xref: /linux/fs/mpage.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	akpm@zip.com.au
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
42 static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
43 {
44 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46 
47 	if (bio->bi_size)
48 		return 1;
49 
50 	do {
51 		struct page *page = bvec->bv_page;
52 
53 		if (--bvec >= bio->bi_io_vec)
54 			prefetchw(&bvec->bv_page->flags);
55 
56 		if (uptodate) {
57 			SetPageUptodate(page);
58 		} else {
59 			ClearPageUptodate(page);
60 			SetPageError(page);
61 		}
62 		unlock_page(page);
63 	} while (bvec >= bio->bi_io_vec);
64 	bio_put(bio);
65 	return 0;
66 }
67 
68 static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
69 {
70 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
71 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
72 
73 	if (bio->bi_size)
74 		return 1;
75 
76 	do {
77 		struct page *page = bvec->bv_page;
78 
79 		if (--bvec >= bio->bi_io_vec)
80 			prefetchw(&bvec->bv_page->flags);
81 
82 		if (!uptodate)
83 			SetPageError(page);
84 		end_page_writeback(page);
85 	} while (bvec >= bio->bi_io_vec);
86 	bio_put(bio);
87 	return 0;
88 }
89 
90 struct bio *mpage_bio_submit(int rw, struct bio *bio)
91 {
92 	bio->bi_end_io = mpage_end_io_read;
93 	if (rw == WRITE)
94 		bio->bi_end_io = mpage_end_io_write;
95 	submit_bio(rw, bio);
96 	return NULL;
97 }
98 
99 static struct bio *
100 mpage_alloc(struct block_device *bdev,
101 		sector_t first_sector, int nr_vecs,
102 		unsigned int __nocast gfp_flags)
103 {
104 	struct bio *bio;
105 
106 	bio = bio_alloc(gfp_flags, nr_vecs);
107 
108 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
109 		while (!bio && (nr_vecs /= 2))
110 			bio = bio_alloc(gfp_flags, nr_vecs);
111 	}
112 
113 	if (bio) {
114 		bio->bi_bdev = bdev;
115 		bio->bi_sector = first_sector;
116 	}
117 	return bio;
118 }
119 
120 /*
121  * support function for mpage_readpages.  The fs supplied get_block might
122  * return an up to date buffer.  This is used to map that buffer into
123  * the page, which allows readpage to avoid triggering a duplicate call
124  * to get_block.
125  *
126  * The idea is to avoid adding buffers to pages that don't already have
127  * them.  So when the buffer is up to date and the page size == block size,
128  * this marks the page up to date instead of adding new buffers.
129  */
130 static void
131 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
132 {
133 	struct inode *inode = page->mapping->host;
134 	struct buffer_head *page_bh, *head;
135 	int block = 0;
136 
137 	if (!page_has_buffers(page)) {
138 		/*
139 		 * don't make any buffers if there is only one buffer on
140 		 * the page and the page just needs to be set up to date
141 		 */
142 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
143 		    buffer_uptodate(bh)) {
144 			SetPageUptodate(page);
145 			return;
146 		}
147 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
148 	}
149 	head = page_buffers(page);
150 	page_bh = head;
151 	do {
152 		if (block == page_block) {
153 			page_bh->b_state = bh->b_state;
154 			page_bh->b_bdev = bh->b_bdev;
155 			page_bh->b_blocknr = bh->b_blocknr;
156 			break;
157 		}
158 		page_bh = page_bh->b_this_page;
159 		block++;
160 	} while (page_bh != head);
161 }
162 
163 static struct bio *
164 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
165 			sector_t *last_block_in_bio, get_block_t get_block)
166 {
167 	struct inode *inode = page->mapping->host;
168 	const unsigned blkbits = inode->i_blkbits;
169 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
170 	const unsigned blocksize = 1 << blkbits;
171 	sector_t block_in_file;
172 	sector_t last_block;
173 	sector_t blocks[MAX_BUF_PER_PAGE];
174 	unsigned page_block;
175 	unsigned first_hole = blocks_per_page;
176 	struct block_device *bdev = NULL;
177 	struct buffer_head bh;
178 	int length;
179 	int fully_mapped = 1;
180 
181 	if (page_has_buffers(page))
182 		goto confused;
183 
184 	block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits);
185 	last_block = (i_size_read(inode) + blocksize - 1) >> blkbits;
186 
187 	bh.b_page = page;
188 	for (page_block = 0; page_block < blocks_per_page;
189 				page_block++, block_in_file++) {
190 		bh.b_state = 0;
191 		if (block_in_file < last_block) {
192 			if (get_block(inode, block_in_file, &bh, 0))
193 				goto confused;
194 		}
195 
196 		if (!buffer_mapped(&bh)) {
197 			fully_mapped = 0;
198 			if (first_hole == blocks_per_page)
199 				first_hole = page_block;
200 			continue;
201 		}
202 
203 		/* some filesystems will copy data into the page during
204 		 * the get_block call, in which case we don't want to
205 		 * read it again.  map_buffer_to_page copies the data
206 		 * we just collected from get_block into the page's buffers
207 		 * so readpage doesn't have to repeat the get_block call
208 		 */
209 		if (buffer_uptodate(&bh)) {
210 			map_buffer_to_page(page, &bh, page_block);
211 			goto confused;
212 		}
213 
214 		if (first_hole != blocks_per_page)
215 			goto confused;		/* hole -> non-hole */
216 
217 		/* Contiguous blocks? */
218 		if (page_block && blocks[page_block-1] != bh.b_blocknr-1)
219 			goto confused;
220 		blocks[page_block] = bh.b_blocknr;
221 		bdev = bh.b_bdev;
222 	}
223 
224 	if (first_hole != blocks_per_page) {
225 		char *kaddr = kmap_atomic(page, KM_USER0);
226 		memset(kaddr + (first_hole << blkbits), 0,
227 				PAGE_CACHE_SIZE - (first_hole << blkbits));
228 		flush_dcache_page(page);
229 		kunmap_atomic(kaddr, KM_USER0);
230 		if (first_hole == 0) {
231 			SetPageUptodate(page);
232 			unlock_page(page);
233 			goto out;
234 		}
235 	} else if (fully_mapped) {
236 		SetPageMappedToDisk(page);
237 	}
238 
239 	/*
240 	 * This page will go to BIO.  Do we need to send this BIO off first?
241 	 */
242 	if (bio && (*last_block_in_bio != blocks[0] - 1))
243 		bio = mpage_bio_submit(READ, bio);
244 
245 alloc_new:
246 	if (bio == NULL) {
247 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
248 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
249 				GFP_KERNEL);
250 		if (bio == NULL)
251 			goto confused;
252 	}
253 
254 	length = first_hole << blkbits;
255 	if (bio_add_page(bio, page, length, 0) < length) {
256 		bio = mpage_bio_submit(READ, bio);
257 		goto alloc_new;
258 	}
259 
260 	if (buffer_boundary(&bh) || (first_hole != blocks_per_page))
261 		bio = mpage_bio_submit(READ, bio);
262 	else
263 		*last_block_in_bio = blocks[blocks_per_page - 1];
264 out:
265 	return bio;
266 
267 confused:
268 	if (bio)
269 		bio = mpage_bio_submit(READ, bio);
270 	if (!PageUptodate(page))
271 	        block_read_full_page(page, get_block);
272 	else
273 		unlock_page(page);
274 	goto out;
275 }
276 
277 /**
278  * mpage_readpages - populate an address space with some pages, and
279  *                       start reads against them.
280  *
281  * @mapping: the address_space
282  * @pages: The address of a list_head which contains the target pages.  These
283  *   pages have their ->index populated and are otherwise uninitialised.
284  *
285  *   The page at @pages->prev has the lowest file offset, and reads should be
286  *   issued in @pages->prev to @pages->next order.
287  *
288  * @nr_pages: The number of pages at *@pages
289  * @get_block: The filesystem's block mapper function.
290  *
291  * This function walks the pages and the blocks within each page, building and
292  * emitting large BIOs.
293  *
294  * If anything unusual happens, such as:
295  *
296  * - encountering a page which has buffers
297  * - encountering a page which has a non-hole after a hole
298  * - encountering a page with non-contiguous blocks
299  *
300  * then this code just gives up and calls the buffer_head-based read function.
301  * It does handle a page which has holes at the end - that is a common case:
302  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
303  *
304  * BH_Boundary explanation:
305  *
306  * There is a problem.  The mpage read code assembles several pages, gets all
307  * their disk mappings, and then submits them all.  That's fine, but obtaining
308  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
309  *
310  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
311  * submitted in the following order:
312  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
313  * because the indirect block has to be read to get the mappings of blocks
314  * 13,14,15,16.  Obviously, this impacts performance.
315  *
316  * So what we do it to allow the filesystem's get_block() function to set
317  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
318  * after this one will require I/O against a block which is probably close to
319  * this one.  So you should push what I/O you have currently accumulated.
320  *
321  * This all causes the disk requests to be issued in the correct order.
322  */
323 int
324 mpage_readpages(struct address_space *mapping, struct list_head *pages,
325 				unsigned nr_pages, get_block_t get_block)
326 {
327 	struct bio *bio = NULL;
328 	unsigned page_idx;
329 	sector_t last_block_in_bio = 0;
330 	struct pagevec lru_pvec;
331 
332 	pagevec_init(&lru_pvec, 0);
333 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
334 		struct page *page = list_entry(pages->prev, struct page, lru);
335 
336 		prefetchw(&page->flags);
337 		list_del(&page->lru);
338 		if (!add_to_page_cache(page, mapping,
339 					page->index, GFP_KERNEL)) {
340 			bio = do_mpage_readpage(bio, page,
341 					nr_pages - page_idx,
342 					&last_block_in_bio, get_block);
343 			if (!pagevec_add(&lru_pvec, page))
344 				__pagevec_lru_add(&lru_pvec);
345 		} else {
346 			page_cache_release(page);
347 		}
348 	}
349 	pagevec_lru_add(&lru_pvec);
350 	BUG_ON(!list_empty(pages));
351 	if (bio)
352 		mpage_bio_submit(READ, bio);
353 	return 0;
354 }
355 EXPORT_SYMBOL(mpage_readpages);
356 
357 /*
358  * This isn't called much at all
359  */
360 int mpage_readpage(struct page *page, get_block_t get_block)
361 {
362 	struct bio *bio = NULL;
363 	sector_t last_block_in_bio = 0;
364 
365 	bio = do_mpage_readpage(bio, page, 1,
366 			&last_block_in_bio, get_block);
367 	if (bio)
368 		mpage_bio_submit(READ, bio);
369 	return 0;
370 }
371 EXPORT_SYMBOL(mpage_readpage);
372 
373 /*
374  * Writing is not so simple.
375  *
376  * If the page has buffers then they will be used for obtaining the disk
377  * mapping.  We only support pages which are fully mapped-and-dirty, with a
378  * special case for pages which are unmapped at the end: end-of-file.
379  *
380  * If the page has no buffers (preferred) then the page is mapped here.
381  *
382  * If all blocks are found to be contiguous then the page can go into the
383  * BIO.  Otherwise fall back to the mapping's writepage().
384  *
385  * FIXME: This code wants an estimate of how many pages are still to be
386  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
387  * just allocate full-size (16-page) BIOs.
388  */
389 static struct bio *
390 __mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block,
391 	sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc,
392 	writepage_t writepage_fn)
393 {
394 	struct address_space *mapping = page->mapping;
395 	struct inode *inode = page->mapping->host;
396 	const unsigned blkbits = inode->i_blkbits;
397 	unsigned long end_index;
398 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
399 	sector_t last_block;
400 	sector_t block_in_file;
401 	sector_t blocks[MAX_BUF_PER_PAGE];
402 	unsigned page_block;
403 	unsigned first_unmapped = blocks_per_page;
404 	struct block_device *bdev = NULL;
405 	int boundary = 0;
406 	sector_t boundary_block = 0;
407 	struct block_device *boundary_bdev = NULL;
408 	int length;
409 	struct buffer_head map_bh;
410 	loff_t i_size = i_size_read(inode);
411 
412 	if (page_has_buffers(page)) {
413 		struct buffer_head *head = page_buffers(page);
414 		struct buffer_head *bh = head;
415 
416 		/* If they're all mapped and dirty, do it */
417 		page_block = 0;
418 		do {
419 			BUG_ON(buffer_locked(bh));
420 			if (!buffer_mapped(bh)) {
421 				/*
422 				 * unmapped dirty buffers are created by
423 				 * __set_page_dirty_buffers -> mmapped data
424 				 */
425 				if (buffer_dirty(bh))
426 					goto confused;
427 				if (first_unmapped == blocks_per_page)
428 					first_unmapped = page_block;
429 				continue;
430 			}
431 
432 			if (first_unmapped != blocks_per_page)
433 				goto confused;	/* hole -> non-hole */
434 
435 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
436 				goto confused;
437 			if (page_block) {
438 				if (bh->b_blocknr != blocks[page_block-1] + 1)
439 					goto confused;
440 			}
441 			blocks[page_block++] = bh->b_blocknr;
442 			boundary = buffer_boundary(bh);
443 			if (boundary) {
444 				boundary_block = bh->b_blocknr;
445 				boundary_bdev = bh->b_bdev;
446 			}
447 			bdev = bh->b_bdev;
448 		} while ((bh = bh->b_this_page) != head);
449 
450 		if (first_unmapped)
451 			goto page_is_mapped;
452 
453 		/*
454 		 * Page has buffers, but they are all unmapped. The page was
455 		 * created by pagein or read over a hole which was handled by
456 		 * block_read_full_page().  If this address_space is also
457 		 * using mpage_readpages then this can rarely happen.
458 		 */
459 		goto confused;
460 	}
461 
462 	/*
463 	 * The page has no buffers: map it to disk
464 	 */
465 	BUG_ON(!PageUptodate(page));
466 	block_in_file = page->index << (PAGE_CACHE_SHIFT - blkbits);
467 	last_block = (i_size - 1) >> blkbits;
468 	map_bh.b_page = page;
469 	for (page_block = 0; page_block < blocks_per_page; ) {
470 
471 		map_bh.b_state = 0;
472 		if (get_block(inode, block_in_file, &map_bh, 1))
473 			goto confused;
474 		if (buffer_new(&map_bh))
475 			unmap_underlying_metadata(map_bh.b_bdev,
476 						map_bh.b_blocknr);
477 		if (buffer_boundary(&map_bh)) {
478 			boundary_block = map_bh.b_blocknr;
479 			boundary_bdev = map_bh.b_bdev;
480 		}
481 		if (page_block) {
482 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
483 				goto confused;
484 		}
485 		blocks[page_block++] = map_bh.b_blocknr;
486 		boundary = buffer_boundary(&map_bh);
487 		bdev = map_bh.b_bdev;
488 		if (block_in_file == last_block)
489 			break;
490 		block_in_file++;
491 	}
492 	BUG_ON(page_block == 0);
493 
494 	first_unmapped = page_block;
495 
496 page_is_mapped:
497 	end_index = i_size >> PAGE_CACHE_SHIFT;
498 	if (page->index >= end_index) {
499 		/*
500 		 * The page straddles i_size.  It must be zeroed out on each
501 		 * and every writepage invokation because it may be mmapped.
502 		 * "A file is mapped in multiples of the page size.  For a file
503 		 * that is not a multiple of the page size, the remaining memory
504 		 * is zeroed when mapped, and writes to that region are not
505 		 * written out to the file."
506 		 */
507 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
508 		char *kaddr;
509 
510 		if (page->index > end_index || !offset)
511 			goto confused;
512 		kaddr = kmap_atomic(page, KM_USER0);
513 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
514 		flush_dcache_page(page);
515 		kunmap_atomic(kaddr, KM_USER0);
516 	}
517 
518 	/*
519 	 * This page will go to BIO.  Do we need to send this BIO off first?
520 	 */
521 	if (bio && *last_block_in_bio != blocks[0] - 1)
522 		bio = mpage_bio_submit(WRITE, bio);
523 
524 alloc_new:
525 	if (bio == NULL) {
526 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
527 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
528 		if (bio == NULL)
529 			goto confused;
530 	}
531 
532 	/*
533 	 * Must try to add the page before marking the buffer clean or
534 	 * the confused fail path above (OOM) will be very confused when
535 	 * it finds all bh marked clean (i.e. it will not write anything)
536 	 */
537 	length = first_unmapped << blkbits;
538 	if (bio_add_page(bio, page, length, 0) < length) {
539 		bio = mpage_bio_submit(WRITE, bio);
540 		goto alloc_new;
541 	}
542 
543 	/*
544 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
545 	 * sure to only clean buffers which we know we'll be writing.
546 	 */
547 	if (page_has_buffers(page)) {
548 		struct buffer_head *head = page_buffers(page);
549 		struct buffer_head *bh = head;
550 		unsigned buffer_counter = 0;
551 
552 		do {
553 			if (buffer_counter++ == first_unmapped)
554 				break;
555 			clear_buffer_dirty(bh);
556 			bh = bh->b_this_page;
557 		} while (bh != head);
558 
559 		/*
560 		 * we cannot drop the bh if the page is not uptodate
561 		 * or a concurrent readpage would fail to serialize with the bh
562 		 * and it would read from disk before we reach the platter.
563 		 */
564 		if (buffer_heads_over_limit && PageUptodate(page))
565 			try_to_free_buffers(page);
566 	}
567 
568 	BUG_ON(PageWriteback(page));
569 	set_page_writeback(page);
570 	unlock_page(page);
571 	if (boundary || (first_unmapped != blocks_per_page)) {
572 		bio = mpage_bio_submit(WRITE, bio);
573 		if (boundary_block) {
574 			write_boundary_block(boundary_bdev,
575 					boundary_block, 1 << blkbits);
576 		}
577 	} else {
578 		*last_block_in_bio = blocks[blocks_per_page - 1];
579 	}
580 	goto out;
581 
582 confused:
583 	if (bio)
584 		bio = mpage_bio_submit(WRITE, bio);
585 
586 	if (writepage_fn) {
587 		*ret = (*writepage_fn)(page, wbc);
588 	} else {
589 		*ret = -EAGAIN;
590 		goto out;
591 	}
592 	/*
593 	 * The caller has a ref on the inode, so *mapping is stable
594 	 */
595 	if (*ret) {
596 		if (*ret == -ENOSPC)
597 			set_bit(AS_ENOSPC, &mapping->flags);
598 		else
599 			set_bit(AS_EIO, &mapping->flags);
600 	}
601 out:
602 	return bio;
603 }
604 
605 /**
606  * mpage_writepages - walk the list of dirty pages of the given
607  * address space and writepage() all of them.
608  *
609  * @mapping: address space structure to write
610  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
611  * @get_block: the filesystem's block mapper function.
612  *             If this is NULL then use a_ops->writepage.  Otherwise, go
613  *             direct-to-BIO.
614  *
615  * This is a library function, which implements the writepages()
616  * address_space_operation.
617  *
618  * If a page is already under I/O, generic_writepages() skips it, even
619  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
620  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
621  * and msync() need to guarantee that all the data which was dirty at the time
622  * the call was made get new I/O started against them.  If wbc->sync_mode is
623  * WB_SYNC_ALL then we were called for data integrity and we must wait for
624  * existing IO to complete.
625  */
626 int
627 mpage_writepages(struct address_space *mapping,
628 		struct writeback_control *wbc, get_block_t get_block)
629 {
630 	return __mpage_writepages(mapping, wbc, get_block,
631 		mapping->a_ops->writepage);
632 }
633 
634 int
635 __mpage_writepages(struct address_space *mapping,
636 		struct writeback_control *wbc, get_block_t get_block,
637 		writepage_t writepage_fn)
638 {
639 	struct backing_dev_info *bdi = mapping->backing_dev_info;
640 	struct bio *bio = NULL;
641 	sector_t last_block_in_bio = 0;
642 	int ret = 0;
643 	int done = 0;
644 	int (*writepage)(struct page *page, struct writeback_control *wbc);
645 	struct pagevec pvec;
646 	int nr_pages;
647 	pgoff_t index;
648 	pgoff_t end = -1;		/* Inclusive */
649 	int scanned = 0;
650 	int is_range = 0;
651 
652 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
653 		wbc->encountered_congestion = 1;
654 		return 0;
655 	}
656 
657 	writepage = NULL;
658 	if (get_block == NULL)
659 		writepage = mapping->a_ops->writepage;
660 
661 	pagevec_init(&pvec, 0);
662 	if (wbc->sync_mode == WB_SYNC_NONE) {
663 		index = mapping->writeback_index; /* Start from prev offset */
664 	} else {
665 		index = 0;			  /* whole-file sweep */
666 		scanned = 1;
667 	}
668 	if (wbc->start || wbc->end) {
669 		index = wbc->start >> PAGE_CACHE_SHIFT;
670 		end = wbc->end >> PAGE_CACHE_SHIFT;
671 		is_range = 1;
672 		scanned = 1;
673 	}
674 retry:
675 	while (!done && (index <= end) &&
676 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
677 			PAGECACHE_TAG_DIRTY,
678 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
679 		unsigned i;
680 
681 		scanned = 1;
682 		for (i = 0; i < nr_pages; i++) {
683 			struct page *page = pvec.pages[i];
684 
685 			/*
686 			 * At this point we hold neither mapping->tree_lock nor
687 			 * lock on the page itself: the page may be truncated or
688 			 * invalidated (changing page->mapping to NULL), or even
689 			 * swizzled back from swapper_space to tmpfs file
690 			 * mapping
691 			 */
692 
693 			lock_page(page);
694 
695 			if (unlikely(page->mapping != mapping)) {
696 				unlock_page(page);
697 				continue;
698 			}
699 
700 			if (unlikely(is_range) && page->index > end) {
701 				done = 1;
702 				unlock_page(page);
703 				continue;
704 			}
705 
706 			if (wbc->sync_mode != WB_SYNC_NONE)
707 				wait_on_page_writeback(page);
708 
709 			if (PageWriteback(page) ||
710 					!clear_page_dirty_for_io(page)) {
711 				unlock_page(page);
712 				continue;
713 			}
714 
715 			if (writepage) {
716 				ret = (*writepage)(page, wbc);
717 				if (ret) {
718 					if (ret == -ENOSPC)
719 						set_bit(AS_ENOSPC,
720 							&mapping->flags);
721 					else
722 						set_bit(AS_EIO,
723 							&mapping->flags);
724 				}
725 			} else {
726 				bio = __mpage_writepage(bio, page, get_block,
727 						&last_block_in_bio, &ret, wbc,
728 						writepage_fn);
729 			}
730 			if (unlikely(ret == WRITEPAGE_ACTIVATE))
731 				unlock_page(page);
732 			if (ret || (--(wbc->nr_to_write) <= 0))
733 				done = 1;
734 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
735 				wbc->encountered_congestion = 1;
736 				done = 1;
737 			}
738 		}
739 		pagevec_release(&pvec);
740 		cond_resched();
741 	}
742 	if (!scanned && !done) {
743 		/*
744 		 * We hit the last page and there is more work to be done: wrap
745 		 * back to the start of the file
746 		 */
747 		scanned = 1;
748 		index = 0;
749 		goto retry;
750 	}
751 	if (!is_range)
752 		mapping->writeback_index = index;
753 	if (bio)
754 		mpage_bio_submit(WRITE, bio);
755 	return ret;
756 }
757 EXPORT_SYMBOL(mpage_writepages);
758 EXPORT_SYMBOL(__mpage_writepages);
759 
760 int mpage_writepage(struct page *page, get_block_t get_block,
761 	struct writeback_control *wbc)
762 {
763 	int ret = 0;
764 	struct bio *bio;
765 	sector_t last_block_in_bio = 0;
766 
767 	bio = __mpage_writepage(NULL, page, get_block,
768 			&last_block_in_bio, &ret, wbc, NULL);
769 	if (bio)
770 		mpage_bio_submit(WRITE, bio);
771 
772 	return ret;
773 }
774 EXPORT_SYMBOL(mpage_writepage);
775