1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/cleancache.h> 31 32 /* 33 * I/O completion handler for multipage BIOs. 34 * 35 * The mpage code never puts partial pages into a BIO (except for end-of-file). 36 * If a page does not map to a contiguous run of blocks then it simply falls 37 * back to block_read_full_page(). 38 * 39 * Why is this? If a page's completion depends on a number of different BIOs 40 * which can complete in any order (or at the same time) then determining the 41 * status of that page is hard. See end_buffer_async_read() for the details. 42 * There is no point in duplicating all that complexity. 43 */ 44 static void mpage_end_io(struct bio *bio, int err) 45 { 46 struct bio_vec *bv; 47 int i; 48 49 bio_for_each_segment_all(bv, bio, i) { 50 struct page *page = bv->bv_page; 51 52 if (bio_data_dir(bio) == READ) { 53 if (!err) { 54 SetPageUptodate(page); 55 } else { 56 ClearPageUptodate(page); 57 SetPageError(page); 58 } 59 unlock_page(page); 60 } else { /* bio_data_dir(bio) == WRITE */ 61 if (err) { 62 SetPageError(page); 63 if (page->mapping) 64 set_bit(AS_EIO, &page->mapping->flags); 65 } 66 end_page_writeback(page); 67 } 68 } 69 70 bio_put(bio); 71 } 72 73 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 74 { 75 bio->bi_end_io = mpage_end_io; 76 submit_bio(rw, bio); 77 return NULL; 78 } 79 80 static struct bio * 81 mpage_alloc(struct block_device *bdev, 82 sector_t first_sector, int nr_vecs, 83 gfp_t gfp_flags) 84 { 85 struct bio *bio; 86 87 bio = bio_alloc(gfp_flags, nr_vecs); 88 89 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 90 while (!bio && (nr_vecs /= 2)) 91 bio = bio_alloc(gfp_flags, nr_vecs); 92 } 93 94 if (bio) { 95 bio->bi_bdev = bdev; 96 bio->bi_iter.bi_sector = first_sector; 97 } 98 return bio; 99 } 100 101 /* 102 * support function for mpage_readpages. The fs supplied get_block might 103 * return an up to date buffer. This is used to map that buffer into 104 * the page, which allows readpage to avoid triggering a duplicate call 105 * to get_block. 106 * 107 * The idea is to avoid adding buffers to pages that don't already have 108 * them. So when the buffer is up to date and the page size == block size, 109 * this marks the page up to date instead of adding new buffers. 110 */ 111 static void 112 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 113 { 114 struct inode *inode = page->mapping->host; 115 struct buffer_head *page_bh, *head; 116 int block = 0; 117 118 if (!page_has_buffers(page)) { 119 /* 120 * don't make any buffers if there is only one buffer on 121 * the page and the page just needs to be set up to date 122 */ 123 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 124 buffer_uptodate(bh)) { 125 SetPageUptodate(page); 126 return; 127 } 128 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 129 } 130 head = page_buffers(page); 131 page_bh = head; 132 do { 133 if (block == page_block) { 134 page_bh->b_state = bh->b_state; 135 page_bh->b_bdev = bh->b_bdev; 136 page_bh->b_blocknr = bh->b_blocknr; 137 break; 138 } 139 page_bh = page_bh->b_this_page; 140 block++; 141 } while (page_bh != head); 142 } 143 144 /* 145 * This is the worker routine which does all the work of mapping the disk 146 * blocks and constructs largest possible bios, submits them for IO if the 147 * blocks are not contiguous on the disk. 148 * 149 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 150 * represent the validity of its disk mapping and to decide when to do the next 151 * get_block() call. 152 */ 153 static struct bio * 154 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 155 sector_t *last_block_in_bio, struct buffer_head *map_bh, 156 unsigned long *first_logical_block, get_block_t get_block) 157 { 158 struct inode *inode = page->mapping->host; 159 const unsigned blkbits = inode->i_blkbits; 160 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 161 const unsigned blocksize = 1 << blkbits; 162 sector_t block_in_file; 163 sector_t last_block; 164 sector_t last_block_in_file; 165 sector_t blocks[MAX_BUF_PER_PAGE]; 166 unsigned page_block; 167 unsigned first_hole = blocks_per_page; 168 struct block_device *bdev = NULL; 169 int length; 170 int fully_mapped = 1; 171 unsigned nblocks; 172 unsigned relative_block; 173 174 if (page_has_buffers(page)) 175 goto confused; 176 177 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 178 last_block = block_in_file + nr_pages * blocks_per_page; 179 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 180 if (last_block > last_block_in_file) 181 last_block = last_block_in_file; 182 page_block = 0; 183 184 /* 185 * Map blocks using the result from the previous get_blocks call first. 186 */ 187 nblocks = map_bh->b_size >> blkbits; 188 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 189 block_in_file < (*first_logical_block + nblocks)) { 190 unsigned map_offset = block_in_file - *first_logical_block; 191 unsigned last = nblocks - map_offset; 192 193 for (relative_block = 0; ; relative_block++) { 194 if (relative_block == last) { 195 clear_buffer_mapped(map_bh); 196 break; 197 } 198 if (page_block == blocks_per_page) 199 break; 200 blocks[page_block] = map_bh->b_blocknr + map_offset + 201 relative_block; 202 page_block++; 203 block_in_file++; 204 } 205 bdev = map_bh->b_bdev; 206 } 207 208 /* 209 * Then do more get_blocks calls until we are done with this page. 210 */ 211 map_bh->b_page = page; 212 while (page_block < blocks_per_page) { 213 map_bh->b_state = 0; 214 map_bh->b_size = 0; 215 216 if (block_in_file < last_block) { 217 map_bh->b_size = (last_block-block_in_file) << blkbits; 218 if (get_block(inode, block_in_file, map_bh, 0)) 219 goto confused; 220 *first_logical_block = block_in_file; 221 } 222 223 if (!buffer_mapped(map_bh)) { 224 fully_mapped = 0; 225 if (first_hole == blocks_per_page) 226 first_hole = page_block; 227 page_block++; 228 block_in_file++; 229 continue; 230 } 231 232 /* some filesystems will copy data into the page during 233 * the get_block call, in which case we don't want to 234 * read it again. map_buffer_to_page copies the data 235 * we just collected from get_block into the page's buffers 236 * so readpage doesn't have to repeat the get_block call 237 */ 238 if (buffer_uptodate(map_bh)) { 239 map_buffer_to_page(page, map_bh, page_block); 240 goto confused; 241 } 242 243 if (first_hole != blocks_per_page) 244 goto confused; /* hole -> non-hole */ 245 246 /* Contiguous blocks? */ 247 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 248 goto confused; 249 nblocks = map_bh->b_size >> blkbits; 250 for (relative_block = 0; ; relative_block++) { 251 if (relative_block == nblocks) { 252 clear_buffer_mapped(map_bh); 253 break; 254 } else if (page_block == blocks_per_page) 255 break; 256 blocks[page_block] = map_bh->b_blocknr+relative_block; 257 page_block++; 258 block_in_file++; 259 } 260 bdev = map_bh->b_bdev; 261 } 262 263 if (first_hole != blocks_per_page) { 264 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); 265 if (first_hole == 0) { 266 SetPageUptodate(page); 267 unlock_page(page); 268 goto out; 269 } 270 } else if (fully_mapped) { 271 SetPageMappedToDisk(page); 272 } 273 274 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 275 cleancache_get_page(page) == 0) { 276 SetPageUptodate(page); 277 goto confused; 278 } 279 280 /* 281 * This page will go to BIO. Do we need to send this BIO off first? 282 */ 283 if (bio && (*last_block_in_bio != blocks[0] - 1)) 284 bio = mpage_bio_submit(READ, bio); 285 286 alloc_new: 287 if (bio == NULL) { 288 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 289 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 290 GFP_KERNEL); 291 if (bio == NULL) 292 goto confused; 293 } 294 295 length = first_hole << blkbits; 296 if (bio_add_page(bio, page, length, 0) < length) { 297 bio = mpage_bio_submit(READ, bio); 298 goto alloc_new; 299 } 300 301 relative_block = block_in_file - *first_logical_block; 302 nblocks = map_bh->b_size >> blkbits; 303 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 304 (first_hole != blocks_per_page)) 305 bio = mpage_bio_submit(READ, bio); 306 else 307 *last_block_in_bio = blocks[blocks_per_page - 1]; 308 out: 309 return bio; 310 311 confused: 312 if (bio) 313 bio = mpage_bio_submit(READ, bio); 314 if (!PageUptodate(page)) 315 block_read_full_page(page, get_block); 316 else 317 unlock_page(page); 318 goto out; 319 } 320 321 /** 322 * mpage_readpages - populate an address space with some pages & start reads against them 323 * @mapping: the address_space 324 * @pages: The address of a list_head which contains the target pages. These 325 * pages have their ->index populated and are otherwise uninitialised. 326 * The page at @pages->prev has the lowest file offset, and reads should be 327 * issued in @pages->prev to @pages->next order. 328 * @nr_pages: The number of pages at *@pages 329 * @get_block: The filesystem's block mapper function. 330 * 331 * This function walks the pages and the blocks within each page, building and 332 * emitting large BIOs. 333 * 334 * If anything unusual happens, such as: 335 * 336 * - encountering a page which has buffers 337 * - encountering a page which has a non-hole after a hole 338 * - encountering a page with non-contiguous blocks 339 * 340 * then this code just gives up and calls the buffer_head-based read function. 341 * It does handle a page which has holes at the end - that is a common case: 342 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 343 * 344 * BH_Boundary explanation: 345 * 346 * There is a problem. The mpage read code assembles several pages, gets all 347 * their disk mappings, and then submits them all. That's fine, but obtaining 348 * the disk mappings may require I/O. Reads of indirect blocks, for example. 349 * 350 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 351 * submitted in the following order: 352 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 353 * 354 * because the indirect block has to be read to get the mappings of blocks 355 * 13,14,15,16. Obviously, this impacts performance. 356 * 357 * So what we do it to allow the filesystem's get_block() function to set 358 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 359 * after this one will require I/O against a block which is probably close to 360 * this one. So you should push what I/O you have currently accumulated. 361 * 362 * This all causes the disk requests to be issued in the correct order. 363 */ 364 int 365 mpage_readpages(struct address_space *mapping, struct list_head *pages, 366 unsigned nr_pages, get_block_t get_block) 367 { 368 struct bio *bio = NULL; 369 unsigned page_idx; 370 sector_t last_block_in_bio = 0; 371 struct buffer_head map_bh; 372 unsigned long first_logical_block = 0; 373 374 map_bh.b_state = 0; 375 map_bh.b_size = 0; 376 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 377 struct page *page = list_entry(pages->prev, struct page, lru); 378 379 prefetchw(&page->flags); 380 list_del(&page->lru); 381 if (!add_to_page_cache_lru(page, mapping, 382 page->index, GFP_KERNEL)) { 383 bio = do_mpage_readpage(bio, page, 384 nr_pages - page_idx, 385 &last_block_in_bio, &map_bh, 386 &first_logical_block, 387 get_block); 388 } 389 page_cache_release(page); 390 } 391 BUG_ON(!list_empty(pages)); 392 if (bio) 393 mpage_bio_submit(READ, bio); 394 return 0; 395 } 396 EXPORT_SYMBOL(mpage_readpages); 397 398 /* 399 * This isn't called much at all 400 */ 401 int mpage_readpage(struct page *page, get_block_t get_block) 402 { 403 struct bio *bio = NULL; 404 sector_t last_block_in_bio = 0; 405 struct buffer_head map_bh; 406 unsigned long first_logical_block = 0; 407 408 map_bh.b_state = 0; 409 map_bh.b_size = 0; 410 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 411 &map_bh, &first_logical_block, get_block); 412 if (bio) 413 mpage_bio_submit(READ, bio); 414 return 0; 415 } 416 EXPORT_SYMBOL(mpage_readpage); 417 418 /* 419 * Writing is not so simple. 420 * 421 * If the page has buffers then they will be used for obtaining the disk 422 * mapping. We only support pages which are fully mapped-and-dirty, with a 423 * special case for pages which are unmapped at the end: end-of-file. 424 * 425 * If the page has no buffers (preferred) then the page is mapped here. 426 * 427 * If all blocks are found to be contiguous then the page can go into the 428 * BIO. Otherwise fall back to the mapping's writepage(). 429 * 430 * FIXME: This code wants an estimate of how many pages are still to be 431 * written, so it can intelligently allocate a suitably-sized BIO. For now, 432 * just allocate full-size (16-page) BIOs. 433 */ 434 435 struct mpage_data { 436 struct bio *bio; 437 sector_t last_block_in_bio; 438 get_block_t *get_block; 439 unsigned use_writepage; 440 }; 441 442 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 443 void *data) 444 { 445 struct mpage_data *mpd = data; 446 struct bio *bio = mpd->bio; 447 struct address_space *mapping = page->mapping; 448 struct inode *inode = page->mapping->host; 449 const unsigned blkbits = inode->i_blkbits; 450 unsigned long end_index; 451 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 452 sector_t last_block; 453 sector_t block_in_file; 454 sector_t blocks[MAX_BUF_PER_PAGE]; 455 unsigned page_block; 456 unsigned first_unmapped = blocks_per_page; 457 struct block_device *bdev = NULL; 458 int boundary = 0; 459 sector_t boundary_block = 0; 460 struct block_device *boundary_bdev = NULL; 461 int length; 462 struct buffer_head map_bh; 463 loff_t i_size = i_size_read(inode); 464 int ret = 0; 465 466 if (page_has_buffers(page)) { 467 struct buffer_head *head = page_buffers(page); 468 struct buffer_head *bh = head; 469 470 /* If they're all mapped and dirty, do it */ 471 page_block = 0; 472 do { 473 BUG_ON(buffer_locked(bh)); 474 if (!buffer_mapped(bh)) { 475 /* 476 * unmapped dirty buffers are created by 477 * __set_page_dirty_buffers -> mmapped data 478 */ 479 if (buffer_dirty(bh)) 480 goto confused; 481 if (first_unmapped == blocks_per_page) 482 first_unmapped = page_block; 483 continue; 484 } 485 486 if (first_unmapped != blocks_per_page) 487 goto confused; /* hole -> non-hole */ 488 489 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 490 goto confused; 491 if (page_block) { 492 if (bh->b_blocknr != blocks[page_block-1] + 1) 493 goto confused; 494 } 495 blocks[page_block++] = bh->b_blocknr; 496 boundary = buffer_boundary(bh); 497 if (boundary) { 498 boundary_block = bh->b_blocknr; 499 boundary_bdev = bh->b_bdev; 500 } 501 bdev = bh->b_bdev; 502 } while ((bh = bh->b_this_page) != head); 503 504 if (first_unmapped) 505 goto page_is_mapped; 506 507 /* 508 * Page has buffers, but they are all unmapped. The page was 509 * created by pagein or read over a hole which was handled by 510 * block_read_full_page(). If this address_space is also 511 * using mpage_readpages then this can rarely happen. 512 */ 513 goto confused; 514 } 515 516 /* 517 * The page has no buffers: map it to disk 518 */ 519 BUG_ON(!PageUptodate(page)); 520 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 521 last_block = (i_size - 1) >> blkbits; 522 map_bh.b_page = page; 523 for (page_block = 0; page_block < blocks_per_page; ) { 524 525 map_bh.b_state = 0; 526 map_bh.b_size = 1 << blkbits; 527 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 528 goto confused; 529 if (buffer_new(&map_bh)) 530 unmap_underlying_metadata(map_bh.b_bdev, 531 map_bh.b_blocknr); 532 if (buffer_boundary(&map_bh)) { 533 boundary_block = map_bh.b_blocknr; 534 boundary_bdev = map_bh.b_bdev; 535 } 536 if (page_block) { 537 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 538 goto confused; 539 } 540 blocks[page_block++] = map_bh.b_blocknr; 541 boundary = buffer_boundary(&map_bh); 542 bdev = map_bh.b_bdev; 543 if (block_in_file == last_block) 544 break; 545 block_in_file++; 546 } 547 BUG_ON(page_block == 0); 548 549 first_unmapped = page_block; 550 551 page_is_mapped: 552 end_index = i_size >> PAGE_CACHE_SHIFT; 553 if (page->index >= end_index) { 554 /* 555 * The page straddles i_size. It must be zeroed out on each 556 * and every writepage invocation because it may be mmapped. 557 * "A file is mapped in multiples of the page size. For a file 558 * that is not a multiple of the page size, the remaining memory 559 * is zeroed when mapped, and writes to that region are not 560 * written out to the file." 561 */ 562 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 563 564 if (page->index > end_index || !offset) 565 goto confused; 566 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 567 } 568 569 /* 570 * This page will go to BIO. Do we need to send this BIO off first? 571 */ 572 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 573 bio = mpage_bio_submit(WRITE, bio); 574 575 alloc_new: 576 if (bio == NULL) { 577 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 578 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 579 if (bio == NULL) 580 goto confused; 581 } 582 583 /* 584 * Must try to add the page before marking the buffer clean or 585 * the confused fail path above (OOM) will be very confused when 586 * it finds all bh marked clean (i.e. it will not write anything) 587 */ 588 length = first_unmapped << blkbits; 589 if (bio_add_page(bio, page, length, 0) < length) { 590 bio = mpage_bio_submit(WRITE, bio); 591 goto alloc_new; 592 } 593 594 /* 595 * OK, we have our BIO, so we can now mark the buffers clean. Make 596 * sure to only clean buffers which we know we'll be writing. 597 */ 598 if (page_has_buffers(page)) { 599 struct buffer_head *head = page_buffers(page); 600 struct buffer_head *bh = head; 601 unsigned buffer_counter = 0; 602 603 do { 604 if (buffer_counter++ == first_unmapped) 605 break; 606 clear_buffer_dirty(bh); 607 bh = bh->b_this_page; 608 } while (bh != head); 609 610 /* 611 * we cannot drop the bh if the page is not uptodate 612 * or a concurrent readpage would fail to serialize with the bh 613 * and it would read from disk before we reach the platter. 614 */ 615 if (buffer_heads_over_limit && PageUptodate(page)) 616 try_to_free_buffers(page); 617 } 618 619 BUG_ON(PageWriteback(page)); 620 set_page_writeback(page); 621 unlock_page(page); 622 if (boundary || (first_unmapped != blocks_per_page)) { 623 bio = mpage_bio_submit(WRITE, bio); 624 if (boundary_block) { 625 write_boundary_block(boundary_bdev, 626 boundary_block, 1 << blkbits); 627 } 628 } else { 629 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 630 } 631 goto out; 632 633 confused: 634 if (bio) 635 bio = mpage_bio_submit(WRITE, bio); 636 637 if (mpd->use_writepage) { 638 ret = mapping->a_ops->writepage(page, wbc); 639 } else { 640 ret = -EAGAIN; 641 goto out; 642 } 643 /* 644 * The caller has a ref on the inode, so *mapping is stable 645 */ 646 mapping_set_error(mapping, ret); 647 out: 648 mpd->bio = bio; 649 return ret; 650 } 651 652 /** 653 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 654 * @mapping: address space structure to write 655 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 656 * @get_block: the filesystem's block mapper function. 657 * If this is NULL then use a_ops->writepage. Otherwise, go 658 * direct-to-BIO. 659 * 660 * This is a library function, which implements the writepages() 661 * address_space_operation. 662 * 663 * If a page is already under I/O, generic_writepages() skips it, even 664 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 665 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 666 * and msync() need to guarantee that all the data which was dirty at the time 667 * the call was made get new I/O started against them. If wbc->sync_mode is 668 * WB_SYNC_ALL then we were called for data integrity and we must wait for 669 * existing IO to complete. 670 */ 671 int 672 mpage_writepages(struct address_space *mapping, 673 struct writeback_control *wbc, get_block_t get_block) 674 { 675 struct blk_plug plug; 676 int ret; 677 678 blk_start_plug(&plug); 679 680 if (!get_block) 681 ret = generic_writepages(mapping, wbc); 682 else { 683 struct mpage_data mpd = { 684 .bio = NULL, 685 .last_block_in_bio = 0, 686 .get_block = get_block, 687 .use_writepage = 1, 688 }; 689 690 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 691 if (mpd.bio) 692 mpage_bio_submit(WRITE, mpd.bio); 693 } 694 blk_finish_plug(&plug); 695 return ret; 696 } 697 EXPORT_SYMBOL(mpage_writepages); 698 699 int mpage_writepage(struct page *page, get_block_t get_block, 700 struct writeback_control *wbc) 701 { 702 struct mpage_data mpd = { 703 .bio = NULL, 704 .last_block_in_bio = 0, 705 .get_block = get_block, 706 .use_writepage = 0, 707 }; 708 int ret = __mpage_writepage(page, wbc, &mpd); 709 if (mpd.bio) 710 mpage_bio_submit(WRITE, mpd.bio); 711 return ret; 712 } 713 EXPORT_SYMBOL(mpage_writepage); 714