1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/mm_inline.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/cleancache.h> 32 #include "internal.h" 33 34 /* 35 * I/O completion handler for multipage BIOs. 36 * 37 * The mpage code never puts partial pages into a BIO (except for end-of-file). 38 * If a page does not map to a contiguous run of blocks then it simply falls 39 * back to block_read_full_page(). 40 * 41 * Why is this? If a page's completion depends on a number of different BIOs 42 * which can complete in any order (or at the same time) then determining the 43 * status of that page is hard. See end_buffer_async_read() for the details. 44 * There is no point in duplicating all that complexity. 45 */ 46 static void mpage_end_io(struct bio *bio) 47 { 48 struct bio_vec *bv; 49 int i; 50 51 bio_for_each_segment_all(bv, bio, i) { 52 struct page *page = bv->bv_page; 53 page_endio(page, bio_data_dir(bio), bio->bi_error); 54 } 55 56 bio_put(bio); 57 } 58 59 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 60 { 61 bio->bi_end_io = mpage_end_io; 62 guard_bio_eod(rw, bio); 63 submit_bio(rw, bio); 64 return NULL; 65 } 66 67 static struct bio * 68 mpage_alloc(struct block_device *bdev, 69 sector_t first_sector, int nr_vecs, 70 gfp_t gfp_flags) 71 { 72 struct bio *bio; 73 74 bio = bio_alloc(gfp_flags, nr_vecs); 75 76 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 77 while (!bio && (nr_vecs /= 2)) 78 bio = bio_alloc(gfp_flags, nr_vecs); 79 } 80 81 if (bio) { 82 bio->bi_bdev = bdev; 83 bio->bi_iter.bi_sector = first_sector; 84 } 85 return bio; 86 } 87 88 /* 89 * support function for mpage_readpages. The fs supplied get_block might 90 * return an up to date buffer. This is used to map that buffer into 91 * the page, which allows readpage to avoid triggering a duplicate call 92 * to get_block. 93 * 94 * The idea is to avoid adding buffers to pages that don't already have 95 * them. So when the buffer is up to date and the page size == block size, 96 * this marks the page up to date instead of adding new buffers. 97 */ 98 static void 99 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 100 { 101 struct inode *inode = page->mapping->host; 102 struct buffer_head *page_bh, *head; 103 int block = 0; 104 105 if (!page_has_buffers(page)) { 106 /* 107 * don't make any buffers if there is only one buffer on 108 * the page and the page just needs to be set up to date 109 */ 110 if (inode->i_blkbits == PAGE_SHIFT && 111 buffer_uptodate(bh)) { 112 SetPageUptodate(page); 113 return; 114 } 115 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 116 } 117 head = page_buffers(page); 118 page_bh = head; 119 do { 120 if (block == page_block) { 121 page_bh->b_state = bh->b_state; 122 page_bh->b_bdev = bh->b_bdev; 123 page_bh->b_blocknr = bh->b_blocknr; 124 break; 125 } 126 page_bh = page_bh->b_this_page; 127 block++; 128 } while (page_bh != head); 129 } 130 131 /* 132 * This is the worker routine which does all the work of mapping the disk 133 * blocks and constructs largest possible bios, submits them for IO if the 134 * blocks are not contiguous on the disk. 135 * 136 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 137 * represent the validity of its disk mapping and to decide when to do the next 138 * get_block() call. 139 */ 140 static struct bio * 141 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 142 sector_t *last_block_in_bio, struct buffer_head *map_bh, 143 unsigned long *first_logical_block, get_block_t get_block, 144 gfp_t gfp) 145 { 146 struct inode *inode = page->mapping->host; 147 const unsigned blkbits = inode->i_blkbits; 148 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 149 const unsigned blocksize = 1 << blkbits; 150 sector_t block_in_file; 151 sector_t last_block; 152 sector_t last_block_in_file; 153 sector_t blocks[MAX_BUF_PER_PAGE]; 154 unsigned page_block; 155 unsigned first_hole = blocks_per_page; 156 struct block_device *bdev = NULL; 157 int length; 158 int fully_mapped = 1; 159 unsigned nblocks; 160 unsigned relative_block; 161 162 if (page_has_buffers(page)) 163 goto confused; 164 165 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 166 last_block = block_in_file + nr_pages * blocks_per_page; 167 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 168 if (last_block > last_block_in_file) 169 last_block = last_block_in_file; 170 page_block = 0; 171 172 /* 173 * Map blocks using the result from the previous get_blocks call first. 174 */ 175 nblocks = map_bh->b_size >> blkbits; 176 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 177 block_in_file < (*first_logical_block + nblocks)) { 178 unsigned map_offset = block_in_file - *first_logical_block; 179 unsigned last = nblocks - map_offset; 180 181 for (relative_block = 0; ; relative_block++) { 182 if (relative_block == last) { 183 clear_buffer_mapped(map_bh); 184 break; 185 } 186 if (page_block == blocks_per_page) 187 break; 188 blocks[page_block] = map_bh->b_blocknr + map_offset + 189 relative_block; 190 page_block++; 191 block_in_file++; 192 } 193 bdev = map_bh->b_bdev; 194 } 195 196 /* 197 * Then do more get_blocks calls until we are done with this page. 198 */ 199 map_bh->b_page = page; 200 while (page_block < blocks_per_page) { 201 map_bh->b_state = 0; 202 map_bh->b_size = 0; 203 204 if (block_in_file < last_block) { 205 map_bh->b_size = (last_block-block_in_file) << blkbits; 206 if (get_block(inode, block_in_file, map_bh, 0)) 207 goto confused; 208 *first_logical_block = block_in_file; 209 } 210 211 if (!buffer_mapped(map_bh)) { 212 fully_mapped = 0; 213 if (first_hole == blocks_per_page) 214 first_hole = page_block; 215 page_block++; 216 block_in_file++; 217 continue; 218 } 219 220 /* some filesystems will copy data into the page during 221 * the get_block call, in which case we don't want to 222 * read it again. map_buffer_to_page copies the data 223 * we just collected from get_block into the page's buffers 224 * so readpage doesn't have to repeat the get_block call 225 */ 226 if (buffer_uptodate(map_bh)) { 227 map_buffer_to_page(page, map_bh, page_block); 228 goto confused; 229 } 230 231 if (first_hole != blocks_per_page) 232 goto confused; /* hole -> non-hole */ 233 234 /* Contiguous blocks? */ 235 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 236 goto confused; 237 nblocks = map_bh->b_size >> blkbits; 238 for (relative_block = 0; ; relative_block++) { 239 if (relative_block == nblocks) { 240 clear_buffer_mapped(map_bh); 241 break; 242 } else if (page_block == blocks_per_page) 243 break; 244 blocks[page_block] = map_bh->b_blocknr+relative_block; 245 page_block++; 246 block_in_file++; 247 } 248 bdev = map_bh->b_bdev; 249 } 250 251 if (first_hole != blocks_per_page) { 252 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 253 if (first_hole == 0) { 254 SetPageUptodate(page); 255 unlock_page(page); 256 goto out; 257 } 258 } else if (fully_mapped) { 259 SetPageMappedToDisk(page); 260 } 261 262 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 263 cleancache_get_page(page) == 0) { 264 SetPageUptodate(page); 265 goto confused; 266 } 267 268 /* 269 * This page will go to BIO. Do we need to send this BIO off first? 270 */ 271 if (bio && (*last_block_in_bio != blocks[0] - 1)) 272 bio = mpage_bio_submit(READ, bio); 273 274 alloc_new: 275 if (bio == NULL) { 276 if (first_hole == blocks_per_page) { 277 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 278 page)) 279 goto out; 280 } 281 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 282 min_t(int, nr_pages, BIO_MAX_PAGES), gfp); 283 if (bio == NULL) 284 goto confused; 285 } 286 287 length = first_hole << blkbits; 288 if (bio_add_page(bio, page, length, 0) < length) { 289 bio = mpage_bio_submit(READ, bio); 290 goto alloc_new; 291 } 292 293 relative_block = block_in_file - *first_logical_block; 294 nblocks = map_bh->b_size >> blkbits; 295 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 296 (first_hole != blocks_per_page)) 297 bio = mpage_bio_submit(READ, bio); 298 else 299 *last_block_in_bio = blocks[blocks_per_page - 1]; 300 out: 301 return bio; 302 303 confused: 304 if (bio) 305 bio = mpage_bio_submit(READ, bio); 306 if (!PageUptodate(page)) 307 block_read_full_page(page, get_block); 308 else 309 unlock_page(page); 310 goto out; 311 } 312 313 /** 314 * mpage_readpages - populate an address space with some pages & start reads against them 315 * @mapping: the address_space 316 * @pages: The address of a list_head which contains the target pages. These 317 * pages have their ->index populated and are otherwise uninitialised. 318 * The page at @pages->prev has the lowest file offset, and reads should be 319 * issued in @pages->prev to @pages->next order. 320 * @nr_pages: The number of pages at *@pages 321 * @get_block: The filesystem's block mapper function. 322 * 323 * This function walks the pages and the blocks within each page, building and 324 * emitting large BIOs. 325 * 326 * If anything unusual happens, such as: 327 * 328 * - encountering a page which has buffers 329 * - encountering a page which has a non-hole after a hole 330 * - encountering a page with non-contiguous blocks 331 * 332 * then this code just gives up and calls the buffer_head-based read function. 333 * It does handle a page which has holes at the end - that is a common case: 334 * the end-of-file on blocksize < PAGE_SIZE setups. 335 * 336 * BH_Boundary explanation: 337 * 338 * There is a problem. The mpage read code assembles several pages, gets all 339 * their disk mappings, and then submits them all. That's fine, but obtaining 340 * the disk mappings may require I/O. Reads of indirect blocks, for example. 341 * 342 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 343 * submitted in the following order: 344 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 345 * 346 * because the indirect block has to be read to get the mappings of blocks 347 * 13,14,15,16. Obviously, this impacts performance. 348 * 349 * So what we do it to allow the filesystem's get_block() function to set 350 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 351 * after this one will require I/O against a block which is probably close to 352 * this one. So you should push what I/O you have currently accumulated. 353 * 354 * This all causes the disk requests to be issued in the correct order. 355 */ 356 int 357 mpage_readpages(struct address_space *mapping, struct list_head *pages, 358 unsigned nr_pages, get_block_t get_block) 359 { 360 struct bio *bio = NULL; 361 unsigned page_idx; 362 sector_t last_block_in_bio = 0; 363 struct buffer_head map_bh; 364 unsigned long first_logical_block = 0; 365 gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL); 366 367 map_bh.b_state = 0; 368 map_bh.b_size = 0; 369 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 370 struct page *page = lru_to_page(pages); 371 372 prefetchw(&page->flags); 373 list_del(&page->lru); 374 if (!add_to_page_cache_lru(page, mapping, 375 page->index, 376 gfp)) { 377 bio = do_mpage_readpage(bio, page, 378 nr_pages - page_idx, 379 &last_block_in_bio, &map_bh, 380 &first_logical_block, 381 get_block, gfp); 382 } 383 put_page(page); 384 } 385 BUG_ON(!list_empty(pages)); 386 if (bio) 387 mpage_bio_submit(READ, bio); 388 return 0; 389 } 390 EXPORT_SYMBOL(mpage_readpages); 391 392 /* 393 * This isn't called much at all 394 */ 395 int mpage_readpage(struct page *page, get_block_t get_block) 396 { 397 struct bio *bio = NULL; 398 sector_t last_block_in_bio = 0; 399 struct buffer_head map_bh; 400 unsigned long first_logical_block = 0; 401 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 402 403 map_bh.b_state = 0; 404 map_bh.b_size = 0; 405 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 406 &map_bh, &first_logical_block, get_block, gfp); 407 if (bio) 408 mpage_bio_submit(READ, bio); 409 return 0; 410 } 411 EXPORT_SYMBOL(mpage_readpage); 412 413 /* 414 * Writing is not so simple. 415 * 416 * If the page has buffers then they will be used for obtaining the disk 417 * mapping. We only support pages which are fully mapped-and-dirty, with a 418 * special case for pages which are unmapped at the end: end-of-file. 419 * 420 * If the page has no buffers (preferred) then the page is mapped here. 421 * 422 * If all blocks are found to be contiguous then the page can go into the 423 * BIO. Otherwise fall back to the mapping's writepage(). 424 * 425 * FIXME: This code wants an estimate of how many pages are still to be 426 * written, so it can intelligently allocate a suitably-sized BIO. For now, 427 * just allocate full-size (16-page) BIOs. 428 */ 429 430 struct mpage_data { 431 struct bio *bio; 432 sector_t last_block_in_bio; 433 get_block_t *get_block; 434 unsigned use_writepage; 435 }; 436 437 /* 438 * We have our BIO, so we can now mark the buffers clean. Make 439 * sure to only clean buffers which we know we'll be writing. 440 */ 441 static void clean_buffers(struct page *page, unsigned first_unmapped) 442 { 443 unsigned buffer_counter = 0; 444 struct buffer_head *bh, *head; 445 if (!page_has_buffers(page)) 446 return; 447 head = page_buffers(page); 448 bh = head; 449 450 do { 451 if (buffer_counter++ == first_unmapped) 452 break; 453 clear_buffer_dirty(bh); 454 bh = bh->b_this_page; 455 } while (bh != head); 456 457 /* 458 * we cannot drop the bh if the page is not uptodate or a concurrent 459 * readpage would fail to serialize with the bh and it would read from 460 * disk before we reach the platter. 461 */ 462 if (buffer_heads_over_limit && PageUptodate(page)) 463 try_to_free_buffers(page); 464 } 465 466 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 467 void *data) 468 { 469 struct mpage_data *mpd = data; 470 struct bio *bio = mpd->bio; 471 struct address_space *mapping = page->mapping; 472 struct inode *inode = page->mapping->host; 473 const unsigned blkbits = inode->i_blkbits; 474 unsigned long end_index; 475 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 476 sector_t last_block; 477 sector_t block_in_file; 478 sector_t blocks[MAX_BUF_PER_PAGE]; 479 unsigned page_block; 480 unsigned first_unmapped = blocks_per_page; 481 struct block_device *bdev = NULL; 482 int boundary = 0; 483 sector_t boundary_block = 0; 484 struct block_device *boundary_bdev = NULL; 485 int length; 486 struct buffer_head map_bh; 487 loff_t i_size = i_size_read(inode); 488 int ret = 0; 489 int wr = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 490 491 if (page_has_buffers(page)) { 492 struct buffer_head *head = page_buffers(page); 493 struct buffer_head *bh = head; 494 495 /* If they're all mapped and dirty, do it */ 496 page_block = 0; 497 do { 498 BUG_ON(buffer_locked(bh)); 499 if (!buffer_mapped(bh)) { 500 /* 501 * unmapped dirty buffers are created by 502 * __set_page_dirty_buffers -> mmapped data 503 */ 504 if (buffer_dirty(bh)) 505 goto confused; 506 if (first_unmapped == blocks_per_page) 507 first_unmapped = page_block; 508 continue; 509 } 510 511 if (first_unmapped != blocks_per_page) 512 goto confused; /* hole -> non-hole */ 513 514 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 515 goto confused; 516 if (page_block) { 517 if (bh->b_blocknr != blocks[page_block-1] + 1) 518 goto confused; 519 } 520 blocks[page_block++] = bh->b_blocknr; 521 boundary = buffer_boundary(bh); 522 if (boundary) { 523 boundary_block = bh->b_blocknr; 524 boundary_bdev = bh->b_bdev; 525 } 526 bdev = bh->b_bdev; 527 } while ((bh = bh->b_this_page) != head); 528 529 if (first_unmapped) 530 goto page_is_mapped; 531 532 /* 533 * Page has buffers, but they are all unmapped. The page was 534 * created by pagein or read over a hole which was handled by 535 * block_read_full_page(). If this address_space is also 536 * using mpage_readpages then this can rarely happen. 537 */ 538 goto confused; 539 } 540 541 /* 542 * The page has no buffers: map it to disk 543 */ 544 BUG_ON(!PageUptodate(page)); 545 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 546 last_block = (i_size - 1) >> blkbits; 547 map_bh.b_page = page; 548 for (page_block = 0; page_block < blocks_per_page; ) { 549 550 map_bh.b_state = 0; 551 map_bh.b_size = 1 << blkbits; 552 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 553 goto confused; 554 if (buffer_new(&map_bh)) 555 unmap_underlying_metadata(map_bh.b_bdev, 556 map_bh.b_blocknr); 557 if (buffer_boundary(&map_bh)) { 558 boundary_block = map_bh.b_blocknr; 559 boundary_bdev = map_bh.b_bdev; 560 } 561 if (page_block) { 562 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 563 goto confused; 564 } 565 blocks[page_block++] = map_bh.b_blocknr; 566 boundary = buffer_boundary(&map_bh); 567 bdev = map_bh.b_bdev; 568 if (block_in_file == last_block) 569 break; 570 block_in_file++; 571 } 572 BUG_ON(page_block == 0); 573 574 first_unmapped = page_block; 575 576 page_is_mapped: 577 end_index = i_size >> PAGE_SHIFT; 578 if (page->index >= end_index) { 579 /* 580 * The page straddles i_size. It must be zeroed out on each 581 * and every writepage invocation because it may be mmapped. 582 * "A file is mapped in multiples of the page size. For a file 583 * that is not a multiple of the page size, the remaining memory 584 * is zeroed when mapped, and writes to that region are not 585 * written out to the file." 586 */ 587 unsigned offset = i_size & (PAGE_SIZE - 1); 588 589 if (page->index > end_index || !offset) 590 goto confused; 591 zero_user_segment(page, offset, PAGE_SIZE); 592 } 593 594 /* 595 * This page will go to BIO. Do we need to send this BIO off first? 596 */ 597 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 598 bio = mpage_bio_submit(wr, bio); 599 600 alloc_new: 601 if (bio == NULL) { 602 if (first_unmapped == blocks_per_page) { 603 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 604 page, wbc)) { 605 clean_buffers(page, first_unmapped); 606 goto out; 607 } 608 } 609 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 610 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 611 if (bio == NULL) 612 goto confused; 613 614 wbc_init_bio(wbc, bio); 615 } 616 617 /* 618 * Must try to add the page before marking the buffer clean or 619 * the confused fail path above (OOM) will be very confused when 620 * it finds all bh marked clean (i.e. it will not write anything) 621 */ 622 wbc_account_io(wbc, page, PAGE_SIZE); 623 length = first_unmapped << blkbits; 624 if (bio_add_page(bio, page, length, 0) < length) { 625 bio = mpage_bio_submit(wr, bio); 626 goto alloc_new; 627 } 628 629 clean_buffers(page, first_unmapped); 630 631 BUG_ON(PageWriteback(page)); 632 set_page_writeback(page); 633 unlock_page(page); 634 if (boundary || (first_unmapped != blocks_per_page)) { 635 bio = mpage_bio_submit(wr, bio); 636 if (boundary_block) { 637 write_boundary_block(boundary_bdev, 638 boundary_block, 1 << blkbits); 639 } 640 } else { 641 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 642 } 643 goto out; 644 645 confused: 646 if (bio) 647 bio = mpage_bio_submit(wr, bio); 648 649 if (mpd->use_writepage) { 650 ret = mapping->a_ops->writepage(page, wbc); 651 } else { 652 ret = -EAGAIN; 653 goto out; 654 } 655 /* 656 * The caller has a ref on the inode, so *mapping is stable 657 */ 658 mapping_set_error(mapping, ret); 659 out: 660 mpd->bio = bio; 661 return ret; 662 } 663 664 /** 665 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 666 * @mapping: address space structure to write 667 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 668 * @get_block: the filesystem's block mapper function. 669 * If this is NULL then use a_ops->writepage. Otherwise, go 670 * direct-to-BIO. 671 * 672 * This is a library function, which implements the writepages() 673 * address_space_operation. 674 * 675 * If a page is already under I/O, generic_writepages() skips it, even 676 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 677 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 678 * and msync() need to guarantee that all the data which was dirty at the time 679 * the call was made get new I/O started against them. If wbc->sync_mode is 680 * WB_SYNC_ALL then we were called for data integrity and we must wait for 681 * existing IO to complete. 682 */ 683 int 684 mpage_writepages(struct address_space *mapping, 685 struct writeback_control *wbc, get_block_t get_block) 686 { 687 struct blk_plug plug; 688 int ret; 689 690 blk_start_plug(&plug); 691 692 if (!get_block) 693 ret = generic_writepages(mapping, wbc); 694 else { 695 struct mpage_data mpd = { 696 .bio = NULL, 697 .last_block_in_bio = 0, 698 .get_block = get_block, 699 .use_writepage = 1, 700 }; 701 702 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 703 if (mpd.bio) { 704 int wr = (wbc->sync_mode == WB_SYNC_ALL ? 705 WRITE_SYNC : WRITE); 706 mpage_bio_submit(wr, mpd.bio); 707 } 708 } 709 blk_finish_plug(&plug); 710 return ret; 711 } 712 EXPORT_SYMBOL(mpage_writepages); 713 714 int mpage_writepage(struct page *page, get_block_t get_block, 715 struct writeback_control *wbc) 716 { 717 struct mpage_data mpd = { 718 .bio = NULL, 719 .last_block_in_bio = 0, 720 .get_block = get_block, 721 .use_writepage = 0, 722 }; 723 int ret = __mpage_writepage(page, wbc, &mpd); 724 if (mpd.bio) { 725 int wr = (wbc->sync_mode == WB_SYNC_ALL ? 726 WRITE_SYNC : WRITE); 727 mpage_bio_submit(wr, mpd.bio); 728 } 729 return ret; 730 } 731 EXPORT_SYMBOL(mpage_writepage); 732