1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/mpage.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains functions related to preparing and submitting BIOs which contain 8 * multiple pagecache pages. 9 * 10 * 15May2002 Andrew Morton 11 * Initial version 12 * 27Jun2002 axboe@suse.de 13 * use bio_add_page() to build bio's just the right size 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/mm.h> 19 #include <linux/kdev_t.h> 20 #include <linux/gfp.h> 21 #include <linux/bio.h> 22 #include <linux/fs.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/highmem.h> 26 #include <linux/prefetch.h> 27 #include <linux/mpage.h> 28 #include <linux/mm_inline.h> 29 #include <linux/writeback.h> 30 #include <linux/backing-dev.h> 31 #include <linux/pagevec.h> 32 #include "internal.h" 33 34 /* 35 * I/O completion handler for multipage BIOs. 36 * 37 * The mpage code never puts partial pages into a BIO (except for end-of-file). 38 * If a page does not map to a contiguous run of blocks then it simply falls 39 * back to block_read_full_page(). 40 * 41 * Why is this? If a page's completion depends on a number of different BIOs 42 * which can complete in any order (or at the same time) then determining the 43 * status of that page is hard. See end_buffer_async_read() for the details. 44 * There is no point in duplicating all that complexity. 45 */ 46 static void mpage_end_io(struct bio *bio) 47 { 48 struct bio_vec *bv; 49 struct bvec_iter_all iter_all; 50 51 bio_for_each_segment_all(bv, bio, iter_all) { 52 struct page *page = bv->bv_page; 53 page_endio(page, bio_op(bio), 54 blk_status_to_errno(bio->bi_status)); 55 } 56 57 bio_put(bio); 58 } 59 60 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 61 { 62 bio->bi_end_io = mpage_end_io; 63 bio_set_op_attrs(bio, op, op_flags); 64 guard_bio_eod(bio); 65 submit_bio(bio); 66 return NULL; 67 } 68 69 /* 70 * support function for mpage_readahead. The fs supplied get_block might 71 * return an up to date buffer. This is used to map that buffer into 72 * the page, which allows readpage to avoid triggering a duplicate call 73 * to get_block. 74 * 75 * The idea is to avoid adding buffers to pages that don't already have 76 * them. So when the buffer is up to date and the page size == block size, 77 * this marks the page up to date instead of adding new buffers. 78 */ 79 static void 80 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 81 { 82 struct inode *inode = page->mapping->host; 83 struct buffer_head *page_bh, *head; 84 int block = 0; 85 86 if (!page_has_buffers(page)) { 87 /* 88 * don't make any buffers if there is only one buffer on 89 * the page and the page just needs to be set up to date 90 */ 91 if (inode->i_blkbits == PAGE_SHIFT && 92 buffer_uptodate(bh)) { 93 SetPageUptodate(page); 94 return; 95 } 96 create_empty_buffers(page, i_blocksize(inode), 0); 97 } 98 head = page_buffers(page); 99 page_bh = head; 100 do { 101 if (block == page_block) { 102 page_bh->b_state = bh->b_state; 103 page_bh->b_bdev = bh->b_bdev; 104 page_bh->b_blocknr = bh->b_blocknr; 105 break; 106 } 107 page_bh = page_bh->b_this_page; 108 block++; 109 } while (page_bh != head); 110 } 111 112 struct mpage_readpage_args { 113 struct bio *bio; 114 struct page *page; 115 unsigned int nr_pages; 116 bool is_readahead; 117 sector_t last_block_in_bio; 118 struct buffer_head map_bh; 119 unsigned long first_logical_block; 120 get_block_t *get_block; 121 }; 122 123 /* 124 * This is the worker routine which does all the work of mapping the disk 125 * blocks and constructs largest possible bios, submits them for IO if the 126 * blocks are not contiguous on the disk. 127 * 128 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 129 * represent the validity of its disk mapping and to decide when to do the next 130 * get_block() call. 131 */ 132 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) 133 { 134 struct page *page = args->page; 135 struct inode *inode = page->mapping->host; 136 const unsigned blkbits = inode->i_blkbits; 137 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 138 const unsigned blocksize = 1 << blkbits; 139 struct buffer_head *map_bh = &args->map_bh; 140 sector_t block_in_file; 141 sector_t last_block; 142 sector_t last_block_in_file; 143 sector_t blocks[MAX_BUF_PER_PAGE]; 144 unsigned page_block; 145 unsigned first_hole = blocks_per_page; 146 struct block_device *bdev = NULL; 147 int length; 148 int fully_mapped = 1; 149 int op_flags; 150 unsigned nblocks; 151 unsigned relative_block; 152 gfp_t gfp; 153 154 if (args->is_readahead) { 155 op_flags = REQ_RAHEAD; 156 gfp = readahead_gfp_mask(page->mapping); 157 } else { 158 op_flags = 0; 159 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 160 } 161 162 if (page_has_buffers(page)) 163 goto confused; 164 165 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 166 last_block = block_in_file + args->nr_pages * blocks_per_page; 167 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 168 if (last_block > last_block_in_file) 169 last_block = last_block_in_file; 170 page_block = 0; 171 172 /* 173 * Map blocks using the result from the previous get_blocks call first. 174 */ 175 nblocks = map_bh->b_size >> blkbits; 176 if (buffer_mapped(map_bh) && 177 block_in_file > args->first_logical_block && 178 block_in_file < (args->first_logical_block + nblocks)) { 179 unsigned map_offset = block_in_file - args->first_logical_block; 180 unsigned last = nblocks - map_offset; 181 182 for (relative_block = 0; ; relative_block++) { 183 if (relative_block == last) { 184 clear_buffer_mapped(map_bh); 185 break; 186 } 187 if (page_block == blocks_per_page) 188 break; 189 blocks[page_block] = map_bh->b_blocknr + map_offset + 190 relative_block; 191 page_block++; 192 block_in_file++; 193 } 194 bdev = map_bh->b_bdev; 195 } 196 197 /* 198 * Then do more get_blocks calls until we are done with this page. 199 */ 200 map_bh->b_page = page; 201 while (page_block < blocks_per_page) { 202 map_bh->b_state = 0; 203 map_bh->b_size = 0; 204 205 if (block_in_file < last_block) { 206 map_bh->b_size = (last_block-block_in_file) << blkbits; 207 if (args->get_block(inode, block_in_file, map_bh, 0)) 208 goto confused; 209 args->first_logical_block = block_in_file; 210 } 211 212 if (!buffer_mapped(map_bh)) { 213 fully_mapped = 0; 214 if (first_hole == blocks_per_page) 215 first_hole = page_block; 216 page_block++; 217 block_in_file++; 218 continue; 219 } 220 221 /* some filesystems will copy data into the page during 222 * the get_block call, in which case we don't want to 223 * read it again. map_buffer_to_page copies the data 224 * we just collected from get_block into the page's buffers 225 * so readpage doesn't have to repeat the get_block call 226 */ 227 if (buffer_uptodate(map_bh)) { 228 map_buffer_to_page(page, map_bh, page_block); 229 goto confused; 230 } 231 232 if (first_hole != blocks_per_page) 233 goto confused; /* hole -> non-hole */ 234 235 /* Contiguous blocks? */ 236 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 237 goto confused; 238 nblocks = map_bh->b_size >> blkbits; 239 for (relative_block = 0; ; relative_block++) { 240 if (relative_block == nblocks) { 241 clear_buffer_mapped(map_bh); 242 break; 243 } else if (page_block == blocks_per_page) 244 break; 245 blocks[page_block] = map_bh->b_blocknr+relative_block; 246 page_block++; 247 block_in_file++; 248 } 249 bdev = map_bh->b_bdev; 250 } 251 252 if (first_hole != blocks_per_page) { 253 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 254 if (first_hole == 0) { 255 SetPageUptodate(page); 256 unlock_page(page); 257 goto out; 258 } 259 } else if (fully_mapped) { 260 SetPageMappedToDisk(page); 261 } 262 263 /* 264 * This page will go to BIO. Do we need to send this BIO off first? 265 */ 266 if (args->bio && (args->last_block_in_bio != blocks[0] - 1)) 267 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 268 269 alloc_new: 270 if (args->bio == NULL) { 271 if (first_hole == blocks_per_page) { 272 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 273 page)) 274 goto out; 275 } 276 args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), 0, 277 gfp); 278 if (args->bio == NULL) 279 goto confused; 280 args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9); 281 } 282 283 length = first_hole << blkbits; 284 if (bio_add_page(args->bio, page, length, 0) < length) { 285 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 286 goto alloc_new; 287 } 288 289 relative_block = block_in_file - args->first_logical_block; 290 nblocks = map_bh->b_size >> blkbits; 291 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 292 (first_hole != blocks_per_page)) 293 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 294 else 295 args->last_block_in_bio = blocks[blocks_per_page - 1]; 296 out: 297 return args->bio; 298 299 confused: 300 if (args->bio) 301 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 302 if (!PageUptodate(page)) 303 block_read_full_page(page, args->get_block); 304 else 305 unlock_page(page); 306 goto out; 307 } 308 309 /** 310 * mpage_readahead - start reads against pages 311 * @rac: Describes which pages to read. 312 * @get_block: The filesystem's block mapper function. 313 * 314 * This function walks the pages and the blocks within each page, building and 315 * emitting large BIOs. 316 * 317 * If anything unusual happens, such as: 318 * 319 * - encountering a page which has buffers 320 * - encountering a page which has a non-hole after a hole 321 * - encountering a page with non-contiguous blocks 322 * 323 * then this code just gives up and calls the buffer_head-based read function. 324 * It does handle a page which has holes at the end - that is a common case: 325 * the end-of-file on blocksize < PAGE_SIZE setups. 326 * 327 * BH_Boundary explanation: 328 * 329 * There is a problem. The mpage read code assembles several pages, gets all 330 * their disk mappings, and then submits them all. That's fine, but obtaining 331 * the disk mappings may require I/O. Reads of indirect blocks, for example. 332 * 333 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 334 * submitted in the following order: 335 * 336 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 337 * 338 * because the indirect block has to be read to get the mappings of blocks 339 * 13,14,15,16. Obviously, this impacts performance. 340 * 341 * So what we do it to allow the filesystem's get_block() function to set 342 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 343 * after this one will require I/O against a block which is probably close to 344 * this one. So you should push what I/O you have currently accumulated. 345 * 346 * This all causes the disk requests to be issued in the correct order. 347 */ 348 void mpage_readahead(struct readahead_control *rac, get_block_t get_block) 349 { 350 struct page *page; 351 struct mpage_readpage_args args = { 352 .get_block = get_block, 353 .is_readahead = true, 354 }; 355 356 while ((page = readahead_page(rac))) { 357 prefetchw(&page->flags); 358 args.page = page; 359 args.nr_pages = readahead_count(rac); 360 args.bio = do_mpage_readpage(&args); 361 put_page(page); 362 } 363 if (args.bio) 364 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio); 365 } 366 EXPORT_SYMBOL(mpage_readahead); 367 368 /* 369 * This isn't called much at all 370 */ 371 int mpage_readpage(struct page *page, get_block_t get_block) 372 { 373 struct mpage_readpage_args args = { 374 .page = page, 375 .nr_pages = 1, 376 .get_block = get_block, 377 }; 378 379 args.bio = do_mpage_readpage(&args); 380 if (args.bio) 381 mpage_bio_submit(REQ_OP_READ, 0, args.bio); 382 return 0; 383 } 384 EXPORT_SYMBOL(mpage_readpage); 385 386 /* 387 * Writing is not so simple. 388 * 389 * If the page has buffers then they will be used for obtaining the disk 390 * mapping. We only support pages which are fully mapped-and-dirty, with a 391 * special case for pages which are unmapped at the end: end-of-file. 392 * 393 * If the page has no buffers (preferred) then the page is mapped here. 394 * 395 * If all blocks are found to be contiguous then the page can go into the 396 * BIO. Otherwise fall back to the mapping's writepage(). 397 * 398 * FIXME: This code wants an estimate of how many pages are still to be 399 * written, so it can intelligently allocate a suitably-sized BIO. For now, 400 * just allocate full-size (16-page) BIOs. 401 */ 402 403 struct mpage_data { 404 struct bio *bio; 405 sector_t last_block_in_bio; 406 get_block_t *get_block; 407 unsigned use_writepage; 408 }; 409 410 /* 411 * We have our BIO, so we can now mark the buffers clean. Make 412 * sure to only clean buffers which we know we'll be writing. 413 */ 414 static void clean_buffers(struct page *page, unsigned first_unmapped) 415 { 416 unsigned buffer_counter = 0; 417 struct buffer_head *bh, *head; 418 if (!page_has_buffers(page)) 419 return; 420 head = page_buffers(page); 421 bh = head; 422 423 do { 424 if (buffer_counter++ == first_unmapped) 425 break; 426 clear_buffer_dirty(bh); 427 bh = bh->b_this_page; 428 } while (bh != head); 429 430 /* 431 * we cannot drop the bh if the page is not uptodate or a concurrent 432 * readpage would fail to serialize with the bh and it would read from 433 * disk before we reach the platter. 434 */ 435 if (buffer_heads_over_limit && PageUptodate(page)) 436 try_to_free_buffers(page); 437 } 438 439 /* 440 * For situations where we want to clean all buffers attached to a page. 441 * We don't need to calculate how many buffers are attached to the page, 442 * we just need to specify a number larger than the maximum number of buffers. 443 */ 444 void clean_page_buffers(struct page *page) 445 { 446 clean_buffers(page, ~0U); 447 } 448 449 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 450 void *data) 451 { 452 struct mpage_data *mpd = data; 453 struct bio *bio = mpd->bio; 454 struct address_space *mapping = page->mapping; 455 struct inode *inode = page->mapping->host; 456 const unsigned blkbits = inode->i_blkbits; 457 unsigned long end_index; 458 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 459 sector_t last_block; 460 sector_t block_in_file; 461 sector_t blocks[MAX_BUF_PER_PAGE]; 462 unsigned page_block; 463 unsigned first_unmapped = blocks_per_page; 464 struct block_device *bdev = NULL; 465 int boundary = 0; 466 sector_t boundary_block = 0; 467 struct block_device *boundary_bdev = NULL; 468 int length; 469 struct buffer_head map_bh; 470 loff_t i_size = i_size_read(inode); 471 int ret = 0; 472 int op_flags = wbc_to_write_flags(wbc); 473 474 if (page_has_buffers(page)) { 475 struct buffer_head *head = page_buffers(page); 476 struct buffer_head *bh = head; 477 478 /* If they're all mapped and dirty, do it */ 479 page_block = 0; 480 do { 481 BUG_ON(buffer_locked(bh)); 482 if (!buffer_mapped(bh)) { 483 /* 484 * unmapped dirty buffers are created by 485 * __set_page_dirty_buffers -> mmapped data 486 */ 487 if (buffer_dirty(bh)) 488 goto confused; 489 if (first_unmapped == blocks_per_page) 490 first_unmapped = page_block; 491 continue; 492 } 493 494 if (first_unmapped != blocks_per_page) 495 goto confused; /* hole -> non-hole */ 496 497 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 498 goto confused; 499 if (page_block) { 500 if (bh->b_blocknr != blocks[page_block-1] + 1) 501 goto confused; 502 } 503 blocks[page_block++] = bh->b_blocknr; 504 boundary = buffer_boundary(bh); 505 if (boundary) { 506 boundary_block = bh->b_blocknr; 507 boundary_bdev = bh->b_bdev; 508 } 509 bdev = bh->b_bdev; 510 } while ((bh = bh->b_this_page) != head); 511 512 if (first_unmapped) 513 goto page_is_mapped; 514 515 /* 516 * Page has buffers, but they are all unmapped. The page was 517 * created by pagein or read over a hole which was handled by 518 * block_read_full_page(). If this address_space is also 519 * using mpage_readahead then this can rarely happen. 520 */ 521 goto confused; 522 } 523 524 /* 525 * The page has no buffers: map it to disk 526 */ 527 BUG_ON(!PageUptodate(page)); 528 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 529 last_block = (i_size - 1) >> blkbits; 530 map_bh.b_page = page; 531 for (page_block = 0; page_block < blocks_per_page; ) { 532 533 map_bh.b_state = 0; 534 map_bh.b_size = 1 << blkbits; 535 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 536 goto confused; 537 if (buffer_new(&map_bh)) 538 clean_bdev_bh_alias(&map_bh); 539 if (buffer_boundary(&map_bh)) { 540 boundary_block = map_bh.b_blocknr; 541 boundary_bdev = map_bh.b_bdev; 542 } 543 if (page_block) { 544 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 545 goto confused; 546 } 547 blocks[page_block++] = map_bh.b_blocknr; 548 boundary = buffer_boundary(&map_bh); 549 bdev = map_bh.b_bdev; 550 if (block_in_file == last_block) 551 break; 552 block_in_file++; 553 } 554 BUG_ON(page_block == 0); 555 556 first_unmapped = page_block; 557 558 page_is_mapped: 559 end_index = i_size >> PAGE_SHIFT; 560 if (page->index >= end_index) { 561 /* 562 * The page straddles i_size. It must be zeroed out on each 563 * and every writepage invocation because it may be mmapped. 564 * "A file is mapped in multiples of the page size. For a file 565 * that is not a multiple of the page size, the remaining memory 566 * is zeroed when mapped, and writes to that region are not 567 * written out to the file." 568 */ 569 unsigned offset = i_size & (PAGE_SIZE - 1); 570 571 if (page->index > end_index || !offset) 572 goto confused; 573 zero_user_segment(page, offset, PAGE_SIZE); 574 } 575 576 /* 577 * This page will go to BIO. Do we need to send this BIO off first? 578 */ 579 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 580 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 581 582 alloc_new: 583 if (bio == NULL) { 584 if (first_unmapped == blocks_per_page) { 585 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 586 page, wbc)) 587 goto out; 588 } 589 bio = bio_alloc(bdev, BIO_MAX_VECS, 0, GFP_NOFS); 590 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9); 591 592 wbc_init_bio(wbc, bio); 593 bio->bi_write_hint = inode->i_write_hint; 594 } 595 596 /* 597 * Must try to add the page before marking the buffer clean or 598 * the confused fail path above (OOM) will be very confused when 599 * it finds all bh marked clean (i.e. it will not write anything) 600 */ 601 wbc_account_cgroup_owner(wbc, page, PAGE_SIZE); 602 length = first_unmapped << blkbits; 603 if (bio_add_page(bio, page, length, 0) < length) { 604 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 605 goto alloc_new; 606 } 607 608 clean_buffers(page, first_unmapped); 609 610 BUG_ON(PageWriteback(page)); 611 set_page_writeback(page); 612 unlock_page(page); 613 if (boundary || (first_unmapped != blocks_per_page)) { 614 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 615 if (boundary_block) { 616 write_boundary_block(boundary_bdev, 617 boundary_block, 1 << blkbits); 618 } 619 } else { 620 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 621 } 622 goto out; 623 624 confused: 625 if (bio) 626 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 627 628 if (mpd->use_writepage) { 629 ret = mapping->a_ops->writepage(page, wbc); 630 } else { 631 ret = -EAGAIN; 632 goto out; 633 } 634 /* 635 * The caller has a ref on the inode, so *mapping is stable 636 */ 637 mapping_set_error(mapping, ret); 638 out: 639 mpd->bio = bio; 640 return ret; 641 } 642 643 /** 644 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 645 * @mapping: address space structure to write 646 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 647 * @get_block: the filesystem's block mapper function. 648 * If this is NULL then use a_ops->writepage. Otherwise, go 649 * direct-to-BIO. 650 * 651 * This is a library function, which implements the writepages() 652 * address_space_operation. 653 * 654 * If a page is already under I/O, generic_writepages() skips it, even 655 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 656 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 657 * and msync() need to guarantee that all the data which was dirty at the time 658 * the call was made get new I/O started against them. If wbc->sync_mode is 659 * WB_SYNC_ALL then we were called for data integrity and we must wait for 660 * existing IO to complete. 661 */ 662 int 663 mpage_writepages(struct address_space *mapping, 664 struct writeback_control *wbc, get_block_t get_block) 665 { 666 struct blk_plug plug; 667 int ret; 668 669 blk_start_plug(&plug); 670 671 if (!get_block) 672 ret = generic_writepages(mapping, wbc); 673 else { 674 struct mpage_data mpd = { 675 .bio = NULL, 676 .last_block_in_bio = 0, 677 .get_block = get_block, 678 .use_writepage = 1, 679 }; 680 681 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 682 if (mpd.bio) { 683 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 684 REQ_SYNC : 0); 685 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 686 } 687 } 688 blk_finish_plug(&plug); 689 return ret; 690 } 691 EXPORT_SYMBOL(mpage_writepages); 692 693 int mpage_writepage(struct page *page, get_block_t get_block, 694 struct writeback_control *wbc) 695 { 696 struct mpage_data mpd = { 697 .bio = NULL, 698 .last_block_in_bio = 0, 699 .get_block = get_block, 700 .use_writepage = 0, 701 }; 702 int ret = __mpage_writepage(page, wbc, &mpd); 703 if (mpd.bio) { 704 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 705 REQ_SYNC : 0); 706 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 707 } 708 return ret; 709 } 710 EXPORT_SYMBOL(mpage_writepage); 711