1 #include <linux/spinlock.h> 2 #include <linux/slab.h> 3 #include <linux/list.h> 4 #include <linux/list_bl.h> 5 #include <linux/module.h> 6 #include <linux/sched.h> 7 #include <linux/workqueue.h> 8 #include <linux/mbcache.h> 9 10 /* 11 * Mbcache is a simple key-value store. Keys need not be unique, however 12 * key-value pairs are expected to be unique (we use this fact in 13 * mb_cache_entry_delete()). 14 * 15 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks. 16 * Ext4 also uses it for deduplication of xattr values stored in inodes. 17 * They use hash of data as a key and provide a value that may represent a 18 * block or inode number. That's why keys need not be unique (hash of different 19 * data may be the same). However user provided value always uniquely 20 * identifies a cache entry. 21 * 22 * We provide functions for creation and removal of entries, search by key, 23 * and a special "delete entry with given key-value pair" operation. Fixed 24 * size hash table is used for fast key lookups. 25 */ 26 27 struct mb_cache { 28 /* Hash table of entries */ 29 struct hlist_bl_head *c_hash; 30 /* log2 of hash table size */ 31 int c_bucket_bits; 32 /* Maximum entries in cache to avoid degrading hash too much */ 33 unsigned long c_max_entries; 34 /* Protects c_list, c_entry_count */ 35 spinlock_t c_list_lock; 36 struct list_head c_list; 37 /* Number of entries in cache */ 38 unsigned long c_entry_count; 39 struct shrinker c_shrink; 40 /* Work for shrinking when the cache has too many entries */ 41 struct work_struct c_shrink_work; 42 }; 43 44 static struct kmem_cache *mb_entry_cache; 45 46 static unsigned long mb_cache_shrink(struct mb_cache *cache, 47 unsigned long nr_to_scan); 48 49 static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache, 50 u32 key) 51 { 52 return &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; 53 } 54 55 /* 56 * Number of entries to reclaim synchronously when there are too many entries 57 * in cache 58 */ 59 #define SYNC_SHRINK_BATCH 64 60 61 /* 62 * mb_cache_entry_create - create entry in cache 63 * @cache - cache where the entry should be created 64 * @mask - gfp mask with which the entry should be allocated 65 * @key - key of the entry 66 * @value - value of the entry 67 * @reusable - is the entry reusable by others? 68 * 69 * Creates entry in @cache with key @key and value @value. The function returns 70 * -EBUSY if entry with the same key and value already exists in cache. 71 * Otherwise 0 is returned. 72 */ 73 int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, 74 u64 value, bool reusable) 75 { 76 struct mb_cache_entry *entry, *dup; 77 struct hlist_bl_node *dup_node; 78 struct hlist_bl_head *head; 79 80 /* Schedule background reclaim if there are too many entries */ 81 if (cache->c_entry_count >= cache->c_max_entries) 82 schedule_work(&cache->c_shrink_work); 83 /* Do some sync reclaim if background reclaim cannot keep up */ 84 if (cache->c_entry_count >= 2*cache->c_max_entries) 85 mb_cache_shrink(cache, SYNC_SHRINK_BATCH); 86 87 entry = kmem_cache_alloc(mb_entry_cache, mask); 88 if (!entry) 89 return -ENOMEM; 90 91 INIT_LIST_HEAD(&entry->e_list); 92 /* One ref for hash, one ref returned */ 93 atomic_set(&entry->e_refcnt, 1); 94 entry->e_key = key; 95 entry->e_value = value; 96 entry->e_reusable = reusable; 97 head = mb_cache_entry_head(cache, key); 98 hlist_bl_lock(head); 99 hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) { 100 if (dup->e_key == key && dup->e_value == value) { 101 hlist_bl_unlock(head); 102 kmem_cache_free(mb_entry_cache, entry); 103 return -EBUSY; 104 } 105 } 106 hlist_bl_add_head(&entry->e_hash_list, head); 107 hlist_bl_unlock(head); 108 109 spin_lock(&cache->c_list_lock); 110 list_add_tail(&entry->e_list, &cache->c_list); 111 /* Grab ref for LRU list */ 112 atomic_inc(&entry->e_refcnt); 113 cache->c_entry_count++; 114 spin_unlock(&cache->c_list_lock); 115 116 return 0; 117 } 118 EXPORT_SYMBOL(mb_cache_entry_create); 119 120 void __mb_cache_entry_free(struct mb_cache_entry *entry) 121 { 122 kmem_cache_free(mb_entry_cache, entry); 123 } 124 EXPORT_SYMBOL(__mb_cache_entry_free); 125 126 static struct mb_cache_entry *__entry_find(struct mb_cache *cache, 127 struct mb_cache_entry *entry, 128 u32 key) 129 { 130 struct mb_cache_entry *old_entry = entry; 131 struct hlist_bl_node *node; 132 struct hlist_bl_head *head; 133 134 head = mb_cache_entry_head(cache, key); 135 hlist_bl_lock(head); 136 if (entry && !hlist_bl_unhashed(&entry->e_hash_list)) 137 node = entry->e_hash_list.next; 138 else 139 node = hlist_bl_first(head); 140 while (node) { 141 entry = hlist_bl_entry(node, struct mb_cache_entry, 142 e_hash_list); 143 if (entry->e_key == key && entry->e_reusable) { 144 atomic_inc(&entry->e_refcnt); 145 goto out; 146 } 147 node = node->next; 148 } 149 entry = NULL; 150 out: 151 hlist_bl_unlock(head); 152 if (old_entry) 153 mb_cache_entry_put(cache, old_entry); 154 155 return entry; 156 } 157 158 /* 159 * mb_cache_entry_find_first - find the first reusable entry with the given key 160 * @cache: cache where we should search 161 * @key: key to look for 162 * 163 * Search in @cache for a reusable entry with key @key. Grabs reference to the 164 * first reusable entry found and returns the entry. 165 */ 166 struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, 167 u32 key) 168 { 169 return __entry_find(cache, NULL, key); 170 } 171 EXPORT_SYMBOL(mb_cache_entry_find_first); 172 173 /* 174 * mb_cache_entry_find_next - find next reusable entry with the same key 175 * @cache: cache where we should search 176 * @entry: entry to start search from 177 * 178 * Finds next reusable entry in the hash chain which has the same key as @entry. 179 * If @entry is unhashed (which can happen when deletion of entry races with the 180 * search), finds the first reusable entry in the hash chain. The function drops 181 * reference to @entry and returns with a reference to the found entry. 182 */ 183 struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, 184 struct mb_cache_entry *entry) 185 { 186 return __entry_find(cache, entry, entry->e_key); 187 } 188 EXPORT_SYMBOL(mb_cache_entry_find_next); 189 190 /* 191 * mb_cache_entry_get - get a cache entry by value (and key) 192 * @cache - cache we work with 193 * @key - key 194 * @value - value 195 */ 196 struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, 197 u64 value) 198 { 199 struct hlist_bl_node *node; 200 struct hlist_bl_head *head; 201 struct mb_cache_entry *entry; 202 203 head = mb_cache_entry_head(cache, key); 204 hlist_bl_lock(head); 205 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 206 if (entry->e_key == key && entry->e_value == value) { 207 atomic_inc(&entry->e_refcnt); 208 goto out; 209 } 210 } 211 entry = NULL; 212 out: 213 hlist_bl_unlock(head); 214 return entry; 215 } 216 EXPORT_SYMBOL(mb_cache_entry_get); 217 218 /* mb_cache_entry_delete - remove a cache entry 219 * @cache - cache we work with 220 * @key - key 221 * @value - value 222 * 223 * Remove entry from cache @cache with key @key and value @value. 224 */ 225 void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value) 226 { 227 struct hlist_bl_node *node; 228 struct hlist_bl_head *head; 229 struct mb_cache_entry *entry; 230 231 head = mb_cache_entry_head(cache, key); 232 hlist_bl_lock(head); 233 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 234 if (entry->e_key == key && entry->e_value == value) { 235 /* We keep hash list reference to keep entry alive */ 236 hlist_bl_del_init(&entry->e_hash_list); 237 hlist_bl_unlock(head); 238 spin_lock(&cache->c_list_lock); 239 if (!list_empty(&entry->e_list)) { 240 list_del_init(&entry->e_list); 241 cache->c_entry_count--; 242 atomic_dec(&entry->e_refcnt); 243 } 244 spin_unlock(&cache->c_list_lock); 245 mb_cache_entry_put(cache, entry); 246 return; 247 } 248 } 249 hlist_bl_unlock(head); 250 } 251 EXPORT_SYMBOL(mb_cache_entry_delete); 252 253 /* mb_cache_entry_touch - cache entry got used 254 * @cache - cache the entry belongs to 255 * @entry - entry that got used 256 * 257 * Marks entry as used to give hit higher chances of surviving in cache. 258 */ 259 void mb_cache_entry_touch(struct mb_cache *cache, 260 struct mb_cache_entry *entry) 261 { 262 entry->e_referenced = 1; 263 } 264 EXPORT_SYMBOL(mb_cache_entry_touch); 265 266 static unsigned long mb_cache_count(struct shrinker *shrink, 267 struct shrink_control *sc) 268 { 269 struct mb_cache *cache = container_of(shrink, struct mb_cache, 270 c_shrink); 271 272 /* Unlikely, but not impossible */ 273 if (unlikely(cache->c_entry_count < 0)) 274 return 0; 275 return cache->c_entry_count; 276 } 277 278 /* Shrink number of entries in cache */ 279 static unsigned long mb_cache_shrink(struct mb_cache *cache, 280 unsigned long nr_to_scan) 281 { 282 struct mb_cache_entry *entry; 283 struct hlist_bl_head *head; 284 unsigned long shrunk = 0; 285 286 spin_lock(&cache->c_list_lock); 287 while (nr_to_scan-- && !list_empty(&cache->c_list)) { 288 entry = list_first_entry(&cache->c_list, 289 struct mb_cache_entry, e_list); 290 if (entry->e_referenced) { 291 entry->e_referenced = 0; 292 list_move_tail(&entry->e_list, &cache->c_list); 293 continue; 294 } 295 list_del_init(&entry->e_list); 296 cache->c_entry_count--; 297 /* 298 * We keep LRU list reference so that entry doesn't go away 299 * from under us. 300 */ 301 spin_unlock(&cache->c_list_lock); 302 head = mb_cache_entry_head(cache, entry->e_key); 303 hlist_bl_lock(head); 304 if (!hlist_bl_unhashed(&entry->e_hash_list)) { 305 hlist_bl_del_init(&entry->e_hash_list); 306 atomic_dec(&entry->e_refcnt); 307 } 308 hlist_bl_unlock(head); 309 if (mb_cache_entry_put(cache, entry)) 310 shrunk++; 311 cond_resched(); 312 spin_lock(&cache->c_list_lock); 313 } 314 spin_unlock(&cache->c_list_lock); 315 316 return shrunk; 317 } 318 319 static unsigned long mb_cache_scan(struct shrinker *shrink, 320 struct shrink_control *sc) 321 { 322 struct mb_cache *cache = container_of(shrink, struct mb_cache, 323 c_shrink); 324 return mb_cache_shrink(cache, sc->nr_to_scan); 325 } 326 327 /* We shrink 1/X of the cache when we have too many entries in it */ 328 #define SHRINK_DIVISOR 16 329 330 static void mb_cache_shrink_worker(struct work_struct *work) 331 { 332 struct mb_cache *cache = container_of(work, struct mb_cache, 333 c_shrink_work); 334 mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR); 335 } 336 337 /* 338 * mb_cache_create - create cache 339 * @bucket_bits: log2 of the hash table size 340 * 341 * Create cache for keys with 2^bucket_bits hash entries. 342 */ 343 struct mb_cache *mb_cache_create(int bucket_bits) 344 { 345 struct mb_cache *cache; 346 unsigned long bucket_count = 1UL << bucket_bits; 347 unsigned long i; 348 349 cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL); 350 if (!cache) 351 goto err_out; 352 cache->c_bucket_bits = bucket_bits; 353 cache->c_max_entries = bucket_count << 4; 354 INIT_LIST_HEAD(&cache->c_list); 355 spin_lock_init(&cache->c_list_lock); 356 cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head), 357 GFP_KERNEL); 358 if (!cache->c_hash) { 359 kfree(cache); 360 goto err_out; 361 } 362 for (i = 0; i < bucket_count; i++) 363 INIT_HLIST_BL_HEAD(&cache->c_hash[i]); 364 365 cache->c_shrink.count_objects = mb_cache_count; 366 cache->c_shrink.scan_objects = mb_cache_scan; 367 cache->c_shrink.seeks = DEFAULT_SEEKS; 368 if (register_shrinker(&cache->c_shrink)) { 369 kfree(cache->c_hash); 370 kfree(cache); 371 goto err_out; 372 } 373 374 INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker); 375 376 return cache; 377 378 err_out: 379 return NULL; 380 } 381 EXPORT_SYMBOL(mb_cache_create); 382 383 /* 384 * mb_cache_destroy - destroy cache 385 * @cache: the cache to destroy 386 * 387 * Free all entries in cache and cache itself. Caller must make sure nobody 388 * (except shrinker) can reach @cache when calling this. 389 */ 390 void mb_cache_destroy(struct mb_cache *cache) 391 { 392 struct mb_cache_entry *entry, *next; 393 394 unregister_shrinker(&cache->c_shrink); 395 396 /* 397 * We don't bother with any locking. Cache must not be used at this 398 * point. 399 */ 400 list_for_each_entry_safe(entry, next, &cache->c_list, e_list) { 401 if (!hlist_bl_unhashed(&entry->e_hash_list)) { 402 hlist_bl_del_init(&entry->e_hash_list); 403 atomic_dec(&entry->e_refcnt); 404 } else 405 WARN_ON(1); 406 list_del(&entry->e_list); 407 WARN_ON(atomic_read(&entry->e_refcnt) != 1); 408 mb_cache_entry_put(cache, entry); 409 } 410 kfree(cache->c_hash); 411 kfree(cache); 412 } 413 EXPORT_SYMBOL(mb_cache_destroy); 414 415 static int __init mbcache_init(void) 416 { 417 mb_entry_cache = kmem_cache_create("mbcache", 418 sizeof(struct mb_cache_entry), 0, 419 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 420 if (!mb_entry_cache) 421 return -ENOMEM; 422 return 0; 423 } 424 425 static void __exit mbcache_exit(void) 426 { 427 kmem_cache_destroy(mb_entry_cache); 428 } 429 430 module_init(mbcache_init) 431 module_exit(mbcache_exit) 432 433 MODULE_AUTHOR("Jan Kara <jack@suse.cz>"); 434 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 435 MODULE_LICENSE("GPL"); 436