xref: /linux/fs/mbcache.c (revision c65c3f3a2cbf21ed429d9b9c725bdb5dc6abf4cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/spinlock.h>
3 #include <linux/slab.h>
4 #include <linux/list.h>
5 #include <linux/list_bl.h>
6 #include <linux/module.h>
7 #include <linux/sched.h>
8 #include <linux/workqueue.h>
9 #include <linux/mbcache.h>
10 
11 /*
12  * Mbcache is a simple key-value store. Keys need not be unique, however
13  * key-value pairs are expected to be unique (we use this fact in
14  * mb_cache_entry_delete_or_get()).
15  *
16  * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
17  * Ext4 also uses it for deduplication of xattr values stored in inodes.
18  * They use hash of data as a key and provide a value that may represent a
19  * block or inode number. That's why keys need not be unique (hash of different
20  * data may be the same). However user provided value always uniquely
21  * identifies a cache entry.
22  *
23  * We provide functions for creation and removal of entries, search by key,
24  * and a special "delete entry with given key-value pair" operation. Fixed
25  * size hash table is used for fast key lookups.
26  */
27 
28 struct mb_cache {
29 	/* Hash table of entries */
30 	struct hlist_bl_head	*c_hash;
31 	/* log2 of hash table size */
32 	int			c_bucket_bits;
33 	/* Maximum entries in cache to avoid degrading hash too much */
34 	unsigned long		c_max_entries;
35 	/* Protects c_list, c_entry_count */
36 	spinlock_t		c_list_lock;
37 	struct list_head	c_list;
38 	/* Number of entries in cache */
39 	unsigned long		c_entry_count;
40 	struct shrinker		c_shrink;
41 	/* Work for shrinking when the cache has too many entries */
42 	struct work_struct	c_shrink_work;
43 };
44 
45 static struct kmem_cache *mb_entry_cache;
46 
47 static unsigned long mb_cache_shrink(struct mb_cache *cache,
48 				     unsigned long nr_to_scan);
49 
50 static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
51 							u32 key)
52 {
53 	return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
54 }
55 
56 /*
57  * Number of entries to reclaim synchronously when there are too many entries
58  * in cache
59  */
60 #define SYNC_SHRINK_BATCH 64
61 
62 /*
63  * mb_cache_entry_create - create entry in cache
64  * @cache - cache where the entry should be created
65  * @mask - gfp mask with which the entry should be allocated
66  * @key - key of the entry
67  * @value - value of the entry
68  * @reusable - is the entry reusable by others?
69  *
70  * Creates entry in @cache with key @key and value @value. The function returns
71  * -EBUSY if entry with the same key and value already exists in cache.
72  * Otherwise 0 is returned.
73  */
74 int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
75 			  u64 value, bool reusable)
76 {
77 	struct mb_cache_entry *entry, *dup;
78 	struct hlist_bl_node *dup_node;
79 	struct hlist_bl_head *head;
80 
81 	/* Schedule background reclaim if there are too many entries */
82 	if (cache->c_entry_count >= cache->c_max_entries)
83 		schedule_work(&cache->c_shrink_work);
84 	/* Do some sync reclaim if background reclaim cannot keep up */
85 	if (cache->c_entry_count >= 2*cache->c_max_entries)
86 		mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
87 
88 	entry = kmem_cache_alloc(mb_entry_cache, mask);
89 	if (!entry)
90 		return -ENOMEM;
91 
92 	INIT_LIST_HEAD(&entry->e_list);
93 	/* Initial hash reference */
94 	atomic_set(&entry->e_refcnt, 1);
95 	entry->e_key = key;
96 	entry->e_value = value;
97 	entry->e_reusable = reusable;
98 	entry->e_referenced = 0;
99 	head = mb_cache_entry_head(cache, key);
100 	hlist_bl_lock(head);
101 	hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
102 		if (dup->e_key == key && dup->e_value == value) {
103 			hlist_bl_unlock(head);
104 			kmem_cache_free(mb_entry_cache, entry);
105 			return -EBUSY;
106 		}
107 	}
108 	hlist_bl_add_head(&entry->e_hash_list, head);
109 	/*
110 	 * Add entry to LRU list before it can be found by
111 	 * mb_cache_entry_delete() to avoid races
112 	 */
113 	spin_lock(&cache->c_list_lock);
114 	list_add_tail(&entry->e_list, &cache->c_list);
115 	cache->c_entry_count++;
116 	spin_unlock(&cache->c_list_lock);
117 	hlist_bl_unlock(head);
118 
119 	return 0;
120 }
121 EXPORT_SYMBOL(mb_cache_entry_create);
122 
123 void __mb_cache_entry_free(struct mb_cache *cache, struct mb_cache_entry *entry)
124 {
125 	struct hlist_bl_head *head;
126 
127 	head = mb_cache_entry_head(cache, entry->e_key);
128 	hlist_bl_lock(head);
129 	hlist_bl_del(&entry->e_hash_list);
130 	hlist_bl_unlock(head);
131 	kmem_cache_free(mb_entry_cache, entry);
132 }
133 EXPORT_SYMBOL(__mb_cache_entry_free);
134 
135 /*
136  * mb_cache_entry_wait_unused - wait to be the last user of the entry
137  *
138  * @entry - entry to work on
139  *
140  * Wait to be the last user of the entry.
141  */
142 void mb_cache_entry_wait_unused(struct mb_cache_entry *entry)
143 {
144 	wait_var_event(&entry->e_refcnt, atomic_read(&entry->e_refcnt) <= 2);
145 }
146 EXPORT_SYMBOL(mb_cache_entry_wait_unused);
147 
148 static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
149 					   struct mb_cache_entry *entry,
150 					   u32 key)
151 {
152 	struct mb_cache_entry *old_entry = entry;
153 	struct hlist_bl_node *node;
154 	struct hlist_bl_head *head;
155 
156 	head = mb_cache_entry_head(cache, key);
157 	hlist_bl_lock(head);
158 	if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
159 		node = entry->e_hash_list.next;
160 	else
161 		node = hlist_bl_first(head);
162 	while (node) {
163 		entry = hlist_bl_entry(node, struct mb_cache_entry,
164 				       e_hash_list);
165 		if (entry->e_key == key && entry->e_reusable &&
166 		    atomic_inc_not_zero(&entry->e_refcnt))
167 			goto out;
168 		node = node->next;
169 	}
170 	entry = NULL;
171 out:
172 	hlist_bl_unlock(head);
173 	if (old_entry)
174 		mb_cache_entry_put(cache, old_entry);
175 
176 	return entry;
177 }
178 
179 /*
180  * mb_cache_entry_find_first - find the first reusable entry with the given key
181  * @cache: cache where we should search
182  * @key: key to look for
183  *
184  * Search in @cache for a reusable entry with key @key. Grabs reference to the
185  * first reusable entry found and returns the entry.
186  */
187 struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
188 						 u32 key)
189 {
190 	return __entry_find(cache, NULL, key);
191 }
192 EXPORT_SYMBOL(mb_cache_entry_find_first);
193 
194 /*
195  * mb_cache_entry_find_next - find next reusable entry with the same key
196  * @cache: cache where we should search
197  * @entry: entry to start search from
198  *
199  * Finds next reusable entry in the hash chain which has the same key as @entry.
200  * If @entry is unhashed (which can happen when deletion of entry races with the
201  * search), finds the first reusable entry in the hash chain. The function drops
202  * reference to @entry and returns with a reference to the found entry.
203  */
204 struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
205 						struct mb_cache_entry *entry)
206 {
207 	return __entry_find(cache, entry, entry->e_key);
208 }
209 EXPORT_SYMBOL(mb_cache_entry_find_next);
210 
211 /*
212  * mb_cache_entry_get - get a cache entry by value (and key)
213  * @cache - cache we work with
214  * @key - key
215  * @value - value
216  */
217 struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
218 					  u64 value)
219 {
220 	struct hlist_bl_node *node;
221 	struct hlist_bl_head *head;
222 	struct mb_cache_entry *entry;
223 
224 	head = mb_cache_entry_head(cache, key);
225 	hlist_bl_lock(head);
226 	hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
227 		if (entry->e_key == key && entry->e_value == value &&
228 		    atomic_inc_not_zero(&entry->e_refcnt))
229 			goto out;
230 	}
231 	entry = NULL;
232 out:
233 	hlist_bl_unlock(head);
234 	return entry;
235 }
236 EXPORT_SYMBOL(mb_cache_entry_get);
237 
238 /* mb_cache_entry_delete_or_get - remove a cache entry if it has no users
239  * @cache - cache we work with
240  * @key - key
241  * @value - value
242  *
243  * Remove entry from cache @cache with key @key and value @value. The removal
244  * happens only if the entry is unused. The function returns NULL in case the
245  * entry was successfully removed or there's no entry in cache. Otherwise the
246  * function grabs reference of the entry that we failed to delete because it
247  * still has users and return it.
248  */
249 struct mb_cache_entry *mb_cache_entry_delete_or_get(struct mb_cache *cache,
250 						    u32 key, u64 value)
251 {
252 	struct mb_cache_entry *entry;
253 
254 	entry = mb_cache_entry_get(cache, key, value);
255 	if (!entry)
256 		return NULL;
257 
258 	/*
259 	 * Drop the ref we got from mb_cache_entry_get() and the initial hash
260 	 * ref if we are the last user
261 	 */
262 	if (atomic_cmpxchg(&entry->e_refcnt, 2, 0) != 2)
263 		return entry;
264 
265 	spin_lock(&cache->c_list_lock);
266 	if (!list_empty(&entry->e_list))
267 		list_del_init(&entry->e_list);
268 	cache->c_entry_count--;
269 	spin_unlock(&cache->c_list_lock);
270 	__mb_cache_entry_free(cache, entry);
271 	return NULL;
272 }
273 EXPORT_SYMBOL(mb_cache_entry_delete_or_get);
274 
275 /* mb_cache_entry_touch - cache entry got used
276  * @cache - cache the entry belongs to
277  * @entry - entry that got used
278  *
279  * Marks entry as used to give hit higher chances of surviving in cache.
280  */
281 void mb_cache_entry_touch(struct mb_cache *cache,
282 			  struct mb_cache_entry *entry)
283 {
284 	entry->e_referenced = 1;
285 }
286 EXPORT_SYMBOL(mb_cache_entry_touch);
287 
288 static unsigned long mb_cache_count(struct shrinker *shrink,
289 				    struct shrink_control *sc)
290 {
291 	struct mb_cache *cache = container_of(shrink, struct mb_cache,
292 					      c_shrink);
293 
294 	return cache->c_entry_count;
295 }
296 
297 /* Shrink number of entries in cache */
298 static unsigned long mb_cache_shrink(struct mb_cache *cache,
299 				     unsigned long nr_to_scan)
300 {
301 	struct mb_cache_entry *entry;
302 	unsigned long shrunk = 0;
303 
304 	spin_lock(&cache->c_list_lock);
305 	while (nr_to_scan-- && !list_empty(&cache->c_list)) {
306 		entry = list_first_entry(&cache->c_list,
307 					 struct mb_cache_entry, e_list);
308 		/* Drop initial hash reference if there is no user */
309 		if (entry->e_referenced ||
310 		    atomic_cmpxchg(&entry->e_refcnt, 1, 0) != 1) {
311 			entry->e_referenced = 0;
312 			list_move_tail(&entry->e_list, &cache->c_list);
313 			continue;
314 		}
315 		list_del_init(&entry->e_list);
316 		cache->c_entry_count--;
317 		spin_unlock(&cache->c_list_lock);
318 		__mb_cache_entry_free(cache, entry);
319 		shrunk++;
320 		cond_resched();
321 		spin_lock(&cache->c_list_lock);
322 	}
323 	spin_unlock(&cache->c_list_lock);
324 
325 	return shrunk;
326 }
327 
328 static unsigned long mb_cache_scan(struct shrinker *shrink,
329 				   struct shrink_control *sc)
330 {
331 	struct mb_cache *cache = container_of(shrink, struct mb_cache,
332 					      c_shrink);
333 	return mb_cache_shrink(cache, sc->nr_to_scan);
334 }
335 
336 /* We shrink 1/X of the cache when we have too many entries in it */
337 #define SHRINK_DIVISOR 16
338 
339 static void mb_cache_shrink_worker(struct work_struct *work)
340 {
341 	struct mb_cache *cache = container_of(work, struct mb_cache,
342 					      c_shrink_work);
343 	mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
344 }
345 
346 /*
347  * mb_cache_create - create cache
348  * @bucket_bits: log2 of the hash table size
349  *
350  * Create cache for keys with 2^bucket_bits hash entries.
351  */
352 struct mb_cache *mb_cache_create(int bucket_bits)
353 {
354 	struct mb_cache *cache;
355 	unsigned long bucket_count = 1UL << bucket_bits;
356 	unsigned long i;
357 
358 	cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
359 	if (!cache)
360 		goto err_out;
361 	cache->c_bucket_bits = bucket_bits;
362 	cache->c_max_entries = bucket_count << 4;
363 	INIT_LIST_HEAD(&cache->c_list);
364 	spin_lock_init(&cache->c_list_lock);
365 	cache->c_hash = kmalloc_array(bucket_count,
366 				      sizeof(struct hlist_bl_head),
367 				      GFP_KERNEL);
368 	if (!cache->c_hash) {
369 		kfree(cache);
370 		goto err_out;
371 	}
372 	for (i = 0; i < bucket_count; i++)
373 		INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
374 
375 	cache->c_shrink.count_objects = mb_cache_count;
376 	cache->c_shrink.scan_objects = mb_cache_scan;
377 	cache->c_shrink.seeks = DEFAULT_SEEKS;
378 	if (register_shrinker(&cache->c_shrink, "mbcache-shrinker")) {
379 		kfree(cache->c_hash);
380 		kfree(cache);
381 		goto err_out;
382 	}
383 
384 	INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
385 
386 	return cache;
387 
388 err_out:
389 	return NULL;
390 }
391 EXPORT_SYMBOL(mb_cache_create);
392 
393 /*
394  * mb_cache_destroy - destroy cache
395  * @cache: the cache to destroy
396  *
397  * Free all entries in cache and cache itself. Caller must make sure nobody
398  * (except shrinker) can reach @cache when calling this.
399  */
400 void mb_cache_destroy(struct mb_cache *cache)
401 {
402 	struct mb_cache_entry *entry, *next;
403 
404 	unregister_shrinker(&cache->c_shrink);
405 
406 	/*
407 	 * We don't bother with any locking. Cache must not be used at this
408 	 * point.
409 	 */
410 	list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
411 		list_del(&entry->e_list);
412 		WARN_ON(atomic_read(&entry->e_refcnt) != 1);
413 		mb_cache_entry_put(cache, entry);
414 	}
415 	kfree(cache->c_hash);
416 	kfree(cache);
417 }
418 EXPORT_SYMBOL(mb_cache_destroy);
419 
420 static int __init mbcache_init(void)
421 {
422 	mb_entry_cache = kmem_cache_create("mbcache",
423 				sizeof(struct mb_cache_entry), 0,
424 				SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
425 	if (!mb_entry_cache)
426 		return -ENOMEM;
427 	return 0;
428 }
429 
430 static void __exit mbcache_exit(void)
431 {
432 	kmem_cache_destroy(mb_entry_cache);
433 }
434 
435 module_init(mbcache_init)
436 module_exit(mbcache_exit)
437 
438 MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
439 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
440 MODULE_LICENSE("GPL");
441