xref: /linux/fs/mpage.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/cleancache.h>
33 #include "internal.h"
34 
35 /*
36  * I/O completion handler for multipage BIOs.
37  *
38  * The mpage code never puts partial pages into a BIO (except for end-of-file).
39  * If a page does not map to a contiguous run of blocks then it simply falls
40  * back to block_read_full_page().
41  *
42  * Why is this?  If a page's completion depends on a number of different BIOs
43  * which can complete in any order (or at the same time) then determining the
44  * status of that page is hard.  See end_buffer_async_read() for the details.
45  * There is no point in duplicating all that complexity.
46  */
47 static void mpage_end_io(struct bio *bio)
48 {
49 	struct bio_vec *bv;
50 	int i;
51 	struct bvec_iter_all iter_all;
52 
53 	bio_for_each_segment_all(bv, bio, i, iter_all) {
54 		struct page *page = bv->bv_page;
55 		page_endio(page, bio_op(bio),
56 			   blk_status_to_errno(bio->bi_status));
57 	}
58 
59 	bio_put(bio);
60 }
61 
62 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
63 {
64 	bio->bi_end_io = mpage_end_io;
65 	bio_set_op_attrs(bio, op, op_flags);
66 	guard_bio_eod(op, bio);
67 	submit_bio(bio);
68 	return NULL;
69 }
70 
71 static struct bio *
72 mpage_alloc(struct block_device *bdev,
73 		sector_t first_sector, int nr_vecs,
74 		gfp_t gfp_flags)
75 {
76 	struct bio *bio;
77 
78 	/* Restrict the given (page cache) mask for slab allocations */
79 	gfp_flags &= GFP_KERNEL;
80 	bio = bio_alloc(gfp_flags, nr_vecs);
81 
82 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
83 		while (!bio && (nr_vecs /= 2))
84 			bio = bio_alloc(gfp_flags, nr_vecs);
85 	}
86 
87 	if (bio) {
88 		bio_set_dev(bio, bdev);
89 		bio->bi_iter.bi_sector = first_sector;
90 	}
91 	return bio;
92 }
93 
94 /*
95  * support function for mpage_readpages.  The fs supplied get_block might
96  * return an up to date buffer.  This is used to map that buffer into
97  * the page, which allows readpage to avoid triggering a duplicate call
98  * to get_block.
99  *
100  * The idea is to avoid adding buffers to pages that don't already have
101  * them.  So when the buffer is up to date and the page size == block size,
102  * this marks the page up to date instead of adding new buffers.
103  */
104 static void
105 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
106 {
107 	struct inode *inode = page->mapping->host;
108 	struct buffer_head *page_bh, *head;
109 	int block = 0;
110 
111 	if (!page_has_buffers(page)) {
112 		/*
113 		 * don't make any buffers if there is only one buffer on
114 		 * the page and the page just needs to be set up to date
115 		 */
116 		if (inode->i_blkbits == PAGE_SHIFT &&
117 		    buffer_uptodate(bh)) {
118 			SetPageUptodate(page);
119 			return;
120 		}
121 		create_empty_buffers(page, i_blocksize(inode), 0);
122 	}
123 	head = page_buffers(page);
124 	page_bh = head;
125 	do {
126 		if (block == page_block) {
127 			page_bh->b_state = bh->b_state;
128 			page_bh->b_bdev = bh->b_bdev;
129 			page_bh->b_blocknr = bh->b_blocknr;
130 			break;
131 		}
132 		page_bh = page_bh->b_this_page;
133 		block++;
134 	} while (page_bh != head);
135 }
136 
137 struct mpage_readpage_args {
138 	struct bio *bio;
139 	struct page *page;
140 	unsigned int nr_pages;
141 	bool is_readahead;
142 	sector_t last_block_in_bio;
143 	struct buffer_head map_bh;
144 	unsigned long first_logical_block;
145 	get_block_t *get_block;
146 };
147 
148 /*
149  * This is the worker routine which does all the work of mapping the disk
150  * blocks and constructs largest possible bios, submits them for IO if the
151  * blocks are not contiguous on the disk.
152  *
153  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
154  * represent the validity of its disk mapping and to decide when to do the next
155  * get_block() call.
156  */
157 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
158 {
159 	struct page *page = args->page;
160 	struct inode *inode = page->mapping->host;
161 	const unsigned blkbits = inode->i_blkbits;
162 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
163 	const unsigned blocksize = 1 << blkbits;
164 	struct buffer_head *map_bh = &args->map_bh;
165 	sector_t block_in_file;
166 	sector_t last_block;
167 	sector_t last_block_in_file;
168 	sector_t blocks[MAX_BUF_PER_PAGE];
169 	unsigned page_block;
170 	unsigned first_hole = blocks_per_page;
171 	struct block_device *bdev = NULL;
172 	int length;
173 	int fully_mapped = 1;
174 	int op_flags;
175 	unsigned nblocks;
176 	unsigned relative_block;
177 	gfp_t gfp;
178 
179 	if (args->is_readahead) {
180 		op_flags = REQ_RAHEAD;
181 		gfp = readahead_gfp_mask(page->mapping);
182 	} else {
183 		op_flags = 0;
184 		gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
185 	}
186 
187 	if (page_has_buffers(page))
188 		goto confused;
189 
190 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
191 	last_block = block_in_file + args->nr_pages * blocks_per_page;
192 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
193 	if (last_block > last_block_in_file)
194 		last_block = last_block_in_file;
195 	page_block = 0;
196 
197 	/*
198 	 * Map blocks using the result from the previous get_blocks call first.
199 	 */
200 	nblocks = map_bh->b_size >> blkbits;
201 	if (buffer_mapped(map_bh) &&
202 			block_in_file > args->first_logical_block &&
203 			block_in_file < (args->first_logical_block + nblocks)) {
204 		unsigned map_offset = block_in_file - args->first_logical_block;
205 		unsigned last = nblocks - map_offset;
206 
207 		for (relative_block = 0; ; relative_block++) {
208 			if (relative_block == last) {
209 				clear_buffer_mapped(map_bh);
210 				break;
211 			}
212 			if (page_block == blocks_per_page)
213 				break;
214 			blocks[page_block] = map_bh->b_blocknr + map_offset +
215 						relative_block;
216 			page_block++;
217 			block_in_file++;
218 		}
219 		bdev = map_bh->b_bdev;
220 	}
221 
222 	/*
223 	 * Then do more get_blocks calls until we are done with this page.
224 	 */
225 	map_bh->b_page = page;
226 	while (page_block < blocks_per_page) {
227 		map_bh->b_state = 0;
228 		map_bh->b_size = 0;
229 
230 		if (block_in_file < last_block) {
231 			map_bh->b_size = (last_block-block_in_file) << blkbits;
232 			if (args->get_block(inode, block_in_file, map_bh, 0))
233 				goto confused;
234 			args->first_logical_block = block_in_file;
235 		}
236 
237 		if (!buffer_mapped(map_bh)) {
238 			fully_mapped = 0;
239 			if (first_hole == blocks_per_page)
240 				first_hole = page_block;
241 			page_block++;
242 			block_in_file++;
243 			continue;
244 		}
245 
246 		/* some filesystems will copy data into the page during
247 		 * the get_block call, in which case we don't want to
248 		 * read it again.  map_buffer_to_page copies the data
249 		 * we just collected from get_block into the page's buffers
250 		 * so readpage doesn't have to repeat the get_block call
251 		 */
252 		if (buffer_uptodate(map_bh)) {
253 			map_buffer_to_page(page, map_bh, page_block);
254 			goto confused;
255 		}
256 
257 		if (first_hole != blocks_per_page)
258 			goto confused;		/* hole -> non-hole */
259 
260 		/* Contiguous blocks? */
261 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
262 			goto confused;
263 		nblocks = map_bh->b_size >> blkbits;
264 		for (relative_block = 0; ; relative_block++) {
265 			if (relative_block == nblocks) {
266 				clear_buffer_mapped(map_bh);
267 				break;
268 			} else if (page_block == blocks_per_page)
269 				break;
270 			blocks[page_block] = map_bh->b_blocknr+relative_block;
271 			page_block++;
272 			block_in_file++;
273 		}
274 		bdev = map_bh->b_bdev;
275 	}
276 
277 	if (first_hole != blocks_per_page) {
278 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
279 		if (first_hole == 0) {
280 			SetPageUptodate(page);
281 			unlock_page(page);
282 			goto out;
283 		}
284 	} else if (fully_mapped) {
285 		SetPageMappedToDisk(page);
286 	}
287 
288 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
289 	    cleancache_get_page(page) == 0) {
290 		SetPageUptodate(page);
291 		goto confused;
292 	}
293 
294 	/*
295 	 * This page will go to BIO.  Do we need to send this BIO off first?
296 	 */
297 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
298 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
299 
300 alloc_new:
301 	if (args->bio == NULL) {
302 		if (first_hole == blocks_per_page) {
303 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
304 								page))
305 				goto out;
306 		}
307 		args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
308 					min_t(int, args->nr_pages,
309 					      BIO_MAX_PAGES),
310 					gfp);
311 		if (args->bio == NULL)
312 			goto confused;
313 	}
314 
315 	length = first_hole << blkbits;
316 	if (bio_add_page(args->bio, page, length, 0) < length) {
317 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
318 		goto alloc_new;
319 	}
320 
321 	relative_block = block_in_file - args->first_logical_block;
322 	nblocks = map_bh->b_size >> blkbits;
323 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
324 	    (first_hole != blocks_per_page))
325 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
326 	else
327 		args->last_block_in_bio = blocks[blocks_per_page - 1];
328 out:
329 	return args->bio;
330 
331 confused:
332 	if (args->bio)
333 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
334 	if (!PageUptodate(page))
335 		block_read_full_page(page, args->get_block);
336 	else
337 		unlock_page(page);
338 	goto out;
339 }
340 
341 /**
342  * mpage_readpages - populate an address space with some pages & start reads against them
343  * @mapping: the address_space
344  * @pages: The address of a list_head which contains the target pages.  These
345  *   pages have their ->index populated and are otherwise uninitialised.
346  *   The page at @pages->prev has the lowest file offset, and reads should be
347  *   issued in @pages->prev to @pages->next order.
348  * @nr_pages: The number of pages at *@pages
349  * @get_block: The filesystem's block mapper function.
350  *
351  * This function walks the pages and the blocks within each page, building and
352  * emitting large BIOs.
353  *
354  * If anything unusual happens, such as:
355  *
356  * - encountering a page which has buffers
357  * - encountering a page which has a non-hole after a hole
358  * - encountering a page with non-contiguous blocks
359  *
360  * then this code just gives up and calls the buffer_head-based read function.
361  * It does handle a page which has holes at the end - that is a common case:
362  * the end-of-file on blocksize < PAGE_SIZE setups.
363  *
364  * BH_Boundary explanation:
365  *
366  * There is a problem.  The mpage read code assembles several pages, gets all
367  * their disk mappings, and then submits them all.  That's fine, but obtaining
368  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
369  *
370  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
371  * submitted in the following order:
372  *
373  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
374  *
375  * because the indirect block has to be read to get the mappings of blocks
376  * 13,14,15,16.  Obviously, this impacts performance.
377  *
378  * So what we do it to allow the filesystem's get_block() function to set
379  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
380  * after this one will require I/O against a block which is probably close to
381  * this one.  So you should push what I/O you have currently accumulated.
382  *
383  * This all causes the disk requests to be issued in the correct order.
384  */
385 int
386 mpage_readpages(struct address_space *mapping, struct list_head *pages,
387 				unsigned nr_pages, get_block_t get_block)
388 {
389 	struct mpage_readpage_args args = {
390 		.get_block = get_block,
391 		.is_readahead = true,
392 	};
393 	unsigned page_idx;
394 
395 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
396 		struct page *page = lru_to_page(pages);
397 
398 		prefetchw(&page->flags);
399 		list_del(&page->lru);
400 		if (!add_to_page_cache_lru(page, mapping,
401 					page->index,
402 					readahead_gfp_mask(mapping))) {
403 			args.page = page;
404 			args.nr_pages = nr_pages - page_idx;
405 			args.bio = do_mpage_readpage(&args);
406 		}
407 		put_page(page);
408 	}
409 	BUG_ON(!list_empty(pages));
410 	if (args.bio)
411 		mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
412 	return 0;
413 }
414 EXPORT_SYMBOL(mpage_readpages);
415 
416 /*
417  * This isn't called much at all
418  */
419 int mpage_readpage(struct page *page, get_block_t get_block)
420 {
421 	struct mpage_readpage_args args = {
422 		.page = page,
423 		.nr_pages = 1,
424 		.get_block = get_block,
425 	};
426 
427 	args.bio = do_mpage_readpage(&args);
428 	if (args.bio)
429 		mpage_bio_submit(REQ_OP_READ, 0, args.bio);
430 	return 0;
431 }
432 EXPORT_SYMBOL(mpage_readpage);
433 
434 /*
435  * Writing is not so simple.
436  *
437  * If the page has buffers then they will be used for obtaining the disk
438  * mapping.  We only support pages which are fully mapped-and-dirty, with a
439  * special case for pages which are unmapped at the end: end-of-file.
440  *
441  * If the page has no buffers (preferred) then the page is mapped here.
442  *
443  * If all blocks are found to be contiguous then the page can go into the
444  * BIO.  Otherwise fall back to the mapping's writepage().
445  *
446  * FIXME: This code wants an estimate of how many pages are still to be
447  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
448  * just allocate full-size (16-page) BIOs.
449  */
450 
451 struct mpage_data {
452 	struct bio *bio;
453 	sector_t last_block_in_bio;
454 	get_block_t *get_block;
455 	unsigned use_writepage;
456 };
457 
458 /*
459  * We have our BIO, so we can now mark the buffers clean.  Make
460  * sure to only clean buffers which we know we'll be writing.
461  */
462 static void clean_buffers(struct page *page, unsigned first_unmapped)
463 {
464 	unsigned buffer_counter = 0;
465 	struct buffer_head *bh, *head;
466 	if (!page_has_buffers(page))
467 		return;
468 	head = page_buffers(page);
469 	bh = head;
470 
471 	do {
472 		if (buffer_counter++ == first_unmapped)
473 			break;
474 		clear_buffer_dirty(bh);
475 		bh = bh->b_this_page;
476 	} while (bh != head);
477 
478 	/*
479 	 * we cannot drop the bh if the page is not uptodate or a concurrent
480 	 * readpage would fail to serialize with the bh and it would read from
481 	 * disk before we reach the platter.
482 	 */
483 	if (buffer_heads_over_limit && PageUptodate(page))
484 		try_to_free_buffers(page);
485 }
486 
487 /*
488  * For situations where we want to clean all buffers attached to a page.
489  * We don't need to calculate how many buffers are attached to the page,
490  * we just need to specify a number larger than the maximum number of buffers.
491  */
492 void clean_page_buffers(struct page *page)
493 {
494 	clean_buffers(page, ~0U);
495 }
496 
497 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
498 		      void *data)
499 {
500 	struct mpage_data *mpd = data;
501 	struct bio *bio = mpd->bio;
502 	struct address_space *mapping = page->mapping;
503 	struct inode *inode = page->mapping->host;
504 	const unsigned blkbits = inode->i_blkbits;
505 	unsigned long end_index;
506 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
507 	sector_t last_block;
508 	sector_t block_in_file;
509 	sector_t blocks[MAX_BUF_PER_PAGE];
510 	unsigned page_block;
511 	unsigned first_unmapped = blocks_per_page;
512 	struct block_device *bdev = NULL;
513 	int boundary = 0;
514 	sector_t boundary_block = 0;
515 	struct block_device *boundary_bdev = NULL;
516 	int length;
517 	struct buffer_head map_bh;
518 	loff_t i_size = i_size_read(inode);
519 	int ret = 0;
520 	int op_flags = wbc_to_write_flags(wbc);
521 
522 	if (page_has_buffers(page)) {
523 		struct buffer_head *head = page_buffers(page);
524 		struct buffer_head *bh = head;
525 
526 		/* If they're all mapped and dirty, do it */
527 		page_block = 0;
528 		do {
529 			BUG_ON(buffer_locked(bh));
530 			if (!buffer_mapped(bh)) {
531 				/*
532 				 * unmapped dirty buffers are created by
533 				 * __set_page_dirty_buffers -> mmapped data
534 				 */
535 				if (buffer_dirty(bh))
536 					goto confused;
537 				if (first_unmapped == blocks_per_page)
538 					first_unmapped = page_block;
539 				continue;
540 			}
541 
542 			if (first_unmapped != blocks_per_page)
543 				goto confused;	/* hole -> non-hole */
544 
545 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
546 				goto confused;
547 			if (page_block) {
548 				if (bh->b_blocknr != blocks[page_block-1] + 1)
549 					goto confused;
550 			}
551 			blocks[page_block++] = bh->b_blocknr;
552 			boundary = buffer_boundary(bh);
553 			if (boundary) {
554 				boundary_block = bh->b_blocknr;
555 				boundary_bdev = bh->b_bdev;
556 			}
557 			bdev = bh->b_bdev;
558 		} while ((bh = bh->b_this_page) != head);
559 
560 		if (first_unmapped)
561 			goto page_is_mapped;
562 
563 		/*
564 		 * Page has buffers, but they are all unmapped. The page was
565 		 * created by pagein or read over a hole which was handled by
566 		 * block_read_full_page().  If this address_space is also
567 		 * using mpage_readpages then this can rarely happen.
568 		 */
569 		goto confused;
570 	}
571 
572 	/*
573 	 * The page has no buffers: map it to disk
574 	 */
575 	BUG_ON(!PageUptodate(page));
576 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
577 	last_block = (i_size - 1) >> blkbits;
578 	map_bh.b_page = page;
579 	for (page_block = 0; page_block < blocks_per_page; ) {
580 
581 		map_bh.b_state = 0;
582 		map_bh.b_size = 1 << blkbits;
583 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
584 			goto confused;
585 		if (buffer_new(&map_bh))
586 			clean_bdev_bh_alias(&map_bh);
587 		if (buffer_boundary(&map_bh)) {
588 			boundary_block = map_bh.b_blocknr;
589 			boundary_bdev = map_bh.b_bdev;
590 		}
591 		if (page_block) {
592 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
593 				goto confused;
594 		}
595 		blocks[page_block++] = map_bh.b_blocknr;
596 		boundary = buffer_boundary(&map_bh);
597 		bdev = map_bh.b_bdev;
598 		if (block_in_file == last_block)
599 			break;
600 		block_in_file++;
601 	}
602 	BUG_ON(page_block == 0);
603 
604 	first_unmapped = page_block;
605 
606 page_is_mapped:
607 	end_index = i_size >> PAGE_SHIFT;
608 	if (page->index >= end_index) {
609 		/*
610 		 * The page straddles i_size.  It must be zeroed out on each
611 		 * and every writepage invocation because it may be mmapped.
612 		 * "A file is mapped in multiples of the page size.  For a file
613 		 * that is not a multiple of the page size, the remaining memory
614 		 * is zeroed when mapped, and writes to that region are not
615 		 * written out to the file."
616 		 */
617 		unsigned offset = i_size & (PAGE_SIZE - 1);
618 
619 		if (page->index > end_index || !offset)
620 			goto confused;
621 		zero_user_segment(page, offset, PAGE_SIZE);
622 	}
623 
624 	/*
625 	 * This page will go to BIO.  Do we need to send this BIO off first?
626 	 */
627 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
628 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
629 
630 alloc_new:
631 	if (bio == NULL) {
632 		if (first_unmapped == blocks_per_page) {
633 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
634 								page, wbc))
635 				goto out;
636 		}
637 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
638 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
639 		if (bio == NULL)
640 			goto confused;
641 
642 		wbc_init_bio(wbc, bio);
643 		bio->bi_write_hint = inode->i_write_hint;
644 	}
645 
646 	/*
647 	 * Must try to add the page before marking the buffer clean or
648 	 * the confused fail path above (OOM) will be very confused when
649 	 * it finds all bh marked clean (i.e. it will not write anything)
650 	 */
651 	wbc_account_io(wbc, page, PAGE_SIZE);
652 	length = first_unmapped << blkbits;
653 	if (bio_add_page(bio, page, length, 0) < length) {
654 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
655 		goto alloc_new;
656 	}
657 
658 	clean_buffers(page, first_unmapped);
659 
660 	BUG_ON(PageWriteback(page));
661 	set_page_writeback(page);
662 	unlock_page(page);
663 	if (boundary || (first_unmapped != blocks_per_page)) {
664 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
665 		if (boundary_block) {
666 			write_boundary_block(boundary_bdev,
667 					boundary_block, 1 << blkbits);
668 		}
669 	} else {
670 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
671 	}
672 	goto out;
673 
674 confused:
675 	if (bio)
676 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
677 
678 	if (mpd->use_writepage) {
679 		ret = mapping->a_ops->writepage(page, wbc);
680 	} else {
681 		ret = -EAGAIN;
682 		goto out;
683 	}
684 	/*
685 	 * The caller has a ref on the inode, so *mapping is stable
686 	 */
687 	mapping_set_error(mapping, ret);
688 out:
689 	mpd->bio = bio;
690 	return ret;
691 }
692 
693 /**
694  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
695  * @mapping: address space structure to write
696  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
697  * @get_block: the filesystem's block mapper function.
698  *             If this is NULL then use a_ops->writepage.  Otherwise, go
699  *             direct-to-BIO.
700  *
701  * This is a library function, which implements the writepages()
702  * address_space_operation.
703  *
704  * If a page is already under I/O, generic_writepages() skips it, even
705  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
706  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
707  * and msync() need to guarantee that all the data which was dirty at the time
708  * the call was made get new I/O started against them.  If wbc->sync_mode is
709  * WB_SYNC_ALL then we were called for data integrity and we must wait for
710  * existing IO to complete.
711  */
712 int
713 mpage_writepages(struct address_space *mapping,
714 		struct writeback_control *wbc, get_block_t get_block)
715 {
716 	struct blk_plug plug;
717 	int ret;
718 
719 	blk_start_plug(&plug);
720 
721 	if (!get_block)
722 		ret = generic_writepages(mapping, wbc);
723 	else {
724 		struct mpage_data mpd = {
725 			.bio = NULL,
726 			.last_block_in_bio = 0,
727 			.get_block = get_block,
728 			.use_writepage = 1,
729 		};
730 
731 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
732 		if (mpd.bio) {
733 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
734 				  REQ_SYNC : 0);
735 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
736 		}
737 	}
738 	blk_finish_plug(&plug);
739 	return ret;
740 }
741 EXPORT_SYMBOL(mpage_writepages);
742 
743 int mpage_writepage(struct page *page, get_block_t get_block,
744 	struct writeback_control *wbc)
745 {
746 	struct mpage_data mpd = {
747 		.bio = NULL,
748 		.last_block_in_bio = 0,
749 		.get_block = get_block,
750 		.use_writepage = 0,
751 	};
752 	int ret = __mpage_writepage(page, wbc, &mpd);
753 	if (mpd.bio) {
754 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
755 			  REQ_SYNC : 0);
756 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
757 	}
758 	return ret;
759 }
760 EXPORT_SYMBOL(mpage_writepage);
761