xref: /linux/fs/mpage.c (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 
32 /*
33  * I/O completion handler for multipage BIOs.
34  *
35  * The mpage code never puts partial pages into a BIO (except for end-of-file).
36  * If a page does not map to a contiguous run of blocks then it simply falls
37  * back to block_read_full_page().
38  *
39  * Why is this?  If a page's completion depends on a number of different BIOs
40  * which can complete in any order (or at the same time) then determining the
41  * status of that page is hard.  See end_buffer_async_read() for the details.
42  * There is no point in duplicating all that complexity.
43  */
44 static void mpage_end_io(struct bio *bio, int err)
45 {
46 	struct bio_vec *bv;
47 	int i;
48 
49 	bio_for_each_segment_all(bv, bio, i) {
50 		struct page *page = bv->bv_page;
51 
52 		if (bio_data_dir(bio) == READ) {
53 			if (!err) {
54 				SetPageUptodate(page);
55 			} else {
56 				ClearPageUptodate(page);
57 				SetPageError(page);
58 			}
59 			unlock_page(page);
60 		} else { /* bio_data_dir(bio) == WRITE */
61 			if (err) {
62 				SetPageError(page);
63 				if (page->mapping)
64 					set_bit(AS_EIO, &page->mapping->flags);
65 			}
66 			end_page_writeback(page);
67 		}
68 	}
69 
70 	bio_put(bio);
71 }
72 
73 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
74 {
75 	bio->bi_end_io = mpage_end_io;
76 	submit_bio(rw, bio);
77 	return NULL;
78 }
79 
80 static struct bio *
81 mpage_alloc(struct block_device *bdev,
82 		sector_t first_sector, int nr_vecs,
83 		gfp_t gfp_flags)
84 {
85 	struct bio *bio;
86 
87 	bio = bio_alloc(gfp_flags, nr_vecs);
88 
89 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
90 		while (!bio && (nr_vecs /= 2))
91 			bio = bio_alloc(gfp_flags, nr_vecs);
92 	}
93 
94 	if (bio) {
95 		bio->bi_bdev = bdev;
96 		bio->bi_iter.bi_sector = first_sector;
97 	}
98 	return bio;
99 }
100 
101 /*
102  * support function for mpage_readpages.  The fs supplied get_block might
103  * return an up to date buffer.  This is used to map that buffer into
104  * the page, which allows readpage to avoid triggering a duplicate call
105  * to get_block.
106  *
107  * The idea is to avoid adding buffers to pages that don't already have
108  * them.  So when the buffer is up to date and the page size == block size,
109  * this marks the page up to date instead of adding new buffers.
110  */
111 static void
112 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
113 {
114 	struct inode *inode = page->mapping->host;
115 	struct buffer_head *page_bh, *head;
116 	int block = 0;
117 
118 	if (!page_has_buffers(page)) {
119 		/*
120 		 * don't make any buffers if there is only one buffer on
121 		 * the page and the page just needs to be set up to date
122 		 */
123 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
124 		    buffer_uptodate(bh)) {
125 			SetPageUptodate(page);
126 			return;
127 		}
128 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
129 	}
130 	head = page_buffers(page);
131 	page_bh = head;
132 	do {
133 		if (block == page_block) {
134 			page_bh->b_state = bh->b_state;
135 			page_bh->b_bdev = bh->b_bdev;
136 			page_bh->b_blocknr = bh->b_blocknr;
137 			break;
138 		}
139 		page_bh = page_bh->b_this_page;
140 		block++;
141 	} while (page_bh != head);
142 }
143 
144 /*
145  * This is the worker routine which does all the work of mapping the disk
146  * blocks and constructs largest possible bios, submits them for IO if the
147  * blocks are not contiguous on the disk.
148  *
149  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
150  * represent the validity of its disk mapping and to decide when to do the next
151  * get_block() call.
152  */
153 static struct bio *
154 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
155 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
156 		unsigned long *first_logical_block, get_block_t get_block)
157 {
158 	struct inode *inode = page->mapping->host;
159 	const unsigned blkbits = inode->i_blkbits;
160 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
161 	const unsigned blocksize = 1 << blkbits;
162 	sector_t block_in_file;
163 	sector_t last_block;
164 	sector_t last_block_in_file;
165 	sector_t blocks[MAX_BUF_PER_PAGE];
166 	unsigned page_block;
167 	unsigned first_hole = blocks_per_page;
168 	struct block_device *bdev = NULL;
169 	int length;
170 	int fully_mapped = 1;
171 	unsigned nblocks;
172 	unsigned relative_block;
173 
174 	if (page_has_buffers(page))
175 		goto confused;
176 
177 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
178 	last_block = block_in_file + nr_pages * blocks_per_page;
179 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
180 	if (last_block > last_block_in_file)
181 		last_block = last_block_in_file;
182 	page_block = 0;
183 
184 	/*
185 	 * Map blocks using the result from the previous get_blocks call first.
186 	 */
187 	nblocks = map_bh->b_size >> blkbits;
188 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
189 			block_in_file < (*first_logical_block + nblocks)) {
190 		unsigned map_offset = block_in_file - *first_logical_block;
191 		unsigned last = nblocks - map_offset;
192 
193 		for (relative_block = 0; ; relative_block++) {
194 			if (relative_block == last) {
195 				clear_buffer_mapped(map_bh);
196 				break;
197 			}
198 			if (page_block == blocks_per_page)
199 				break;
200 			blocks[page_block] = map_bh->b_blocknr + map_offset +
201 						relative_block;
202 			page_block++;
203 			block_in_file++;
204 		}
205 		bdev = map_bh->b_bdev;
206 	}
207 
208 	/*
209 	 * Then do more get_blocks calls until we are done with this page.
210 	 */
211 	map_bh->b_page = page;
212 	while (page_block < blocks_per_page) {
213 		map_bh->b_state = 0;
214 		map_bh->b_size = 0;
215 
216 		if (block_in_file < last_block) {
217 			map_bh->b_size = (last_block-block_in_file) << blkbits;
218 			if (get_block(inode, block_in_file, map_bh, 0))
219 				goto confused;
220 			*first_logical_block = block_in_file;
221 		}
222 
223 		if (!buffer_mapped(map_bh)) {
224 			fully_mapped = 0;
225 			if (first_hole == blocks_per_page)
226 				first_hole = page_block;
227 			page_block++;
228 			block_in_file++;
229 			continue;
230 		}
231 
232 		/* some filesystems will copy data into the page during
233 		 * the get_block call, in which case we don't want to
234 		 * read it again.  map_buffer_to_page copies the data
235 		 * we just collected from get_block into the page's buffers
236 		 * so readpage doesn't have to repeat the get_block call
237 		 */
238 		if (buffer_uptodate(map_bh)) {
239 			map_buffer_to_page(page, map_bh, page_block);
240 			goto confused;
241 		}
242 
243 		if (first_hole != blocks_per_page)
244 			goto confused;		/* hole -> non-hole */
245 
246 		/* Contiguous blocks? */
247 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
248 			goto confused;
249 		nblocks = map_bh->b_size >> blkbits;
250 		for (relative_block = 0; ; relative_block++) {
251 			if (relative_block == nblocks) {
252 				clear_buffer_mapped(map_bh);
253 				break;
254 			} else if (page_block == blocks_per_page)
255 				break;
256 			blocks[page_block] = map_bh->b_blocknr+relative_block;
257 			page_block++;
258 			block_in_file++;
259 		}
260 		bdev = map_bh->b_bdev;
261 	}
262 
263 	if (first_hole != blocks_per_page) {
264 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
265 		if (first_hole == 0) {
266 			SetPageUptodate(page);
267 			unlock_page(page);
268 			goto out;
269 		}
270 	} else if (fully_mapped) {
271 		SetPageMappedToDisk(page);
272 	}
273 
274 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
275 	    cleancache_get_page(page) == 0) {
276 		SetPageUptodate(page);
277 		goto confused;
278 	}
279 
280 	/*
281 	 * This page will go to BIO.  Do we need to send this BIO off first?
282 	 */
283 	if (bio && (*last_block_in_bio != blocks[0] - 1))
284 		bio = mpage_bio_submit(READ, bio);
285 
286 alloc_new:
287 	if (bio == NULL) {
288 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
289 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
290 				GFP_KERNEL);
291 		if (bio == NULL)
292 			goto confused;
293 	}
294 
295 	length = first_hole << blkbits;
296 	if (bio_add_page(bio, page, length, 0) < length) {
297 		bio = mpage_bio_submit(READ, bio);
298 		goto alloc_new;
299 	}
300 
301 	relative_block = block_in_file - *first_logical_block;
302 	nblocks = map_bh->b_size >> blkbits;
303 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
304 	    (first_hole != blocks_per_page))
305 		bio = mpage_bio_submit(READ, bio);
306 	else
307 		*last_block_in_bio = blocks[blocks_per_page - 1];
308 out:
309 	return bio;
310 
311 confused:
312 	if (bio)
313 		bio = mpage_bio_submit(READ, bio);
314 	if (!PageUptodate(page))
315 	        block_read_full_page(page, get_block);
316 	else
317 		unlock_page(page);
318 	goto out;
319 }
320 
321 /**
322  * mpage_readpages - populate an address space with some pages & start reads against them
323  * @mapping: the address_space
324  * @pages: The address of a list_head which contains the target pages.  These
325  *   pages have their ->index populated and are otherwise uninitialised.
326  *   The page at @pages->prev has the lowest file offset, and reads should be
327  *   issued in @pages->prev to @pages->next order.
328  * @nr_pages: The number of pages at *@pages
329  * @get_block: The filesystem's block mapper function.
330  *
331  * This function walks the pages and the blocks within each page, building and
332  * emitting large BIOs.
333  *
334  * If anything unusual happens, such as:
335  *
336  * - encountering a page which has buffers
337  * - encountering a page which has a non-hole after a hole
338  * - encountering a page with non-contiguous blocks
339  *
340  * then this code just gives up and calls the buffer_head-based read function.
341  * It does handle a page which has holes at the end - that is a common case:
342  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
343  *
344  * BH_Boundary explanation:
345  *
346  * There is a problem.  The mpage read code assembles several pages, gets all
347  * their disk mappings, and then submits them all.  That's fine, but obtaining
348  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
349  *
350  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
351  * submitted in the following order:
352  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
353  *
354  * because the indirect block has to be read to get the mappings of blocks
355  * 13,14,15,16.  Obviously, this impacts performance.
356  *
357  * So what we do it to allow the filesystem's get_block() function to set
358  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
359  * after this one will require I/O against a block which is probably close to
360  * this one.  So you should push what I/O you have currently accumulated.
361  *
362  * This all causes the disk requests to be issued in the correct order.
363  */
364 int
365 mpage_readpages(struct address_space *mapping, struct list_head *pages,
366 				unsigned nr_pages, get_block_t get_block)
367 {
368 	struct bio *bio = NULL;
369 	unsigned page_idx;
370 	sector_t last_block_in_bio = 0;
371 	struct buffer_head map_bh;
372 	unsigned long first_logical_block = 0;
373 
374 	map_bh.b_state = 0;
375 	map_bh.b_size = 0;
376 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
377 		struct page *page = list_entry(pages->prev, struct page, lru);
378 
379 		prefetchw(&page->flags);
380 		list_del(&page->lru);
381 		if (!add_to_page_cache_lru(page, mapping,
382 					page->index, GFP_KERNEL)) {
383 			bio = do_mpage_readpage(bio, page,
384 					nr_pages - page_idx,
385 					&last_block_in_bio, &map_bh,
386 					&first_logical_block,
387 					get_block);
388 		}
389 		page_cache_release(page);
390 	}
391 	BUG_ON(!list_empty(pages));
392 	if (bio)
393 		mpage_bio_submit(READ, bio);
394 	return 0;
395 }
396 EXPORT_SYMBOL(mpage_readpages);
397 
398 /*
399  * This isn't called much at all
400  */
401 int mpage_readpage(struct page *page, get_block_t get_block)
402 {
403 	struct bio *bio = NULL;
404 	sector_t last_block_in_bio = 0;
405 	struct buffer_head map_bh;
406 	unsigned long first_logical_block = 0;
407 
408 	map_bh.b_state = 0;
409 	map_bh.b_size = 0;
410 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
411 			&map_bh, &first_logical_block, get_block);
412 	if (bio)
413 		mpage_bio_submit(READ, bio);
414 	return 0;
415 }
416 EXPORT_SYMBOL(mpage_readpage);
417 
418 /*
419  * Writing is not so simple.
420  *
421  * If the page has buffers then they will be used for obtaining the disk
422  * mapping.  We only support pages which are fully mapped-and-dirty, with a
423  * special case for pages which are unmapped at the end: end-of-file.
424  *
425  * If the page has no buffers (preferred) then the page is mapped here.
426  *
427  * If all blocks are found to be contiguous then the page can go into the
428  * BIO.  Otherwise fall back to the mapping's writepage().
429  *
430  * FIXME: This code wants an estimate of how many pages are still to be
431  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
432  * just allocate full-size (16-page) BIOs.
433  */
434 
435 struct mpage_data {
436 	struct bio *bio;
437 	sector_t last_block_in_bio;
438 	get_block_t *get_block;
439 	unsigned use_writepage;
440 };
441 
442 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
443 		      void *data)
444 {
445 	struct mpage_data *mpd = data;
446 	struct bio *bio = mpd->bio;
447 	struct address_space *mapping = page->mapping;
448 	struct inode *inode = page->mapping->host;
449 	const unsigned blkbits = inode->i_blkbits;
450 	unsigned long end_index;
451 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
452 	sector_t last_block;
453 	sector_t block_in_file;
454 	sector_t blocks[MAX_BUF_PER_PAGE];
455 	unsigned page_block;
456 	unsigned first_unmapped = blocks_per_page;
457 	struct block_device *bdev = NULL;
458 	int boundary = 0;
459 	sector_t boundary_block = 0;
460 	struct block_device *boundary_bdev = NULL;
461 	int length;
462 	struct buffer_head map_bh;
463 	loff_t i_size = i_size_read(inode);
464 	int ret = 0;
465 
466 	if (page_has_buffers(page)) {
467 		struct buffer_head *head = page_buffers(page);
468 		struct buffer_head *bh = head;
469 
470 		/* If they're all mapped and dirty, do it */
471 		page_block = 0;
472 		do {
473 			BUG_ON(buffer_locked(bh));
474 			if (!buffer_mapped(bh)) {
475 				/*
476 				 * unmapped dirty buffers are created by
477 				 * __set_page_dirty_buffers -> mmapped data
478 				 */
479 				if (buffer_dirty(bh))
480 					goto confused;
481 				if (first_unmapped == blocks_per_page)
482 					first_unmapped = page_block;
483 				continue;
484 			}
485 
486 			if (first_unmapped != blocks_per_page)
487 				goto confused;	/* hole -> non-hole */
488 
489 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
490 				goto confused;
491 			if (page_block) {
492 				if (bh->b_blocknr != blocks[page_block-1] + 1)
493 					goto confused;
494 			}
495 			blocks[page_block++] = bh->b_blocknr;
496 			boundary = buffer_boundary(bh);
497 			if (boundary) {
498 				boundary_block = bh->b_blocknr;
499 				boundary_bdev = bh->b_bdev;
500 			}
501 			bdev = bh->b_bdev;
502 		} while ((bh = bh->b_this_page) != head);
503 
504 		if (first_unmapped)
505 			goto page_is_mapped;
506 
507 		/*
508 		 * Page has buffers, but they are all unmapped. The page was
509 		 * created by pagein or read over a hole which was handled by
510 		 * block_read_full_page().  If this address_space is also
511 		 * using mpage_readpages then this can rarely happen.
512 		 */
513 		goto confused;
514 	}
515 
516 	/*
517 	 * The page has no buffers: map it to disk
518 	 */
519 	BUG_ON(!PageUptodate(page));
520 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
521 	last_block = (i_size - 1) >> blkbits;
522 	map_bh.b_page = page;
523 	for (page_block = 0; page_block < blocks_per_page; ) {
524 
525 		map_bh.b_state = 0;
526 		map_bh.b_size = 1 << blkbits;
527 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
528 			goto confused;
529 		if (buffer_new(&map_bh))
530 			unmap_underlying_metadata(map_bh.b_bdev,
531 						map_bh.b_blocknr);
532 		if (buffer_boundary(&map_bh)) {
533 			boundary_block = map_bh.b_blocknr;
534 			boundary_bdev = map_bh.b_bdev;
535 		}
536 		if (page_block) {
537 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
538 				goto confused;
539 		}
540 		blocks[page_block++] = map_bh.b_blocknr;
541 		boundary = buffer_boundary(&map_bh);
542 		bdev = map_bh.b_bdev;
543 		if (block_in_file == last_block)
544 			break;
545 		block_in_file++;
546 	}
547 	BUG_ON(page_block == 0);
548 
549 	first_unmapped = page_block;
550 
551 page_is_mapped:
552 	end_index = i_size >> PAGE_CACHE_SHIFT;
553 	if (page->index >= end_index) {
554 		/*
555 		 * The page straddles i_size.  It must be zeroed out on each
556 		 * and every writepage invocation because it may be mmapped.
557 		 * "A file is mapped in multiples of the page size.  For a file
558 		 * that is not a multiple of the page size, the remaining memory
559 		 * is zeroed when mapped, and writes to that region are not
560 		 * written out to the file."
561 		 */
562 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
563 
564 		if (page->index > end_index || !offset)
565 			goto confused;
566 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
567 	}
568 
569 	/*
570 	 * This page will go to BIO.  Do we need to send this BIO off first?
571 	 */
572 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
573 		bio = mpage_bio_submit(WRITE, bio);
574 
575 alloc_new:
576 	if (bio == NULL) {
577 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
578 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
579 		if (bio == NULL)
580 			goto confused;
581 	}
582 
583 	/*
584 	 * Must try to add the page before marking the buffer clean or
585 	 * the confused fail path above (OOM) will be very confused when
586 	 * it finds all bh marked clean (i.e. it will not write anything)
587 	 */
588 	length = first_unmapped << blkbits;
589 	if (bio_add_page(bio, page, length, 0) < length) {
590 		bio = mpage_bio_submit(WRITE, bio);
591 		goto alloc_new;
592 	}
593 
594 	/*
595 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
596 	 * sure to only clean buffers which we know we'll be writing.
597 	 */
598 	if (page_has_buffers(page)) {
599 		struct buffer_head *head = page_buffers(page);
600 		struct buffer_head *bh = head;
601 		unsigned buffer_counter = 0;
602 
603 		do {
604 			if (buffer_counter++ == first_unmapped)
605 				break;
606 			clear_buffer_dirty(bh);
607 			bh = bh->b_this_page;
608 		} while (bh != head);
609 
610 		/*
611 		 * we cannot drop the bh if the page is not uptodate
612 		 * or a concurrent readpage would fail to serialize with the bh
613 		 * and it would read from disk before we reach the platter.
614 		 */
615 		if (buffer_heads_over_limit && PageUptodate(page))
616 			try_to_free_buffers(page);
617 	}
618 
619 	BUG_ON(PageWriteback(page));
620 	set_page_writeback(page);
621 	unlock_page(page);
622 	if (boundary || (first_unmapped != blocks_per_page)) {
623 		bio = mpage_bio_submit(WRITE, bio);
624 		if (boundary_block) {
625 			write_boundary_block(boundary_bdev,
626 					boundary_block, 1 << blkbits);
627 		}
628 	} else {
629 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
630 	}
631 	goto out;
632 
633 confused:
634 	if (bio)
635 		bio = mpage_bio_submit(WRITE, bio);
636 
637 	if (mpd->use_writepage) {
638 		ret = mapping->a_ops->writepage(page, wbc);
639 	} else {
640 		ret = -EAGAIN;
641 		goto out;
642 	}
643 	/*
644 	 * The caller has a ref on the inode, so *mapping is stable
645 	 */
646 	mapping_set_error(mapping, ret);
647 out:
648 	mpd->bio = bio;
649 	return ret;
650 }
651 
652 /**
653  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
654  * @mapping: address space structure to write
655  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
656  * @get_block: the filesystem's block mapper function.
657  *             If this is NULL then use a_ops->writepage.  Otherwise, go
658  *             direct-to-BIO.
659  *
660  * This is a library function, which implements the writepages()
661  * address_space_operation.
662  *
663  * If a page is already under I/O, generic_writepages() skips it, even
664  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
665  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
666  * and msync() need to guarantee that all the data which was dirty at the time
667  * the call was made get new I/O started against them.  If wbc->sync_mode is
668  * WB_SYNC_ALL then we were called for data integrity and we must wait for
669  * existing IO to complete.
670  */
671 int
672 mpage_writepages(struct address_space *mapping,
673 		struct writeback_control *wbc, get_block_t get_block)
674 {
675 	struct blk_plug plug;
676 	int ret;
677 
678 	blk_start_plug(&plug);
679 
680 	if (!get_block)
681 		ret = generic_writepages(mapping, wbc);
682 	else {
683 		struct mpage_data mpd = {
684 			.bio = NULL,
685 			.last_block_in_bio = 0,
686 			.get_block = get_block,
687 			.use_writepage = 1,
688 		};
689 
690 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
691 		if (mpd.bio)
692 			mpage_bio_submit(WRITE, mpd.bio);
693 	}
694 	blk_finish_plug(&plug);
695 	return ret;
696 }
697 EXPORT_SYMBOL(mpage_writepages);
698 
699 int mpage_writepage(struct page *page, get_block_t get_block,
700 	struct writeback_control *wbc)
701 {
702 	struct mpage_data mpd = {
703 		.bio = NULL,
704 		.last_block_in_bio = 0,
705 		.get_block = get_block,
706 		.use_writepage = 0,
707 	};
708 	int ret = __mpage_writepage(page, wbc, &mpd);
709 	if (mpd.bio)
710 		mpage_bio_submit(WRITE, mpd.bio);
711 	return ret;
712 }
713 EXPORT_SYMBOL(mpage_writepage);
714