xref: /linux/fs/mpage.c (revision f25eae2c405cbe810f8c52d743ea2b507c3fc301)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * fs/mpage.c
4   *
5   * Copyright (C) 2002, Linus Torvalds.
6   *
7   * Contains functions related to preparing and submitting BIOs which contain
8   * multiple pagecache pages.
9   *
10   * 15May2002	Andrew Morton
11   *		Initial version
12   * 27Jun2002	axboe@suse.de
13   *		use bio_add_page() to build bio's just the right size
14   */
15  
16  #include <linux/kernel.h>
17  #include <linux/export.h>
18  #include <linux/mm.h>
19  #include <linux/kdev_t.h>
20  #include <linux/gfp.h>
21  #include <linux/bio.h>
22  #include <linux/fs.h>
23  #include <linux/buffer_head.h>
24  #include <linux/blkdev.h>
25  #include <linux/highmem.h>
26  #include <linux/prefetch.h>
27  #include <linux/mpage.h>
28  #include <linux/mm_inline.h>
29  #include <linux/writeback.h>
30  #include <linux/backing-dev.h>
31  #include <linux/pagevec.h>
32  #include "internal.h"
33  
34  /*
35   * I/O completion handler for multipage BIOs.
36   *
37   * The mpage code never puts partial pages into a BIO (except for end-of-file).
38   * If a page does not map to a contiguous run of blocks then it simply falls
39   * back to block_read_full_folio().
40   *
41   * Why is this?  If a page's completion depends on a number of different BIOs
42   * which can complete in any order (or at the same time) then determining the
43   * status of that page is hard.  See end_buffer_async_read() for the details.
44   * There is no point in duplicating all that complexity.
45   */
46  static void mpage_read_end_io(struct bio *bio)
47  {
48  	struct folio_iter fi;
49  	int err = blk_status_to_errno(bio->bi_status);
50  
51  	bio_for_each_folio_all(fi, bio) {
52  		if (err)
53  			folio_set_error(fi.folio);
54  		else
55  			folio_mark_uptodate(fi.folio);
56  		folio_unlock(fi.folio);
57  	}
58  
59  	bio_put(bio);
60  }
61  
62  static void mpage_write_end_io(struct bio *bio)
63  {
64  	struct folio_iter fi;
65  	int err = blk_status_to_errno(bio->bi_status);
66  
67  	bio_for_each_folio_all(fi, bio) {
68  		if (err) {
69  			folio_set_error(fi.folio);
70  			mapping_set_error(fi.folio->mapping, err);
71  		}
72  		folio_end_writeback(fi.folio);
73  	}
74  
75  	bio_put(bio);
76  }
77  
78  static struct bio *mpage_bio_submit_read(struct bio *bio)
79  {
80  	bio->bi_end_io = mpage_read_end_io;
81  	guard_bio_eod(bio);
82  	submit_bio(bio);
83  	return NULL;
84  }
85  
86  static struct bio *mpage_bio_submit_write(struct bio *bio)
87  {
88  	bio->bi_end_io = mpage_write_end_io;
89  	guard_bio_eod(bio);
90  	submit_bio(bio);
91  	return NULL;
92  }
93  
94  /*
95   * support function for mpage_readahead.  The fs supplied get_block might
96   * return an up to date buffer.  This is used to map that buffer into
97   * the page, which allows read_folio to avoid triggering a duplicate call
98   * to get_block.
99   *
100   * The idea is to avoid adding buffers to pages that don't already have
101   * them.  So when the buffer is up to date and the page size == block size,
102   * this marks the page up to date instead of adding new buffers.
103   */
104  static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
105  		int page_block)
106  {
107  	struct inode *inode = folio->mapping->host;
108  	struct buffer_head *page_bh, *head;
109  	int block = 0;
110  
111  	head = folio_buffers(folio);
112  	if (!head) {
113  		/*
114  		 * don't make any buffers if there is only one buffer on
115  		 * the folio and the folio just needs to be set up to date
116  		 */
117  		if (inode->i_blkbits == PAGE_SHIFT &&
118  		    buffer_uptodate(bh)) {
119  			folio_mark_uptodate(folio);
120  			return;
121  		}
122  		head = create_empty_buffers(folio, i_blocksize(inode), 0);
123  	}
124  
125  	page_bh = head;
126  	do {
127  		if (block == page_block) {
128  			page_bh->b_state = bh->b_state;
129  			page_bh->b_bdev = bh->b_bdev;
130  			page_bh->b_blocknr = bh->b_blocknr;
131  			break;
132  		}
133  		page_bh = page_bh->b_this_page;
134  		block++;
135  	} while (page_bh != head);
136  }
137  
138  struct mpage_readpage_args {
139  	struct bio *bio;
140  	struct folio *folio;
141  	unsigned int nr_pages;
142  	bool is_readahead;
143  	sector_t last_block_in_bio;
144  	struct buffer_head map_bh;
145  	unsigned long first_logical_block;
146  	get_block_t *get_block;
147  };
148  
149  /*
150   * This is the worker routine which does all the work of mapping the disk
151   * blocks and constructs largest possible bios, submits them for IO if the
152   * blocks are not contiguous on the disk.
153   *
154   * We pass a buffer_head back and forth and use its buffer_mapped() flag to
155   * represent the validity of its disk mapping and to decide when to do the next
156   * get_block() call.
157   */
158  static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
159  {
160  	struct folio *folio = args->folio;
161  	struct inode *inode = folio->mapping->host;
162  	const unsigned blkbits = inode->i_blkbits;
163  	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
164  	const unsigned blocksize = 1 << blkbits;
165  	struct buffer_head *map_bh = &args->map_bh;
166  	sector_t block_in_file;
167  	sector_t last_block;
168  	sector_t last_block_in_file;
169  	sector_t first_block;
170  	unsigned page_block;
171  	unsigned first_hole = blocks_per_page;
172  	struct block_device *bdev = NULL;
173  	int length;
174  	int fully_mapped = 1;
175  	blk_opf_t opf = REQ_OP_READ;
176  	unsigned nblocks;
177  	unsigned relative_block;
178  	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
179  
180  	/* MAX_BUF_PER_PAGE, for example */
181  	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
182  
183  	if (args->is_readahead) {
184  		opf |= REQ_RAHEAD;
185  		gfp |= __GFP_NORETRY | __GFP_NOWARN;
186  	}
187  
188  	if (folio_buffers(folio))
189  		goto confused;
190  
191  	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
192  	last_block = block_in_file + args->nr_pages * blocks_per_page;
193  	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
194  	if (last_block > last_block_in_file)
195  		last_block = last_block_in_file;
196  	page_block = 0;
197  
198  	/*
199  	 * Map blocks using the result from the previous get_blocks call first.
200  	 */
201  	nblocks = map_bh->b_size >> blkbits;
202  	if (buffer_mapped(map_bh) &&
203  			block_in_file > args->first_logical_block &&
204  			block_in_file < (args->first_logical_block + nblocks)) {
205  		unsigned map_offset = block_in_file - args->first_logical_block;
206  		unsigned last = nblocks - map_offset;
207  
208  		first_block = map_bh->b_blocknr + map_offset;
209  		for (relative_block = 0; ; relative_block++) {
210  			if (relative_block == last) {
211  				clear_buffer_mapped(map_bh);
212  				break;
213  			}
214  			if (page_block == blocks_per_page)
215  				break;
216  			page_block++;
217  			block_in_file++;
218  		}
219  		bdev = map_bh->b_bdev;
220  	}
221  
222  	/*
223  	 * Then do more get_blocks calls until we are done with this folio.
224  	 */
225  	map_bh->b_folio = folio;
226  	while (page_block < blocks_per_page) {
227  		map_bh->b_state = 0;
228  		map_bh->b_size = 0;
229  
230  		if (block_in_file < last_block) {
231  			map_bh->b_size = (last_block-block_in_file) << blkbits;
232  			if (args->get_block(inode, block_in_file, map_bh, 0))
233  				goto confused;
234  			args->first_logical_block = block_in_file;
235  		}
236  
237  		if (!buffer_mapped(map_bh)) {
238  			fully_mapped = 0;
239  			if (first_hole == blocks_per_page)
240  				first_hole = page_block;
241  			page_block++;
242  			block_in_file++;
243  			continue;
244  		}
245  
246  		/* some filesystems will copy data into the page during
247  		 * the get_block call, in which case we don't want to
248  		 * read it again.  map_buffer_to_folio copies the data
249  		 * we just collected from get_block into the folio's buffers
250  		 * so read_folio doesn't have to repeat the get_block call
251  		 */
252  		if (buffer_uptodate(map_bh)) {
253  			map_buffer_to_folio(folio, map_bh, page_block);
254  			goto confused;
255  		}
256  
257  		if (first_hole != blocks_per_page)
258  			goto confused;		/* hole -> non-hole */
259  
260  		/* Contiguous blocks? */
261  		if (!page_block)
262  			first_block = map_bh->b_blocknr;
263  		else if (first_block + page_block != map_bh->b_blocknr)
264  			goto confused;
265  		nblocks = map_bh->b_size >> blkbits;
266  		for (relative_block = 0; ; relative_block++) {
267  			if (relative_block == nblocks) {
268  				clear_buffer_mapped(map_bh);
269  				break;
270  			} else if (page_block == blocks_per_page)
271  				break;
272  			page_block++;
273  			block_in_file++;
274  		}
275  		bdev = map_bh->b_bdev;
276  	}
277  
278  	if (first_hole != blocks_per_page) {
279  		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
280  		if (first_hole == 0) {
281  			folio_mark_uptodate(folio);
282  			folio_unlock(folio);
283  			goto out;
284  		}
285  	} else if (fully_mapped) {
286  		folio_set_mappedtodisk(folio);
287  	}
288  
289  	/*
290  	 * This folio will go to BIO.  Do we need to send this BIO off first?
291  	 */
292  	if (args->bio && (args->last_block_in_bio != first_block - 1))
293  		args->bio = mpage_bio_submit_read(args->bio);
294  
295  alloc_new:
296  	if (args->bio == NULL) {
297  		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
298  				      gfp);
299  		if (args->bio == NULL)
300  			goto confused;
301  		args->bio->bi_iter.bi_sector = first_block << (blkbits - 9);
302  	}
303  
304  	length = first_hole << blkbits;
305  	if (!bio_add_folio(args->bio, folio, length, 0)) {
306  		args->bio = mpage_bio_submit_read(args->bio);
307  		goto alloc_new;
308  	}
309  
310  	relative_block = block_in_file - args->first_logical_block;
311  	nblocks = map_bh->b_size >> blkbits;
312  	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
313  	    (first_hole != blocks_per_page))
314  		args->bio = mpage_bio_submit_read(args->bio);
315  	else
316  		args->last_block_in_bio = first_block + blocks_per_page - 1;
317  out:
318  	return args->bio;
319  
320  confused:
321  	if (args->bio)
322  		args->bio = mpage_bio_submit_read(args->bio);
323  	if (!folio_test_uptodate(folio))
324  		block_read_full_folio(folio, args->get_block);
325  	else
326  		folio_unlock(folio);
327  	goto out;
328  }
329  
330  /**
331   * mpage_readahead - start reads against pages
332   * @rac: Describes which pages to read.
333   * @get_block: The filesystem's block mapper function.
334   *
335   * This function walks the pages and the blocks within each page, building and
336   * emitting large BIOs.
337   *
338   * If anything unusual happens, such as:
339   *
340   * - encountering a page which has buffers
341   * - encountering a page which has a non-hole after a hole
342   * - encountering a page with non-contiguous blocks
343   *
344   * then this code just gives up and calls the buffer_head-based read function.
345   * It does handle a page which has holes at the end - that is a common case:
346   * the end-of-file on blocksize < PAGE_SIZE setups.
347   *
348   * BH_Boundary explanation:
349   *
350   * There is a problem.  The mpage read code assembles several pages, gets all
351   * their disk mappings, and then submits them all.  That's fine, but obtaining
352   * the disk mappings may require I/O.  Reads of indirect blocks, for example.
353   *
354   * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
355   * submitted in the following order:
356   *
357   * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
358   *
359   * because the indirect block has to be read to get the mappings of blocks
360   * 13,14,15,16.  Obviously, this impacts performance.
361   *
362   * So what we do it to allow the filesystem's get_block() function to set
363   * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
364   * after this one will require I/O against a block which is probably close to
365   * this one.  So you should push what I/O you have currently accumulated.
366   *
367   * This all causes the disk requests to be issued in the correct order.
368   */
369  void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
370  {
371  	struct folio *folio;
372  	struct mpage_readpage_args args = {
373  		.get_block = get_block,
374  		.is_readahead = true,
375  	};
376  
377  	while ((folio = readahead_folio(rac))) {
378  		prefetchw(&folio->flags);
379  		args.folio = folio;
380  		args.nr_pages = readahead_count(rac);
381  		args.bio = do_mpage_readpage(&args);
382  	}
383  	if (args.bio)
384  		mpage_bio_submit_read(args.bio);
385  }
386  EXPORT_SYMBOL(mpage_readahead);
387  
388  /*
389   * This isn't called much at all
390   */
391  int mpage_read_folio(struct folio *folio, get_block_t get_block)
392  {
393  	struct mpage_readpage_args args = {
394  		.folio = folio,
395  		.nr_pages = 1,
396  		.get_block = get_block,
397  	};
398  
399  	args.bio = do_mpage_readpage(&args);
400  	if (args.bio)
401  		mpage_bio_submit_read(args.bio);
402  	return 0;
403  }
404  EXPORT_SYMBOL(mpage_read_folio);
405  
406  /*
407   * Writing is not so simple.
408   *
409   * If the page has buffers then they will be used for obtaining the disk
410   * mapping.  We only support pages which are fully mapped-and-dirty, with a
411   * special case for pages which are unmapped at the end: end-of-file.
412   *
413   * If the page has no buffers (preferred) then the page is mapped here.
414   *
415   * If all blocks are found to be contiguous then the page can go into the
416   * BIO.  Otherwise fall back to the mapping's writepage().
417   *
418   * FIXME: This code wants an estimate of how many pages are still to be
419   * written, so it can intelligently allocate a suitably-sized BIO.  For now,
420   * just allocate full-size (16-page) BIOs.
421   */
422  
423  struct mpage_data {
424  	struct bio *bio;
425  	sector_t last_block_in_bio;
426  	get_block_t *get_block;
427  };
428  
429  /*
430   * We have our BIO, so we can now mark the buffers clean.  Make
431   * sure to only clean buffers which we know we'll be writing.
432   */
433  static void clean_buffers(struct folio *folio, unsigned first_unmapped)
434  {
435  	unsigned buffer_counter = 0;
436  	struct buffer_head *bh, *head = folio_buffers(folio);
437  
438  	if (!head)
439  		return;
440  	bh = head;
441  
442  	do {
443  		if (buffer_counter++ == first_unmapped)
444  			break;
445  		clear_buffer_dirty(bh);
446  		bh = bh->b_this_page;
447  	} while (bh != head);
448  
449  	/*
450  	 * we cannot drop the bh if the page is not uptodate or a concurrent
451  	 * read_folio would fail to serialize with the bh and it would read from
452  	 * disk before we reach the platter.
453  	 */
454  	if (buffer_heads_over_limit && folio_test_uptodate(folio))
455  		try_to_free_buffers(folio);
456  }
457  
458  static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
459  		      void *data)
460  {
461  	struct mpage_data *mpd = data;
462  	struct bio *bio = mpd->bio;
463  	struct address_space *mapping = folio->mapping;
464  	struct inode *inode = mapping->host;
465  	const unsigned blkbits = inode->i_blkbits;
466  	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
467  	sector_t last_block;
468  	sector_t block_in_file;
469  	sector_t first_block;
470  	unsigned page_block;
471  	unsigned first_unmapped = blocks_per_page;
472  	struct block_device *bdev = NULL;
473  	int boundary = 0;
474  	sector_t boundary_block = 0;
475  	struct block_device *boundary_bdev = NULL;
476  	size_t length;
477  	struct buffer_head map_bh;
478  	loff_t i_size = i_size_read(inode);
479  	int ret = 0;
480  	struct buffer_head *head = folio_buffers(folio);
481  
482  	if (head) {
483  		struct buffer_head *bh = head;
484  
485  		/* If they're all mapped and dirty, do it */
486  		page_block = 0;
487  		do {
488  			BUG_ON(buffer_locked(bh));
489  			if (!buffer_mapped(bh)) {
490  				/*
491  				 * unmapped dirty buffers are created by
492  				 * block_dirty_folio -> mmapped data
493  				 */
494  				if (buffer_dirty(bh))
495  					goto confused;
496  				if (first_unmapped == blocks_per_page)
497  					first_unmapped = page_block;
498  				continue;
499  			}
500  
501  			if (first_unmapped != blocks_per_page)
502  				goto confused;	/* hole -> non-hole */
503  
504  			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
505  				goto confused;
506  			if (page_block) {
507  				if (bh->b_blocknr != first_block + page_block)
508  					goto confused;
509  			} else {
510  				first_block = bh->b_blocknr;
511  			}
512  			page_block++;
513  			boundary = buffer_boundary(bh);
514  			if (boundary) {
515  				boundary_block = bh->b_blocknr;
516  				boundary_bdev = bh->b_bdev;
517  			}
518  			bdev = bh->b_bdev;
519  		} while ((bh = bh->b_this_page) != head);
520  
521  		if (first_unmapped)
522  			goto page_is_mapped;
523  
524  		/*
525  		 * Page has buffers, but they are all unmapped. The page was
526  		 * created by pagein or read over a hole which was handled by
527  		 * block_read_full_folio().  If this address_space is also
528  		 * using mpage_readahead then this can rarely happen.
529  		 */
530  		goto confused;
531  	}
532  
533  	/*
534  	 * The page has no buffers: map it to disk
535  	 */
536  	BUG_ON(!folio_test_uptodate(folio));
537  	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
538  	/*
539  	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
540  	 * space.
541  	 */
542  	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
543  		goto page_is_mapped;
544  	last_block = (i_size - 1) >> blkbits;
545  	map_bh.b_folio = folio;
546  	for (page_block = 0; page_block < blocks_per_page; ) {
547  
548  		map_bh.b_state = 0;
549  		map_bh.b_size = 1 << blkbits;
550  		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
551  			goto confused;
552  		if (!buffer_mapped(&map_bh))
553  			goto confused;
554  		if (buffer_new(&map_bh))
555  			clean_bdev_bh_alias(&map_bh);
556  		if (buffer_boundary(&map_bh)) {
557  			boundary_block = map_bh.b_blocknr;
558  			boundary_bdev = map_bh.b_bdev;
559  		}
560  		if (page_block) {
561  			if (map_bh.b_blocknr != first_block + page_block)
562  				goto confused;
563  		} else {
564  			first_block = map_bh.b_blocknr;
565  		}
566  		page_block++;
567  		boundary = buffer_boundary(&map_bh);
568  		bdev = map_bh.b_bdev;
569  		if (block_in_file == last_block)
570  			break;
571  		block_in_file++;
572  	}
573  	BUG_ON(page_block == 0);
574  
575  	first_unmapped = page_block;
576  
577  page_is_mapped:
578  	/* Don't bother writing beyond EOF, truncate will discard the folio */
579  	if (folio_pos(folio) >= i_size)
580  		goto confused;
581  	length = folio_size(folio);
582  	if (folio_pos(folio) + length > i_size) {
583  		/*
584  		 * The page straddles i_size.  It must be zeroed out on each
585  		 * and every writepage invocation because it may be mmapped.
586  		 * "A file is mapped in multiples of the page size.  For a file
587  		 * that is not a multiple of the page size, the remaining memory
588  		 * is zeroed when mapped, and writes to that region are not
589  		 * written out to the file."
590  		 */
591  		length = i_size - folio_pos(folio);
592  		folio_zero_segment(folio, length, folio_size(folio));
593  	}
594  
595  	/*
596  	 * This page will go to BIO.  Do we need to send this BIO off first?
597  	 */
598  	if (bio && mpd->last_block_in_bio != first_block - 1)
599  		bio = mpage_bio_submit_write(bio);
600  
601  alloc_new:
602  	if (bio == NULL) {
603  		bio = bio_alloc(bdev, BIO_MAX_VECS,
604  				REQ_OP_WRITE | wbc_to_write_flags(wbc),
605  				GFP_NOFS);
606  		bio->bi_iter.bi_sector = first_block << (blkbits - 9);
607  		wbc_init_bio(wbc, bio);
608  		bio->bi_write_hint = inode->i_write_hint;
609  	}
610  
611  	/*
612  	 * Must try to add the page before marking the buffer clean or
613  	 * the confused fail path above (OOM) will be very confused when
614  	 * it finds all bh marked clean (i.e. it will not write anything)
615  	 */
616  	wbc_account_cgroup_owner(wbc, &folio->page, folio_size(folio));
617  	length = first_unmapped << blkbits;
618  	if (!bio_add_folio(bio, folio, length, 0)) {
619  		bio = mpage_bio_submit_write(bio);
620  		goto alloc_new;
621  	}
622  
623  	clean_buffers(folio, first_unmapped);
624  
625  	BUG_ON(folio_test_writeback(folio));
626  	folio_start_writeback(folio);
627  	folio_unlock(folio);
628  	if (boundary || (first_unmapped != blocks_per_page)) {
629  		bio = mpage_bio_submit_write(bio);
630  		if (boundary_block) {
631  			write_boundary_block(boundary_bdev,
632  					boundary_block, 1 << blkbits);
633  		}
634  	} else {
635  		mpd->last_block_in_bio = first_block + blocks_per_page - 1;
636  	}
637  	goto out;
638  
639  confused:
640  	if (bio)
641  		bio = mpage_bio_submit_write(bio);
642  
643  	/*
644  	 * The caller has a ref on the inode, so *mapping is stable
645  	 */
646  	ret = block_write_full_folio(folio, wbc, mpd->get_block);
647  	mapping_set_error(mapping, ret);
648  out:
649  	mpd->bio = bio;
650  	return ret;
651  }
652  
653  /**
654   * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
655   * @mapping: address space structure to write
656   * @wbc: subtract the number of written pages from *@wbc->nr_to_write
657   * @get_block: the filesystem's block mapper function.
658   *
659   * This is a library function, which implements the writepages()
660   * address_space_operation.
661   */
662  int
663  mpage_writepages(struct address_space *mapping,
664  		struct writeback_control *wbc, get_block_t get_block)
665  {
666  	struct mpage_data mpd = {
667  		.get_block	= get_block,
668  	};
669  	struct blk_plug plug;
670  	int ret;
671  
672  	blk_start_plug(&plug);
673  	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
674  	if (mpd.bio)
675  		mpage_bio_submit_write(mpd.bio);
676  	blk_finish_plug(&plug);
677  	return ret;
678  }
679  EXPORT_SYMBOL(mpage_writepages);
680