xref: /linux/fs/mpage.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_folio().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_read_end_io(struct bio *bio)
47 {
48 	struct folio_iter fi;
49 	int err = blk_status_to_errno(bio->bi_status);
50 
51 	bio_for_each_folio_all(fi, bio) {
52 		if (err)
53 			folio_set_error(fi.folio);
54 		else
55 			folio_mark_uptodate(fi.folio);
56 		folio_unlock(fi.folio);
57 	}
58 
59 	bio_put(bio);
60 }
61 
62 static void mpage_write_end_io(struct bio *bio)
63 {
64 	struct folio_iter fi;
65 	int err = blk_status_to_errno(bio->bi_status);
66 
67 	bio_for_each_folio_all(fi, bio) {
68 		if (err) {
69 			folio_set_error(fi.folio);
70 			mapping_set_error(fi.folio->mapping, err);
71 		}
72 		folio_end_writeback(fi.folio);
73 	}
74 
75 	bio_put(bio);
76 }
77 
78 static struct bio *mpage_bio_submit_read(struct bio *bio)
79 {
80 	bio->bi_end_io = mpage_read_end_io;
81 	guard_bio_eod(bio);
82 	submit_bio(bio);
83 	return NULL;
84 }
85 
86 static struct bio *mpage_bio_submit_write(struct bio *bio)
87 {
88 	bio->bi_end_io = mpage_write_end_io;
89 	guard_bio_eod(bio);
90 	submit_bio(bio);
91 	return NULL;
92 }
93 
94 /*
95  * support function for mpage_readahead.  The fs supplied get_block might
96  * return an up to date buffer.  This is used to map that buffer into
97  * the page, which allows read_folio to avoid triggering a duplicate call
98  * to get_block.
99  *
100  * The idea is to avoid adding buffers to pages that don't already have
101  * them.  So when the buffer is up to date and the page size == block size,
102  * this marks the page up to date instead of adding new buffers.
103  */
104 static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
105 		int page_block)
106 {
107 	struct inode *inode = folio->mapping->host;
108 	struct buffer_head *page_bh, *head;
109 	int block = 0;
110 
111 	head = folio_buffers(folio);
112 	if (!head) {
113 		/*
114 		 * don't make any buffers if there is only one buffer on
115 		 * the folio and the folio just needs to be set up to date
116 		 */
117 		if (inode->i_blkbits == PAGE_SHIFT &&
118 		    buffer_uptodate(bh)) {
119 			folio_mark_uptodate(folio);
120 			return;
121 		}
122 		head = create_empty_buffers(folio, i_blocksize(inode), 0);
123 	}
124 
125 	page_bh = head;
126 	do {
127 		if (block == page_block) {
128 			page_bh->b_state = bh->b_state;
129 			page_bh->b_bdev = bh->b_bdev;
130 			page_bh->b_blocknr = bh->b_blocknr;
131 			break;
132 		}
133 		page_bh = page_bh->b_this_page;
134 		block++;
135 	} while (page_bh != head);
136 }
137 
138 struct mpage_readpage_args {
139 	struct bio *bio;
140 	struct folio *folio;
141 	unsigned int nr_pages;
142 	bool is_readahead;
143 	sector_t last_block_in_bio;
144 	struct buffer_head map_bh;
145 	unsigned long first_logical_block;
146 	get_block_t *get_block;
147 };
148 
149 /*
150  * This is the worker routine which does all the work of mapping the disk
151  * blocks and constructs largest possible bios, submits them for IO if the
152  * blocks are not contiguous on the disk.
153  *
154  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
155  * represent the validity of its disk mapping and to decide when to do the next
156  * get_block() call.
157  */
158 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
159 {
160 	struct folio *folio = args->folio;
161 	struct inode *inode = folio->mapping->host;
162 	const unsigned blkbits = inode->i_blkbits;
163 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
164 	const unsigned blocksize = 1 << blkbits;
165 	struct buffer_head *map_bh = &args->map_bh;
166 	sector_t block_in_file;
167 	sector_t last_block;
168 	sector_t last_block_in_file;
169 	sector_t blocks[MAX_BUF_PER_PAGE];
170 	unsigned page_block;
171 	unsigned first_hole = blocks_per_page;
172 	struct block_device *bdev = NULL;
173 	int length;
174 	int fully_mapped = 1;
175 	blk_opf_t opf = REQ_OP_READ;
176 	unsigned nblocks;
177 	unsigned relative_block;
178 	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
179 
180 	/* MAX_BUF_PER_PAGE, for example */
181 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
182 
183 	if (args->is_readahead) {
184 		opf |= REQ_RAHEAD;
185 		gfp |= __GFP_NORETRY | __GFP_NOWARN;
186 	}
187 
188 	if (folio_buffers(folio))
189 		goto confused;
190 
191 	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
192 	last_block = block_in_file + args->nr_pages * blocks_per_page;
193 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
194 	if (last_block > last_block_in_file)
195 		last_block = last_block_in_file;
196 	page_block = 0;
197 
198 	/*
199 	 * Map blocks using the result from the previous get_blocks call first.
200 	 */
201 	nblocks = map_bh->b_size >> blkbits;
202 	if (buffer_mapped(map_bh) &&
203 			block_in_file > args->first_logical_block &&
204 			block_in_file < (args->first_logical_block + nblocks)) {
205 		unsigned map_offset = block_in_file - args->first_logical_block;
206 		unsigned last = nblocks - map_offset;
207 
208 		for (relative_block = 0; ; relative_block++) {
209 			if (relative_block == last) {
210 				clear_buffer_mapped(map_bh);
211 				break;
212 			}
213 			if (page_block == blocks_per_page)
214 				break;
215 			blocks[page_block] = map_bh->b_blocknr + map_offset +
216 						relative_block;
217 			page_block++;
218 			block_in_file++;
219 		}
220 		bdev = map_bh->b_bdev;
221 	}
222 
223 	/*
224 	 * Then do more get_blocks calls until we are done with this folio.
225 	 */
226 	map_bh->b_folio = folio;
227 	while (page_block < blocks_per_page) {
228 		map_bh->b_state = 0;
229 		map_bh->b_size = 0;
230 
231 		if (block_in_file < last_block) {
232 			map_bh->b_size = (last_block-block_in_file) << blkbits;
233 			if (args->get_block(inode, block_in_file, map_bh, 0))
234 				goto confused;
235 			args->first_logical_block = block_in_file;
236 		}
237 
238 		if (!buffer_mapped(map_bh)) {
239 			fully_mapped = 0;
240 			if (first_hole == blocks_per_page)
241 				first_hole = page_block;
242 			page_block++;
243 			block_in_file++;
244 			continue;
245 		}
246 
247 		/* some filesystems will copy data into the page during
248 		 * the get_block call, in which case we don't want to
249 		 * read it again.  map_buffer_to_folio copies the data
250 		 * we just collected from get_block into the folio's buffers
251 		 * so read_folio doesn't have to repeat the get_block call
252 		 */
253 		if (buffer_uptodate(map_bh)) {
254 			map_buffer_to_folio(folio, map_bh, page_block);
255 			goto confused;
256 		}
257 
258 		if (first_hole != blocks_per_page)
259 			goto confused;		/* hole -> non-hole */
260 
261 		/* Contiguous blocks? */
262 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
263 			goto confused;
264 		nblocks = map_bh->b_size >> blkbits;
265 		for (relative_block = 0; ; relative_block++) {
266 			if (relative_block == nblocks) {
267 				clear_buffer_mapped(map_bh);
268 				break;
269 			} else if (page_block == blocks_per_page)
270 				break;
271 			blocks[page_block] = map_bh->b_blocknr+relative_block;
272 			page_block++;
273 			block_in_file++;
274 		}
275 		bdev = map_bh->b_bdev;
276 	}
277 
278 	if (first_hole != blocks_per_page) {
279 		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
280 		if (first_hole == 0) {
281 			folio_mark_uptodate(folio);
282 			folio_unlock(folio);
283 			goto out;
284 		}
285 	} else if (fully_mapped) {
286 		folio_set_mappedtodisk(folio);
287 	}
288 
289 	/*
290 	 * This folio will go to BIO.  Do we need to send this BIO off first?
291 	 */
292 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
293 		args->bio = mpage_bio_submit_read(args->bio);
294 
295 alloc_new:
296 	if (args->bio == NULL) {
297 		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
298 				      gfp);
299 		if (args->bio == NULL)
300 			goto confused;
301 		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
302 	}
303 
304 	length = first_hole << blkbits;
305 	if (!bio_add_folio(args->bio, folio, length, 0)) {
306 		args->bio = mpage_bio_submit_read(args->bio);
307 		goto alloc_new;
308 	}
309 
310 	relative_block = block_in_file - args->first_logical_block;
311 	nblocks = map_bh->b_size >> blkbits;
312 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
313 	    (first_hole != blocks_per_page))
314 		args->bio = mpage_bio_submit_read(args->bio);
315 	else
316 		args->last_block_in_bio = blocks[blocks_per_page - 1];
317 out:
318 	return args->bio;
319 
320 confused:
321 	if (args->bio)
322 		args->bio = mpage_bio_submit_read(args->bio);
323 	if (!folio_test_uptodate(folio))
324 		block_read_full_folio(folio, args->get_block);
325 	else
326 		folio_unlock(folio);
327 	goto out;
328 }
329 
330 /**
331  * mpage_readahead - start reads against pages
332  * @rac: Describes which pages to read.
333  * @get_block: The filesystem's block mapper function.
334  *
335  * This function walks the pages and the blocks within each page, building and
336  * emitting large BIOs.
337  *
338  * If anything unusual happens, such as:
339  *
340  * - encountering a page which has buffers
341  * - encountering a page which has a non-hole after a hole
342  * - encountering a page with non-contiguous blocks
343  *
344  * then this code just gives up and calls the buffer_head-based read function.
345  * It does handle a page which has holes at the end - that is a common case:
346  * the end-of-file on blocksize < PAGE_SIZE setups.
347  *
348  * BH_Boundary explanation:
349  *
350  * There is a problem.  The mpage read code assembles several pages, gets all
351  * their disk mappings, and then submits them all.  That's fine, but obtaining
352  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
353  *
354  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
355  * submitted in the following order:
356  *
357  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
358  *
359  * because the indirect block has to be read to get the mappings of blocks
360  * 13,14,15,16.  Obviously, this impacts performance.
361  *
362  * So what we do it to allow the filesystem's get_block() function to set
363  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
364  * after this one will require I/O against a block which is probably close to
365  * this one.  So you should push what I/O you have currently accumulated.
366  *
367  * This all causes the disk requests to be issued in the correct order.
368  */
369 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
370 {
371 	struct folio *folio;
372 	struct mpage_readpage_args args = {
373 		.get_block = get_block,
374 		.is_readahead = true,
375 	};
376 
377 	while ((folio = readahead_folio(rac))) {
378 		prefetchw(&folio->flags);
379 		args.folio = folio;
380 		args.nr_pages = readahead_count(rac);
381 		args.bio = do_mpage_readpage(&args);
382 	}
383 	if (args.bio)
384 		mpage_bio_submit_read(args.bio);
385 }
386 EXPORT_SYMBOL(mpage_readahead);
387 
388 /*
389  * This isn't called much at all
390  */
391 int mpage_read_folio(struct folio *folio, get_block_t get_block)
392 {
393 	struct mpage_readpage_args args = {
394 		.folio = folio,
395 		.nr_pages = 1,
396 		.get_block = get_block,
397 	};
398 
399 	args.bio = do_mpage_readpage(&args);
400 	if (args.bio)
401 		mpage_bio_submit_read(args.bio);
402 	return 0;
403 }
404 EXPORT_SYMBOL(mpage_read_folio);
405 
406 /*
407  * Writing is not so simple.
408  *
409  * If the page has buffers then they will be used for obtaining the disk
410  * mapping.  We only support pages which are fully mapped-and-dirty, with a
411  * special case for pages which are unmapped at the end: end-of-file.
412  *
413  * If the page has no buffers (preferred) then the page is mapped here.
414  *
415  * If all blocks are found to be contiguous then the page can go into the
416  * BIO.  Otherwise fall back to the mapping's writepage().
417  *
418  * FIXME: This code wants an estimate of how many pages are still to be
419  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
420  * just allocate full-size (16-page) BIOs.
421  */
422 
423 struct mpage_data {
424 	struct bio *bio;
425 	sector_t last_block_in_bio;
426 	get_block_t *get_block;
427 };
428 
429 /*
430  * We have our BIO, so we can now mark the buffers clean.  Make
431  * sure to only clean buffers which we know we'll be writing.
432  */
433 static void clean_buffers(struct page *page, unsigned first_unmapped)
434 {
435 	unsigned buffer_counter = 0;
436 	struct buffer_head *bh, *head;
437 	if (!page_has_buffers(page))
438 		return;
439 	head = page_buffers(page);
440 	bh = head;
441 
442 	do {
443 		if (buffer_counter++ == first_unmapped)
444 			break;
445 		clear_buffer_dirty(bh);
446 		bh = bh->b_this_page;
447 	} while (bh != head);
448 
449 	/*
450 	 * we cannot drop the bh if the page is not uptodate or a concurrent
451 	 * read_folio would fail to serialize with the bh and it would read from
452 	 * disk before we reach the platter.
453 	 */
454 	if (buffer_heads_over_limit && PageUptodate(page))
455 		try_to_free_buffers(page_folio(page));
456 }
457 
458 /*
459  * For situations where we want to clean all buffers attached to a page.
460  * We don't need to calculate how many buffers are attached to the page,
461  * we just need to specify a number larger than the maximum number of buffers.
462  */
463 void clean_page_buffers(struct page *page)
464 {
465 	clean_buffers(page, ~0U);
466 }
467 
468 static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
469 		      void *data)
470 {
471 	struct mpage_data *mpd = data;
472 	struct bio *bio = mpd->bio;
473 	struct address_space *mapping = folio->mapping;
474 	struct inode *inode = mapping->host;
475 	const unsigned blkbits = inode->i_blkbits;
476 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
477 	sector_t last_block;
478 	sector_t block_in_file;
479 	sector_t blocks[MAX_BUF_PER_PAGE];
480 	unsigned page_block;
481 	unsigned first_unmapped = blocks_per_page;
482 	struct block_device *bdev = NULL;
483 	int boundary = 0;
484 	sector_t boundary_block = 0;
485 	struct block_device *boundary_bdev = NULL;
486 	size_t length;
487 	struct buffer_head map_bh;
488 	loff_t i_size = i_size_read(inode);
489 	int ret = 0;
490 	struct buffer_head *head = folio_buffers(folio);
491 
492 	if (head) {
493 		struct buffer_head *bh = head;
494 
495 		/* If they're all mapped and dirty, do it */
496 		page_block = 0;
497 		do {
498 			BUG_ON(buffer_locked(bh));
499 			if (!buffer_mapped(bh)) {
500 				/*
501 				 * unmapped dirty buffers are created by
502 				 * block_dirty_folio -> mmapped data
503 				 */
504 				if (buffer_dirty(bh))
505 					goto confused;
506 				if (first_unmapped == blocks_per_page)
507 					first_unmapped = page_block;
508 				continue;
509 			}
510 
511 			if (first_unmapped != blocks_per_page)
512 				goto confused;	/* hole -> non-hole */
513 
514 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
515 				goto confused;
516 			if (page_block) {
517 				if (bh->b_blocknr != blocks[page_block-1] + 1)
518 					goto confused;
519 			}
520 			blocks[page_block++] = bh->b_blocknr;
521 			boundary = buffer_boundary(bh);
522 			if (boundary) {
523 				boundary_block = bh->b_blocknr;
524 				boundary_bdev = bh->b_bdev;
525 			}
526 			bdev = bh->b_bdev;
527 		} while ((bh = bh->b_this_page) != head);
528 
529 		if (first_unmapped)
530 			goto page_is_mapped;
531 
532 		/*
533 		 * Page has buffers, but they are all unmapped. The page was
534 		 * created by pagein or read over a hole which was handled by
535 		 * block_read_full_folio().  If this address_space is also
536 		 * using mpage_readahead then this can rarely happen.
537 		 */
538 		goto confused;
539 	}
540 
541 	/*
542 	 * The page has no buffers: map it to disk
543 	 */
544 	BUG_ON(!folio_test_uptodate(folio));
545 	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
546 	/*
547 	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
548 	 * space.
549 	 */
550 	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
551 		goto page_is_mapped;
552 	last_block = (i_size - 1) >> blkbits;
553 	map_bh.b_folio = folio;
554 	for (page_block = 0; page_block < blocks_per_page; ) {
555 
556 		map_bh.b_state = 0;
557 		map_bh.b_size = 1 << blkbits;
558 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
559 			goto confused;
560 		if (!buffer_mapped(&map_bh))
561 			goto confused;
562 		if (buffer_new(&map_bh))
563 			clean_bdev_bh_alias(&map_bh);
564 		if (buffer_boundary(&map_bh)) {
565 			boundary_block = map_bh.b_blocknr;
566 			boundary_bdev = map_bh.b_bdev;
567 		}
568 		if (page_block) {
569 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
570 				goto confused;
571 		}
572 		blocks[page_block++] = map_bh.b_blocknr;
573 		boundary = buffer_boundary(&map_bh);
574 		bdev = map_bh.b_bdev;
575 		if (block_in_file == last_block)
576 			break;
577 		block_in_file++;
578 	}
579 	BUG_ON(page_block == 0);
580 
581 	first_unmapped = page_block;
582 
583 page_is_mapped:
584 	/* Don't bother writing beyond EOF, truncate will discard the folio */
585 	if (folio_pos(folio) >= i_size)
586 		goto confused;
587 	length = folio_size(folio);
588 	if (folio_pos(folio) + length > i_size) {
589 		/*
590 		 * The page straddles i_size.  It must be zeroed out on each
591 		 * and every writepage invocation because it may be mmapped.
592 		 * "A file is mapped in multiples of the page size.  For a file
593 		 * that is not a multiple of the page size, the remaining memory
594 		 * is zeroed when mapped, and writes to that region are not
595 		 * written out to the file."
596 		 */
597 		length = i_size - folio_pos(folio);
598 		folio_zero_segment(folio, length, folio_size(folio));
599 	}
600 
601 	/*
602 	 * This page will go to BIO.  Do we need to send this BIO off first?
603 	 */
604 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
605 		bio = mpage_bio_submit_write(bio);
606 
607 alloc_new:
608 	if (bio == NULL) {
609 		bio = bio_alloc(bdev, BIO_MAX_VECS,
610 				REQ_OP_WRITE | wbc_to_write_flags(wbc),
611 				GFP_NOFS);
612 		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
613 		wbc_init_bio(wbc, bio);
614 	}
615 
616 	/*
617 	 * Must try to add the page before marking the buffer clean or
618 	 * the confused fail path above (OOM) will be very confused when
619 	 * it finds all bh marked clean (i.e. it will not write anything)
620 	 */
621 	wbc_account_cgroup_owner(wbc, &folio->page, folio_size(folio));
622 	length = first_unmapped << blkbits;
623 	if (!bio_add_folio(bio, folio, length, 0)) {
624 		bio = mpage_bio_submit_write(bio);
625 		goto alloc_new;
626 	}
627 
628 	clean_buffers(&folio->page, first_unmapped);
629 
630 	BUG_ON(folio_test_writeback(folio));
631 	folio_start_writeback(folio);
632 	folio_unlock(folio);
633 	if (boundary || (first_unmapped != blocks_per_page)) {
634 		bio = mpage_bio_submit_write(bio);
635 		if (boundary_block) {
636 			write_boundary_block(boundary_bdev,
637 					boundary_block, 1 << blkbits);
638 		}
639 	} else {
640 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
641 	}
642 	goto out;
643 
644 confused:
645 	if (bio)
646 		bio = mpage_bio_submit_write(bio);
647 
648 	/*
649 	 * The caller has a ref on the inode, so *mapping is stable
650 	 */
651 	ret = block_write_full_page(&folio->page, mpd->get_block, wbc);
652 	mapping_set_error(mapping, ret);
653 out:
654 	mpd->bio = bio;
655 	return ret;
656 }
657 
658 /**
659  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
660  * @mapping: address space structure to write
661  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
662  * @get_block: the filesystem's block mapper function.
663  *
664  * This is a library function, which implements the writepages()
665  * address_space_operation.
666  */
667 int
668 mpage_writepages(struct address_space *mapping,
669 		struct writeback_control *wbc, get_block_t get_block)
670 {
671 	struct mpage_data mpd = {
672 		.get_block	= get_block,
673 	};
674 	struct blk_plug plug;
675 	int ret;
676 
677 	blk_start_plug(&plug);
678 	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
679 	if (mpd.bio)
680 		mpage_bio_submit_write(mpd.bio);
681 	blk_finish_plug(&plug);
682 	return ret;
683 }
684 EXPORT_SYMBOL(mpage_writepages);
685