xref: /linux/fs/mpage.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48 	struct bio_vec *bv;
49 	int i;
50 
51 	bio_for_each_segment_all(bv, bio, i) {
52 		struct page *page = bv->bv_page;
53 		page_endio(page, bio_data_dir(bio), bio->bi_error);
54 	}
55 
56 	bio_put(bio);
57 }
58 
59 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
60 {
61 	bio->bi_end_io = mpage_end_io;
62 	guard_bio_eod(rw, bio);
63 	submit_bio(rw, bio);
64 	return NULL;
65 }
66 
67 static struct bio *
68 mpage_alloc(struct block_device *bdev,
69 		sector_t first_sector, int nr_vecs,
70 		gfp_t gfp_flags)
71 {
72 	struct bio *bio;
73 
74 	bio = bio_alloc(gfp_flags, nr_vecs);
75 
76 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
77 		while (!bio && (nr_vecs /= 2))
78 			bio = bio_alloc(gfp_flags, nr_vecs);
79 	}
80 
81 	if (bio) {
82 		bio->bi_bdev = bdev;
83 		bio->bi_iter.bi_sector = first_sector;
84 	}
85 	return bio;
86 }
87 
88 /*
89  * support function for mpage_readpages.  The fs supplied get_block might
90  * return an up to date buffer.  This is used to map that buffer into
91  * the page, which allows readpage to avoid triggering a duplicate call
92  * to get_block.
93  *
94  * The idea is to avoid adding buffers to pages that don't already have
95  * them.  So when the buffer is up to date and the page size == block size,
96  * this marks the page up to date instead of adding new buffers.
97  */
98 static void
99 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
100 {
101 	struct inode *inode = page->mapping->host;
102 	struct buffer_head *page_bh, *head;
103 	int block = 0;
104 
105 	if (!page_has_buffers(page)) {
106 		/*
107 		 * don't make any buffers if there is only one buffer on
108 		 * the page and the page just needs to be set up to date
109 		 */
110 		if (inode->i_blkbits == PAGE_SHIFT &&
111 		    buffer_uptodate(bh)) {
112 			SetPageUptodate(page);
113 			return;
114 		}
115 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
116 	}
117 	head = page_buffers(page);
118 	page_bh = head;
119 	do {
120 		if (block == page_block) {
121 			page_bh->b_state = bh->b_state;
122 			page_bh->b_bdev = bh->b_bdev;
123 			page_bh->b_blocknr = bh->b_blocknr;
124 			break;
125 		}
126 		page_bh = page_bh->b_this_page;
127 		block++;
128 	} while (page_bh != head);
129 }
130 
131 /*
132  * This is the worker routine which does all the work of mapping the disk
133  * blocks and constructs largest possible bios, submits them for IO if the
134  * blocks are not contiguous on the disk.
135  *
136  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
137  * represent the validity of its disk mapping and to decide when to do the next
138  * get_block() call.
139  */
140 static struct bio *
141 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
142 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
143 		unsigned long *first_logical_block, get_block_t get_block,
144 		gfp_t gfp)
145 {
146 	struct inode *inode = page->mapping->host;
147 	const unsigned blkbits = inode->i_blkbits;
148 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
149 	const unsigned blocksize = 1 << blkbits;
150 	sector_t block_in_file;
151 	sector_t last_block;
152 	sector_t last_block_in_file;
153 	sector_t blocks[MAX_BUF_PER_PAGE];
154 	unsigned page_block;
155 	unsigned first_hole = blocks_per_page;
156 	struct block_device *bdev = NULL;
157 	int length;
158 	int fully_mapped = 1;
159 	unsigned nblocks;
160 	unsigned relative_block;
161 
162 	if (page_has_buffers(page))
163 		goto confused;
164 
165 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
166 	last_block = block_in_file + nr_pages * blocks_per_page;
167 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168 	if (last_block > last_block_in_file)
169 		last_block = last_block_in_file;
170 	page_block = 0;
171 
172 	/*
173 	 * Map blocks using the result from the previous get_blocks call first.
174 	 */
175 	nblocks = map_bh->b_size >> blkbits;
176 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
177 			block_in_file < (*first_logical_block + nblocks)) {
178 		unsigned map_offset = block_in_file - *first_logical_block;
179 		unsigned last = nblocks - map_offset;
180 
181 		for (relative_block = 0; ; relative_block++) {
182 			if (relative_block == last) {
183 				clear_buffer_mapped(map_bh);
184 				break;
185 			}
186 			if (page_block == blocks_per_page)
187 				break;
188 			blocks[page_block] = map_bh->b_blocknr + map_offset +
189 						relative_block;
190 			page_block++;
191 			block_in_file++;
192 		}
193 		bdev = map_bh->b_bdev;
194 	}
195 
196 	/*
197 	 * Then do more get_blocks calls until we are done with this page.
198 	 */
199 	map_bh->b_page = page;
200 	while (page_block < blocks_per_page) {
201 		map_bh->b_state = 0;
202 		map_bh->b_size = 0;
203 
204 		if (block_in_file < last_block) {
205 			map_bh->b_size = (last_block-block_in_file) << blkbits;
206 			if (get_block(inode, block_in_file, map_bh, 0))
207 				goto confused;
208 			*first_logical_block = block_in_file;
209 		}
210 
211 		if (!buffer_mapped(map_bh)) {
212 			fully_mapped = 0;
213 			if (first_hole == blocks_per_page)
214 				first_hole = page_block;
215 			page_block++;
216 			block_in_file++;
217 			continue;
218 		}
219 
220 		/* some filesystems will copy data into the page during
221 		 * the get_block call, in which case we don't want to
222 		 * read it again.  map_buffer_to_page copies the data
223 		 * we just collected from get_block into the page's buffers
224 		 * so readpage doesn't have to repeat the get_block call
225 		 */
226 		if (buffer_uptodate(map_bh)) {
227 			map_buffer_to_page(page, map_bh, page_block);
228 			goto confused;
229 		}
230 
231 		if (first_hole != blocks_per_page)
232 			goto confused;		/* hole -> non-hole */
233 
234 		/* Contiguous blocks? */
235 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
236 			goto confused;
237 		nblocks = map_bh->b_size >> blkbits;
238 		for (relative_block = 0; ; relative_block++) {
239 			if (relative_block == nblocks) {
240 				clear_buffer_mapped(map_bh);
241 				break;
242 			} else if (page_block == blocks_per_page)
243 				break;
244 			blocks[page_block] = map_bh->b_blocknr+relative_block;
245 			page_block++;
246 			block_in_file++;
247 		}
248 		bdev = map_bh->b_bdev;
249 	}
250 
251 	if (first_hole != blocks_per_page) {
252 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
253 		if (first_hole == 0) {
254 			SetPageUptodate(page);
255 			unlock_page(page);
256 			goto out;
257 		}
258 	} else if (fully_mapped) {
259 		SetPageMappedToDisk(page);
260 	}
261 
262 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
263 	    cleancache_get_page(page) == 0) {
264 		SetPageUptodate(page);
265 		goto confused;
266 	}
267 
268 	/*
269 	 * This page will go to BIO.  Do we need to send this BIO off first?
270 	 */
271 	if (bio && (*last_block_in_bio != blocks[0] - 1))
272 		bio = mpage_bio_submit(READ, bio);
273 
274 alloc_new:
275 	if (bio == NULL) {
276 		if (first_hole == blocks_per_page) {
277 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
278 								page))
279 				goto out;
280 		}
281 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
282 				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
283 		if (bio == NULL)
284 			goto confused;
285 	}
286 
287 	length = first_hole << blkbits;
288 	if (bio_add_page(bio, page, length, 0) < length) {
289 		bio = mpage_bio_submit(READ, bio);
290 		goto alloc_new;
291 	}
292 
293 	relative_block = block_in_file - *first_logical_block;
294 	nblocks = map_bh->b_size >> blkbits;
295 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
296 	    (first_hole != blocks_per_page))
297 		bio = mpage_bio_submit(READ, bio);
298 	else
299 		*last_block_in_bio = blocks[blocks_per_page - 1];
300 out:
301 	return bio;
302 
303 confused:
304 	if (bio)
305 		bio = mpage_bio_submit(READ, bio);
306 	if (!PageUptodate(page))
307 	        block_read_full_page(page, get_block);
308 	else
309 		unlock_page(page);
310 	goto out;
311 }
312 
313 /**
314  * mpage_readpages - populate an address space with some pages & start reads against them
315  * @mapping: the address_space
316  * @pages: The address of a list_head which contains the target pages.  These
317  *   pages have their ->index populated and are otherwise uninitialised.
318  *   The page at @pages->prev has the lowest file offset, and reads should be
319  *   issued in @pages->prev to @pages->next order.
320  * @nr_pages: The number of pages at *@pages
321  * @get_block: The filesystem's block mapper function.
322  *
323  * This function walks the pages and the blocks within each page, building and
324  * emitting large BIOs.
325  *
326  * If anything unusual happens, such as:
327  *
328  * - encountering a page which has buffers
329  * - encountering a page which has a non-hole after a hole
330  * - encountering a page with non-contiguous blocks
331  *
332  * then this code just gives up and calls the buffer_head-based read function.
333  * It does handle a page which has holes at the end - that is a common case:
334  * the end-of-file on blocksize < PAGE_SIZE setups.
335  *
336  * BH_Boundary explanation:
337  *
338  * There is a problem.  The mpage read code assembles several pages, gets all
339  * their disk mappings, and then submits them all.  That's fine, but obtaining
340  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
341  *
342  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
343  * submitted in the following order:
344  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
345  *
346  * because the indirect block has to be read to get the mappings of blocks
347  * 13,14,15,16.  Obviously, this impacts performance.
348  *
349  * So what we do it to allow the filesystem's get_block() function to set
350  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
351  * after this one will require I/O against a block which is probably close to
352  * this one.  So you should push what I/O you have currently accumulated.
353  *
354  * This all causes the disk requests to be issued in the correct order.
355  */
356 int
357 mpage_readpages(struct address_space *mapping, struct list_head *pages,
358 				unsigned nr_pages, get_block_t get_block)
359 {
360 	struct bio *bio = NULL;
361 	unsigned page_idx;
362 	sector_t last_block_in_bio = 0;
363 	struct buffer_head map_bh;
364 	unsigned long first_logical_block = 0;
365 	gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
366 
367 	map_bh.b_state = 0;
368 	map_bh.b_size = 0;
369 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
370 		struct page *page = lru_to_page(pages);
371 
372 		prefetchw(&page->flags);
373 		list_del(&page->lru);
374 		if (!add_to_page_cache_lru(page, mapping,
375 					page->index,
376 					gfp)) {
377 			bio = do_mpage_readpage(bio, page,
378 					nr_pages - page_idx,
379 					&last_block_in_bio, &map_bh,
380 					&first_logical_block,
381 					get_block, gfp);
382 		}
383 		put_page(page);
384 	}
385 	BUG_ON(!list_empty(pages));
386 	if (bio)
387 		mpage_bio_submit(READ, bio);
388 	return 0;
389 }
390 EXPORT_SYMBOL(mpage_readpages);
391 
392 /*
393  * This isn't called much at all
394  */
395 int mpage_readpage(struct page *page, get_block_t get_block)
396 {
397 	struct bio *bio = NULL;
398 	sector_t last_block_in_bio = 0;
399 	struct buffer_head map_bh;
400 	unsigned long first_logical_block = 0;
401 	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
402 
403 	map_bh.b_state = 0;
404 	map_bh.b_size = 0;
405 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
406 			&map_bh, &first_logical_block, get_block, gfp);
407 	if (bio)
408 		mpage_bio_submit(READ, bio);
409 	return 0;
410 }
411 EXPORT_SYMBOL(mpage_readpage);
412 
413 /*
414  * Writing is not so simple.
415  *
416  * If the page has buffers then they will be used for obtaining the disk
417  * mapping.  We only support pages which are fully mapped-and-dirty, with a
418  * special case for pages which are unmapped at the end: end-of-file.
419  *
420  * If the page has no buffers (preferred) then the page is mapped here.
421  *
422  * If all blocks are found to be contiguous then the page can go into the
423  * BIO.  Otherwise fall back to the mapping's writepage().
424  *
425  * FIXME: This code wants an estimate of how many pages are still to be
426  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
427  * just allocate full-size (16-page) BIOs.
428  */
429 
430 struct mpage_data {
431 	struct bio *bio;
432 	sector_t last_block_in_bio;
433 	get_block_t *get_block;
434 	unsigned use_writepage;
435 };
436 
437 /*
438  * We have our BIO, so we can now mark the buffers clean.  Make
439  * sure to only clean buffers which we know we'll be writing.
440  */
441 static void clean_buffers(struct page *page, unsigned first_unmapped)
442 {
443 	unsigned buffer_counter = 0;
444 	struct buffer_head *bh, *head;
445 	if (!page_has_buffers(page))
446 		return;
447 	head = page_buffers(page);
448 	bh = head;
449 
450 	do {
451 		if (buffer_counter++ == first_unmapped)
452 			break;
453 		clear_buffer_dirty(bh);
454 		bh = bh->b_this_page;
455 	} while (bh != head);
456 
457 	/*
458 	 * we cannot drop the bh if the page is not uptodate or a concurrent
459 	 * readpage would fail to serialize with the bh and it would read from
460 	 * disk before we reach the platter.
461 	 */
462 	if (buffer_heads_over_limit && PageUptodate(page))
463 		try_to_free_buffers(page);
464 }
465 
466 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
467 		      void *data)
468 {
469 	struct mpage_data *mpd = data;
470 	struct bio *bio = mpd->bio;
471 	struct address_space *mapping = page->mapping;
472 	struct inode *inode = page->mapping->host;
473 	const unsigned blkbits = inode->i_blkbits;
474 	unsigned long end_index;
475 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
476 	sector_t last_block;
477 	sector_t block_in_file;
478 	sector_t blocks[MAX_BUF_PER_PAGE];
479 	unsigned page_block;
480 	unsigned first_unmapped = blocks_per_page;
481 	struct block_device *bdev = NULL;
482 	int boundary = 0;
483 	sector_t boundary_block = 0;
484 	struct block_device *boundary_bdev = NULL;
485 	int length;
486 	struct buffer_head map_bh;
487 	loff_t i_size = i_size_read(inode);
488 	int ret = 0;
489 	int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
490 
491 	if (page_has_buffers(page)) {
492 		struct buffer_head *head = page_buffers(page);
493 		struct buffer_head *bh = head;
494 
495 		/* If they're all mapped and dirty, do it */
496 		page_block = 0;
497 		do {
498 			BUG_ON(buffer_locked(bh));
499 			if (!buffer_mapped(bh)) {
500 				/*
501 				 * unmapped dirty buffers are created by
502 				 * __set_page_dirty_buffers -> mmapped data
503 				 */
504 				if (buffer_dirty(bh))
505 					goto confused;
506 				if (first_unmapped == blocks_per_page)
507 					first_unmapped = page_block;
508 				continue;
509 			}
510 
511 			if (first_unmapped != blocks_per_page)
512 				goto confused;	/* hole -> non-hole */
513 
514 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
515 				goto confused;
516 			if (page_block) {
517 				if (bh->b_blocknr != blocks[page_block-1] + 1)
518 					goto confused;
519 			}
520 			blocks[page_block++] = bh->b_blocknr;
521 			boundary = buffer_boundary(bh);
522 			if (boundary) {
523 				boundary_block = bh->b_blocknr;
524 				boundary_bdev = bh->b_bdev;
525 			}
526 			bdev = bh->b_bdev;
527 		} while ((bh = bh->b_this_page) != head);
528 
529 		if (first_unmapped)
530 			goto page_is_mapped;
531 
532 		/*
533 		 * Page has buffers, but they are all unmapped. The page was
534 		 * created by pagein or read over a hole which was handled by
535 		 * block_read_full_page().  If this address_space is also
536 		 * using mpage_readpages then this can rarely happen.
537 		 */
538 		goto confused;
539 	}
540 
541 	/*
542 	 * The page has no buffers: map it to disk
543 	 */
544 	BUG_ON(!PageUptodate(page));
545 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
546 	last_block = (i_size - 1) >> blkbits;
547 	map_bh.b_page = page;
548 	for (page_block = 0; page_block < blocks_per_page; ) {
549 
550 		map_bh.b_state = 0;
551 		map_bh.b_size = 1 << blkbits;
552 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
553 			goto confused;
554 		if (buffer_new(&map_bh))
555 			unmap_underlying_metadata(map_bh.b_bdev,
556 						map_bh.b_blocknr);
557 		if (buffer_boundary(&map_bh)) {
558 			boundary_block = map_bh.b_blocknr;
559 			boundary_bdev = map_bh.b_bdev;
560 		}
561 		if (page_block) {
562 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
563 				goto confused;
564 		}
565 		blocks[page_block++] = map_bh.b_blocknr;
566 		boundary = buffer_boundary(&map_bh);
567 		bdev = map_bh.b_bdev;
568 		if (block_in_file == last_block)
569 			break;
570 		block_in_file++;
571 	}
572 	BUG_ON(page_block == 0);
573 
574 	first_unmapped = page_block;
575 
576 page_is_mapped:
577 	end_index = i_size >> PAGE_SHIFT;
578 	if (page->index >= end_index) {
579 		/*
580 		 * The page straddles i_size.  It must be zeroed out on each
581 		 * and every writepage invocation because it may be mmapped.
582 		 * "A file is mapped in multiples of the page size.  For a file
583 		 * that is not a multiple of the page size, the remaining memory
584 		 * is zeroed when mapped, and writes to that region are not
585 		 * written out to the file."
586 		 */
587 		unsigned offset = i_size & (PAGE_SIZE - 1);
588 
589 		if (page->index > end_index || !offset)
590 			goto confused;
591 		zero_user_segment(page, offset, PAGE_SIZE);
592 	}
593 
594 	/*
595 	 * This page will go to BIO.  Do we need to send this BIO off first?
596 	 */
597 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
598 		bio = mpage_bio_submit(wr, bio);
599 
600 alloc_new:
601 	if (bio == NULL) {
602 		if (first_unmapped == blocks_per_page) {
603 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
604 								page, wbc)) {
605 				clean_buffers(page, first_unmapped);
606 				goto out;
607 			}
608 		}
609 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
610 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
611 		if (bio == NULL)
612 			goto confused;
613 
614 		wbc_init_bio(wbc, bio);
615 	}
616 
617 	/*
618 	 * Must try to add the page before marking the buffer clean or
619 	 * the confused fail path above (OOM) will be very confused when
620 	 * it finds all bh marked clean (i.e. it will not write anything)
621 	 */
622 	wbc_account_io(wbc, page, PAGE_SIZE);
623 	length = first_unmapped << blkbits;
624 	if (bio_add_page(bio, page, length, 0) < length) {
625 		bio = mpage_bio_submit(wr, bio);
626 		goto alloc_new;
627 	}
628 
629 	clean_buffers(page, first_unmapped);
630 
631 	BUG_ON(PageWriteback(page));
632 	set_page_writeback(page);
633 	unlock_page(page);
634 	if (boundary || (first_unmapped != blocks_per_page)) {
635 		bio = mpage_bio_submit(wr, bio);
636 		if (boundary_block) {
637 			write_boundary_block(boundary_bdev,
638 					boundary_block, 1 << blkbits);
639 		}
640 	} else {
641 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
642 	}
643 	goto out;
644 
645 confused:
646 	if (bio)
647 		bio = mpage_bio_submit(wr, bio);
648 
649 	if (mpd->use_writepage) {
650 		ret = mapping->a_ops->writepage(page, wbc);
651 	} else {
652 		ret = -EAGAIN;
653 		goto out;
654 	}
655 	/*
656 	 * The caller has a ref on the inode, so *mapping is stable
657 	 */
658 	mapping_set_error(mapping, ret);
659 out:
660 	mpd->bio = bio;
661 	return ret;
662 }
663 
664 /**
665  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
666  * @mapping: address space structure to write
667  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
668  * @get_block: the filesystem's block mapper function.
669  *             If this is NULL then use a_ops->writepage.  Otherwise, go
670  *             direct-to-BIO.
671  *
672  * This is a library function, which implements the writepages()
673  * address_space_operation.
674  *
675  * If a page is already under I/O, generic_writepages() skips it, even
676  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
677  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
678  * and msync() need to guarantee that all the data which was dirty at the time
679  * the call was made get new I/O started against them.  If wbc->sync_mode is
680  * WB_SYNC_ALL then we were called for data integrity and we must wait for
681  * existing IO to complete.
682  */
683 int
684 mpage_writepages(struct address_space *mapping,
685 		struct writeback_control *wbc, get_block_t get_block)
686 {
687 	struct blk_plug plug;
688 	int ret;
689 
690 	blk_start_plug(&plug);
691 
692 	if (!get_block)
693 		ret = generic_writepages(mapping, wbc);
694 	else {
695 		struct mpage_data mpd = {
696 			.bio = NULL,
697 			.last_block_in_bio = 0,
698 			.get_block = get_block,
699 			.use_writepage = 1,
700 		};
701 
702 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
703 		if (mpd.bio) {
704 			int wr = (wbc->sync_mode == WB_SYNC_ALL ?
705 				  WRITE_SYNC : WRITE);
706 			mpage_bio_submit(wr, mpd.bio);
707 		}
708 	}
709 	blk_finish_plug(&plug);
710 	return ret;
711 }
712 EXPORT_SYMBOL(mpage_writepages);
713 
714 int mpage_writepage(struct page *page, get_block_t get_block,
715 	struct writeback_control *wbc)
716 {
717 	struct mpage_data mpd = {
718 		.bio = NULL,
719 		.last_block_in_bio = 0,
720 		.get_block = get_block,
721 		.use_writepage = 0,
722 	};
723 	int ret = __mpage_writepage(page, wbc, &mpd);
724 	if (mpd.bio) {
725 		int wr = (wbc->sync_mode == WB_SYNC_ALL ?
726 			  WRITE_SYNC : WRITE);
727 		mpage_bio_submit(wr, mpd.bio);
728 	}
729 	return ret;
730 }
731 EXPORT_SYMBOL(mpage_writepage);
732