1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/cleancache.h> 31 #include "internal.h" 32 33 /* 34 * I/O completion handler for multipage BIOs. 35 * 36 * The mpage code never puts partial pages into a BIO (except for end-of-file). 37 * If a page does not map to a contiguous run of blocks then it simply falls 38 * back to block_read_full_page(). 39 * 40 * Why is this? If a page's completion depends on a number of different BIOs 41 * which can complete in any order (or at the same time) then determining the 42 * status of that page is hard. See end_buffer_async_read() for the details. 43 * There is no point in duplicating all that complexity. 44 */ 45 static void mpage_end_io(struct bio *bio) 46 { 47 struct bio_vec *bv; 48 int i; 49 50 bio_for_each_segment_all(bv, bio, i) { 51 struct page *page = bv->bv_page; 52 page_endio(page, bio_data_dir(bio), bio->bi_error); 53 } 54 55 bio_put(bio); 56 } 57 58 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 59 { 60 bio->bi_end_io = mpage_end_io; 61 guard_bio_eod(rw, bio); 62 submit_bio(rw, bio); 63 return NULL; 64 } 65 66 static struct bio * 67 mpage_alloc(struct block_device *bdev, 68 sector_t first_sector, int nr_vecs, 69 gfp_t gfp_flags) 70 { 71 struct bio *bio; 72 73 bio = bio_alloc(gfp_flags, nr_vecs); 74 75 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 76 while (!bio && (nr_vecs /= 2)) 77 bio = bio_alloc(gfp_flags, nr_vecs); 78 } 79 80 if (bio) { 81 bio->bi_bdev = bdev; 82 bio->bi_iter.bi_sector = first_sector; 83 } 84 return bio; 85 } 86 87 /* 88 * support function for mpage_readpages. The fs supplied get_block might 89 * return an up to date buffer. This is used to map that buffer into 90 * the page, which allows readpage to avoid triggering a duplicate call 91 * to get_block. 92 * 93 * The idea is to avoid adding buffers to pages that don't already have 94 * them. So when the buffer is up to date and the page size == block size, 95 * this marks the page up to date instead of adding new buffers. 96 */ 97 static void 98 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 99 { 100 struct inode *inode = page->mapping->host; 101 struct buffer_head *page_bh, *head; 102 int block = 0; 103 104 if (!page_has_buffers(page)) { 105 /* 106 * don't make any buffers if there is only one buffer on 107 * the page and the page just needs to be set up to date 108 */ 109 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 110 buffer_uptodate(bh)) { 111 SetPageUptodate(page); 112 return; 113 } 114 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 115 } 116 head = page_buffers(page); 117 page_bh = head; 118 do { 119 if (block == page_block) { 120 page_bh->b_state = bh->b_state; 121 page_bh->b_bdev = bh->b_bdev; 122 page_bh->b_blocknr = bh->b_blocknr; 123 break; 124 } 125 page_bh = page_bh->b_this_page; 126 block++; 127 } while (page_bh != head); 128 } 129 130 /* 131 * This is the worker routine which does all the work of mapping the disk 132 * blocks and constructs largest possible bios, submits them for IO if the 133 * blocks are not contiguous on the disk. 134 * 135 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 136 * represent the validity of its disk mapping and to decide when to do the next 137 * get_block() call. 138 */ 139 static struct bio * 140 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 141 sector_t *last_block_in_bio, struct buffer_head *map_bh, 142 unsigned long *first_logical_block, get_block_t get_block, 143 gfp_t gfp) 144 { 145 struct inode *inode = page->mapping->host; 146 const unsigned blkbits = inode->i_blkbits; 147 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 148 const unsigned blocksize = 1 << blkbits; 149 sector_t block_in_file; 150 sector_t last_block; 151 sector_t last_block_in_file; 152 sector_t blocks[MAX_BUF_PER_PAGE]; 153 unsigned page_block; 154 unsigned first_hole = blocks_per_page; 155 struct block_device *bdev = NULL; 156 int length; 157 int fully_mapped = 1; 158 unsigned nblocks; 159 unsigned relative_block; 160 161 if (page_has_buffers(page)) 162 goto confused; 163 164 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 165 last_block = block_in_file + nr_pages * blocks_per_page; 166 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 167 if (last_block > last_block_in_file) 168 last_block = last_block_in_file; 169 page_block = 0; 170 171 /* 172 * Map blocks using the result from the previous get_blocks call first. 173 */ 174 nblocks = map_bh->b_size >> blkbits; 175 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 176 block_in_file < (*first_logical_block + nblocks)) { 177 unsigned map_offset = block_in_file - *first_logical_block; 178 unsigned last = nblocks - map_offset; 179 180 for (relative_block = 0; ; relative_block++) { 181 if (relative_block == last) { 182 clear_buffer_mapped(map_bh); 183 break; 184 } 185 if (page_block == blocks_per_page) 186 break; 187 blocks[page_block] = map_bh->b_blocknr + map_offset + 188 relative_block; 189 page_block++; 190 block_in_file++; 191 } 192 bdev = map_bh->b_bdev; 193 } 194 195 /* 196 * Then do more get_blocks calls until we are done with this page. 197 */ 198 map_bh->b_page = page; 199 while (page_block < blocks_per_page) { 200 map_bh->b_state = 0; 201 map_bh->b_size = 0; 202 203 if (block_in_file < last_block) { 204 map_bh->b_size = (last_block-block_in_file) << blkbits; 205 if (get_block(inode, block_in_file, map_bh, 0)) 206 goto confused; 207 *first_logical_block = block_in_file; 208 } 209 210 if (!buffer_mapped(map_bh)) { 211 fully_mapped = 0; 212 if (first_hole == blocks_per_page) 213 first_hole = page_block; 214 page_block++; 215 block_in_file++; 216 continue; 217 } 218 219 /* some filesystems will copy data into the page during 220 * the get_block call, in which case we don't want to 221 * read it again. map_buffer_to_page copies the data 222 * we just collected from get_block into the page's buffers 223 * so readpage doesn't have to repeat the get_block call 224 */ 225 if (buffer_uptodate(map_bh)) { 226 map_buffer_to_page(page, map_bh, page_block); 227 goto confused; 228 } 229 230 if (first_hole != blocks_per_page) 231 goto confused; /* hole -> non-hole */ 232 233 /* Contiguous blocks? */ 234 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 235 goto confused; 236 nblocks = map_bh->b_size >> blkbits; 237 for (relative_block = 0; ; relative_block++) { 238 if (relative_block == nblocks) { 239 clear_buffer_mapped(map_bh); 240 break; 241 } else if (page_block == blocks_per_page) 242 break; 243 blocks[page_block] = map_bh->b_blocknr+relative_block; 244 page_block++; 245 block_in_file++; 246 } 247 bdev = map_bh->b_bdev; 248 } 249 250 if (first_hole != blocks_per_page) { 251 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); 252 if (first_hole == 0) { 253 SetPageUptodate(page); 254 unlock_page(page); 255 goto out; 256 } 257 } else if (fully_mapped) { 258 SetPageMappedToDisk(page); 259 } 260 261 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 262 cleancache_get_page(page) == 0) { 263 SetPageUptodate(page); 264 goto confused; 265 } 266 267 /* 268 * This page will go to BIO. Do we need to send this BIO off first? 269 */ 270 if (bio && (*last_block_in_bio != blocks[0] - 1)) 271 bio = mpage_bio_submit(READ, bio); 272 273 alloc_new: 274 if (bio == NULL) { 275 if (first_hole == blocks_per_page) { 276 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 277 page)) 278 goto out; 279 } 280 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 281 min_t(int, nr_pages, BIO_MAX_PAGES), gfp); 282 if (bio == NULL) 283 goto confused; 284 } 285 286 length = first_hole << blkbits; 287 if (bio_add_page(bio, page, length, 0) < length) { 288 bio = mpage_bio_submit(READ, bio); 289 goto alloc_new; 290 } 291 292 relative_block = block_in_file - *first_logical_block; 293 nblocks = map_bh->b_size >> blkbits; 294 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 295 (first_hole != blocks_per_page)) 296 bio = mpage_bio_submit(READ, bio); 297 else 298 *last_block_in_bio = blocks[blocks_per_page - 1]; 299 out: 300 return bio; 301 302 confused: 303 if (bio) 304 bio = mpage_bio_submit(READ, bio); 305 if (!PageUptodate(page)) 306 block_read_full_page(page, get_block); 307 else 308 unlock_page(page); 309 goto out; 310 } 311 312 /** 313 * mpage_readpages - populate an address space with some pages & start reads against them 314 * @mapping: the address_space 315 * @pages: The address of a list_head which contains the target pages. These 316 * pages have their ->index populated and are otherwise uninitialised. 317 * The page at @pages->prev has the lowest file offset, and reads should be 318 * issued in @pages->prev to @pages->next order. 319 * @nr_pages: The number of pages at *@pages 320 * @get_block: The filesystem's block mapper function. 321 * 322 * This function walks the pages and the blocks within each page, building and 323 * emitting large BIOs. 324 * 325 * If anything unusual happens, such as: 326 * 327 * - encountering a page which has buffers 328 * - encountering a page which has a non-hole after a hole 329 * - encountering a page with non-contiguous blocks 330 * 331 * then this code just gives up and calls the buffer_head-based read function. 332 * It does handle a page which has holes at the end - that is a common case: 333 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 334 * 335 * BH_Boundary explanation: 336 * 337 * There is a problem. The mpage read code assembles several pages, gets all 338 * their disk mappings, and then submits them all. That's fine, but obtaining 339 * the disk mappings may require I/O. Reads of indirect blocks, for example. 340 * 341 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 342 * submitted in the following order: 343 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 344 * 345 * because the indirect block has to be read to get the mappings of blocks 346 * 13,14,15,16. Obviously, this impacts performance. 347 * 348 * So what we do it to allow the filesystem's get_block() function to set 349 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 350 * after this one will require I/O against a block which is probably close to 351 * this one. So you should push what I/O you have currently accumulated. 352 * 353 * This all causes the disk requests to be issued in the correct order. 354 */ 355 int 356 mpage_readpages(struct address_space *mapping, struct list_head *pages, 357 unsigned nr_pages, get_block_t get_block) 358 { 359 struct bio *bio = NULL; 360 unsigned page_idx; 361 sector_t last_block_in_bio = 0; 362 struct buffer_head map_bh; 363 unsigned long first_logical_block = 0; 364 gfp_t gfp = GFP_KERNEL & mapping_gfp_mask(mapping); 365 366 map_bh.b_state = 0; 367 map_bh.b_size = 0; 368 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 369 struct page *page = list_entry(pages->prev, struct page, lru); 370 371 prefetchw(&page->flags); 372 list_del(&page->lru); 373 if (!add_to_page_cache_lru(page, mapping, 374 page->index, 375 gfp)) { 376 bio = do_mpage_readpage(bio, page, 377 nr_pages - page_idx, 378 &last_block_in_bio, &map_bh, 379 &first_logical_block, 380 get_block, gfp); 381 } 382 page_cache_release(page); 383 } 384 BUG_ON(!list_empty(pages)); 385 if (bio) 386 mpage_bio_submit(READ, bio); 387 return 0; 388 } 389 EXPORT_SYMBOL(mpage_readpages); 390 391 /* 392 * This isn't called much at all 393 */ 394 int mpage_readpage(struct page *page, get_block_t get_block) 395 { 396 struct bio *bio = NULL; 397 sector_t last_block_in_bio = 0; 398 struct buffer_head map_bh; 399 unsigned long first_logical_block = 0; 400 gfp_t gfp = GFP_KERNEL & mapping_gfp_mask(page->mapping); 401 402 map_bh.b_state = 0; 403 map_bh.b_size = 0; 404 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 405 &map_bh, &first_logical_block, get_block, gfp); 406 if (bio) 407 mpage_bio_submit(READ, bio); 408 return 0; 409 } 410 EXPORT_SYMBOL(mpage_readpage); 411 412 /* 413 * Writing is not so simple. 414 * 415 * If the page has buffers then they will be used for obtaining the disk 416 * mapping. We only support pages which are fully mapped-and-dirty, with a 417 * special case for pages which are unmapped at the end: end-of-file. 418 * 419 * If the page has no buffers (preferred) then the page is mapped here. 420 * 421 * If all blocks are found to be contiguous then the page can go into the 422 * BIO. Otherwise fall back to the mapping's writepage(). 423 * 424 * FIXME: This code wants an estimate of how many pages are still to be 425 * written, so it can intelligently allocate a suitably-sized BIO. For now, 426 * just allocate full-size (16-page) BIOs. 427 */ 428 429 struct mpage_data { 430 struct bio *bio; 431 sector_t last_block_in_bio; 432 get_block_t *get_block; 433 unsigned use_writepage; 434 }; 435 436 /* 437 * We have our BIO, so we can now mark the buffers clean. Make 438 * sure to only clean buffers which we know we'll be writing. 439 */ 440 static void clean_buffers(struct page *page, unsigned first_unmapped) 441 { 442 unsigned buffer_counter = 0; 443 struct buffer_head *bh, *head; 444 if (!page_has_buffers(page)) 445 return; 446 head = page_buffers(page); 447 bh = head; 448 449 do { 450 if (buffer_counter++ == first_unmapped) 451 break; 452 clear_buffer_dirty(bh); 453 bh = bh->b_this_page; 454 } while (bh != head); 455 456 /* 457 * we cannot drop the bh if the page is not uptodate or a concurrent 458 * readpage would fail to serialize with the bh and it would read from 459 * disk before we reach the platter. 460 */ 461 if (buffer_heads_over_limit && PageUptodate(page)) 462 try_to_free_buffers(page); 463 } 464 465 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 466 void *data) 467 { 468 struct mpage_data *mpd = data; 469 struct bio *bio = mpd->bio; 470 struct address_space *mapping = page->mapping; 471 struct inode *inode = page->mapping->host; 472 const unsigned blkbits = inode->i_blkbits; 473 unsigned long end_index; 474 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 475 sector_t last_block; 476 sector_t block_in_file; 477 sector_t blocks[MAX_BUF_PER_PAGE]; 478 unsigned page_block; 479 unsigned first_unmapped = blocks_per_page; 480 struct block_device *bdev = NULL; 481 int boundary = 0; 482 sector_t boundary_block = 0; 483 struct block_device *boundary_bdev = NULL; 484 int length; 485 struct buffer_head map_bh; 486 loff_t i_size = i_size_read(inode); 487 int ret = 0; 488 489 if (page_has_buffers(page)) { 490 struct buffer_head *head = page_buffers(page); 491 struct buffer_head *bh = head; 492 493 /* If they're all mapped and dirty, do it */ 494 page_block = 0; 495 do { 496 BUG_ON(buffer_locked(bh)); 497 if (!buffer_mapped(bh)) { 498 /* 499 * unmapped dirty buffers are created by 500 * __set_page_dirty_buffers -> mmapped data 501 */ 502 if (buffer_dirty(bh)) 503 goto confused; 504 if (first_unmapped == blocks_per_page) 505 first_unmapped = page_block; 506 continue; 507 } 508 509 if (first_unmapped != blocks_per_page) 510 goto confused; /* hole -> non-hole */ 511 512 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 513 goto confused; 514 if (page_block) { 515 if (bh->b_blocknr != blocks[page_block-1] + 1) 516 goto confused; 517 } 518 blocks[page_block++] = bh->b_blocknr; 519 boundary = buffer_boundary(bh); 520 if (boundary) { 521 boundary_block = bh->b_blocknr; 522 boundary_bdev = bh->b_bdev; 523 } 524 bdev = bh->b_bdev; 525 } while ((bh = bh->b_this_page) != head); 526 527 if (first_unmapped) 528 goto page_is_mapped; 529 530 /* 531 * Page has buffers, but they are all unmapped. The page was 532 * created by pagein or read over a hole which was handled by 533 * block_read_full_page(). If this address_space is also 534 * using mpage_readpages then this can rarely happen. 535 */ 536 goto confused; 537 } 538 539 /* 540 * The page has no buffers: map it to disk 541 */ 542 BUG_ON(!PageUptodate(page)); 543 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 544 last_block = (i_size - 1) >> blkbits; 545 map_bh.b_page = page; 546 for (page_block = 0; page_block < blocks_per_page; ) { 547 548 map_bh.b_state = 0; 549 map_bh.b_size = 1 << blkbits; 550 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 551 goto confused; 552 if (buffer_new(&map_bh)) 553 unmap_underlying_metadata(map_bh.b_bdev, 554 map_bh.b_blocknr); 555 if (buffer_boundary(&map_bh)) { 556 boundary_block = map_bh.b_blocknr; 557 boundary_bdev = map_bh.b_bdev; 558 } 559 if (page_block) { 560 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 561 goto confused; 562 } 563 blocks[page_block++] = map_bh.b_blocknr; 564 boundary = buffer_boundary(&map_bh); 565 bdev = map_bh.b_bdev; 566 if (block_in_file == last_block) 567 break; 568 block_in_file++; 569 } 570 BUG_ON(page_block == 0); 571 572 first_unmapped = page_block; 573 574 page_is_mapped: 575 end_index = i_size >> PAGE_CACHE_SHIFT; 576 if (page->index >= end_index) { 577 /* 578 * The page straddles i_size. It must be zeroed out on each 579 * and every writepage invocation because it may be mmapped. 580 * "A file is mapped in multiples of the page size. For a file 581 * that is not a multiple of the page size, the remaining memory 582 * is zeroed when mapped, and writes to that region are not 583 * written out to the file." 584 */ 585 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 586 587 if (page->index > end_index || !offset) 588 goto confused; 589 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 590 } 591 592 /* 593 * This page will go to BIO. Do we need to send this BIO off first? 594 */ 595 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 596 bio = mpage_bio_submit(WRITE, bio); 597 598 alloc_new: 599 if (bio == NULL) { 600 if (first_unmapped == blocks_per_page) { 601 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 602 page, wbc)) { 603 clean_buffers(page, first_unmapped); 604 goto out; 605 } 606 } 607 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 608 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 609 if (bio == NULL) 610 goto confused; 611 612 wbc_init_bio(wbc, bio); 613 } 614 615 /* 616 * Must try to add the page before marking the buffer clean or 617 * the confused fail path above (OOM) will be very confused when 618 * it finds all bh marked clean (i.e. it will not write anything) 619 */ 620 wbc_account_io(wbc, page, PAGE_SIZE); 621 length = first_unmapped << blkbits; 622 if (bio_add_page(bio, page, length, 0) < length) { 623 bio = mpage_bio_submit(WRITE, bio); 624 goto alloc_new; 625 } 626 627 clean_buffers(page, first_unmapped); 628 629 BUG_ON(PageWriteback(page)); 630 set_page_writeback(page); 631 unlock_page(page); 632 if (boundary || (first_unmapped != blocks_per_page)) { 633 bio = mpage_bio_submit(WRITE, bio); 634 if (boundary_block) { 635 write_boundary_block(boundary_bdev, 636 boundary_block, 1 << blkbits); 637 } 638 } else { 639 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 640 } 641 goto out; 642 643 confused: 644 if (bio) 645 bio = mpage_bio_submit(WRITE, bio); 646 647 if (mpd->use_writepage) { 648 ret = mapping->a_ops->writepage(page, wbc); 649 } else { 650 ret = -EAGAIN; 651 goto out; 652 } 653 /* 654 * The caller has a ref on the inode, so *mapping is stable 655 */ 656 mapping_set_error(mapping, ret); 657 out: 658 mpd->bio = bio; 659 return ret; 660 } 661 662 /** 663 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 664 * @mapping: address space structure to write 665 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 666 * @get_block: the filesystem's block mapper function. 667 * If this is NULL then use a_ops->writepage. Otherwise, go 668 * direct-to-BIO. 669 * 670 * This is a library function, which implements the writepages() 671 * address_space_operation. 672 * 673 * If a page is already under I/O, generic_writepages() skips it, even 674 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 675 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 676 * and msync() need to guarantee that all the data which was dirty at the time 677 * the call was made get new I/O started against them. If wbc->sync_mode is 678 * WB_SYNC_ALL then we were called for data integrity and we must wait for 679 * existing IO to complete. 680 */ 681 int 682 mpage_writepages(struct address_space *mapping, 683 struct writeback_control *wbc, get_block_t get_block) 684 { 685 struct blk_plug plug; 686 int ret; 687 688 blk_start_plug(&plug); 689 690 if (!get_block) 691 ret = generic_writepages(mapping, wbc); 692 else { 693 struct mpage_data mpd = { 694 .bio = NULL, 695 .last_block_in_bio = 0, 696 .get_block = get_block, 697 .use_writepage = 1, 698 }; 699 700 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 701 if (mpd.bio) 702 mpage_bio_submit(WRITE, mpd.bio); 703 } 704 blk_finish_plug(&plug); 705 return ret; 706 } 707 EXPORT_SYMBOL(mpage_writepages); 708 709 int mpage_writepage(struct page *page, get_block_t get_block, 710 struct writeback_control *wbc) 711 { 712 struct mpage_data mpd = { 713 .bio = NULL, 714 .last_block_in_bio = 0, 715 .get_block = get_block, 716 .use_writepage = 0, 717 }; 718 int ret = __mpage_writepage(page, wbc, &mpd); 719 if (mpd.bio) 720 mpage_bio_submit(WRITE, mpd.bio); 721 return ret; 722 } 723 EXPORT_SYMBOL(mpage_writepage); 724