1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/bio.h> 20 #include <linux/fs.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/highmem.h> 24 #include <linux/prefetch.h> 25 #include <linux/mpage.h> 26 #include <linux/writeback.h> 27 #include <linux/backing-dev.h> 28 #include <linux/pagevec.h> 29 30 /* 31 * I/O completion handler for multipage BIOs. 32 * 33 * The mpage code never puts partial pages into a BIO (except for end-of-file). 34 * If a page does not map to a contiguous run of blocks then it simply falls 35 * back to block_read_full_page(). 36 * 37 * Why is this? If a page's completion depends on a number of different BIOs 38 * which can complete in any order (or at the same time) then determining the 39 * status of that page is hard. See end_buffer_async_read() for the details. 40 * There is no point in duplicating all that complexity. 41 */ 42 static void mpage_end_io_read(struct bio *bio, int err) 43 { 44 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 45 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 46 47 do { 48 struct page *page = bvec->bv_page; 49 50 if (--bvec >= bio->bi_io_vec) 51 prefetchw(&bvec->bv_page->flags); 52 53 if (uptodate) { 54 SetPageUptodate(page); 55 } else { 56 ClearPageUptodate(page); 57 SetPageError(page); 58 } 59 unlock_page(page); 60 } while (bvec >= bio->bi_io_vec); 61 bio_put(bio); 62 } 63 64 static void mpage_end_io_write(struct bio *bio, int err) 65 { 66 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 67 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 68 69 do { 70 struct page *page = bvec->bv_page; 71 72 if (--bvec >= bio->bi_io_vec) 73 prefetchw(&bvec->bv_page->flags); 74 75 if (!uptodate){ 76 SetPageError(page); 77 if (page->mapping) 78 set_bit(AS_EIO, &page->mapping->flags); 79 } 80 end_page_writeback(page); 81 } while (bvec >= bio->bi_io_vec); 82 bio_put(bio); 83 } 84 85 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 86 { 87 bio->bi_end_io = mpage_end_io_read; 88 if (rw == WRITE) 89 bio->bi_end_io = mpage_end_io_write; 90 submit_bio(rw, bio); 91 return NULL; 92 } 93 94 static struct bio * 95 mpage_alloc(struct block_device *bdev, 96 sector_t first_sector, int nr_vecs, 97 gfp_t gfp_flags) 98 { 99 struct bio *bio; 100 101 bio = bio_alloc(gfp_flags, nr_vecs); 102 103 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 104 while (!bio && (nr_vecs /= 2)) 105 bio = bio_alloc(gfp_flags, nr_vecs); 106 } 107 108 if (bio) { 109 bio->bi_bdev = bdev; 110 bio->bi_sector = first_sector; 111 } 112 return bio; 113 } 114 115 /* 116 * support function for mpage_readpages. The fs supplied get_block might 117 * return an up to date buffer. This is used to map that buffer into 118 * the page, which allows readpage to avoid triggering a duplicate call 119 * to get_block. 120 * 121 * The idea is to avoid adding buffers to pages that don't already have 122 * them. So when the buffer is up to date and the page size == block size, 123 * this marks the page up to date instead of adding new buffers. 124 */ 125 static void 126 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 127 { 128 struct inode *inode = page->mapping->host; 129 struct buffer_head *page_bh, *head; 130 int block = 0; 131 132 if (!page_has_buffers(page)) { 133 /* 134 * don't make any buffers if there is only one buffer on 135 * the page and the page just needs to be set up to date 136 */ 137 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 138 buffer_uptodate(bh)) { 139 SetPageUptodate(page); 140 return; 141 } 142 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 143 } 144 head = page_buffers(page); 145 page_bh = head; 146 do { 147 if (block == page_block) { 148 page_bh->b_state = bh->b_state; 149 page_bh->b_bdev = bh->b_bdev; 150 page_bh->b_blocknr = bh->b_blocknr; 151 break; 152 } 153 page_bh = page_bh->b_this_page; 154 block++; 155 } while (page_bh != head); 156 } 157 158 /* 159 * This is the worker routine which does all the work of mapping the disk 160 * blocks and constructs largest possible bios, submits them for IO if the 161 * blocks are not contiguous on the disk. 162 * 163 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 164 * represent the validity of its disk mapping and to decide when to do the next 165 * get_block() call. 166 */ 167 static struct bio * 168 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 169 sector_t *last_block_in_bio, struct buffer_head *map_bh, 170 unsigned long *first_logical_block, get_block_t get_block) 171 { 172 struct inode *inode = page->mapping->host; 173 const unsigned blkbits = inode->i_blkbits; 174 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 175 const unsigned blocksize = 1 << blkbits; 176 sector_t block_in_file; 177 sector_t last_block; 178 sector_t last_block_in_file; 179 sector_t blocks[MAX_BUF_PER_PAGE]; 180 unsigned page_block; 181 unsigned first_hole = blocks_per_page; 182 struct block_device *bdev = NULL; 183 int length; 184 int fully_mapped = 1; 185 unsigned nblocks; 186 unsigned relative_block; 187 188 if (page_has_buffers(page)) 189 goto confused; 190 191 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 192 last_block = block_in_file + nr_pages * blocks_per_page; 193 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 194 if (last_block > last_block_in_file) 195 last_block = last_block_in_file; 196 page_block = 0; 197 198 /* 199 * Map blocks using the result from the previous get_blocks call first. 200 */ 201 nblocks = map_bh->b_size >> blkbits; 202 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 203 block_in_file < (*first_logical_block + nblocks)) { 204 unsigned map_offset = block_in_file - *first_logical_block; 205 unsigned last = nblocks - map_offset; 206 207 for (relative_block = 0; ; relative_block++) { 208 if (relative_block == last) { 209 clear_buffer_mapped(map_bh); 210 break; 211 } 212 if (page_block == blocks_per_page) 213 break; 214 blocks[page_block] = map_bh->b_blocknr + map_offset + 215 relative_block; 216 page_block++; 217 block_in_file++; 218 } 219 bdev = map_bh->b_bdev; 220 } 221 222 /* 223 * Then do more get_blocks calls until we are done with this page. 224 */ 225 map_bh->b_page = page; 226 while (page_block < blocks_per_page) { 227 map_bh->b_state = 0; 228 map_bh->b_size = 0; 229 230 if (block_in_file < last_block) { 231 map_bh->b_size = (last_block-block_in_file) << blkbits; 232 if (get_block(inode, block_in_file, map_bh, 0)) 233 goto confused; 234 *first_logical_block = block_in_file; 235 } 236 237 if (!buffer_mapped(map_bh)) { 238 fully_mapped = 0; 239 if (first_hole == blocks_per_page) 240 first_hole = page_block; 241 page_block++; 242 block_in_file++; 243 continue; 244 } 245 246 /* some filesystems will copy data into the page during 247 * the get_block call, in which case we don't want to 248 * read it again. map_buffer_to_page copies the data 249 * we just collected from get_block into the page's buffers 250 * so readpage doesn't have to repeat the get_block call 251 */ 252 if (buffer_uptodate(map_bh)) { 253 map_buffer_to_page(page, map_bh, page_block); 254 goto confused; 255 } 256 257 if (first_hole != blocks_per_page) 258 goto confused; /* hole -> non-hole */ 259 260 /* Contiguous blocks? */ 261 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 262 goto confused; 263 nblocks = map_bh->b_size >> blkbits; 264 for (relative_block = 0; ; relative_block++) { 265 if (relative_block == nblocks) { 266 clear_buffer_mapped(map_bh); 267 break; 268 } else if (page_block == blocks_per_page) 269 break; 270 blocks[page_block] = map_bh->b_blocknr+relative_block; 271 page_block++; 272 block_in_file++; 273 } 274 bdev = map_bh->b_bdev; 275 } 276 277 if (first_hole != blocks_per_page) { 278 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); 279 if (first_hole == 0) { 280 SetPageUptodate(page); 281 unlock_page(page); 282 goto out; 283 } 284 } else if (fully_mapped) { 285 SetPageMappedToDisk(page); 286 } 287 288 /* 289 * This page will go to BIO. Do we need to send this BIO off first? 290 */ 291 if (bio && (*last_block_in_bio != blocks[0] - 1)) 292 bio = mpage_bio_submit(READ, bio); 293 294 alloc_new: 295 if (bio == NULL) { 296 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 297 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 298 GFP_KERNEL); 299 if (bio == NULL) 300 goto confused; 301 } 302 303 length = first_hole << blkbits; 304 if (bio_add_page(bio, page, length, 0) < length) { 305 bio = mpage_bio_submit(READ, bio); 306 goto alloc_new; 307 } 308 309 relative_block = block_in_file - *first_logical_block; 310 nblocks = map_bh->b_size >> blkbits; 311 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 312 (first_hole != blocks_per_page)) 313 bio = mpage_bio_submit(READ, bio); 314 else 315 *last_block_in_bio = blocks[blocks_per_page - 1]; 316 out: 317 return bio; 318 319 confused: 320 if (bio) 321 bio = mpage_bio_submit(READ, bio); 322 if (!PageUptodate(page)) 323 block_read_full_page(page, get_block); 324 else 325 unlock_page(page); 326 goto out; 327 } 328 329 /** 330 * mpage_readpages - populate an address space with some pages & start reads against them 331 * @mapping: the address_space 332 * @pages: The address of a list_head which contains the target pages. These 333 * pages have their ->index populated and are otherwise uninitialised. 334 * The page at @pages->prev has the lowest file offset, and reads should be 335 * issued in @pages->prev to @pages->next order. 336 * @nr_pages: The number of pages at *@pages 337 * @get_block: The filesystem's block mapper function. 338 * 339 * This function walks the pages and the blocks within each page, building and 340 * emitting large BIOs. 341 * 342 * If anything unusual happens, such as: 343 * 344 * - encountering a page which has buffers 345 * - encountering a page which has a non-hole after a hole 346 * - encountering a page with non-contiguous blocks 347 * 348 * then this code just gives up and calls the buffer_head-based read function. 349 * It does handle a page which has holes at the end - that is a common case: 350 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 351 * 352 * BH_Boundary explanation: 353 * 354 * There is a problem. The mpage read code assembles several pages, gets all 355 * their disk mappings, and then submits them all. That's fine, but obtaining 356 * the disk mappings may require I/O. Reads of indirect blocks, for example. 357 * 358 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 359 * submitted in the following order: 360 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 361 * 362 * because the indirect block has to be read to get the mappings of blocks 363 * 13,14,15,16. Obviously, this impacts performance. 364 * 365 * So what we do it to allow the filesystem's get_block() function to set 366 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 367 * after this one will require I/O against a block which is probably close to 368 * this one. So you should push what I/O you have currently accumulated. 369 * 370 * This all causes the disk requests to be issued in the correct order. 371 */ 372 int 373 mpage_readpages(struct address_space *mapping, struct list_head *pages, 374 unsigned nr_pages, get_block_t get_block) 375 { 376 struct bio *bio = NULL; 377 unsigned page_idx; 378 sector_t last_block_in_bio = 0; 379 struct buffer_head map_bh; 380 unsigned long first_logical_block = 0; 381 382 map_bh.b_state = 0; 383 map_bh.b_size = 0; 384 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 385 struct page *page = list_entry(pages->prev, struct page, lru); 386 387 prefetchw(&page->flags); 388 list_del(&page->lru); 389 if (!add_to_page_cache_lru(page, mapping, 390 page->index, GFP_KERNEL)) { 391 bio = do_mpage_readpage(bio, page, 392 nr_pages - page_idx, 393 &last_block_in_bio, &map_bh, 394 &first_logical_block, 395 get_block); 396 } 397 page_cache_release(page); 398 } 399 BUG_ON(!list_empty(pages)); 400 if (bio) 401 mpage_bio_submit(READ, bio); 402 return 0; 403 } 404 EXPORT_SYMBOL(mpage_readpages); 405 406 /* 407 * This isn't called much at all 408 */ 409 int mpage_readpage(struct page *page, get_block_t get_block) 410 { 411 struct bio *bio = NULL; 412 sector_t last_block_in_bio = 0; 413 struct buffer_head map_bh; 414 unsigned long first_logical_block = 0; 415 416 map_bh.b_state = 0; 417 map_bh.b_size = 0; 418 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 419 &map_bh, &first_logical_block, get_block); 420 if (bio) 421 mpage_bio_submit(READ, bio); 422 return 0; 423 } 424 EXPORT_SYMBOL(mpage_readpage); 425 426 /* 427 * Writing is not so simple. 428 * 429 * If the page has buffers then they will be used for obtaining the disk 430 * mapping. We only support pages which are fully mapped-and-dirty, with a 431 * special case for pages which are unmapped at the end: end-of-file. 432 * 433 * If the page has no buffers (preferred) then the page is mapped here. 434 * 435 * If all blocks are found to be contiguous then the page can go into the 436 * BIO. Otherwise fall back to the mapping's writepage(). 437 * 438 * FIXME: This code wants an estimate of how many pages are still to be 439 * written, so it can intelligently allocate a suitably-sized BIO. For now, 440 * just allocate full-size (16-page) BIOs. 441 */ 442 443 struct mpage_data { 444 struct bio *bio; 445 sector_t last_block_in_bio; 446 get_block_t *get_block; 447 unsigned use_writepage; 448 }; 449 450 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 451 void *data) 452 { 453 struct mpage_data *mpd = data; 454 struct bio *bio = mpd->bio; 455 struct address_space *mapping = page->mapping; 456 struct inode *inode = page->mapping->host; 457 const unsigned blkbits = inode->i_blkbits; 458 unsigned long end_index; 459 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 460 sector_t last_block; 461 sector_t block_in_file; 462 sector_t blocks[MAX_BUF_PER_PAGE]; 463 unsigned page_block; 464 unsigned first_unmapped = blocks_per_page; 465 struct block_device *bdev = NULL; 466 int boundary = 0; 467 sector_t boundary_block = 0; 468 struct block_device *boundary_bdev = NULL; 469 int length; 470 struct buffer_head map_bh; 471 loff_t i_size = i_size_read(inode); 472 int ret = 0; 473 474 if (page_has_buffers(page)) { 475 struct buffer_head *head = page_buffers(page); 476 struct buffer_head *bh = head; 477 478 /* If they're all mapped and dirty, do it */ 479 page_block = 0; 480 do { 481 BUG_ON(buffer_locked(bh)); 482 if (!buffer_mapped(bh)) { 483 /* 484 * unmapped dirty buffers are created by 485 * __set_page_dirty_buffers -> mmapped data 486 */ 487 if (buffer_dirty(bh)) 488 goto confused; 489 if (first_unmapped == blocks_per_page) 490 first_unmapped = page_block; 491 continue; 492 } 493 494 if (first_unmapped != blocks_per_page) 495 goto confused; /* hole -> non-hole */ 496 497 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 498 goto confused; 499 if (page_block) { 500 if (bh->b_blocknr != blocks[page_block-1] + 1) 501 goto confused; 502 } 503 blocks[page_block++] = bh->b_blocknr; 504 boundary = buffer_boundary(bh); 505 if (boundary) { 506 boundary_block = bh->b_blocknr; 507 boundary_bdev = bh->b_bdev; 508 } 509 bdev = bh->b_bdev; 510 } while ((bh = bh->b_this_page) != head); 511 512 if (first_unmapped) 513 goto page_is_mapped; 514 515 /* 516 * Page has buffers, but they are all unmapped. The page was 517 * created by pagein or read over a hole which was handled by 518 * block_read_full_page(). If this address_space is also 519 * using mpage_readpages then this can rarely happen. 520 */ 521 goto confused; 522 } 523 524 /* 525 * The page has no buffers: map it to disk 526 */ 527 BUG_ON(!PageUptodate(page)); 528 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 529 last_block = (i_size - 1) >> blkbits; 530 map_bh.b_page = page; 531 for (page_block = 0; page_block < blocks_per_page; ) { 532 533 map_bh.b_state = 0; 534 map_bh.b_size = 1 << blkbits; 535 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 536 goto confused; 537 if (buffer_new(&map_bh)) 538 unmap_underlying_metadata(map_bh.b_bdev, 539 map_bh.b_blocknr); 540 if (buffer_boundary(&map_bh)) { 541 boundary_block = map_bh.b_blocknr; 542 boundary_bdev = map_bh.b_bdev; 543 } 544 if (page_block) { 545 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 546 goto confused; 547 } 548 blocks[page_block++] = map_bh.b_blocknr; 549 boundary = buffer_boundary(&map_bh); 550 bdev = map_bh.b_bdev; 551 if (block_in_file == last_block) 552 break; 553 block_in_file++; 554 } 555 BUG_ON(page_block == 0); 556 557 first_unmapped = page_block; 558 559 page_is_mapped: 560 end_index = i_size >> PAGE_CACHE_SHIFT; 561 if (page->index >= end_index) { 562 /* 563 * The page straddles i_size. It must be zeroed out on each 564 * and every writepage invokation because it may be mmapped. 565 * "A file is mapped in multiples of the page size. For a file 566 * that is not a multiple of the page size, the remaining memory 567 * is zeroed when mapped, and writes to that region are not 568 * written out to the file." 569 */ 570 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 571 572 if (page->index > end_index || !offset) 573 goto confused; 574 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 575 } 576 577 /* 578 * This page will go to BIO. Do we need to send this BIO off first? 579 */ 580 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 581 bio = mpage_bio_submit(WRITE, bio); 582 583 alloc_new: 584 if (bio == NULL) { 585 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 586 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 587 if (bio == NULL) 588 goto confused; 589 } 590 591 /* 592 * Must try to add the page before marking the buffer clean or 593 * the confused fail path above (OOM) will be very confused when 594 * it finds all bh marked clean (i.e. it will not write anything) 595 */ 596 length = first_unmapped << blkbits; 597 if (bio_add_page(bio, page, length, 0) < length) { 598 bio = mpage_bio_submit(WRITE, bio); 599 goto alloc_new; 600 } 601 602 /* 603 * OK, we have our BIO, so we can now mark the buffers clean. Make 604 * sure to only clean buffers which we know we'll be writing. 605 */ 606 if (page_has_buffers(page)) { 607 struct buffer_head *head = page_buffers(page); 608 struct buffer_head *bh = head; 609 unsigned buffer_counter = 0; 610 611 do { 612 if (buffer_counter++ == first_unmapped) 613 break; 614 clear_buffer_dirty(bh); 615 bh = bh->b_this_page; 616 } while (bh != head); 617 618 /* 619 * we cannot drop the bh if the page is not uptodate 620 * or a concurrent readpage would fail to serialize with the bh 621 * and it would read from disk before we reach the platter. 622 */ 623 if (buffer_heads_over_limit && PageUptodate(page)) 624 try_to_free_buffers(page); 625 } 626 627 BUG_ON(PageWriteback(page)); 628 set_page_writeback(page); 629 unlock_page(page); 630 if (boundary || (first_unmapped != blocks_per_page)) { 631 bio = mpage_bio_submit(WRITE, bio); 632 if (boundary_block) { 633 write_boundary_block(boundary_bdev, 634 boundary_block, 1 << blkbits); 635 } 636 } else { 637 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 638 } 639 goto out; 640 641 confused: 642 if (bio) 643 bio = mpage_bio_submit(WRITE, bio); 644 645 if (mpd->use_writepage) { 646 ret = mapping->a_ops->writepage(page, wbc); 647 } else { 648 ret = -EAGAIN; 649 goto out; 650 } 651 /* 652 * The caller has a ref on the inode, so *mapping is stable 653 */ 654 mapping_set_error(mapping, ret); 655 out: 656 mpd->bio = bio; 657 return ret; 658 } 659 660 /** 661 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 662 * @mapping: address space structure to write 663 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 664 * @get_block: the filesystem's block mapper function. 665 * If this is NULL then use a_ops->writepage. Otherwise, go 666 * direct-to-BIO. 667 * 668 * This is a library function, which implements the writepages() 669 * address_space_operation. 670 * 671 * If a page is already under I/O, generic_writepages() skips it, even 672 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 673 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 674 * and msync() need to guarantee that all the data which was dirty at the time 675 * the call was made get new I/O started against them. If wbc->sync_mode is 676 * WB_SYNC_ALL then we were called for data integrity and we must wait for 677 * existing IO to complete. 678 */ 679 int 680 mpage_writepages(struct address_space *mapping, 681 struct writeback_control *wbc, get_block_t get_block) 682 { 683 int ret; 684 685 if (!get_block) 686 ret = generic_writepages(mapping, wbc); 687 else { 688 struct mpage_data mpd = { 689 .bio = NULL, 690 .last_block_in_bio = 0, 691 .get_block = get_block, 692 .use_writepage = 1, 693 }; 694 695 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 696 if (mpd.bio) 697 mpage_bio_submit(WRITE, mpd.bio); 698 } 699 return ret; 700 } 701 EXPORT_SYMBOL(mpage_writepages); 702 703 int mpage_writepage(struct page *page, get_block_t get_block, 704 struct writeback_control *wbc) 705 { 706 struct mpage_data mpd = { 707 .bio = NULL, 708 .last_block_in_bio = 0, 709 .get_block = get_block, 710 .use_writepage = 0, 711 }; 712 int ret = __mpage_writepage(page, wbc, &mpd); 713 if (mpd.bio) 714 mpage_bio_submit(WRITE, mpd.bio); 715 return ret; 716 } 717 EXPORT_SYMBOL(mpage_writepage); 718