1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/mpage.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains functions related to preparing and submitting BIOs which contain 8 * multiple pagecache pages. 9 * 10 * 15May2002 Andrew Morton 11 * Initial version 12 * 27Jun2002 axboe@suse.de 13 * use bio_add_page() to build bio's just the right size 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/mm.h> 19 #include <linux/kdev_t.h> 20 #include <linux/gfp.h> 21 #include <linux/bio.h> 22 #include <linux/fs.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/highmem.h> 26 #include <linux/prefetch.h> 27 #include <linux/mpage.h> 28 #include <linux/mm_inline.h> 29 #include <linux/writeback.h> 30 #include <linux/backing-dev.h> 31 #include <linux/pagevec.h> 32 #include "internal.h" 33 34 /* 35 * I/O completion handler for multipage BIOs. 36 * 37 * The mpage code never puts partial pages into a BIO (except for end-of-file). 38 * If a page does not map to a contiguous run of blocks then it simply falls 39 * back to block_read_full_page(). 40 * 41 * Why is this? If a page's completion depends on a number of different BIOs 42 * which can complete in any order (or at the same time) then determining the 43 * status of that page is hard. See end_buffer_async_read() for the details. 44 * There is no point in duplicating all that complexity. 45 */ 46 static void mpage_end_io(struct bio *bio) 47 { 48 struct bio_vec *bv; 49 struct bvec_iter_all iter_all; 50 51 bio_for_each_segment_all(bv, bio, iter_all) { 52 struct page *page = bv->bv_page; 53 page_endio(page, bio_op(bio), 54 blk_status_to_errno(bio->bi_status)); 55 } 56 57 bio_put(bio); 58 } 59 60 static struct bio *mpage_bio_submit(struct bio *bio) 61 { 62 bio->bi_end_io = mpage_end_io; 63 guard_bio_eod(bio); 64 submit_bio(bio); 65 return NULL; 66 } 67 68 /* 69 * support function for mpage_readahead. The fs supplied get_block might 70 * return an up to date buffer. This is used to map that buffer into 71 * the page, which allows readpage to avoid triggering a duplicate call 72 * to get_block. 73 * 74 * The idea is to avoid adding buffers to pages that don't already have 75 * them. So when the buffer is up to date and the page size == block size, 76 * this marks the page up to date instead of adding new buffers. 77 */ 78 static void 79 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 80 { 81 struct inode *inode = page->mapping->host; 82 struct buffer_head *page_bh, *head; 83 int block = 0; 84 85 if (!page_has_buffers(page)) { 86 /* 87 * don't make any buffers if there is only one buffer on 88 * the page and the page just needs to be set up to date 89 */ 90 if (inode->i_blkbits == PAGE_SHIFT && 91 buffer_uptodate(bh)) { 92 SetPageUptodate(page); 93 return; 94 } 95 create_empty_buffers(page, i_blocksize(inode), 0); 96 } 97 head = page_buffers(page); 98 page_bh = head; 99 do { 100 if (block == page_block) { 101 page_bh->b_state = bh->b_state; 102 page_bh->b_bdev = bh->b_bdev; 103 page_bh->b_blocknr = bh->b_blocknr; 104 break; 105 } 106 page_bh = page_bh->b_this_page; 107 block++; 108 } while (page_bh != head); 109 } 110 111 struct mpage_readpage_args { 112 struct bio *bio; 113 struct page *page; 114 unsigned int nr_pages; 115 bool is_readahead; 116 sector_t last_block_in_bio; 117 struct buffer_head map_bh; 118 unsigned long first_logical_block; 119 get_block_t *get_block; 120 }; 121 122 /* 123 * This is the worker routine which does all the work of mapping the disk 124 * blocks and constructs largest possible bios, submits them for IO if the 125 * blocks are not contiguous on the disk. 126 * 127 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 128 * represent the validity of its disk mapping and to decide when to do the next 129 * get_block() call. 130 */ 131 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) 132 { 133 struct page *page = args->page; 134 struct inode *inode = page->mapping->host; 135 const unsigned blkbits = inode->i_blkbits; 136 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 137 const unsigned blocksize = 1 << blkbits; 138 struct buffer_head *map_bh = &args->map_bh; 139 sector_t block_in_file; 140 sector_t last_block; 141 sector_t last_block_in_file; 142 sector_t blocks[MAX_BUF_PER_PAGE]; 143 unsigned page_block; 144 unsigned first_hole = blocks_per_page; 145 struct block_device *bdev = NULL; 146 int length; 147 int fully_mapped = 1; 148 int op = REQ_OP_READ; 149 unsigned nblocks; 150 unsigned relative_block; 151 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 152 153 if (args->is_readahead) { 154 op |= REQ_RAHEAD; 155 gfp |= __GFP_NORETRY | __GFP_NOWARN; 156 } 157 158 if (page_has_buffers(page)) 159 goto confused; 160 161 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 162 last_block = block_in_file + args->nr_pages * blocks_per_page; 163 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 164 if (last_block > last_block_in_file) 165 last_block = last_block_in_file; 166 page_block = 0; 167 168 /* 169 * Map blocks using the result from the previous get_blocks call first. 170 */ 171 nblocks = map_bh->b_size >> blkbits; 172 if (buffer_mapped(map_bh) && 173 block_in_file > args->first_logical_block && 174 block_in_file < (args->first_logical_block + nblocks)) { 175 unsigned map_offset = block_in_file - args->first_logical_block; 176 unsigned last = nblocks - map_offset; 177 178 for (relative_block = 0; ; relative_block++) { 179 if (relative_block == last) { 180 clear_buffer_mapped(map_bh); 181 break; 182 } 183 if (page_block == blocks_per_page) 184 break; 185 blocks[page_block] = map_bh->b_blocknr + map_offset + 186 relative_block; 187 page_block++; 188 block_in_file++; 189 } 190 bdev = map_bh->b_bdev; 191 } 192 193 /* 194 * Then do more get_blocks calls until we are done with this page. 195 */ 196 map_bh->b_page = page; 197 while (page_block < blocks_per_page) { 198 map_bh->b_state = 0; 199 map_bh->b_size = 0; 200 201 if (block_in_file < last_block) { 202 map_bh->b_size = (last_block-block_in_file) << blkbits; 203 if (args->get_block(inode, block_in_file, map_bh, 0)) 204 goto confused; 205 args->first_logical_block = block_in_file; 206 } 207 208 if (!buffer_mapped(map_bh)) { 209 fully_mapped = 0; 210 if (first_hole == blocks_per_page) 211 first_hole = page_block; 212 page_block++; 213 block_in_file++; 214 continue; 215 } 216 217 /* some filesystems will copy data into the page during 218 * the get_block call, in which case we don't want to 219 * read it again. map_buffer_to_page copies the data 220 * we just collected from get_block into the page's buffers 221 * so readpage doesn't have to repeat the get_block call 222 */ 223 if (buffer_uptodate(map_bh)) { 224 map_buffer_to_page(page, map_bh, page_block); 225 goto confused; 226 } 227 228 if (first_hole != blocks_per_page) 229 goto confused; /* hole -> non-hole */ 230 231 /* Contiguous blocks? */ 232 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 233 goto confused; 234 nblocks = map_bh->b_size >> blkbits; 235 for (relative_block = 0; ; relative_block++) { 236 if (relative_block == nblocks) { 237 clear_buffer_mapped(map_bh); 238 break; 239 } else if (page_block == blocks_per_page) 240 break; 241 blocks[page_block] = map_bh->b_blocknr+relative_block; 242 page_block++; 243 block_in_file++; 244 } 245 bdev = map_bh->b_bdev; 246 } 247 248 if (first_hole != blocks_per_page) { 249 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 250 if (first_hole == 0) { 251 SetPageUptodate(page); 252 unlock_page(page); 253 goto out; 254 } 255 } else if (fully_mapped) { 256 SetPageMappedToDisk(page); 257 } 258 259 /* 260 * This page will go to BIO. Do we need to send this BIO off first? 261 */ 262 if (args->bio && (args->last_block_in_bio != blocks[0] - 1)) 263 args->bio = mpage_bio_submit(args->bio); 264 265 alloc_new: 266 if (args->bio == NULL) { 267 if (first_hole == blocks_per_page) { 268 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 269 page)) 270 goto out; 271 } 272 args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), op, 273 gfp); 274 if (args->bio == NULL) 275 goto confused; 276 args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9); 277 } 278 279 length = first_hole << blkbits; 280 if (bio_add_page(args->bio, page, length, 0) < length) { 281 args->bio = mpage_bio_submit(args->bio); 282 goto alloc_new; 283 } 284 285 relative_block = block_in_file - args->first_logical_block; 286 nblocks = map_bh->b_size >> blkbits; 287 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 288 (first_hole != blocks_per_page)) 289 args->bio = mpage_bio_submit(args->bio); 290 else 291 args->last_block_in_bio = blocks[blocks_per_page - 1]; 292 out: 293 return args->bio; 294 295 confused: 296 if (args->bio) 297 args->bio = mpage_bio_submit(args->bio); 298 if (!PageUptodate(page)) 299 block_read_full_page(page, args->get_block); 300 else 301 unlock_page(page); 302 goto out; 303 } 304 305 /** 306 * mpage_readahead - start reads against pages 307 * @rac: Describes which pages to read. 308 * @get_block: The filesystem's block mapper function. 309 * 310 * This function walks the pages and the blocks within each page, building and 311 * emitting large BIOs. 312 * 313 * If anything unusual happens, such as: 314 * 315 * - encountering a page which has buffers 316 * - encountering a page which has a non-hole after a hole 317 * - encountering a page with non-contiguous blocks 318 * 319 * then this code just gives up and calls the buffer_head-based read function. 320 * It does handle a page which has holes at the end - that is a common case: 321 * the end-of-file on blocksize < PAGE_SIZE setups. 322 * 323 * BH_Boundary explanation: 324 * 325 * There is a problem. The mpage read code assembles several pages, gets all 326 * their disk mappings, and then submits them all. That's fine, but obtaining 327 * the disk mappings may require I/O. Reads of indirect blocks, for example. 328 * 329 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 330 * submitted in the following order: 331 * 332 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 333 * 334 * because the indirect block has to be read to get the mappings of blocks 335 * 13,14,15,16. Obviously, this impacts performance. 336 * 337 * So what we do it to allow the filesystem's get_block() function to set 338 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 339 * after this one will require I/O against a block which is probably close to 340 * this one. So you should push what I/O you have currently accumulated. 341 * 342 * This all causes the disk requests to be issued in the correct order. 343 */ 344 void mpage_readahead(struct readahead_control *rac, get_block_t get_block) 345 { 346 struct page *page; 347 struct mpage_readpage_args args = { 348 .get_block = get_block, 349 .is_readahead = true, 350 }; 351 352 while ((page = readahead_page(rac))) { 353 prefetchw(&page->flags); 354 args.page = page; 355 args.nr_pages = readahead_count(rac); 356 args.bio = do_mpage_readpage(&args); 357 put_page(page); 358 } 359 if (args.bio) 360 mpage_bio_submit(args.bio); 361 } 362 EXPORT_SYMBOL(mpage_readahead); 363 364 /* 365 * This isn't called much at all 366 */ 367 int mpage_readpage(struct page *page, get_block_t get_block) 368 { 369 struct mpage_readpage_args args = { 370 .page = page, 371 .nr_pages = 1, 372 .get_block = get_block, 373 }; 374 375 args.bio = do_mpage_readpage(&args); 376 if (args.bio) 377 mpage_bio_submit(args.bio); 378 return 0; 379 } 380 EXPORT_SYMBOL(mpage_readpage); 381 382 /* 383 * Writing is not so simple. 384 * 385 * If the page has buffers then they will be used for obtaining the disk 386 * mapping. We only support pages which are fully mapped-and-dirty, with a 387 * special case for pages which are unmapped at the end: end-of-file. 388 * 389 * If the page has no buffers (preferred) then the page is mapped here. 390 * 391 * If all blocks are found to be contiguous then the page can go into the 392 * BIO. Otherwise fall back to the mapping's writepage(). 393 * 394 * FIXME: This code wants an estimate of how many pages are still to be 395 * written, so it can intelligently allocate a suitably-sized BIO. For now, 396 * just allocate full-size (16-page) BIOs. 397 */ 398 399 struct mpage_data { 400 struct bio *bio; 401 sector_t last_block_in_bio; 402 get_block_t *get_block; 403 unsigned use_writepage; 404 }; 405 406 /* 407 * We have our BIO, so we can now mark the buffers clean. Make 408 * sure to only clean buffers which we know we'll be writing. 409 */ 410 static void clean_buffers(struct page *page, unsigned first_unmapped) 411 { 412 unsigned buffer_counter = 0; 413 struct buffer_head *bh, *head; 414 if (!page_has_buffers(page)) 415 return; 416 head = page_buffers(page); 417 bh = head; 418 419 do { 420 if (buffer_counter++ == first_unmapped) 421 break; 422 clear_buffer_dirty(bh); 423 bh = bh->b_this_page; 424 } while (bh != head); 425 426 /* 427 * we cannot drop the bh if the page is not uptodate or a concurrent 428 * readpage would fail to serialize with the bh and it would read from 429 * disk before we reach the platter. 430 */ 431 if (buffer_heads_over_limit && PageUptodate(page)) 432 try_to_free_buffers(page); 433 } 434 435 /* 436 * For situations where we want to clean all buffers attached to a page. 437 * We don't need to calculate how many buffers are attached to the page, 438 * we just need to specify a number larger than the maximum number of buffers. 439 */ 440 void clean_page_buffers(struct page *page) 441 { 442 clean_buffers(page, ~0U); 443 } 444 445 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 446 void *data) 447 { 448 struct mpage_data *mpd = data; 449 struct bio *bio = mpd->bio; 450 struct address_space *mapping = page->mapping; 451 struct inode *inode = page->mapping->host; 452 const unsigned blkbits = inode->i_blkbits; 453 unsigned long end_index; 454 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 455 sector_t last_block; 456 sector_t block_in_file; 457 sector_t blocks[MAX_BUF_PER_PAGE]; 458 unsigned page_block; 459 unsigned first_unmapped = blocks_per_page; 460 struct block_device *bdev = NULL; 461 int boundary = 0; 462 sector_t boundary_block = 0; 463 struct block_device *boundary_bdev = NULL; 464 int length; 465 struct buffer_head map_bh; 466 loff_t i_size = i_size_read(inode); 467 int ret = 0; 468 469 if (page_has_buffers(page)) { 470 struct buffer_head *head = page_buffers(page); 471 struct buffer_head *bh = head; 472 473 /* If they're all mapped and dirty, do it */ 474 page_block = 0; 475 do { 476 BUG_ON(buffer_locked(bh)); 477 if (!buffer_mapped(bh)) { 478 /* 479 * unmapped dirty buffers are created by 480 * block_dirty_folio -> mmapped data 481 */ 482 if (buffer_dirty(bh)) 483 goto confused; 484 if (first_unmapped == blocks_per_page) 485 first_unmapped = page_block; 486 continue; 487 } 488 489 if (first_unmapped != blocks_per_page) 490 goto confused; /* hole -> non-hole */ 491 492 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 493 goto confused; 494 if (page_block) { 495 if (bh->b_blocknr != blocks[page_block-1] + 1) 496 goto confused; 497 } 498 blocks[page_block++] = bh->b_blocknr; 499 boundary = buffer_boundary(bh); 500 if (boundary) { 501 boundary_block = bh->b_blocknr; 502 boundary_bdev = bh->b_bdev; 503 } 504 bdev = bh->b_bdev; 505 } while ((bh = bh->b_this_page) != head); 506 507 if (first_unmapped) 508 goto page_is_mapped; 509 510 /* 511 * Page has buffers, but they are all unmapped. The page was 512 * created by pagein or read over a hole which was handled by 513 * block_read_full_page(). If this address_space is also 514 * using mpage_readahead then this can rarely happen. 515 */ 516 goto confused; 517 } 518 519 /* 520 * The page has no buffers: map it to disk 521 */ 522 BUG_ON(!PageUptodate(page)); 523 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 524 last_block = (i_size - 1) >> blkbits; 525 map_bh.b_page = page; 526 for (page_block = 0; page_block < blocks_per_page; ) { 527 528 map_bh.b_state = 0; 529 map_bh.b_size = 1 << blkbits; 530 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 531 goto confused; 532 if (buffer_new(&map_bh)) 533 clean_bdev_bh_alias(&map_bh); 534 if (buffer_boundary(&map_bh)) { 535 boundary_block = map_bh.b_blocknr; 536 boundary_bdev = map_bh.b_bdev; 537 } 538 if (page_block) { 539 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 540 goto confused; 541 } 542 blocks[page_block++] = map_bh.b_blocknr; 543 boundary = buffer_boundary(&map_bh); 544 bdev = map_bh.b_bdev; 545 if (block_in_file == last_block) 546 break; 547 block_in_file++; 548 } 549 BUG_ON(page_block == 0); 550 551 first_unmapped = page_block; 552 553 page_is_mapped: 554 end_index = i_size >> PAGE_SHIFT; 555 if (page->index >= end_index) { 556 /* 557 * The page straddles i_size. It must be zeroed out on each 558 * and every writepage invocation because it may be mmapped. 559 * "A file is mapped in multiples of the page size. For a file 560 * that is not a multiple of the page size, the remaining memory 561 * is zeroed when mapped, and writes to that region are not 562 * written out to the file." 563 */ 564 unsigned offset = i_size & (PAGE_SIZE - 1); 565 566 if (page->index > end_index || !offset) 567 goto confused; 568 zero_user_segment(page, offset, PAGE_SIZE); 569 } 570 571 /* 572 * This page will go to BIO. Do we need to send this BIO off first? 573 */ 574 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 575 bio = mpage_bio_submit(bio); 576 577 alloc_new: 578 if (bio == NULL) { 579 if (first_unmapped == blocks_per_page) { 580 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 581 page, wbc)) 582 goto out; 583 } 584 bio = bio_alloc(bdev, BIO_MAX_VECS, 585 REQ_OP_WRITE | wbc_to_write_flags(wbc), 586 GFP_NOFS); 587 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9); 588 wbc_init_bio(wbc, bio); 589 } 590 591 /* 592 * Must try to add the page before marking the buffer clean or 593 * the confused fail path above (OOM) will be very confused when 594 * it finds all bh marked clean (i.e. it will not write anything) 595 */ 596 wbc_account_cgroup_owner(wbc, page, PAGE_SIZE); 597 length = first_unmapped << blkbits; 598 if (bio_add_page(bio, page, length, 0) < length) { 599 bio = mpage_bio_submit(bio); 600 goto alloc_new; 601 } 602 603 clean_buffers(page, first_unmapped); 604 605 BUG_ON(PageWriteback(page)); 606 set_page_writeback(page); 607 unlock_page(page); 608 if (boundary || (first_unmapped != blocks_per_page)) { 609 bio = mpage_bio_submit(bio); 610 if (boundary_block) { 611 write_boundary_block(boundary_bdev, 612 boundary_block, 1 << blkbits); 613 } 614 } else { 615 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 616 } 617 goto out; 618 619 confused: 620 if (bio) 621 bio = mpage_bio_submit(bio); 622 623 if (mpd->use_writepage) { 624 ret = mapping->a_ops->writepage(page, wbc); 625 } else { 626 ret = -EAGAIN; 627 goto out; 628 } 629 /* 630 * The caller has a ref on the inode, so *mapping is stable 631 */ 632 mapping_set_error(mapping, ret); 633 out: 634 mpd->bio = bio; 635 return ret; 636 } 637 638 /** 639 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 640 * @mapping: address space structure to write 641 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 642 * @get_block: the filesystem's block mapper function. 643 * If this is NULL then use a_ops->writepage. Otherwise, go 644 * direct-to-BIO. 645 * 646 * This is a library function, which implements the writepages() 647 * address_space_operation. 648 * 649 * If a page is already under I/O, generic_writepages() skips it, even 650 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 651 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 652 * and msync() need to guarantee that all the data which was dirty at the time 653 * the call was made get new I/O started against them. If wbc->sync_mode is 654 * WB_SYNC_ALL then we were called for data integrity and we must wait for 655 * existing IO to complete. 656 */ 657 int 658 mpage_writepages(struct address_space *mapping, 659 struct writeback_control *wbc, get_block_t get_block) 660 { 661 struct blk_plug plug; 662 int ret; 663 664 blk_start_plug(&plug); 665 666 if (!get_block) 667 ret = generic_writepages(mapping, wbc); 668 else { 669 struct mpage_data mpd = { 670 .bio = NULL, 671 .last_block_in_bio = 0, 672 .get_block = get_block, 673 .use_writepage = 1, 674 }; 675 676 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 677 if (mpd.bio) 678 mpage_bio_submit(mpd.bio); 679 } 680 blk_finish_plug(&plug); 681 return ret; 682 } 683 EXPORT_SYMBOL(mpage_writepages); 684 685 int mpage_writepage(struct page *page, get_block_t get_block, 686 struct writeback_control *wbc) 687 { 688 struct mpage_data mpd = { 689 .bio = NULL, 690 .last_block_in_bio = 0, 691 .get_block = get_block, 692 .use_writepage = 0, 693 }; 694 int ret = __mpage_writepage(page, wbc, &mpd); 695 if (mpd.bio) 696 mpage_bio_submit(mpd.bio); 697 return ret; 698 } 699 EXPORT_SYMBOL(mpage_writepage); 700