xref: /linux/fs/mbcache.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4  */
5 
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
39 
40 
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43 		printk(KERN_DEBUG f); \
44 		printk("\n"); \
45 	} while (0)
46 #define mb_assert(c) do { if (!(c)) \
47 		printk(KERN_ERR "assertion " #c " failed\n"); \
48 	} while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54 		printk(KERN_ERR f); \
55 		printk("\n"); \
56 	} while(0)
57 
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59 
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61 
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
65 
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
78 
79 struct mb_cache {
80 	struct list_head		c_cache_list;
81 	const char			*c_name;
82 	atomic_t			c_entry_count;
83 	int				c_bucket_bits;
84 	struct kmem_cache		*c_entry_cache;
85 	struct list_head		*c_block_hash;
86 	struct list_head		*c_index_hash;
87 };
88 
89 
90 /*
91  * Global data: list of all mbcache's, lru list, and a spinlock for
92  * accessing cache data structures on SMP machines. The lru list is
93  * global across all mbcaches.
94  */
95 
96 static LIST_HEAD(mb_cache_list);
97 static LIST_HEAD(mb_cache_lru_list);
98 static DEFINE_SPINLOCK(mb_cache_spinlock);
99 
100 /*
101  * What the mbcache registers as to get shrunk dynamically.
102  */
103 
104 static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask);
105 
106 static struct shrinker mb_cache_shrinker = {
107 	.shrink = mb_cache_shrink_fn,
108 	.seeks = DEFAULT_SEEKS,
109 };
110 
111 static inline int
112 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
113 {
114 	return !list_empty(&ce->e_block_list);
115 }
116 
117 
118 static void
119 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
120 {
121 	if (__mb_cache_entry_is_hashed(ce)) {
122 		list_del_init(&ce->e_block_list);
123 		list_del(&ce->e_index.o_list);
124 	}
125 }
126 
127 
128 static void
129 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
130 {
131 	struct mb_cache *cache = ce->e_cache;
132 
133 	mb_assert(!(ce->e_used || ce->e_queued));
134 	kmem_cache_free(cache->c_entry_cache, ce);
135 	atomic_dec(&cache->c_entry_count);
136 }
137 
138 
139 static void
140 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
141 	__releases(mb_cache_spinlock)
142 {
143 	/* Wake up all processes queuing for this cache entry. */
144 	if (ce->e_queued)
145 		wake_up_all(&mb_cache_queue);
146 	if (ce->e_used >= MB_CACHE_WRITER)
147 		ce->e_used -= MB_CACHE_WRITER;
148 	ce->e_used--;
149 	if (!(ce->e_used || ce->e_queued)) {
150 		if (!__mb_cache_entry_is_hashed(ce))
151 			goto forget;
152 		mb_assert(list_empty(&ce->e_lru_list));
153 		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
154 	}
155 	spin_unlock(&mb_cache_spinlock);
156 	return;
157 forget:
158 	spin_unlock(&mb_cache_spinlock);
159 	__mb_cache_entry_forget(ce, GFP_KERNEL);
160 }
161 
162 
163 /*
164  * mb_cache_shrink_fn()  memory pressure callback
165  *
166  * This function is called by the kernel memory management when memory
167  * gets low.
168  *
169  * @shrink: (ignored)
170  * @nr_to_scan: Number of objects to scan
171  * @gfp_mask: (ignored)
172  *
173  * Returns the number of objects which are present in the cache.
174  */
175 static int
176 mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
177 {
178 	LIST_HEAD(free_list);
179 	struct mb_cache *cache;
180 	struct mb_cache_entry *entry, *tmp;
181 	int count = 0;
182 
183 	mb_debug("trying to free %d entries", nr_to_scan);
184 	spin_lock(&mb_cache_spinlock);
185 	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
186 		struct mb_cache_entry *ce =
187 			list_entry(mb_cache_lru_list.next,
188 				   struct mb_cache_entry, e_lru_list);
189 		list_move_tail(&ce->e_lru_list, &free_list);
190 		__mb_cache_entry_unhash(ce);
191 	}
192 	list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
193 		mb_debug("cache %s (%d)", cache->c_name,
194 			  atomic_read(&cache->c_entry_count));
195 		count += atomic_read(&cache->c_entry_count);
196 	}
197 	spin_unlock(&mb_cache_spinlock);
198 	list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
199 		__mb_cache_entry_forget(entry, gfp_mask);
200 	}
201 	return (count / 100) * sysctl_vfs_cache_pressure;
202 }
203 
204 
205 /*
206  * mb_cache_create()  create a new cache
207  *
208  * All entries in one cache are equal size. Cache entries may be from
209  * multiple devices. If this is the first mbcache created, registers
210  * the cache with kernel memory management. Returns NULL if no more
211  * memory was available.
212  *
213  * @name: name of the cache (informal)
214  * @bucket_bits: log2(number of hash buckets)
215  */
216 struct mb_cache *
217 mb_cache_create(const char *name, int bucket_bits)
218 {
219 	int n, bucket_count = 1 << bucket_bits;
220 	struct mb_cache *cache = NULL;
221 
222 	cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
223 	if (!cache)
224 		return NULL;
225 	cache->c_name = name;
226 	atomic_set(&cache->c_entry_count, 0);
227 	cache->c_bucket_bits = bucket_bits;
228 	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
229 	                              GFP_KERNEL);
230 	if (!cache->c_block_hash)
231 		goto fail;
232 	for (n=0; n<bucket_count; n++)
233 		INIT_LIST_HEAD(&cache->c_block_hash[n]);
234 	cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
235 				      GFP_KERNEL);
236 	if (!cache->c_index_hash)
237 		goto fail;
238 	for (n=0; n<bucket_count; n++)
239 		INIT_LIST_HEAD(&cache->c_index_hash[n]);
240 	cache->c_entry_cache = kmem_cache_create(name,
241 		sizeof(struct mb_cache_entry), 0,
242 		SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
243 	if (!cache->c_entry_cache)
244 		goto fail2;
245 
246 	spin_lock(&mb_cache_spinlock);
247 	list_add(&cache->c_cache_list, &mb_cache_list);
248 	spin_unlock(&mb_cache_spinlock);
249 	return cache;
250 
251 fail2:
252 	kfree(cache->c_index_hash);
253 
254 fail:
255 	kfree(cache->c_block_hash);
256 	kfree(cache);
257 	return NULL;
258 }
259 
260 
261 /*
262  * mb_cache_shrink()
263  *
264  * Removes all cache entries of a device from the cache. All cache entries
265  * currently in use cannot be freed, and thus remain in the cache. All others
266  * are freed.
267  *
268  * @bdev: which device's cache entries to shrink
269  */
270 void
271 mb_cache_shrink(struct block_device *bdev)
272 {
273 	LIST_HEAD(free_list);
274 	struct list_head *l, *ltmp;
275 
276 	spin_lock(&mb_cache_spinlock);
277 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
278 		struct mb_cache_entry *ce =
279 			list_entry(l, struct mb_cache_entry, e_lru_list);
280 		if (ce->e_bdev == bdev) {
281 			list_move_tail(&ce->e_lru_list, &free_list);
282 			__mb_cache_entry_unhash(ce);
283 		}
284 	}
285 	spin_unlock(&mb_cache_spinlock);
286 	list_for_each_safe(l, ltmp, &free_list) {
287 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
288 						   e_lru_list), GFP_KERNEL);
289 	}
290 }
291 
292 
293 /*
294  * mb_cache_destroy()
295  *
296  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
297  * and then destroys it. If this was the last mbcache, un-registers the
298  * mbcache from kernel memory management.
299  */
300 void
301 mb_cache_destroy(struct mb_cache *cache)
302 {
303 	LIST_HEAD(free_list);
304 	struct list_head *l, *ltmp;
305 
306 	spin_lock(&mb_cache_spinlock);
307 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
308 		struct mb_cache_entry *ce =
309 			list_entry(l, struct mb_cache_entry, e_lru_list);
310 		if (ce->e_cache == cache) {
311 			list_move_tail(&ce->e_lru_list, &free_list);
312 			__mb_cache_entry_unhash(ce);
313 		}
314 	}
315 	list_del(&cache->c_cache_list);
316 	spin_unlock(&mb_cache_spinlock);
317 
318 	list_for_each_safe(l, ltmp, &free_list) {
319 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
320 						   e_lru_list), GFP_KERNEL);
321 	}
322 
323 	if (atomic_read(&cache->c_entry_count) > 0) {
324 		mb_error("cache %s: %d orphaned entries",
325 			  cache->c_name,
326 			  atomic_read(&cache->c_entry_count));
327 	}
328 
329 	kmem_cache_destroy(cache->c_entry_cache);
330 
331 	kfree(cache->c_index_hash);
332 	kfree(cache->c_block_hash);
333 	kfree(cache);
334 }
335 
336 
337 /*
338  * mb_cache_entry_alloc()
339  *
340  * Allocates a new cache entry. The new entry will not be valid initially,
341  * and thus cannot be looked up yet. It should be filled with data, and
342  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
343  * if no more memory was available.
344  */
345 struct mb_cache_entry *
346 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
347 {
348 	struct mb_cache_entry *ce;
349 
350 	ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
351 	if (ce) {
352 		atomic_inc(&cache->c_entry_count);
353 		INIT_LIST_HEAD(&ce->e_lru_list);
354 		INIT_LIST_HEAD(&ce->e_block_list);
355 		ce->e_cache = cache;
356 		ce->e_used = 1 + MB_CACHE_WRITER;
357 		ce->e_queued = 0;
358 	}
359 	return ce;
360 }
361 
362 
363 /*
364  * mb_cache_entry_insert()
365  *
366  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
367  * the cache. After this, the cache entry can be looked up, but is not yet
368  * in the lru list as the caller still holds a handle to it. Returns 0 on
369  * success, or -EBUSY if a cache entry for that device + inode exists
370  * already (this may happen after a failed lookup, but when another process
371  * has inserted the same cache entry in the meantime).
372  *
373  * @bdev: device the cache entry belongs to
374  * @block: block number
375  * @key: lookup key
376  */
377 int
378 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
379 		      sector_t block, unsigned int key)
380 {
381 	struct mb_cache *cache = ce->e_cache;
382 	unsigned int bucket;
383 	struct list_head *l;
384 	int error = -EBUSY;
385 
386 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
387 			   cache->c_bucket_bits);
388 	spin_lock(&mb_cache_spinlock);
389 	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
390 		struct mb_cache_entry *ce =
391 			list_entry(l, struct mb_cache_entry, e_block_list);
392 		if (ce->e_bdev == bdev && ce->e_block == block)
393 			goto out;
394 	}
395 	__mb_cache_entry_unhash(ce);
396 	ce->e_bdev = bdev;
397 	ce->e_block = block;
398 	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
399 	ce->e_index.o_key = key;
400 	bucket = hash_long(key, cache->c_bucket_bits);
401 	list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
402 	error = 0;
403 out:
404 	spin_unlock(&mb_cache_spinlock);
405 	return error;
406 }
407 
408 
409 /*
410  * mb_cache_entry_release()
411  *
412  * Release a handle to a cache entry. When the last handle to a cache entry
413  * is released it is either freed (if it is invalid) or otherwise inserted
414  * in to the lru list.
415  */
416 void
417 mb_cache_entry_release(struct mb_cache_entry *ce)
418 {
419 	spin_lock(&mb_cache_spinlock);
420 	__mb_cache_entry_release_unlock(ce);
421 }
422 
423 
424 /*
425  * mb_cache_entry_free()
426  *
427  * This is equivalent to the sequence mb_cache_entry_takeout() --
428  * mb_cache_entry_release().
429  */
430 void
431 mb_cache_entry_free(struct mb_cache_entry *ce)
432 {
433 	spin_lock(&mb_cache_spinlock);
434 	mb_assert(list_empty(&ce->e_lru_list));
435 	__mb_cache_entry_unhash(ce);
436 	__mb_cache_entry_release_unlock(ce);
437 }
438 
439 
440 /*
441  * mb_cache_entry_get()
442  *
443  * Get a cache entry  by device / block number. (There can only be one entry
444  * in the cache per device and block.) Returns NULL if no such cache entry
445  * exists. The returned cache entry is locked for exclusive access ("single
446  * writer").
447  */
448 struct mb_cache_entry *
449 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
450 		   sector_t block)
451 {
452 	unsigned int bucket;
453 	struct list_head *l;
454 	struct mb_cache_entry *ce;
455 
456 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
457 			   cache->c_bucket_bits);
458 	spin_lock(&mb_cache_spinlock);
459 	list_for_each(l, &cache->c_block_hash[bucket]) {
460 		ce = list_entry(l, struct mb_cache_entry, e_block_list);
461 		if (ce->e_bdev == bdev && ce->e_block == block) {
462 			DEFINE_WAIT(wait);
463 
464 			if (!list_empty(&ce->e_lru_list))
465 				list_del_init(&ce->e_lru_list);
466 
467 			while (ce->e_used > 0) {
468 				ce->e_queued++;
469 				prepare_to_wait(&mb_cache_queue, &wait,
470 						TASK_UNINTERRUPTIBLE);
471 				spin_unlock(&mb_cache_spinlock);
472 				schedule();
473 				spin_lock(&mb_cache_spinlock);
474 				ce->e_queued--;
475 			}
476 			finish_wait(&mb_cache_queue, &wait);
477 			ce->e_used += 1 + MB_CACHE_WRITER;
478 
479 			if (!__mb_cache_entry_is_hashed(ce)) {
480 				__mb_cache_entry_release_unlock(ce);
481 				return NULL;
482 			}
483 			goto cleanup;
484 		}
485 	}
486 	ce = NULL;
487 
488 cleanup:
489 	spin_unlock(&mb_cache_spinlock);
490 	return ce;
491 }
492 
493 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
494 
495 static struct mb_cache_entry *
496 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
497 		      struct block_device *bdev, unsigned int key)
498 {
499 	while (l != head) {
500 		struct mb_cache_entry *ce =
501 			list_entry(l, struct mb_cache_entry, e_index.o_list);
502 		if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
503 			DEFINE_WAIT(wait);
504 
505 			if (!list_empty(&ce->e_lru_list))
506 				list_del_init(&ce->e_lru_list);
507 
508 			/* Incrementing before holding the lock gives readers
509 			   priority over writers. */
510 			ce->e_used++;
511 			while (ce->e_used >= MB_CACHE_WRITER) {
512 				ce->e_queued++;
513 				prepare_to_wait(&mb_cache_queue, &wait,
514 						TASK_UNINTERRUPTIBLE);
515 				spin_unlock(&mb_cache_spinlock);
516 				schedule();
517 				spin_lock(&mb_cache_spinlock);
518 				ce->e_queued--;
519 			}
520 			finish_wait(&mb_cache_queue, &wait);
521 
522 			if (!__mb_cache_entry_is_hashed(ce)) {
523 				__mb_cache_entry_release_unlock(ce);
524 				spin_lock(&mb_cache_spinlock);
525 				return ERR_PTR(-EAGAIN);
526 			}
527 			return ce;
528 		}
529 		l = l->next;
530 	}
531 	return NULL;
532 }
533 
534 
535 /*
536  * mb_cache_entry_find_first()
537  *
538  * Find the first cache entry on a given device with a certain key in
539  * an additional index. Additonal matches can be found with
540  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
541  * returned cache entry is locked for shared access ("multiple readers").
542  *
543  * @cache: the cache to search
544  * @bdev: the device the cache entry should belong to
545  * @key: the key in the index
546  */
547 struct mb_cache_entry *
548 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
549 			  unsigned int key)
550 {
551 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
552 	struct list_head *l;
553 	struct mb_cache_entry *ce;
554 
555 	spin_lock(&mb_cache_spinlock);
556 	l = cache->c_index_hash[bucket].next;
557 	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
558 	spin_unlock(&mb_cache_spinlock);
559 	return ce;
560 }
561 
562 
563 /*
564  * mb_cache_entry_find_next()
565  *
566  * Find the next cache entry on a given device with a certain key in an
567  * additional index. Returns NULL if no match could be found. The previous
568  * entry is atomatically released, so that mb_cache_entry_find_next() can
569  * be called like this:
570  *
571  * entry = mb_cache_entry_find_first();
572  * while (entry) {
573  * 	...
574  *	entry = mb_cache_entry_find_next(entry, ...);
575  * }
576  *
577  * @prev: The previous match
578  * @bdev: the device the cache entry should belong to
579  * @key: the key in the index
580  */
581 struct mb_cache_entry *
582 mb_cache_entry_find_next(struct mb_cache_entry *prev,
583 			 struct block_device *bdev, unsigned int key)
584 {
585 	struct mb_cache *cache = prev->e_cache;
586 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
587 	struct list_head *l;
588 	struct mb_cache_entry *ce;
589 
590 	spin_lock(&mb_cache_spinlock);
591 	l = prev->e_index.o_list.next;
592 	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
593 	__mb_cache_entry_release_unlock(prev);
594 	return ce;
595 }
596 
597 #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
598 
599 static int __init init_mbcache(void)
600 {
601 	register_shrinker(&mb_cache_shrinker);
602 	return 0;
603 }
604 
605 static void __exit exit_mbcache(void)
606 {
607 	unregister_shrinker(&mb_cache_shrinker);
608 }
609 
610 module_init(init_mbcache)
611 module_exit(exit_mbcache)
612 
613