xref: /linux/fs/mpage.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 #include "internal.h"
32 
33 /*
34  * I/O completion handler for multipage BIOs.
35  *
36  * The mpage code never puts partial pages into a BIO (except for end-of-file).
37  * If a page does not map to a contiguous run of blocks then it simply falls
38  * back to block_read_full_page().
39  *
40  * Why is this?  If a page's completion depends on a number of different BIOs
41  * which can complete in any order (or at the same time) then determining the
42  * status of that page is hard.  See end_buffer_async_read() for the details.
43  * There is no point in duplicating all that complexity.
44  */
45 static void mpage_end_io(struct bio *bio, int err)
46 {
47 	struct bio_vec *bv;
48 	int i;
49 
50 	bio_for_each_segment_all(bv, bio, i) {
51 		struct page *page = bv->bv_page;
52 		page_endio(page, bio_data_dir(bio), err);
53 	}
54 
55 	bio_put(bio);
56 }
57 
58 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
59 {
60 	bio->bi_end_io = mpage_end_io;
61 	guard_bio_eod(rw, bio);
62 	submit_bio(rw, bio);
63 	return NULL;
64 }
65 
66 static struct bio *
67 mpage_alloc(struct block_device *bdev,
68 		sector_t first_sector, int nr_vecs,
69 		gfp_t gfp_flags)
70 {
71 	struct bio *bio;
72 
73 	bio = bio_alloc(gfp_flags, nr_vecs);
74 
75 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
76 		while (!bio && (nr_vecs /= 2))
77 			bio = bio_alloc(gfp_flags, nr_vecs);
78 	}
79 
80 	if (bio) {
81 		bio->bi_bdev = bdev;
82 		bio->bi_iter.bi_sector = first_sector;
83 	}
84 	return bio;
85 }
86 
87 /*
88  * support function for mpage_readpages.  The fs supplied get_block might
89  * return an up to date buffer.  This is used to map that buffer into
90  * the page, which allows readpage to avoid triggering a duplicate call
91  * to get_block.
92  *
93  * The idea is to avoid adding buffers to pages that don't already have
94  * them.  So when the buffer is up to date and the page size == block size,
95  * this marks the page up to date instead of adding new buffers.
96  */
97 static void
98 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
99 {
100 	struct inode *inode = page->mapping->host;
101 	struct buffer_head *page_bh, *head;
102 	int block = 0;
103 
104 	if (!page_has_buffers(page)) {
105 		/*
106 		 * don't make any buffers if there is only one buffer on
107 		 * the page and the page just needs to be set up to date
108 		 */
109 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
110 		    buffer_uptodate(bh)) {
111 			SetPageUptodate(page);
112 			return;
113 		}
114 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
115 	}
116 	head = page_buffers(page);
117 	page_bh = head;
118 	do {
119 		if (block == page_block) {
120 			page_bh->b_state = bh->b_state;
121 			page_bh->b_bdev = bh->b_bdev;
122 			page_bh->b_blocknr = bh->b_blocknr;
123 			break;
124 		}
125 		page_bh = page_bh->b_this_page;
126 		block++;
127 	} while (page_bh != head);
128 }
129 
130 /*
131  * This is the worker routine which does all the work of mapping the disk
132  * blocks and constructs largest possible bios, submits them for IO if the
133  * blocks are not contiguous on the disk.
134  *
135  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
136  * represent the validity of its disk mapping and to decide when to do the next
137  * get_block() call.
138  */
139 static struct bio *
140 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
141 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
142 		unsigned long *first_logical_block, get_block_t get_block)
143 {
144 	struct inode *inode = page->mapping->host;
145 	const unsigned blkbits = inode->i_blkbits;
146 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
147 	const unsigned blocksize = 1 << blkbits;
148 	sector_t block_in_file;
149 	sector_t last_block;
150 	sector_t last_block_in_file;
151 	sector_t blocks[MAX_BUF_PER_PAGE];
152 	unsigned page_block;
153 	unsigned first_hole = blocks_per_page;
154 	struct block_device *bdev = NULL;
155 	int length;
156 	int fully_mapped = 1;
157 	unsigned nblocks;
158 	unsigned relative_block;
159 
160 	if (page_has_buffers(page))
161 		goto confused;
162 
163 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
164 	last_block = block_in_file + nr_pages * blocks_per_page;
165 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
166 	if (last_block > last_block_in_file)
167 		last_block = last_block_in_file;
168 	page_block = 0;
169 
170 	/*
171 	 * Map blocks using the result from the previous get_blocks call first.
172 	 */
173 	nblocks = map_bh->b_size >> blkbits;
174 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
175 			block_in_file < (*first_logical_block + nblocks)) {
176 		unsigned map_offset = block_in_file - *first_logical_block;
177 		unsigned last = nblocks - map_offset;
178 
179 		for (relative_block = 0; ; relative_block++) {
180 			if (relative_block == last) {
181 				clear_buffer_mapped(map_bh);
182 				break;
183 			}
184 			if (page_block == blocks_per_page)
185 				break;
186 			blocks[page_block] = map_bh->b_blocknr + map_offset +
187 						relative_block;
188 			page_block++;
189 			block_in_file++;
190 		}
191 		bdev = map_bh->b_bdev;
192 	}
193 
194 	/*
195 	 * Then do more get_blocks calls until we are done with this page.
196 	 */
197 	map_bh->b_page = page;
198 	while (page_block < blocks_per_page) {
199 		map_bh->b_state = 0;
200 		map_bh->b_size = 0;
201 
202 		if (block_in_file < last_block) {
203 			map_bh->b_size = (last_block-block_in_file) << blkbits;
204 			if (get_block(inode, block_in_file, map_bh, 0))
205 				goto confused;
206 			*first_logical_block = block_in_file;
207 		}
208 
209 		if (!buffer_mapped(map_bh)) {
210 			fully_mapped = 0;
211 			if (first_hole == blocks_per_page)
212 				first_hole = page_block;
213 			page_block++;
214 			block_in_file++;
215 			continue;
216 		}
217 
218 		/* some filesystems will copy data into the page during
219 		 * the get_block call, in which case we don't want to
220 		 * read it again.  map_buffer_to_page copies the data
221 		 * we just collected from get_block into the page's buffers
222 		 * so readpage doesn't have to repeat the get_block call
223 		 */
224 		if (buffer_uptodate(map_bh)) {
225 			map_buffer_to_page(page, map_bh, page_block);
226 			goto confused;
227 		}
228 
229 		if (first_hole != blocks_per_page)
230 			goto confused;		/* hole -> non-hole */
231 
232 		/* Contiguous blocks? */
233 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
234 			goto confused;
235 		nblocks = map_bh->b_size >> blkbits;
236 		for (relative_block = 0; ; relative_block++) {
237 			if (relative_block == nblocks) {
238 				clear_buffer_mapped(map_bh);
239 				break;
240 			} else if (page_block == blocks_per_page)
241 				break;
242 			blocks[page_block] = map_bh->b_blocknr+relative_block;
243 			page_block++;
244 			block_in_file++;
245 		}
246 		bdev = map_bh->b_bdev;
247 	}
248 
249 	if (first_hole != blocks_per_page) {
250 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
251 		if (first_hole == 0) {
252 			SetPageUptodate(page);
253 			unlock_page(page);
254 			goto out;
255 		}
256 	} else if (fully_mapped) {
257 		SetPageMappedToDisk(page);
258 	}
259 
260 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
261 	    cleancache_get_page(page) == 0) {
262 		SetPageUptodate(page);
263 		goto confused;
264 	}
265 
266 	/*
267 	 * This page will go to BIO.  Do we need to send this BIO off first?
268 	 */
269 	if (bio && (*last_block_in_bio != blocks[0] - 1))
270 		bio = mpage_bio_submit(READ, bio);
271 
272 alloc_new:
273 	if (bio == NULL) {
274 		if (first_hole == blocks_per_page) {
275 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
276 								page))
277 				goto out;
278 		}
279 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
280 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
281 				GFP_KERNEL);
282 		if (bio == NULL)
283 			goto confused;
284 	}
285 
286 	length = first_hole << blkbits;
287 	if (bio_add_page(bio, page, length, 0) < length) {
288 		bio = mpage_bio_submit(READ, bio);
289 		goto alloc_new;
290 	}
291 
292 	relative_block = block_in_file - *first_logical_block;
293 	nblocks = map_bh->b_size >> blkbits;
294 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
295 	    (first_hole != blocks_per_page))
296 		bio = mpage_bio_submit(READ, bio);
297 	else
298 		*last_block_in_bio = blocks[blocks_per_page - 1];
299 out:
300 	return bio;
301 
302 confused:
303 	if (bio)
304 		bio = mpage_bio_submit(READ, bio);
305 	if (!PageUptodate(page))
306 	        block_read_full_page(page, get_block);
307 	else
308 		unlock_page(page);
309 	goto out;
310 }
311 
312 /**
313  * mpage_readpages - populate an address space with some pages & start reads against them
314  * @mapping: the address_space
315  * @pages: The address of a list_head which contains the target pages.  These
316  *   pages have their ->index populated and are otherwise uninitialised.
317  *   The page at @pages->prev has the lowest file offset, and reads should be
318  *   issued in @pages->prev to @pages->next order.
319  * @nr_pages: The number of pages at *@pages
320  * @get_block: The filesystem's block mapper function.
321  *
322  * This function walks the pages and the blocks within each page, building and
323  * emitting large BIOs.
324  *
325  * If anything unusual happens, such as:
326  *
327  * - encountering a page which has buffers
328  * - encountering a page which has a non-hole after a hole
329  * - encountering a page with non-contiguous blocks
330  *
331  * then this code just gives up and calls the buffer_head-based read function.
332  * It does handle a page which has holes at the end - that is a common case:
333  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
334  *
335  * BH_Boundary explanation:
336  *
337  * There is a problem.  The mpage read code assembles several pages, gets all
338  * their disk mappings, and then submits them all.  That's fine, but obtaining
339  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
340  *
341  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
342  * submitted in the following order:
343  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
344  *
345  * because the indirect block has to be read to get the mappings of blocks
346  * 13,14,15,16.  Obviously, this impacts performance.
347  *
348  * So what we do it to allow the filesystem's get_block() function to set
349  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
350  * after this one will require I/O against a block which is probably close to
351  * this one.  So you should push what I/O you have currently accumulated.
352  *
353  * This all causes the disk requests to be issued in the correct order.
354  */
355 int
356 mpage_readpages(struct address_space *mapping, struct list_head *pages,
357 				unsigned nr_pages, get_block_t get_block)
358 {
359 	struct bio *bio = NULL;
360 	unsigned page_idx;
361 	sector_t last_block_in_bio = 0;
362 	struct buffer_head map_bh;
363 	unsigned long first_logical_block = 0;
364 
365 	map_bh.b_state = 0;
366 	map_bh.b_size = 0;
367 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
368 		struct page *page = list_entry(pages->prev, struct page, lru);
369 
370 		prefetchw(&page->flags);
371 		list_del(&page->lru);
372 		if (!add_to_page_cache_lru(page, mapping,
373 					page->index, GFP_KERNEL)) {
374 			bio = do_mpage_readpage(bio, page,
375 					nr_pages - page_idx,
376 					&last_block_in_bio, &map_bh,
377 					&first_logical_block,
378 					get_block);
379 		}
380 		page_cache_release(page);
381 	}
382 	BUG_ON(!list_empty(pages));
383 	if (bio)
384 		mpage_bio_submit(READ, bio);
385 	return 0;
386 }
387 EXPORT_SYMBOL(mpage_readpages);
388 
389 /*
390  * This isn't called much at all
391  */
392 int mpage_readpage(struct page *page, get_block_t get_block)
393 {
394 	struct bio *bio = NULL;
395 	sector_t last_block_in_bio = 0;
396 	struct buffer_head map_bh;
397 	unsigned long first_logical_block = 0;
398 
399 	map_bh.b_state = 0;
400 	map_bh.b_size = 0;
401 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
402 			&map_bh, &first_logical_block, get_block);
403 	if (bio)
404 		mpage_bio_submit(READ, bio);
405 	return 0;
406 }
407 EXPORT_SYMBOL(mpage_readpage);
408 
409 /*
410  * Writing is not so simple.
411  *
412  * If the page has buffers then they will be used for obtaining the disk
413  * mapping.  We only support pages which are fully mapped-and-dirty, with a
414  * special case for pages which are unmapped at the end: end-of-file.
415  *
416  * If the page has no buffers (preferred) then the page is mapped here.
417  *
418  * If all blocks are found to be contiguous then the page can go into the
419  * BIO.  Otherwise fall back to the mapping's writepage().
420  *
421  * FIXME: This code wants an estimate of how many pages are still to be
422  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
423  * just allocate full-size (16-page) BIOs.
424  */
425 
426 struct mpage_data {
427 	struct bio *bio;
428 	sector_t last_block_in_bio;
429 	get_block_t *get_block;
430 	unsigned use_writepage;
431 };
432 
433 /*
434  * We have our BIO, so we can now mark the buffers clean.  Make
435  * sure to only clean buffers which we know we'll be writing.
436  */
437 static void clean_buffers(struct page *page, unsigned first_unmapped)
438 {
439 	unsigned buffer_counter = 0;
440 	struct buffer_head *bh, *head;
441 	if (!page_has_buffers(page))
442 		return;
443 	head = page_buffers(page);
444 	bh = head;
445 
446 	do {
447 		if (buffer_counter++ == first_unmapped)
448 			break;
449 		clear_buffer_dirty(bh);
450 		bh = bh->b_this_page;
451 	} while (bh != head);
452 
453 	/*
454 	 * we cannot drop the bh if the page is not uptodate or a concurrent
455 	 * readpage would fail to serialize with the bh and it would read from
456 	 * disk before we reach the platter.
457 	 */
458 	if (buffer_heads_over_limit && PageUptodate(page))
459 		try_to_free_buffers(page);
460 }
461 
462 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
463 		      void *data)
464 {
465 	struct mpage_data *mpd = data;
466 	struct bio *bio = mpd->bio;
467 	struct address_space *mapping = page->mapping;
468 	struct inode *inode = page->mapping->host;
469 	const unsigned blkbits = inode->i_blkbits;
470 	unsigned long end_index;
471 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
472 	sector_t last_block;
473 	sector_t block_in_file;
474 	sector_t blocks[MAX_BUF_PER_PAGE];
475 	unsigned page_block;
476 	unsigned first_unmapped = blocks_per_page;
477 	struct block_device *bdev = NULL;
478 	int boundary = 0;
479 	sector_t boundary_block = 0;
480 	struct block_device *boundary_bdev = NULL;
481 	int length;
482 	struct buffer_head map_bh;
483 	loff_t i_size = i_size_read(inode);
484 	int ret = 0;
485 
486 	if (page_has_buffers(page)) {
487 		struct buffer_head *head = page_buffers(page);
488 		struct buffer_head *bh = head;
489 
490 		/* If they're all mapped and dirty, do it */
491 		page_block = 0;
492 		do {
493 			BUG_ON(buffer_locked(bh));
494 			if (!buffer_mapped(bh)) {
495 				/*
496 				 * unmapped dirty buffers are created by
497 				 * __set_page_dirty_buffers -> mmapped data
498 				 */
499 				if (buffer_dirty(bh))
500 					goto confused;
501 				if (first_unmapped == blocks_per_page)
502 					first_unmapped = page_block;
503 				continue;
504 			}
505 
506 			if (first_unmapped != blocks_per_page)
507 				goto confused;	/* hole -> non-hole */
508 
509 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
510 				goto confused;
511 			if (page_block) {
512 				if (bh->b_blocknr != blocks[page_block-1] + 1)
513 					goto confused;
514 			}
515 			blocks[page_block++] = bh->b_blocknr;
516 			boundary = buffer_boundary(bh);
517 			if (boundary) {
518 				boundary_block = bh->b_blocknr;
519 				boundary_bdev = bh->b_bdev;
520 			}
521 			bdev = bh->b_bdev;
522 		} while ((bh = bh->b_this_page) != head);
523 
524 		if (first_unmapped)
525 			goto page_is_mapped;
526 
527 		/*
528 		 * Page has buffers, but they are all unmapped. The page was
529 		 * created by pagein or read over a hole which was handled by
530 		 * block_read_full_page().  If this address_space is also
531 		 * using mpage_readpages then this can rarely happen.
532 		 */
533 		goto confused;
534 	}
535 
536 	/*
537 	 * The page has no buffers: map it to disk
538 	 */
539 	BUG_ON(!PageUptodate(page));
540 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
541 	last_block = (i_size - 1) >> blkbits;
542 	map_bh.b_page = page;
543 	for (page_block = 0; page_block < blocks_per_page; ) {
544 
545 		map_bh.b_state = 0;
546 		map_bh.b_size = 1 << blkbits;
547 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
548 			goto confused;
549 		if (buffer_new(&map_bh))
550 			unmap_underlying_metadata(map_bh.b_bdev,
551 						map_bh.b_blocknr);
552 		if (buffer_boundary(&map_bh)) {
553 			boundary_block = map_bh.b_blocknr;
554 			boundary_bdev = map_bh.b_bdev;
555 		}
556 		if (page_block) {
557 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
558 				goto confused;
559 		}
560 		blocks[page_block++] = map_bh.b_blocknr;
561 		boundary = buffer_boundary(&map_bh);
562 		bdev = map_bh.b_bdev;
563 		if (block_in_file == last_block)
564 			break;
565 		block_in_file++;
566 	}
567 	BUG_ON(page_block == 0);
568 
569 	first_unmapped = page_block;
570 
571 page_is_mapped:
572 	end_index = i_size >> PAGE_CACHE_SHIFT;
573 	if (page->index >= end_index) {
574 		/*
575 		 * The page straddles i_size.  It must be zeroed out on each
576 		 * and every writepage invocation because it may be mmapped.
577 		 * "A file is mapped in multiples of the page size.  For a file
578 		 * that is not a multiple of the page size, the remaining memory
579 		 * is zeroed when mapped, and writes to that region are not
580 		 * written out to the file."
581 		 */
582 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
583 
584 		if (page->index > end_index || !offset)
585 			goto confused;
586 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
587 	}
588 
589 	/*
590 	 * This page will go to BIO.  Do we need to send this BIO off first?
591 	 */
592 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
593 		bio = mpage_bio_submit(WRITE, bio);
594 
595 alloc_new:
596 	if (bio == NULL) {
597 		if (first_unmapped == blocks_per_page) {
598 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
599 								page, wbc)) {
600 				clean_buffers(page, first_unmapped);
601 				goto out;
602 			}
603 		}
604 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
605 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
606 		if (bio == NULL)
607 			goto confused;
608 	}
609 
610 	/*
611 	 * Must try to add the page before marking the buffer clean or
612 	 * the confused fail path above (OOM) will be very confused when
613 	 * it finds all bh marked clean (i.e. it will not write anything)
614 	 */
615 	length = first_unmapped << blkbits;
616 	if (bio_add_page(bio, page, length, 0) < length) {
617 		bio = mpage_bio_submit(WRITE, bio);
618 		goto alloc_new;
619 	}
620 
621 	clean_buffers(page, first_unmapped);
622 
623 	BUG_ON(PageWriteback(page));
624 	set_page_writeback(page);
625 	unlock_page(page);
626 	if (boundary || (first_unmapped != blocks_per_page)) {
627 		bio = mpage_bio_submit(WRITE, bio);
628 		if (boundary_block) {
629 			write_boundary_block(boundary_bdev,
630 					boundary_block, 1 << blkbits);
631 		}
632 	} else {
633 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
634 	}
635 	goto out;
636 
637 confused:
638 	if (bio)
639 		bio = mpage_bio_submit(WRITE, bio);
640 
641 	if (mpd->use_writepage) {
642 		ret = mapping->a_ops->writepage(page, wbc);
643 	} else {
644 		ret = -EAGAIN;
645 		goto out;
646 	}
647 	/*
648 	 * The caller has a ref on the inode, so *mapping is stable
649 	 */
650 	mapping_set_error(mapping, ret);
651 out:
652 	mpd->bio = bio;
653 	return ret;
654 }
655 
656 /**
657  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
658  * @mapping: address space structure to write
659  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
660  * @get_block: the filesystem's block mapper function.
661  *             If this is NULL then use a_ops->writepage.  Otherwise, go
662  *             direct-to-BIO.
663  *
664  * This is a library function, which implements the writepages()
665  * address_space_operation.
666  *
667  * If a page is already under I/O, generic_writepages() skips it, even
668  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
669  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
670  * and msync() need to guarantee that all the data which was dirty at the time
671  * the call was made get new I/O started against them.  If wbc->sync_mode is
672  * WB_SYNC_ALL then we were called for data integrity and we must wait for
673  * existing IO to complete.
674  */
675 int
676 mpage_writepages(struct address_space *mapping,
677 		struct writeback_control *wbc, get_block_t get_block)
678 {
679 	struct blk_plug plug;
680 	int ret;
681 
682 	blk_start_plug(&plug);
683 
684 	if (!get_block)
685 		ret = generic_writepages(mapping, wbc);
686 	else {
687 		struct mpage_data mpd = {
688 			.bio = NULL,
689 			.last_block_in_bio = 0,
690 			.get_block = get_block,
691 			.use_writepage = 1,
692 		};
693 
694 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
695 		if (mpd.bio)
696 			mpage_bio_submit(WRITE, mpd.bio);
697 	}
698 	blk_finish_plug(&plug);
699 	return ret;
700 }
701 EXPORT_SYMBOL(mpage_writepages);
702 
703 int mpage_writepage(struct page *page, get_block_t get_block,
704 	struct writeback_control *wbc)
705 {
706 	struct mpage_data mpd = {
707 		.bio = NULL,
708 		.last_block_in_bio = 0,
709 		.get_block = get_block,
710 		.use_writepage = 0,
711 	};
712 	int ret = __mpage_writepage(page, wbc, &mpd);
713 	if (mpd.bio)
714 		mpage_bio_submit(WRITE, mpd.bio);
715 	return ret;
716 }
717 EXPORT_SYMBOL(mpage_writepage);
718