xref: /linux/fs/mpage.c (revision 763679f0eeff0185fc431498849bbc1c24460875)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * fs/mpage.c
4   *
5   * Copyright (C) 2002, Linus Torvalds.
6   *
7   * Contains functions related to preparing and submitting BIOs which contain
8   * multiple pagecache pages.
9   *
10   * 15May2002	Andrew Morton
11   *		Initial version
12   * 27Jun2002	axboe@suse.de
13   *		use bio_add_page() to build bio's just the right size
14   */
15  
16  #include <linux/kernel.h>
17  #include <linux/export.h>
18  #include <linux/mm.h>
19  #include <linux/kdev_t.h>
20  #include <linux/gfp.h>
21  #include <linux/bio.h>
22  #include <linux/fs.h>
23  #include <linux/buffer_head.h>
24  #include <linux/blkdev.h>
25  #include <linux/highmem.h>
26  #include <linux/prefetch.h>
27  #include <linux/mpage.h>
28  #include <linux/mm_inline.h>
29  #include <linux/writeback.h>
30  #include <linux/backing-dev.h>
31  #include <linux/pagevec.h>
32  #include "internal.h"
33  
34  /*
35   * I/O completion handler for multipage BIOs.
36   *
37   * The mpage code never puts partial pages into a BIO (except for end-of-file).
38   * If a page does not map to a contiguous run of blocks then it simply falls
39   * back to block_read_full_folio().
40   *
41   * Why is this?  If a page's completion depends on a number of different BIOs
42   * which can complete in any order (or at the same time) then determining the
43   * status of that page is hard.  See end_buffer_async_read() for the details.
44   * There is no point in duplicating all that complexity.
45   */
46  static void mpage_end_io(struct bio *bio)
47  {
48  	struct bio_vec *bv;
49  	struct bvec_iter_all iter_all;
50  
51  	bio_for_each_segment_all(bv, bio, iter_all) {
52  		struct page *page = bv->bv_page;
53  		page_endio(page, bio_op(bio),
54  			   blk_status_to_errno(bio->bi_status));
55  	}
56  
57  	bio_put(bio);
58  }
59  
60  static struct bio *mpage_bio_submit(struct bio *bio)
61  {
62  	bio->bi_end_io = mpage_end_io;
63  	guard_bio_eod(bio);
64  	submit_bio(bio);
65  	return NULL;
66  }
67  
68  /*
69   * support function for mpage_readahead.  The fs supplied get_block might
70   * return an up to date buffer.  This is used to map that buffer into
71   * the page, which allows read_folio to avoid triggering a duplicate call
72   * to get_block.
73   *
74   * The idea is to avoid adding buffers to pages that don't already have
75   * them.  So when the buffer is up to date and the page size == block size,
76   * this marks the page up to date instead of adding new buffers.
77   */
78  static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
79  		int page_block)
80  {
81  	struct inode *inode = folio->mapping->host;
82  	struct buffer_head *page_bh, *head;
83  	int block = 0;
84  
85  	head = folio_buffers(folio);
86  	if (!head) {
87  		/*
88  		 * don't make any buffers if there is only one buffer on
89  		 * the folio and the folio just needs to be set up to date
90  		 */
91  		if (inode->i_blkbits == PAGE_SHIFT &&
92  		    buffer_uptodate(bh)) {
93  			folio_mark_uptodate(folio);
94  			return;
95  		}
96  		create_empty_buffers(&folio->page, i_blocksize(inode), 0);
97  		head = folio_buffers(folio);
98  	}
99  
100  	page_bh = head;
101  	do {
102  		if (block == page_block) {
103  			page_bh->b_state = bh->b_state;
104  			page_bh->b_bdev = bh->b_bdev;
105  			page_bh->b_blocknr = bh->b_blocknr;
106  			break;
107  		}
108  		page_bh = page_bh->b_this_page;
109  		block++;
110  	} while (page_bh != head);
111  }
112  
113  struct mpage_readpage_args {
114  	struct bio *bio;
115  	struct folio *folio;
116  	unsigned int nr_pages;
117  	bool is_readahead;
118  	sector_t last_block_in_bio;
119  	struct buffer_head map_bh;
120  	unsigned long first_logical_block;
121  	get_block_t *get_block;
122  };
123  
124  /*
125   * This is the worker routine which does all the work of mapping the disk
126   * blocks and constructs largest possible bios, submits them for IO if the
127   * blocks are not contiguous on the disk.
128   *
129   * We pass a buffer_head back and forth and use its buffer_mapped() flag to
130   * represent the validity of its disk mapping and to decide when to do the next
131   * get_block() call.
132   */
133  static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
134  {
135  	struct folio *folio = args->folio;
136  	struct inode *inode = folio->mapping->host;
137  	const unsigned blkbits = inode->i_blkbits;
138  	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
139  	const unsigned blocksize = 1 << blkbits;
140  	struct buffer_head *map_bh = &args->map_bh;
141  	sector_t block_in_file;
142  	sector_t last_block;
143  	sector_t last_block_in_file;
144  	sector_t blocks[MAX_BUF_PER_PAGE];
145  	unsigned page_block;
146  	unsigned first_hole = blocks_per_page;
147  	struct block_device *bdev = NULL;
148  	int length;
149  	int fully_mapped = 1;
150  	blk_opf_t opf = REQ_OP_READ;
151  	unsigned nblocks;
152  	unsigned relative_block;
153  	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
154  
155  	/* MAX_BUF_PER_PAGE, for example */
156  	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
157  
158  	if (args->is_readahead) {
159  		opf |= REQ_RAHEAD;
160  		gfp |= __GFP_NORETRY | __GFP_NOWARN;
161  	}
162  
163  	if (folio_buffers(folio))
164  		goto confused;
165  
166  	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
167  	last_block = block_in_file + args->nr_pages * blocks_per_page;
168  	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
169  	if (last_block > last_block_in_file)
170  		last_block = last_block_in_file;
171  	page_block = 0;
172  
173  	/*
174  	 * Map blocks using the result from the previous get_blocks call first.
175  	 */
176  	nblocks = map_bh->b_size >> blkbits;
177  	if (buffer_mapped(map_bh) &&
178  			block_in_file > args->first_logical_block &&
179  			block_in_file < (args->first_logical_block + nblocks)) {
180  		unsigned map_offset = block_in_file - args->first_logical_block;
181  		unsigned last = nblocks - map_offset;
182  
183  		for (relative_block = 0; ; relative_block++) {
184  			if (relative_block == last) {
185  				clear_buffer_mapped(map_bh);
186  				break;
187  			}
188  			if (page_block == blocks_per_page)
189  				break;
190  			blocks[page_block] = map_bh->b_blocknr + map_offset +
191  						relative_block;
192  			page_block++;
193  			block_in_file++;
194  		}
195  		bdev = map_bh->b_bdev;
196  	}
197  
198  	/*
199  	 * Then do more get_blocks calls until we are done with this folio.
200  	 */
201  	map_bh->b_page = &folio->page;
202  	while (page_block < blocks_per_page) {
203  		map_bh->b_state = 0;
204  		map_bh->b_size = 0;
205  
206  		if (block_in_file < last_block) {
207  			map_bh->b_size = (last_block-block_in_file) << blkbits;
208  			if (args->get_block(inode, block_in_file, map_bh, 0))
209  				goto confused;
210  			args->first_logical_block = block_in_file;
211  		}
212  
213  		if (!buffer_mapped(map_bh)) {
214  			fully_mapped = 0;
215  			if (first_hole == blocks_per_page)
216  				first_hole = page_block;
217  			page_block++;
218  			block_in_file++;
219  			continue;
220  		}
221  
222  		/* some filesystems will copy data into the page during
223  		 * the get_block call, in which case we don't want to
224  		 * read it again.  map_buffer_to_folio copies the data
225  		 * we just collected from get_block into the folio's buffers
226  		 * so read_folio doesn't have to repeat the get_block call
227  		 */
228  		if (buffer_uptodate(map_bh)) {
229  			map_buffer_to_folio(folio, map_bh, page_block);
230  			goto confused;
231  		}
232  
233  		if (first_hole != blocks_per_page)
234  			goto confused;		/* hole -> non-hole */
235  
236  		/* Contiguous blocks? */
237  		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
238  			goto confused;
239  		nblocks = map_bh->b_size >> blkbits;
240  		for (relative_block = 0; ; relative_block++) {
241  			if (relative_block == nblocks) {
242  				clear_buffer_mapped(map_bh);
243  				break;
244  			} else if (page_block == blocks_per_page)
245  				break;
246  			blocks[page_block] = map_bh->b_blocknr+relative_block;
247  			page_block++;
248  			block_in_file++;
249  		}
250  		bdev = map_bh->b_bdev;
251  	}
252  
253  	if (first_hole != blocks_per_page) {
254  		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
255  		if (first_hole == 0) {
256  			folio_mark_uptodate(folio);
257  			folio_unlock(folio);
258  			goto out;
259  		}
260  	} else if (fully_mapped) {
261  		folio_set_mappedtodisk(folio);
262  	}
263  
264  	/*
265  	 * This folio will go to BIO.  Do we need to send this BIO off first?
266  	 */
267  	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
268  		args->bio = mpage_bio_submit(args->bio);
269  
270  alloc_new:
271  	if (args->bio == NULL) {
272  		if (first_hole == blocks_per_page) {
273  			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
274  								&folio->page))
275  				goto out;
276  		}
277  		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
278  				      gfp);
279  		if (args->bio == NULL)
280  			goto confused;
281  		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
282  	}
283  
284  	length = first_hole << blkbits;
285  	if (!bio_add_folio(args->bio, folio, length, 0)) {
286  		args->bio = mpage_bio_submit(args->bio);
287  		goto alloc_new;
288  	}
289  
290  	relative_block = block_in_file - args->first_logical_block;
291  	nblocks = map_bh->b_size >> blkbits;
292  	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
293  	    (first_hole != blocks_per_page))
294  		args->bio = mpage_bio_submit(args->bio);
295  	else
296  		args->last_block_in_bio = blocks[blocks_per_page - 1];
297  out:
298  	return args->bio;
299  
300  confused:
301  	if (args->bio)
302  		args->bio = mpage_bio_submit(args->bio);
303  	if (!folio_test_uptodate(folio))
304  		block_read_full_folio(folio, args->get_block);
305  	else
306  		folio_unlock(folio);
307  	goto out;
308  }
309  
310  /**
311   * mpage_readahead - start reads against pages
312   * @rac: Describes which pages to read.
313   * @get_block: The filesystem's block mapper function.
314   *
315   * This function walks the pages and the blocks within each page, building and
316   * emitting large BIOs.
317   *
318   * If anything unusual happens, such as:
319   *
320   * - encountering a page which has buffers
321   * - encountering a page which has a non-hole after a hole
322   * - encountering a page with non-contiguous blocks
323   *
324   * then this code just gives up and calls the buffer_head-based read function.
325   * It does handle a page which has holes at the end - that is a common case:
326   * the end-of-file on blocksize < PAGE_SIZE setups.
327   *
328   * BH_Boundary explanation:
329   *
330   * There is a problem.  The mpage read code assembles several pages, gets all
331   * their disk mappings, and then submits them all.  That's fine, but obtaining
332   * the disk mappings may require I/O.  Reads of indirect blocks, for example.
333   *
334   * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
335   * submitted in the following order:
336   *
337   * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
338   *
339   * because the indirect block has to be read to get the mappings of blocks
340   * 13,14,15,16.  Obviously, this impacts performance.
341   *
342   * So what we do it to allow the filesystem's get_block() function to set
343   * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
344   * after this one will require I/O against a block which is probably close to
345   * this one.  So you should push what I/O you have currently accumulated.
346   *
347   * This all causes the disk requests to be issued in the correct order.
348   */
349  void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
350  {
351  	struct folio *folio;
352  	struct mpage_readpage_args args = {
353  		.get_block = get_block,
354  		.is_readahead = true,
355  	};
356  
357  	while ((folio = readahead_folio(rac))) {
358  		prefetchw(&folio->flags);
359  		args.folio = folio;
360  		args.nr_pages = readahead_count(rac);
361  		args.bio = do_mpage_readpage(&args);
362  	}
363  	if (args.bio)
364  		mpage_bio_submit(args.bio);
365  }
366  EXPORT_SYMBOL(mpage_readahead);
367  
368  /*
369   * This isn't called much at all
370   */
371  int mpage_read_folio(struct folio *folio, get_block_t get_block)
372  {
373  	struct mpage_readpage_args args = {
374  		.folio = folio,
375  		.nr_pages = 1,
376  		.get_block = get_block,
377  	};
378  
379  	args.bio = do_mpage_readpage(&args);
380  	if (args.bio)
381  		mpage_bio_submit(args.bio);
382  	return 0;
383  }
384  EXPORT_SYMBOL(mpage_read_folio);
385  
386  /*
387   * Writing is not so simple.
388   *
389   * If the page has buffers then they will be used for obtaining the disk
390   * mapping.  We only support pages which are fully mapped-and-dirty, with a
391   * special case for pages which are unmapped at the end: end-of-file.
392   *
393   * If the page has no buffers (preferred) then the page is mapped here.
394   *
395   * If all blocks are found to be contiguous then the page can go into the
396   * BIO.  Otherwise fall back to the mapping's writepage().
397   *
398   * FIXME: This code wants an estimate of how many pages are still to be
399   * written, so it can intelligently allocate a suitably-sized BIO.  For now,
400   * just allocate full-size (16-page) BIOs.
401   */
402  
403  struct mpage_data {
404  	struct bio *bio;
405  	sector_t last_block_in_bio;
406  	get_block_t *get_block;
407  };
408  
409  /*
410   * We have our BIO, so we can now mark the buffers clean.  Make
411   * sure to only clean buffers which we know we'll be writing.
412   */
413  static void clean_buffers(struct page *page, unsigned first_unmapped)
414  {
415  	unsigned buffer_counter = 0;
416  	struct buffer_head *bh, *head;
417  	if (!page_has_buffers(page))
418  		return;
419  	head = page_buffers(page);
420  	bh = head;
421  
422  	do {
423  		if (buffer_counter++ == first_unmapped)
424  			break;
425  		clear_buffer_dirty(bh);
426  		bh = bh->b_this_page;
427  	} while (bh != head);
428  
429  	/*
430  	 * we cannot drop the bh if the page is not uptodate or a concurrent
431  	 * read_folio would fail to serialize with the bh and it would read from
432  	 * disk before we reach the platter.
433  	 */
434  	if (buffer_heads_over_limit && PageUptodate(page))
435  		try_to_free_buffers(page_folio(page));
436  }
437  
438  /*
439   * For situations where we want to clean all buffers attached to a page.
440   * We don't need to calculate how many buffers are attached to the page,
441   * we just need to specify a number larger than the maximum number of buffers.
442   */
443  void clean_page_buffers(struct page *page)
444  {
445  	clean_buffers(page, ~0U);
446  }
447  
448  static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
449  		      void *data)
450  {
451  	struct mpage_data *mpd = data;
452  	struct bio *bio = mpd->bio;
453  	struct address_space *mapping = page->mapping;
454  	struct inode *inode = page->mapping->host;
455  	const unsigned blkbits = inode->i_blkbits;
456  	unsigned long end_index;
457  	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
458  	sector_t last_block;
459  	sector_t block_in_file;
460  	sector_t blocks[MAX_BUF_PER_PAGE];
461  	unsigned page_block;
462  	unsigned first_unmapped = blocks_per_page;
463  	struct block_device *bdev = NULL;
464  	int boundary = 0;
465  	sector_t boundary_block = 0;
466  	struct block_device *boundary_bdev = NULL;
467  	int length;
468  	struct buffer_head map_bh;
469  	loff_t i_size = i_size_read(inode);
470  	int ret = 0;
471  
472  	if (page_has_buffers(page)) {
473  		struct buffer_head *head = page_buffers(page);
474  		struct buffer_head *bh = head;
475  
476  		/* If they're all mapped and dirty, do it */
477  		page_block = 0;
478  		do {
479  			BUG_ON(buffer_locked(bh));
480  			if (!buffer_mapped(bh)) {
481  				/*
482  				 * unmapped dirty buffers are created by
483  				 * block_dirty_folio -> mmapped data
484  				 */
485  				if (buffer_dirty(bh))
486  					goto confused;
487  				if (first_unmapped == blocks_per_page)
488  					first_unmapped = page_block;
489  				continue;
490  			}
491  
492  			if (first_unmapped != blocks_per_page)
493  				goto confused;	/* hole -> non-hole */
494  
495  			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
496  				goto confused;
497  			if (page_block) {
498  				if (bh->b_blocknr != blocks[page_block-1] + 1)
499  					goto confused;
500  			}
501  			blocks[page_block++] = bh->b_blocknr;
502  			boundary = buffer_boundary(bh);
503  			if (boundary) {
504  				boundary_block = bh->b_blocknr;
505  				boundary_bdev = bh->b_bdev;
506  			}
507  			bdev = bh->b_bdev;
508  		} while ((bh = bh->b_this_page) != head);
509  
510  		if (first_unmapped)
511  			goto page_is_mapped;
512  
513  		/*
514  		 * Page has buffers, but they are all unmapped. The page was
515  		 * created by pagein or read over a hole which was handled by
516  		 * block_read_full_folio().  If this address_space is also
517  		 * using mpage_readahead then this can rarely happen.
518  		 */
519  		goto confused;
520  	}
521  
522  	/*
523  	 * The page has no buffers: map it to disk
524  	 */
525  	BUG_ON(!PageUptodate(page));
526  	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
527  	last_block = (i_size - 1) >> blkbits;
528  	map_bh.b_page = page;
529  	for (page_block = 0; page_block < blocks_per_page; ) {
530  
531  		map_bh.b_state = 0;
532  		map_bh.b_size = 1 << blkbits;
533  		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
534  			goto confused;
535  		if (buffer_new(&map_bh))
536  			clean_bdev_bh_alias(&map_bh);
537  		if (buffer_boundary(&map_bh)) {
538  			boundary_block = map_bh.b_blocknr;
539  			boundary_bdev = map_bh.b_bdev;
540  		}
541  		if (page_block) {
542  			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
543  				goto confused;
544  		}
545  		blocks[page_block++] = map_bh.b_blocknr;
546  		boundary = buffer_boundary(&map_bh);
547  		bdev = map_bh.b_bdev;
548  		if (block_in_file == last_block)
549  			break;
550  		block_in_file++;
551  	}
552  	BUG_ON(page_block == 0);
553  
554  	first_unmapped = page_block;
555  
556  page_is_mapped:
557  	end_index = i_size >> PAGE_SHIFT;
558  	if (page->index >= end_index) {
559  		/*
560  		 * The page straddles i_size.  It must be zeroed out on each
561  		 * and every writepage invocation because it may be mmapped.
562  		 * "A file is mapped in multiples of the page size.  For a file
563  		 * that is not a multiple of the page size, the remaining memory
564  		 * is zeroed when mapped, and writes to that region are not
565  		 * written out to the file."
566  		 */
567  		unsigned offset = i_size & (PAGE_SIZE - 1);
568  
569  		if (page->index > end_index || !offset)
570  			goto confused;
571  		zero_user_segment(page, offset, PAGE_SIZE);
572  	}
573  
574  	/*
575  	 * This page will go to BIO.  Do we need to send this BIO off first?
576  	 */
577  	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
578  		bio = mpage_bio_submit(bio);
579  
580  alloc_new:
581  	if (bio == NULL) {
582  		if (first_unmapped == blocks_per_page) {
583  			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
584  								page, wbc))
585  				goto out;
586  		}
587  		bio = bio_alloc(bdev, BIO_MAX_VECS,
588  				REQ_OP_WRITE | wbc_to_write_flags(wbc),
589  				GFP_NOFS);
590  		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
591  		wbc_init_bio(wbc, bio);
592  	}
593  
594  	/*
595  	 * Must try to add the page before marking the buffer clean or
596  	 * the confused fail path above (OOM) will be very confused when
597  	 * it finds all bh marked clean (i.e. it will not write anything)
598  	 */
599  	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
600  	length = first_unmapped << blkbits;
601  	if (bio_add_page(bio, page, length, 0) < length) {
602  		bio = mpage_bio_submit(bio);
603  		goto alloc_new;
604  	}
605  
606  	clean_buffers(page, first_unmapped);
607  
608  	BUG_ON(PageWriteback(page));
609  	set_page_writeback(page);
610  	unlock_page(page);
611  	if (boundary || (first_unmapped != blocks_per_page)) {
612  		bio = mpage_bio_submit(bio);
613  		if (boundary_block) {
614  			write_boundary_block(boundary_bdev,
615  					boundary_block, 1 << blkbits);
616  		}
617  	} else {
618  		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
619  	}
620  	goto out;
621  
622  confused:
623  	if (bio)
624  		bio = mpage_bio_submit(bio);
625  
626  	/*
627  	 * The caller has a ref on the inode, so *mapping is stable
628  	 */
629  	ret = block_write_full_page(page, mpd->get_block, wbc);
630  	mapping_set_error(mapping, ret);
631  out:
632  	mpd->bio = bio;
633  	return ret;
634  }
635  
636  /**
637   * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
638   * @mapping: address space structure to write
639   * @wbc: subtract the number of written pages from *@wbc->nr_to_write
640   * @get_block: the filesystem's block mapper function.
641   *
642   * This is a library function, which implements the writepages()
643   * address_space_operation.
644   *
645   * If a page is already under I/O, generic_writepages() skips it, even
646   * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
647   * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
648   * and msync() need to guarantee that all the data which was dirty at the time
649   * the call was made get new I/O started against them.  If wbc->sync_mode is
650   * WB_SYNC_ALL then we were called for data integrity and we must wait for
651   * existing IO to complete.
652   */
653  int
654  mpage_writepages(struct address_space *mapping,
655  		struct writeback_control *wbc, get_block_t get_block)
656  {
657  	struct mpage_data mpd = {
658  		.get_block	= get_block,
659  	};
660  	struct blk_plug plug;
661  	int ret;
662  
663  	blk_start_plug(&plug);
664  	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
665  	if (mpd.bio)
666  		mpage_bio_submit(mpd.bio);
667  	blk_finish_plug(&plug);
668  	return ret;
669  }
670  EXPORT_SYMBOL(mpage_writepages);
671