xref: /linux/fs/mpage.c (revision a5359ddd052860bacf957e65fe819c63e974b3a6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48 	struct bio_vec *bv;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bv, bio, iter_all) {
52 		struct page *page = bv->bv_page;
53 		page_endio(page, bio_op(bio),
54 			   blk_status_to_errno(bio->bi_status));
55 	}
56 
57 	bio_put(bio);
58 }
59 
60 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
61 {
62 	bio->bi_end_io = mpage_end_io;
63 	bio_set_op_attrs(bio, op, op_flags);
64 	guard_bio_eod(bio);
65 	submit_bio(bio);
66 	return NULL;
67 }
68 
69 /*
70  * support function for mpage_readahead.  The fs supplied get_block might
71  * return an up to date buffer.  This is used to map that buffer into
72  * the page, which allows readpage to avoid triggering a duplicate call
73  * to get_block.
74  *
75  * The idea is to avoid adding buffers to pages that don't already have
76  * them.  So when the buffer is up to date and the page size == block size,
77  * this marks the page up to date instead of adding new buffers.
78  */
79 static void
80 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
81 {
82 	struct inode *inode = page->mapping->host;
83 	struct buffer_head *page_bh, *head;
84 	int block = 0;
85 
86 	if (!page_has_buffers(page)) {
87 		/*
88 		 * don't make any buffers if there is only one buffer on
89 		 * the page and the page just needs to be set up to date
90 		 */
91 		if (inode->i_blkbits == PAGE_SHIFT &&
92 		    buffer_uptodate(bh)) {
93 			SetPageUptodate(page);
94 			return;
95 		}
96 		create_empty_buffers(page, i_blocksize(inode), 0);
97 	}
98 	head = page_buffers(page);
99 	page_bh = head;
100 	do {
101 		if (block == page_block) {
102 			page_bh->b_state = bh->b_state;
103 			page_bh->b_bdev = bh->b_bdev;
104 			page_bh->b_blocknr = bh->b_blocknr;
105 			break;
106 		}
107 		page_bh = page_bh->b_this_page;
108 		block++;
109 	} while (page_bh != head);
110 }
111 
112 struct mpage_readpage_args {
113 	struct bio *bio;
114 	struct page *page;
115 	unsigned int nr_pages;
116 	bool is_readahead;
117 	sector_t last_block_in_bio;
118 	struct buffer_head map_bh;
119 	unsigned long first_logical_block;
120 	get_block_t *get_block;
121 };
122 
123 /*
124  * This is the worker routine which does all the work of mapping the disk
125  * blocks and constructs largest possible bios, submits them for IO if the
126  * blocks are not contiguous on the disk.
127  *
128  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
129  * represent the validity of its disk mapping and to decide when to do the next
130  * get_block() call.
131  */
132 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
133 {
134 	struct page *page = args->page;
135 	struct inode *inode = page->mapping->host;
136 	const unsigned blkbits = inode->i_blkbits;
137 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
138 	const unsigned blocksize = 1 << blkbits;
139 	struct buffer_head *map_bh = &args->map_bh;
140 	sector_t block_in_file;
141 	sector_t last_block;
142 	sector_t last_block_in_file;
143 	sector_t blocks[MAX_BUF_PER_PAGE];
144 	unsigned page_block;
145 	unsigned first_hole = blocks_per_page;
146 	struct block_device *bdev = NULL;
147 	int length;
148 	int fully_mapped = 1;
149 	int op_flags;
150 	unsigned nblocks;
151 	unsigned relative_block;
152 	gfp_t gfp;
153 
154 	if (args->is_readahead) {
155 		op_flags = REQ_RAHEAD;
156 		gfp = readahead_gfp_mask(page->mapping);
157 	} else {
158 		op_flags = 0;
159 		gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
160 	}
161 
162 	if (page_has_buffers(page))
163 		goto confused;
164 
165 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
166 	last_block = block_in_file + args->nr_pages * blocks_per_page;
167 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168 	if (last_block > last_block_in_file)
169 		last_block = last_block_in_file;
170 	page_block = 0;
171 
172 	/*
173 	 * Map blocks using the result from the previous get_blocks call first.
174 	 */
175 	nblocks = map_bh->b_size >> blkbits;
176 	if (buffer_mapped(map_bh) &&
177 			block_in_file > args->first_logical_block &&
178 			block_in_file < (args->first_logical_block + nblocks)) {
179 		unsigned map_offset = block_in_file - args->first_logical_block;
180 		unsigned last = nblocks - map_offset;
181 
182 		for (relative_block = 0; ; relative_block++) {
183 			if (relative_block == last) {
184 				clear_buffer_mapped(map_bh);
185 				break;
186 			}
187 			if (page_block == blocks_per_page)
188 				break;
189 			blocks[page_block] = map_bh->b_blocknr + map_offset +
190 						relative_block;
191 			page_block++;
192 			block_in_file++;
193 		}
194 		bdev = map_bh->b_bdev;
195 	}
196 
197 	/*
198 	 * Then do more get_blocks calls until we are done with this page.
199 	 */
200 	map_bh->b_page = page;
201 	while (page_block < blocks_per_page) {
202 		map_bh->b_state = 0;
203 		map_bh->b_size = 0;
204 
205 		if (block_in_file < last_block) {
206 			map_bh->b_size = (last_block-block_in_file) << blkbits;
207 			if (args->get_block(inode, block_in_file, map_bh, 0))
208 				goto confused;
209 			args->first_logical_block = block_in_file;
210 		}
211 
212 		if (!buffer_mapped(map_bh)) {
213 			fully_mapped = 0;
214 			if (first_hole == blocks_per_page)
215 				first_hole = page_block;
216 			page_block++;
217 			block_in_file++;
218 			continue;
219 		}
220 
221 		/* some filesystems will copy data into the page during
222 		 * the get_block call, in which case we don't want to
223 		 * read it again.  map_buffer_to_page copies the data
224 		 * we just collected from get_block into the page's buffers
225 		 * so readpage doesn't have to repeat the get_block call
226 		 */
227 		if (buffer_uptodate(map_bh)) {
228 			map_buffer_to_page(page, map_bh, page_block);
229 			goto confused;
230 		}
231 
232 		if (first_hole != blocks_per_page)
233 			goto confused;		/* hole -> non-hole */
234 
235 		/* Contiguous blocks? */
236 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
237 			goto confused;
238 		nblocks = map_bh->b_size >> blkbits;
239 		for (relative_block = 0; ; relative_block++) {
240 			if (relative_block == nblocks) {
241 				clear_buffer_mapped(map_bh);
242 				break;
243 			} else if (page_block == blocks_per_page)
244 				break;
245 			blocks[page_block] = map_bh->b_blocknr+relative_block;
246 			page_block++;
247 			block_in_file++;
248 		}
249 		bdev = map_bh->b_bdev;
250 	}
251 
252 	if (first_hole != blocks_per_page) {
253 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
254 		if (first_hole == 0) {
255 			SetPageUptodate(page);
256 			unlock_page(page);
257 			goto out;
258 		}
259 	} else if (fully_mapped) {
260 		SetPageMappedToDisk(page);
261 	}
262 
263 	/*
264 	 * This page will go to BIO.  Do we need to send this BIO off first?
265 	 */
266 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
267 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
268 
269 alloc_new:
270 	if (args->bio == NULL) {
271 		if (first_hole == blocks_per_page) {
272 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
273 								page))
274 				goto out;
275 		}
276 		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), 0,
277 				      gfp);
278 		if (args->bio == NULL)
279 			goto confused;
280 		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
281 	}
282 
283 	length = first_hole << blkbits;
284 	if (bio_add_page(args->bio, page, length, 0) < length) {
285 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
286 		goto alloc_new;
287 	}
288 
289 	relative_block = block_in_file - args->first_logical_block;
290 	nblocks = map_bh->b_size >> blkbits;
291 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
292 	    (first_hole != blocks_per_page))
293 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
294 	else
295 		args->last_block_in_bio = blocks[blocks_per_page - 1];
296 out:
297 	return args->bio;
298 
299 confused:
300 	if (args->bio)
301 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
302 	if (!PageUptodate(page))
303 		block_read_full_page(page, args->get_block);
304 	else
305 		unlock_page(page);
306 	goto out;
307 }
308 
309 /**
310  * mpage_readahead - start reads against pages
311  * @rac: Describes which pages to read.
312  * @get_block: The filesystem's block mapper function.
313  *
314  * This function walks the pages and the blocks within each page, building and
315  * emitting large BIOs.
316  *
317  * If anything unusual happens, such as:
318  *
319  * - encountering a page which has buffers
320  * - encountering a page which has a non-hole after a hole
321  * - encountering a page with non-contiguous blocks
322  *
323  * then this code just gives up and calls the buffer_head-based read function.
324  * It does handle a page which has holes at the end - that is a common case:
325  * the end-of-file on blocksize < PAGE_SIZE setups.
326  *
327  * BH_Boundary explanation:
328  *
329  * There is a problem.  The mpage read code assembles several pages, gets all
330  * their disk mappings, and then submits them all.  That's fine, but obtaining
331  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
332  *
333  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
334  * submitted in the following order:
335  *
336  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
337  *
338  * because the indirect block has to be read to get the mappings of blocks
339  * 13,14,15,16.  Obviously, this impacts performance.
340  *
341  * So what we do it to allow the filesystem's get_block() function to set
342  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
343  * after this one will require I/O against a block which is probably close to
344  * this one.  So you should push what I/O you have currently accumulated.
345  *
346  * This all causes the disk requests to be issued in the correct order.
347  */
348 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
349 {
350 	struct page *page;
351 	struct mpage_readpage_args args = {
352 		.get_block = get_block,
353 		.is_readahead = true,
354 	};
355 
356 	while ((page = readahead_page(rac))) {
357 		prefetchw(&page->flags);
358 		args.page = page;
359 		args.nr_pages = readahead_count(rac);
360 		args.bio = do_mpage_readpage(&args);
361 		put_page(page);
362 	}
363 	if (args.bio)
364 		mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
365 }
366 EXPORT_SYMBOL(mpage_readahead);
367 
368 /*
369  * This isn't called much at all
370  */
371 int mpage_readpage(struct page *page, get_block_t get_block)
372 {
373 	struct mpage_readpage_args args = {
374 		.page = page,
375 		.nr_pages = 1,
376 		.get_block = get_block,
377 	};
378 
379 	args.bio = do_mpage_readpage(&args);
380 	if (args.bio)
381 		mpage_bio_submit(REQ_OP_READ, 0, args.bio);
382 	return 0;
383 }
384 EXPORT_SYMBOL(mpage_readpage);
385 
386 /*
387  * Writing is not so simple.
388  *
389  * If the page has buffers then they will be used for obtaining the disk
390  * mapping.  We only support pages which are fully mapped-and-dirty, with a
391  * special case for pages which are unmapped at the end: end-of-file.
392  *
393  * If the page has no buffers (preferred) then the page is mapped here.
394  *
395  * If all blocks are found to be contiguous then the page can go into the
396  * BIO.  Otherwise fall back to the mapping's writepage().
397  *
398  * FIXME: This code wants an estimate of how many pages are still to be
399  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
400  * just allocate full-size (16-page) BIOs.
401  */
402 
403 struct mpage_data {
404 	struct bio *bio;
405 	sector_t last_block_in_bio;
406 	get_block_t *get_block;
407 	unsigned use_writepage;
408 };
409 
410 /*
411  * We have our BIO, so we can now mark the buffers clean.  Make
412  * sure to only clean buffers which we know we'll be writing.
413  */
414 static void clean_buffers(struct page *page, unsigned first_unmapped)
415 {
416 	unsigned buffer_counter = 0;
417 	struct buffer_head *bh, *head;
418 	if (!page_has_buffers(page))
419 		return;
420 	head = page_buffers(page);
421 	bh = head;
422 
423 	do {
424 		if (buffer_counter++ == first_unmapped)
425 			break;
426 		clear_buffer_dirty(bh);
427 		bh = bh->b_this_page;
428 	} while (bh != head);
429 
430 	/*
431 	 * we cannot drop the bh if the page is not uptodate or a concurrent
432 	 * readpage would fail to serialize with the bh and it would read from
433 	 * disk before we reach the platter.
434 	 */
435 	if (buffer_heads_over_limit && PageUptodate(page))
436 		try_to_free_buffers(page);
437 }
438 
439 /*
440  * For situations where we want to clean all buffers attached to a page.
441  * We don't need to calculate how many buffers are attached to the page,
442  * we just need to specify a number larger than the maximum number of buffers.
443  */
444 void clean_page_buffers(struct page *page)
445 {
446 	clean_buffers(page, ~0U);
447 }
448 
449 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
450 		      void *data)
451 {
452 	struct mpage_data *mpd = data;
453 	struct bio *bio = mpd->bio;
454 	struct address_space *mapping = page->mapping;
455 	struct inode *inode = page->mapping->host;
456 	const unsigned blkbits = inode->i_blkbits;
457 	unsigned long end_index;
458 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
459 	sector_t last_block;
460 	sector_t block_in_file;
461 	sector_t blocks[MAX_BUF_PER_PAGE];
462 	unsigned page_block;
463 	unsigned first_unmapped = blocks_per_page;
464 	struct block_device *bdev = NULL;
465 	int boundary = 0;
466 	sector_t boundary_block = 0;
467 	struct block_device *boundary_bdev = NULL;
468 	int length;
469 	struct buffer_head map_bh;
470 	loff_t i_size = i_size_read(inode);
471 	int ret = 0;
472 	int op_flags = wbc_to_write_flags(wbc);
473 
474 	if (page_has_buffers(page)) {
475 		struct buffer_head *head = page_buffers(page);
476 		struct buffer_head *bh = head;
477 
478 		/* If they're all mapped and dirty, do it */
479 		page_block = 0;
480 		do {
481 			BUG_ON(buffer_locked(bh));
482 			if (!buffer_mapped(bh)) {
483 				/*
484 				 * unmapped dirty buffers are created by
485 				 * __set_page_dirty_buffers -> mmapped data
486 				 */
487 				if (buffer_dirty(bh))
488 					goto confused;
489 				if (first_unmapped == blocks_per_page)
490 					first_unmapped = page_block;
491 				continue;
492 			}
493 
494 			if (first_unmapped != blocks_per_page)
495 				goto confused;	/* hole -> non-hole */
496 
497 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
498 				goto confused;
499 			if (page_block) {
500 				if (bh->b_blocknr != blocks[page_block-1] + 1)
501 					goto confused;
502 			}
503 			blocks[page_block++] = bh->b_blocknr;
504 			boundary = buffer_boundary(bh);
505 			if (boundary) {
506 				boundary_block = bh->b_blocknr;
507 				boundary_bdev = bh->b_bdev;
508 			}
509 			bdev = bh->b_bdev;
510 		} while ((bh = bh->b_this_page) != head);
511 
512 		if (first_unmapped)
513 			goto page_is_mapped;
514 
515 		/*
516 		 * Page has buffers, but they are all unmapped. The page was
517 		 * created by pagein or read over a hole which was handled by
518 		 * block_read_full_page().  If this address_space is also
519 		 * using mpage_readahead then this can rarely happen.
520 		 */
521 		goto confused;
522 	}
523 
524 	/*
525 	 * The page has no buffers: map it to disk
526 	 */
527 	BUG_ON(!PageUptodate(page));
528 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
529 	last_block = (i_size - 1) >> blkbits;
530 	map_bh.b_page = page;
531 	for (page_block = 0; page_block < blocks_per_page; ) {
532 
533 		map_bh.b_state = 0;
534 		map_bh.b_size = 1 << blkbits;
535 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
536 			goto confused;
537 		if (buffer_new(&map_bh))
538 			clean_bdev_bh_alias(&map_bh);
539 		if (buffer_boundary(&map_bh)) {
540 			boundary_block = map_bh.b_blocknr;
541 			boundary_bdev = map_bh.b_bdev;
542 		}
543 		if (page_block) {
544 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
545 				goto confused;
546 		}
547 		blocks[page_block++] = map_bh.b_blocknr;
548 		boundary = buffer_boundary(&map_bh);
549 		bdev = map_bh.b_bdev;
550 		if (block_in_file == last_block)
551 			break;
552 		block_in_file++;
553 	}
554 	BUG_ON(page_block == 0);
555 
556 	first_unmapped = page_block;
557 
558 page_is_mapped:
559 	end_index = i_size >> PAGE_SHIFT;
560 	if (page->index >= end_index) {
561 		/*
562 		 * The page straddles i_size.  It must be zeroed out on each
563 		 * and every writepage invocation because it may be mmapped.
564 		 * "A file is mapped in multiples of the page size.  For a file
565 		 * that is not a multiple of the page size, the remaining memory
566 		 * is zeroed when mapped, and writes to that region are not
567 		 * written out to the file."
568 		 */
569 		unsigned offset = i_size & (PAGE_SIZE - 1);
570 
571 		if (page->index > end_index || !offset)
572 			goto confused;
573 		zero_user_segment(page, offset, PAGE_SIZE);
574 	}
575 
576 	/*
577 	 * This page will go to BIO.  Do we need to send this BIO off first?
578 	 */
579 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
580 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
581 
582 alloc_new:
583 	if (bio == NULL) {
584 		if (first_unmapped == blocks_per_page) {
585 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
586 								page, wbc))
587 				goto out;
588 		}
589 		bio = bio_alloc(bdev, BIO_MAX_VECS, 0, GFP_NOFS);
590 		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
591 
592 		wbc_init_bio(wbc, bio);
593 		bio->bi_write_hint = inode->i_write_hint;
594 	}
595 
596 	/*
597 	 * Must try to add the page before marking the buffer clean or
598 	 * the confused fail path above (OOM) will be very confused when
599 	 * it finds all bh marked clean (i.e. it will not write anything)
600 	 */
601 	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
602 	length = first_unmapped << blkbits;
603 	if (bio_add_page(bio, page, length, 0) < length) {
604 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
605 		goto alloc_new;
606 	}
607 
608 	clean_buffers(page, first_unmapped);
609 
610 	BUG_ON(PageWriteback(page));
611 	set_page_writeback(page);
612 	unlock_page(page);
613 	if (boundary || (first_unmapped != blocks_per_page)) {
614 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
615 		if (boundary_block) {
616 			write_boundary_block(boundary_bdev,
617 					boundary_block, 1 << blkbits);
618 		}
619 	} else {
620 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
621 	}
622 	goto out;
623 
624 confused:
625 	if (bio)
626 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
627 
628 	if (mpd->use_writepage) {
629 		ret = mapping->a_ops->writepage(page, wbc);
630 	} else {
631 		ret = -EAGAIN;
632 		goto out;
633 	}
634 	/*
635 	 * The caller has a ref on the inode, so *mapping is stable
636 	 */
637 	mapping_set_error(mapping, ret);
638 out:
639 	mpd->bio = bio;
640 	return ret;
641 }
642 
643 /**
644  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
645  * @mapping: address space structure to write
646  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
647  * @get_block: the filesystem's block mapper function.
648  *             If this is NULL then use a_ops->writepage.  Otherwise, go
649  *             direct-to-BIO.
650  *
651  * This is a library function, which implements the writepages()
652  * address_space_operation.
653  *
654  * If a page is already under I/O, generic_writepages() skips it, even
655  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
656  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
657  * and msync() need to guarantee that all the data which was dirty at the time
658  * the call was made get new I/O started against them.  If wbc->sync_mode is
659  * WB_SYNC_ALL then we were called for data integrity and we must wait for
660  * existing IO to complete.
661  */
662 int
663 mpage_writepages(struct address_space *mapping,
664 		struct writeback_control *wbc, get_block_t get_block)
665 {
666 	struct blk_plug plug;
667 	int ret;
668 
669 	blk_start_plug(&plug);
670 
671 	if (!get_block)
672 		ret = generic_writepages(mapping, wbc);
673 	else {
674 		struct mpage_data mpd = {
675 			.bio = NULL,
676 			.last_block_in_bio = 0,
677 			.get_block = get_block,
678 			.use_writepage = 1,
679 		};
680 
681 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
682 		if (mpd.bio) {
683 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
684 				  REQ_SYNC : 0);
685 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
686 		}
687 	}
688 	blk_finish_plug(&plug);
689 	return ret;
690 }
691 EXPORT_SYMBOL(mpage_writepages);
692 
693 int mpage_writepage(struct page *page, get_block_t get_block,
694 	struct writeback_control *wbc)
695 {
696 	struct mpage_data mpd = {
697 		.bio = NULL,
698 		.last_block_in_bio = 0,
699 		.get_block = get_block,
700 		.use_writepage = 0,
701 	};
702 	int ret = __mpage_writepage(page, wbc, &mpd);
703 	if (mpd.bio) {
704 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
705 			  REQ_SYNC : 0);
706 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
707 	}
708 	return ret;
709 }
710 EXPORT_SYMBOL(mpage_writepage);
711