1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/cleancache.h> 31 32 /* 33 * I/O completion handler for multipage BIOs. 34 * 35 * The mpage code never puts partial pages into a BIO (except for end-of-file). 36 * If a page does not map to a contiguous run of blocks then it simply falls 37 * back to block_read_full_page(). 38 * 39 * Why is this? If a page's completion depends on a number of different BIOs 40 * which can complete in any order (or at the same time) then determining the 41 * status of that page is hard. See end_buffer_async_read() for the details. 42 * There is no point in duplicating all that complexity. 43 */ 44 static void mpage_end_io(struct bio *bio, int err) 45 { 46 struct bio_vec *bv; 47 int i; 48 49 bio_for_each_segment_all(bv, bio, i) { 50 struct page *page = bv->bv_page; 51 page_endio(page, bio_data_dir(bio), err); 52 } 53 54 bio_put(bio); 55 } 56 57 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 58 { 59 bio->bi_end_io = mpage_end_io; 60 submit_bio(rw, bio); 61 return NULL; 62 } 63 64 static struct bio * 65 mpage_alloc(struct block_device *bdev, 66 sector_t first_sector, int nr_vecs, 67 gfp_t gfp_flags) 68 { 69 struct bio *bio; 70 71 bio = bio_alloc(gfp_flags, nr_vecs); 72 73 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 74 while (!bio && (nr_vecs /= 2)) 75 bio = bio_alloc(gfp_flags, nr_vecs); 76 } 77 78 if (bio) { 79 bio->bi_bdev = bdev; 80 bio->bi_iter.bi_sector = first_sector; 81 } 82 return bio; 83 } 84 85 /* 86 * support function for mpage_readpages. The fs supplied get_block might 87 * return an up to date buffer. This is used to map that buffer into 88 * the page, which allows readpage to avoid triggering a duplicate call 89 * to get_block. 90 * 91 * The idea is to avoid adding buffers to pages that don't already have 92 * them. So when the buffer is up to date and the page size == block size, 93 * this marks the page up to date instead of adding new buffers. 94 */ 95 static void 96 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 97 { 98 struct inode *inode = page->mapping->host; 99 struct buffer_head *page_bh, *head; 100 int block = 0; 101 102 if (!page_has_buffers(page)) { 103 /* 104 * don't make any buffers if there is only one buffer on 105 * the page and the page just needs to be set up to date 106 */ 107 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 108 buffer_uptodate(bh)) { 109 SetPageUptodate(page); 110 return; 111 } 112 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 113 } 114 head = page_buffers(page); 115 page_bh = head; 116 do { 117 if (block == page_block) { 118 page_bh->b_state = bh->b_state; 119 page_bh->b_bdev = bh->b_bdev; 120 page_bh->b_blocknr = bh->b_blocknr; 121 break; 122 } 123 page_bh = page_bh->b_this_page; 124 block++; 125 } while (page_bh != head); 126 } 127 128 /* 129 * This is the worker routine which does all the work of mapping the disk 130 * blocks and constructs largest possible bios, submits them for IO if the 131 * blocks are not contiguous on the disk. 132 * 133 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 134 * represent the validity of its disk mapping and to decide when to do the next 135 * get_block() call. 136 */ 137 static struct bio * 138 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 139 sector_t *last_block_in_bio, struct buffer_head *map_bh, 140 unsigned long *first_logical_block, get_block_t get_block) 141 { 142 struct inode *inode = page->mapping->host; 143 const unsigned blkbits = inode->i_blkbits; 144 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 145 const unsigned blocksize = 1 << blkbits; 146 sector_t block_in_file; 147 sector_t last_block; 148 sector_t last_block_in_file; 149 sector_t blocks[MAX_BUF_PER_PAGE]; 150 unsigned page_block; 151 unsigned first_hole = blocks_per_page; 152 struct block_device *bdev = NULL; 153 int length; 154 int fully_mapped = 1; 155 unsigned nblocks; 156 unsigned relative_block; 157 158 if (page_has_buffers(page)) 159 goto confused; 160 161 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 162 last_block = block_in_file + nr_pages * blocks_per_page; 163 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 164 if (last_block > last_block_in_file) 165 last_block = last_block_in_file; 166 page_block = 0; 167 168 /* 169 * Map blocks using the result from the previous get_blocks call first. 170 */ 171 nblocks = map_bh->b_size >> blkbits; 172 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 173 block_in_file < (*first_logical_block + nblocks)) { 174 unsigned map_offset = block_in_file - *first_logical_block; 175 unsigned last = nblocks - map_offset; 176 177 for (relative_block = 0; ; relative_block++) { 178 if (relative_block == last) { 179 clear_buffer_mapped(map_bh); 180 break; 181 } 182 if (page_block == blocks_per_page) 183 break; 184 blocks[page_block] = map_bh->b_blocknr + map_offset + 185 relative_block; 186 page_block++; 187 block_in_file++; 188 } 189 bdev = map_bh->b_bdev; 190 } 191 192 /* 193 * Then do more get_blocks calls until we are done with this page. 194 */ 195 map_bh->b_page = page; 196 while (page_block < blocks_per_page) { 197 map_bh->b_state = 0; 198 map_bh->b_size = 0; 199 200 if (block_in_file < last_block) { 201 map_bh->b_size = (last_block-block_in_file) << blkbits; 202 if (get_block(inode, block_in_file, map_bh, 0)) 203 goto confused; 204 *first_logical_block = block_in_file; 205 } 206 207 if (!buffer_mapped(map_bh)) { 208 fully_mapped = 0; 209 if (first_hole == blocks_per_page) 210 first_hole = page_block; 211 page_block++; 212 block_in_file++; 213 continue; 214 } 215 216 /* some filesystems will copy data into the page during 217 * the get_block call, in which case we don't want to 218 * read it again. map_buffer_to_page copies the data 219 * we just collected from get_block into the page's buffers 220 * so readpage doesn't have to repeat the get_block call 221 */ 222 if (buffer_uptodate(map_bh)) { 223 map_buffer_to_page(page, map_bh, page_block); 224 goto confused; 225 } 226 227 if (first_hole != blocks_per_page) 228 goto confused; /* hole -> non-hole */ 229 230 /* Contiguous blocks? */ 231 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 232 goto confused; 233 nblocks = map_bh->b_size >> blkbits; 234 for (relative_block = 0; ; relative_block++) { 235 if (relative_block == nblocks) { 236 clear_buffer_mapped(map_bh); 237 break; 238 } else if (page_block == blocks_per_page) 239 break; 240 blocks[page_block] = map_bh->b_blocknr+relative_block; 241 page_block++; 242 block_in_file++; 243 } 244 bdev = map_bh->b_bdev; 245 } 246 247 if (first_hole != blocks_per_page) { 248 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); 249 if (first_hole == 0) { 250 SetPageUptodate(page); 251 unlock_page(page); 252 goto out; 253 } 254 } else if (fully_mapped) { 255 SetPageMappedToDisk(page); 256 } 257 258 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 259 cleancache_get_page(page) == 0) { 260 SetPageUptodate(page); 261 goto confused; 262 } 263 264 /* 265 * This page will go to BIO. Do we need to send this BIO off first? 266 */ 267 if (bio && (*last_block_in_bio != blocks[0] - 1)) 268 bio = mpage_bio_submit(READ, bio); 269 270 alloc_new: 271 if (bio == NULL) { 272 if (first_hole == blocks_per_page) { 273 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 274 page)) 275 goto out; 276 } 277 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 278 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 279 GFP_KERNEL); 280 if (bio == NULL) 281 goto confused; 282 } 283 284 length = first_hole << blkbits; 285 if (bio_add_page(bio, page, length, 0) < length) { 286 bio = mpage_bio_submit(READ, bio); 287 goto alloc_new; 288 } 289 290 relative_block = block_in_file - *first_logical_block; 291 nblocks = map_bh->b_size >> blkbits; 292 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 293 (first_hole != blocks_per_page)) 294 bio = mpage_bio_submit(READ, bio); 295 else 296 *last_block_in_bio = blocks[blocks_per_page - 1]; 297 out: 298 return bio; 299 300 confused: 301 if (bio) 302 bio = mpage_bio_submit(READ, bio); 303 if (!PageUptodate(page)) 304 block_read_full_page(page, get_block); 305 else 306 unlock_page(page); 307 goto out; 308 } 309 310 /** 311 * mpage_readpages - populate an address space with some pages & start reads against them 312 * @mapping: the address_space 313 * @pages: The address of a list_head which contains the target pages. These 314 * pages have their ->index populated and are otherwise uninitialised. 315 * The page at @pages->prev has the lowest file offset, and reads should be 316 * issued in @pages->prev to @pages->next order. 317 * @nr_pages: The number of pages at *@pages 318 * @get_block: The filesystem's block mapper function. 319 * 320 * This function walks the pages and the blocks within each page, building and 321 * emitting large BIOs. 322 * 323 * If anything unusual happens, such as: 324 * 325 * - encountering a page which has buffers 326 * - encountering a page which has a non-hole after a hole 327 * - encountering a page with non-contiguous blocks 328 * 329 * then this code just gives up and calls the buffer_head-based read function. 330 * It does handle a page which has holes at the end - that is a common case: 331 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 332 * 333 * BH_Boundary explanation: 334 * 335 * There is a problem. The mpage read code assembles several pages, gets all 336 * their disk mappings, and then submits them all. That's fine, but obtaining 337 * the disk mappings may require I/O. Reads of indirect blocks, for example. 338 * 339 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 340 * submitted in the following order: 341 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 342 * 343 * because the indirect block has to be read to get the mappings of blocks 344 * 13,14,15,16. Obviously, this impacts performance. 345 * 346 * So what we do it to allow the filesystem's get_block() function to set 347 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 348 * after this one will require I/O against a block which is probably close to 349 * this one. So you should push what I/O you have currently accumulated. 350 * 351 * This all causes the disk requests to be issued in the correct order. 352 */ 353 int 354 mpage_readpages(struct address_space *mapping, struct list_head *pages, 355 unsigned nr_pages, get_block_t get_block) 356 { 357 struct bio *bio = NULL; 358 unsigned page_idx; 359 sector_t last_block_in_bio = 0; 360 struct buffer_head map_bh; 361 unsigned long first_logical_block = 0; 362 363 map_bh.b_state = 0; 364 map_bh.b_size = 0; 365 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 366 struct page *page = list_entry(pages->prev, struct page, lru); 367 368 prefetchw(&page->flags); 369 list_del(&page->lru); 370 if (!add_to_page_cache_lru(page, mapping, 371 page->index, GFP_KERNEL)) { 372 bio = do_mpage_readpage(bio, page, 373 nr_pages - page_idx, 374 &last_block_in_bio, &map_bh, 375 &first_logical_block, 376 get_block); 377 } 378 page_cache_release(page); 379 } 380 BUG_ON(!list_empty(pages)); 381 if (bio) 382 mpage_bio_submit(READ, bio); 383 return 0; 384 } 385 EXPORT_SYMBOL(mpage_readpages); 386 387 /* 388 * This isn't called much at all 389 */ 390 int mpage_readpage(struct page *page, get_block_t get_block) 391 { 392 struct bio *bio = NULL; 393 sector_t last_block_in_bio = 0; 394 struct buffer_head map_bh; 395 unsigned long first_logical_block = 0; 396 397 map_bh.b_state = 0; 398 map_bh.b_size = 0; 399 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 400 &map_bh, &first_logical_block, get_block); 401 if (bio) 402 mpage_bio_submit(READ, bio); 403 return 0; 404 } 405 EXPORT_SYMBOL(mpage_readpage); 406 407 /* 408 * Writing is not so simple. 409 * 410 * If the page has buffers then they will be used for obtaining the disk 411 * mapping. We only support pages which are fully mapped-and-dirty, with a 412 * special case for pages which are unmapped at the end: end-of-file. 413 * 414 * If the page has no buffers (preferred) then the page is mapped here. 415 * 416 * If all blocks are found to be contiguous then the page can go into the 417 * BIO. Otherwise fall back to the mapping's writepage(). 418 * 419 * FIXME: This code wants an estimate of how many pages are still to be 420 * written, so it can intelligently allocate a suitably-sized BIO. For now, 421 * just allocate full-size (16-page) BIOs. 422 */ 423 424 struct mpage_data { 425 struct bio *bio; 426 sector_t last_block_in_bio; 427 get_block_t *get_block; 428 unsigned use_writepage; 429 }; 430 431 /* 432 * We have our BIO, so we can now mark the buffers clean. Make 433 * sure to only clean buffers which we know we'll be writing. 434 */ 435 static void clean_buffers(struct page *page, unsigned first_unmapped) 436 { 437 unsigned buffer_counter = 0; 438 struct buffer_head *bh, *head; 439 if (!page_has_buffers(page)) 440 return; 441 head = page_buffers(page); 442 bh = head; 443 444 do { 445 if (buffer_counter++ == first_unmapped) 446 break; 447 clear_buffer_dirty(bh); 448 bh = bh->b_this_page; 449 } while (bh != head); 450 451 /* 452 * we cannot drop the bh if the page is not uptodate or a concurrent 453 * readpage would fail to serialize with the bh and it would read from 454 * disk before we reach the platter. 455 */ 456 if (buffer_heads_over_limit && PageUptodate(page)) 457 try_to_free_buffers(page); 458 } 459 460 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 461 void *data) 462 { 463 struct mpage_data *mpd = data; 464 struct bio *bio = mpd->bio; 465 struct address_space *mapping = page->mapping; 466 struct inode *inode = page->mapping->host; 467 const unsigned blkbits = inode->i_blkbits; 468 unsigned long end_index; 469 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 470 sector_t last_block; 471 sector_t block_in_file; 472 sector_t blocks[MAX_BUF_PER_PAGE]; 473 unsigned page_block; 474 unsigned first_unmapped = blocks_per_page; 475 struct block_device *bdev = NULL; 476 int boundary = 0; 477 sector_t boundary_block = 0; 478 struct block_device *boundary_bdev = NULL; 479 int length; 480 struct buffer_head map_bh; 481 loff_t i_size = i_size_read(inode); 482 int ret = 0; 483 484 if (page_has_buffers(page)) { 485 struct buffer_head *head = page_buffers(page); 486 struct buffer_head *bh = head; 487 488 /* If they're all mapped and dirty, do it */ 489 page_block = 0; 490 do { 491 BUG_ON(buffer_locked(bh)); 492 if (!buffer_mapped(bh)) { 493 /* 494 * unmapped dirty buffers are created by 495 * __set_page_dirty_buffers -> mmapped data 496 */ 497 if (buffer_dirty(bh)) 498 goto confused; 499 if (first_unmapped == blocks_per_page) 500 first_unmapped = page_block; 501 continue; 502 } 503 504 if (first_unmapped != blocks_per_page) 505 goto confused; /* hole -> non-hole */ 506 507 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 508 goto confused; 509 if (page_block) { 510 if (bh->b_blocknr != blocks[page_block-1] + 1) 511 goto confused; 512 } 513 blocks[page_block++] = bh->b_blocknr; 514 boundary = buffer_boundary(bh); 515 if (boundary) { 516 boundary_block = bh->b_blocknr; 517 boundary_bdev = bh->b_bdev; 518 } 519 bdev = bh->b_bdev; 520 } while ((bh = bh->b_this_page) != head); 521 522 if (first_unmapped) 523 goto page_is_mapped; 524 525 /* 526 * Page has buffers, but they are all unmapped. The page was 527 * created by pagein or read over a hole which was handled by 528 * block_read_full_page(). If this address_space is also 529 * using mpage_readpages then this can rarely happen. 530 */ 531 goto confused; 532 } 533 534 /* 535 * The page has no buffers: map it to disk 536 */ 537 BUG_ON(!PageUptodate(page)); 538 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 539 last_block = (i_size - 1) >> blkbits; 540 map_bh.b_page = page; 541 for (page_block = 0; page_block < blocks_per_page; ) { 542 543 map_bh.b_state = 0; 544 map_bh.b_size = 1 << blkbits; 545 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 546 goto confused; 547 if (buffer_new(&map_bh)) 548 unmap_underlying_metadata(map_bh.b_bdev, 549 map_bh.b_blocknr); 550 if (buffer_boundary(&map_bh)) { 551 boundary_block = map_bh.b_blocknr; 552 boundary_bdev = map_bh.b_bdev; 553 } 554 if (page_block) { 555 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 556 goto confused; 557 } 558 blocks[page_block++] = map_bh.b_blocknr; 559 boundary = buffer_boundary(&map_bh); 560 bdev = map_bh.b_bdev; 561 if (block_in_file == last_block) 562 break; 563 block_in_file++; 564 } 565 BUG_ON(page_block == 0); 566 567 first_unmapped = page_block; 568 569 page_is_mapped: 570 end_index = i_size >> PAGE_CACHE_SHIFT; 571 if (page->index >= end_index) { 572 /* 573 * The page straddles i_size. It must be zeroed out on each 574 * and every writepage invocation because it may be mmapped. 575 * "A file is mapped in multiples of the page size. For a file 576 * that is not a multiple of the page size, the remaining memory 577 * is zeroed when mapped, and writes to that region are not 578 * written out to the file." 579 */ 580 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 581 582 if (page->index > end_index || !offset) 583 goto confused; 584 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 585 } 586 587 /* 588 * This page will go to BIO. Do we need to send this BIO off first? 589 */ 590 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 591 bio = mpage_bio_submit(WRITE, bio); 592 593 alloc_new: 594 if (bio == NULL) { 595 if (first_unmapped == blocks_per_page) { 596 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 597 page, wbc)) { 598 clean_buffers(page, first_unmapped); 599 goto out; 600 } 601 } 602 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 603 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 604 if (bio == NULL) 605 goto confused; 606 } 607 608 /* 609 * Must try to add the page before marking the buffer clean or 610 * the confused fail path above (OOM) will be very confused when 611 * it finds all bh marked clean (i.e. it will not write anything) 612 */ 613 length = first_unmapped << blkbits; 614 if (bio_add_page(bio, page, length, 0) < length) { 615 bio = mpage_bio_submit(WRITE, bio); 616 goto alloc_new; 617 } 618 619 clean_buffers(page, first_unmapped); 620 621 BUG_ON(PageWriteback(page)); 622 set_page_writeback(page); 623 unlock_page(page); 624 if (boundary || (first_unmapped != blocks_per_page)) { 625 bio = mpage_bio_submit(WRITE, bio); 626 if (boundary_block) { 627 write_boundary_block(boundary_bdev, 628 boundary_block, 1 << blkbits); 629 } 630 } else { 631 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 632 } 633 goto out; 634 635 confused: 636 if (bio) 637 bio = mpage_bio_submit(WRITE, bio); 638 639 if (mpd->use_writepage) { 640 ret = mapping->a_ops->writepage(page, wbc); 641 } else { 642 ret = -EAGAIN; 643 goto out; 644 } 645 /* 646 * The caller has a ref on the inode, so *mapping is stable 647 */ 648 mapping_set_error(mapping, ret); 649 out: 650 mpd->bio = bio; 651 return ret; 652 } 653 654 /** 655 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 656 * @mapping: address space structure to write 657 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 658 * @get_block: the filesystem's block mapper function. 659 * If this is NULL then use a_ops->writepage. Otherwise, go 660 * direct-to-BIO. 661 * 662 * This is a library function, which implements the writepages() 663 * address_space_operation. 664 * 665 * If a page is already under I/O, generic_writepages() skips it, even 666 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 667 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 668 * and msync() need to guarantee that all the data which was dirty at the time 669 * the call was made get new I/O started against them. If wbc->sync_mode is 670 * WB_SYNC_ALL then we were called for data integrity and we must wait for 671 * existing IO to complete. 672 */ 673 int 674 mpage_writepages(struct address_space *mapping, 675 struct writeback_control *wbc, get_block_t get_block) 676 { 677 struct blk_plug plug; 678 int ret; 679 680 blk_start_plug(&plug); 681 682 if (!get_block) 683 ret = generic_writepages(mapping, wbc); 684 else { 685 struct mpage_data mpd = { 686 .bio = NULL, 687 .last_block_in_bio = 0, 688 .get_block = get_block, 689 .use_writepage = 1, 690 }; 691 692 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 693 if (mpd.bio) 694 mpage_bio_submit(WRITE, mpd.bio); 695 } 696 blk_finish_plug(&plug); 697 return ret; 698 } 699 EXPORT_SYMBOL(mpage_writepages); 700 701 int mpage_writepage(struct page *page, get_block_t get_block, 702 struct writeback_control *wbc) 703 { 704 struct mpage_data mpd = { 705 .bio = NULL, 706 .last_block_in_bio = 0, 707 .get_block = get_block, 708 .use_writepage = 0, 709 }; 710 int ret = __mpage_writepage(page, wbc, &mpd); 711 if (mpd.bio) 712 mpage_bio_submit(WRITE, mpd.bio); 713 return ret; 714 } 715 EXPORT_SYMBOL(mpage_writepage); 716