1 /* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6 /* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 32 #include <linux/hash.h> 33 #include <linux/fs.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/sched.h> 37 #include <linux/init.h> 38 #include <linux/mbcache.h> 39 40 41 #ifdef MB_CACHE_DEBUG 42 # define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46 #define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49 #else 50 # define mb_debug(f...) do { } while(0) 51 # define mb_assert(c) do { } while(0) 52 #endif 53 #define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64 MODULE_LICENSE("GPL"); 65 66 EXPORT_SYMBOL(mb_cache_create); 67 EXPORT_SYMBOL(mb_cache_shrink); 68 EXPORT_SYMBOL(mb_cache_destroy); 69 EXPORT_SYMBOL(mb_cache_entry_alloc); 70 EXPORT_SYMBOL(mb_cache_entry_insert); 71 EXPORT_SYMBOL(mb_cache_entry_release); 72 EXPORT_SYMBOL(mb_cache_entry_free); 73 EXPORT_SYMBOL(mb_cache_entry_get); 74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75 EXPORT_SYMBOL(mb_cache_entry_find_first); 76 EXPORT_SYMBOL(mb_cache_entry_find_next); 77 #endif 78 79 struct mb_cache { 80 struct list_head c_cache_list; 81 const char *c_name; 82 atomic_t c_entry_count; 83 int c_max_entries; 84 int c_bucket_bits; 85 struct kmem_cache *c_entry_cache; 86 struct list_head *c_block_hash; 87 struct list_head *c_index_hash; 88 }; 89 90 91 /* 92 * Global data: list of all mbcache's, lru list, and a spinlock for 93 * accessing cache data structures on SMP machines. The lru list is 94 * global across all mbcaches. 95 */ 96 97 static LIST_HEAD(mb_cache_list); 98 static LIST_HEAD(mb_cache_lru_list); 99 static DEFINE_SPINLOCK(mb_cache_spinlock); 100 101 /* 102 * What the mbcache registers as to get shrunk dynamically. 103 */ 104 105 static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask); 106 107 static struct shrinker mb_cache_shrinker = { 108 .shrink = mb_cache_shrink_fn, 109 .seeks = DEFAULT_SEEKS, 110 }; 111 112 static inline int 113 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 114 { 115 return !list_empty(&ce->e_block_list); 116 } 117 118 119 static void 120 __mb_cache_entry_unhash(struct mb_cache_entry *ce) 121 { 122 if (__mb_cache_entry_is_hashed(ce)) { 123 list_del_init(&ce->e_block_list); 124 list_del(&ce->e_index.o_list); 125 } 126 } 127 128 129 static void 130 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 131 { 132 struct mb_cache *cache = ce->e_cache; 133 134 mb_assert(!(ce->e_used || ce->e_queued)); 135 kmem_cache_free(cache->c_entry_cache, ce); 136 atomic_dec(&cache->c_entry_count); 137 } 138 139 140 static void 141 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 142 __releases(mb_cache_spinlock) 143 { 144 /* Wake up all processes queuing for this cache entry. */ 145 if (ce->e_queued) 146 wake_up_all(&mb_cache_queue); 147 if (ce->e_used >= MB_CACHE_WRITER) 148 ce->e_used -= MB_CACHE_WRITER; 149 ce->e_used--; 150 if (!(ce->e_used || ce->e_queued)) { 151 if (!__mb_cache_entry_is_hashed(ce)) 152 goto forget; 153 mb_assert(list_empty(&ce->e_lru_list)); 154 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 155 } 156 spin_unlock(&mb_cache_spinlock); 157 return; 158 forget: 159 spin_unlock(&mb_cache_spinlock); 160 __mb_cache_entry_forget(ce, GFP_KERNEL); 161 } 162 163 164 /* 165 * mb_cache_shrink_fn() memory pressure callback 166 * 167 * This function is called by the kernel memory management when memory 168 * gets low. 169 * 170 * @shrink: (ignored) 171 * @nr_to_scan: Number of objects to scan 172 * @gfp_mask: (ignored) 173 * 174 * Returns the number of objects which are present in the cache. 175 */ 176 static int 177 mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) 178 { 179 LIST_HEAD(free_list); 180 struct mb_cache *cache; 181 struct mb_cache_entry *entry, *tmp; 182 int count = 0; 183 184 mb_debug("trying to free %d entries", nr_to_scan); 185 spin_lock(&mb_cache_spinlock); 186 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 187 struct mb_cache_entry *ce = 188 list_entry(mb_cache_lru_list.next, 189 struct mb_cache_entry, e_lru_list); 190 list_move_tail(&ce->e_lru_list, &free_list); 191 __mb_cache_entry_unhash(ce); 192 } 193 list_for_each_entry(cache, &mb_cache_list, c_cache_list) { 194 mb_debug("cache %s (%d)", cache->c_name, 195 atomic_read(&cache->c_entry_count)); 196 count += atomic_read(&cache->c_entry_count); 197 } 198 spin_unlock(&mb_cache_spinlock); 199 list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) { 200 __mb_cache_entry_forget(entry, gfp_mask); 201 } 202 return (count / 100) * sysctl_vfs_cache_pressure; 203 } 204 205 206 /* 207 * mb_cache_create() create a new cache 208 * 209 * All entries in one cache are equal size. Cache entries may be from 210 * multiple devices. If this is the first mbcache created, registers 211 * the cache with kernel memory management. Returns NULL if no more 212 * memory was available. 213 * 214 * @name: name of the cache (informal) 215 * @bucket_bits: log2(number of hash buckets) 216 */ 217 struct mb_cache * 218 mb_cache_create(const char *name, int bucket_bits) 219 { 220 int n, bucket_count = 1 << bucket_bits; 221 struct mb_cache *cache = NULL; 222 223 cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL); 224 if (!cache) 225 return NULL; 226 cache->c_name = name; 227 atomic_set(&cache->c_entry_count, 0); 228 cache->c_bucket_bits = bucket_bits; 229 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 230 GFP_KERNEL); 231 if (!cache->c_block_hash) 232 goto fail; 233 for (n=0; n<bucket_count; n++) 234 INIT_LIST_HEAD(&cache->c_block_hash[n]); 235 cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head), 236 GFP_KERNEL); 237 if (!cache->c_index_hash) 238 goto fail; 239 for (n=0; n<bucket_count; n++) 240 INIT_LIST_HEAD(&cache->c_index_hash[n]); 241 cache->c_entry_cache = kmem_cache_create(name, 242 sizeof(struct mb_cache_entry), 0, 243 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 244 if (!cache->c_entry_cache) 245 goto fail2; 246 247 /* 248 * Set an upper limit on the number of cache entries so that the hash 249 * chains won't grow too long. 250 */ 251 cache->c_max_entries = bucket_count << 4; 252 253 spin_lock(&mb_cache_spinlock); 254 list_add(&cache->c_cache_list, &mb_cache_list); 255 spin_unlock(&mb_cache_spinlock); 256 return cache; 257 258 fail2: 259 kfree(cache->c_index_hash); 260 261 fail: 262 kfree(cache->c_block_hash); 263 kfree(cache); 264 return NULL; 265 } 266 267 268 /* 269 * mb_cache_shrink() 270 * 271 * Removes all cache entries of a device from the cache. All cache entries 272 * currently in use cannot be freed, and thus remain in the cache. All others 273 * are freed. 274 * 275 * @bdev: which device's cache entries to shrink 276 */ 277 void 278 mb_cache_shrink(struct block_device *bdev) 279 { 280 LIST_HEAD(free_list); 281 struct list_head *l, *ltmp; 282 283 spin_lock(&mb_cache_spinlock); 284 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 285 struct mb_cache_entry *ce = 286 list_entry(l, struct mb_cache_entry, e_lru_list); 287 if (ce->e_bdev == bdev) { 288 list_move_tail(&ce->e_lru_list, &free_list); 289 __mb_cache_entry_unhash(ce); 290 } 291 } 292 spin_unlock(&mb_cache_spinlock); 293 list_for_each_safe(l, ltmp, &free_list) { 294 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 295 e_lru_list), GFP_KERNEL); 296 } 297 } 298 299 300 /* 301 * mb_cache_destroy() 302 * 303 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 304 * and then destroys it. If this was the last mbcache, un-registers the 305 * mbcache from kernel memory management. 306 */ 307 void 308 mb_cache_destroy(struct mb_cache *cache) 309 { 310 LIST_HEAD(free_list); 311 struct list_head *l, *ltmp; 312 313 spin_lock(&mb_cache_spinlock); 314 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 315 struct mb_cache_entry *ce = 316 list_entry(l, struct mb_cache_entry, e_lru_list); 317 if (ce->e_cache == cache) { 318 list_move_tail(&ce->e_lru_list, &free_list); 319 __mb_cache_entry_unhash(ce); 320 } 321 } 322 list_del(&cache->c_cache_list); 323 spin_unlock(&mb_cache_spinlock); 324 325 list_for_each_safe(l, ltmp, &free_list) { 326 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 327 e_lru_list), GFP_KERNEL); 328 } 329 330 if (atomic_read(&cache->c_entry_count) > 0) { 331 mb_error("cache %s: %d orphaned entries", 332 cache->c_name, 333 atomic_read(&cache->c_entry_count)); 334 } 335 336 kmem_cache_destroy(cache->c_entry_cache); 337 338 kfree(cache->c_index_hash); 339 kfree(cache->c_block_hash); 340 kfree(cache); 341 } 342 343 /* 344 * mb_cache_entry_alloc() 345 * 346 * Allocates a new cache entry. The new entry will not be valid initially, 347 * and thus cannot be looked up yet. It should be filled with data, and 348 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 349 * if no more memory was available. 350 */ 351 struct mb_cache_entry * 352 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) 353 { 354 struct mb_cache_entry *ce = NULL; 355 356 if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) { 357 spin_lock(&mb_cache_spinlock); 358 if (!list_empty(&mb_cache_lru_list)) { 359 ce = list_entry(mb_cache_lru_list.next, 360 struct mb_cache_entry, e_lru_list); 361 list_del_init(&ce->e_lru_list); 362 __mb_cache_entry_unhash(ce); 363 } 364 spin_unlock(&mb_cache_spinlock); 365 } 366 if (!ce) { 367 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); 368 if (!ce) 369 return NULL; 370 atomic_inc(&cache->c_entry_count); 371 INIT_LIST_HEAD(&ce->e_lru_list); 372 INIT_LIST_HEAD(&ce->e_block_list); 373 ce->e_cache = cache; 374 ce->e_queued = 0; 375 } 376 ce->e_used = 1 + MB_CACHE_WRITER; 377 return ce; 378 } 379 380 381 /* 382 * mb_cache_entry_insert() 383 * 384 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 385 * the cache. After this, the cache entry can be looked up, but is not yet 386 * in the lru list as the caller still holds a handle to it. Returns 0 on 387 * success, or -EBUSY if a cache entry for that device + inode exists 388 * already (this may happen after a failed lookup, but when another process 389 * has inserted the same cache entry in the meantime). 390 * 391 * @bdev: device the cache entry belongs to 392 * @block: block number 393 * @key: lookup key 394 */ 395 int 396 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 397 sector_t block, unsigned int key) 398 { 399 struct mb_cache *cache = ce->e_cache; 400 unsigned int bucket; 401 struct list_head *l; 402 int error = -EBUSY; 403 404 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 405 cache->c_bucket_bits); 406 spin_lock(&mb_cache_spinlock); 407 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 408 struct mb_cache_entry *ce = 409 list_entry(l, struct mb_cache_entry, e_block_list); 410 if (ce->e_bdev == bdev && ce->e_block == block) 411 goto out; 412 } 413 __mb_cache_entry_unhash(ce); 414 ce->e_bdev = bdev; 415 ce->e_block = block; 416 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 417 ce->e_index.o_key = key; 418 bucket = hash_long(key, cache->c_bucket_bits); 419 list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]); 420 error = 0; 421 out: 422 spin_unlock(&mb_cache_spinlock); 423 return error; 424 } 425 426 427 /* 428 * mb_cache_entry_release() 429 * 430 * Release a handle to a cache entry. When the last handle to a cache entry 431 * is released it is either freed (if it is invalid) or otherwise inserted 432 * in to the lru list. 433 */ 434 void 435 mb_cache_entry_release(struct mb_cache_entry *ce) 436 { 437 spin_lock(&mb_cache_spinlock); 438 __mb_cache_entry_release_unlock(ce); 439 } 440 441 442 /* 443 * mb_cache_entry_free() 444 * 445 * This is equivalent to the sequence mb_cache_entry_takeout() -- 446 * mb_cache_entry_release(). 447 */ 448 void 449 mb_cache_entry_free(struct mb_cache_entry *ce) 450 { 451 spin_lock(&mb_cache_spinlock); 452 mb_assert(list_empty(&ce->e_lru_list)); 453 __mb_cache_entry_unhash(ce); 454 __mb_cache_entry_release_unlock(ce); 455 } 456 457 458 /* 459 * mb_cache_entry_get() 460 * 461 * Get a cache entry by device / block number. (There can only be one entry 462 * in the cache per device and block.) Returns NULL if no such cache entry 463 * exists. The returned cache entry is locked for exclusive access ("single 464 * writer"). 465 */ 466 struct mb_cache_entry * 467 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 468 sector_t block) 469 { 470 unsigned int bucket; 471 struct list_head *l; 472 struct mb_cache_entry *ce; 473 474 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 475 cache->c_bucket_bits); 476 spin_lock(&mb_cache_spinlock); 477 list_for_each(l, &cache->c_block_hash[bucket]) { 478 ce = list_entry(l, struct mb_cache_entry, e_block_list); 479 if (ce->e_bdev == bdev && ce->e_block == block) { 480 DEFINE_WAIT(wait); 481 482 if (!list_empty(&ce->e_lru_list)) 483 list_del_init(&ce->e_lru_list); 484 485 while (ce->e_used > 0) { 486 ce->e_queued++; 487 prepare_to_wait(&mb_cache_queue, &wait, 488 TASK_UNINTERRUPTIBLE); 489 spin_unlock(&mb_cache_spinlock); 490 schedule(); 491 spin_lock(&mb_cache_spinlock); 492 ce->e_queued--; 493 } 494 finish_wait(&mb_cache_queue, &wait); 495 ce->e_used += 1 + MB_CACHE_WRITER; 496 497 if (!__mb_cache_entry_is_hashed(ce)) { 498 __mb_cache_entry_release_unlock(ce); 499 return NULL; 500 } 501 goto cleanup; 502 } 503 } 504 ce = NULL; 505 506 cleanup: 507 spin_unlock(&mb_cache_spinlock); 508 return ce; 509 } 510 511 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 512 513 static struct mb_cache_entry * 514 __mb_cache_entry_find(struct list_head *l, struct list_head *head, 515 struct block_device *bdev, unsigned int key) 516 { 517 while (l != head) { 518 struct mb_cache_entry *ce = 519 list_entry(l, struct mb_cache_entry, e_index.o_list); 520 if (ce->e_bdev == bdev && ce->e_index.o_key == key) { 521 DEFINE_WAIT(wait); 522 523 if (!list_empty(&ce->e_lru_list)) 524 list_del_init(&ce->e_lru_list); 525 526 /* Incrementing before holding the lock gives readers 527 priority over writers. */ 528 ce->e_used++; 529 while (ce->e_used >= MB_CACHE_WRITER) { 530 ce->e_queued++; 531 prepare_to_wait(&mb_cache_queue, &wait, 532 TASK_UNINTERRUPTIBLE); 533 spin_unlock(&mb_cache_spinlock); 534 schedule(); 535 spin_lock(&mb_cache_spinlock); 536 ce->e_queued--; 537 } 538 finish_wait(&mb_cache_queue, &wait); 539 540 if (!__mb_cache_entry_is_hashed(ce)) { 541 __mb_cache_entry_release_unlock(ce); 542 spin_lock(&mb_cache_spinlock); 543 return ERR_PTR(-EAGAIN); 544 } 545 return ce; 546 } 547 l = l->next; 548 } 549 return NULL; 550 } 551 552 553 /* 554 * mb_cache_entry_find_first() 555 * 556 * Find the first cache entry on a given device with a certain key in 557 * an additional index. Additonal matches can be found with 558 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 559 * returned cache entry is locked for shared access ("multiple readers"). 560 * 561 * @cache: the cache to search 562 * @bdev: the device the cache entry should belong to 563 * @key: the key in the index 564 */ 565 struct mb_cache_entry * 566 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev, 567 unsigned int key) 568 { 569 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 570 struct list_head *l; 571 struct mb_cache_entry *ce; 572 573 spin_lock(&mb_cache_spinlock); 574 l = cache->c_index_hash[bucket].next; 575 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 576 spin_unlock(&mb_cache_spinlock); 577 return ce; 578 } 579 580 581 /* 582 * mb_cache_entry_find_next() 583 * 584 * Find the next cache entry on a given device with a certain key in an 585 * additional index. Returns NULL if no match could be found. The previous 586 * entry is atomatically released, so that mb_cache_entry_find_next() can 587 * be called like this: 588 * 589 * entry = mb_cache_entry_find_first(); 590 * while (entry) { 591 * ... 592 * entry = mb_cache_entry_find_next(entry, ...); 593 * } 594 * 595 * @prev: The previous match 596 * @bdev: the device the cache entry should belong to 597 * @key: the key in the index 598 */ 599 struct mb_cache_entry * 600 mb_cache_entry_find_next(struct mb_cache_entry *prev, 601 struct block_device *bdev, unsigned int key) 602 { 603 struct mb_cache *cache = prev->e_cache; 604 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 605 struct list_head *l; 606 struct mb_cache_entry *ce; 607 608 spin_lock(&mb_cache_spinlock); 609 l = prev->e_index.o_list.next; 610 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 611 __mb_cache_entry_release_unlock(prev); 612 return ce; 613 } 614 615 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 616 617 static int __init init_mbcache(void) 618 { 619 register_shrinker(&mb_cache_shrinker); 620 return 0; 621 } 622 623 static void __exit exit_mbcache(void) 624 { 625 unregister_shrinker(&mb_cache_shrinker); 626 } 627 628 module_init(init_mbcache) 629 module_exit(exit_mbcache) 630 631