1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/mpage.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains functions related to preparing and submitting BIOs which contain 8 * multiple pagecache pages. 9 * 10 * 15May2002 Andrew Morton 11 * Initial version 12 * 27Jun2002 axboe@suse.de 13 * use bio_add_page() to build bio's just the right size 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/mm.h> 19 #include <linux/kdev_t.h> 20 #include <linux/gfp.h> 21 #include <linux/bio.h> 22 #include <linux/fs.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/highmem.h> 26 #include <linux/prefetch.h> 27 #include <linux/mpage.h> 28 #include <linux/mm_inline.h> 29 #include <linux/writeback.h> 30 #include <linux/backing-dev.h> 31 #include <linux/pagevec.h> 32 #include <linux/cleancache.h> 33 #include "internal.h" 34 35 /* 36 * I/O completion handler for multipage BIOs. 37 * 38 * The mpage code never puts partial pages into a BIO (except for end-of-file). 39 * If a page does not map to a contiguous run of blocks then it simply falls 40 * back to block_read_full_page(). 41 * 42 * Why is this? If a page's completion depends on a number of different BIOs 43 * which can complete in any order (or at the same time) then determining the 44 * status of that page is hard. See end_buffer_async_read() for the details. 45 * There is no point in duplicating all that complexity. 46 */ 47 static void mpage_end_io(struct bio *bio) 48 { 49 struct bio_vec *bv; 50 int i; 51 52 bio_for_each_segment_all(bv, bio, i) { 53 struct page *page = bv->bv_page; 54 page_endio(page, op_is_write(bio_op(bio)), 55 blk_status_to_errno(bio->bi_status)); 56 } 57 58 bio_put(bio); 59 } 60 61 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 62 { 63 bio->bi_end_io = mpage_end_io; 64 bio_set_op_attrs(bio, op, op_flags); 65 guard_bio_eod(op, bio); 66 submit_bio(bio); 67 return NULL; 68 } 69 70 static struct bio * 71 mpage_alloc(struct block_device *bdev, 72 sector_t first_sector, int nr_vecs, 73 gfp_t gfp_flags) 74 { 75 struct bio *bio; 76 77 /* Restrict the given (page cache) mask for slab allocations */ 78 gfp_flags &= GFP_KERNEL; 79 bio = bio_alloc(gfp_flags, nr_vecs); 80 81 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 82 while (!bio && (nr_vecs /= 2)) 83 bio = bio_alloc(gfp_flags, nr_vecs); 84 } 85 86 if (bio) { 87 bio_set_dev(bio, bdev); 88 bio->bi_iter.bi_sector = first_sector; 89 } 90 return bio; 91 } 92 93 /* 94 * support function for mpage_readpages. The fs supplied get_block might 95 * return an up to date buffer. This is used to map that buffer into 96 * the page, which allows readpage to avoid triggering a duplicate call 97 * to get_block. 98 * 99 * The idea is to avoid adding buffers to pages that don't already have 100 * them. So when the buffer is up to date and the page size == block size, 101 * this marks the page up to date instead of adding new buffers. 102 */ 103 static void 104 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 105 { 106 struct inode *inode = page->mapping->host; 107 struct buffer_head *page_bh, *head; 108 int block = 0; 109 110 if (!page_has_buffers(page)) { 111 /* 112 * don't make any buffers if there is only one buffer on 113 * the page and the page just needs to be set up to date 114 */ 115 if (inode->i_blkbits == PAGE_SHIFT && 116 buffer_uptodate(bh)) { 117 SetPageUptodate(page); 118 return; 119 } 120 create_empty_buffers(page, i_blocksize(inode), 0); 121 } 122 head = page_buffers(page); 123 page_bh = head; 124 do { 125 if (block == page_block) { 126 page_bh->b_state = bh->b_state; 127 page_bh->b_bdev = bh->b_bdev; 128 page_bh->b_blocknr = bh->b_blocknr; 129 break; 130 } 131 page_bh = page_bh->b_this_page; 132 block++; 133 } while (page_bh != head); 134 } 135 136 /* 137 * This is the worker routine which does all the work of mapping the disk 138 * blocks and constructs largest possible bios, submits them for IO if the 139 * blocks are not contiguous on the disk. 140 * 141 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 142 * represent the validity of its disk mapping and to decide when to do the next 143 * get_block() call. 144 */ 145 static struct bio * 146 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 147 sector_t *last_block_in_bio, struct buffer_head *map_bh, 148 unsigned long *first_logical_block, get_block_t get_block, 149 gfp_t gfp) 150 { 151 struct inode *inode = page->mapping->host; 152 const unsigned blkbits = inode->i_blkbits; 153 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 154 const unsigned blocksize = 1 << blkbits; 155 sector_t block_in_file; 156 sector_t last_block; 157 sector_t last_block_in_file; 158 sector_t blocks[MAX_BUF_PER_PAGE]; 159 unsigned page_block; 160 unsigned first_hole = blocks_per_page; 161 struct block_device *bdev = NULL; 162 int length; 163 int fully_mapped = 1; 164 unsigned nblocks; 165 unsigned relative_block; 166 167 if (page_has_buffers(page)) 168 goto confused; 169 170 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 171 last_block = block_in_file + nr_pages * blocks_per_page; 172 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 173 if (last_block > last_block_in_file) 174 last_block = last_block_in_file; 175 page_block = 0; 176 177 /* 178 * Map blocks using the result from the previous get_blocks call first. 179 */ 180 nblocks = map_bh->b_size >> blkbits; 181 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 182 block_in_file < (*first_logical_block + nblocks)) { 183 unsigned map_offset = block_in_file - *first_logical_block; 184 unsigned last = nblocks - map_offset; 185 186 for (relative_block = 0; ; relative_block++) { 187 if (relative_block == last) { 188 clear_buffer_mapped(map_bh); 189 break; 190 } 191 if (page_block == blocks_per_page) 192 break; 193 blocks[page_block] = map_bh->b_blocknr + map_offset + 194 relative_block; 195 page_block++; 196 block_in_file++; 197 } 198 bdev = map_bh->b_bdev; 199 } 200 201 /* 202 * Then do more get_blocks calls until we are done with this page. 203 */ 204 map_bh->b_page = page; 205 while (page_block < blocks_per_page) { 206 map_bh->b_state = 0; 207 map_bh->b_size = 0; 208 209 if (block_in_file < last_block) { 210 map_bh->b_size = (last_block-block_in_file) << blkbits; 211 if (get_block(inode, block_in_file, map_bh, 0)) 212 goto confused; 213 *first_logical_block = block_in_file; 214 } 215 216 if (!buffer_mapped(map_bh)) { 217 fully_mapped = 0; 218 if (first_hole == blocks_per_page) 219 first_hole = page_block; 220 page_block++; 221 block_in_file++; 222 continue; 223 } 224 225 /* some filesystems will copy data into the page during 226 * the get_block call, in which case we don't want to 227 * read it again. map_buffer_to_page copies the data 228 * we just collected from get_block into the page's buffers 229 * so readpage doesn't have to repeat the get_block call 230 */ 231 if (buffer_uptodate(map_bh)) { 232 map_buffer_to_page(page, map_bh, page_block); 233 goto confused; 234 } 235 236 if (first_hole != blocks_per_page) 237 goto confused; /* hole -> non-hole */ 238 239 /* Contiguous blocks? */ 240 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 241 goto confused; 242 nblocks = map_bh->b_size >> blkbits; 243 for (relative_block = 0; ; relative_block++) { 244 if (relative_block == nblocks) { 245 clear_buffer_mapped(map_bh); 246 break; 247 } else if (page_block == blocks_per_page) 248 break; 249 blocks[page_block] = map_bh->b_blocknr+relative_block; 250 page_block++; 251 block_in_file++; 252 } 253 bdev = map_bh->b_bdev; 254 } 255 256 if (first_hole != blocks_per_page) { 257 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 258 if (first_hole == 0) { 259 SetPageUptodate(page); 260 unlock_page(page); 261 goto out; 262 } 263 } else if (fully_mapped) { 264 SetPageMappedToDisk(page); 265 } 266 267 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 268 cleancache_get_page(page) == 0) { 269 SetPageUptodate(page); 270 goto confused; 271 } 272 273 /* 274 * This page will go to BIO. Do we need to send this BIO off first? 275 */ 276 if (bio && (*last_block_in_bio != blocks[0] - 1)) 277 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 278 279 alloc_new: 280 if (bio == NULL) { 281 if (first_hole == blocks_per_page) { 282 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 283 page)) 284 goto out; 285 } 286 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 287 min_t(int, nr_pages, BIO_MAX_PAGES), gfp); 288 if (bio == NULL) 289 goto confused; 290 } 291 292 length = first_hole << blkbits; 293 if (bio_add_page(bio, page, length, 0) < length) { 294 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 295 goto alloc_new; 296 } 297 298 relative_block = block_in_file - *first_logical_block; 299 nblocks = map_bh->b_size >> blkbits; 300 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 301 (first_hole != blocks_per_page)) 302 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 303 else 304 *last_block_in_bio = blocks[blocks_per_page - 1]; 305 out: 306 return bio; 307 308 confused: 309 if (bio) 310 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 311 if (!PageUptodate(page)) 312 block_read_full_page(page, get_block); 313 else 314 unlock_page(page); 315 goto out; 316 } 317 318 /** 319 * mpage_readpages - populate an address space with some pages & start reads against them 320 * @mapping: the address_space 321 * @pages: The address of a list_head which contains the target pages. These 322 * pages have their ->index populated and are otherwise uninitialised. 323 * The page at @pages->prev has the lowest file offset, and reads should be 324 * issued in @pages->prev to @pages->next order. 325 * @nr_pages: The number of pages at *@pages 326 * @get_block: The filesystem's block mapper function. 327 * 328 * This function walks the pages and the blocks within each page, building and 329 * emitting large BIOs. 330 * 331 * If anything unusual happens, such as: 332 * 333 * - encountering a page which has buffers 334 * - encountering a page which has a non-hole after a hole 335 * - encountering a page with non-contiguous blocks 336 * 337 * then this code just gives up and calls the buffer_head-based read function. 338 * It does handle a page which has holes at the end - that is a common case: 339 * the end-of-file on blocksize < PAGE_SIZE setups. 340 * 341 * BH_Boundary explanation: 342 * 343 * There is a problem. The mpage read code assembles several pages, gets all 344 * their disk mappings, and then submits them all. That's fine, but obtaining 345 * the disk mappings may require I/O. Reads of indirect blocks, for example. 346 * 347 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 348 * submitted in the following order: 349 * 350 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 351 * 352 * because the indirect block has to be read to get the mappings of blocks 353 * 13,14,15,16. Obviously, this impacts performance. 354 * 355 * So what we do it to allow the filesystem's get_block() function to set 356 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 357 * after this one will require I/O against a block which is probably close to 358 * this one. So you should push what I/O you have currently accumulated. 359 * 360 * This all causes the disk requests to be issued in the correct order. 361 */ 362 int 363 mpage_readpages(struct address_space *mapping, struct list_head *pages, 364 unsigned nr_pages, get_block_t get_block) 365 { 366 struct bio *bio = NULL; 367 unsigned page_idx; 368 sector_t last_block_in_bio = 0; 369 struct buffer_head map_bh; 370 unsigned long first_logical_block = 0; 371 gfp_t gfp = readahead_gfp_mask(mapping); 372 373 map_bh.b_state = 0; 374 map_bh.b_size = 0; 375 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 376 struct page *page = lru_to_page(pages); 377 378 prefetchw(&page->flags); 379 list_del(&page->lru); 380 if (!add_to_page_cache_lru(page, mapping, 381 page->index, 382 gfp)) { 383 bio = do_mpage_readpage(bio, page, 384 nr_pages - page_idx, 385 &last_block_in_bio, &map_bh, 386 &first_logical_block, 387 get_block, gfp); 388 } 389 put_page(page); 390 } 391 BUG_ON(!list_empty(pages)); 392 if (bio) 393 mpage_bio_submit(REQ_OP_READ, 0, bio); 394 return 0; 395 } 396 EXPORT_SYMBOL(mpage_readpages); 397 398 /* 399 * This isn't called much at all 400 */ 401 int mpage_readpage(struct page *page, get_block_t get_block) 402 { 403 struct bio *bio = NULL; 404 sector_t last_block_in_bio = 0; 405 struct buffer_head map_bh; 406 unsigned long first_logical_block = 0; 407 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 408 409 map_bh.b_state = 0; 410 map_bh.b_size = 0; 411 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 412 &map_bh, &first_logical_block, get_block, gfp); 413 if (bio) 414 mpage_bio_submit(REQ_OP_READ, 0, bio); 415 return 0; 416 } 417 EXPORT_SYMBOL(mpage_readpage); 418 419 /* 420 * Writing is not so simple. 421 * 422 * If the page has buffers then they will be used for obtaining the disk 423 * mapping. We only support pages which are fully mapped-and-dirty, with a 424 * special case for pages which are unmapped at the end: end-of-file. 425 * 426 * If the page has no buffers (preferred) then the page is mapped here. 427 * 428 * If all blocks are found to be contiguous then the page can go into the 429 * BIO. Otherwise fall back to the mapping's writepage(). 430 * 431 * FIXME: This code wants an estimate of how many pages are still to be 432 * written, so it can intelligently allocate a suitably-sized BIO. For now, 433 * just allocate full-size (16-page) BIOs. 434 */ 435 436 struct mpage_data { 437 struct bio *bio; 438 sector_t last_block_in_bio; 439 get_block_t *get_block; 440 unsigned use_writepage; 441 }; 442 443 /* 444 * We have our BIO, so we can now mark the buffers clean. Make 445 * sure to only clean buffers which we know we'll be writing. 446 */ 447 static void clean_buffers(struct page *page, unsigned first_unmapped) 448 { 449 unsigned buffer_counter = 0; 450 struct buffer_head *bh, *head; 451 if (!page_has_buffers(page)) 452 return; 453 head = page_buffers(page); 454 bh = head; 455 456 do { 457 if (buffer_counter++ == first_unmapped) 458 break; 459 clear_buffer_dirty(bh); 460 bh = bh->b_this_page; 461 } while (bh != head); 462 463 /* 464 * we cannot drop the bh if the page is not uptodate or a concurrent 465 * readpage would fail to serialize with the bh and it would read from 466 * disk before we reach the platter. 467 */ 468 if (buffer_heads_over_limit && PageUptodate(page)) 469 try_to_free_buffers(page); 470 } 471 472 /* 473 * For situations where we want to clean all buffers attached to a page. 474 * We don't need to calculate how many buffers are attached to the page, 475 * we just need to specify a number larger than the maximum number of buffers. 476 */ 477 void clean_page_buffers(struct page *page) 478 { 479 clean_buffers(page, ~0U); 480 } 481 482 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 483 void *data) 484 { 485 struct mpage_data *mpd = data; 486 struct bio *bio = mpd->bio; 487 struct address_space *mapping = page->mapping; 488 struct inode *inode = page->mapping->host; 489 const unsigned blkbits = inode->i_blkbits; 490 unsigned long end_index; 491 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 492 sector_t last_block; 493 sector_t block_in_file; 494 sector_t blocks[MAX_BUF_PER_PAGE]; 495 unsigned page_block; 496 unsigned first_unmapped = blocks_per_page; 497 struct block_device *bdev = NULL; 498 int boundary = 0; 499 sector_t boundary_block = 0; 500 struct block_device *boundary_bdev = NULL; 501 int length; 502 struct buffer_head map_bh; 503 loff_t i_size = i_size_read(inode); 504 int ret = 0; 505 int op_flags = wbc_to_write_flags(wbc); 506 507 if (page_has_buffers(page)) { 508 struct buffer_head *head = page_buffers(page); 509 struct buffer_head *bh = head; 510 511 /* If they're all mapped and dirty, do it */ 512 page_block = 0; 513 do { 514 BUG_ON(buffer_locked(bh)); 515 if (!buffer_mapped(bh)) { 516 /* 517 * unmapped dirty buffers are created by 518 * __set_page_dirty_buffers -> mmapped data 519 */ 520 if (buffer_dirty(bh)) 521 goto confused; 522 if (first_unmapped == blocks_per_page) 523 first_unmapped = page_block; 524 continue; 525 } 526 527 if (first_unmapped != blocks_per_page) 528 goto confused; /* hole -> non-hole */ 529 530 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 531 goto confused; 532 if (page_block) { 533 if (bh->b_blocknr != blocks[page_block-1] + 1) 534 goto confused; 535 } 536 blocks[page_block++] = bh->b_blocknr; 537 boundary = buffer_boundary(bh); 538 if (boundary) { 539 boundary_block = bh->b_blocknr; 540 boundary_bdev = bh->b_bdev; 541 } 542 bdev = bh->b_bdev; 543 } while ((bh = bh->b_this_page) != head); 544 545 if (first_unmapped) 546 goto page_is_mapped; 547 548 /* 549 * Page has buffers, but they are all unmapped. The page was 550 * created by pagein or read over a hole which was handled by 551 * block_read_full_page(). If this address_space is also 552 * using mpage_readpages then this can rarely happen. 553 */ 554 goto confused; 555 } 556 557 /* 558 * The page has no buffers: map it to disk 559 */ 560 BUG_ON(!PageUptodate(page)); 561 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 562 last_block = (i_size - 1) >> blkbits; 563 map_bh.b_page = page; 564 for (page_block = 0; page_block < blocks_per_page; ) { 565 566 map_bh.b_state = 0; 567 map_bh.b_size = 1 << blkbits; 568 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 569 goto confused; 570 if (buffer_new(&map_bh)) 571 clean_bdev_bh_alias(&map_bh); 572 if (buffer_boundary(&map_bh)) { 573 boundary_block = map_bh.b_blocknr; 574 boundary_bdev = map_bh.b_bdev; 575 } 576 if (page_block) { 577 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 578 goto confused; 579 } 580 blocks[page_block++] = map_bh.b_blocknr; 581 boundary = buffer_boundary(&map_bh); 582 bdev = map_bh.b_bdev; 583 if (block_in_file == last_block) 584 break; 585 block_in_file++; 586 } 587 BUG_ON(page_block == 0); 588 589 first_unmapped = page_block; 590 591 page_is_mapped: 592 end_index = i_size >> PAGE_SHIFT; 593 if (page->index >= end_index) { 594 /* 595 * The page straddles i_size. It must be zeroed out on each 596 * and every writepage invocation because it may be mmapped. 597 * "A file is mapped in multiples of the page size. For a file 598 * that is not a multiple of the page size, the remaining memory 599 * is zeroed when mapped, and writes to that region are not 600 * written out to the file." 601 */ 602 unsigned offset = i_size & (PAGE_SIZE - 1); 603 604 if (page->index > end_index || !offset) 605 goto confused; 606 zero_user_segment(page, offset, PAGE_SIZE); 607 } 608 609 /* 610 * This page will go to BIO. Do we need to send this BIO off first? 611 */ 612 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 613 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 614 615 alloc_new: 616 if (bio == NULL) { 617 if (first_unmapped == blocks_per_page) { 618 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 619 page, wbc)) 620 goto out; 621 } 622 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 623 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 624 if (bio == NULL) 625 goto confused; 626 627 wbc_init_bio(wbc, bio); 628 bio->bi_write_hint = inode->i_write_hint; 629 } 630 631 /* 632 * Must try to add the page before marking the buffer clean or 633 * the confused fail path above (OOM) will be very confused when 634 * it finds all bh marked clean (i.e. it will not write anything) 635 */ 636 wbc_account_io(wbc, page, PAGE_SIZE); 637 length = first_unmapped << blkbits; 638 if (bio_add_page(bio, page, length, 0) < length) { 639 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 640 goto alloc_new; 641 } 642 643 clean_buffers(page, first_unmapped); 644 645 BUG_ON(PageWriteback(page)); 646 set_page_writeback(page); 647 unlock_page(page); 648 if (boundary || (first_unmapped != blocks_per_page)) { 649 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 650 if (boundary_block) { 651 write_boundary_block(boundary_bdev, 652 boundary_block, 1 << blkbits); 653 } 654 } else { 655 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 656 } 657 goto out; 658 659 confused: 660 if (bio) 661 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 662 663 if (mpd->use_writepage) { 664 ret = mapping->a_ops->writepage(page, wbc); 665 } else { 666 ret = -EAGAIN; 667 goto out; 668 } 669 /* 670 * The caller has a ref on the inode, so *mapping is stable 671 */ 672 mapping_set_error(mapping, ret); 673 out: 674 mpd->bio = bio; 675 return ret; 676 } 677 678 /** 679 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 680 * @mapping: address space structure to write 681 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 682 * @get_block: the filesystem's block mapper function. 683 * If this is NULL then use a_ops->writepage. Otherwise, go 684 * direct-to-BIO. 685 * 686 * This is a library function, which implements the writepages() 687 * address_space_operation. 688 * 689 * If a page is already under I/O, generic_writepages() skips it, even 690 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 691 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 692 * and msync() need to guarantee that all the data which was dirty at the time 693 * the call was made get new I/O started against them. If wbc->sync_mode is 694 * WB_SYNC_ALL then we were called for data integrity and we must wait for 695 * existing IO to complete. 696 */ 697 int 698 mpage_writepages(struct address_space *mapping, 699 struct writeback_control *wbc, get_block_t get_block) 700 { 701 struct blk_plug plug; 702 int ret; 703 704 blk_start_plug(&plug); 705 706 if (!get_block) 707 ret = generic_writepages(mapping, wbc); 708 else { 709 struct mpage_data mpd = { 710 .bio = NULL, 711 .last_block_in_bio = 0, 712 .get_block = get_block, 713 .use_writepage = 1, 714 }; 715 716 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 717 if (mpd.bio) { 718 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 719 REQ_SYNC : 0); 720 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 721 } 722 } 723 blk_finish_plug(&plug); 724 return ret; 725 } 726 EXPORT_SYMBOL(mpage_writepages); 727 728 int mpage_writepage(struct page *page, get_block_t get_block, 729 struct writeback_control *wbc) 730 { 731 struct mpage_data mpd = { 732 .bio = NULL, 733 .last_block_in_bio = 0, 734 .get_block = get_block, 735 .use_writepage = 0, 736 }; 737 int ret = __mpage_writepage(page, wbc, &mpd); 738 if (mpd.bio) { 739 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 740 REQ_SYNC : 0); 741 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 742 } 743 return ret; 744 } 745 EXPORT_SYMBOL(mpage_writepage); 746