xref: /linux/fs/mpage.c (revision eb057b44dbe35ae14527830236a92f51de8f9184)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48 	struct bio_vec *bv;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bv, bio, iter_all) {
52 		struct page *page = bv->bv_page;
53 		page_endio(page, bio_op(bio),
54 			   blk_status_to_errno(bio->bi_status));
55 	}
56 
57 	bio_put(bio);
58 }
59 
60 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
61 {
62 	bio->bi_end_io = mpage_end_io;
63 	bio_set_op_attrs(bio, op, op_flags);
64 	guard_bio_eod(bio);
65 	submit_bio(bio);
66 	return NULL;
67 }
68 
69 static struct bio *
70 mpage_alloc(struct block_device *bdev,
71 		sector_t first_sector, int nr_vecs,
72 		gfp_t gfp_flags)
73 {
74 	struct bio *bio;
75 
76 	/* Restrict the given (page cache) mask for slab allocations */
77 	gfp_flags &= GFP_KERNEL;
78 	bio = bio_alloc(gfp_flags, nr_vecs);
79 
80 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
81 		while (!bio && (nr_vecs /= 2))
82 			bio = bio_alloc(gfp_flags, nr_vecs);
83 	}
84 
85 	if (bio) {
86 		bio_set_dev(bio, bdev);
87 		bio->bi_iter.bi_sector = first_sector;
88 	}
89 	return bio;
90 }
91 
92 /*
93  * support function for mpage_readahead.  The fs supplied get_block might
94  * return an up to date buffer.  This is used to map that buffer into
95  * the page, which allows readpage to avoid triggering a duplicate call
96  * to get_block.
97  *
98  * The idea is to avoid adding buffers to pages that don't already have
99  * them.  So when the buffer is up to date and the page size == block size,
100  * this marks the page up to date instead of adding new buffers.
101  */
102 static void
103 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
104 {
105 	struct inode *inode = page->mapping->host;
106 	struct buffer_head *page_bh, *head;
107 	int block = 0;
108 
109 	if (!page_has_buffers(page)) {
110 		/*
111 		 * don't make any buffers if there is only one buffer on
112 		 * the page and the page just needs to be set up to date
113 		 */
114 		if (inode->i_blkbits == PAGE_SHIFT &&
115 		    buffer_uptodate(bh)) {
116 			SetPageUptodate(page);
117 			return;
118 		}
119 		create_empty_buffers(page, i_blocksize(inode), 0);
120 	}
121 	head = page_buffers(page);
122 	page_bh = head;
123 	do {
124 		if (block == page_block) {
125 			page_bh->b_state = bh->b_state;
126 			page_bh->b_bdev = bh->b_bdev;
127 			page_bh->b_blocknr = bh->b_blocknr;
128 			break;
129 		}
130 		page_bh = page_bh->b_this_page;
131 		block++;
132 	} while (page_bh != head);
133 }
134 
135 struct mpage_readpage_args {
136 	struct bio *bio;
137 	struct page *page;
138 	unsigned int nr_pages;
139 	bool is_readahead;
140 	sector_t last_block_in_bio;
141 	struct buffer_head map_bh;
142 	unsigned long first_logical_block;
143 	get_block_t *get_block;
144 };
145 
146 /*
147  * This is the worker routine which does all the work of mapping the disk
148  * blocks and constructs largest possible bios, submits them for IO if the
149  * blocks are not contiguous on the disk.
150  *
151  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
152  * represent the validity of its disk mapping and to decide when to do the next
153  * get_block() call.
154  */
155 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
156 {
157 	struct page *page = args->page;
158 	struct inode *inode = page->mapping->host;
159 	const unsigned blkbits = inode->i_blkbits;
160 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
161 	const unsigned blocksize = 1 << blkbits;
162 	struct buffer_head *map_bh = &args->map_bh;
163 	sector_t block_in_file;
164 	sector_t last_block;
165 	sector_t last_block_in_file;
166 	sector_t blocks[MAX_BUF_PER_PAGE];
167 	unsigned page_block;
168 	unsigned first_hole = blocks_per_page;
169 	struct block_device *bdev = NULL;
170 	int length;
171 	int fully_mapped = 1;
172 	int op_flags;
173 	unsigned nblocks;
174 	unsigned relative_block;
175 	gfp_t gfp;
176 
177 	if (args->is_readahead) {
178 		op_flags = REQ_RAHEAD;
179 		gfp = readahead_gfp_mask(page->mapping);
180 	} else {
181 		op_flags = 0;
182 		gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
183 	}
184 
185 	if (page_has_buffers(page))
186 		goto confused;
187 
188 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
189 	last_block = block_in_file + args->nr_pages * blocks_per_page;
190 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
191 	if (last_block > last_block_in_file)
192 		last_block = last_block_in_file;
193 	page_block = 0;
194 
195 	/*
196 	 * Map blocks using the result from the previous get_blocks call first.
197 	 */
198 	nblocks = map_bh->b_size >> blkbits;
199 	if (buffer_mapped(map_bh) &&
200 			block_in_file > args->first_logical_block &&
201 			block_in_file < (args->first_logical_block + nblocks)) {
202 		unsigned map_offset = block_in_file - args->first_logical_block;
203 		unsigned last = nblocks - map_offset;
204 
205 		for (relative_block = 0; ; relative_block++) {
206 			if (relative_block == last) {
207 				clear_buffer_mapped(map_bh);
208 				break;
209 			}
210 			if (page_block == blocks_per_page)
211 				break;
212 			blocks[page_block] = map_bh->b_blocknr + map_offset +
213 						relative_block;
214 			page_block++;
215 			block_in_file++;
216 		}
217 		bdev = map_bh->b_bdev;
218 	}
219 
220 	/*
221 	 * Then do more get_blocks calls until we are done with this page.
222 	 */
223 	map_bh->b_page = page;
224 	while (page_block < blocks_per_page) {
225 		map_bh->b_state = 0;
226 		map_bh->b_size = 0;
227 
228 		if (block_in_file < last_block) {
229 			map_bh->b_size = (last_block-block_in_file) << blkbits;
230 			if (args->get_block(inode, block_in_file, map_bh, 0))
231 				goto confused;
232 			args->first_logical_block = block_in_file;
233 		}
234 
235 		if (!buffer_mapped(map_bh)) {
236 			fully_mapped = 0;
237 			if (first_hole == blocks_per_page)
238 				first_hole = page_block;
239 			page_block++;
240 			block_in_file++;
241 			continue;
242 		}
243 
244 		/* some filesystems will copy data into the page during
245 		 * the get_block call, in which case we don't want to
246 		 * read it again.  map_buffer_to_page copies the data
247 		 * we just collected from get_block into the page's buffers
248 		 * so readpage doesn't have to repeat the get_block call
249 		 */
250 		if (buffer_uptodate(map_bh)) {
251 			map_buffer_to_page(page, map_bh, page_block);
252 			goto confused;
253 		}
254 
255 		if (first_hole != blocks_per_page)
256 			goto confused;		/* hole -> non-hole */
257 
258 		/* Contiguous blocks? */
259 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
260 			goto confused;
261 		nblocks = map_bh->b_size >> blkbits;
262 		for (relative_block = 0; ; relative_block++) {
263 			if (relative_block == nblocks) {
264 				clear_buffer_mapped(map_bh);
265 				break;
266 			} else if (page_block == blocks_per_page)
267 				break;
268 			blocks[page_block] = map_bh->b_blocknr+relative_block;
269 			page_block++;
270 			block_in_file++;
271 		}
272 		bdev = map_bh->b_bdev;
273 	}
274 
275 	if (first_hole != blocks_per_page) {
276 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
277 		if (first_hole == 0) {
278 			SetPageUptodate(page);
279 			unlock_page(page);
280 			goto out;
281 		}
282 	} else if (fully_mapped) {
283 		SetPageMappedToDisk(page);
284 	}
285 
286 	/*
287 	 * This page will go to BIO.  Do we need to send this BIO off first?
288 	 */
289 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
290 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
291 
292 alloc_new:
293 	if (args->bio == NULL) {
294 		if (first_hole == blocks_per_page) {
295 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
296 								page))
297 				goto out;
298 		}
299 		args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
300 					bio_max_segs(args->nr_pages), gfp);
301 		if (args->bio == NULL)
302 			goto confused;
303 	}
304 
305 	length = first_hole << blkbits;
306 	if (bio_add_page(args->bio, page, length, 0) < length) {
307 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
308 		goto alloc_new;
309 	}
310 
311 	relative_block = block_in_file - args->first_logical_block;
312 	nblocks = map_bh->b_size >> blkbits;
313 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
314 	    (first_hole != blocks_per_page))
315 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
316 	else
317 		args->last_block_in_bio = blocks[blocks_per_page - 1];
318 out:
319 	return args->bio;
320 
321 confused:
322 	if (args->bio)
323 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
324 	if (!PageUptodate(page))
325 		block_read_full_page(page, args->get_block);
326 	else
327 		unlock_page(page);
328 	goto out;
329 }
330 
331 /**
332  * mpage_readahead - start reads against pages
333  * @rac: Describes which pages to read.
334  * @get_block: The filesystem's block mapper function.
335  *
336  * This function walks the pages and the blocks within each page, building and
337  * emitting large BIOs.
338  *
339  * If anything unusual happens, such as:
340  *
341  * - encountering a page which has buffers
342  * - encountering a page which has a non-hole after a hole
343  * - encountering a page with non-contiguous blocks
344  *
345  * then this code just gives up and calls the buffer_head-based read function.
346  * It does handle a page which has holes at the end - that is a common case:
347  * the end-of-file on blocksize < PAGE_SIZE setups.
348  *
349  * BH_Boundary explanation:
350  *
351  * There is a problem.  The mpage read code assembles several pages, gets all
352  * their disk mappings, and then submits them all.  That's fine, but obtaining
353  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
354  *
355  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
356  * submitted in the following order:
357  *
358  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
359  *
360  * because the indirect block has to be read to get the mappings of blocks
361  * 13,14,15,16.  Obviously, this impacts performance.
362  *
363  * So what we do it to allow the filesystem's get_block() function to set
364  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
365  * after this one will require I/O against a block which is probably close to
366  * this one.  So you should push what I/O you have currently accumulated.
367  *
368  * This all causes the disk requests to be issued in the correct order.
369  */
370 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
371 {
372 	struct page *page;
373 	struct mpage_readpage_args args = {
374 		.get_block = get_block,
375 		.is_readahead = true,
376 	};
377 
378 	while ((page = readahead_page(rac))) {
379 		prefetchw(&page->flags);
380 		args.page = page;
381 		args.nr_pages = readahead_count(rac);
382 		args.bio = do_mpage_readpage(&args);
383 		put_page(page);
384 	}
385 	if (args.bio)
386 		mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
387 }
388 EXPORT_SYMBOL(mpage_readahead);
389 
390 /*
391  * This isn't called much at all
392  */
393 int mpage_readpage(struct page *page, get_block_t get_block)
394 {
395 	struct mpage_readpage_args args = {
396 		.page = page,
397 		.nr_pages = 1,
398 		.get_block = get_block,
399 	};
400 
401 	args.bio = do_mpage_readpage(&args);
402 	if (args.bio)
403 		mpage_bio_submit(REQ_OP_READ, 0, args.bio);
404 	return 0;
405 }
406 EXPORT_SYMBOL(mpage_readpage);
407 
408 /*
409  * Writing is not so simple.
410  *
411  * If the page has buffers then they will be used for obtaining the disk
412  * mapping.  We only support pages which are fully mapped-and-dirty, with a
413  * special case for pages which are unmapped at the end: end-of-file.
414  *
415  * If the page has no buffers (preferred) then the page is mapped here.
416  *
417  * If all blocks are found to be contiguous then the page can go into the
418  * BIO.  Otherwise fall back to the mapping's writepage().
419  *
420  * FIXME: This code wants an estimate of how many pages are still to be
421  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
422  * just allocate full-size (16-page) BIOs.
423  */
424 
425 struct mpage_data {
426 	struct bio *bio;
427 	sector_t last_block_in_bio;
428 	get_block_t *get_block;
429 	unsigned use_writepage;
430 };
431 
432 /*
433  * We have our BIO, so we can now mark the buffers clean.  Make
434  * sure to only clean buffers which we know we'll be writing.
435  */
436 static void clean_buffers(struct page *page, unsigned first_unmapped)
437 {
438 	unsigned buffer_counter = 0;
439 	struct buffer_head *bh, *head;
440 	if (!page_has_buffers(page))
441 		return;
442 	head = page_buffers(page);
443 	bh = head;
444 
445 	do {
446 		if (buffer_counter++ == first_unmapped)
447 			break;
448 		clear_buffer_dirty(bh);
449 		bh = bh->b_this_page;
450 	} while (bh != head);
451 
452 	/*
453 	 * we cannot drop the bh if the page is not uptodate or a concurrent
454 	 * readpage would fail to serialize with the bh and it would read from
455 	 * disk before we reach the platter.
456 	 */
457 	if (buffer_heads_over_limit && PageUptodate(page))
458 		try_to_free_buffers(page);
459 }
460 
461 /*
462  * For situations where we want to clean all buffers attached to a page.
463  * We don't need to calculate how many buffers are attached to the page,
464  * we just need to specify a number larger than the maximum number of buffers.
465  */
466 void clean_page_buffers(struct page *page)
467 {
468 	clean_buffers(page, ~0U);
469 }
470 
471 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
472 		      void *data)
473 {
474 	struct mpage_data *mpd = data;
475 	struct bio *bio = mpd->bio;
476 	struct address_space *mapping = page->mapping;
477 	struct inode *inode = page->mapping->host;
478 	const unsigned blkbits = inode->i_blkbits;
479 	unsigned long end_index;
480 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
481 	sector_t last_block;
482 	sector_t block_in_file;
483 	sector_t blocks[MAX_BUF_PER_PAGE];
484 	unsigned page_block;
485 	unsigned first_unmapped = blocks_per_page;
486 	struct block_device *bdev = NULL;
487 	int boundary = 0;
488 	sector_t boundary_block = 0;
489 	struct block_device *boundary_bdev = NULL;
490 	int length;
491 	struct buffer_head map_bh;
492 	loff_t i_size = i_size_read(inode);
493 	int ret = 0;
494 	int op_flags = wbc_to_write_flags(wbc);
495 
496 	if (page_has_buffers(page)) {
497 		struct buffer_head *head = page_buffers(page);
498 		struct buffer_head *bh = head;
499 
500 		/* If they're all mapped and dirty, do it */
501 		page_block = 0;
502 		do {
503 			BUG_ON(buffer_locked(bh));
504 			if (!buffer_mapped(bh)) {
505 				/*
506 				 * unmapped dirty buffers are created by
507 				 * __set_page_dirty_buffers -> mmapped data
508 				 */
509 				if (buffer_dirty(bh))
510 					goto confused;
511 				if (first_unmapped == blocks_per_page)
512 					first_unmapped = page_block;
513 				continue;
514 			}
515 
516 			if (first_unmapped != blocks_per_page)
517 				goto confused;	/* hole -> non-hole */
518 
519 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
520 				goto confused;
521 			if (page_block) {
522 				if (bh->b_blocknr != blocks[page_block-1] + 1)
523 					goto confused;
524 			}
525 			blocks[page_block++] = bh->b_blocknr;
526 			boundary = buffer_boundary(bh);
527 			if (boundary) {
528 				boundary_block = bh->b_blocknr;
529 				boundary_bdev = bh->b_bdev;
530 			}
531 			bdev = bh->b_bdev;
532 		} while ((bh = bh->b_this_page) != head);
533 
534 		if (first_unmapped)
535 			goto page_is_mapped;
536 
537 		/*
538 		 * Page has buffers, but they are all unmapped. The page was
539 		 * created by pagein or read over a hole which was handled by
540 		 * block_read_full_page().  If this address_space is also
541 		 * using mpage_readahead then this can rarely happen.
542 		 */
543 		goto confused;
544 	}
545 
546 	/*
547 	 * The page has no buffers: map it to disk
548 	 */
549 	BUG_ON(!PageUptodate(page));
550 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
551 	last_block = (i_size - 1) >> blkbits;
552 	map_bh.b_page = page;
553 	for (page_block = 0; page_block < blocks_per_page; ) {
554 
555 		map_bh.b_state = 0;
556 		map_bh.b_size = 1 << blkbits;
557 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
558 			goto confused;
559 		if (buffer_new(&map_bh))
560 			clean_bdev_bh_alias(&map_bh);
561 		if (buffer_boundary(&map_bh)) {
562 			boundary_block = map_bh.b_blocknr;
563 			boundary_bdev = map_bh.b_bdev;
564 		}
565 		if (page_block) {
566 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
567 				goto confused;
568 		}
569 		blocks[page_block++] = map_bh.b_blocknr;
570 		boundary = buffer_boundary(&map_bh);
571 		bdev = map_bh.b_bdev;
572 		if (block_in_file == last_block)
573 			break;
574 		block_in_file++;
575 	}
576 	BUG_ON(page_block == 0);
577 
578 	first_unmapped = page_block;
579 
580 page_is_mapped:
581 	end_index = i_size >> PAGE_SHIFT;
582 	if (page->index >= end_index) {
583 		/*
584 		 * The page straddles i_size.  It must be zeroed out on each
585 		 * and every writepage invocation because it may be mmapped.
586 		 * "A file is mapped in multiples of the page size.  For a file
587 		 * that is not a multiple of the page size, the remaining memory
588 		 * is zeroed when mapped, and writes to that region are not
589 		 * written out to the file."
590 		 */
591 		unsigned offset = i_size & (PAGE_SIZE - 1);
592 
593 		if (page->index > end_index || !offset)
594 			goto confused;
595 		zero_user_segment(page, offset, PAGE_SIZE);
596 	}
597 
598 	/*
599 	 * This page will go to BIO.  Do we need to send this BIO off first?
600 	 */
601 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
602 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
603 
604 alloc_new:
605 	if (bio == NULL) {
606 		if (first_unmapped == blocks_per_page) {
607 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
608 								page, wbc))
609 				goto out;
610 		}
611 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
612 				BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH);
613 		if (bio == NULL)
614 			goto confused;
615 
616 		wbc_init_bio(wbc, bio);
617 		bio->bi_write_hint = inode->i_write_hint;
618 	}
619 
620 	/*
621 	 * Must try to add the page before marking the buffer clean or
622 	 * the confused fail path above (OOM) will be very confused when
623 	 * it finds all bh marked clean (i.e. it will not write anything)
624 	 */
625 	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
626 	length = first_unmapped << blkbits;
627 	if (bio_add_page(bio, page, length, 0) < length) {
628 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
629 		goto alloc_new;
630 	}
631 
632 	clean_buffers(page, first_unmapped);
633 
634 	BUG_ON(PageWriteback(page));
635 	set_page_writeback(page);
636 	unlock_page(page);
637 	if (boundary || (first_unmapped != blocks_per_page)) {
638 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
639 		if (boundary_block) {
640 			write_boundary_block(boundary_bdev,
641 					boundary_block, 1 << blkbits);
642 		}
643 	} else {
644 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
645 	}
646 	goto out;
647 
648 confused:
649 	if (bio)
650 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
651 
652 	if (mpd->use_writepage) {
653 		ret = mapping->a_ops->writepage(page, wbc);
654 	} else {
655 		ret = -EAGAIN;
656 		goto out;
657 	}
658 	/*
659 	 * The caller has a ref on the inode, so *mapping is stable
660 	 */
661 	mapping_set_error(mapping, ret);
662 out:
663 	mpd->bio = bio;
664 	return ret;
665 }
666 
667 /**
668  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
669  * @mapping: address space structure to write
670  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
671  * @get_block: the filesystem's block mapper function.
672  *             If this is NULL then use a_ops->writepage.  Otherwise, go
673  *             direct-to-BIO.
674  *
675  * This is a library function, which implements the writepages()
676  * address_space_operation.
677  *
678  * If a page is already under I/O, generic_writepages() skips it, even
679  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
680  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
681  * and msync() need to guarantee that all the data which was dirty at the time
682  * the call was made get new I/O started against them.  If wbc->sync_mode is
683  * WB_SYNC_ALL then we were called for data integrity and we must wait for
684  * existing IO to complete.
685  */
686 int
687 mpage_writepages(struct address_space *mapping,
688 		struct writeback_control *wbc, get_block_t get_block)
689 {
690 	struct blk_plug plug;
691 	int ret;
692 
693 	blk_start_plug(&plug);
694 
695 	if (!get_block)
696 		ret = generic_writepages(mapping, wbc);
697 	else {
698 		struct mpage_data mpd = {
699 			.bio = NULL,
700 			.last_block_in_bio = 0,
701 			.get_block = get_block,
702 			.use_writepage = 1,
703 		};
704 
705 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
706 		if (mpd.bio) {
707 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
708 				  REQ_SYNC : 0);
709 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
710 		}
711 	}
712 	blk_finish_plug(&plug);
713 	return ret;
714 }
715 EXPORT_SYMBOL(mpage_writepages);
716 
717 int mpage_writepage(struct page *page, get_block_t get_block,
718 	struct writeback_control *wbc)
719 {
720 	struct mpage_data mpd = {
721 		.bio = NULL,
722 		.last_block_in_bio = 0,
723 		.get_block = get_block,
724 		.use_writepage = 0,
725 	};
726 	int ret = __mpage_writepage(page, wbc, &mpd);
727 	if (mpd.bio) {
728 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
729 			  REQ_SYNC : 0);
730 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
731 	}
732 	return ret;
733 }
734 EXPORT_SYMBOL(mpage_writepage);
735