1 /* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6 /* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 32 #include <linux/hash.h> 33 #include <linux/fs.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/sched.h> 37 #include <linux/init.h> 38 #include <linux/mbcache.h> 39 40 41 #ifdef MB_CACHE_DEBUG 42 # define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46 #define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49 #else 50 # define mb_debug(f...) do { } while(0) 51 # define mb_assert(c) do { } while(0) 52 #endif 53 #define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64 MODULE_LICENSE("GPL"); 65 66 EXPORT_SYMBOL(mb_cache_create); 67 EXPORT_SYMBOL(mb_cache_shrink); 68 EXPORT_SYMBOL(mb_cache_destroy); 69 EXPORT_SYMBOL(mb_cache_entry_alloc); 70 EXPORT_SYMBOL(mb_cache_entry_insert); 71 EXPORT_SYMBOL(mb_cache_entry_release); 72 EXPORT_SYMBOL(mb_cache_entry_free); 73 EXPORT_SYMBOL(mb_cache_entry_get); 74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75 EXPORT_SYMBOL(mb_cache_entry_find_first); 76 EXPORT_SYMBOL(mb_cache_entry_find_next); 77 #endif 78 79 struct mb_cache { 80 struct list_head c_cache_list; 81 const char *c_name; 82 struct mb_cache_op c_op; 83 atomic_t c_entry_count; 84 int c_bucket_bits; 85 #ifndef MB_CACHE_INDEXES_COUNT 86 int c_indexes_count; 87 #endif 88 struct kmem_cache *c_entry_cache; 89 struct list_head *c_block_hash; 90 struct list_head *c_indexes_hash[0]; 91 }; 92 93 94 /* 95 * Global data: list of all mbcache's, lru list, and a spinlock for 96 * accessing cache data structures on SMP machines. The lru list is 97 * global across all mbcaches. 98 */ 99 100 static LIST_HEAD(mb_cache_list); 101 static LIST_HEAD(mb_cache_lru_list); 102 static DEFINE_SPINLOCK(mb_cache_spinlock); 103 104 static inline int 105 mb_cache_indexes(struct mb_cache *cache) 106 { 107 #ifdef MB_CACHE_INDEXES_COUNT 108 return MB_CACHE_INDEXES_COUNT; 109 #else 110 return cache->c_indexes_count; 111 #endif 112 } 113 114 /* 115 * What the mbcache registers as to get shrunk dynamically. 116 */ 117 118 static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask); 119 120 static struct shrinker mb_cache_shrinker = { 121 .shrink = mb_cache_shrink_fn, 122 .seeks = DEFAULT_SEEKS, 123 }; 124 125 static inline int 126 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 127 { 128 return !list_empty(&ce->e_block_list); 129 } 130 131 132 static void 133 __mb_cache_entry_unhash(struct mb_cache_entry *ce) 134 { 135 int n; 136 137 if (__mb_cache_entry_is_hashed(ce)) { 138 list_del_init(&ce->e_block_list); 139 for (n=0; n<mb_cache_indexes(ce->e_cache); n++) 140 list_del(&ce->e_indexes[n].o_list); 141 } 142 } 143 144 145 static void 146 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 147 { 148 struct mb_cache *cache = ce->e_cache; 149 150 mb_assert(!(ce->e_used || ce->e_queued)); 151 if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { 152 /* free failed -- put back on the lru list 153 for freeing later. */ 154 spin_lock(&mb_cache_spinlock); 155 list_add(&ce->e_lru_list, &mb_cache_lru_list); 156 spin_unlock(&mb_cache_spinlock); 157 } else { 158 kmem_cache_free(cache->c_entry_cache, ce); 159 atomic_dec(&cache->c_entry_count); 160 } 161 } 162 163 164 static void 165 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 166 __releases(mb_cache_spinlock) 167 { 168 /* Wake up all processes queuing for this cache entry. */ 169 if (ce->e_queued) 170 wake_up_all(&mb_cache_queue); 171 if (ce->e_used >= MB_CACHE_WRITER) 172 ce->e_used -= MB_CACHE_WRITER; 173 ce->e_used--; 174 if (!(ce->e_used || ce->e_queued)) { 175 if (!__mb_cache_entry_is_hashed(ce)) 176 goto forget; 177 mb_assert(list_empty(&ce->e_lru_list)); 178 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 179 } 180 spin_unlock(&mb_cache_spinlock); 181 return; 182 forget: 183 spin_unlock(&mb_cache_spinlock); 184 __mb_cache_entry_forget(ce, GFP_KERNEL); 185 } 186 187 188 /* 189 * mb_cache_shrink_fn() memory pressure callback 190 * 191 * This function is called by the kernel memory management when memory 192 * gets low. 193 * 194 * @nr_to_scan: Number of objects to scan 195 * @gfp_mask: (ignored) 196 * 197 * Returns the number of objects which are present in the cache. 198 */ 199 static int 200 mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask) 201 { 202 LIST_HEAD(free_list); 203 struct list_head *l, *ltmp; 204 int count = 0; 205 206 spin_lock(&mb_cache_spinlock); 207 list_for_each(l, &mb_cache_list) { 208 struct mb_cache *cache = 209 list_entry(l, struct mb_cache, c_cache_list); 210 mb_debug("cache %s (%d)", cache->c_name, 211 atomic_read(&cache->c_entry_count)); 212 count += atomic_read(&cache->c_entry_count); 213 } 214 mb_debug("trying to free %d entries", nr_to_scan); 215 if (nr_to_scan == 0) { 216 spin_unlock(&mb_cache_spinlock); 217 goto out; 218 } 219 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 220 struct mb_cache_entry *ce = 221 list_entry(mb_cache_lru_list.next, 222 struct mb_cache_entry, e_lru_list); 223 list_move_tail(&ce->e_lru_list, &free_list); 224 __mb_cache_entry_unhash(ce); 225 } 226 spin_unlock(&mb_cache_spinlock); 227 list_for_each_safe(l, ltmp, &free_list) { 228 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 229 e_lru_list), gfp_mask); 230 } 231 out: 232 return (count / 100) * sysctl_vfs_cache_pressure; 233 } 234 235 236 /* 237 * mb_cache_create() create a new cache 238 * 239 * All entries in one cache are equal size. Cache entries may be from 240 * multiple devices. If this is the first mbcache created, registers 241 * the cache with kernel memory management. Returns NULL if no more 242 * memory was available. 243 * 244 * @name: name of the cache (informal) 245 * @cache_op: contains the callback called when freeing a cache entry 246 * @entry_size: The size of a cache entry, including 247 * struct mb_cache_entry 248 * @indexes_count: number of additional indexes in the cache. Must equal 249 * MB_CACHE_INDEXES_COUNT if the number of indexes is 250 * hardwired. 251 * @bucket_bits: log2(number of hash buckets) 252 */ 253 struct mb_cache * 254 mb_cache_create(const char *name, struct mb_cache_op *cache_op, 255 size_t entry_size, int indexes_count, int bucket_bits) 256 { 257 int m=0, n, bucket_count = 1 << bucket_bits; 258 struct mb_cache *cache = NULL; 259 260 if(entry_size < sizeof(struct mb_cache_entry) + 261 indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) 262 return NULL; 263 264 cache = kmalloc(sizeof(struct mb_cache) + 265 indexes_count * sizeof(struct list_head), GFP_KERNEL); 266 if (!cache) 267 goto fail; 268 cache->c_name = name; 269 cache->c_op.free = NULL; 270 if (cache_op) 271 cache->c_op.free = cache_op->free; 272 atomic_set(&cache->c_entry_count, 0); 273 cache->c_bucket_bits = bucket_bits; 274 #ifdef MB_CACHE_INDEXES_COUNT 275 mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); 276 #else 277 cache->c_indexes_count = indexes_count; 278 #endif 279 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 280 GFP_KERNEL); 281 if (!cache->c_block_hash) 282 goto fail; 283 for (n=0; n<bucket_count; n++) 284 INIT_LIST_HEAD(&cache->c_block_hash[n]); 285 for (m=0; m<indexes_count; m++) { 286 cache->c_indexes_hash[m] = kmalloc(bucket_count * 287 sizeof(struct list_head), 288 GFP_KERNEL); 289 if (!cache->c_indexes_hash[m]) 290 goto fail; 291 for (n=0; n<bucket_count; n++) 292 INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); 293 } 294 cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, 295 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 296 if (!cache->c_entry_cache) 297 goto fail; 298 299 spin_lock(&mb_cache_spinlock); 300 list_add(&cache->c_cache_list, &mb_cache_list); 301 spin_unlock(&mb_cache_spinlock); 302 return cache; 303 304 fail: 305 if (cache) { 306 while (--m >= 0) 307 kfree(cache->c_indexes_hash[m]); 308 kfree(cache->c_block_hash); 309 kfree(cache); 310 } 311 return NULL; 312 } 313 314 315 /* 316 * mb_cache_shrink() 317 * 318 * Removes all cache entries of a device from the cache. All cache entries 319 * currently in use cannot be freed, and thus remain in the cache. All others 320 * are freed. 321 * 322 * @bdev: which device's cache entries to shrink 323 */ 324 void 325 mb_cache_shrink(struct block_device *bdev) 326 { 327 LIST_HEAD(free_list); 328 struct list_head *l, *ltmp; 329 330 spin_lock(&mb_cache_spinlock); 331 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 332 struct mb_cache_entry *ce = 333 list_entry(l, struct mb_cache_entry, e_lru_list); 334 if (ce->e_bdev == bdev) { 335 list_move_tail(&ce->e_lru_list, &free_list); 336 __mb_cache_entry_unhash(ce); 337 } 338 } 339 spin_unlock(&mb_cache_spinlock); 340 list_for_each_safe(l, ltmp, &free_list) { 341 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 342 e_lru_list), GFP_KERNEL); 343 } 344 } 345 346 347 /* 348 * mb_cache_destroy() 349 * 350 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 351 * and then destroys it. If this was the last mbcache, un-registers the 352 * mbcache from kernel memory management. 353 */ 354 void 355 mb_cache_destroy(struct mb_cache *cache) 356 { 357 LIST_HEAD(free_list); 358 struct list_head *l, *ltmp; 359 int n; 360 361 spin_lock(&mb_cache_spinlock); 362 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 363 struct mb_cache_entry *ce = 364 list_entry(l, struct mb_cache_entry, e_lru_list); 365 if (ce->e_cache == cache) { 366 list_move_tail(&ce->e_lru_list, &free_list); 367 __mb_cache_entry_unhash(ce); 368 } 369 } 370 list_del(&cache->c_cache_list); 371 spin_unlock(&mb_cache_spinlock); 372 373 list_for_each_safe(l, ltmp, &free_list) { 374 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 375 e_lru_list), GFP_KERNEL); 376 } 377 378 if (atomic_read(&cache->c_entry_count) > 0) { 379 mb_error("cache %s: %d orphaned entries", 380 cache->c_name, 381 atomic_read(&cache->c_entry_count)); 382 } 383 384 kmem_cache_destroy(cache->c_entry_cache); 385 386 for (n=0; n < mb_cache_indexes(cache); n++) 387 kfree(cache->c_indexes_hash[n]); 388 kfree(cache->c_block_hash); 389 kfree(cache); 390 } 391 392 393 /* 394 * mb_cache_entry_alloc() 395 * 396 * Allocates a new cache entry. The new entry will not be valid initially, 397 * and thus cannot be looked up yet. It should be filled with data, and 398 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 399 * if no more memory was available. 400 */ 401 struct mb_cache_entry * 402 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) 403 { 404 struct mb_cache_entry *ce; 405 406 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); 407 if (ce) { 408 atomic_inc(&cache->c_entry_count); 409 INIT_LIST_HEAD(&ce->e_lru_list); 410 INIT_LIST_HEAD(&ce->e_block_list); 411 ce->e_cache = cache; 412 ce->e_used = 1 + MB_CACHE_WRITER; 413 ce->e_queued = 0; 414 } 415 return ce; 416 } 417 418 419 /* 420 * mb_cache_entry_insert() 421 * 422 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 423 * the cache. After this, the cache entry can be looked up, but is not yet 424 * in the lru list as the caller still holds a handle to it. Returns 0 on 425 * success, or -EBUSY if a cache entry for that device + inode exists 426 * already (this may happen after a failed lookup, but when another process 427 * has inserted the same cache entry in the meantime). 428 * 429 * @bdev: device the cache entry belongs to 430 * @block: block number 431 * @keys: array of additional keys. There must be indexes_count entries 432 * in the array (as specified when creating the cache). 433 */ 434 int 435 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 436 sector_t block, unsigned int keys[]) 437 { 438 struct mb_cache *cache = ce->e_cache; 439 unsigned int bucket; 440 struct list_head *l; 441 int error = -EBUSY, n; 442 443 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 444 cache->c_bucket_bits); 445 spin_lock(&mb_cache_spinlock); 446 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 447 struct mb_cache_entry *ce = 448 list_entry(l, struct mb_cache_entry, e_block_list); 449 if (ce->e_bdev == bdev && ce->e_block == block) 450 goto out; 451 } 452 __mb_cache_entry_unhash(ce); 453 ce->e_bdev = bdev; 454 ce->e_block = block; 455 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 456 for (n=0; n<mb_cache_indexes(cache); n++) { 457 ce->e_indexes[n].o_key = keys[n]; 458 bucket = hash_long(keys[n], cache->c_bucket_bits); 459 list_add(&ce->e_indexes[n].o_list, 460 &cache->c_indexes_hash[n][bucket]); 461 } 462 error = 0; 463 out: 464 spin_unlock(&mb_cache_spinlock); 465 return error; 466 } 467 468 469 /* 470 * mb_cache_entry_release() 471 * 472 * Release a handle to a cache entry. When the last handle to a cache entry 473 * is released it is either freed (if it is invalid) or otherwise inserted 474 * in to the lru list. 475 */ 476 void 477 mb_cache_entry_release(struct mb_cache_entry *ce) 478 { 479 spin_lock(&mb_cache_spinlock); 480 __mb_cache_entry_release_unlock(ce); 481 } 482 483 484 /* 485 * mb_cache_entry_free() 486 * 487 * This is equivalent to the sequence mb_cache_entry_takeout() -- 488 * mb_cache_entry_release(). 489 */ 490 void 491 mb_cache_entry_free(struct mb_cache_entry *ce) 492 { 493 spin_lock(&mb_cache_spinlock); 494 mb_assert(list_empty(&ce->e_lru_list)); 495 __mb_cache_entry_unhash(ce); 496 __mb_cache_entry_release_unlock(ce); 497 } 498 499 500 /* 501 * mb_cache_entry_get() 502 * 503 * Get a cache entry by device / block number. (There can only be one entry 504 * in the cache per device and block.) Returns NULL if no such cache entry 505 * exists. The returned cache entry is locked for exclusive access ("single 506 * writer"). 507 */ 508 struct mb_cache_entry * 509 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 510 sector_t block) 511 { 512 unsigned int bucket; 513 struct list_head *l; 514 struct mb_cache_entry *ce; 515 516 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 517 cache->c_bucket_bits); 518 spin_lock(&mb_cache_spinlock); 519 list_for_each(l, &cache->c_block_hash[bucket]) { 520 ce = list_entry(l, struct mb_cache_entry, e_block_list); 521 if (ce->e_bdev == bdev && ce->e_block == block) { 522 DEFINE_WAIT(wait); 523 524 if (!list_empty(&ce->e_lru_list)) 525 list_del_init(&ce->e_lru_list); 526 527 while (ce->e_used > 0) { 528 ce->e_queued++; 529 prepare_to_wait(&mb_cache_queue, &wait, 530 TASK_UNINTERRUPTIBLE); 531 spin_unlock(&mb_cache_spinlock); 532 schedule(); 533 spin_lock(&mb_cache_spinlock); 534 ce->e_queued--; 535 } 536 finish_wait(&mb_cache_queue, &wait); 537 ce->e_used += 1 + MB_CACHE_WRITER; 538 539 if (!__mb_cache_entry_is_hashed(ce)) { 540 __mb_cache_entry_release_unlock(ce); 541 return NULL; 542 } 543 goto cleanup; 544 } 545 } 546 ce = NULL; 547 548 cleanup: 549 spin_unlock(&mb_cache_spinlock); 550 return ce; 551 } 552 553 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 554 555 static struct mb_cache_entry * 556 __mb_cache_entry_find(struct list_head *l, struct list_head *head, 557 int index, struct block_device *bdev, unsigned int key) 558 { 559 while (l != head) { 560 struct mb_cache_entry *ce = 561 list_entry(l, struct mb_cache_entry, 562 e_indexes[index].o_list); 563 if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { 564 DEFINE_WAIT(wait); 565 566 if (!list_empty(&ce->e_lru_list)) 567 list_del_init(&ce->e_lru_list); 568 569 /* Incrementing before holding the lock gives readers 570 priority over writers. */ 571 ce->e_used++; 572 while (ce->e_used >= MB_CACHE_WRITER) { 573 ce->e_queued++; 574 prepare_to_wait(&mb_cache_queue, &wait, 575 TASK_UNINTERRUPTIBLE); 576 spin_unlock(&mb_cache_spinlock); 577 schedule(); 578 spin_lock(&mb_cache_spinlock); 579 ce->e_queued--; 580 } 581 finish_wait(&mb_cache_queue, &wait); 582 583 if (!__mb_cache_entry_is_hashed(ce)) { 584 __mb_cache_entry_release_unlock(ce); 585 spin_lock(&mb_cache_spinlock); 586 return ERR_PTR(-EAGAIN); 587 } 588 return ce; 589 } 590 l = l->next; 591 } 592 return NULL; 593 } 594 595 596 /* 597 * mb_cache_entry_find_first() 598 * 599 * Find the first cache entry on a given device with a certain key in 600 * an additional index. Additonal matches can be found with 601 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 602 * returned cache entry is locked for shared access ("multiple readers"). 603 * 604 * @cache: the cache to search 605 * @index: the number of the additonal index to search (0<=index<indexes_count) 606 * @bdev: the device the cache entry should belong to 607 * @key: the key in the index 608 */ 609 struct mb_cache_entry * 610 mb_cache_entry_find_first(struct mb_cache *cache, int index, 611 struct block_device *bdev, unsigned int key) 612 { 613 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 614 struct list_head *l; 615 struct mb_cache_entry *ce; 616 617 mb_assert(index < mb_cache_indexes(cache)); 618 spin_lock(&mb_cache_spinlock); 619 l = cache->c_indexes_hash[index][bucket].next; 620 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 621 index, bdev, key); 622 spin_unlock(&mb_cache_spinlock); 623 return ce; 624 } 625 626 627 /* 628 * mb_cache_entry_find_next() 629 * 630 * Find the next cache entry on a given device with a certain key in an 631 * additional index. Returns NULL if no match could be found. The previous 632 * entry is atomatically released, so that mb_cache_entry_find_next() can 633 * be called like this: 634 * 635 * entry = mb_cache_entry_find_first(); 636 * while (entry) { 637 * ... 638 * entry = mb_cache_entry_find_next(entry, ...); 639 * } 640 * 641 * @prev: The previous match 642 * @index: the number of the additonal index to search (0<=index<indexes_count) 643 * @bdev: the device the cache entry should belong to 644 * @key: the key in the index 645 */ 646 struct mb_cache_entry * 647 mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, 648 struct block_device *bdev, unsigned int key) 649 { 650 struct mb_cache *cache = prev->e_cache; 651 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 652 struct list_head *l; 653 struct mb_cache_entry *ce; 654 655 mb_assert(index < mb_cache_indexes(cache)); 656 spin_lock(&mb_cache_spinlock); 657 l = prev->e_indexes[index].o_list.next; 658 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 659 index, bdev, key); 660 __mb_cache_entry_release_unlock(prev); 661 return ce; 662 } 663 664 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 665 666 static int __init init_mbcache(void) 667 { 668 register_shrinker(&mb_cache_shrinker); 669 return 0; 670 } 671 672 static void __exit exit_mbcache(void) 673 { 674 unregister_shrinker(&mb_cache_shrinker); 675 } 676 677 module_init(init_mbcache) 678 module_exit(exit_mbcache) 679 680