1 /* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6 /* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 32 #include <linux/hash.h> 33 #include <linux/fs.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/sched.h> 37 #include <linux/init.h> 38 #include <linux/mbcache.h> 39 40 41 #ifdef MB_CACHE_DEBUG 42 # define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46 #define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49 #else 50 # define mb_debug(f...) do { } while(0) 51 # define mb_assert(c) do { } while(0) 52 #endif 53 #define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64 MODULE_LICENSE("GPL"); 65 66 EXPORT_SYMBOL(mb_cache_create); 67 EXPORT_SYMBOL(mb_cache_shrink); 68 EXPORT_SYMBOL(mb_cache_destroy); 69 EXPORT_SYMBOL(mb_cache_entry_alloc); 70 EXPORT_SYMBOL(mb_cache_entry_insert); 71 EXPORT_SYMBOL(mb_cache_entry_release); 72 EXPORT_SYMBOL(mb_cache_entry_free); 73 EXPORT_SYMBOL(mb_cache_entry_get); 74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75 EXPORT_SYMBOL(mb_cache_entry_find_first); 76 EXPORT_SYMBOL(mb_cache_entry_find_next); 77 #endif 78 79 struct mb_cache { 80 struct list_head c_cache_list; 81 const char *c_name; 82 atomic_t c_entry_count; 83 int c_bucket_bits; 84 struct kmem_cache *c_entry_cache; 85 struct list_head *c_block_hash; 86 struct list_head *c_index_hash; 87 }; 88 89 90 /* 91 * Global data: list of all mbcache's, lru list, and a spinlock for 92 * accessing cache data structures on SMP machines. The lru list is 93 * global across all mbcaches. 94 */ 95 96 static LIST_HEAD(mb_cache_list); 97 static LIST_HEAD(mb_cache_lru_list); 98 static DEFINE_SPINLOCK(mb_cache_spinlock); 99 100 /* 101 * What the mbcache registers as to get shrunk dynamically. 102 */ 103 104 static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask); 105 106 static struct shrinker mb_cache_shrinker = { 107 .shrink = mb_cache_shrink_fn, 108 .seeks = DEFAULT_SEEKS, 109 }; 110 111 static inline int 112 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 113 { 114 return !list_empty(&ce->e_block_list); 115 } 116 117 118 static void 119 __mb_cache_entry_unhash(struct mb_cache_entry *ce) 120 { 121 if (__mb_cache_entry_is_hashed(ce)) { 122 list_del_init(&ce->e_block_list); 123 list_del(&ce->e_index.o_list); 124 } 125 } 126 127 128 static void 129 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 130 { 131 struct mb_cache *cache = ce->e_cache; 132 133 mb_assert(!(ce->e_used || ce->e_queued)); 134 kmem_cache_free(cache->c_entry_cache, ce); 135 atomic_dec(&cache->c_entry_count); 136 } 137 138 139 static void 140 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 141 __releases(mb_cache_spinlock) 142 { 143 /* Wake up all processes queuing for this cache entry. */ 144 if (ce->e_queued) 145 wake_up_all(&mb_cache_queue); 146 if (ce->e_used >= MB_CACHE_WRITER) 147 ce->e_used -= MB_CACHE_WRITER; 148 ce->e_used--; 149 if (!(ce->e_used || ce->e_queued)) { 150 if (!__mb_cache_entry_is_hashed(ce)) 151 goto forget; 152 mb_assert(list_empty(&ce->e_lru_list)); 153 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 154 } 155 spin_unlock(&mb_cache_spinlock); 156 return; 157 forget: 158 spin_unlock(&mb_cache_spinlock); 159 __mb_cache_entry_forget(ce, GFP_KERNEL); 160 } 161 162 163 /* 164 * mb_cache_shrink_fn() memory pressure callback 165 * 166 * This function is called by the kernel memory management when memory 167 * gets low. 168 * 169 * @shrink: (ignored) 170 * @nr_to_scan: Number of objects to scan 171 * @gfp_mask: (ignored) 172 * 173 * Returns the number of objects which are present in the cache. 174 */ 175 static int 176 mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) 177 { 178 LIST_HEAD(free_list); 179 struct mb_cache *cache; 180 struct mb_cache_entry *entry, *tmp; 181 int count = 0; 182 183 mb_debug("trying to free %d entries", nr_to_scan); 184 spin_lock(&mb_cache_spinlock); 185 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 186 struct mb_cache_entry *ce = 187 list_entry(mb_cache_lru_list.next, 188 struct mb_cache_entry, e_lru_list); 189 list_move_tail(&ce->e_lru_list, &free_list); 190 __mb_cache_entry_unhash(ce); 191 } 192 list_for_each_entry(cache, &mb_cache_list, c_cache_list) { 193 mb_debug("cache %s (%d)", cache->c_name, 194 atomic_read(&cache->c_entry_count)); 195 count += atomic_read(&cache->c_entry_count); 196 } 197 spin_unlock(&mb_cache_spinlock); 198 list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) { 199 __mb_cache_entry_forget(entry, gfp_mask); 200 } 201 return (count / 100) * sysctl_vfs_cache_pressure; 202 } 203 204 205 /* 206 * mb_cache_create() create a new cache 207 * 208 * All entries in one cache are equal size. Cache entries may be from 209 * multiple devices. If this is the first mbcache created, registers 210 * the cache with kernel memory management. Returns NULL if no more 211 * memory was available. 212 * 213 * @name: name of the cache (informal) 214 * @bucket_bits: log2(number of hash buckets) 215 */ 216 struct mb_cache * 217 mb_cache_create(const char *name, int bucket_bits) 218 { 219 int n, bucket_count = 1 << bucket_bits; 220 struct mb_cache *cache = NULL; 221 222 cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL); 223 if (!cache) 224 return NULL; 225 cache->c_name = name; 226 atomic_set(&cache->c_entry_count, 0); 227 cache->c_bucket_bits = bucket_bits; 228 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 229 GFP_KERNEL); 230 if (!cache->c_block_hash) 231 goto fail; 232 for (n=0; n<bucket_count; n++) 233 INIT_LIST_HEAD(&cache->c_block_hash[n]); 234 cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head), 235 GFP_KERNEL); 236 if (!cache->c_index_hash) 237 goto fail; 238 for (n=0; n<bucket_count; n++) 239 INIT_LIST_HEAD(&cache->c_index_hash[n]); 240 cache->c_entry_cache = kmem_cache_create(name, 241 sizeof(struct mb_cache_entry), 0, 242 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 243 if (!cache->c_entry_cache) 244 goto fail2; 245 246 spin_lock(&mb_cache_spinlock); 247 list_add(&cache->c_cache_list, &mb_cache_list); 248 spin_unlock(&mb_cache_spinlock); 249 return cache; 250 251 fail2: 252 kfree(cache->c_index_hash); 253 254 fail: 255 kfree(cache->c_block_hash); 256 kfree(cache); 257 return NULL; 258 } 259 260 261 /* 262 * mb_cache_shrink() 263 * 264 * Removes all cache entries of a device from the cache. All cache entries 265 * currently in use cannot be freed, and thus remain in the cache. All others 266 * are freed. 267 * 268 * @bdev: which device's cache entries to shrink 269 */ 270 void 271 mb_cache_shrink(struct block_device *bdev) 272 { 273 LIST_HEAD(free_list); 274 struct list_head *l, *ltmp; 275 276 spin_lock(&mb_cache_spinlock); 277 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 278 struct mb_cache_entry *ce = 279 list_entry(l, struct mb_cache_entry, e_lru_list); 280 if (ce->e_bdev == bdev) { 281 list_move_tail(&ce->e_lru_list, &free_list); 282 __mb_cache_entry_unhash(ce); 283 } 284 } 285 spin_unlock(&mb_cache_spinlock); 286 list_for_each_safe(l, ltmp, &free_list) { 287 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 288 e_lru_list), GFP_KERNEL); 289 } 290 } 291 292 293 /* 294 * mb_cache_destroy() 295 * 296 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 297 * and then destroys it. If this was the last mbcache, un-registers the 298 * mbcache from kernel memory management. 299 */ 300 void 301 mb_cache_destroy(struct mb_cache *cache) 302 { 303 LIST_HEAD(free_list); 304 struct list_head *l, *ltmp; 305 306 spin_lock(&mb_cache_spinlock); 307 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 308 struct mb_cache_entry *ce = 309 list_entry(l, struct mb_cache_entry, e_lru_list); 310 if (ce->e_cache == cache) { 311 list_move_tail(&ce->e_lru_list, &free_list); 312 __mb_cache_entry_unhash(ce); 313 } 314 } 315 list_del(&cache->c_cache_list); 316 spin_unlock(&mb_cache_spinlock); 317 318 list_for_each_safe(l, ltmp, &free_list) { 319 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 320 e_lru_list), GFP_KERNEL); 321 } 322 323 if (atomic_read(&cache->c_entry_count) > 0) { 324 mb_error("cache %s: %d orphaned entries", 325 cache->c_name, 326 atomic_read(&cache->c_entry_count)); 327 } 328 329 kmem_cache_destroy(cache->c_entry_cache); 330 331 kfree(cache->c_index_hash); 332 kfree(cache->c_block_hash); 333 kfree(cache); 334 } 335 336 337 /* 338 * mb_cache_entry_alloc() 339 * 340 * Allocates a new cache entry. The new entry will not be valid initially, 341 * and thus cannot be looked up yet. It should be filled with data, and 342 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 343 * if no more memory was available. 344 */ 345 struct mb_cache_entry * 346 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) 347 { 348 struct mb_cache_entry *ce; 349 350 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); 351 if (ce) { 352 atomic_inc(&cache->c_entry_count); 353 INIT_LIST_HEAD(&ce->e_lru_list); 354 INIT_LIST_HEAD(&ce->e_block_list); 355 ce->e_cache = cache; 356 ce->e_used = 1 + MB_CACHE_WRITER; 357 ce->e_queued = 0; 358 } 359 return ce; 360 } 361 362 363 /* 364 * mb_cache_entry_insert() 365 * 366 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 367 * the cache. After this, the cache entry can be looked up, but is not yet 368 * in the lru list as the caller still holds a handle to it. Returns 0 on 369 * success, or -EBUSY if a cache entry for that device + inode exists 370 * already (this may happen after a failed lookup, but when another process 371 * has inserted the same cache entry in the meantime). 372 * 373 * @bdev: device the cache entry belongs to 374 * @block: block number 375 * @key: lookup key 376 */ 377 int 378 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 379 sector_t block, unsigned int key) 380 { 381 struct mb_cache *cache = ce->e_cache; 382 unsigned int bucket; 383 struct list_head *l; 384 int error = -EBUSY; 385 386 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 387 cache->c_bucket_bits); 388 spin_lock(&mb_cache_spinlock); 389 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 390 struct mb_cache_entry *ce = 391 list_entry(l, struct mb_cache_entry, e_block_list); 392 if (ce->e_bdev == bdev && ce->e_block == block) 393 goto out; 394 } 395 __mb_cache_entry_unhash(ce); 396 ce->e_bdev = bdev; 397 ce->e_block = block; 398 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 399 ce->e_index.o_key = key; 400 bucket = hash_long(key, cache->c_bucket_bits); 401 list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]); 402 error = 0; 403 out: 404 spin_unlock(&mb_cache_spinlock); 405 return error; 406 } 407 408 409 /* 410 * mb_cache_entry_release() 411 * 412 * Release a handle to a cache entry. When the last handle to a cache entry 413 * is released it is either freed (if it is invalid) or otherwise inserted 414 * in to the lru list. 415 */ 416 void 417 mb_cache_entry_release(struct mb_cache_entry *ce) 418 { 419 spin_lock(&mb_cache_spinlock); 420 __mb_cache_entry_release_unlock(ce); 421 } 422 423 424 /* 425 * mb_cache_entry_free() 426 * 427 * This is equivalent to the sequence mb_cache_entry_takeout() -- 428 * mb_cache_entry_release(). 429 */ 430 void 431 mb_cache_entry_free(struct mb_cache_entry *ce) 432 { 433 spin_lock(&mb_cache_spinlock); 434 mb_assert(list_empty(&ce->e_lru_list)); 435 __mb_cache_entry_unhash(ce); 436 __mb_cache_entry_release_unlock(ce); 437 } 438 439 440 /* 441 * mb_cache_entry_get() 442 * 443 * Get a cache entry by device / block number. (There can only be one entry 444 * in the cache per device and block.) Returns NULL if no such cache entry 445 * exists. The returned cache entry is locked for exclusive access ("single 446 * writer"). 447 */ 448 struct mb_cache_entry * 449 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 450 sector_t block) 451 { 452 unsigned int bucket; 453 struct list_head *l; 454 struct mb_cache_entry *ce; 455 456 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 457 cache->c_bucket_bits); 458 spin_lock(&mb_cache_spinlock); 459 list_for_each(l, &cache->c_block_hash[bucket]) { 460 ce = list_entry(l, struct mb_cache_entry, e_block_list); 461 if (ce->e_bdev == bdev && ce->e_block == block) { 462 DEFINE_WAIT(wait); 463 464 if (!list_empty(&ce->e_lru_list)) 465 list_del_init(&ce->e_lru_list); 466 467 while (ce->e_used > 0) { 468 ce->e_queued++; 469 prepare_to_wait(&mb_cache_queue, &wait, 470 TASK_UNINTERRUPTIBLE); 471 spin_unlock(&mb_cache_spinlock); 472 schedule(); 473 spin_lock(&mb_cache_spinlock); 474 ce->e_queued--; 475 } 476 finish_wait(&mb_cache_queue, &wait); 477 ce->e_used += 1 + MB_CACHE_WRITER; 478 479 if (!__mb_cache_entry_is_hashed(ce)) { 480 __mb_cache_entry_release_unlock(ce); 481 return NULL; 482 } 483 goto cleanup; 484 } 485 } 486 ce = NULL; 487 488 cleanup: 489 spin_unlock(&mb_cache_spinlock); 490 return ce; 491 } 492 493 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 494 495 static struct mb_cache_entry * 496 __mb_cache_entry_find(struct list_head *l, struct list_head *head, 497 struct block_device *bdev, unsigned int key) 498 { 499 while (l != head) { 500 struct mb_cache_entry *ce = 501 list_entry(l, struct mb_cache_entry, e_index.o_list); 502 if (ce->e_bdev == bdev && ce->e_index.o_key == key) { 503 DEFINE_WAIT(wait); 504 505 if (!list_empty(&ce->e_lru_list)) 506 list_del_init(&ce->e_lru_list); 507 508 /* Incrementing before holding the lock gives readers 509 priority over writers. */ 510 ce->e_used++; 511 while (ce->e_used >= MB_CACHE_WRITER) { 512 ce->e_queued++; 513 prepare_to_wait(&mb_cache_queue, &wait, 514 TASK_UNINTERRUPTIBLE); 515 spin_unlock(&mb_cache_spinlock); 516 schedule(); 517 spin_lock(&mb_cache_spinlock); 518 ce->e_queued--; 519 } 520 finish_wait(&mb_cache_queue, &wait); 521 522 if (!__mb_cache_entry_is_hashed(ce)) { 523 __mb_cache_entry_release_unlock(ce); 524 spin_lock(&mb_cache_spinlock); 525 return ERR_PTR(-EAGAIN); 526 } 527 return ce; 528 } 529 l = l->next; 530 } 531 return NULL; 532 } 533 534 535 /* 536 * mb_cache_entry_find_first() 537 * 538 * Find the first cache entry on a given device with a certain key in 539 * an additional index. Additonal matches can be found with 540 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 541 * returned cache entry is locked for shared access ("multiple readers"). 542 * 543 * @cache: the cache to search 544 * @bdev: the device the cache entry should belong to 545 * @key: the key in the index 546 */ 547 struct mb_cache_entry * 548 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev, 549 unsigned int key) 550 { 551 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 552 struct list_head *l; 553 struct mb_cache_entry *ce; 554 555 spin_lock(&mb_cache_spinlock); 556 l = cache->c_index_hash[bucket].next; 557 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 558 spin_unlock(&mb_cache_spinlock); 559 return ce; 560 } 561 562 563 /* 564 * mb_cache_entry_find_next() 565 * 566 * Find the next cache entry on a given device with a certain key in an 567 * additional index. Returns NULL if no match could be found. The previous 568 * entry is atomatically released, so that mb_cache_entry_find_next() can 569 * be called like this: 570 * 571 * entry = mb_cache_entry_find_first(); 572 * while (entry) { 573 * ... 574 * entry = mb_cache_entry_find_next(entry, ...); 575 * } 576 * 577 * @prev: The previous match 578 * @bdev: the device the cache entry should belong to 579 * @key: the key in the index 580 */ 581 struct mb_cache_entry * 582 mb_cache_entry_find_next(struct mb_cache_entry *prev, 583 struct block_device *bdev, unsigned int key) 584 { 585 struct mb_cache *cache = prev->e_cache; 586 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 587 struct list_head *l; 588 struct mb_cache_entry *ce; 589 590 spin_lock(&mb_cache_spinlock); 591 l = prev->e_index.o_list.next; 592 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 593 __mb_cache_entry_release_unlock(prev); 594 return ce; 595 } 596 597 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 598 599 static int __init init_mbcache(void) 600 { 601 register_shrinker(&mb_cache_shrinker); 602 return 0; 603 } 604 605 static void __exit exit_mbcache(void) 606 { 607 unregister_shrinker(&mb_cache_shrinker); 608 } 609 610 module_init(init_mbcache) 611 module_exit(exit_mbcache) 612 613