set_group(from_path, to_path); 4409 4410 return do_move_mount(from_path, to_path, mflags); 4411 } 4412 4413 /* 4414 * Move a mount from one place to another. In combination with 4415 * fsopen()/fsmount() this is used to install a new mount and in combination 4416 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4417 * a mount subtree. 4418 * 4419 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4420 */ 4421 SYSCALL_DEFINE5(move_mount, 4422 int, from_dfd, const char __user *, from_pathname, 4423 int, to_dfd, const char __user *, to_pathname, 4424 unsigned int, flags) 4425 { 4426 struct path to_path __free(path_put) = {}; 4427 struct path from_path __free(path_put) = {}; 4428 struct filename *to_name __free(putname) = NULL; 4429 struct filename *from_name __free(putname) = NULL; 4430 unsigned int lflags, uflags; 4431 enum mnt_tree_flags_t mflags = 0; 4432 int ret = 0; 4433 4434 if (!may_mount()) 4435 return -EPERM; 4436 4437 if (flags & ~MOVE_MOUNT__MASK) 4438 return -EINVAL; 4439 4440 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4441 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4442 return -EINVAL; 4443 4444 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; 4445 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; 4446 4447 uflags = 0; 4448 if (flags & MOVE_MOUNT_T_EMPTY_PATH) 4449 uflags = AT_EMPTY_PATH; 4450 4451 to_name = getname_maybe_null(to_pathname, uflags); 4452 if (IS_ERR(to_name)) 4453 return PTR_ERR(to_name); 4454 4455 if (!to_name && to_dfd >= 0) { 4456 CLASS(fd_raw, f_to)(to_dfd); 4457 if (fd_empty(f_to)) 4458 return -EBADF; 4459 4460 to_path = fd_file(f_to)->f_path; 4461 path_get(&to_path); 4462 } else { 4463 lflags = 0; 4464 if (flags & MOVE_MOUNT_T_SYMLINKS) 4465 lflags |= LOOKUP_FOLLOW; 4466 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) 4467 lflags |= LOOKUP_AUTOMOUNT; 4468 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); 4469 if (ret) 4470 return ret; 4471 } 4472 4473 uflags = 0; 4474 if (flags & MOVE_MOUNT_F_EMPTY_PATH) 4475 uflags = AT_EMPTY_PATH; 4476 4477 from_name = getname_maybe_null(from_pathname, uflags); 4478 if (IS_ERR(from_name)) 4479 return PTR_ERR(from_name); 4480 4481 if (!from_name && from_dfd >= 0) { 4482 CLASS(fd_raw, f_from)(from_dfd); 4483 if (fd_empty(f_from)) 4484 return -EBADF; 4485 4486 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); 4487 } 4488 4489 lflags = 0; 4490 if (flags & MOVE_MOUNT_F_SYMLINKS) 4491 lflags |= LOOKUP_FOLLOW; 4492 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) 4493 lflags |= LOOKUP_AUTOMOUNT; 4494 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); 4495 if (ret) 4496 return ret; 4497 4498 return vfs_move_mount(&from_path, &to_path, mflags); 4499 } 4500 4501 /* 4502 * Return true if path is reachable from root 4503 * 4504 * locks: mount_locked_reader || namespace_shared && is_mounted(mnt) 4505 */ 4506 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4507 const struct path *root) 4508 { 4509 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4510 dentry = mnt->mnt_mountpoint; 4511 mnt = mnt->mnt_parent; 4512 } 4513 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4514 } 4515 4516 bool path_is_under(const struct path *path1, const struct path *path2) 4517 { 4518 guard(mount_locked_reader)(); 4519 return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4520 } 4521 EXPORT_SYMBOL(path_is_under); 4522 4523 /* 4524 * pivot_root Semantics: 4525 * Moves the root file system of the current process to the directory put_old, 4526 * makes new_root as the new root file system of the current process, and sets 4527 * root/cwd of all processes which had them on the current root to new_root. 4528 * 4529 * Restrictions: 4530 * The new_root and put_old must be directories, and must not be on the 4531 * same file system as the current process root. The put_old must be 4532 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4533 * pointed to by put_old must yield the same directory as new_root. No other 4534 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4535 * 4536 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4537 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4538 * in this situation. 4539 * 4540 * Notes: 4541 * - we don't move root/cwd if they are not at the root (reason: if something 4542 * cared enough to change them, it's probably wrong to force them elsewhere) 4543 * - it's okay to pick a root that isn't the root of a file system, e.g. 4544 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4545 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4546 * first. 4547 */ 4548 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4549 const char __user *, put_old) 4550 { 4551 struct path new __free(path_put) = {}; 4552 struct path old __free(path_put) = {}; 4553 struct path root __free(path_put) = {}; 4554 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4555 int error; 4556 4557 if (!may_mount()) 4558 return -EPERM; 4559 4560 error = user_path_at(AT_FDCWD, new_root, 4561 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4562 if (error) 4563 return error; 4564 4565 error = user_path_at(AT_FDCWD, put_old, 4566 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4567 if (error) 4568 return error; 4569 4570 error = security_sb_pivotroot(&old, &new); 4571 if (error) 4572 return error; 4573 4574 get_fs_root(current->fs, &root); 4575 4576 LOCK_MOUNT(old_mp, &old); 4577 old_mnt = old_mp.parent; 4578 if (IS_ERR(old_mnt)) 4579 return PTR_ERR(old_mnt); 4580 4581 new_mnt = real_mount(new.mnt); 4582 root_mnt = real_mount(root.mnt); 4583 ex_parent = new_mnt->mnt_parent; 4584 root_parent = root_mnt->mnt_parent; 4585 if (IS_MNT_SHARED(old_mnt) || 4586 IS_MNT_SHARED(ex_parent) || 4587 IS_MNT_SHARED(root_parent)) 4588 return -EINVAL; 4589 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4590 return -EINVAL; 4591 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4592 return -EINVAL; 4593 if (d_unlinked(new.dentry)) 4594 return -ENOENT; 4595 if (new_mnt == root_mnt || old_mnt == root_mnt) 4596 return -EBUSY; /* loop, on the same file system */ 4597 if (!path_mounted(&root)) 4598 return -EINVAL; /* not a mountpoint */ 4599 if (!mnt_has_parent(root_mnt)) 4600 return -EINVAL; /* absolute root */ 4601 if (!path_mounted(&new)) 4602 return -EINVAL; /* not a mountpoint */ 4603 if (!mnt_has_parent(new_mnt)) 4604 return -EINVAL; /* absolute root */ 4605 /* make sure we can reach put_old from new_root */ 4606 if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new)) 4607 return -EINVAL; 4608 /* make certain new is below the root */ 4609 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4610 return -EINVAL; 4611 lock_mount_hash(); 4612 umount_mnt(new_mnt); 4613 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4614 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4615 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4616 } 4617 /* mount new_root on / */ 4618 attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp); 4619 umount_mnt(root_mnt); 4620 /* mount old root on put_old */ 4621 attach_mnt(root_mnt, old_mnt, old_mp.mp); 4622 touch_mnt_namespace(current->nsproxy->mnt_ns); 4623 /* A moved mount should not expire automatically */ 4624 list_del_init(&new_mnt->mnt_expire); 4625 unlock_mount_hash(); 4626 mnt_notify_add(root_mnt); 4627 mnt_notify_add(new_mnt); 4628 chroot_fs_refs(&root, &new); 4629 return 0; 4630 } 4631 4632 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4633 { 4634 unsigned int flags = mnt->mnt.mnt_flags; 4635 4636 /* flags to clear */ 4637 flags &= ~kattr->attr_clr; 4638 /* flags to raise */ 4639 flags |= kattr->attr_set; 4640 4641 return flags; 4642 } 4643 4644 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4645 { 4646 struct vfsmount *m = &mnt->mnt; 4647 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4648 4649 if (!kattr->mnt_idmap) 4650 return 0; 4651 4652 /* 4653 * Creating an idmapped mount with the filesystem wide idmapping 4654 * doesn't make sense so block that. We don't allow mushy semantics. 4655 */ 4656 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4657 return -EINVAL; 4658 4659 /* 4660 * We only allow an mount to change it's idmapping if it has 4661 * never been accessible to userspace. 4662 */ 4663 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m)) 4664 return -EPERM; 4665 4666 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4667 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4668 return -EINVAL; 4669 4670 /* The filesystem has turned off idmapped mounts. */ 4671 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) 4672 return -EINVAL; 4673 4674 /* We're not controlling the superblock. */ 4675 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4676 return -EPERM; 4677 4678 /* Mount has already been visible in the filesystem hierarchy. */ 4679 if (!is_anon_ns(mnt->mnt_ns)) 4680 return -EINVAL; 4681 4682 return 0; 4683 } 4684 4685 /** 4686 * mnt_allow_writers() - check whether the attribute change allows writers 4687 * @kattr: the new mount attributes 4688 * @mnt: the mount to which @kattr will be applied 4689 * 4690 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4691 * 4692 * Return: true if writers need to be held, false if not 4693 */ 4694 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4695 const struct mount *mnt) 4696 { 4697 return (!(kattr->attr_set & MNT_READONLY) || 4698 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4699 !kattr->mnt_idmap; 4700 } 4701 4702 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4703 { 4704 struct mount *m; 4705 int err; 4706 4707 for (m = mnt; m; m = next_mnt(m, mnt)) { 4708 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4709 err = -EPERM; 4710 break; 4711 } 4712 4713 err = can_idmap_mount(kattr, m); 4714 if (err) 4715 break; 4716 4717 if (!mnt_allow_writers(kattr, m)) { 4718 err = mnt_hold_writers(m); 4719 if (err) { 4720 m = next_mnt(m, mnt); 4721 break; 4722 } 4723 } 4724 4725 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4726 return 0; 4727 } 4728 4729 if (err) { 4730 /* undo all mnt_hold_writers() we'd done */ 4731 for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt)) 4732 mnt_unhold_writers(p); 4733 } 4734 return err; 4735 } 4736 4737 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4738 { 4739 struct mnt_idmap *old_idmap; 4740 4741 if (!kattr->mnt_idmap) 4742 return; 4743 4744 old_idmap = mnt_idmap(&mnt->mnt); 4745 4746 /* Pairs with smp_load_acquire() in mnt_idmap(). */ 4747 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4748 mnt_idmap_put(old_idmap); 4749 } 4750 4751 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4752 { 4753 struct mount *m; 4754 4755 for (m = mnt; m; m = next_mnt(m, mnt)) { 4756 unsigned int flags; 4757 4758 do_idmap_mount(kattr, m); 4759 flags = recalc_flags(kattr, m); 4760 WRITE_ONCE(m->mnt.mnt_flags, flags); 4761 4762 /* If we had to hold writers unblock them. */ 4763 mnt_unhold_writers(m); 4764 4765 if (kattr->propagation) 4766 change_mnt_propagation(m, kattr->propagation); 4767 if (!(kattr->kflags & MOUNT_KATTR_RECURSE)) 4768 break; 4769 } 4770 touch_mnt_namespace(mnt->mnt_ns); 4771 } 4772 4773 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr) 4774 { 4775 struct mount *mnt = real_mount(path->mnt); 4776 int err = 0; 4777 4778 if (!path_mounted(path)) 4779 return -EINVAL; 4780 4781 if (kattr->mnt_userns) { 4782 struct mnt_idmap *mnt_idmap; 4783 4784 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4785 if (IS_ERR(mnt_idmap)) 4786 return PTR_ERR(mnt_idmap); 4787 kattr->mnt_idmap = mnt_idmap; 4788 } 4789 4790 if (kattr->propagation) { 4791 /* 4792 * Only take namespace_lock() if we're actually changing 4793 * propagation. 4794 */ 4795 namespace_lock(); 4796 if (kattr->propagation == MS_SHARED) { 4797 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE); 4798 if (err) { 4799 namespace_unlock(); 4800 return err; 4801 } 4802 } 4803 } 4804 4805 err = -EINVAL; 4806 lock_mount_hash(); 4807 4808 if (!anon_ns_root(mnt) && !check_mnt(mnt)) 4809 goto out; 4810 4811 /* 4812 * First, we get the mount tree in a shape where we can change mount 4813 * properties without failure. If we succeeded to do so we commit all 4814 * changes and if we failed we clean up. 4815 */ 4816 err = mount_setattr_prepare(kattr, mnt); 4817 if (!err) 4818 mount_setattr_commit(kattr, mnt); 4819 4820 out: 4821 unlock_mount_hash(); 4822 4823 if (kattr->propagation) { 4824 if (err) 4825 cleanup_group_ids(mnt, NULL); 4826 namespace_unlock(); 4827 } 4828 4829 return err; 4830 } 4831 4832 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4833 struct mount_kattr *kattr) 4834 { 4835 struct ns_common *ns; 4836 struct user_namespace *mnt_userns; 4837 4838 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4839 return 0; 4840 4841 if (attr->attr_clr & MOUNT_ATTR_IDMAP) { 4842 /* 4843 * We can only remove an idmapping if it's never been 4844 * exposed to userspace. 4845 */ 4846 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE)) 4847 return -EINVAL; 4848 4849 /* 4850 * Removal of idmappings is equivalent to setting 4851 * nop_mnt_idmap. 4852 */ 4853 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) { 4854 kattr->mnt_idmap = &nop_mnt_idmap; 4855 return 0; 4856 } 4857 } 4858 4859 if (attr->userns_fd > INT_MAX) 4860 return -EINVAL; 4861 4862 CLASS(fd, f)(attr->userns_fd); 4863 if (fd_empty(f)) 4864 return -EBADF; 4865 4866 if (!proc_ns_file(fd_file(f))) 4867 return -EINVAL; 4868 4869 ns = get_proc_ns(file_inode(fd_file(f))); 4870 if (ns->ns_type != CLONE_NEWUSER) 4871 return -EINVAL; 4872 4873 /* 4874 * The initial idmapping cannot be used to create an idmapped 4875 * mount. We use the initial idmapping as an indicator of a mount 4876 * that is not idmapped. It can simply be passed into helpers that 4877 * are aware of idmapped mounts as a convenient shortcut. A user 4878 * can just create a dedicated identity mapping to achieve the same 4879 * result. 4880 */ 4881 mnt_userns = container_of(ns, struct user_namespace, ns); 4882 if (mnt_userns == &init_user_ns) 4883 return -EPERM; 4884 4885 /* We're not controlling the target namespace. */ 4886 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) 4887 return -EPERM; 4888 4889 kattr->mnt_userns = get_user_ns(mnt_userns); 4890 return 0; 4891 } 4892 4893 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4894 struct mount_kattr *kattr) 4895 { 4896 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4897 return -EINVAL; 4898 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4899 return -EINVAL; 4900 kattr->propagation = attr->propagation; 4901 4902 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4903 return -EINVAL; 4904 4905 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4906 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4907 4908 /* 4909 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4910 * users wanting to transition to a different atime setting cannot 4911 * simply specify the atime setting in @attr_set, but must also 4912 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4913 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4914 * @attr_clr and that @attr_set can't have any atime bits set if 4915 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4916 */ 4917 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4918 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4919 return -EINVAL; 4920 4921 /* 4922 * Clear all previous time settings as they are mutually 4923 * exclusive. 4924 */ 4925 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4926 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4927 case MOUNT_ATTR_RELATIME: 4928 kattr->attr_set |= MNT_RELATIME; 4929 break; 4930 case MOUNT_ATTR_NOATIME: 4931 kattr->attr_set |= MNT_NOATIME; 4932 break; 4933 case MOUNT_ATTR_STRICTATIME: 4934 break; 4935 default: 4936 return -EINVAL; 4937 } 4938 } else { 4939 if (attr->attr_set & MOUNT_ATTR__ATIME) 4940 return -EINVAL; 4941 } 4942 4943 return build_mount_idmapped(attr, usize, kattr); 4944 } 4945 4946 static void finish_mount_kattr(struct mount_kattr *kattr) 4947 { 4948 if (kattr->mnt_userns) { 4949 put_user_ns(kattr->mnt_userns); 4950 kattr->mnt_userns = NULL; 4951 } 4952 4953 if (kattr->mnt_idmap) 4954 mnt_idmap_put(kattr->mnt_idmap); 4955 } 4956 4957 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize, 4958 struct mount_kattr *kattr) 4959 { 4960 int ret; 4961 struct mount_attr attr; 4962 4963 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4964 4965 if (unlikely(usize > PAGE_SIZE)) 4966 return -E2BIG; 4967 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4968 return -EINVAL; 4969 4970 if (!may_mount()) 4971 return -EPERM; 4972 4973 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4974 if (ret) 4975 return ret; 4976 4977 /* Don't bother walking through the mounts if this is a nop. */ 4978 if (attr.attr_set == 0 && 4979 attr.attr_clr == 0 && 4980 attr.propagation == 0) 4981 return 0; /* Tell caller to not bother. */ 4982 4983 ret = build_mount_kattr(&attr, usize, kattr); 4984 if (ret < 0) 4985 return ret; 4986 4987 return 1; 4988 } 4989 4990 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4991 unsigned int, flags, struct mount_attr __user *, uattr, 4992 size_t, usize) 4993 { 4994 int err; 4995 struct path target; 4996 struct mount_kattr kattr; 4997 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4998 4999 if (flags & ~(AT_EMPTY_PATH | 5000 AT_RECURSIVE | 5001 AT_SYMLINK_NOFOLLOW | 5002 AT_NO_AUTOMOUNT)) 5003 return -EINVAL; 5004 5005 if (flags & AT_NO_AUTOMOUNT) 5006 lookup_flags &= ~LOOKUP_AUTOMOUNT; 5007 if (flags & AT_SYMLINK_NOFOLLOW) 5008 lookup_flags &= ~LOOKUP_FOLLOW; 5009 if (flags & AT_EMPTY_PATH) 5010 lookup_flags |= LOOKUP_EMPTY; 5011 5012 kattr = (struct mount_kattr) { 5013 .lookup_flags = lookup_flags, 5014 }; 5015 5016 if (flags & AT_RECURSIVE) 5017 kattr.kflags |= MOUNT_KATTR_RECURSE; 5018 5019 err = wants_mount_setattr(uattr, usize, &kattr); 5020 if (err <= 0) 5021 return err; 5022 5023 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 5024 if (!err) { 5025 err = do_mount_setattr(&target, &kattr); 5026 path_put(&target); 5027 } 5028 finish_mount_kattr(&kattr); 5029 return err; 5030 } 5031 5032 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename, 5033 unsigned, flags, struct mount_attr __user *, uattr, 5034 size_t, usize) 5035 { 5036 struct file __free(fput) *file = NULL; 5037 int fd; 5038 5039 if (!uattr && usize) 5040 return -EINVAL; 5041 5042 file = vfs_open_tree(dfd, filename, flags); 5043 if (IS_ERR(file)) 5044 return PTR_ERR(file); 5045 5046 if (uattr) { 5047 int ret; 5048 struct mount_kattr kattr = {}; 5049 5050 if (flags & OPEN_TREE_CLONE) 5051 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE; 5052 if (flags & AT_RECURSIVE) 5053 kattr.kflags |= MOUNT_KATTR_RECURSE; 5054 5055 ret = wants_mount_setattr(uattr, usize, &kattr); 5056 if (ret > 0) { 5057 ret = do_mount_setattr(&file->f_path, &kattr); 5058 finish_mount_kattr(&kattr); 5059 } 5060 if (ret) 5061 return ret; 5062 } 5063 5064 fd = get_unused_fd_flags(flags & O_CLOEXEC); 5065 if (fd < 0) 5066 return fd; 5067 5068 fd_install(fd, no_free_ptr(file)); 5069 return fd; 5070 } 5071 5072 int show_path(struct seq_file *m, struct dentry *root) 5073 { 5074 if (root->d_sb->s_op->show_path) 5075 return root->d_sb->s_op->show_path(m, root); 5076 5077 seq_dentry(m, root, " \t\n\\"); 5078 return 0; 5079 } 5080 5081 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 5082 { 5083 struct mount *mnt = mnt_find_id_at(ns, id); 5084 5085 if (!mnt || mnt->mnt_id_unique != id) 5086 return NULL; 5087 5088 return &mnt->mnt; 5089 } 5090 5091 struct kstatmount { 5092 struct statmount __user *buf; 5093 size_t bufsize; 5094 struct vfsmount *mnt; 5095 struct mnt_idmap *idmap; 5096 u64 mask; 5097 struct path root; 5098 struct seq_file seq; 5099 5100 /* Must be last --ends in a flexible-array member. */ 5101 struct statmount sm; 5102 }; 5103 5104 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 5105 { 5106 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 5107 u64 attr_flags = 0; 5108 5109 if (mnt_flags & MNT_READONLY) 5110 attr_flags |= MOUNT_ATTR_RDONLY; 5111 if (mnt_flags & MNT_NOSUID) 5112 attr_flags |= MOUNT_ATTR_NOSUID; 5113 if (mnt_flags & MNT_NODEV) 5114 attr_flags |= MOUNT_ATTR_NODEV; 5115 if (mnt_flags & MNT_NOEXEC) 5116 attr_flags |= MOUNT_ATTR_NOEXEC; 5117 if (mnt_flags & MNT_NODIRATIME) 5118 attr_flags |= MOUNT_ATTR_NODIRATIME; 5119 if (mnt_flags & MNT_NOSYMFOLLOW) 5120 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 5121 5122 if (mnt_flags & MNT_NOATIME) 5123 attr_flags |= MOUNT_ATTR_NOATIME; 5124 else if (mnt_flags & MNT_RELATIME) 5125 attr_flags |= MOUNT_ATTR_RELATIME; 5126 else 5127 attr_flags |= MOUNT_ATTR_STRICTATIME; 5128 5129 if (is_idmapped_mnt(mnt)) 5130 attr_flags |= MOUNT_ATTR_IDMAP; 5131 5132 return attr_flags; 5133 } 5134 5135 static u64 mnt_to_propagation_flags(struct mount *m) 5136 { 5137 u64 propagation = 0; 5138 5139 if (IS_MNT_SHARED(m)) 5140 propagation |= MS_SHARED; 5141 if (IS_MNT_SLAVE(m)) 5142 propagation |= MS_SLAVE; 5143 if (IS_MNT_UNBINDABLE(m)) 5144 propagation |= MS_UNBINDABLE; 5145 if (!propagation) 5146 propagation |= MS_PRIVATE; 5147 5148 return propagation; 5149 } 5150 5151 static void statmount_sb_basic(struct kstatmount *s) 5152 { 5153 struct super_block *sb = s->mnt->mnt_sb; 5154 5155 s->sm.mask |= STATMOUNT_SB_BASIC; 5156 s->sm.sb_dev_major = MAJOR(sb->s_dev); 5157 s->sm.sb_dev_minor = MINOR(sb->s_dev); 5158 s->sm.sb_magic = sb->s_magic; 5159 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 5160 } 5161 5162 static void statmount_mnt_basic(struct kstatmount *s) 5163 { 5164 struct mount *m = real_mount(s->mnt); 5165 5166 s->sm.mask |= STATMOUNT_MNT_BASIC; 5167 s->sm.mnt_id = m->mnt_id_unique; 5168 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 5169 s->sm.mnt_id_old = m->mnt_id; 5170 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 5171 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 5172 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 5173 s->sm.mnt_peer_group = m->mnt_group_id; 5174 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 5175 } 5176 5177 static void statmount_propagate_from(struct kstatmount *s) 5178 { 5179 struct mount *m = real_mount(s->mnt); 5180 5181 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 5182 if (IS_MNT_SLAVE(m)) 5183 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 5184 } 5185 5186 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 5187 { 5188 int ret; 5189 size_t start = seq->count; 5190 5191 ret = show_path(seq, s->mnt->mnt_root); 5192 if (ret) 5193 return ret; 5194 5195 if (unlikely(seq_has_overflowed(seq))) 5196 return -EAGAIN; 5197 5198 /* 5199 * Unescape the result. It would be better if supplied string was not 5200 * escaped in the first place, but that's a pretty invasive change. 5201 */ 5202 seq->buf[seq->count] = '\0'; 5203 seq->count = start; 5204 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5205 return 0; 5206 } 5207 5208 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 5209 { 5210 struct vfsmount *mnt = s->mnt; 5211 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 5212 int err; 5213 5214 err = seq_path_root(seq, &mnt_path, &s->root, ""); 5215 return err == SEQ_SKIP ? 0 : err; 5216 } 5217 5218 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 5219 { 5220 struct super_block *sb = s->mnt->mnt_sb; 5221 5222 seq_puts(seq, sb->s_type->name); 5223 return 0; 5224 } 5225 5226 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq) 5227 { 5228 struct super_block *sb = s->mnt->mnt_sb; 5229 5230 if (sb->s_subtype) 5231 seq_puts(seq, sb->s_subtype); 5232 } 5233 5234 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq) 5235 { 5236 struct super_block *sb = s->mnt->mnt_sb; 5237 struct mount *r = real_mount(s->mnt); 5238 5239 if (sb->s_op->show_devname) { 5240 size_t start = seq->count; 5241 int ret; 5242 5243 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root); 5244 if (ret) 5245 return ret; 5246 5247 if (unlikely(seq_has_overflowed(seq))) 5248 return -EAGAIN; 5249 5250 /* Unescape the result */ 5251 seq->buf[seq->count] = '\0'; 5252 seq->count = start; 5253 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 5254 } else { 5255 seq_puts(seq, r->mnt_devname); 5256 } 5257 return 0; 5258 } 5259 5260 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 5261 { 5262 s->sm.mask |= STATMOUNT_MNT_NS_ID; 5263 s->sm.mnt_ns_id = ns->ns.ns_id; 5264 } 5265 5266 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 5267 { 5268 struct vfsmount *mnt = s->mnt; 5269 struct super_block *sb = mnt->mnt_sb; 5270 size_t start = seq->count; 5271 int err; 5272 5273 err = security_sb_show_options(seq, sb); 5274 if (err) 5275 return err; 5276 5277 if (sb->s_op->show_options) { 5278 err = sb->s_op->show_options(seq, mnt->mnt_root); 5279 if (err) 5280 return err; 5281 } 5282 5283 if (unlikely(seq_has_overflowed(seq))) 5284 return -EAGAIN; 5285 5286 if (seq->count == start) 5287 return 0; 5288 5289 /* skip leading comma */ 5290 memmove(seq->buf + start, seq->buf + start + 1, 5291 seq->count - start - 1); 5292 seq->count--; 5293 5294 return 0; 5295 } 5296 5297 static inline int statmount_opt_process(struct seq_file *seq, size_t start) 5298 { 5299 char *buf_end, *opt_end, *src, *dst; 5300 int count = 0; 5301 5302 if (unlikely(seq_has_overflowed(seq))) 5303 return -EAGAIN; 5304 5305 buf_end = seq->buf + seq->count; 5306 dst = seq->buf + start; 5307 src = dst + 1; /* skip initial comma */ 5308 5309 if (src >= buf_end) { 5310 seq->count = start; 5311 return 0; 5312 } 5313 5314 *buf_end = '\0'; 5315 for (; src < buf_end; src = opt_end + 1) { 5316 opt_end = strchrnul(src, ','); 5317 *opt_end = '\0'; 5318 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1; 5319 if (WARN_ON_ONCE(++count == INT_MAX)) 5320 return -EOVERFLOW; 5321 } 5322 seq->count = dst - 1 - seq->buf; 5323 return count; 5324 } 5325 5326 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq) 5327 { 5328 struct vfsmount *mnt = s->mnt; 5329 struct super_block *sb = mnt->mnt_sb; 5330 size_t start = seq->count; 5331 int err; 5332 5333 if (!sb->s_op->show_options) 5334 return 0; 5335 5336 err = sb->s_op->show_options(seq, mnt->mnt_root); 5337 if (err) 5338 return err; 5339 5340 err = statmount_opt_process(seq, start); 5341 if (err < 0) 5342 return err; 5343 5344 s->sm.opt_num = err; 5345 return 0; 5346 } 5347 5348 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq) 5349 { 5350 struct vfsmount *mnt = s->mnt; 5351 struct super_block *sb = mnt->mnt_sb; 5352 size_t start = seq->count; 5353 int err; 5354 5355 err = security_sb_show_options(seq, sb); 5356 if (err) 5357 return err; 5358 5359 err = statmount_opt_process(seq, start); 5360 if (err < 0) 5361 return err; 5362 5363 s->sm.opt_sec_num = err; 5364 return 0; 5365 } 5366 5367 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq) 5368 { 5369 int ret; 5370 5371 ret = statmount_mnt_idmap(s->idmap, seq, true); 5372 if (ret < 0) 5373 return ret; 5374 5375 s->sm.mnt_uidmap_num = ret; 5376 /* 5377 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid 5378 * mappings. This allows userspace to distinguish between a 5379 * non-idmapped mount and an idmapped mount where none of the 5380 * individual mappings are valid in the caller's idmapping. 5381 */ 5382 if (is_valid_mnt_idmap(s->idmap)) 5383 s->sm.mask |= STATMOUNT_MNT_UIDMAP; 5384 return 0; 5385 } 5386 5387 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq) 5388 { 5389 int ret; 5390 5391 ret = statmount_mnt_idmap(s->idmap, seq, false); 5392 if (ret < 0) 5393 return ret; 5394 5395 s->sm.mnt_gidmap_num = ret; 5396 /* 5397 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid 5398 * mappings. This allows userspace to distinguish between a 5399 * non-idmapped mount and an idmapped mount where none of the 5400 * individual mappings are valid in the caller's idmapping. 5401 */ 5402 if (is_valid_mnt_idmap(s->idmap)) 5403 s->sm.mask |= STATMOUNT_MNT_GIDMAP; 5404 return 0; 5405 } 5406 5407 static int statmount_string(struct kstatmount *s, u64 flag) 5408 { 5409 int ret = 0; 5410 size_t kbufsize; 5411 struct seq_file *seq = &s->seq; 5412 struct statmount *sm = &s->sm; 5413 u32 start, *offp; 5414 5415 /* Reserve an empty string at the beginning for any unset offsets */ 5416 if (!seq->count) 5417 seq_putc(seq, 0); 5418 5419 start = seq->count; 5420 5421 switch (flag) { 5422 case STATMOUNT_FS_TYPE: 5423 offp = &sm->fs_type; 5424 ret = statmount_fs_type(s, seq); 5425 break; 5426 case STATMOUNT_MNT_ROOT: 5427 offp = &sm->mnt_root; 5428 ret = statmount_mnt_root(s, seq); 5429 break; 5430 case STATMOUNT_MNT_POINT: 5431 offp = &sm->mnt_point; 5432 ret = statmount_mnt_point(s, seq); 5433 break; 5434 case STATMOUNT_MNT_OPTS: 5435 offp = &sm->mnt_opts; 5436 ret = statmount_mnt_opts(s, seq); 5437 break; 5438 case STATMOUNT_OPT_ARRAY: 5439 offp = &sm->opt_array; 5440 ret = statmount_opt_array(s, seq); 5441 break; 5442 case STATMOUNT_OPT_SEC_ARRAY: 5443 offp = &sm->opt_sec_array; 5444 ret = statmount_opt_sec_array(s, seq); 5445 break; 5446 case STATMOUNT_FS_SUBTYPE: 5447 offp = &sm->fs_subtype; 5448 statmount_fs_subtype(s, seq); 5449 break; 5450 case STATMOUNT_SB_SOURCE: 5451 offp = &sm->sb_source; 5452 ret = statmount_sb_source(s, seq); 5453 break; 5454 case STATMOUNT_MNT_UIDMAP: 5455 offp = &sm->mnt_uidmap; 5456 ret = statmount_mnt_uidmap(s, seq); 5457 break; 5458 case STATMOUNT_MNT_GIDMAP: 5459 offp = &sm->mnt_gidmap; 5460 ret = statmount_mnt_gidmap(s, seq); 5461 break; 5462 default: 5463 WARN_ON_ONCE(true); 5464 return -EINVAL; 5465 } 5466 5467 /* 5468 * If nothing was emitted, return to avoid setting the flag 5469 * and terminating the buffer. 5470 */ 5471 if (seq->count == start) 5472 return ret; 5473 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5474 return -EOVERFLOW; 5475 if (kbufsize >= s->bufsize) 5476 return -EOVERFLOW; 5477 5478 /* signal a retry */ 5479 if (unlikely(seq_has_overflowed(seq))) 5480 return -EAGAIN; 5481 5482 if (ret) 5483 return ret; 5484 5485 seq->buf[seq->count++] = '\0'; 5486 sm->mask |= flag; 5487 *offp = start; 5488 return 0; 5489 } 5490 5491 static int copy_statmount_to_user(struct kstatmount *s) 5492 { 5493 struct statmount *sm = &s->sm; 5494 struct seq_file *seq = &s->seq; 5495 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5496 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5497 5498 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5499 return -EFAULT; 5500 5501 /* Return the number of bytes copied to the buffer */ 5502 sm->size = copysize + seq->count; 5503 if (copy_to_user(s->buf, sm, copysize)) 5504 return -EFAULT; 5505 5506 return 0; 5507 } 5508 5509 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5510 { 5511 struct rb_node *node; 5512 5513 if (reverse) 5514 node = rb_prev(&curr->mnt_node); 5515 else 5516 node = rb_next(&curr->mnt_node); 5517 5518 return node_to_mount(node); 5519 } 5520 5521 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5522 { 5523 struct mount *first, *child; 5524 5525 rwsem_assert_held(&namespace_sem); 5526 5527 /* We're looking at our own ns, just use get_fs_root. */ 5528 if (ns == current->nsproxy->mnt_ns) { 5529 get_fs_root(current->fs, root); 5530 return 0; 5531 } 5532 5533 /* 5534 * We have to find the first mount in our ns and use that, however it 5535 * may not exist, so handle that properly. 5536 */ 5537 if (mnt_ns_empty(ns)) 5538 return -ENOENT; 5539 5540 first = child = ns->root; 5541 for (;;) { 5542 child = listmnt_next(child, false); 5543 if (!child) 5544 return -ENOENT; 5545 if (child->mnt_parent == first) 5546 break; 5547 } 5548 5549 root->mnt = mntget(&child->mnt); 5550 root->dentry = dget(root->mnt->mnt_root); 5551 return 0; 5552 } 5553 5554 /* This must be updated whenever a new flag is added */ 5555 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \ 5556 STATMOUNT_MNT_BASIC | \ 5557 STATMOUNT_PROPAGATE_FROM | \ 5558 STATMOUNT_MNT_ROOT | \ 5559 STATMOUNT_MNT_POINT | \ 5560 STATMOUNT_FS_TYPE | \ 5561 STATMOUNT_MNT_NS_ID | \ 5562 STATMOUNT_MNT_OPTS | \ 5563 STATMOUNT_FS_SUBTYPE | \ 5564 STATMOUNT_SB_SOURCE | \ 5565 STATMOUNT_OPT_ARRAY | \ 5566 STATMOUNT_OPT_SEC_ARRAY | \ 5567 STATMOUNT_SUPPORTED_MASK | \ 5568 STATMOUNT_MNT_UIDMAP | \ 5569 STATMOUNT_MNT_GIDMAP) 5570 5571 /* locks: namespace_shared */ 5572 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5573 struct mnt_namespace *ns) 5574 { 5575 struct mount *m; 5576 int err; 5577 5578 /* Has the namespace already been emptied? */ 5579 if (mnt_ns_id && mnt_ns_empty(ns)) 5580 return -ENOENT; 5581 5582 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5583 if (!s->mnt) 5584 return -ENOENT; 5585 5586 err = grab_requested_root(ns, &s->root); 5587 if (err) 5588 return err; 5589 5590 /* 5591 * Don't trigger audit denials. We just want to determine what 5592 * mounts to show users. 5593 */ 5594 m = real_mount(s->mnt); 5595 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) && 5596 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5597 return -EPERM; 5598 5599 err = security_sb_statfs(s->mnt->mnt_root); 5600 if (err) 5601 return err; 5602 5603 /* 5604 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap 5605 * can change concurrently as we only hold the read-side of the 5606 * namespace semaphore and mount properties may change with only 5607 * the mount lock held. 5608 * 5609 * We could sample the mount lock sequence counter to detect 5610 * those changes and retry. But it's not worth it. Worst that 5611 * happens is that the mnt->mnt_idmap pointer is already changed 5612 * while mnt->mnt_flags isn't or vica versa. So what. 5613 * 5614 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved 5615 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical 5616 * torn read/write. That's all we care about right now. 5617 */ 5618 s->idmap = mnt_idmap(s->mnt); 5619 if (s->mask & STATMOUNT_MNT_BASIC) 5620 statmount_mnt_basic(s); 5621 5622 if (s->mask & STATMOUNT_SB_BASIC) 5623 statmount_sb_basic(s); 5624 5625 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5626 statmount_propagate_from(s); 5627 5628 if (s->mask & STATMOUNT_FS_TYPE) 5629 err = statmount_string(s, STATMOUNT_FS_TYPE); 5630 5631 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5632 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5633 5634 if (!err && s->mask & STATMOUNT_MNT_POINT) 5635 err = statmount_string(s, STATMOUNT_MNT_POINT); 5636 5637 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5638 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5639 5640 if (!err && s->mask & STATMOUNT_OPT_ARRAY) 5641 err = statmount_string(s, STATMOUNT_OPT_ARRAY); 5642 5643 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY) 5644 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY); 5645 5646 if (!err && s->mask & STATMOUNT_FS_SUBTYPE) 5647 err = statmount_string(s, STATMOUNT_FS_SUBTYPE); 5648 5649 if (!err && s->mask & STATMOUNT_SB_SOURCE) 5650 err = statmount_string(s, STATMOUNT_SB_SOURCE); 5651 5652 if (!err && s->mask & STATMOUNT_MNT_UIDMAP) 5653 err = statmount_string(s, STATMOUNT_MNT_UIDMAP); 5654 5655 if (!err && s->mask & STATMOUNT_MNT_GIDMAP) 5656 err = statmount_string(s, STATMOUNT_MNT_GIDMAP); 5657 5658 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5659 statmount_mnt_ns_id(s, ns); 5660 5661 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) { 5662 s->sm.mask |= STATMOUNT_SUPPORTED_MASK; 5663 s->sm.supported_mask = STATMOUNT_SUPPORTED; 5664 } 5665 5666 if (err) 5667 return err; 5668 5669 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */ 5670 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask); 5671 5672 return 0; 5673 } 5674 5675 static inline bool retry_statmount(const long ret, size_t *seq_size) 5676 { 5677 if (likely(ret != -EAGAIN)) 5678 return false; 5679 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5680 return false; 5681 if (unlikely(*seq_size > MAX_RW_COUNT)) 5682 return false; 5683 return true; 5684 } 5685 5686 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5687 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \ 5688 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \ 5689 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \ 5690 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP) 5691 5692 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5693 struct statmount __user *buf, size_t bufsize, 5694 size_t seq_size) 5695 { 5696 if (!access_ok(buf, bufsize)) 5697 return -EFAULT; 5698 5699 memset(ks, 0, sizeof(*ks)); 5700 ks->mask = kreq->param; 5701 ks->buf = buf; 5702 ks->bufsize = bufsize; 5703 5704 if (ks->mask & STATMOUNT_STRING_REQ) { 5705 if (bufsize == sizeof(ks->sm)) 5706 return -EOVERFLOW; 5707 5708 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5709 if (!ks->seq.buf) 5710 return -ENOMEM; 5711 5712 ks->seq.size = seq_size; 5713 } 5714 5715 return 0; 5716 } 5717 5718 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5719 struct mnt_id_req *kreq) 5720 { 5721 int ret; 5722 size_t usize; 5723 5724 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5725 5726 ret = get_user(usize, &req->size); 5727 if (ret) 5728 return -EFAULT; 5729 if (unlikely(usize > PAGE_SIZE)) 5730 return -E2BIG; 5731 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5732 return -EINVAL; 5733 memset(kreq, 0, sizeof(*kreq)); 5734 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5735 if (ret) 5736 return ret; 5737 if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id) 5738 return -EINVAL; 5739 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5740 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5741 return -EINVAL; 5742 return 0; 5743 } 5744 5745 /* 5746 * If the user requested a specific mount namespace id, look that up and return 5747 * that, or if not simply grab a passive reference on our mount namespace and 5748 * return that. 5749 */ 5750 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) 5751 { 5752 struct mnt_namespace *mnt_ns; 5753 5754 if (kreq->mnt_ns_id) { 5755 mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id); 5756 if (!mnt_ns) 5757 return ERR_PTR(-ENOENT); 5758 } else if (kreq->mnt_ns_fd) { 5759 struct ns_common *ns; 5760 5761 CLASS(fd, f)(kreq->mnt_ns_fd); 5762 if (fd_empty(f)) 5763 return ERR_PTR(-EBADF); 5764 5765 if (!proc_ns_file(fd_file(f))) 5766 return ERR_PTR(-EINVAL); 5767 5768 ns = get_proc_ns(file_inode(fd_file(f))); 5769 if (ns->ns_type != CLONE_NEWNS) 5770 return ERR_PTR(-EINVAL); 5771 5772 mnt_ns = to_mnt_ns(ns); 5773 refcount_inc(&mnt_ns->passive); 5774 } else { 5775 mnt_ns = current->nsproxy->mnt_ns; 5776 refcount_inc(&mnt_ns->passive); 5777 } 5778 5779 return mnt_ns; 5780 } 5781 5782 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5783 struct statmount __user *, buf, size_t, bufsize, 5784 unsigned int, flags) 5785 { 5786 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5787 struct kstatmount *ks __free(kfree) = NULL; 5788 struct mnt_id_req kreq; 5789 /* We currently support retrieval of 3 strings. */ 5790 size_t seq_size = 3 * PATH_MAX; 5791 int ret; 5792 5793 if (flags) 5794 return -EINVAL; 5795 5796 ret = copy_mnt_id_req(req, &kreq); 5797 if (ret) 5798 return ret; 5799 5800 ns = grab_requested_mnt_ns(&kreq); 5801 if (IS_ERR(ns)) 5802 return PTR_ERR(ns); 5803 5804 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5805 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5806 return -ENOENT; 5807 5808 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 5809 if (!ks) 5810 return -ENOMEM; 5811 5812 retry: 5813 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 5814 if (ret) 5815 return ret; 5816 5817 scoped_guard(namespace_shared) 5818 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 5819 5820 if (!ret) 5821 ret = copy_statmount_to_user(ks); 5822 kvfree(ks->seq.buf); 5823 path_put(&ks->root); 5824 if (retry_statmount(ret, &seq_size)) 5825 goto retry; 5826 return ret; 5827 } 5828 5829 struct klistmount { 5830 u64 last_mnt_id; 5831 u64 mnt_parent_id; 5832 u64 *kmnt_ids; 5833 u32 nr_mnt_ids; 5834 struct mnt_namespace *ns; 5835 struct path root; 5836 }; 5837 5838 /* locks: namespace_shared */ 5839 static ssize_t do_listmount(struct klistmount *kls, bool reverse) 5840 { 5841 struct mnt_namespace *ns = kls->ns; 5842 u64 mnt_parent_id = kls->mnt_parent_id; 5843 u64 last_mnt_id = kls->last_mnt_id; 5844 u64 *mnt_ids = kls->kmnt_ids; 5845 size_t nr_mnt_ids = kls->nr_mnt_ids; 5846 struct path orig; 5847 struct mount *r, *first; 5848 ssize_t ret; 5849 5850 rwsem_assert_held(&namespace_sem); 5851 5852 ret = grab_requested_root(ns, &kls->root); 5853 if (ret) 5854 return ret; 5855 5856 if (mnt_parent_id == LSMT_ROOT) { 5857 orig = kls->root; 5858 } else { 5859 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5860 if (!orig.mnt) 5861 return -ENOENT; 5862 orig.dentry = orig.mnt->mnt_root; 5863 } 5864 5865 /* 5866 * Don't trigger audit denials. We just want to determine what 5867 * mounts to show users. 5868 */ 5869 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) && 5870 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5871 return -EPERM; 5872 5873 ret = security_sb_statfs(orig.dentry); 5874 if (ret) 5875 return ret; 5876 5877 if (!last_mnt_id) { 5878 if (reverse) 5879 first = node_to_mount(ns->mnt_last_node); 5880 else 5881 first = node_to_mount(ns->mnt_first_node); 5882 } else { 5883 if (reverse) 5884 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 5885 else 5886 first = mnt_find_id_at(ns, last_mnt_id + 1); 5887 } 5888 5889 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 5890 if (r->mnt_id_unique == mnt_parent_id) 5891 continue; 5892 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 5893 continue; 5894 *mnt_ids = r->mnt_id_unique; 5895 mnt_ids++; 5896 nr_mnt_ids--; 5897 ret++; 5898 } 5899 return ret; 5900 } 5901 5902 static void __free_klistmount_free(const struct klistmount *kls) 5903 { 5904 path_put(&kls->root); 5905 kvfree(kls->kmnt_ids); 5906 mnt_ns_release(kls->ns); 5907 } 5908 5909 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq, 5910 size_t nr_mnt_ids) 5911 { 5912 u64 last_mnt_id = kreq->param; 5913 struct mnt_namespace *ns; 5914 5915 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5916 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 5917 return -EINVAL; 5918 5919 kls->last_mnt_id = last_mnt_id; 5920 5921 kls->nr_mnt_ids = nr_mnt_ids; 5922 kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids), 5923 GFP_KERNEL_ACCOUNT); 5924 if (!kls->kmnt_ids) 5925 return -ENOMEM; 5926 5927 ns = grab_requested_mnt_ns(kreq); 5928 if (IS_ERR(ns)) 5929 return PTR_ERR(ns); 5930 kls->ns = ns; 5931 5932 kls->mnt_parent_id = kreq->mnt_id; 5933 return 0; 5934 } 5935 5936 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 5937 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 5938 { 5939 struct klistmount kls __free(klistmount_free) = {}; 5940 const size_t maxcount = 1000000; 5941 struct mnt_id_req kreq; 5942 ssize_t ret; 5943 5944 if (flags & ~LISTMOUNT_REVERSE) 5945 return -EINVAL; 5946 5947 /* 5948 * If the mount namespace really has more than 1 million mounts the 5949 * caller must iterate over the mount namespace (and reconsider their 5950 * system design...). 5951 */ 5952 if (unlikely(nr_mnt_ids > maxcount)) 5953 return -EOVERFLOW; 5954 5955 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 5956 return -EFAULT; 5957 5958 ret = copy_mnt_id_req(req, &kreq); 5959 if (ret) 5960 return ret; 5961 5962 ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids); 5963 if (ret) 5964 return ret; 5965 5966 if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) && 5967 !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN)) 5968 return -ENOENT; 5969 5970 /* 5971 * We only need to guard against mount topology changes as 5972 * listmount() doesn't care about any mount properties. 5973 */ 5974 scoped_guard(namespace_shared) 5975 ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE)); 5976 if (ret <= 0) 5977 return ret; 5978 5979 if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids))) 5980 return -EFAULT; 5981 5982 return ret; 5983 } 5984 5985 struct mnt_namespace init_mnt_ns = { 5986 .ns = NS_COMMON_INIT(init_mnt_ns), 5987 .user_ns = &init_user_ns, 5988 .passive = REFCOUNT_INIT(1), 5989 .mounts = RB_ROOT, 5990 .poll = __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll), 5991 }; 5992 5993 static void __init init_mount_tree(void) 5994 { 5995 struct vfsmount *mnt; 5996 struct mount *m; 5997 struct path root; 5998 5999 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options); 6000 if (IS_ERR(mnt)) 6001 panic("Can't create rootfs"); 6002 6003 m = real_mount(mnt); 6004 init_mnt_ns.root = m; 6005 init_mnt_ns.nr_mounts = 1; 6006 mnt_add_to_ns(&init_mnt_ns, m); 6007 init_task.nsproxy->mnt_ns = &init_mnt_ns; 6008 get_mnt_ns(&init_mnt_ns); 6009 6010 root.mnt = mnt; 6011 root.dentry = mnt->mnt_root; 6012 6013 set_fs_pwd(current->fs, &root); 6014 set_fs_root(current->fs, &root); 6015 6016 ns_tree_add(&init_mnt_ns); 6017 } 6018 6019 void __init mnt_init(void) 6020 { 6021 int err; 6022 6023 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 6024 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 6025 6026 mount_hashtable = alloc_large_system_hash("Mount-cache", 6027 sizeof(struct hlist_head), 6028 mhash_entries, 19, 6029 HASH_ZERO, 6030 &m_hash_shift, &m_hash_mask, 0, 0); 6031 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 6032 sizeof(struct hlist_head), 6033 mphash_entries, 19, 6034 HASH_ZERO, 6035 &mp_hash_shift, &mp_hash_mask, 0, 0); 6036 6037 if (!mount_hashtable || !mountpoint_hashtable) 6038 panic("Failed to allocate mount hash table\n"); 6039 6040 kernfs_init(); 6041 6042 err = sysfs_init(); 6043 if (err) 6044 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 6045 __func__, err); 6046 fs_kobj = kobject_create_and_add("fs", NULL); 6047 if (!fs_kobj) 6048 printk(KERN_WARNING "%s: kobj create error\n", __func__); 6049 shmem_init(); 6050 init_rootfs(); 6051 init_mount_tree(); 6052 } 6053 6054 void put_mnt_ns(struct mnt_namespace *ns) 6055 { 6056 if (!ns_ref_put(ns)) 6057 return; 6058 guard(namespace_excl)(); 6059 emptied_ns = ns; 6060 guard(mount_writer)(); 6061 umount_tree(ns->root, 0); 6062 } 6063 6064 struct vfsmount *kern_mount(struct file_system_type *type) 6065 { 6066 struct vfsmount *mnt; 6067 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 6068 if (!IS_ERR(mnt)) { 6069 /* 6070 * it is a longterm mount, don't release mnt until 6071 * we unmount before file sys is unregistered 6072 */ 6073 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 6074 } 6075 return mnt; 6076 } 6077 EXPORT_SYMBOL_GPL(kern_mount); 6078 6079 void kern_unmount(struct vfsmount *mnt) 6080 { 6081 /* release long term mount so mount point can be released */ 6082 if (!IS_ERR(mnt)) { 6083 mnt_make_shortterm(mnt); 6084 synchronize_rcu(); /* yecchhh... */ 6085 mntput(mnt); 6086 } 6087 } 6088 EXPORT_SYMBOL(kern_unmount); 6089 6090 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 6091 { 6092 unsigned int i; 6093 6094 for (i = 0; i < num; i++) 6095 mnt_make_shortterm(mnt[i]); 6096 synchronize_rcu_expedited(); 6097 for (i = 0; i < num; i++) 6098 mntput(mnt[i]); 6099 } 6100 EXPORT_SYMBOL(kern_unmount_array); 6101 6102 bool our_mnt(struct vfsmount *mnt) 6103 { 6104 return check_mnt(real_mount(mnt)); 6105 } 6106 6107 bool current_chrooted(void) 6108 { 6109 /* Does the current process have a non-standard root */ 6110 struct path fs_root __free(path_put) = {}; 6111 struct mount *root; 6112 6113 get_fs_root(current->fs, &fs_root); 6114 6115 /* Find the namespace root */ 6116 6117 guard(mount_locked_reader)(); 6118 6119 root = topmost_overmount(current->nsproxy->mnt_ns->root); 6120 6121 return fs_root.mnt != &root->mnt || !path_mounted(&fs_root); 6122 } 6123 6124 static bool mnt_already_visible(struct mnt_namespace *ns, 6125 const struct super_block *sb, 6126 int *new_mnt_flags) 6127 { 6128 int new_flags = *new_mnt_flags; 6129 struct mount *mnt, *n; 6130 6131 guard(namespace_shared)(); 6132 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 6133 struct mount *child; 6134 int mnt_flags; 6135 6136 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 6137 continue; 6138 6139 /* This mount is not fully visible if it's root directory 6140 * is not the root directory of the filesystem. 6141 */ 6142 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 6143 continue; 6144 6145 /* A local view of the mount flags */ 6146 mnt_flags = mnt->mnt.mnt_flags; 6147 6148 /* Don't miss readonly hidden in the superblock flags */ 6149 if (sb_rdonly(mnt->mnt.mnt_sb)) 6150 mnt_flags |= MNT_LOCK_READONLY; 6151 6152 /* Verify the mount flags are equal to or more permissive 6153 * than the proposed new mount. 6154 */ 6155 if ((mnt_flags & MNT_LOCK_READONLY) && 6156 !(new_flags & MNT_READONLY)) 6157 continue; 6158 if ((mnt_flags & MNT_LOCK_ATIME) && 6159 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 6160 continue; 6161 6162 /* This mount is not fully visible if there are any 6163 * locked child mounts that cover anything except for 6164 * empty directories. 6165 */ 6166 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 6167 struct inode *inode = child->mnt_mountpoint->d_inode; 6168 /* Only worry about locked mounts */ 6169 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 6170 continue; 6171 /* Is the directory permanently empty? */ 6172 if (!is_empty_dir_inode(inode)) 6173 goto next; 6174 } 6175 /* Preserve the locked attributes */ 6176 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 6177 MNT_LOCK_ATIME); 6178 return true; 6179 next: ; 6180 } 6181 return false; 6182 } 6183 6184 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 6185 { 6186 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 6187 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 6188 unsigned long s_iflags; 6189 6190 if (ns->user_ns == &init_user_ns) 6191 return false; 6192 6193 /* Can this filesystem be too revealing? */ 6194 s_iflags = sb->s_iflags; 6195 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 6196 return false; 6197 6198 if ((s_iflags & required_iflags) != required_iflags) { 6199 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 6200 required_iflags); 6201 return true; 6202 } 6203 6204 return !mnt_already_visible(ns, sb, new_mnt_flags); 6205 } 6206 6207 bool mnt_may_suid(struct vfsmount *mnt) 6208 { 6209 /* 6210 * Foreign mounts (accessed via fchdir or through /proc 6211 * symlinks) are always treated as if they are nosuid. This 6212 * prevents namespaces from trusting potentially unsafe 6213 * suid/sgid bits, file caps, or security labels that originate 6214 * in other namespaces. 6215 */ 6216 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 6217 current_in_userns(mnt->mnt_sb->s_user_ns); 6218 } 6219 6220 static struct ns_common *mntns_get(struct task_struct *task) 6221 { 6222 struct ns_common *ns = NULL; 6223 struct nsproxy *nsproxy; 6224 6225 task_lock(task); 6226 nsproxy = task->nsproxy; 6227 if (nsproxy) { 6228 ns = &nsproxy->mnt_ns->ns; 6229 get_mnt_ns(to_mnt_ns(ns)); 6230 } 6231 task_unlock(task); 6232 6233 return ns; 6234 } 6235 6236 static void mntns_put(struct ns_common *ns) 6237 { 6238 put_mnt_ns(to_mnt_ns(ns)); 6239 } 6240 6241 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 6242 { 6243 struct nsproxy *nsproxy = nsset->nsproxy; 6244 struct fs_struct *fs = nsset->fs; 6245 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 6246 struct user_namespace *user_ns = nsset->cred->user_ns; 6247 struct path root; 6248 int err; 6249 6250 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 6251 !ns_capable(user_ns, CAP_SYS_CHROOT) || 6252 !ns_capable(user_ns, CAP_SYS_ADMIN)) 6253 return -EPERM; 6254 6255 if (is_anon_ns(mnt_ns)) 6256 return -EINVAL; 6257 6258 if (fs->users != 1) 6259 return -EINVAL; 6260 6261 get_mnt_ns(mnt_ns); 6262 old_mnt_ns = nsproxy->mnt_ns; 6263 nsproxy->mnt_ns = mnt_ns; 6264 6265 /* Find the root */ 6266 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 6267 "/", LOOKUP_DOWN, &root); 6268 if (err) { 6269 /* revert to old namespace */ 6270 nsproxy->mnt_ns = old_mnt_ns; 6271 put_mnt_ns(mnt_ns); 6272 return err; 6273 } 6274 6275 put_mnt_ns(old_mnt_ns); 6276 6277 /* Update the pwd and root */ 6278 set_fs_pwd(fs, &root); 6279 set_fs_root(fs, &root); 6280 6281 path_put(&root); 6282 return 0; 6283 } 6284 6285 static struct user_namespace *mntns_owner(struct ns_common *ns) 6286 { 6287 return to_mnt_ns(ns)->user_ns; 6288 } 6289 6290 const struct proc_ns_operations mntns_operations = { 6291 .name = "mnt", 6292 .get = mntns_get, 6293 .put = mntns_put, 6294 .install = mntns_install, 6295 .owner = mntns_owner, 6296 }; 6297 6298 #ifdef CONFIG_SYSCTL 6299 static const struct ctl_table fs_namespace_sysctls[] = { 6300 { 6301 .procname = "mount-max", 6302 .data = &sysctl_mount_max, 6303 .maxlen = sizeof(unsigned int), 6304 .mode = 0644, 6305 .proc_handler = proc_dointvec_minmax, 6306 .extra1 = SYSCTL_ONE, 6307 }, 6308 }; 6309 6310 static int __init init_fs_namespace_sysctls(void) 6311 { 6312 register_sysctl_init("fs", fs_namespace_sysctls); 6313 return 0; 6314 } 6315 fs_initcall(init_fs_namespace_sysctls); 6316 6317 #endif /* CONFIG_SYSCTL */ 6318