xref: /linux/fs/minix/bitmap.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  *  linux/fs/minix/bitmap.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Modified for 680x0 by Hamish Macdonald
9  * Fixed for 680x0 by Andreas Schwab
10  */
11 
12 /* bitmap.c contains the code that handles the inode and block bitmaps */
13 
14 #include "minix.h"
15 #include <linux/buffer_head.h>
16 #include <linux/bitops.h>
17 #include <linux/sched.h>
18 
19 static const int nibblemap[] = { 4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0 };
20 
21 static DEFINE_SPINLOCK(bitmap_lock);
22 
23 static unsigned long count_free(struct buffer_head *map[], unsigned numblocks, __u32 numbits)
24 {
25 	unsigned i, j, sum = 0;
26 	struct buffer_head *bh;
27 
28 	for (i=0; i<numblocks-1; i++) {
29 		if (!(bh=map[i]))
30 			return(0);
31 		for (j=0; j<bh->b_size; j++)
32 			sum += nibblemap[bh->b_data[j] & 0xf]
33 				+ nibblemap[(bh->b_data[j]>>4) & 0xf];
34 	}
35 
36 	if (numblocks==0 || !(bh=map[numblocks-1]))
37 		return(0);
38 	i = ((numbits - (numblocks-1) * bh->b_size * 8) / 16) * 2;
39 	for (j=0; j<i; j++) {
40 		sum += nibblemap[bh->b_data[j] & 0xf]
41 			+ nibblemap[(bh->b_data[j]>>4) & 0xf];
42 	}
43 
44 	i = numbits%16;
45 	if (i!=0) {
46 		i = *(__u16 *)(&bh->b_data[j]) | ~((1<<i) - 1);
47 		sum += nibblemap[i & 0xf] + nibblemap[(i>>4) & 0xf];
48 		sum += nibblemap[(i>>8) & 0xf] + nibblemap[(i>>12) & 0xf];
49 	}
50 	return(sum);
51 }
52 
53 void minix_free_block(struct inode *inode, unsigned long block)
54 {
55 	struct super_block *sb = inode->i_sb;
56 	struct minix_sb_info *sbi = minix_sb(sb);
57 	struct buffer_head *bh;
58 	int k = sb->s_blocksize_bits + 3;
59 	unsigned long bit, zone;
60 
61 	if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
62 		printk("Trying to free block not in datazone\n");
63 		return;
64 	}
65 	zone = block - sbi->s_firstdatazone + 1;
66 	bit = zone & ((1<<k) - 1);
67 	zone >>= k;
68 	if (zone >= sbi->s_zmap_blocks) {
69 		printk("minix_free_block: nonexistent bitmap buffer\n");
70 		return;
71 	}
72 	bh = sbi->s_zmap[zone];
73 	spin_lock(&bitmap_lock);
74 	if (!minix_test_and_clear_bit(bit, bh->b_data))
75 		printk("minix_free_block (%s:%lu): bit already cleared\n",
76 		       sb->s_id, block);
77 	spin_unlock(&bitmap_lock);
78 	mark_buffer_dirty(bh);
79 	return;
80 }
81 
82 int minix_new_block(struct inode * inode)
83 {
84 	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
85 	int bits_per_zone = 8 * inode->i_sb->s_blocksize;
86 	int i;
87 
88 	for (i = 0; i < sbi->s_zmap_blocks; i++) {
89 		struct buffer_head *bh = sbi->s_zmap[i];
90 		int j;
91 
92 		spin_lock(&bitmap_lock);
93 		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
94 		if (j < bits_per_zone) {
95 			minix_set_bit(j, bh->b_data);
96 			spin_unlock(&bitmap_lock);
97 			mark_buffer_dirty(bh);
98 			j += i * bits_per_zone + sbi->s_firstdatazone-1;
99 			if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
100 				break;
101 			return j;
102 		}
103 		spin_unlock(&bitmap_lock);
104 	}
105 	return 0;
106 }
107 
108 unsigned long minix_count_free_blocks(struct minix_sb_info *sbi)
109 {
110 	return (count_free(sbi->s_zmap, sbi->s_zmap_blocks,
111 		sbi->s_nzones - sbi->s_firstdatazone + 1)
112 		<< sbi->s_log_zone_size);
113 }
114 
115 struct minix_inode *
116 minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
117 {
118 	int block;
119 	struct minix_sb_info *sbi = minix_sb(sb);
120 	struct minix_inode *p;
121 
122 	if (!ino || ino > sbi->s_ninodes) {
123 		printk("Bad inode number on dev %s: %ld is out of range\n",
124 		       sb->s_id, (long)ino);
125 		return NULL;
126 	}
127 	ino--;
128 	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
129 		 ino / MINIX_INODES_PER_BLOCK;
130 	*bh = sb_bread(sb, block);
131 	if (!*bh) {
132 		printk("Unable to read inode block\n");
133 		return NULL;
134 	}
135 	p = (void *)(*bh)->b_data;
136 	return p + ino % MINIX_INODES_PER_BLOCK;
137 }
138 
139 struct minix2_inode *
140 minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
141 {
142 	int block;
143 	struct minix_sb_info *sbi = minix_sb(sb);
144 	struct minix2_inode *p;
145 	int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
146 
147 	*bh = NULL;
148 	if (!ino || ino > sbi->s_ninodes) {
149 		printk("Bad inode number on dev %s: %ld is out of range\n",
150 		       sb->s_id, (long)ino);
151 		return NULL;
152 	}
153 	ino--;
154 	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
155 		 ino / minix2_inodes_per_block;
156 	*bh = sb_bread(sb, block);
157 	if (!*bh) {
158 		printk("Unable to read inode block\n");
159 		return NULL;
160 	}
161 	p = (void *)(*bh)->b_data;
162 	return p + ino % minix2_inodes_per_block;
163 }
164 
165 /* Clear the link count and mode of a deleted inode on disk. */
166 
167 static void minix_clear_inode(struct inode *inode)
168 {
169 	struct buffer_head *bh = NULL;
170 
171 	if (INODE_VERSION(inode) == MINIX_V1) {
172 		struct minix_inode *raw_inode;
173 		raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
174 		if (raw_inode) {
175 			raw_inode->i_nlinks = 0;
176 			raw_inode->i_mode = 0;
177 		}
178 	} else {
179 		struct minix2_inode *raw_inode;
180 		raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
181 		if (raw_inode) {
182 			raw_inode->i_nlinks = 0;
183 			raw_inode->i_mode = 0;
184 		}
185 	}
186 	if (bh) {
187 		mark_buffer_dirty(bh);
188 		brelse (bh);
189 	}
190 }
191 
192 void minix_free_inode(struct inode * inode)
193 {
194 	struct super_block *sb = inode->i_sb;
195 	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
196 	struct buffer_head *bh;
197 	int k = sb->s_blocksize_bits + 3;
198 	unsigned long ino, bit;
199 
200 	ino = inode->i_ino;
201 	if (ino < 1 || ino > sbi->s_ninodes) {
202 		printk("minix_free_inode: inode 0 or nonexistent inode\n");
203 		return;
204 	}
205 	bit = ino & ((1<<k) - 1);
206 	ino >>= k;
207 	if (ino >= sbi->s_imap_blocks) {
208 		printk("minix_free_inode: nonexistent imap in superblock\n");
209 		return;
210 	}
211 
212 	minix_clear_inode(inode);	/* clear on-disk copy */
213 
214 	bh = sbi->s_imap[ino];
215 	spin_lock(&bitmap_lock);
216 	if (!minix_test_and_clear_bit(bit, bh->b_data))
217 		printk("minix_free_inode: bit %lu already cleared\n", bit);
218 	spin_unlock(&bitmap_lock);
219 	mark_buffer_dirty(bh);
220 }
221 
222 struct inode *minix_new_inode(const struct inode *dir, int mode, int *error)
223 {
224 	struct super_block *sb = dir->i_sb;
225 	struct minix_sb_info *sbi = minix_sb(sb);
226 	struct inode *inode = new_inode(sb);
227 	struct buffer_head * bh;
228 	int bits_per_zone = 8 * sb->s_blocksize;
229 	unsigned long j;
230 	int i;
231 
232 	if (!inode) {
233 		*error = -ENOMEM;
234 		return NULL;
235 	}
236 	j = bits_per_zone;
237 	bh = NULL;
238 	*error = -ENOSPC;
239 	spin_lock(&bitmap_lock);
240 	for (i = 0; i < sbi->s_imap_blocks; i++) {
241 		bh = sbi->s_imap[i];
242 		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
243 		if (j < bits_per_zone)
244 			break;
245 	}
246 	if (!bh || j >= bits_per_zone) {
247 		spin_unlock(&bitmap_lock);
248 		iput(inode);
249 		return NULL;
250 	}
251 	if (minix_test_and_set_bit(j, bh->b_data)) {	/* shouldn't happen */
252 		spin_unlock(&bitmap_lock);
253 		printk("minix_new_inode: bit already set\n");
254 		iput(inode);
255 		return NULL;
256 	}
257 	spin_unlock(&bitmap_lock);
258 	mark_buffer_dirty(bh);
259 	j += i * bits_per_zone;
260 	if (!j || j > sbi->s_ninodes) {
261 		iput(inode);
262 		return NULL;
263 	}
264 	inode_init_owner(inode, dir, mode);
265 	inode->i_ino = j;
266 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
267 	inode->i_blocks = 0;
268 	memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
269 	insert_inode_hash(inode);
270 	mark_inode_dirty(inode);
271 
272 	*error = 0;
273 	return inode;
274 }
275 
276 unsigned long minix_count_free_inodes(struct minix_sb_info *sbi)
277 {
278 	return count_free(sbi->s_imap, sbi->s_imap_blocks, sbi->s_ninodes + 1);
279 }
280