xref: /linux/fs/mpage.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48 	struct bio_vec *bv;
49 	int i;
50 
51 	bio_for_each_segment_all(bv, bio, i) {
52 		struct page *page = bv->bv_page;
53 		page_endio(page, op_is_write(bio_op(bio)),
54 				blk_status_to_errno(bio->bi_status));
55 	}
56 
57 	bio_put(bio);
58 }
59 
60 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
61 {
62 	bio->bi_end_io = mpage_end_io;
63 	bio_set_op_attrs(bio, op, op_flags);
64 	guard_bio_eod(op, bio);
65 	submit_bio(bio);
66 	return NULL;
67 }
68 
69 static struct bio *
70 mpage_alloc(struct block_device *bdev,
71 		sector_t first_sector, int nr_vecs,
72 		gfp_t gfp_flags)
73 {
74 	struct bio *bio;
75 
76 	/* Restrict the given (page cache) mask for slab allocations */
77 	gfp_flags &= GFP_KERNEL;
78 	bio = bio_alloc(gfp_flags, nr_vecs);
79 
80 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
81 		while (!bio && (nr_vecs /= 2))
82 			bio = bio_alloc(gfp_flags, nr_vecs);
83 	}
84 
85 	if (bio) {
86 		bio->bi_bdev = bdev;
87 		bio->bi_iter.bi_sector = first_sector;
88 	}
89 	return bio;
90 }
91 
92 /*
93  * support function for mpage_readpages.  The fs supplied get_block might
94  * return an up to date buffer.  This is used to map that buffer into
95  * the page, which allows readpage to avoid triggering a duplicate call
96  * to get_block.
97  *
98  * The idea is to avoid adding buffers to pages that don't already have
99  * them.  So when the buffer is up to date and the page size == block size,
100  * this marks the page up to date instead of adding new buffers.
101  */
102 static void
103 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
104 {
105 	struct inode *inode = page->mapping->host;
106 	struct buffer_head *page_bh, *head;
107 	int block = 0;
108 
109 	if (!page_has_buffers(page)) {
110 		/*
111 		 * don't make any buffers if there is only one buffer on
112 		 * the page and the page just needs to be set up to date
113 		 */
114 		if (inode->i_blkbits == PAGE_SHIFT &&
115 		    buffer_uptodate(bh)) {
116 			SetPageUptodate(page);
117 			return;
118 		}
119 		create_empty_buffers(page, i_blocksize(inode), 0);
120 	}
121 	head = page_buffers(page);
122 	page_bh = head;
123 	do {
124 		if (block == page_block) {
125 			page_bh->b_state = bh->b_state;
126 			page_bh->b_bdev = bh->b_bdev;
127 			page_bh->b_blocknr = bh->b_blocknr;
128 			break;
129 		}
130 		page_bh = page_bh->b_this_page;
131 		block++;
132 	} while (page_bh != head);
133 }
134 
135 /*
136  * This is the worker routine which does all the work of mapping the disk
137  * blocks and constructs largest possible bios, submits them for IO if the
138  * blocks are not contiguous on the disk.
139  *
140  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
141  * represent the validity of its disk mapping and to decide when to do the next
142  * get_block() call.
143  */
144 static struct bio *
145 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
146 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
147 		unsigned long *first_logical_block, get_block_t get_block,
148 		gfp_t gfp)
149 {
150 	struct inode *inode = page->mapping->host;
151 	const unsigned blkbits = inode->i_blkbits;
152 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
153 	const unsigned blocksize = 1 << blkbits;
154 	sector_t block_in_file;
155 	sector_t last_block;
156 	sector_t last_block_in_file;
157 	sector_t blocks[MAX_BUF_PER_PAGE];
158 	unsigned page_block;
159 	unsigned first_hole = blocks_per_page;
160 	struct block_device *bdev = NULL;
161 	int length;
162 	int fully_mapped = 1;
163 	unsigned nblocks;
164 	unsigned relative_block;
165 
166 	if (page_has_buffers(page))
167 		goto confused;
168 
169 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
170 	last_block = block_in_file + nr_pages * blocks_per_page;
171 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
172 	if (last_block > last_block_in_file)
173 		last_block = last_block_in_file;
174 	page_block = 0;
175 
176 	/*
177 	 * Map blocks using the result from the previous get_blocks call first.
178 	 */
179 	nblocks = map_bh->b_size >> blkbits;
180 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
181 			block_in_file < (*first_logical_block + nblocks)) {
182 		unsigned map_offset = block_in_file - *first_logical_block;
183 		unsigned last = nblocks - map_offset;
184 
185 		for (relative_block = 0; ; relative_block++) {
186 			if (relative_block == last) {
187 				clear_buffer_mapped(map_bh);
188 				break;
189 			}
190 			if (page_block == blocks_per_page)
191 				break;
192 			blocks[page_block] = map_bh->b_blocknr + map_offset +
193 						relative_block;
194 			page_block++;
195 			block_in_file++;
196 		}
197 		bdev = map_bh->b_bdev;
198 	}
199 
200 	/*
201 	 * Then do more get_blocks calls until we are done with this page.
202 	 */
203 	map_bh->b_page = page;
204 	while (page_block < blocks_per_page) {
205 		map_bh->b_state = 0;
206 		map_bh->b_size = 0;
207 
208 		if (block_in_file < last_block) {
209 			map_bh->b_size = (last_block-block_in_file) << blkbits;
210 			if (get_block(inode, block_in_file, map_bh, 0))
211 				goto confused;
212 			*first_logical_block = block_in_file;
213 		}
214 
215 		if (!buffer_mapped(map_bh)) {
216 			fully_mapped = 0;
217 			if (first_hole == blocks_per_page)
218 				first_hole = page_block;
219 			page_block++;
220 			block_in_file++;
221 			continue;
222 		}
223 
224 		/* some filesystems will copy data into the page during
225 		 * the get_block call, in which case we don't want to
226 		 * read it again.  map_buffer_to_page copies the data
227 		 * we just collected from get_block into the page's buffers
228 		 * so readpage doesn't have to repeat the get_block call
229 		 */
230 		if (buffer_uptodate(map_bh)) {
231 			map_buffer_to_page(page, map_bh, page_block);
232 			goto confused;
233 		}
234 
235 		if (first_hole != blocks_per_page)
236 			goto confused;		/* hole -> non-hole */
237 
238 		/* Contiguous blocks? */
239 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
240 			goto confused;
241 		nblocks = map_bh->b_size >> blkbits;
242 		for (relative_block = 0; ; relative_block++) {
243 			if (relative_block == nblocks) {
244 				clear_buffer_mapped(map_bh);
245 				break;
246 			} else if (page_block == blocks_per_page)
247 				break;
248 			blocks[page_block] = map_bh->b_blocknr+relative_block;
249 			page_block++;
250 			block_in_file++;
251 		}
252 		bdev = map_bh->b_bdev;
253 	}
254 
255 	if (first_hole != blocks_per_page) {
256 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
257 		if (first_hole == 0) {
258 			SetPageUptodate(page);
259 			unlock_page(page);
260 			goto out;
261 		}
262 	} else if (fully_mapped) {
263 		SetPageMappedToDisk(page);
264 	}
265 
266 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
267 	    cleancache_get_page(page) == 0) {
268 		SetPageUptodate(page);
269 		goto confused;
270 	}
271 
272 	/*
273 	 * This page will go to BIO.  Do we need to send this BIO off first?
274 	 */
275 	if (bio && (*last_block_in_bio != blocks[0] - 1))
276 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
277 
278 alloc_new:
279 	if (bio == NULL) {
280 		if (first_hole == blocks_per_page) {
281 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
282 								page))
283 				goto out;
284 		}
285 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
286 				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
287 		if (bio == NULL)
288 			goto confused;
289 	}
290 
291 	length = first_hole << blkbits;
292 	if (bio_add_page(bio, page, length, 0) < length) {
293 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
294 		goto alloc_new;
295 	}
296 
297 	relative_block = block_in_file - *first_logical_block;
298 	nblocks = map_bh->b_size >> blkbits;
299 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
300 	    (first_hole != blocks_per_page))
301 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
302 	else
303 		*last_block_in_bio = blocks[blocks_per_page - 1];
304 out:
305 	return bio;
306 
307 confused:
308 	if (bio)
309 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
310 	if (!PageUptodate(page))
311 	        block_read_full_page(page, get_block);
312 	else
313 		unlock_page(page);
314 	goto out;
315 }
316 
317 /**
318  * mpage_readpages - populate an address space with some pages & start reads against them
319  * @mapping: the address_space
320  * @pages: The address of a list_head which contains the target pages.  These
321  *   pages have their ->index populated and are otherwise uninitialised.
322  *   The page at @pages->prev has the lowest file offset, and reads should be
323  *   issued in @pages->prev to @pages->next order.
324  * @nr_pages: The number of pages at *@pages
325  * @get_block: The filesystem's block mapper function.
326  *
327  * This function walks the pages and the blocks within each page, building and
328  * emitting large BIOs.
329  *
330  * If anything unusual happens, such as:
331  *
332  * - encountering a page which has buffers
333  * - encountering a page which has a non-hole after a hole
334  * - encountering a page with non-contiguous blocks
335  *
336  * then this code just gives up and calls the buffer_head-based read function.
337  * It does handle a page which has holes at the end - that is a common case:
338  * the end-of-file on blocksize < PAGE_SIZE setups.
339  *
340  * BH_Boundary explanation:
341  *
342  * There is a problem.  The mpage read code assembles several pages, gets all
343  * their disk mappings, and then submits them all.  That's fine, but obtaining
344  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
345  *
346  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
347  * submitted in the following order:
348  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
349  *
350  * because the indirect block has to be read to get the mappings of blocks
351  * 13,14,15,16.  Obviously, this impacts performance.
352  *
353  * So what we do it to allow the filesystem's get_block() function to set
354  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
355  * after this one will require I/O against a block which is probably close to
356  * this one.  So you should push what I/O you have currently accumulated.
357  *
358  * This all causes the disk requests to be issued in the correct order.
359  */
360 int
361 mpage_readpages(struct address_space *mapping, struct list_head *pages,
362 				unsigned nr_pages, get_block_t get_block)
363 {
364 	struct bio *bio = NULL;
365 	unsigned page_idx;
366 	sector_t last_block_in_bio = 0;
367 	struct buffer_head map_bh;
368 	unsigned long first_logical_block = 0;
369 	gfp_t gfp = readahead_gfp_mask(mapping);
370 
371 	map_bh.b_state = 0;
372 	map_bh.b_size = 0;
373 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
374 		struct page *page = lru_to_page(pages);
375 
376 		prefetchw(&page->flags);
377 		list_del(&page->lru);
378 		if (!add_to_page_cache_lru(page, mapping,
379 					page->index,
380 					gfp)) {
381 			bio = do_mpage_readpage(bio, page,
382 					nr_pages - page_idx,
383 					&last_block_in_bio, &map_bh,
384 					&first_logical_block,
385 					get_block, gfp);
386 		}
387 		put_page(page);
388 	}
389 	BUG_ON(!list_empty(pages));
390 	if (bio)
391 		mpage_bio_submit(REQ_OP_READ, 0, bio);
392 	return 0;
393 }
394 EXPORT_SYMBOL(mpage_readpages);
395 
396 /*
397  * This isn't called much at all
398  */
399 int mpage_readpage(struct page *page, get_block_t get_block)
400 {
401 	struct bio *bio = NULL;
402 	sector_t last_block_in_bio = 0;
403 	struct buffer_head map_bh;
404 	unsigned long first_logical_block = 0;
405 	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
406 
407 	map_bh.b_state = 0;
408 	map_bh.b_size = 0;
409 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
410 			&map_bh, &first_logical_block, get_block, gfp);
411 	if (bio)
412 		mpage_bio_submit(REQ_OP_READ, 0, bio);
413 	return 0;
414 }
415 EXPORT_SYMBOL(mpage_readpage);
416 
417 /*
418  * Writing is not so simple.
419  *
420  * If the page has buffers then they will be used for obtaining the disk
421  * mapping.  We only support pages which are fully mapped-and-dirty, with a
422  * special case for pages which are unmapped at the end: end-of-file.
423  *
424  * If the page has no buffers (preferred) then the page is mapped here.
425  *
426  * If all blocks are found to be contiguous then the page can go into the
427  * BIO.  Otherwise fall back to the mapping's writepage().
428  *
429  * FIXME: This code wants an estimate of how many pages are still to be
430  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
431  * just allocate full-size (16-page) BIOs.
432  */
433 
434 struct mpage_data {
435 	struct bio *bio;
436 	sector_t last_block_in_bio;
437 	get_block_t *get_block;
438 	unsigned use_writepage;
439 };
440 
441 /*
442  * We have our BIO, so we can now mark the buffers clean.  Make
443  * sure to only clean buffers which we know we'll be writing.
444  */
445 static void clean_buffers(struct page *page, unsigned first_unmapped)
446 {
447 	unsigned buffer_counter = 0;
448 	struct buffer_head *bh, *head;
449 	if (!page_has_buffers(page))
450 		return;
451 	head = page_buffers(page);
452 	bh = head;
453 
454 	do {
455 		if (buffer_counter++ == first_unmapped)
456 			break;
457 		clear_buffer_dirty(bh);
458 		bh = bh->b_this_page;
459 	} while (bh != head);
460 
461 	/*
462 	 * we cannot drop the bh if the page is not uptodate or a concurrent
463 	 * readpage would fail to serialize with the bh and it would read from
464 	 * disk before we reach the platter.
465 	 */
466 	if (buffer_heads_over_limit && PageUptodate(page))
467 		try_to_free_buffers(page);
468 }
469 
470 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
471 		      void *data)
472 {
473 	struct mpage_data *mpd = data;
474 	struct bio *bio = mpd->bio;
475 	struct address_space *mapping = page->mapping;
476 	struct inode *inode = page->mapping->host;
477 	const unsigned blkbits = inode->i_blkbits;
478 	unsigned long end_index;
479 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
480 	sector_t last_block;
481 	sector_t block_in_file;
482 	sector_t blocks[MAX_BUF_PER_PAGE];
483 	unsigned page_block;
484 	unsigned first_unmapped = blocks_per_page;
485 	struct block_device *bdev = NULL;
486 	int boundary = 0;
487 	sector_t boundary_block = 0;
488 	struct block_device *boundary_bdev = NULL;
489 	int length;
490 	struct buffer_head map_bh;
491 	loff_t i_size = i_size_read(inode);
492 	int ret = 0;
493 	int op_flags = wbc_to_write_flags(wbc);
494 
495 	if (page_has_buffers(page)) {
496 		struct buffer_head *head = page_buffers(page);
497 		struct buffer_head *bh = head;
498 
499 		/* If they're all mapped and dirty, do it */
500 		page_block = 0;
501 		do {
502 			BUG_ON(buffer_locked(bh));
503 			if (!buffer_mapped(bh)) {
504 				/*
505 				 * unmapped dirty buffers are created by
506 				 * __set_page_dirty_buffers -> mmapped data
507 				 */
508 				if (buffer_dirty(bh))
509 					goto confused;
510 				if (first_unmapped == blocks_per_page)
511 					first_unmapped = page_block;
512 				continue;
513 			}
514 
515 			if (first_unmapped != blocks_per_page)
516 				goto confused;	/* hole -> non-hole */
517 
518 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
519 				goto confused;
520 			if (page_block) {
521 				if (bh->b_blocknr != blocks[page_block-1] + 1)
522 					goto confused;
523 			}
524 			blocks[page_block++] = bh->b_blocknr;
525 			boundary = buffer_boundary(bh);
526 			if (boundary) {
527 				boundary_block = bh->b_blocknr;
528 				boundary_bdev = bh->b_bdev;
529 			}
530 			bdev = bh->b_bdev;
531 		} while ((bh = bh->b_this_page) != head);
532 
533 		if (first_unmapped)
534 			goto page_is_mapped;
535 
536 		/*
537 		 * Page has buffers, but they are all unmapped. The page was
538 		 * created by pagein or read over a hole which was handled by
539 		 * block_read_full_page().  If this address_space is also
540 		 * using mpage_readpages then this can rarely happen.
541 		 */
542 		goto confused;
543 	}
544 
545 	/*
546 	 * The page has no buffers: map it to disk
547 	 */
548 	BUG_ON(!PageUptodate(page));
549 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
550 	last_block = (i_size - 1) >> blkbits;
551 	map_bh.b_page = page;
552 	for (page_block = 0; page_block < blocks_per_page; ) {
553 
554 		map_bh.b_state = 0;
555 		map_bh.b_size = 1 << blkbits;
556 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
557 			goto confused;
558 		if (buffer_new(&map_bh))
559 			clean_bdev_bh_alias(&map_bh);
560 		if (buffer_boundary(&map_bh)) {
561 			boundary_block = map_bh.b_blocknr;
562 			boundary_bdev = map_bh.b_bdev;
563 		}
564 		if (page_block) {
565 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
566 				goto confused;
567 		}
568 		blocks[page_block++] = map_bh.b_blocknr;
569 		boundary = buffer_boundary(&map_bh);
570 		bdev = map_bh.b_bdev;
571 		if (block_in_file == last_block)
572 			break;
573 		block_in_file++;
574 	}
575 	BUG_ON(page_block == 0);
576 
577 	first_unmapped = page_block;
578 
579 page_is_mapped:
580 	end_index = i_size >> PAGE_SHIFT;
581 	if (page->index >= end_index) {
582 		/*
583 		 * The page straddles i_size.  It must be zeroed out on each
584 		 * and every writepage invocation because it may be mmapped.
585 		 * "A file is mapped in multiples of the page size.  For a file
586 		 * that is not a multiple of the page size, the remaining memory
587 		 * is zeroed when mapped, and writes to that region are not
588 		 * written out to the file."
589 		 */
590 		unsigned offset = i_size & (PAGE_SIZE - 1);
591 
592 		if (page->index > end_index || !offset)
593 			goto confused;
594 		zero_user_segment(page, offset, PAGE_SIZE);
595 	}
596 
597 	/*
598 	 * This page will go to BIO.  Do we need to send this BIO off first?
599 	 */
600 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
601 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
602 
603 alloc_new:
604 	if (bio == NULL) {
605 		if (first_unmapped == blocks_per_page) {
606 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
607 								page, wbc)) {
608 				clean_buffers(page, first_unmapped);
609 				goto out;
610 			}
611 		}
612 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
613 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
614 		if (bio == NULL)
615 			goto confused;
616 
617 		wbc_init_bio(wbc, bio);
618 		bio->bi_write_hint = inode->i_write_hint;
619 	}
620 
621 	/*
622 	 * Must try to add the page before marking the buffer clean or
623 	 * the confused fail path above (OOM) will be very confused when
624 	 * it finds all bh marked clean (i.e. it will not write anything)
625 	 */
626 	wbc_account_io(wbc, page, PAGE_SIZE);
627 	length = first_unmapped << blkbits;
628 	if (bio_add_page(bio, page, length, 0) < length) {
629 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
630 		goto alloc_new;
631 	}
632 
633 	clean_buffers(page, first_unmapped);
634 
635 	BUG_ON(PageWriteback(page));
636 	set_page_writeback(page);
637 	unlock_page(page);
638 	if (boundary || (first_unmapped != blocks_per_page)) {
639 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
640 		if (boundary_block) {
641 			write_boundary_block(boundary_bdev,
642 					boundary_block, 1 << blkbits);
643 		}
644 	} else {
645 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
646 	}
647 	goto out;
648 
649 confused:
650 	if (bio)
651 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
652 
653 	if (mpd->use_writepage) {
654 		ret = mapping->a_ops->writepage(page, wbc);
655 	} else {
656 		ret = -EAGAIN;
657 		goto out;
658 	}
659 	/*
660 	 * The caller has a ref on the inode, so *mapping is stable
661 	 */
662 	mapping_set_error(mapping, ret);
663 out:
664 	mpd->bio = bio;
665 	return ret;
666 }
667 
668 /**
669  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
670  * @mapping: address space structure to write
671  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
672  * @get_block: the filesystem's block mapper function.
673  *             If this is NULL then use a_ops->writepage.  Otherwise, go
674  *             direct-to-BIO.
675  *
676  * This is a library function, which implements the writepages()
677  * address_space_operation.
678  *
679  * If a page is already under I/O, generic_writepages() skips it, even
680  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
681  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
682  * and msync() need to guarantee that all the data which was dirty at the time
683  * the call was made get new I/O started against them.  If wbc->sync_mode is
684  * WB_SYNC_ALL then we were called for data integrity and we must wait for
685  * existing IO to complete.
686  */
687 int
688 mpage_writepages(struct address_space *mapping,
689 		struct writeback_control *wbc, get_block_t get_block)
690 {
691 	struct blk_plug plug;
692 	int ret;
693 
694 	blk_start_plug(&plug);
695 
696 	if (!get_block)
697 		ret = generic_writepages(mapping, wbc);
698 	else {
699 		struct mpage_data mpd = {
700 			.bio = NULL,
701 			.last_block_in_bio = 0,
702 			.get_block = get_block,
703 			.use_writepage = 1,
704 		};
705 
706 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
707 		if (mpd.bio) {
708 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
709 				  REQ_SYNC : 0);
710 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
711 		}
712 	}
713 	blk_finish_plug(&plug);
714 	return ret;
715 }
716 EXPORT_SYMBOL(mpage_writepages);
717 
718 int mpage_writepage(struct page *page, get_block_t get_block,
719 	struct writeback_control *wbc)
720 {
721 	struct mpage_data mpd = {
722 		.bio = NULL,
723 		.last_block_in_bio = 0,
724 		.get_block = get_block,
725 		.use_writepage = 0,
726 	};
727 	int ret = __mpage_writepage(page, wbc, &mpd);
728 	if (mpd.bio) {
729 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
730 			  REQ_SYNC : 0);
731 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
732 	}
733 	return ret;
734 }
735 EXPORT_SYMBOL(mpage_writepage);
736