1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 31 /* 32 * I/O completion handler for multipage BIOs. 33 * 34 * The mpage code never puts partial pages into a BIO (except for end-of-file). 35 * If a page does not map to a contiguous run of blocks then it simply falls 36 * back to block_read_full_page(). 37 * 38 * Why is this? If a page's completion depends on a number of different BIOs 39 * which can complete in any order (or at the same time) then determining the 40 * status of that page is hard. See end_buffer_async_read() for the details. 41 * There is no point in duplicating all that complexity. 42 */ 43 static void mpage_end_io_read(struct bio *bio, int err) 44 { 45 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 46 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 47 48 do { 49 struct page *page = bvec->bv_page; 50 51 if (--bvec >= bio->bi_io_vec) 52 prefetchw(&bvec->bv_page->flags); 53 54 if (uptodate) { 55 SetPageUptodate(page); 56 } else { 57 ClearPageUptodate(page); 58 SetPageError(page); 59 } 60 unlock_page(page); 61 } while (bvec >= bio->bi_io_vec); 62 bio_put(bio); 63 } 64 65 static void mpage_end_io_write(struct bio *bio, int err) 66 { 67 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 68 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 69 70 do { 71 struct page *page = bvec->bv_page; 72 73 if (--bvec >= bio->bi_io_vec) 74 prefetchw(&bvec->bv_page->flags); 75 76 if (!uptodate){ 77 SetPageError(page); 78 if (page->mapping) 79 set_bit(AS_EIO, &page->mapping->flags); 80 } 81 end_page_writeback(page); 82 } while (bvec >= bio->bi_io_vec); 83 bio_put(bio); 84 } 85 86 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 87 { 88 bio->bi_end_io = mpage_end_io_read; 89 if (rw == WRITE) 90 bio->bi_end_io = mpage_end_io_write; 91 submit_bio(rw, bio); 92 return NULL; 93 } 94 95 static struct bio * 96 mpage_alloc(struct block_device *bdev, 97 sector_t first_sector, int nr_vecs, 98 gfp_t gfp_flags) 99 { 100 struct bio *bio; 101 102 bio = bio_alloc(gfp_flags, nr_vecs); 103 104 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 105 while (!bio && (nr_vecs /= 2)) 106 bio = bio_alloc(gfp_flags, nr_vecs); 107 } 108 109 if (bio) { 110 bio->bi_bdev = bdev; 111 bio->bi_sector = first_sector; 112 } 113 return bio; 114 } 115 116 /* 117 * support function for mpage_readpages. The fs supplied get_block might 118 * return an up to date buffer. This is used to map that buffer into 119 * the page, which allows readpage to avoid triggering a duplicate call 120 * to get_block. 121 * 122 * The idea is to avoid adding buffers to pages that don't already have 123 * them. So when the buffer is up to date and the page size == block size, 124 * this marks the page up to date instead of adding new buffers. 125 */ 126 static void 127 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 128 { 129 struct inode *inode = page->mapping->host; 130 struct buffer_head *page_bh, *head; 131 int block = 0; 132 133 if (!page_has_buffers(page)) { 134 /* 135 * don't make any buffers if there is only one buffer on 136 * the page and the page just needs to be set up to date 137 */ 138 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 139 buffer_uptodate(bh)) { 140 SetPageUptodate(page); 141 return; 142 } 143 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 144 } 145 head = page_buffers(page); 146 page_bh = head; 147 do { 148 if (block == page_block) { 149 page_bh->b_state = bh->b_state; 150 page_bh->b_bdev = bh->b_bdev; 151 page_bh->b_blocknr = bh->b_blocknr; 152 break; 153 } 154 page_bh = page_bh->b_this_page; 155 block++; 156 } while (page_bh != head); 157 } 158 159 /* 160 * This is the worker routine which does all the work of mapping the disk 161 * blocks and constructs largest possible bios, submits them for IO if the 162 * blocks are not contiguous on the disk. 163 * 164 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 165 * represent the validity of its disk mapping and to decide when to do the next 166 * get_block() call. 167 */ 168 static struct bio * 169 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 170 sector_t *last_block_in_bio, struct buffer_head *map_bh, 171 unsigned long *first_logical_block, get_block_t get_block) 172 { 173 struct inode *inode = page->mapping->host; 174 const unsigned blkbits = inode->i_blkbits; 175 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 176 const unsigned blocksize = 1 << blkbits; 177 sector_t block_in_file; 178 sector_t last_block; 179 sector_t last_block_in_file; 180 sector_t blocks[MAX_BUF_PER_PAGE]; 181 unsigned page_block; 182 unsigned first_hole = blocks_per_page; 183 struct block_device *bdev = NULL; 184 int length; 185 int fully_mapped = 1; 186 unsigned nblocks; 187 unsigned relative_block; 188 189 if (page_has_buffers(page)) 190 goto confused; 191 192 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 193 last_block = block_in_file + nr_pages * blocks_per_page; 194 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 195 if (last_block > last_block_in_file) 196 last_block = last_block_in_file; 197 page_block = 0; 198 199 /* 200 * Map blocks using the result from the previous get_blocks call first. 201 */ 202 nblocks = map_bh->b_size >> blkbits; 203 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 204 block_in_file < (*first_logical_block + nblocks)) { 205 unsigned map_offset = block_in_file - *first_logical_block; 206 unsigned last = nblocks - map_offset; 207 208 for (relative_block = 0; ; relative_block++) { 209 if (relative_block == last) { 210 clear_buffer_mapped(map_bh); 211 break; 212 } 213 if (page_block == blocks_per_page) 214 break; 215 blocks[page_block] = map_bh->b_blocknr + map_offset + 216 relative_block; 217 page_block++; 218 block_in_file++; 219 } 220 bdev = map_bh->b_bdev; 221 } 222 223 /* 224 * Then do more get_blocks calls until we are done with this page. 225 */ 226 map_bh->b_page = page; 227 while (page_block < blocks_per_page) { 228 map_bh->b_state = 0; 229 map_bh->b_size = 0; 230 231 if (block_in_file < last_block) { 232 map_bh->b_size = (last_block-block_in_file) << blkbits; 233 if (get_block(inode, block_in_file, map_bh, 0)) 234 goto confused; 235 *first_logical_block = block_in_file; 236 } 237 238 if (!buffer_mapped(map_bh)) { 239 fully_mapped = 0; 240 if (first_hole == blocks_per_page) 241 first_hole = page_block; 242 page_block++; 243 block_in_file++; 244 continue; 245 } 246 247 /* some filesystems will copy data into the page during 248 * the get_block call, in which case we don't want to 249 * read it again. map_buffer_to_page copies the data 250 * we just collected from get_block into the page's buffers 251 * so readpage doesn't have to repeat the get_block call 252 */ 253 if (buffer_uptodate(map_bh)) { 254 map_buffer_to_page(page, map_bh, page_block); 255 goto confused; 256 } 257 258 if (first_hole != blocks_per_page) 259 goto confused; /* hole -> non-hole */ 260 261 /* Contiguous blocks? */ 262 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 263 goto confused; 264 nblocks = map_bh->b_size >> blkbits; 265 for (relative_block = 0; ; relative_block++) { 266 if (relative_block == nblocks) { 267 clear_buffer_mapped(map_bh); 268 break; 269 } else if (page_block == blocks_per_page) 270 break; 271 blocks[page_block] = map_bh->b_blocknr+relative_block; 272 page_block++; 273 block_in_file++; 274 } 275 bdev = map_bh->b_bdev; 276 } 277 278 if (first_hole != blocks_per_page) { 279 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); 280 if (first_hole == 0) { 281 SetPageUptodate(page); 282 unlock_page(page); 283 goto out; 284 } 285 } else if (fully_mapped) { 286 SetPageMappedToDisk(page); 287 } 288 289 /* 290 * This page will go to BIO. Do we need to send this BIO off first? 291 */ 292 if (bio && (*last_block_in_bio != blocks[0] - 1)) 293 bio = mpage_bio_submit(READ, bio); 294 295 alloc_new: 296 if (bio == NULL) { 297 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 298 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 299 GFP_KERNEL); 300 if (bio == NULL) 301 goto confused; 302 } 303 304 length = first_hole << blkbits; 305 if (bio_add_page(bio, page, length, 0) < length) { 306 bio = mpage_bio_submit(READ, bio); 307 goto alloc_new; 308 } 309 310 relative_block = block_in_file - *first_logical_block; 311 nblocks = map_bh->b_size >> blkbits; 312 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 313 (first_hole != blocks_per_page)) 314 bio = mpage_bio_submit(READ, bio); 315 else 316 *last_block_in_bio = blocks[blocks_per_page - 1]; 317 out: 318 return bio; 319 320 confused: 321 if (bio) 322 bio = mpage_bio_submit(READ, bio); 323 if (!PageUptodate(page)) 324 block_read_full_page(page, get_block); 325 else 326 unlock_page(page); 327 goto out; 328 } 329 330 /** 331 * mpage_readpages - populate an address space with some pages & start reads against them 332 * @mapping: the address_space 333 * @pages: The address of a list_head which contains the target pages. These 334 * pages have their ->index populated and are otherwise uninitialised. 335 * The page at @pages->prev has the lowest file offset, and reads should be 336 * issued in @pages->prev to @pages->next order. 337 * @nr_pages: The number of pages at *@pages 338 * @get_block: The filesystem's block mapper function. 339 * 340 * This function walks the pages and the blocks within each page, building and 341 * emitting large BIOs. 342 * 343 * If anything unusual happens, such as: 344 * 345 * - encountering a page which has buffers 346 * - encountering a page which has a non-hole after a hole 347 * - encountering a page with non-contiguous blocks 348 * 349 * then this code just gives up and calls the buffer_head-based read function. 350 * It does handle a page which has holes at the end - that is a common case: 351 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 352 * 353 * BH_Boundary explanation: 354 * 355 * There is a problem. The mpage read code assembles several pages, gets all 356 * their disk mappings, and then submits them all. That's fine, but obtaining 357 * the disk mappings may require I/O. Reads of indirect blocks, for example. 358 * 359 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 360 * submitted in the following order: 361 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 362 * 363 * because the indirect block has to be read to get the mappings of blocks 364 * 13,14,15,16. Obviously, this impacts performance. 365 * 366 * So what we do it to allow the filesystem's get_block() function to set 367 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 368 * after this one will require I/O against a block which is probably close to 369 * this one. So you should push what I/O you have currently accumulated. 370 * 371 * This all causes the disk requests to be issued in the correct order. 372 */ 373 int 374 mpage_readpages(struct address_space *mapping, struct list_head *pages, 375 unsigned nr_pages, get_block_t get_block) 376 { 377 struct bio *bio = NULL; 378 unsigned page_idx; 379 sector_t last_block_in_bio = 0; 380 struct buffer_head map_bh; 381 unsigned long first_logical_block = 0; 382 383 map_bh.b_state = 0; 384 map_bh.b_size = 0; 385 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 386 struct page *page = list_entry(pages->prev, struct page, lru); 387 388 prefetchw(&page->flags); 389 list_del(&page->lru); 390 if (!add_to_page_cache_lru(page, mapping, 391 page->index, GFP_KERNEL)) { 392 bio = do_mpage_readpage(bio, page, 393 nr_pages - page_idx, 394 &last_block_in_bio, &map_bh, 395 &first_logical_block, 396 get_block); 397 } 398 page_cache_release(page); 399 } 400 BUG_ON(!list_empty(pages)); 401 if (bio) 402 mpage_bio_submit(READ, bio); 403 return 0; 404 } 405 EXPORT_SYMBOL(mpage_readpages); 406 407 /* 408 * This isn't called much at all 409 */ 410 int mpage_readpage(struct page *page, get_block_t get_block) 411 { 412 struct bio *bio = NULL; 413 sector_t last_block_in_bio = 0; 414 struct buffer_head map_bh; 415 unsigned long first_logical_block = 0; 416 417 map_bh.b_state = 0; 418 map_bh.b_size = 0; 419 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 420 &map_bh, &first_logical_block, get_block); 421 if (bio) 422 mpage_bio_submit(READ, bio); 423 return 0; 424 } 425 EXPORT_SYMBOL(mpage_readpage); 426 427 /* 428 * Writing is not so simple. 429 * 430 * If the page has buffers then they will be used for obtaining the disk 431 * mapping. We only support pages which are fully mapped-and-dirty, with a 432 * special case for pages which are unmapped at the end: end-of-file. 433 * 434 * If the page has no buffers (preferred) then the page is mapped here. 435 * 436 * If all blocks are found to be contiguous then the page can go into the 437 * BIO. Otherwise fall back to the mapping's writepage(). 438 * 439 * FIXME: This code wants an estimate of how many pages are still to be 440 * written, so it can intelligently allocate a suitably-sized BIO. For now, 441 * just allocate full-size (16-page) BIOs. 442 */ 443 444 struct mpage_data { 445 struct bio *bio; 446 sector_t last_block_in_bio; 447 get_block_t *get_block; 448 unsigned use_writepage; 449 }; 450 451 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 452 void *data) 453 { 454 struct mpage_data *mpd = data; 455 struct bio *bio = mpd->bio; 456 struct address_space *mapping = page->mapping; 457 struct inode *inode = page->mapping->host; 458 const unsigned blkbits = inode->i_blkbits; 459 unsigned long end_index; 460 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 461 sector_t last_block; 462 sector_t block_in_file; 463 sector_t blocks[MAX_BUF_PER_PAGE]; 464 unsigned page_block; 465 unsigned first_unmapped = blocks_per_page; 466 struct block_device *bdev = NULL; 467 int boundary = 0; 468 sector_t boundary_block = 0; 469 struct block_device *boundary_bdev = NULL; 470 int length; 471 struct buffer_head map_bh; 472 loff_t i_size = i_size_read(inode); 473 int ret = 0; 474 475 if (page_has_buffers(page)) { 476 struct buffer_head *head = page_buffers(page); 477 struct buffer_head *bh = head; 478 479 /* If they're all mapped and dirty, do it */ 480 page_block = 0; 481 do { 482 BUG_ON(buffer_locked(bh)); 483 if (!buffer_mapped(bh)) { 484 /* 485 * unmapped dirty buffers are created by 486 * __set_page_dirty_buffers -> mmapped data 487 */ 488 if (buffer_dirty(bh)) 489 goto confused; 490 if (first_unmapped == blocks_per_page) 491 first_unmapped = page_block; 492 continue; 493 } 494 495 if (first_unmapped != blocks_per_page) 496 goto confused; /* hole -> non-hole */ 497 498 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 499 goto confused; 500 if (page_block) { 501 if (bh->b_blocknr != blocks[page_block-1] + 1) 502 goto confused; 503 } 504 blocks[page_block++] = bh->b_blocknr; 505 boundary = buffer_boundary(bh); 506 if (boundary) { 507 boundary_block = bh->b_blocknr; 508 boundary_bdev = bh->b_bdev; 509 } 510 bdev = bh->b_bdev; 511 } while ((bh = bh->b_this_page) != head); 512 513 if (first_unmapped) 514 goto page_is_mapped; 515 516 /* 517 * Page has buffers, but they are all unmapped. The page was 518 * created by pagein or read over a hole which was handled by 519 * block_read_full_page(). If this address_space is also 520 * using mpage_readpages then this can rarely happen. 521 */ 522 goto confused; 523 } 524 525 /* 526 * The page has no buffers: map it to disk 527 */ 528 BUG_ON(!PageUptodate(page)); 529 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 530 last_block = (i_size - 1) >> blkbits; 531 map_bh.b_page = page; 532 for (page_block = 0; page_block < blocks_per_page; ) { 533 534 map_bh.b_state = 0; 535 map_bh.b_size = 1 << blkbits; 536 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 537 goto confused; 538 if (buffer_new(&map_bh)) 539 unmap_underlying_metadata(map_bh.b_bdev, 540 map_bh.b_blocknr); 541 if (buffer_boundary(&map_bh)) { 542 boundary_block = map_bh.b_blocknr; 543 boundary_bdev = map_bh.b_bdev; 544 } 545 if (page_block) { 546 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 547 goto confused; 548 } 549 blocks[page_block++] = map_bh.b_blocknr; 550 boundary = buffer_boundary(&map_bh); 551 bdev = map_bh.b_bdev; 552 if (block_in_file == last_block) 553 break; 554 block_in_file++; 555 } 556 BUG_ON(page_block == 0); 557 558 first_unmapped = page_block; 559 560 page_is_mapped: 561 end_index = i_size >> PAGE_CACHE_SHIFT; 562 if (page->index >= end_index) { 563 /* 564 * The page straddles i_size. It must be zeroed out on each 565 * and every writepage invocation because it may be mmapped. 566 * "A file is mapped in multiples of the page size. For a file 567 * that is not a multiple of the page size, the remaining memory 568 * is zeroed when mapped, and writes to that region are not 569 * written out to the file." 570 */ 571 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 572 573 if (page->index > end_index || !offset) 574 goto confused; 575 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 576 } 577 578 /* 579 * This page will go to BIO. Do we need to send this BIO off first? 580 */ 581 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 582 bio = mpage_bio_submit(WRITE, bio); 583 584 alloc_new: 585 if (bio == NULL) { 586 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 587 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 588 if (bio == NULL) 589 goto confused; 590 } 591 592 /* 593 * Must try to add the page before marking the buffer clean or 594 * the confused fail path above (OOM) will be very confused when 595 * it finds all bh marked clean (i.e. it will not write anything) 596 */ 597 length = first_unmapped << blkbits; 598 if (bio_add_page(bio, page, length, 0) < length) { 599 bio = mpage_bio_submit(WRITE, bio); 600 goto alloc_new; 601 } 602 603 /* 604 * OK, we have our BIO, so we can now mark the buffers clean. Make 605 * sure to only clean buffers which we know we'll be writing. 606 */ 607 if (page_has_buffers(page)) { 608 struct buffer_head *head = page_buffers(page); 609 struct buffer_head *bh = head; 610 unsigned buffer_counter = 0; 611 612 do { 613 if (buffer_counter++ == first_unmapped) 614 break; 615 clear_buffer_dirty(bh); 616 bh = bh->b_this_page; 617 } while (bh != head); 618 619 /* 620 * we cannot drop the bh if the page is not uptodate 621 * or a concurrent readpage would fail to serialize with the bh 622 * and it would read from disk before we reach the platter. 623 */ 624 if (buffer_heads_over_limit && PageUptodate(page)) 625 try_to_free_buffers(page); 626 } 627 628 BUG_ON(PageWriteback(page)); 629 set_page_writeback(page); 630 unlock_page(page); 631 if (boundary || (first_unmapped != blocks_per_page)) { 632 bio = mpage_bio_submit(WRITE, bio); 633 if (boundary_block) { 634 write_boundary_block(boundary_bdev, 635 boundary_block, 1 << blkbits); 636 } 637 } else { 638 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 639 } 640 goto out; 641 642 confused: 643 if (bio) 644 bio = mpage_bio_submit(WRITE, bio); 645 646 if (mpd->use_writepage) { 647 ret = mapping->a_ops->writepage(page, wbc); 648 } else { 649 ret = -EAGAIN; 650 goto out; 651 } 652 /* 653 * The caller has a ref on the inode, so *mapping is stable 654 */ 655 mapping_set_error(mapping, ret); 656 out: 657 mpd->bio = bio; 658 return ret; 659 } 660 661 /** 662 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 663 * @mapping: address space structure to write 664 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 665 * @get_block: the filesystem's block mapper function. 666 * If this is NULL then use a_ops->writepage. Otherwise, go 667 * direct-to-BIO. 668 * 669 * This is a library function, which implements the writepages() 670 * address_space_operation. 671 * 672 * If a page is already under I/O, generic_writepages() skips it, even 673 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 674 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 675 * and msync() need to guarantee that all the data which was dirty at the time 676 * the call was made get new I/O started against them. If wbc->sync_mode is 677 * WB_SYNC_ALL then we were called for data integrity and we must wait for 678 * existing IO to complete. 679 */ 680 int 681 mpage_writepages(struct address_space *mapping, 682 struct writeback_control *wbc, get_block_t get_block) 683 { 684 int ret; 685 686 if (!get_block) 687 ret = generic_writepages(mapping, wbc); 688 else { 689 struct mpage_data mpd = { 690 .bio = NULL, 691 .last_block_in_bio = 0, 692 .get_block = get_block, 693 .use_writepage = 1, 694 }; 695 696 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 697 if (mpd.bio) 698 mpage_bio_submit(WRITE, mpd.bio); 699 } 700 return ret; 701 } 702 EXPORT_SYMBOL(mpage_writepages); 703 704 int mpage_writepage(struct page *page, get_block_t get_block, 705 struct writeback_control *wbc) 706 { 707 struct mpage_data mpd = { 708 .bio = NULL, 709 .last_block_in_bio = 0, 710 .get_block = get_block, 711 .use_writepage = 0, 712 }; 713 int ret = __mpage_writepage(page, wbc, &mpd); 714 if (mpd.bio) 715 mpage_bio_submit(WRITE, mpd.bio); 716 return ret; 717 } 718 EXPORT_SYMBOL(mpage_writepage); 719