1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/locks.c 4 * 5 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 6 * Doug Evans (dje@spiff.uucp), August 07, 1992 7 * 8 * Deadlock detection added. 9 * FIXME: one thing isn't handled yet: 10 * - mandatory locks (requires lots of changes elsewhere) 11 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 12 * 13 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 14 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 15 * 16 * Converted file_lock_table to a linked list from an array, which eliminates 17 * the limits on how many active file locks are open. 18 * Chad Page (pageone@netcom.com), November 27, 1994 19 * 20 * Removed dependency on file descriptors. dup()'ed file descriptors now 21 * get the same locks as the original file descriptors, and a close() on 22 * any file descriptor removes ALL the locks on the file for the current 23 * process. Since locks still depend on the process id, locks are inherited 24 * after an exec() but not after a fork(). This agrees with POSIX, and both 25 * BSD and SVR4 practice. 26 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 27 * 28 * Scrapped free list which is redundant now that we allocate locks 29 * dynamically with kmalloc()/kfree(). 30 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 31 * 32 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 33 * 34 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 35 * fcntl() system call. They have the semantics described above. 36 * 37 * FL_FLOCK locks are created with calls to flock(), through the flock() 38 * system call, which is new. Old C libraries implement flock() via fcntl() 39 * and will continue to use the old, broken implementation. 40 * 41 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 42 * with a file pointer (filp). As a result they can be shared by a parent 43 * process and its children after a fork(). They are removed when the last 44 * file descriptor referring to the file pointer is closed (unless explicitly 45 * unlocked). 46 * 47 * FL_FLOCK locks never deadlock, an existing lock is always removed before 48 * upgrading from shared to exclusive (or vice versa). When this happens 49 * any processes blocked by the current lock are woken up and allowed to 50 * run before the new lock is applied. 51 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 52 * 53 * Removed some race conditions in flock_lock_file(), marked other possible 54 * races. Just grep for FIXME to see them. 55 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 56 * 57 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 58 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 59 * once we've checked for blocking and deadlocking. 60 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 61 * 62 * Initial implementation of mandatory locks. SunOS turned out to be 63 * a rotten model, so I implemented the "obvious" semantics. 64 * See 'Documentation/filesystems/mandatory-locking.rst' for details. 65 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 66 * 67 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 68 * check if a file has mandatory locks, used by mmap(), open() and creat() to 69 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 70 * Manual, Section 2. 71 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 72 * 73 * Tidied up block list handling. Added '/proc/locks' interface. 74 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 75 * 76 * Fixed deadlock condition for pathological code that mixes calls to 77 * flock() and fcntl(). 78 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 79 * 80 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 81 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 82 * guarantee sensible behaviour in the case where file system modules might 83 * be compiled with different options than the kernel itself. 84 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 85 * 86 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 87 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 88 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 89 * 90 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 91 * locks. Changed process synchronisation to avoid dereferencing locks that 92 * have already been freed. 93 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 94 * 95 * Made the block list a circular list to minimise searching in the list. 96 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 97 * 98 * Made mandatory locking a mount option. Default is not to allow mandatory 99 * locking. 100 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 101 * 102 * Some adaptations for NFS support. 103 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 104 * 105 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 106 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 107 * 108 * Use slab allocator instead of kmalloc/kfree. 109 * Use generic list implementation from <linux/list.h>. 110 * Sped up posix_locks_deadlock by only considering blocked locks. 111 * Matthew Wilcox <willy@debian.org>, March, 2000. 112 * 113 * Leases and LOCK_MAND 114 * Matthew Wilcox <willy@debian.org>, June, 2000. 115 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 116 * 117 * Locking conflicts and dependencies: 118 * If multiple threads attempt to lock the same byte (or flock the same file) 119 * only one can be granted the lock, and other must wait their turn. 120 * The first lock has been "applied" or "granted", the others are "waiting" 121 * and are "blocked" by the "applied" lock.. 122 * 123 * Waiting and applied locks are all kept in trees whose properties are: 124 * 125 * - the root of a tree may be an applied or waiting lock. 126 * - every other node in the tree is a waiting lock that 127 * conflicts with every ancestor of that node. 128 * 129 * Every such tree begins life as a waiting singleton which obviously 130 * satisfies the above properties. 131 * 132 * The only ways we modify trees preserve these properties: 133 * 134 * 1. We may add a new leaf node, but only after first verifying that it 135 * conflicts with all of its ancestors. 136 * 2. We may remove the root of a tree, creating a new singleton 137 * tree from the root and N new trees rooted in the immediate 138 * children. 139 * 3. If the root of a tree is not currently an applied lock, we may 140 * apply it (if possible). 141 * 4. We may upgrade the root of the tree (either extend its range, 142 * or upgrade its entire range from read to write). 143 * 144 * When an applied lock is modified in a way that reduces or downgrades any 145 * part of its range, we remove all its children (2 above). This particularly 146 * happens when a lock is unlocked. 147 * 148 * For each of those child trees we "wake up" the thread which is 149 * waiting for the lock so it can continue handling as follows: if the 150 * root of the tree applies, we do so (3). If it doesn't, it must 151 * conflict with some applied lock. We remove (wake up) all of its children 152 * (2), and add it is a new leaf to the tree rooted in the applied 153 * lock (1). We then repeat the process recursively with those 154 * children. 155 * 156 */ 157 158 #include <linux/capability.h> 159 #include <linux/file.h> 160 #include <linux/fdtable.h> 161 #include <linux/fs.h> 162 #include <linux/init.h> 163 #include <linux/security.h> 164 #include <linux/slab.h> 165 #include <linux/syscalls.h> 166 #include <linux/time.h> 167 #include <linux/rcupdate.h> 168 #include <linux/pid_namespace.h> 169 #include <linux/hashtable.h> 170 #include <linux/percpu.h> 171 172 #define CREATE_TRACE_POINTS 173 #include <trace/events/filelock.h> 174 175 #include <linux/uaccess.h> 176 177 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 178 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 179 #define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 180 #define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 181 #define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 182 183 static bool lease_breaking(struct file_lock *fl) 184 { 185 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 186 } 187 188 static int target_leasetype(struct file_lock *fl) 189 { 190 if (fl->fl_flags & FL_UNLOCK_PENDING) 191 return F_UNLCK; 192 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 193 return F_RDLCK; 194 return fl->fl_type; 195 } 196 197 int leases_enable = 1; 198 int lease_break_time = 45; 199 200 /* 201 * The global file_lock_list is only used for displaying /proc/locks, so we 202 * keep a list on each CPU, with each list protected by its own spinlock. 203 * Global serialization is done using file_rwsem. 204 * 205 * Note that alterations to the list also require that the relevant flc_lock is 206 * held. 207 */ 208 struct file_lock_list_struct { 209 spinlock_t lock; 210 struct hlist_head hlist; 211 }; 212 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 213 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 214 215 216 /* 217 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 218 * It is protected by blocked_lock_lock. 219 * 220 * We hash locks by lockowner in order to optimize searching for the lock a 221 * particular lockowner is waiting on. 222 * 223 * FIXME: make this value scale via some heuristic? We generally will want more 224 * buckets when we have more lockowners holding locks, but that's a little 225 * difficult to determine without knowing what the workload will look like. 226 */ 227 #define BLOCKED_HASH_BITS 7 228 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 229 230 /* 231 * This lock protects the blocked_hash. Generally, if you're accessing it, you 232 * want to be holding this lock. 233 * 234 * In addition, it also protects the fl->fl_blocked_requests list, and the 235 * fl->fl_blocker pointer for file_lock structures that are acting as lock 236 * requests (in contrast to those that are acting as records of acquired locks). 237 * 238 * Note that when we acquire this lock in order to change the above fields, 239 * we often hold the flc_lock as well. In certain cases, when reading the fields 240 * protected by this lock, we can skip acquiring it iff we already hold the 241 * flc_lock. 242 */ 243 static DEFINE_SPINLOCK(blocked_lock_lock); 244 245 static struct kmem_cache *flctx_cache __read_mostly; 246 static struct kmem_cache *filelock_cache __read_mostly; 247 248 static struct file_lock_context * 249 locks_get_lock_context(struct inode *inode, int type) 250 { 251 struct file_lock_context *ctx; 252 253 /* paired with cmpxchg() below */ 254 ctx = smp_load_acquire(&inode->i_flctx); 255 if (likely(ctx) || type == F_UNLCK) 256 goto out; 257 258 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 259 if (!ctx) 260 goto out; 261 262 spin_lock_init(&ctx->flc_lock); 263 INIT_LIST_HEAD(&ctx->flc_flock); 264 INIT_LIST_HEAD(&ctx->flc_posix); 265 INIT_LIST_HEAD(&ctx->flc_lease); 266 267 /* 268 * Assign the pointer if it's not already assigned. If it is, then 269 * free the context we just allocated. 270 */ 271 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 272 kmem_cache_free(flctx_cache, ctx); 273 ctx = smp_load_acquire(&inode->i_flctx); 274 } 275 out: 276 trace_locks_get_lock_context(inode, type, ctx); 277 return ctx; 278 } 279 280 static void 281 locks_dump_ctx_list(struct list_head *list, char *list_type) 282 { 283 struct file_lock *fl; 284 285 list_for_each_entry(fl, list, fl_list) { 286 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 287 } 288 } 289 290 static void 291 locks_check_ctx_lists(struct inode *inode) 292 { 293 struct file_lock_context *ctx = inode->i_flctx; 294 295 if (unlikely(!list_empty(&ctx->flc_flock) || 296 !list_empty(&ctx->flc_posix) || 297 !list_empty(&ctx->flc_lease))) { 298 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 299 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 300 inode->i_ino); 301 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 302 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 303 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 304 } 305 } 306 307 static void 308 locks_check_ctx_file_list(struct file *filp, struct list_head *list, 309 char *list_type) 310 { 311 struct file_lock *fl; 312 struct inode *inode = locks_inode(filp); 313 314 list_for_each_entry(fl, list, fl_list) 315 if (fl->fl_file == filp) 316 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 317 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 318 list_type, MAJOR(inode->i_sb->s_dev), 319 MINOR(inode->i_sb->s_dev), inode->i_ino, 320 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 321 } 322 323 void 324 locks_free_lock_context(struct inode *inode) 325 { 326 struct file_lock_context *ctx = inode->i_flctx; 327 328 if (unlikely(ctx)) { 329 locks_check_ctx_lists(inode); 330 kmem_cache_free(flctx_cache, ctx); 331 } 332 } 333 334 static void locks_init_lock_heads(struct file_lock *fl) 335 { 336 INIT_HLIST_NODE(&fl->fl_link); 337 INIT_LIST_HEAD(&fl->fl_list); 338 INIT_LIST_HEAD(&fl->fl_blocked_requests); 339 INIT_LIST_HEAD(&fl->fl_blocked_member); 340 init_waitqueue_head(&fl->fl_wait); 341 } 342 343 /* Allocate an empty lock structure. */ 344 struct file_lock *locks_alloc_lock(void) 345 { 346 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 347 348 if (fl) 349 locks_init_lock_heads(fl); 350 351 return fl; 352 } 353 EXPORT_SYMBOL_GPL(locks_alloc_lock); 354 355 void locks_release_private(struct file_lock *fl) 356 { 357 BUG_ON(waitqueue_active(&fl->fl_wait)); 358 BUG_ON(!list_empty(&fl->fl_list)); 359 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 360 BUG_ON(!list_empty(&fl->fl_blocked_member)); 361 BUG_ON(!hlist_unhashed(&fl->fl_link)); 362 363 if (fl->fl_ops) { 364 if (fl->fl_ops->fl_release_private) 365 fl->fl_ops->fl_release_private(fl); 366 fl->fl_ops = NULL; 367 } 368 369 if (fl->fl_lmops) { 370 if (fl->fl_lmops->lm_put_owner) { 371 fl->fl_lmops->lm_put_owner(fl->fl_owner); 372 fl->fl_owner = NULL; 373 } 374 fl->fl_lmops = NULL; 375 } 376 } 377 EXPORT_SYMBOL_GPL(locks_release_private); 378 379 /* Free a lock which is not in use. */ 380 void locks_free_lock(struct file_lock *fl) 381 { 382 locks_release_private(fl); 383 kmem_cache_free(filelock_cache, fl); 384 } 385 EXPORT_SYMBOL(locks_free_lock); 386 387 static void 388 locks_dispose_list(struct list_head *dispose) 389 { 390 struct file_lock *fl; 391 392 while (!list_empty(dispose)) { 393 fl = list_first_entry(dispose, struct file_lock, fl_list); 394 list_del_init(&fl->fl_list); 395 locks_free_lock(fl); 396 } 397 } 398 399 void locks_init_lock(struct file_lock *fl) 400 { 401 memset(fl, 0, sizeof(struct file_lock)); 402 locks_init_lock_heads(fl); 403 } 404 EXPORT_SYMBOL(locks_init_lock); 405 406 /* 407 * Initialize a new lock from an existing file_lock structure. 408 */ 409 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 410 { 411 new->fl_owner = fl->fl_owner; 412 new->fl_pid = fl->fl_pid; 413 new->fl_file = NULL; 414 new->fl_flags = fl->fl_flags; 415 new->fl_type = fl->fl_type; 416 new->fl_start = fl->fl_start; 417 new->fl_end = fl->fl_end; 418 new->fl_lmops = fl->fl_lmops; 419 new->fl_ops = NULL; 420 421 if (fl->fl_lmops) { 422 if (fl->fl_lmops->lm_get_owner) 423 fl->fl_lmops->lm_get_owner(fl->fl_owner); 424 } 425 } 426 EXPORT_SYMBOL(locks_copy_conflock); 427 428 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 429 { 430 /* "new" must be a freshly-initialized lock */ 431 WARN_ON_ONCE(new->fl_ops); 432 433 locks_copy_conflock(new, fl); 434 435 new->fl_file = fl->fl_file; 436 new->fl_ops = fl->fl_ops; 437 438 if (fl->fl_ops) { 439 if (fl->fl_ops->fl_copy_lock) 440 fl->fl_ops->fl_copy_lock(new, fl); 441 } 442 } 443 EXPORT_SYMBOL(locks_copy_lock); 444 445 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 446 { 447 struct file_lock *f; 448 449 /* 450 * As ctx->flc_lock is held, new requests cannot be added to 451 * ->fl_blocked_requests, so we don't need a lock to check if it 452 * is empty. 453 */ 454 if (list_empty(&fl->fl_blocked_requests)) 455 return; 456 spin_lock(&blocked_lock_lock); 457 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 458 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 459 f->fl_blocker = new; 460 spin_unlock(&blocked_lock_lock); 461 } 462 463 static inline int flock_translate_cmd(int cmd) { 464 if (cmd & LOCK_MAND) 465 return cmd & (LOCK_MAND | LOCK_RW); 466 switch (cmd) { 467 case LOCK_SH: 468 return F_RDLCK; 469 case LOCK_EX: 470 return F_WRLCK; 471 case LOCK_UN: 472 return F_UNLCK; 473 } 474 return -EINVAL; 475 } 476 477 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 478 static struct file_lock * 479 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl) 480 { 481 int type = flock_translate_cmd(cmd); 482 483 if (type < 0) 484 return ERR_PTR(type); 485 486 if (fl == NULL) { 487 fl = locks_alloc_lock(); 488 if (fl == NULL) 489 return ERR_PTR(-ENOMEM); 490 } else { 491 locks_init_lock(fl); 492 } 493 494 fl->fl_file = filp; 495 fl->fl_owner = filp; 496 fl->fl_pid = current->tgid; 497 fl->fl_flags = FL_FLOCK; 498 fl->fl_type = type; 499 fl->fl_end = OFFSET_MAX; 500 501 return fl; 502 } 503 504 static int assign_type(struct file_lock *fl, long type) 505 { 506 switch (type) { 507 case F_RDLCK: 508 case F_WRLCK: 509 case F_UNLCK: 510 fl->fl_type = type; 511 break; 512 default: 513 return -EINVAL; 514 } 515 return 0; 516 } 517 518 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 519 struct flock64 *l) 520 { 521 switch (l->l_whence) { 522 case SEEK_SET: 523 fl->fl_start = 0; 524 break; 525 case SEEK_CUR: 526 fl->fl_start = filp->f_pos; 527 break; 528 case SEEK_END: 529 fl->fl_start = i_size_read(file_inode(filp)); 530 break; 531 default: 532 return -EINVAL; 533 } 534 if (l->l_start > OFFSET_MAX - fl->fl_start) 535 return -EOVERFLOW; 536 fl->fl_start += l->l_start; 537 if (fl->fl_start < 0) 538 return -EINVAL; 539 540 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 541 POSIX-2001 defines it. */ 542 if (l->l_len > 0) { 543 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 544 return -EOVERFLOW; 545 fl->fl_end = fl->fl_start + (l->l_len - 1); 546 547 } else if (l->l_len < 0) { 548 if (fl->fl_start + l->l_len < 0) 549 return -EINVAL; 550 fl->fl_end = fl->fl_start - 1; 551 fl->fl_start += l->l_len; 552 } else 553 fl->fl_end = OFFSET_MAX; 554 555 fl->fl_owner = current->files; 556 fl->fl_pid = current->tgid; 557 fl->fl_file = filp; 558 fl->fl_flags = FL_POSIX; 559 fl->fl_ops = NULL; 560 fl->fl_lmops = NULL; 561 562 return assign_type(fl, l->l_type); 563 } 564 565 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 566 * style lock. 567 */ 568 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 569 struct flock *l) 570 { 571 struct flock64 ll = { 572 .l_type = l->l_type, 573 .l_whence = l->l_whence, 574 .l_start = l->l_start, 575 .l_len = l->l_len, 576 }; 577 578 return flock64_to_posix_lock(filp, fl, &ll); 579 } 580 581 /* default lease lock manager operations */ 582 static bool 583 lease_break_callback(struct file_lock *fl) 584 { 585 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 586 return false; 587 } 588 589 static void 590 lease_setup(struct file_lock *fl, void **priv) 591 { 592 struct file *filp = fl->fl_file; 593 struct fasync_struct *fa = *priv; 594 595 /* 596 * fasync_insert_entry() returns the old entry if any. If there was no 597 * old entry, then it used "priv" and inserted it into the fasync list. 598 * Clear the pointer to indicate that it shouldn't be freed. 599 */ 600 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 601 *priv = NULL; 602 603 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 604 } 605 606 static const struct lock_manager_operations lease_manager_ops = { 607 .lm_break = lease_break_callback, 608 .lm_change = lease_modify, 609 .lm_setup = lease_setup, 610 }; 611 612 /* 613 * Initialize a lease, use the default lock manager operations 614 */ 615 static int lease_init(struct file *filp, long type, struct file_lock *fl) 616 { 617 if (assign_type(fl, type) != 0) 618 return -EINVAL; 619 620 fl->fl_owner = filp; 621 fl->fl_pid = current->tgid; 622 623 fl->fl_file = filp; 624 fl->fl_flags = FL_LEASE; 625 fl->fl_start = 0; 626 fl->fl_end = OFFSET_MAX; 627 fl->fl_ops = NULL; 628 fl->fl_lmops = &lease_manager_ops; 629 return 0; 630 } 631 632 /* Allocate a file_lock initialised to this type of lease */ 633 static struct file_lock *lease_alloc(struct file *filp, long type) 634 { 635 struct file_lock *fl = locks_alloc_lock(); 636 int error = -ENOMEM; 637 638 if (fl == NULL) 639 return ERR_PTR(error); 640 641 error = lease_init(filp, type, fl); 642 if (error) { 643 locks_free_lock(fl); 644 return ERR_PTR(error); 645 } 646 return fl; 647 } 648 649 /* Check if two locks overlap each other. 650 */ 651 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 652 { 653 return ((fl1->fl_end >= fl2->fl_start) && 654 (fl2->fl_end >= fl1->fl_start)); 655 } 656 657 /* 658 * Check whether two locks have the same owner. 659 */ 660 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 661 { 662 return fl1->fl_owner == fl2->fl_owner; 663 } 664 665 /* Must be called with the flc_lock held! */ 666 static void locks_insert_global_locks(struct file_lock *fl) 667 { 668 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 669 670 percpu_rwsem_assert_held(&file_rwsem); 671 672 spin_lock(&fll->lock); 673 fl->fl_link_cpu = smp_processor_id(); 674 hlist_add_head(&fl->fl_link, &fll->hlist); 675 spin_unlock(&fll->lock); 676 } 677 678 /* Must be called with the flc_lock held! */ 679 static void locks_delete_global_locks(struct file_lock *fl) 680 { 681 struct file_lock_list_struct *fll; 682 683 percpu_rwsem_assert_held(&file_rwsem); 684 685 /* 686 * Avoid taking lock if already unhashed. This is safe since this check 687 * is done while holding the flc_lock, and new insertions into the list 688 * also require that it be held. 689 */ 690 if (hlist_unhashed(&fl->fl_link)) 691 return; 692 693 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 694 spin_lock(&fll->lock); 695 hlist_del_init(&fl->fl_link); 696 spin_unlock(&fll->lock); 697 } 698 699 static unsigned long 700 posix_owner_key(struct file_lock *fl) 701 { 702 return (unsigned long)fl->fl_owner; 703 } 704 705 static void locks_insert_global_blocked(struct file_lock *waiter) 706 { 707 lockdep_assert_held(&blocked_lock_lock); 708 709 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 710 } 711 712 static void locks_delete_global_blocked(struct file_lock *waiter) 713 { 714 lockdep_assert_held(&blocked_lock_lock); 715 716 hash_del(&waiter->fl_link); 717 } 718 719 /* Remove waiter from blocker's block list. 720 * When blocker ends up pointing to itself then the list is empty. 721 * 722 * Must be called with blocked_lock_lock held. 723 */ 724 static void __locks_delete_block(struct file_lock *waiter) 725 { 726 locks_delete_global_blocked(waiter); 727 list_del_init(&waiter->fl_blocked_member); 728 } 729 730 static void __locks_wake_up_blocks(struct file_lock *blocker) 731 { 732 while (!list_empty(&blocker->fl_blocked_requests)) { 733 struct file_lock *waiter; 734 735 waiter = list_first_entry(&blocker->fl_blocked_requests, 736 struct file_lock, fl_blocked_member); 737 __locks_delete_block(waiter); 738 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 739 waiter->fl_lmops->lm_notify(waiter); 740 else 741 wake_up(&waiter->fl_wait); 742 743 /* 744 * The setting of fl_blocker to NULL marks the "done" 745 * point in deleting a block. Paired with acquire at the top 746 * of locks_delete_block(). 747 */ 748 smp_store_release(&waiter->fl_blocker, NULL); 749 } 750 } 751 752 /** 753 * locks_delete_block - stop waiting for a file lock 754 * @waiter: the lock which was waiting 755 * 756 * lockd/nfsd need to disconnect the lock while working on it. 757 */ 758 int locks_delete_block(struct file_lock *waiter) 759 { 760 int status = -ENOENT; 761 762 /* 763 * If fl_blocker is NULL, it won't be set again as this thread "owns" 764 * the lock and is the only one that might try to claim the lock. 765 * 766 * We use acquire/release to manage fl_blocker so that we can 767 * optimize away taking the blocked_lock_lock in many cases. 768 * 769 * The smp_load_acquire guarantees two things: 770 * 771 * 1/ that fl_blocked_requests can be tested locklessly. If something 772 * was recently added to that list it must have been in a locked region 773 * *before* the locked region when fl_blocker was set to NULL. 774 * 775 * 2/ that no other thread is accessing 'waiter', so it is safe to free 776 * it. __locks_wake_up_blocks is careful not to touch waiter after 777 * fl_blocker is released. 778 * 779 * If a lockless check of fl_blocker shows it to be NULL, we know that 780 * no new locks can be inserted into its fl_blocked_requests list, and 781 * can avoid doing anything further if the list is empty. 782 */ 783 if (!smp_load_acquire(&waiter->fl_blocker) && 784 list_empty(&waiter->fl_blocked_requests)) 785 return status; 786 787 spin_lock(&blocked_lock_lock); 788 if (waiter->fl_blocker) 789 status = 0; 790 __locks_wake_up_blocks(waiter); 791 __locks_delete_block(waiter); 792 793 /* 794 * The setting of fl_blocker to NULL marks the "done" point in deleting 795 * a block. Paired with acquire at the top of this function. 796 */ 797 smp_store_release(&waiter->fl_blocker, NULL); 798 spin_unlock(&blocked_lock_lock); 799 return status; 800 } 801 EXPORT_SYMBOL(locks_delete_block); 802 803 /* Insert waiter into blocker's block list. 804 * We use a circular list so that processes can be easily woken up in 805 * the order they blocked. The documentation doesn't require this but 806 * it seems like the reasonable thing to do. 807 * 808 * Must be called with both the flc_lock and blocked_lock_lock held. The 809 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 810 * but by ensuring that the flc_lock is also held on insertions we can avoid 811 * taking the blocked_lock_lock in some cases when we see that the 812 * fl_blocked_requests list is empty. 813 * 814 * Rather than just adding to the list, we check for conflicts with any existing 815 * waiters, and add beneath any waiter that blocks the new waiter. 816 * Thus wakeups don't happen until needed. 817 */ 818 static void __locks_insert_block(struct file_lock *blocker, 819 struct file_lock *waiter, 820 bool conflict(struct file_lock *, 821 struct file_lock *)) 822 { 823 struct file_lock *fl; 824 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 825 826 new_blocker: 827 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 828 if (conflict(fl, waiter)) { 829 blocker = fl; 830 goto new_blocker; 831 } 832 waiter->fl_blocker = blocker; 833 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 834 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 835 locks_insert_global_blocked(waiter); 836 837 /* The requests in waiter->fl_blocked are known to conflict with 838 * waiter, but might not conflict with blocker, or the requests 839 * and lock which block it. So they all need to be woken. 840 */ 841 __locks_wake_up_blocks(waiter); 842 } 843 844 /* Must be called with flc_lock held. */ 845 static void locks_insert_block(struct file_lock *blocker, 846 struct file_lock *waiter, 847 bool conflict(struct file_lock *, 848 struct file_lock *)) 849 { 850 spin_lock(&blocked_lock_lock); 851 __locks_insert_block(blocker, waiter, conflict); 852 spin_unlock(&blocked_lock_lock); 853 } 854 855 /* 856 * Wake up processes blocked waiting for blocker. 857 * 858 * Must be called with the inode->flc_lock held! 859 */ 860 static void locks_wake_up_blocks(struct file_lock *blocker) 861 { 862 /* 863 * Avoid taking global lock if list is empty. This is safe since new 864 * blocked requests are only added to the list under the flc_lock, and 865 * the flc_lock is always held here. Note that removal from the 866 * fl_blocked_requests list does not require the flc_lock, so we must 867 * recheck list_empty() after acquiring the blocked_lock_lock. 868 */ 869 if (list_empty(&blocker->fl_blocked_requests)) 870 return; 871 872 spin_lock(&blocked_lock_lock); 873 __locks_wake_up_blocks(blocker); 874 spin_unlock(&blocked_lock_lock); 875 } 876 877 static void 878 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 879 { 880 list_add_tail(&fl->fl_list, before); 881 locks_insert_global_locks(fl); 882 } 883 884 static void 885 locks_unlink_lock_ctx(struct file_lock *fl) 886 { 887 locks_delete_global_locks(fl); 888 list_del_init(&fl->fl_list); 889 locks_wake_up_blocks(fl); 890 } 891 892 static void 893 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 894 { 895 locks_unlink_lock_ctx(fl); 896 if (dispose) 897 list_add(&fl->fl_list, dispose); 898 else 899 locks_free_lock(fl); 900 } 901 902 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 903 * checks for shared/exclusive status of overlapping locks. 904 */ 905 static bool locks_conflict(struct file_lock *caller_fl, 906 struct file_lock *sys_fl) 907 { 908 if (sys_fl->fl_type == F_WRLCK) 909 return true; 910 if (caller_fl->fl_type == F_WRLCK) 911 return true; 912 return false; 913 } 914 915 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 916 * checking before calling the locks_conflict(). 917 */ 918 static bool posix_locks_conflict(struct file_lock *caller_fl, 919 struct file_lock *sys_fl) 920 { 921 /* POSIX locks owned by the same process do not conflict with 922 * each other. 923 */ 924 if (posix_same_owner(caller_fl, sys_fl)) 925 return false; 926 927 /* Check whether they overlap */ 928 if (!locks_overlap(caller_fl, sys_fl)) 929 return false; 930 931 return locks_conflict(caller_fl, sys_fl); 932 } 933 934 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 935 * checking before calling the locks_conflict(). 936 */ 937 static bool flock_locks_conflict(struct file_lock *caller_fl, 938 struct file_lock *sys_fl) 939 { 940 /* FLOCK locks referring to the same filp do not conflict with 941 * each other. 942 */ 943 if (caller_fl->fl_file == sys_fl->fl_file) 944 return false; 945 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 946 return false; 947 948 return locks_conflict(caller_fl, sys_fl); 949 } 950 951 void 952 posix_test_lock(struct file *filp, struct file_lock *fl) 953 { 954 struct file_lock *cfl; 955 struct file_lock_context *ctx; 956 struct inode *inode = locks_inode(filp); 957 958 ctx = smp_load_acquire(&inode->i_flctx); 959 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 960 fl->fl_type = F_UNLCK; 961 return; 962 } 963 964 spin_lock(&ctx->flc_lock); 965 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 966 if (posix_locks_conflict(fl, cfl)) { 967 locks_copy_conflock(fl, cfl); 968 goto out; 969 } 970 } 971 fl->fl_type = F_UNLCK; 972 out: 973 spin_unlock(&ctx->flc_lock); 974 return; 975 } 976 EXPORT_SYMBOL(posix_test_lock); 977 978 /* 979 * Deadlock detection: 980 * 981 * We attempt to detect deadlocks that are due purely to posix file 982 * locks. 983 * 984 * We assume that a task can be waiting for at most one lock at a time. 985 * So for any acquired lock, the process holding that lock may be 986 * waiting on at most one other lock. That lock in turns may be held by 987 * someone waiting for at most one other lock. Given a requested lock 988 * caller_fl which is about to wait for a conflicting lock block_fl, we 989 * follow this chain of waiters to ensure we are not about to create a 990 * cycle. 991 * 992 * Since we do this before we ever put a process to sleep on a lock, we 993 * are ensured that there is never a cycle; that is what guarantees that 994 * the while() loop in posix_locks_deadlock() eventually completes. 995 * 996 * Note: the above assumption may not be true when handling lock 997 * requests from a broken NFS client. It may also fail in the presence 998 * of tasks (such as posix threads) sharing the same open file table. 999 * To handle those cases, we just bail out after a few iterations. 1000 * 1001 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 1002 * Because the owner is not even nominally tied to a thread of 1003 * execution, the deadlock detection below can't reasonably work well. Just 1004 * skip it for those. 1005 * 1006 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 1007 * locks that just checks for the case where two tasks are attempting to 1008 * upgrade from read to write locks on the same inode. 1009 */ 1010 1011 #define MAX_DEADLK_ITERATIONS 10 1012 1013 /* Find a lock that the owner of the given block_fl is blocking on. */ 1014 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 1015 { 1016 struct file_lock *fl; 1017 1018 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 1019 if (posix_same_owner(fl, block_fl)) { 1020 while (fl->fl_blocker) 1021 fl = fl->fl_blocker; 1022 return fl; 1023 } 1024 } 1025 return NULL; 1026 } 1027 1028 /* Must be called with the blocked_lock_lock held! */ 1029 static int posix_locks_deadlock(struct file_lock *caller_fl, 1030 struct file_lock *block_fl) 1031 { 1032 int i = 0; 1033 1034 lockdep_assert_held(&blocked_lock_lock); 1035 1036 /* 1037 * This deadlock detector can't reasonably detect deadlocks with 1038 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1039 */ 1040 if (IS_OFDLCK(caller_fl)) 1041 return 0; 1042 1043 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 1044 if (i++ > MAX_DEADLK_ITERATIONS) 1045 return 0; 1046 if (posix_same_owner(caller_fl, block_fl)) 1047 return 1; 1048 } 1049 return 0; 1050 } 1051 1052 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1053 * after any leases, but before any posix locks. 1054 * 1055 * Note that if called with an FL_EXISTS argument, the caller may determine 1056 * whether or not a lock was successfully freed by testing the return 1057 * value for -ENOENT. 1058 */ 1059 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1060 { 1061 struct file_lock *new_fl = NULL; 1062 struct file_lock *fl; 1063 struct file_lock_context *ctx; 1064 int error = 0; 1065 bool found = false; 1066 LIST_HEAD(dispose); 1067 1068 ctx = locks_get_lock_context(inode, request->fl_type); 1069 if (!ctx) { 1070 if (request->fl_type != F_UNLCK) 1071 return -ENOMEM; 1072 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 1073 } 1074 1075 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 1076 new_fl = locks_alloc_lock(); 1077 if (!new_fl) 1078 return -ENOMEM; 1079 } 1080 1081 percpu_down_read(&file_rwsem); 1082 spin_lock(&ctx->flc_lock); 1083 if (request->fl_flags & FL_ACCESS) 1084 goto find_conflict; 1085 1086 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1087 if (request->fl_file != fl->fl_file) 1088 continue; 1089 if (request->fl_type == fl->fl_type) 1090 goto out; 1091 found = true; 1092 locks_delete_lock_ctx(fl, &dispose); 1093 break; 1094 } 1095 1096 if (request->fl_type == F_UNLCK) { 1097 if ((request->fl_flags & FL_EXISTS) && !found) 1098 error = -ENOENT; 1099 goto out; 1100 } 1101 1102 find_conflict: 1103 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1104 if (!flock_locks_conflict(request, fl)) 1105 continue; 1106 error = -EAGAIN; 1107 if (!(request->fl_flags & FL_SLEEP)) 1108 goto out; 1109 error = FILE_LOCK_DEFERRED; 1110 locks_insert_block(fl, request, flock_locks_conflict); 1111 goto out; 1112 } 1113 if (request->fl_flags & FL_ACCESS) 1114 goto out; 1115 locks_copy_lock(new_fl, request); 1116 locks_move_blocks(new_fl, request); 1117 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1118 new_fl = NULL; 1119 error = 0; 1120 1121 out: 1122 spin_unlock(&ctx->flc_lock); 1123 percpu_up_read(&file_rwsem); 1124 if (new_fl) 1125 locks_free_lock(new_fl); 1126 locks_dispose_list(&dispose); 1127 trace_flock_lock_inode(inode, request, error); 1128 return error; 1129 } 1130 1131 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1132 struct file_lock *conflock) 1133 { 1134 struct file_lock *fl, *tmp; 1135 struct file_lock *new_fl = NULL; 1136 struct file_lock *new_fl2 = NULL; 1137 struct file_lock *left = NULL; 1138 struct file_lock *right = NULL; 1139 struct file_lock_context *ctx; 1140 int error; 1141 bool added = false; 1142 LIST_HEAD(dispose); 1143 1144 ctx = locks_get_lock_context(inode, request->fl_type); 1145 if (!ctx) 1146 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1147 1148 /* 1149 * We may need two file_lock structures for this operation, 1150 * so we get them in advance to avoid races. 1151 * 1152 * In some cases we can be sure, that no new locks will be needed 1153 */ 1154 if (!(request->fl_flags & FL_ACCESS) && 1155 (request->fl_type != F_UNLCK || 1156 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1157 new_fl = locks_alloc_lock(); 1158 new_fl2 = locks_alloc_lock(); 1159 } 1160 1161 percpu_down_read(&file_rwsem); 1162 spin_lock(&ctx->flc_lock); 1163 /* 1164 * New lock request. Walk all POSIX locks and look for conflicts. If 1165 * there are any, either return error or put the request on the 1166 * blocker's list of waiters and the global blocked_hash. 1167 */ 1168 if (request->fl_type != F_UNLCK) { 1169 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1170 if (!posix_locks_conflict(request, fl)) 1171 continue; 1172 if (conflock) 1173 locks_copy_conflock(conflock, fl); 1174 error = -EAGAIN; 1175 if (!(request->fl_flags & FL_SLEEP)) 1176 goto out; 1177 /* 1178 * Deadlock detection and insertion into the blocked 1179 * locks list must be done while holding the same lock! 1180 */ 1181 error = -EDEADLK; 1182 spin_lock(&blocked_lock_lock); 1183 /* 1184 * Ensure that we don't find any locks blocked on this 1185 * request during deadlock detection. 1186 */ 1187 __locks_wake_up_blocks(request); 1188 if (likely(!posix_locks_deadlock(request, fl))) { 1189 error = FILE_LOCK_DEFERRED; 1190 __locks_insert_block(fl, request, 1191 posix_locks_conflict); 1192 } 1193 spin_unlock(&blocked_lock_lock); 1194 goto out; 1195 } 1196 } 1197 1198 /* If we're just looking for a conflict, we're done. */ 1199 error = 0; 1200 if (request->fl_flags & FL_ACCESS) 1201 goto out; 1202 1203 /* Find the first old lock with the same owner as the new lock */ 1204 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1205 if (posix_same_owner(request, fl)) 1206 break; 1207 } 1208 1209 /* Process locks with this owner. */ 1210 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1211 if (!posix_same_owner(request, fl)) 1212 break; 1213 1214 /* Detect adjacent or overlapping regions (if same lock type) */ 1215 if (request->fl_type == fl->fl_type) { 1216 /* In all comparisons of start vs end, use 1217 * "start - 1" rather than "end + 1". If end 1218 * is OFFSET_MAX, end + 1 will become negative. 1219 */ 1220 if (fl->fl_end < request->fl_start - 1) 1221 continue; 1222 /* If the next lock in the list has entirely bigger 1223 * addresses than the new one, insert the lock here. 1224 */ 1225 if (fl->fl_start - 1 > request->fl_end) 1226 break; 1227 1228 /* If we come here, the new and old lock are of the 1229 * same type and adjacent or overlapping. Make one 1230 * lock yielding from the lower start address of both 1231 * locks to the higher end address. 1232 */ 1233 if (fl->fl_start > request->fl_start) 1234 fl->fl_start = request->fl_start; 1235 else 1236 request->fl_start = fl->fl_start; 1237 if (fl->fl_end < request->fl_end) 1238 fl->fl_end = request->fl_end; 1239 else 1240 request->fl_end = fl->fl_end; 1241 if (added) { 1242 locks_delete_lock_ctx(fl, &dispose); 1243 continue; 1244 } 1245 request = fl; 1246 added = true; 1247 } else { 1248 /* Processing for different lock types is a bit 1249 * more complex. 1250 */ 1251 if (fl->fl_end < request->fl_start) 1252 continue; 1253 if (fl->fl_start > request->fl_end) 1254 break; 1255 if (request->fl_type == F_UNLCK) 1256 added = true; 1257 if (fl->fl_start < request->fl_start) 1258 left = fl; 1259 /* If the next lock in the list has a higher end 1260 * address than the new one, insert the new one here. 1261 */ 1262 if (fl->fl_end > request->fl_end) { 1263 right = fl; 1264 break; 1265 } 1266 if (fl->fl_start >= request->fl_start) { 1267 /* The new lock completely replaces an old 1268 * one (This may happen several times). 1269 */ 1270 if (added) { 1271 locks_delete_lock_ctx(fl, &dispose); 1272 continue; 1273 } 1274 /* 1275 * Replace the old lock with new_fl, and 1276 * remove the old one. It's safe to do the 1277 * insert here since we know that we won't be 1278 * using new_fl later, and that the lock is 1279 * just replacing an existing lock. 1280 */ 1281 error = -ENOLCK; 1282 if (!new_fl) 1283 goto out; 1284 locks_copy_lock(new_fl, request); 1285 locks_move_blocks(new_fl, request); 1286 request = new_fl; 1287 new_fl = NULL; 1288 locks_insert_lock_ctx(request, &fl->fl_list); 1289 locks_delete_lock_ctx(fl, &dispose); 1290 added = true; 1291 } 1292 } 1293 } 1294 1295 /* 1296 * The above code only modifies existing locks in case of merging or 1297 * replacing. If new lock(s) need to be inserted all modifications are 1298 * done below this, so it's safe yet to bail out. 1299 */ 1300 error = -ENOLCK; /* "no luck" */ 1301 if (right && left == right && !new_fl2) 1302 goto out; 1303 1304 error = 0; 1305 if (!added) { 1306 if (request->fl_type == F_UNLCK) { 1307 if (request->fl_flags & FL_EXISTS) 1308 error = -ENOENT; 1309 goto out; 1310 } 1311 1312 if (!new_fl) { 1313 error = -ENOLCK; 1314 goto out; 1315 } 1316 locks_copy_lock(new_fl, request); 1317 locks_move_blocks(new_fl, request); 1318 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1319 fl = new_fl; 1320 new_fl = NULL; 1321 } 1322 if (right) { 1323 if (left == right) { 1324 /* The new lock breaks the old one in two pieces, 1325 * so we have to use the second new lock. 1326 */ 1327 left = new_fl2; 1328 new_fl2 = NULL; 1329 locks_copy_lock(left, right); 1330 locks_insert_lock_ctx(left, &fl->fl_list); 1331 } 1332 right->fl_start = request->fl_end + 1; 1333 locks_wake_up_blocks(right); 1334 } 1335 if (left) { 1336 left->fl_end = request->fl_start - 1; 1337 locks_wake_up_blocks(left); 1338 } 1339 out: 1340 spin_unlock(&ctx->flc_lock); 1341 percpu_up_read(&file_rwsem); 1342 /* 1343 * Free any unused locks. 1344 */ 1345 if (new_fl) 1346 locks_free_lock(new_fl); 1347 if (new_fl2) 1348 locks_free_lock(new_fl2); 1349 locks_dispose_list(&dispose); 1350 trace_posix_lock_inode(inode, request, error); 1351 1352 return error; 1353 } 1354 1355 /** 1356 * posix_lock_file - Apply a POSIX-style lock to a file 1357 * @filp: The file to apply the lock to 1358 * @fl: The lock to be applied 1359 * @conflock: Place to return a copy of the conflicting lock, if found. 1360 * 1361 * Add a POSIX style lock to a file. 1362 * We merge adjacent & overlapping locks whenever possible. 1363 * POSIX locks are sorted by owner task, then by starting address 1364 * 1365 * Note that if called with an FL_EXISTS argument, the caller may determine 1366 * whether or not a lock was successfully freed by testing the return 1367 * value for -ENOENT. 1368 */ 1369 int posix_lock_file(struct file *filp, struct file_lock *fl, 1370 struct file_lock *conflock) 1371 { 1372 return posix_lock_inode(locks_inode(filp), fl, conflock); 1373 } 1374 EXPORT_SYMBOL(posix_lock_file); 1375 1376 /** 1377 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1378 * @inode: inode of file to which lock request should be applied 1379 * @fl: The lock to be applied 1380 * 1381 * Apply a POSIX style lock request to an inode. 1382 */ 1383 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1384 { 1385 int error; 1386 might_sleep (); 1387 for (;;) { 1388 error = posix_lock_inode(inode, fl, NULL); 1389 if (error != FILE_LOCK_DEFERRED) 1390 break; 1391 error = wait_event_interruptible(fl->fl_wait, 1392 list_empty(&fl->fl_blocked_member)); 1393 if (error) 1394 break; 1395 } 1396 locks_delete_block(fl); 1397 return error; 1398 } 1399 1400 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1401 /** 1402 * locks_mandatory_locked - Check for an active lock 1403 * @file: the file to check 1404 * 1405 * Searches the inode's list of locks to find any POSIX locks which conflict. 1406 * This function is called from locks_verify_locked() only. 1407 */ 1408 int locks_mandatory_locked(struct file *file) 1409 { 1410 int ret; 1411 struct inode *inode = locks_inode(file); 1412 struct file_lock_context *ctx; 1413 struct file_lock *fl; 1414 1415 ctx = smp_load_acquire(&inode->i_flctx); 1416 if (!ctx || list_empty_careful(&ctx->flc_posix)) 1417 return 0; 1418 1419 /* 1420 * Search the lock list for this inode for any POSIX locks. 1421 */ 1422 spin_lock(&ctx->flc_lock); 1423 ret = 0; 1424 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1425 if (fl->fl_owner != current->files && 1426 fl->fl_owner != file) { 1427 ret = -EAGAIN; 1428 break; 1429 } 1430 } 1431 spin_unlock(&ctx->flc_lock); 1432 return ret; 1433 } 1434 1435 /** 1436 * locks_mandatory_area - Check for a conflicting lock 1437 * @inode: the file to check 1438 * @filp: how the file was opened (if it was) 1439 * @start: first byte in the file to check 1440 * @end: lastbyte in the file to check 1441 * @type: %F_WRLCK for a write lock, else %F_RDLCK 1442 * 1443 * Searches the inode's list of locks to find any POSIX locks which conflict. 1444 */ 1445 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start, 1446 loff_t end, unsigned char type) 1447 { 1448 struct file_lock fl; 1449 int error; 1450 bool sleep = false; 1451 1452 locks_init_lock(&fl); 1453 fl.fl_pid = current->tgid; 1454 fl.fl_file = filp; 1455 fl.fl_flags = FL_POSIX | FL_ACCESS; 1456 if (filp && !(filp->f_flags & O_NONBLOCK)) 1457 sleep = true; 1458 fl.fl_type = type; 1459 fl.fl_start = start; 1460 fl.fl_end = end; 1461 1462 for (;;) { 1463 if (filp) { 1464 fl.fl_owner = filp; 1465 fl.fl_flags &= ~FL_SLEEP; 1466 error = posix_lock_inode(inode, &fl, NULL); 1467 if (!error) 1468 break; 1469 } 1470 1471 if (sleep) 1472 fl.fl_flags |= FL_SLEEP; 1473 fl.fl_owner = current->files; 1474 error = posix_lock_inode(inode, &fl, NULL); 1475 if (error != FILE_LOCK_DEFERRED) 1476 break; 1477 error = wait_event_interruptible(fl.fl_wait, 1478 list_empty(&fl.fl_blocked_member)); 1479 if (!error) { 1480 /* 1481 * If we've been sleeping someone might have 1482 * changed the permissions behind our back. 1483 */ 1484 if (__mandatory_lock(inode)) 1485 continue; 1486 } 1487 1488 break; 1489 } 1490 locks_delete_block(&fl); 1491 1492 return error; 1493 } 1494 EXPORT_SYMBOL(locks_mandatory_area); 1495 #endif /* CONFIG_MANDATORY_FILE_LOCKING */ 1496 1497 static void lease_clear_pending(struct file_lock *fl, int arg) 1498 { 1499 switch (arg) { 1500 case F_UNLCK: 1501 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1502 fallthrough; 1503 case F_RDLCK: 1504 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1505 } 1506 } 1507 1508 /* We already had a lease on this file; just change its type */ 1509 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1510 { 1511 int error = assign_type(fl, arg); 1512 1513 if (error) 1514 return error; 1515 lease_clear_pending(fl, arg); 1516 locks_wake_up_blocks(fl); 1517 if (arg == F_UNLCK) { 1518 struct file *filp = fl->fl_file; 1519 1520 f_delown(filp); 1521 filp->f_owner.signum = 0; 1522 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1523 if (fl->fl_fasync != NULL) { 1524 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1525 fl->fl_fasync = NULL; 1526 } 1527 locks_delete_lock_ctx(fl, dispose); 1528 } 1529 return 0; 1530 } 1531 EXPORT_SYMBOL(lease_modify); 1532 1533 static bool past_time(unsigned long then) 1534 { 1535 if (!then) 1536 /* 0 is a special value meaning "this never expires": */ 1537 return false; 1538 return time_after(jiffies, then); 1539 } 1540 1541 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1542 { 1543 struct file_lock_context *ctx = inode->i_flctx; 1544 struct file_lock *fl, *tmp; 1545 1546 lockdep_assert_held(&ctx->flc_lock); 1547 1548 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1549 trace_time_out_leases(inode, fl); 1550 if (past_time(fl->fl_downgrade_time)) 1551 lease_modify(fl, F_RDLCK, dispose); 1552 if (past_time(fl->fl_break_time)) 1553 lease_modify(fl, F_UNLCK, dispose); 1554 } 1555 } 1556 1557 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1558 { 1559 bool rc; 1560 1561 if (lease->fl_lmops->lm_breaker_owns_lease 1562 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1563 return false; 1564 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) { 1565 rc = false; 1566 goto trace; 1567 } 1568 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) { 1569 rc = false; 1570 goto trace; 1571 } 1572 1573 rc = locks_conflict(breaker, lease); 1574 trace: 1575 trace_leases_conflict(rc, lease, breaker); 1576 return rc; 1577 } 1578 1579 static bool 1580 any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1581 { 1582 struct file_lock_context *ctx = inode->i_flctx; 1583 struct file_lock *fl; 1584 1585 lockdep_assert_held(&ctx->flc_lock); 1586 1587 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1588 if (leases_conflict(fl, breaker)) 1589 return true; 1590 } 1591 return false; 1592 } 1593 1594 /** 1595 * __break_lease - revoke all outstanding leases on file 1596 * @inode: the inode of the file to return 1597 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1598 * break all leases 1599 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1600 * only delegations 1601 * 1602 * break_lease (inlined for speed) has checked there already is at least 1603 * some kind of lock (maybe a lease) on this file. Leases are broken on 1604 * a call to open() or truncate(). This function can sleep unless you 1605 * specified %O_NONBLOCK to your open(). 1606 */ 1607 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1608 { 1609 int error = 0; 1610 struct file_lock_context *ctx; 1611 struct file_lock *new_fl, *fl, *tmp; 1612 unsigned long break_time; 1613 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1614 LIST_HEAD(dispose); 1615 1616 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1617 if (IS_ERR(new_fl)) 1618 return PTR_ERR(new_fl); 1619 new_fl->fl_flags = type; 1620 1621 /* typically we will check that ctx is non-NULL before calling */ 1622 ctx = smp_load_acquire(&inode->i_flctx); 1623 if (!ctx) { 1624 WARN_ON_ONCE(1); 1625 goto free_lock; 1626 } 1627 1628 percpu_down_read(&file_rwsem); 1629 spin_lock(&ctx->flc_lock); 1630 1631 time_out_leases(inode, &dispose); 1632 1633 if (!any_leases_conflict(inode, new_fl)) 1634 goto out; 1635 1636 break_time = 0; 1637 if (lease_break_time > 0) { 1638 break_time = jiffies + lease_break_time * HZ; 1639 if (break_time == 0) 1640 break_time++; /* so that 0 means no break time */ 1641 } 1642 1643 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1644 if (!leases_conflict(fl, new_fl)) 1645 continue; 1646 if (want_write) { 1647 if (fl->fl_flags & FL_UNLOCK_PENDING) 1648 continue; 1649 fl->fl_flags |= FL_UNLOCK_PENDING; 1650 fl->fl_break_time = break_time; 1651 } else { 1652 if (lease_breaking(fl)) 1653 continue; 1654 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1655 fl->fl_downgrade_time = break_time; 1656 } 1657 if (fl->fl_lmops->lm_break(fl)) 1658 locks_delete_lock_ctx(fl, &dispose); 1659 } 1660 1661 if (list_empty(&ctx->flc_lease)) 1662 goto out; 1663 1664 if (mode & O_NONBLOCK) { 1665 trace_break_lease_noblock(inode, new_fl); 1666 error = -EWOULDBLOCK; 1667 goto out; 1668 } 1669 1670 restart: 1671 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1672 break_time = fl->fl_break_time; 1673 if (break_time != 0) 1674 break_time -= jiffies; 1675 if (break_time == 0) 1676 break_time++; 1677 locks_insert_block(fl, new_fl, leases_conflict); 1678 trace_break_lease_block(inode, new_fl); 1679 spin_unlock(&ctx->flc_lock); 1680 percpu_up_read(&file_rwsem); 1681 1682 locks_dispose_list(&dispose); 1683 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1684 list_empty(&new_fl->fl_blocked_member), 1685 break_time); 1686 1687 percpu_down_read(&file_rwsem); 1688 spin_lock(&ctx->flc_lock); 1689 trace_break_lease_unblock(inode, new_fl); 1690 locks_delete_block(new_fl); 1691 if (error >= 0) { 1692 /* 1693 * Wait for the next conflicting lease that has not been 1694 * broken yet 1695 */ 1696 if (error == 0) 1697 time_out_leases(inode, &dispose); 1698 if (any_leases_conflict(inode, new_fl)) 1699 goto restart; 1700 error = 0; 1701 } 1702 out: 1703 spin_unlock(&ctx->flc_lock); 1704 percpu_up_read(&file_rwsem); 1705 locks_dispose_list(&dispose); 1706 free_lock: 1707 locks_free_lock(new_fl); 1708 return error; 1709 } 1710 EXPORT_SYMBOL(__break_lease); 1711 1712 /** 1713 * lease_get_mtime - update modified time of an inode with exclusive lease 1714 * @inode: the inode 1715 * @time: pointer to a timespec which contains the last modified time 1716 * 1717 * This is to force NFS clients to flush their caches for files with 1718 * exclusive leases. The justification is that if someone has an 1719 * exclusive lease, then they could be modifying it. 1720 */ 1721 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1722 { 1723 bool has_lease = false; 1724 struct file_lock_context *ctx; 1725 struct file_lock *fl; 1726 1727 ctx = smp_load_acquire(&inode->i_flctx); 1728 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1729 spin_lock(&ctx->flc_lock); 1730 fl = list_first_entry_or_null(&ctx->flc_lease, 1731 struct file_lock, fl_list); 1732 if (fl && (fl->fl_type == F_WRLCK)) 1733 has_lease = true; 1734 spin_unlock(&ctx->flc_lock); 1735 } 1736 1737 if (has_lease) 1738 *time = current_time(inode); 1739 } 1740 EXPORT_SYMBOL(lease_get_mtime); 1741 1742 /** 1743 * fcntl_getlease - Enquire what lease is currently active 1744 * @filp: the file 1745 * 1746 * The value returned by this function will be one of 1747 * (if no lease break is pending): 1748 * 1749 * %F_RDLCK to indicate a shared lease is held. 1750 * 1751 * %F_WRLCK to indicate an exclusive lease is held. 1752 * 1753 * %F_UNLCK to indicate no lease is held. 1754 * 1755 * (if a lease break is pending): 1756 * 1757 * %F_RDLCK to indicate an exclusive lease needs to be 1758 * changed to a shared lease (or removed). 1759 * 1760 * %F_UNLCK to indicate the lease needs to be removed. 1761 * 1762 * XXX: sfr & willy disagree over whether F_INPROGRESS 1763 * should be returned to userspace. 1764 */ 1765 int fcntl_getlease(struct file *filp) 1766 { 1767 struct file_lock *fl; 1768 struct inode *inode = locks_inode(filp); 1769 struct file_lock_context *ctx; 1770 int type = F_UNLCK; 1771 LIST_HEAD(dispose); 1772 1773 ctx = smp_load_acquire(&inode->i_flctx); 1774 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1775 percpu_down_read(&file_rwsem); 1776 spin_lock(&ctx->flc_lock); 1777 time_out_leases(inode, &dispose); 1778 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1779 if (fl->fl_file != filp) 1780 continue; 1781 type = target_leasetype(fl); 1782 break; 1783 } 1784 spin_unlock(&ctx->flc_lock); 1785 percpu_up_read(&file_rwsem); 1786 1787 locks_dispose_list(&dispose); 1788 } 1789 return type; 1790 } 1791 1792 /** 1793 * check_conflicting_open - see if the given file points to an inode that has 1794 * an existing open that would conflict with the 1795 * desired lease. 1796 * @filp: file to check 1797 * @arg: type of lease that we're trying to acquire 1798 * @flags: current lock flags 1799 * 1800 * Check to see if there's an existing open fd on this file that would 1801 * conflict with the lease we're trying to set. 1802 */ 1803 static int 1804 check_conflicting_open(struct file *filp, const long arg, int flags) 1805 { 1806 struct inode *inode = locks_inode(filp); 1807 int self_wcount = 0, self_rcount = 0; 1808 1809 if (flags & FL_LAYOUT) 1810 return 0; 1811 1812 if (arg == F_RDLCK) 1813 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1814 else if (arg != F_WRLCK) 1815 return 0; 1816 1817 /* 1818 * Make sure that only read/write count is from lease requestor. 1819 * Note that this will result in denying write leases when i_writecount 1820 * is negative, which is what we want. (We shouldn't grant write leases 1821 * on files open for execution.) 1822 */ 1823 if (filp->f_mode & FMODE_WRITE) 1824 self_wcount = 1; 1825 else if (filp->f_mode & FMODE_READ) 1826 self_rcount = 1; 1827 1828 if (atomic_read(&inode->i_writecount) != self_wcount || 1829 atomic_read(&inode->i_readcount) != self_rcount) 1830 return -EAGAIN; 1831 1832 return 0; 1833 } 1834 1835 static int 1836 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1837 { 1838 struct file_lock *fl, *my_fl = NULL, *lease; 1839 struct inode *inode = locks_inode(filp); 1840 struct file_lock_context *ctx; 1841 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1842 int error; 1843 LIST_HEAD(dispose); 1844 1845 lease = *flp; 1846 trace_generic_add_lease(inode, lease); 1847 1848 /* Note that arg is never F_UNLCK here */ 1849 ctx = locks_get_lock_context(inode, arg); 1850 if (!ctx) 1851 return -ENOMEM; 1852 1853 /* 1854 * In the delegation case we need mutual exclusion with 1855 * a number of operations that take the i_mutex. We trylock 1856 * because delegations are an optional optimization, and if 1857 * there's some chance of a conflict--we'd rather not 1858 * bother, maybe that's a sign this just isn't a good file to 1859 * hand out a delegation on. 1860 */ 1861 if (is_deleg && !inode_trylock(inode)) 1862 return -EAGAIN; 1863 1864 if (is_deleg && arg == F_WRLCK) { 1865 /* Write delegations are not currently supported: */ 1866 inode_unlock(inode); 1867 WARN_ON_ONCE(1); 1868 return -EINVAL; 1869 } 1870 1871 percpu_down_read(&file_rwsem); 1872 spin_lock(&ctx->flc_lock); 1873 time_out_leases(inode, &dispose); 1874 error = check_conflicting_open(filp, arg, lease->fl_flags); 1875 if (error) 1876 goto out; 1877 1878 /* 1879 * At this point, we know that if there is an exclusive 1880 * lease on this file, then we hold it on this filp 1881 * (otherwise our open of this file would have blocked). 1882 * And if we are trying to acquire an exclusive lease, 1883 * then the file is not open by anyone (including us) 1884 * except for this filp. 1885 */ 1886 error = -EAGAIN; 1887 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1888 if (fl->fl_file == filp && 1889 fl->fl_owner == lease->fl_owner) { 1890 my_fl = fl; 1891 continue; 1892 } 1893 1894 /* 1895 * No exclusive leases if someone else has a lease on 1896 * this file: 1897 */ 1898 if (arg == F_WRLCK) 1899 goto out; 1900 /* 1901 * Modifying our existing lease is OK, but no getting a 1902 * new lease if someone else is opening for write: 1903 */ 1904 if (fl->fl_flags & FL_UNLOCK_PENDING) 1905 goto out; 1906 } 1907 1908 if (my_fl != NULL) { 1909 lease = my_fl; 1910 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1911 if (error) 1912 goto out; 1913 goto out_setup; 1914 } 1915 1916 error = -EINVAL; 1917 if (!leases_enable) 1918 goto out; 1919 1920 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1921 /* 1922 * The check in break_lease() is lockless. It's possible for another 1923 * open to race in after we did the earlier check for a conflicting 1924 * open but before the lease was inserted. Check again for a 1925 * conflicting open and cancel the lease if there is one. 1926 * 1927 * We also add a barrier here to ensure that the insertion of the lock 1928 * precedes these checks. 1929 */ 1930 smp_mb(); 1931 error = check_conflicting_open(filp, arg, lease->fl_flags); 1932 if (error) { 1933 locks_unlink_lock_ctx(lease); 1934 goto out; 1935 } 1936 1937 out_setup: 1938 if (lease->fl_lmops->lm_setup) 1939 lease->fl_lmops->lm_setup(lease, priv); 1940 out: 1941 spin_unlock(&ctx->flc_lock); 1942 percpu_up_read(&file_rwsem); 1943 locks_dispose_list(&dispose); 1944 if (is_deleg) 1945 inode_unlock(inode); 1946 if (!error && !my_fl) 1947 *flp = NULL; 1948 return error; 1949 } 1950 1951 static int generic_delete_lease(struct file *filp, void *owner) 1952 { 1953 int error = -EAGAIN; 1954 struct file_lock *fl, *victim = NULL; 1955 struct inode *inode = locks_inode(filp); 1956 struct file_lock_context *ctx; 1957 LIST_HEAD(dispose); 1958 1959 ctx = smp_load_acquire(&inode->i_flctx); 1960 if (!ctx) { 1961 trace_generic_delete_lease(inode, NULL); 1962 return error; 1963 } 1964 1965 percpu_down_read(&file_rwsem); 1966 spin_lock(&ctx->flc_lock); 1967 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1968 if (fl->fl_file == filp && 1969 fl->fl_owner == owner) { 1970 victim = fl; 1971 break; 1972 } 1973 } 1974 trace_generic_delete_lease(inode, victim); 1975 if (victim) 1976 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1977 spin_unlock(&ctx->flc_lock); 1978 percpu_up_read(&file_rwsem); 1979 locks_dispose_list(&dispose); 1980 return error; 1981 } 1982 1983 /** 1984 * generic_setlease - sets a lease on an open file 1985 * @filp: file pointer 1986 * @arg: type of lease to obtain 1987 * @flp: input - file_lock to use, output - file_lock inserted 1988 * @priv: private data for lm_setup (may be NULL if lm_setup 1989 * doesn't require it) 1990 * 1991 * The (input) flp->fl_lmops->lm_break function is required 1992 * by break_lease(). 1993 */ 1994 int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1995 void **priv) 1996 { 1997 struct inode *inode = locks_inode(filp); 1998 int error; 1999 2000 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 2001 return -EACCES; 2002 if (!S_ISREG(inode->i_mode)) 2003 return -EINVAL; 2004 error = security_file_lock(filp, arg); 2005 if (error) 2006 return error; 2007 2008 switch (arg) { 2009 case F_UNLCK: 2010 return generic_delete_lease(filp, *priv); 2011 case F_RDLCK: 2012 case F_WRLCK: 2013 if (!(*flp)->fl_lmops->lm_break) { 2014 WARN_ON_ONCE(1); 2015 return -ENOLCK; 2016 } 2017 2018 return generic_add_lease(filp, arg, flp, priv); 2019 default: 2020 return -EINVAL; 2021 } 2022 } 2023 EXPORT_SYMBOL(generic_setlease); 2024 2025 #if IS_ENABLED(CONFIG_SRCU) 2026 /* 2027 * Kernel subsystems can register to be notified on any attempt to set 2028 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 2029 * to close files that it may have cached when there is an attempt to set a 2030 * conflicting lease. 2031 */ 2032 static struct srcu_notifier_head lease_notifier_chain; 2033 2034 static inline void 2035 lease_notifier_chain_init(void) 2036 { 2037 srcu_init_notifier_head(&lease_notifier_chain); 2038 } 2039 2040 static inline void 2041 setlease_notifier(long arg, struct file_lock *lease) 2042 { 2043 if (arg != F_UNLCK) 2044 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 2045 } 2046 2047 int lease_register_notifier(struct notifier_block *nb) 2048 { 2049 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 2050 } 2051 EXPORT_SYMBOL_GPL(lease_register_notifier); 2052 2053 void lease_unregister_notifier(struct notifier_block *nb) 2054 { 2055 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 2056 } 2057 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 2058 2059 #else /* !IS_ENABLED(CONFIG_SRCU) */ 2060 static inline void 2061 lease_notifier_chain_init(void) 2062 { 2063 } 2064 2065 static inline void 2066 setlease_notifier(long arg, struct file_lock *lease) 2067 { 2068 } 2069 2070 int lease_register_notifier(struct notifier_block *nb) 2071 { 2072 return 0; 2073 } 2074 EXPORT_SYMBOL_GPL(lease_register_notifier); 2075 2076 void lease_unregister_notifier(struct notifier_block *nb) 2077 { 2078 } 2079 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 2080 2081 #endif /* IS_ENABLED(CONFIG_SRCU) */ 2082 2083 /** 2084 * vfs_setlease - sets a lease on an open file 2085 * @filp: file pointer 2086 * @arg: type of lease to obtain 2087 * @lease: file_lock to use when adding a lease 2088 * @priv: private info for lm_setup when adding a lease (may be 2089 * NULL if lm_setup doesn't require it) 2090 * 2091 * Call this to establish a lease on the file. The "lease" argument is not 2092 * used for F_UNLCK requests and may be NULL. For commands that set or alter 2093 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 2094 * set; if not, this function will return -ENOLCK (and generate a scary-looking 2095 * stack trace). 2096 * 2097 * The "priv" pointer is passed directly to the lm_setup function as-is. It 2098 * may be NULL if the lm_setup operation doesn't require it. 2099 */ 2100 int 2101 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 2102 { 2103 if (lease) 2104 setlease_notifier(arg, *lease); 2105 if (filp->f_op->setlease) 2106 return filp->f_op->setlease(filp, arg, lease, priv); 2107 else 2108 return generic_setlease(filp, arg, lease, priv); 2109 } 2110 EXPORT_SYMBOL_GPL(vfs_setlease); 2111 2112 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 2113 { 2114 struct file_lock *fl; 2115 struct fasync_struct *new; 2116 int error; 2117 2118 fl = lease_alloc(filp, arg); 2119 if (IS_ERR(fl)) 2120 return PTR_ERR(fl); 2121 2122 new = fasync_alloc(); 2123 if (!new) { 2124 locks_free_lock(fl); 2125 return -ENOMEM; 2126 } 2127 new->fa_fd = fd; 2128 2129 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2130 if (fl) 2131 locks_free_lock(fl); 2132 if (new) 2133 fasync_free(new); 2134 return error; 2135 } 2136 2137 /** 2138 * fcntl_setlease - sets a lease on an open file 2139 * @fd: open file descriptor 2140 * @filp: file pointer 2141 * @arg: type of lease to obtain 2142 * 2143 * Call this fcntl to establish a lease on the file. 2144 * Note that you also need to call %F_SETSIG to 2145 * receive a signal when the lease is broken. 2146 */ 2147 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 2148 { 2149 if (arg == F_UNLCK) 2150 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2151 return do_fcntl_add_lease(fd, filp, arg); 2152 } 2153 2154 /** 2155 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2156 * @inode: inode of the file to apply to 2157 * @fl: The lock to be applied 2158 * 2159 * Apply a FLOCK style lock request to an inode. 2160 */ 2161 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2162 { 2163 int error; 2164 might_sleep(); 2165 for (;;) { 2166 error = flock_lock_inode(inode, fl); 2167 if (error != FILE_LOCK_DEFERRED) 2168 break; 2169 error = wait_event_interruptible(fl->fl_wait, 2170 list_empty(&fl->fl_blocked_member)); 2171 if (error) 2172 break; 2173 } 2174 locks_delete_block(fl); 2175 return error; 2176 } 2177 2178 /** 2179 * locks_lock_inode_wait - Apply a lock to an inode 2180 * @inode: inode of the file to apply to 2181 * @fl: The lock to be applied 2182 * 2183 * Apply a POSIX or FLOCK style lock request to an inode. 2184 */ 2185 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2186 { 2187 int res = 0; 2188 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2189 case FL_POSIX: 2190 res = posix_lock_inode_wait(inode, fl); 2191 break; 2192 case FL_FLOCK: 2193 res = flock_lock_inode_wait(inode, fl); 2194 break; 2195 default: 2196 BUG(); 2197 } 2198 return res; 2199 } 2200 EXPORT_SYMBOL(locks_lock_inode_wait); 2201 2202 /** 2203 * sys_flock: - flock() system call. 2204 * @fd: the file descriptor to lock. 2205 * @cmd: the type of lock to apply. 2206 * 2207 * Apply a %FL_FLOCK style lock to an open file descriptor. 2208 * The @cmd can be one of: 2209 * 2210 * - %LOCK_SH -- a shared lock. 2211 * - %LOCK_EX -- an exclusive lock. 2212 * - %LOCK_UN -- remove an existing lock. 2213 * - %LOCK_MAND -- a 'mandatory' flock. 2214 * This exists to emulate Windows Share Modes. 2215 * 2216 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 2217 * processes read and write access respectively. 2218 */ 2219 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2220 { 2221 struct fd f = fdget(fd); 2222 struct file_lock *lock; 2223 int can_sleep, unlock; 2224 int error; 2225 2226 error = -EBADF; 2227 if (!f.file) 2228 goto out; 2229 2230 can_sleep = !(cmd & LOCK_NB); 2231 cmd &= ~LOCK_NB; 2232 unlock = (cmd == LOCK_UN); 2233 2234 if (!unlock && !(cmd & LOCK_MAND) && 2235 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 2236 goto out_putf; 2237 2238 lock = flock_make_lock(f.file, cmd, NULL); 2239 if (IS_ERR(lock)) { 2240 error = PTR_ERR(lock); 2241 goto out_putf; 2242 } 2243 2244 if (can_sleep) 2245 lock->fl_flags |= FL_SLEEP; 2246 2247 error = security_file_lock(f.file, lock->fl_type); 2248 if (error) 2249 goto out_free; 2250 2251 if (f.file->f_op->flock) 2252 error = f.file->f_op->flock(f.file, 2253 (can_sleep) ? F_SETLKW : F_SETLK, 2254 lock); 2255 else 2256 error = locks_lock_file_wait(f.file, lock); 2257 2258 out_free: 2259 locks_free_lock(lock); 2260 2261 out_putf: 2262 fdput(f); 2263 out: 2264 return error; 2265 } 2266 2267 /** 2268 * vfs_test_lock - test file byte range lock 2269 * @filp: The file to test lock for 2270 * @fl: The lock to test; also used to hold result 2271 * 2272 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2273 * setting conf->fl_type to something other than F_UNLCK. 2274 */ 2275 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2276 { 2277 if (filp->f_op->lock) 2278 return filp->f_op->lock(filp, F_GETLK, fl); 2279 posix_test_lock(filp, fl); 2280 return 0; 2281 } 2282 EXPORT_SYMBOL_GPL(vfs_test_lock); 2283 2284 /** 2285 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2286 * @fl: The file_lock who's fl_pid should be translated 2287 * @ns: The namespace into which the pid should be translated 2288 * 2289 * Used to tranlate a fl_pid into a namespace virtual pid number 2290 */ 2291 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2292 { 2293 pid_t vnr; 2294 struct pid *pid; 2295 2296 if (IS_OFDLCK(fl)) 2297 return -1; 2298 if (IS_REMOTELCK(fl)) 2299 return fl->fl_pid; 2300 /* 2301 * If the flock owner process is dead and its pid has been already 2302 * freed, the translation below won't work, but we still want to show 2303 * flock owner pid number in init pidns. 2304 */ 2305 if (ns == &init_pid_ns) 2306 return (pid_t)fl->fl_pid; 2307 2308 rcu_read_lock(); 2309 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2310 vnr = pid_nr_ns(pid, ns); 2311 rcu_read_unlock(); 2312 return vnr; 2313 } 2314 2315 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2316 { 2317 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2318 #if BITS_PER_LONG == 32 2319 /* 2320 * Make sure we can represent the posix lock via 2321 * legacy 32bit flock. 2322 */ 2323 if (fl->fl_start > OFFT_OFFSET_MAX) 2324 return -EOVERFLOW; 2325 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2326 return -EOVERFLOW; 2327 #endif 2328 flock->l_start = fl->fl_start; 2329 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2330 fl->fl_end - fl->fl_start + 1; 2331 flock->l_whence = 0; 2332 flock->l_type = fl->fl_type; 2333 return 0; 2334 } 2335 2336 #if BITS_PER_LONG == 32 2337 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2338 { 2339 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2340 flock->l_start = fl->fl_start; 2341 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2342 fl->fl_end - fl->fl_start + 1; 2343 flock->l_whence = 0; 2344 flock->l_type = fl->fl_type; 2345 } 2346 #endif 2347 2348 /* Report the first existing lock that would conflict with l. 2349 * This implements the F_GETLK command of fcntl(). 2350 */ 2351 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2352 { 2353 struct file_lock *fl; 2354 int error; 2355 2356 fl = locks_alloc_lock(); 2357 if (fl == NULL) 2358 return -ENOMEM; 2359 error = -EINVAL; 2360 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2361 goto out; 2362 2363 error = flock_to_posix_lock(filp, fl, flock); 2364 if (error) 2365 goto out; 2366 2367 if (cmd == F_OFD_GETLK) { 2368 error = -EINVAL; 2369 if (flock->l_pid != 0) 2370 goto out; 2371 2372 fl->fl_flags |= FL_OFDLCK; 2373 fl->fl_owner = filp; 2374 } 2375 2376 error = vfs_test_lock(filp, fl); 2377 if (error) 2378 goto out; 2379 2380 flock->l_type = fl->fl_type; 2381 if (fl->fl_type != F_UNLCK) { 2382 error = posix_lock_to_flock(flock, fl); 2383 if (error) 2384 goto out; 2385 } 2386 out: 2387 locks_free_lock(fl); 2388 return error; 2389 } 2390 2391 /** 2392 * vfs_lock_file - file byte range lock 2393 * @filp: The file to apply the lock to 2394 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2395 * @fl: The lock to be applied 2396 * @conf: Place to return a copy of the conflicting lock, if found. 2397 * 2398 * A caller that doesn't care about the conflicting lock may pass NULL 2399 * as the final argument. 2400 * 2401 * If the filesystem defines a private ->lock() method, then @conf will 2402 * be left unchanged; so a caller that cares should initialize it to 2403 * some acceptable default. 2404 * 2405 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2406 * locks, the ->lock() interface may return asynchronously, before the lock has 2407 * been granted or denied by the underlying filesystem, if (and only if) 2408 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2409 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2410 * the request is for a blocking lock. When ->lock() does return asynchronously, 2411 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2412 * request completes. 2413 * If the request is for non-blocking lock the file system should return 2414 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2415 * with the result. If the request timed out the callback routine will return a 2416 * nonzero return code and the file system should release the lock. The file 2417 * system is also responsible to keep a corresponding posix lock when it 2418 * grants a lock so the VFS can find out which locks are locally held and do 2419 * the correct lock cleanup when required. 2420 * The underlying filesystem must not drop the kernel lock or call 2421 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2422 * return code. 2423 */ 2424 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2425 { 2426 if (filp->f_op->lock) 2427 return filp->f_op->lock(filp, cmd, fl); 2428 else 2429 return posix_lock_file(filp, fl, conf); 2430 } 2431 EXPORT_SYMBOL_GPL(vfs_lock_file); 2432 2433 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2434 struct file_lock *fl) 2435 { 2436 int error; 2437 2438 error = security_file_lock(filp, fl->fl_type); 2439 if (error) 2440 return error; 2441 2442 for (;;) { 2443 error = vfs_lock_file(filp, cmd, fl, NULL); 2444 if (error != FILE_LOCK_DEFERRED) 2445 break; 2446 error = wait_event_interruptible(fl->fl_wait, 2447 list_empty(&fl->fl_blocked_member)); 2448 if (error) 2449 break; 2450 } 2451 locks_delete_block(fl); 2452 2453 return error; 2454 } 2455 2456 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2457 static int 2458 check_fmode_for_setlk(struct file_lock *fl) 2459 { 2460 switch (fl->fl_type) { 2461 case F_RDLCK: 2462 if (!(fl->fl_file->f_mode & FMODE_READ)) 2463 return -EBADF; 2464 break; 2465 case F_WRLCK: 2466 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2467 return -EBADF; 2468 } 2469 return 0; 2470 } 2471 2472 /* Apply the lock described by l to an open file descriptor. 2473 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2474 */ 2475 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2476 struct flock *flock) 2477 { 2478 struct file_lock *file_lock = locks_alloc_lock(); 2479 struct inode *inode = locks_inode(filp); 2480 struct file *f; 2481 int error; 2482 2483 if (file_lock == NULL) 2484 return -ENOLCK; 2485 2486 /* Don't allow mandatory locks on files that may be memory mapped 2487 * and shared. 2488 */ 2489 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 2490 error = -EAGAIN; 2491 goto out; 2492 } 2493 2494 error = flock_to_posix_lock(filp, file_lock, flock); 2495 if (error) 2496 goto out; 2497 2498 error = check_fmode_for_setlk(file_lock); 2499 if (error) 2500 goto out; 2501 2502 /* 2503 * If the cmd is requesting file-private locks, then set the 2504 * FL_OFDLCK flag and override the owner. 2505 */ 2506 switch (cmd) { 2507 case F_OFD_SETLK: 2508 error = -EINVAL; 2509 if (flock->l_pid != 0) 2510 goto out; 2511 2512 cmd = F_SETLK; 2513 file_lock->fl_flags |= FL_OFDLCK; 2514 file_lock->fl_owner = filp; 2515 break; 2516 case F_OFD_SETLKW: 2517 error = -EINVAL; 2518 if (flock->l_pid != 0) 2519 goto out; 2520 2521 cmd = F_SETLKW; 2522 file_lock->fl_flags |= FL_OFDLCK; 2523 file_lock->fl_owner = filp; 2524 fallthrough; 2525 case F_SETLKW: 2526 file_lock->fl_flags |= FL_SLEEP; 2527 } 2528 2529 error = do_lock_file_wait(filp, cmd, file_lock); 2530 2531 /* 2532 * Attempt to detect a close/fcntl race and recover by releasing the 2533 * lock that was just acquired. There is no need to do that when we're 2534 * unlocking though, or for OFD locks. 2535 */ 2536 if (!error && file_lock->fl_type != F_UNLCK && 2537 !(file_lock->fl_flags & FL_OFDLCK)) { 2538 struct files_struct *files = current->files; 2539 /* 2540 * We need that spin_lock here - it prevents reordering between 2541 * update of i_flctx->flc_posix and check for it done in 2542 * close(). rcu_read_lock() wouldn't do. 2543 */ 2544 spin_lock(&files->file_lock); 2545 f = files_lookup_fd_locked(files, fd); 2546 spin_unlock(&files->file_lock); 2547 if (f != filp) { 2548 file_lock->fl_type = F_UNLCK; 2549 error = do_lock_file_wait(filp, cmd, file_lock); 2550 WARN_ON_ONCE(error); 2551 error = -EBADF; 2552 } 2553 } 2554 out: 2555 trace_fcntl_setlk(inode, file_lock, error); 2556 locks_free_lock(file_lock); 2557 return error; 2558 } 2559 2560 #if BITS_PER_LONG == 32 2561 /* Report the first existing lock that would conflict with l. 2562 * This implements the F_GETLK command of fcntl(). 2563 */ 2564 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2565 { 2566 struct file_lock *fl; 2567 int error; 2568 2569 fl = locks_alloc_lock(); 2570 if (fl == NULL) 2571 return -ENOMEM; 2572 2573 error = -EINVAL; 2574 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2575 goto out; 2576 2577 error = flock64_to_posix_lock(filp, fl, flock); 2578 if (error) 2579 goto out; 2580 2581 if (cmd == F_OFD_GETLK) { 2582 error = -EINVAL; 2583 if (flock->l_pid != 0) 2584 goto out; 2585 2586 cmd = F_GETLK64; 2587 fl->fl_flags |= FL_OFDLCK; 2588 fl->fl_owner = filp; 2589 } 2590 2591 error = vfs_test_lock(filp, fl); 2592 if (error) 2593 goto out; 2594 2595 flock->l_type = fl->fl_type; 2596 if (fl->fl_type != F_UNLCK) 2597 posix_lock_to_flock64(flock, fl); 2598 2599 out: 2600 locks_free_lock(fl); 2601 return error; 2602 } 2603 2604 /* Apply the lock described by l to an open file descriptor. 2605 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2606 */ 2607 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2608 struct flock64 *flock) 2609 { 2610 struct file_lock *file_lock = locks_alloc_lock(); 2611 struct inode *inode = locks_inode(filp); 2612 struct file *f; 2613 int error; 2614 2615 if (file_lock == NULL) 2616 return -ENOLCK; 2617 2618 /* Don't allow mandatory locks on files that may be memory mapped 2619 * and shared. 2620 */ 2621 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 2622 error = -EAGAIN; 2623 goto out; 2624 } 2625 2626 error = flock64_to_posix_lock(filp, file_lock, flock); 2627 if (error) 2628 goto out; 2629 2630 error = check_fmode_for_setlk(file_lock); 2631 if (error) 2632 goto out; 2633 2634 /* 2635 * If the cmd is requesting file-private locks, then set the 2636 * FL_OFDLCK flag and override the owner. 2637 */ 2638 switch (cmd) { 2639 case F_OFD_SETLK: 2640 error = -EINVAL; 2641 if (flock->l_pid != 0) 2642 goto out; 2643 2644 cmd = F_SETLK64; 2645 file_lock->fl_flags |= FL_OFDLCK; 2646 file_lock->fl_owner = filp; 2647 break; 2648 case F_OFD_SETLKW: 2649 error = -EINVAL; 2650 if (flock->l_pid != 0) 2651 goto out; 2652 2653 cmd = F_SETLKW64; 2654 file_lock->fl_flags |= FL_OFDLCK; 2655 file_lock->fl_owner = filp; 2656 fallthrough; 2657 case F_SETLKW64: 2658 file_lock->fl_flags |= FL_SLEEP; 2659 } 2660 2661 error = do_lock_file_wait(filp, cmd, file_lock); 2662 2663 /* 2664 * Attempt to detect a close/fcntl race and recover by releasing the 2665 * lock that was just acquired. There is no need to do that when we're 2666 * unlocking though, or for OFD locks. 2667 */ 2668 if (!error && file_lock->fl_type != F_UNLCK && 2669 !(file_lock->fl_flags & FL_OFDLCK)) { 2670 struct files_struct *files = current->files; 2671 /* 2672 * We need that spin_lock here - it prevents reordering between 2673 * update of i_flctx->flc_posix and check for it done in 2674 * close(). rcu_read_lock() wouldn't do. 2675 */ 2676 spin_lock(&files->file_lock); 2677 f = files_lookup_fd_locked(files, fd); 2678 spin_unlock(&files->file_lock); 2679 if (f != filp) { 2680 file_lock->fl_type = F_UNLCK; 2681 error = do_lock_file_wait(filp, cmd, file_lock); 2682 WARN_ON_ONCE(error); 2683 error = -EBADF; 2684 } 2685 } 2686 out: 2687 locks_free_lock(file_lock); 2688 return error; 2689 } 2690 #endif /* BITS_PER_LONG == 32 */ 2691 2692 /* 2693 * This function is called when the file is being removed 2694 * from the task's fd array. POSIX locks belonging to this task 2695 * are deleted at this time. 2696 */ 2697 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2698 { 2699 int error; 2700 struct inode *inode = locks_inode(filp); 2701 struct file_lock lock; 2702 struct file_lock_context *ctx; 2703 2704 /* 2705 * If there are no locks held on this file, we don't need to call 2706 * posix_lock_file(). Another process could be setting a lock on this 2707 * file at the same time, but we wouldn't remove that lock anyway. 2708 */ 2709 ctx = smp_load_acquire(&inode->i_flctx); 2710 if (!ctx || list_empty(&ctx->flc_posix)) 2711 return; 2712 2713 locks_init_lock(&lock); 2714 lock.fl_type = F_UNLCK; 2715 lock.fl_flags = FL_POSIX | FL_CLOSE; 2716 lock.fl_start = 0; 2717 lock.fl_end = OFFSET_MAX; 2718 lock.fl_owner = owner; 2719 lock.fl_pid = current->tgid; 2720 lock.fl_file = filp; 2721 lock.fl_ops = NULL; 2722 lock.fl_lmops = NULL; 2723 2724 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2725 2726 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2727 lock.fl_ops->fl_release_private(&lock); 2728 trace_locks_remove_posix(inode, &lock, error); 2729 } 2730 EXPORT_SYMBOL(locks_remove_posix); 2731 2732 /* The i_flctx must be valid when calling into here */ 2733 static void 2734 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2735 { 2736 struct file_lock fl; 2737 struct inode *inode = locks_inode(filp); 2738 2739 if (list_empty(&flctx->flc_flock)) 2740 return; 2741 2742 flock_make_lock(filp, LOCK_UN, &fl); 2743 fl.fl_flags |= FL_CLOSE; 2744 2745 if (filp->f_op->flock) 2746 filp->f_op->flock(filp, F_SETLKW, &fl); 2747 else 2748 flock_lock_inode(inode, &fl); 2749 2750 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2751 fl.fl_ops->fl_release_private(&fl); 2752 } 2753 2754 /* The i_flctx must be valid when calling into here */ 2755 static void 2756 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2757 { 2758 struct file_lock *fl, *tmp; 2759 LIST_HEAD(dispose); 2760 2761 if (list_empty(&ctx->flc_lease)) 2762 return; 2763 2764 percpu_down_read(&file_rwsem); 2765 spin_lock(&ctx->flc_lock); 2766 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2767 if (filp == fl->fl_file) 2768 lease_modify(fl, F_UNLCK, &dispose); 2769 spin_unlock(&ctx->flc_lock); 2770 percpu_up_read(&file_rwsem); 2771 2772 locks_dispose_list(&dispose); 2773 } 2774 2775 /* 2776 * This function is called on the last close of an open file. 2777 */ 2778 void locks_remove_file(struct file *filp) 2779 { 2780 struct file_lock_context *ctx; 2781 2782 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2783 if (!ctx) 2784 return; 2785 2786 /* remove any OFD locks */ 2787 locks_remove_posix(filp, filp); 2788 2789 /* remove flock locks */ 2790 locks_remove_flock(filp, ctx); 2791 2792 /* remove any leases */ 2793 locks_remove_lease(filp, ctx); 2794 2795 spin_lock(&ctx->flc_lock); 2796 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2797 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2798 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2799 spin_unlock(&ctx->flc_lock); 2800 } 2801 2802 /** 2803 * vfs_cancel_lock - file byte range unblock lock 2804 * @filp: The file to apply the unblock to 2805 * @fl: The lock to be unblocked 2806 * 2807 * Used by lock managers to cancel blocked requests 2808 */ 2809 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2810 { 2811 if (filp->f_op->lock) 2812 return filp->f_op->lock(filp, F_CANCELLK, fl); 2813 return 0; 2814 } 2815 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2816 2817 #ifdef CONFIG_PROC_FS 2818 #include <linux/proc_fs.h> 2819 #include <linux/seq_file.h> 2820 2821 struct locks_iterator { 2822 int li_cpu; 2823 loff_t li_pos; 2824 }; 2825 2826 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2827 loff_t id, char *pfx, int repeat) 2828 { 2829 struct inode *inode = NULL; 2830 unsigned int fl_pid; 2831 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2832 2833 fl_pid = locks_translate_pid(fl, proc_pidns); 2834 /* 2835 * If lock owner is dead (and pid is freed) or not visible in current 2836 * pidns, zero is shown as a pid value. Check lock info from 2837 * init_pid_ns to get saved lock pid value. 2838 */ 2839 2840 if (fl->fl_file != NULL) 2841 inode = locks_inode(fl->fl_file); 2842 2843 seq_printf(f, "%lld: ", id); 2844 2845 if (repeat) 2846 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2847 2848 if (IS_POSIX(fl)) { 2849 if (fl->fl_flags & FL_ACCESS) 2850 seq_puts(f, "ACCESS"); 2851 else if (IS_OFDLCK(fl)) 2852 seq_puts(f, "OFDLCK"); 2853 else 2854 seq_puts(f, "POSIX "); 2855 2856 seq_printf(f, " %s ", 2857 (inode == NULL) ? "*NOINODE*" : 2858 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2859 } else if (IS_FLOCK(fl)) { 2860 if (fl->fl_type & LOCK_MAND) { 2861 seq_puts(f, "FLOCK MSNFS "); 2862 } else { 2863 seq_puts(f, "FLOCK ADVISORY "); 2864 } 2865 } else if (IS_LEASE(fl)) { 2866 if (fl->fl_flags & FL_DELEG) 2867 seq_puts(f, "DELEG "); 2868 else 2869 seq_puts(f, "LEASE "); 2870 2871 if (lease_breaking(fl)) 2872 seq_puts(f, "BREAKING "); 2873 else if (fl->fl_file) 2874 seq_puts(f, "ACTIVE "); 2875 else 2876 seq_puts(f, "BREAKER "); 2877 } else { 2878 seq_puts(f, "UNKNOWN UNKNOWN "); 2879 } 2880 if (fl->fl_type & LOCK_MAND) { 2881 seq_printf(f, "%s ", 2882 (fl->fl_type & LOCK_READ) 2883 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2884 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2885 } else { 2886 int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type; 2887 2888 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2889 (type == F_RDLCK) ? "READ" : "UNLCK"); 2890 } 2891 if (inode) { 2892 /* userspace relies on this representation of dev_t */ 2893 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid, 2894 MAJOR(inode->i_sb->s_dev), 2895 MINOR(inode->i_sb->s_dev), inode->i_ino); 2896 } else { 2897 seq_printf(f, "%d <none>:0 ", fl_pid); 2898 } 2899 if (IS_POSIX(fl)) { 2900 if (fl->fl_end == OFFSET_MAX) 2901 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2902 else 2903 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2904 } else { 2905 seq_puts(f, "0 EOF\n"); 2906 } 2907 } 2908 2909 static struct file_lock *get_next_blocked_member(struct file_lock *node) 2910 { 2911 struct file_lock *tmp; 2912 2913 /* NULL node or root node */ 2914 if (node == NULL || node->fl_blocker == NULL) 2915 return NULL; 2916 2917 /* Next member in the linked list could be itself */ 2918 tmp = list_next_entry(node, fl_blocked_member); 2919 if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member) 2920 || tmp == node) { 2921 return NULL; 2922 } 2923 2924 return tmp; 2925 } 2926 2927 static int locks_show(struct seq_file *f, void *v) 2928 { 2929 struct locks_iterator *iter = f->private; 2930 struct file_lock *cur, *tmp; 2931 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2932 int level = 0; 2933 2934 cur = hlist_entry(v, struct file_lock, fl_link); 2935 2936 if (locks_translate_pid(cur, proc_pidns) == 0) 2937 return 0; 2938 2939 /* View this crossed linked list as a binary tree, the first member of fl_blocked_requests 2940 * is the left child of current node, the next silibing in fl_blocked_member is the 2941 * right child, we can alse get the parent of current node from fl_blocker, so this 2942 * question becomes traversal of a binary tree 2943 */ 2944 while (cur != NULL) { 2945 if (level) 2946 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2947 else 2948 lock_get_status(f, cur, iter->li_pos, "", level); 2949 2950 if (!list_empty(&cur->fl_blocked_requests)) { 2951 /* Turn left */ 2952 cur = list_first_entry_or_null(&cur->fl_blocked_requests, 2953 struct file_lock, fl_blocked_member); 2954 level++; 2955 } else { 2956 /* Turn right */ 2957 tmp = get_next_blocked_member(cur); 2958 /* Fall back to parent node */ 2959 while (tmp == NULL && cur->fl_blocker != NULL) { 2960 cur = cur->fl_blocker; 2961 level--; 2962 tmp = get_next_blocked_member(cur); 2963 } 2964 cur = tmp; 2965 } 2966 } 2967 2968 return 0; 2969 } 2970 2971 static void __show_fd_locks(struct seq_file *f, 2972 struct list_head *head, int *id, 2973 struct file *filp, struct files_struct *files) 2974 { 2975 struct file_lock *fl; 2976 2977 list_for_each_entry(fl, head, fl_list) { 2978 2979 if (filp != fl->fl_file) 2980 continue; 2981 if (fl->fl_owner != files && 2982 fl->fl_owner != filp) 2983 continue; 2984 2985 (*id)++; 2986 seq_puts(f, "lock:\t"); 2987 lock_get_status(f, fl, *id, "", 0); 2988 } 2989 } 2990 2991 void show_fd_locks(struct seq_file *f, 2992 struct file *filp, struct files_struct *files) 2993 { 2994 struct inode *inode = locks_inode(filp); 2995 struct file_lock_context *ctx; 2996 int id = 0; 2997 2998 ctx = smp_load_acquire(&inode->i_flctx); 2999 if (!ctx) 3000 return; 3001 3002 spin_lock(&ctx->flc_lock); 3003 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 3004 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 3005 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 3006 spin_unlock(&ctx->flc_lock); 3007 } 3008 3009 static void *locks_start(struct seq_file *f, loff_t *pos) 3010 __acquires(&blocked_lock_lock) 3011 { 3012 struct locks_iterator *iter = f->private; 3013 3014 iter->li_pos = *pos + 1; 3015 percpu_down_write(&file_rwsem); 3016 spin_lock(&blocked_lock_lock); 3017 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 3018 } 3019 3020 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 3021 { 3022 struct locks_iterator *iter = f->private; 3023 3024 ++iter->li_pos; 3025 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 3026 } 3027 3028 static void locks_stop(struct seq_file *f, void *v) 3029 __releases(&blocked_lock_lock) 3030 { 3031 spin_unlock(&blocked_lock_lock); 3032 percpu_up_write(&file_rwsem); 3033 } 3034 3035 static const struct seq_operations locks_seq_operations = { 3036 .start = locks_start, 3037 .next = locks_next, 3038 .stop = locks_stop, 3039 .show = locks_show, 3040 }; 3041 3042 static int __init proc_locks_init(void) 3043 { 3044 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 3045 sizeof(struct locks_iterator), NULL); 3046 return 0; 3047 } 3048 fs_initcall(proc_locks_init); 3049 #endif 3050 3051 static int __init filelock_init(void) 3052 { 3053 int i; 3054 3055 flctx_cache = kmem_cache_create("file_lock_ctx", 3056 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 3057 3058 filelock_cache = kmem_cache_create("file_lock_cache", 3059 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 3060 3061 for_each_possible_cpu(i) { 3062 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 3063 3064 spin_lock_init(&fll->lock); 3065 INIT_HLIST_HEAD(&fll->hlist); 3066 } 3067 3068 lease_notifier_chain_init(); 3069 return 0; 3070 } 3071 core_initcall(filelock_init); 3072