1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/locks.c 4 * 5 * We implement four types of file locks: BSD locks, posix locks, open 6 * file description locks, and leases. For details about BSD locks, 7 * see the flock(2) man page; for details about the other three, see 8 * fcntl(2). 9 * 10 * 11 * Locking conflicts and dependencies: 12 * If multiple threads attempt to lock the same byte (or flock the same file) 13 * only one can be granted the lock, and other must wait their turn. 14 * The first lock has been "applied" or "granted", the others are "waiting" 15 * and are "blocked" by the "applied" lock.. 16 * 17 * Waiting and applied locks are all kept in trees whose properties are: 18 * 19 * - the root of a tree may be an applied or waiting lock. 20 * - every other node in the tree is a waiting lock that 21 * conflicts with every ancestor of that node. 22 * 23 * Every such tree begins life as a waiting singleton which obviously 24 * satisfies the above properties. 25 * 26 * The only ways we modify trees preserve these properties: 27 * 28 * 1. We may add a new leaf node, but only after first verifying that it 29 * conflicts with all of its ancestors. 30 * 2. We may remove the root of a tree, creating a new singleton 31 * tree from the root and N new trees rooted in the immediate 32 * children. 33 * 3. If the root of a tree is not currently an applied lock, we may 34 * apply it (if possible). 35 * 4. We may upgrade the root of the tree (either extend its range, 36 * or upgrade its entire range from read to write). 37 * 38 * When an applied lock is modified in a way that reduces or downgrades any 39 * part of its range, we remove all its children (2 above). This particularly 40 * happens when a lock is unlocked. 41 * 42 * For each of those child trees we "wake up" the thread which is 43 * waiting for the lock so it can continue handling as follows: if the 44 * root of the tree applies, we do so (3). If it doesn't, it must 45 * conflict with some applied lock. We remove (wake up) all of its children 46 * (2), and add it is a new leaf to the tree rooted in the applied 47 * lock (1). We then repeat the process recursively with those 48 * children. 49 * 50 */ 51 52 #include <linux/capability.h> 53 #include <linux/file.h> 54 #include <linux/fdtable.h> 55 #include <linux/fs.h> 56 #include <linux/init.h> 57 #include <linux/security.h> 58 #include <linux/slab.h> 59 #include <linux/syscalls.h> 60 #include <linux/time.h> 61 #include <linux/rcupdate.h> 62 #include <linux/pid_namespace.h> 63 #include <linux/hashtable.h> 64 #include <linux/percpu.h> 65 #include <linux/sysctl.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/filelock.h> 69 70 #include <linux/uaccess.h> 71 72 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 73 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 74 #define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 75 #define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 76 #define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 77 78 static bool lease_breaking(struct file_lock *fl) 79 { 80 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 81 } 82 83 static int target_leasetype(struct file_lock *fl) 84 { 85 if (fl->fl_flags & FL_UNLOCK_PENDING) 86 return F_UNLCK; 87 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 88 return F_RDLCK; 89 return fl->fl_type; 90 } 91 92 static int leases_enable = 1; 93 static int lease_break_time = 45; 94 95 #ifdef CONFIG_SYSCTL 96 static struct ctl_table locks_sysctls[] = { 97 { 98 .procname = "leases-enable", 99 .data = &leases_enable, 100 .maxlen = sizeof(int), 101 .mode = 0644, 102 .proc_handler = proc_dointvec, 103 }, 104 #ifdef CONFIG_MMU 105 { 106 .procname = "lease-break-time", 107 .data = &lease_break_time, 108 .maxlen = sizeof(int), 109 .mode = 0644, 110 .proc_handler = proc_dointvec, 111 }, 112 #endif /* CONFIG_MMU */ 113 {} 114 }; 115 116 static int __init init_fs_locks_sysctls(void) 117 { 118 register_sysctl_init("fs", locks_sysctls); 119 return 0; 120 } 121 early_initcall(init_fs_locks_sysctls); 122 #endif /* CONFIG_SYSCTL */ 123 124 /* 125 * The global file_lock_list is only used for displaying /proc/locks, so we 126 * keep a list on each CPU, with each list protected by its own spinlock. 127 * Global serialization is done using file_rwsem. 128 * 129 * Note that alterations to the list also require that the relevant flc_lock is 130 * held. 131 */ 132 struct file_lock_list_struct { 133 spinlock_t lock; 134 struct hlist_head hlist; 135 }; 136 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 137 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 138 139 140 /* 141 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 142 * It is protected by blocked_lock_lock. 143 * 144 * We hash locks by lockowner in order to optimize searching for the lock a 145 * particular lockowner is waiting on. 146 * 147 * FIXME: make this value scale via some heuristic? We generally will want more 148 * buckets when we have more lockowners holding locks, but that's a little 149 * difficult to determine without knowing what the workload will look like. 150 */ 151 #define BLOCKED_HASH_BITS 7 152 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 153 154 /* 155 * This lock protects the blocked_hash. Generally, if you're accessing it, you 156 * want to be holding this lock. 157 * 158 * In addition, it also protects the fl->fl_blocked_requests list, and the 159 * fl->fl_blocker pointer for file_lock structures that are acting as lock 160 * requests (in contrast to those that are acting as records of acquired locks). 161 * 162 * Note that when we acquire this lock in order to change the above fields, 163 * we often hold the flc_lock as well. In certain cases, when reading the fields 164 * protected by this lock, we can skip acquiring it iff we already hold the 165 * flc_lock. 166 */ 167 static DEFINE_SPINLOCK(blocked_lock_lock); 168 169 static struct kmem_cache *flctx_cache __read_mostly; 170 static struct kmem_cache *filelock_cache __read_mostly; 171 172 static struct file_lock_context * 173 locks_get_lock_context(struct inode *inode, int type) 174 { 175 struct file_lock_context *ctx; 176 177 /* paired with cmpxchg() below */ 178 ctx = smp_load_acquire(&inode->i_flctx); 179 if (likely(ctx) || type == F_UNLCK) 180 goto out; 181 182 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 183 if (!ctx) 184 goto out; 185 186 spin_lock_init(&ctx->flc_lock); 187 INIT_LIST_HEAD(&ctx->flc_flock); 188 INIT_LIST_HEAD(&ctx->flc_posix); 189 INIT_LIST_HEAD(&ctx->flc_lease); 190 191 /* 192 * Assign the pointer if it's not already assigned. If it is, then 193 * free the context we just allocated. 194 */ 195 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 196 kmem_cache_free(flctx_cache, ctx); 197 ctx = smp_load_acquire(&inode->i_flctx); 198 } 199 out: 200 trace_locks_get_lock_context(inode, type, ctx); 201 return ctx; 202 } 203 204 static void 205 locks_dump_ctx_list(struct list_head *list, char *list_type) 206 { 207 struct file_lock *fl; 208 209 list_for_each_entry(fl, list, fl_list) { 210 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 211 } 212 } 213 214 static void 215 locks_check_ctx_lists(struct inode *inode) 216 { 217 struct file_lock_context *ctx = inode->i_flctx; 218 219 if (unlikely(!list_empty(&ctx->flc_flock) || 220 !list_empty(&ctx->flc_posix) || 221 !list_empty(&ctx->flc_lease))) { 222 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 223 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 224 inode->i_ino); 225 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 226 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 227 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 228 } 229 } 230 231 static void 232 locks_check_ctx_file_list(struct file *filp, struct list_head *list, 233 char *list_type) 234 { 235 struct file_lock *fl; 236 struct inode *inode = locks_inode(filp); 237 238 list_for_each_entry(fl, list, fl_list) 239 if (fl->fl_file == filp) 240 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 241 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 242 list_type, MAJOR(inode->i_sb->s_dev), 243 MINOR(inode->i_sb->s_dev), inode->i_ino, 244 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 245 } 246 247 void 248 locks_free_lock_context(struct inode *inode) 249 { 250 struct file_lock_context *ctx = inode->i_flctx; 251 252 if (unlikely(ctx)) { 253 locks_check_ctx_lists(inode); 254 kmem_cache_free(flctx_cache, ctx); 255 } 256 } 257 258 static void locks_init_lock_heads(struct file_lock *fl) 259 { 260 INIT_HLIST_NODE(&fl->fl_link); 261 INIT_LIST_HEAD(&fl->fl_list); 262 INIT_LIST_HEAD(&fl->fl_blocked_requests); 263 INIT_LIST_HEAD(&fl->fl_blocked_member); 264 init_waitqueue_head(&fl->fl_wait); 265 } 266 267 /* Allocate an empty lock structure. */ 268 struct file_lock *locks_alloc_lock(void) 269 { 270 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 271 272 if (fl) 273 locks_init_lock_heads(fl); 274 275 return fl; 276 } 277 EXPORT_SYMBOL_GPL(locks_alloc_lock); 278 279 void locks_release_private(struct file_lock *fl) 280 { 281 BUG_ON(waitqueue_active(&fl->fl_wait)); 282 BUG_ON(!list_empty(&fl->fl_list)); 283 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 284 BUG_ON(!list_empty(&fl->fl_blocked_member)); 285 BUG_ON(!hlist_unhashed(&fl->fl_link)); 286 287 if (fl->fl_ops) { 288 if (fl->fl_ops->fl_release_private) 289 fl->fl_ops->fl_release_private(fl); 290 fl->fl_ops = NULL; 291 } 292 293 if (fl->fl_lmops) { 294 if (fl->fl_lmops->lm_put_owner) { 295 fl->fl_lmops->lm_put_owner(fl->fl_owner); 296 fl->fl_owner = NULL; 297 } 298 fl->fl_lmops = NULL; 299 } 300 } 301 EXPORT_SYMBOL_GPL(locks_release_private); 302 303 /* Free a lock which is not in use. */ 304 void locks_free_lock(struct file_lock *fl) 305 { 306 locks_release_private(fl); 307 kmem_cache_free(filelock_cache, fl); 308 } 309 EXPORT_SYMBOL(locks_free_lock); 310 311 static void 312 locks_dispose_list(struct list_head *dispose) 313 { 314 struct file_lock *fl; 315 316 while (!list_empty(dispose)) { 317 fl = list_first_entry(dispose, struct file_lock, fl_list); 318 list_del_init(&fl->fl_list); 319 locks_free_lock(fl); 320 } 321 } 322 323 void locks_init_lock(struct file_lock *fl) 324 { 325 memset(fl, 0, sizeof(struct file_lock)); 326 locks_init_lock_heads(fl); 327 } 328 EXPORT_SYMBOL(locks_init_lock); 329 330 /* 331 * Initialize a new lock from an existing file_lock structure. 332 */ 333 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 334 { 335 new->fl_owner = fl->fl_owner; 336 new->fl_pid = fl->fl_pid; 337 new->fl_file = NULL; 338 new->fl_flags = fl->fl_flags; 339 new->fl_type = fl->fl_type; 340 new->fl_start = fl->fl_start; 341 new->fl_end = fl->fl_end; 342 new->fl_lmops = fl->fl_lmops; 343 new->fl_ops = NULL; 344 345 if (fl->fl_lmops) { 346 if (fl->fl_lmops->lm_get_owner) 347 fl->fl_lmops->lm_get_owner(fl->fl_owner); 348 } 349 } 350 EXPORT_SYMBOL(locks_copy_conflock); 351 352 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 353 { 354 /* "new" must be a freshly-initialized lock */ 355 WARN_ON_ONCE(new->fl_ops); 356 357 locks_copy_conflock(new, fl); 358 359 new->fl_file = fl->fl_file; 360 new->fl_ops = fl->fl_ops; 361 362 if (fl->fl_ops) { 363 if (fl->fl_ops->fl_copy_lock) 364 fl->fl_ops->fl_copy_lock(new, fl); 365 } 366 } 367 EXPORT_SYMBOL(locks_copy_lock); 368 369 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 370 { 371 struct file_lock *f; 372 373 /* 374 * As ctx->flc_lock is held, new requests cannot be added to 375 * ->fl_blocked_requests, so we don't need a lock to check if it 376 * is empty. 377 */ 378 if (list_empty(&fl->fl_blocked_requests)) 379 return; 380 spin_lock(&blocked_lock_lock); 381 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 382 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 383 f->fl_blocker = new; 384 spin_unlock(&blocked_lock_lock); 385 } 386 387 static inline int flock_translate_cmd(int cmd) { 388 switch (cmd) { 389 case LOCK_SH: 390 return F_RDLCK; 391 case LOCK_EX: 392 return F_WRLCK; 393 case LOCK_UN: 394 return F_UNLCK; 395 } 396 return -EINVAL; 397 } 398 399 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 400 static struct file_lock * 401 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl) 402 { 403 int type = flock_translate_cmd(cmd); 404 405 if (type < 0) 406 return ERR_PTR(type); 407 408 if (fl == NULL) { 409 fl = locks_alloc_lock(); 410 if (fl == NULL) 411 return ERR_PTR(-ENOMEM); 412 } else { 413 locks_init_lock(fl); 414 } 415 416 fl->fl_file = filp; 417 fl->fl_owner = filp; 418 fl->fl_pid = current->tgid; 419 fl->fl_flags = FL_FLOCK; 420 fl->fl_type = type; 421 fl->fl_end = OFFSET_MAX; 422 423 return fl; 424 } 425 426 static int assign_type(struct file_lock *fl, long type) 427 { 428 switch (type) { 429 case F_RDLCK: 430 case F_WRLCK: 431 case F_UNLCK: 432 fl->fl_type = type; 433 break; 434 default: 435 return -EINVAL; 436 } 437 return 0; 438 } 439 440 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 441 struct flock64 *l) 442 { 443 switch (l->l_whence) { 444 case SEEK_SET: 445 fl->fl_start = 0; 446 break; 447 case SEEK_CUR: 448 fl->fl_start = filp->f_pos; 449 break; 450 case SEEK_END: 451 fl->fl_start = i_size_read(file_inode(filp)); 452 break; 453 default: 454 return -EINVAL; 455 } 456 if (l->l_start > OFFSET_MAX - fl->fl_start) 457 return -EOVERFLOW; 458 fl->fl_start += l->l_start; 459 if (fl->fl_start < 0) 460 return -EINVAL; 461 462 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 463 POSIX-2001 defines it. */ 464 if (l->l_len > 0) { 465 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 466 return -EOVERFLOW; 467 fl->fl_end = fl->fl_start + (l->l_len - 1); 468 469 } else if (l->l_len < 0) { 470 if (fl->fl_start + l->l_len < 0) 471 return -EINVAL; 472 fl->fl_end = fl->fl_start - 1; 473 fl->fl_start += l->l_len; 474 } else 475 fl->fl_end = OFFSET_MAX; 476 477 fl->fl_owner = current->files; 478 fl->fl_pid = current->tgid; 479 fl->fl_file = filp; 480 fl->fl_flags = FL_POSIX; 481 fl->fl_ops = NULL; 482 fl->fl_lmops = NULL; 483 484 return assign_type(fl, l->l_type); 485 } 486 487 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 488 * style lock. 489 */ 490 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 491 struct flock *l) 492 { 493 struct flock64 ll = { 494 .l_type = l->l_type, 495 .l_whence = l->l_whence, 496 .l_start = l->l_start, 497 .l_len = l->l_len, 498 }; 499 500 return flock64_to_posix_lock(filp, fl, &ll); 501 } 502 503 /* default lease lock manager operations */ 504 static bool 505 lease_break_callback(struct file_lock *fl) 506 { 507 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 508 return false; 509 } 510 511 static void 512 lease_setup(struct file_lock *fl, void **priv) 513 { 514 struct file *filp = fl->fl_file; 515 struct fasync_struct *fa = *priv; 516 517 /* 518 * fasync_insert_entry() returns the old entry if any. If there was no 519 * old entry, then it used "priv" and inserted it into the fasync list. 520 * Clear the pointer to indicate that it shouldn't be freed. 521 */ 522 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 523 *priv = NULL; 524 525 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 526 } 527 528 static const struct lock_manager_operations lease_manager_ops = { 529 .lm_break = lease_break_callback, 530 .lm_change = lease_modify, 531 .lm_setup = lease_setup, 532 }; 533 534 /* 535 * Initialize a lease, use the default lock manager operations 536 */ 537 static int lease_init(struct file *filp, long type, struct file_lock *fl) 538 { 539 if (assign_type(fl, type) != 0) 540 return -EINVAL; 541 542 fl->fl_owner = filp; 543 fl->fl_pid = current->tgid; 544 545 fl->fl_file = filp; 546 fl->fl_flags = FL_LEASE; 547 fl->fl_start = 0; 548 fl->fl_end = OFFSET_MAX; 549 fl->fl_ops = NULL; 550 fl->fl_lmops = &lease_manager_ops; 551 return 0; 552 } 553 554 /* Allocate a file_lock initialised to this type of lease */ 555 static struct file_lock *lease_alloc(struct file *filp, long type) 556 { 557 struct file_lock *fl = locks_alloc_lock(); 558 int error = -ENOMEM; 559 560 if (fl == NULL) 561 return ERR_PTR(error); 562 563 error = lease_init(filp, type, fl); 564 if (error) { 565 locks_free_lock(fl); 566 return ERR_PTR(error); 567 } 568 return fl; 569 } 570 571 /* Check if two locks overlap each other. 572 */ 573 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 574 { 575 return ((fl1->fl_end >= fl2->fl_start) && 576 (fl2->fl_end >= fl1->fl_start)); 577 } 578 579 /* 580 * Check whether two locks have the same owner. 581 */ 582 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 583 { 584 return fl1->fl_owner == fl2->fl_owner; 585 } 586 587 /* Must be called with the flc_lock held! */ 588 static void locks_insert_global_locks(struct file_lock *fl) 589 { 590 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 591 592 percpu_rwsem_assert_held(&file_rwsem); 593 594 spin_lock(&fll->lock); 595 fl->fl_link_cpu = smp_processor_id(); 596 hlist_add_head(&fl->fl_link, &fll->hlist); 597 spin_unlock(&fll->lock); 598 } 599 600 /* Must be called with the flc_lock held! */ 601 static void locks_delete_global_locks(struct file_lock *fl) 602 { 603 struct file_lock_list_struct *fll; 604 605 percpu_rwsem_assert_held(&file_rwsem); 606 607 /* 608 * Avoid taking lock if already unhashed. This is safe since this check 609 * is done while holding the flc_lock, and new insertions into the list 610 * also require that it be held. 611 */ 612 if (hlist_unhashed(&fl->fl_link)) 613 return; 614 615 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 616 spin_lock(&fll->lock); 617 hlist_del_init(&fl->fl_link); 618 spin_unlock(&fll->lock); 619 } 620 621 static unsigned long 622 posix_owner_key(struct file_lock *fl) 623 { 624 return (unsigned long)fl->fl_owner; 625 } 626 627 static void locks_insert_global_blocked(struct file_lock *waiter) 628 { 629 lockdep_assert_held(&blocked_lock_lock); 630 631 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 632 } 633 634 static void locks_delete_global_blocked(struct file_lock *waiter) 635 { 636 lockdep_assert_held(&blocked_lock_lock); 637 638 hash_del(&waiter->fl_link); 639 } 640 641 /* Remove waiter from blocker's block list. 642 * When blocker ends up pointing to itself then the list is empty. 643 * 644 * Must be called with blocked_lock_lock held. 645 */ 646 static void __locks_delete_block(struct file_lock *waiter) 647 { 648 locks_delete_global_blocked(waiter); 649 list_del_init(&waiter->fl_blocked_member); 650 } 651 652 static void __locks_wake_up_blocks(struct file_lock *blocker) 653 { 654 while (!list_empty(&blocker->fl_blocked_requests)) { 655 struct file_lock *waiter; 656 657 waiter = list_first_entry(&blocker->fl_blocked_requests, 658 struct file_lock, fl_blocked_member); 659 __locks_delete_block(waiter); 660 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 661 waiter->fl_lmops->lm_notify(waiter); 662 else 663 wake_up(&waiter->fl_wait); 664 665 /* 666 * The setting of fl_blocker to NULL marks the "done" 667 * point in deleting a block. Paired with acquire at the top 668 * of locks_delete_block(). 669 */ 670 smp_store_release(&waiter->fl_blocker, NULL); 671 } 672 } 673 674 /** 675 * locks_delete_block - stop waiting for a file lock 676 * @waiter: the lock which was waiting 677 * 678 * lockd/nfsd need to disconnect the lock while working on it. 679 */ 680 int locks_delete_block(struct file_lock *waiter) 681 { 682 int status = -ENOENT; 683 684 /* 685 * If fl_blocker is NULL, it won't be set again as this thread "owns" 686 * the lock and is the only one that might try to claim the lock. 687 * 688 * We use acquire/release to manage fl_blocker so that we can 689 * optimize away taking the blocked_lock_lock in many cases. 690 * 691 * The smp_load_acquire guarantees two things: 692 * 693 * 1/ that fl_blocked_requests can be tested locklessly. If something 694 * was recently added to that list it must have been in a locked region 695 * *before* the locked region when fl_blocker was set to NULL. 696 * 697 * 2/ that no other thread is accessing 'waiter', so it is safe to free 698 * it. __locks_wake_up_blocks is careful not to touch waiter after 699 * fl_blocker is released. 700 * 701 * If a lockless check of fl_blocker shows it to be NULL, we know that 702 * no new locks can be inserted into its fl_blocked_requests list, and 703 * can avoid doing anything further if the list is empty. 704 */ 705 if (!smp_load_acquire(&waiter->fl_blocker) && 706 list_empty(&waiter->fl_blocked_requests)) 707 return status; 708 709 spin_lock(&blocked_lock_lock); 710 if (waiter->fl_blocker) 711 status = 0; 712 __locks_wake_up_blocks(waiter); 713 __locks_delete_block(waiter); 714 715 /* 716 * The setting of fl_blocker to NULL marks the "done" point in deleting 717 * a block. Paired with acquire at the top of this function. 718 */ 719 smp_store_release(&waiter->fl_blocker, NULL); 720 spin_unlock(&blocked_lock_lock); 721 return status; 722 } 723 EXPORT_SYMBOL(locks_delete_block); 724 725 /* Insert waiter into blocker's block list. 726 * We use a circular list so that processes can be easily woken up in 727 * the order they blocked. The documentation doesn't require this but 728 * it seems like the reasonable thing to do. 729 * 730 * Must be called with both the flc_lock and blocked_lock_lock held. The 731 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 732 * but by ensuring that the flc_lock is also held on insertions we can avoid 733 * taking the blocked_lock_lock in some cases when we see that the 734 * fl_blocked_requests list is empty. 735 * 736 * Rather than just adding to the list, we check for conflicts with any existing 737 * waiters, and add beneath any waiter that blocks the new waiter. 738 * Thus wakeups don't happen until needed. 739 */ 740 static void __locks_insert_block(struct file_lock *blocker, 741 struct file_lock *waiter, 742 bool conflict(struct file_lock *, 743 struct file_lock *)) 744 { 745 struct file_lock *fl; 746 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 747 748 new_blocker: 749 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 750 if (conflict(fl, waiter)) { 751 blocker = fl; 752 goto new_blocker; 753 } 754 waiter->fl_blocker = blocker; 755 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 756 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 757 locks_insert_global_blocked(waiter); 758 759 /* The requests in waiter->fl_blocked are known to conflict with 760 * waiter, but might not conflict with blocker, or the requests 761 * and lock which block it. So they all need to be woken. 762 */ 763 __locks_wake_up_blocks(waiter); 764 } 765 766 /* Must be called with flc_lock held. */ 767 static void locks_insert_block(struct file_lock *blocker, 768 struct file_lock *waiter, 769 bool conflict(struct file_lock *, 770 struct file_lock *)) 771 { 772 spin_lock(&blocked_lock_lock); 773 __locks_insert_block(blocker, waiter, conflict); 774 spin_unlock(&blocked_lock_lock); 775 } 776 777 /* 778 * Wake up processes blocked waiting for blocker. 779 * 780 * Must be called with the inode->flc_lock held! 781 */ 782 static void locks_wake_up_blocks(struct file_lock *blocker) 783 { 784 /* 785 * Avoid taking global lock if list is empty. This is safe since new 786 * blocked requests are only added to the list under the flc_lock, and 787 * the flc_lock is always held here. Note that removal from the 788 * fl_blocked_requests list does not require the flc_lock, so we must 789 * recheck list_empty() after acquiring the blocked_lock_lock. 790 */ 791 if (list_empty(&blocker->fl_blocked_requests)) 792 return; 793 794 spin_lock(&blocked_lock_lock); 795 __locks_wake_up_blocks(blocker); 796 spin_unlock(&blocked_lock_lock); 797 } 798 799 static void 800 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 801 { 802 list_add_tail(&fl->fl_list, before); 803 locks_insert_global_locks(fl); 804 } 805 806 static void 807 locks_unlink_lock_ctx(struct file_lock *fl) 808 { 809 locks_delete_global_locks(fl); 810 list_del_init(&fl->fl_list); 811 locks_wake_up_blocks(fl); 812 } 813 814 static void 815 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 816 { 817 locks_unlink_lock_ctx(fl); 818 if (dispose) 819 list_add(&fl->fl_list, dispose); 820 else 821 locks_free_lock(fl); 822 } 823 824 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 825 * checks for shared/exclusive status of overlapping locks. 826 */ 827 static bool locks_conflict(struct file_lock *caller_fl, 828 struct file_lock *sys_fl) 829 { 830 if (sys_fl->fl_type == F_WRLCK) 831 return true; 832 if (caller_fl->fl_type == F_WRLCK) 833 return true; 834 return false; 835 } 836 837 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 838 * checking before calling the locks_conflict(). 839 */ 840 static bool posix_locks_conflict(struct file_lock *caller_fl, 841 struct file_lock *sys_fl) 842 { 843 /* POSIX locks owned by the same process do not conflict with 844 * each other. 845 */ 846 if (posix_same_owner(caller_fl, sys_fl)) 847 return false; 848 849 /* Check whether they overlap */ 850 if (!locks_overlap(caller_fl, sys_fl)) 851 return false; 852 853 return locks_conflict(caller_fl, sys_fl); 854 } 855 856 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 857 * checking before calling the locks_conflict(). 858 */ 859 static bool flock_locks_conflict(struct file_lock *caller_fl, 860 struct file_lock *sys_fl) 861 { 862 /* FLOCK locks referring to the same filp do not conflict with 863 * each other. 864 */ 865 if (caller_fl->fl_file == sys_fl->fl_file) 866 return false; 867 868 return locks_conflict(caller_fl, sys_fl); 869 } 870 871 void 872 posix_test_lock(struct file *filp, struct file_lock *fl) 873 { 874 struct file_lock *cfl; 875 struct file_lock_context *ctx; 876 struct inode *inode = locks_inode(filp); 877 878 ctx = smp_load_acquire(&inode->i_flctx); 879 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 880 fl->fl_type = F_UNLCK; 881 return; 882 } 883 884 spin_lock(&ctx->flc_lock); 885 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 886 if (posix_locks_conflict(fl, cfl)) { 887 locks_copy_conflock(fl, cfl); 888 goto out; 889 } 890 } 891 fl->fl_type = F_UNLCK; 892 out: 893 spin_unlock(&ctx->flc_lock); 894 return; 895 } 896 EXPORT_SYMBOL(posix_test_lock); 897 898 /* 899 * Deadlock detection: 900 * 901 * We attempt to detect deadlocks that are due purely to posix file 902 * locks. 903 * 904 * We assume that a task can be waiting for at most one lock at a time. 905 * So for any acquired lock, the process holding that lock may be 906 * waiting on at most one other lock. That lock in turns may be held by 907 * someone waiting for at most one other lock. Given a requested lock 908 * caller_fl which is about to wait for a conflicting lock block_fl, we 909 * follow this chain of waiters to ensure we are not about to create a 910 * cycle. 911 * 912 * Since we do this before we ever put a process to sleep on a lock, we 913 * are ensured that there is never a cycle; that is what guarantees that 914 * the while() loop in posix_locks_deadlock() eventually completes. 915 * 916 * Note: the above assumption may not be true when handling lock 917 * requests from a broken NFS client. It may also fail in the presence 918 * of tasks (such as posix threads) sharing the same open file table. 919 * To handle those cases, we just bail out after a few iterations. 920 * 921 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 922 * Because the owner is not even nominally tied to a thread of 923 * execution, the deadlock detection below can't reasonably work well. Just 924 * skip it for those. 925 * 926 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 927 * locks that just checks for the case where two tasks are attempting to 928 * upgrade from read to write locks on the same inode. 929 */ 930 931 #define MAX_DEADLK_ITERATIONS 10 932 933 /* Find a lock that the owner of the given block_fl is blocking on. */ 934 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 935 { 936 struct file_lock *fl; 937 938 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 939 if (posix_same_owner(fl, block_fl)) { 940 while (fl->fl_blocker) 941 fl = fl->fl_blocker; 942 return fl; 943 } 944 } 945 return NULL; 946 } 947 948 /* Must be called with the blocked_lock_lock held! */ 949 static int posix_locks_deadlock(struct file_lock *caller_fl, 950 struct file_lock *block_fl) 951 { 952 int i = 0; 953 954 lockdep_assert_held(&blocked_lock_lock); 955 956 /* 957 * This deadlock detector can't reasonably detect deadlocks with 958 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 959 */ 960 if (IS_OFDLCK(caller_fl)) 961 return 0; 962 963 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 964 if (i++ > MAX_DEADLK_ITERATIONS) 965 return 0; 966 if (posix_same_owner(caller_fl, block_fl)) 967 return 1; 968 } 969 return 0; 970 } 971 972 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 973 * after any leases, but before any posix locks. 974 * 975 * Note that if called with an FL_EXISTS argument, the caller may determine 976 * whether or not a lock was successfully freed by testing the return 977 * value for -ENOENT. 978 */ 979 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 980 { 981 struct file_lock *new_fl = NULL; 982 struct file_lock *fl; 983 struct file_lock_context *ctx; 984 int error = 0; 985 bool found = false; 986 LIST_HEAD(dispose); 987 988 ctx = locks_get_lock_context(inode, request->fl_type); 989 if (!ctx) { 990 if (request->fl_type != F_UNLCK) 991 return -ENOMEM; 992 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 993 } 994 995 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 996 new_fl = locks_alloc_lock(); 997 if (!new_fl) 998 return -ENOMEM; 999 } 1000 1001 percpu_down_read(&file_rwsem); 1002 spin_lock(&ctx->flc_lock); 1003 if (request->fl_flags & FL_ACCESS) 1004 goto find_conflict; 1005 1006 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1007 if (request->fl_file != fl->fl_file) 1008 continue; 1009 if (request->fl_type == fl->fl_type) 1010 goto out; 1011 found = true; 1012 locks_delete_lock_ctx(fl, &dispose); 1013 break; 1014 } 1015 1016 if (request->fl_type == F_UNLCK) { 1017 if ((request->fl_flags & FL_EXISTS) && !found) 1018 error = -ENOENT; 1019 goto out; 1020 } 1021 1022 find_conflict: 1023 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1024 if (!flock_locks_conflict(request, fl)) 1025 continue; 1026 error = -EAGAIN; 1027 if (!(request->fl_flags & FL_SLEEP)) 1028 goto out; 1029 error = FILE_LOCK_DEFERRED; 1030 locks_insert_block(fl, request, flock_locks_conflict); 1031 goto out; 1032 } 1033 if (request->fl_flags & FL_ACCESS) 1034 goto out; 1035 locks_copy_lock(new_fl, request); 1036 locks_move_blocks(new_fl, request); 1037 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1038 new_fl = NULL; 1039 error = 0; 1040 1041 out: 1042 spin_unlock(&ctx->flc_lock); 1043 percpu_up_read(&file_rwsem); 1044 if (new_fl) 1045 locks_free_lock(new_fl); 1046 locks_dispose_list(&dispose); 1047 trace_flock_lock_inode(inode, request, error); 1048 return error; 1049 } 1050 1051 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1052 struct file_lock *conflock) 1053 { 1054 struct file_lock *fl, *tmp; 1055 struct file_lock *new_fl = NULL; 1056 struct file_lock *new_fl2 = NULL; 1057 struct file_lock *left = NULL; 1058 struct file_lock *right = NULL; 1059 struct file_lock_context *ctx; 1060 int error; 1061 bool added = false; 1062 LIST_HEAD(dispose); 1063 1064 ctx = locks_get_lock_context(inode, request->fl_type); 1065 if (!ctx) 1066 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1067 1068 /* 1069 * We may need two file_lock structures for this operation, 1070 * so we get them in advance to avoid races. 1071 * 1072 * In some cases we can be sure, that no new locks will be needed 1073 */ 1074 if (!(request->fl_flags & FL_ACCESS) && 1075 (request->fl_type != F_UNLCK || 1076 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1077 new_fl = locks_alloc_lock(); 1078 new_fl2 = locks_alloc_lock(); 1079 } 1080 1081 percpu_down_read(&file_rwsem); 1082 spin_lock(&ctx->flc_lock); 1083 /* 1084 * New lock request. Walk all POSIX locks and look for conflicts. If 1085 * there are any, either return error or put the request on the 1086 * blocker's list of waiters and the global blocked_hash. 1087 */ 1088 if (request->fl_type != F_UNLCK) { 1089 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1090 if (!posix_locks_conflict(request, fl)) 1091 continue; 1092 if (conflock) 1093 locks_copy_conflock(conflock, fl); 1094 error = -EAGAIN; 1095 if (!(request->fl_flags & FL_SLEEP)) 1096 goto out; 1097 /* 1098 * Deadlock detection and insertion into the blocked 1099 * locks list must be done while holding the same lock! 1100 */ 1101 error = -EDEADLK; 1102 spin_lock(&blocked_lock_lock); 1103 /* 1104 * Ensure that we don't find any locks blocked on this 1105 * request during deadlock detection. 1106 */ 1107 __locks_wake_up_blocks(request); 1108 if (likely(!posix_locks_deadlock(request, fl))) { 1109 error = FILE_LOCK_DEFERRED; 1110 __locks_insert_block(fl, request, 1111 posix_locks_conflict); 1112 } 1113 spin_unlock(&blocked_lock_lock); 1114 goto out; 1115 } 1116 } 1117 1118 /* If we're just looking for a conflict, we're done. */ 1119 error = 0; 1120 if (request->fl_flags & FL_ACCESS) 1121 goto out; 1122 1123 /* Find the first old lock with the same owner as the new lock */ 1124 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1125 if (posix_same_owner(request, fl)) 1126 break; 1127 } 1128 1129 /* Process locks with this owner. */ 1130 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1131 if (!posix_same_owner(request, fl)) 1132 break; 1133 1134 /* Detect adjacent or overlapping regions (if same lock type) */ 1135 if (request->fl_type == fl->fl_type) { 1136 /* In all comparisons of start vs end, use 1137 * "start - 1" rather than "end + 1". If end 1138 * is OFFSET_MAX, end + 1 will become negative. 1139 */ 1140 if (fl->fl_end < request->fl_start - 1) 1141 continue; 1142 /* If the next lock in the list has entirely bigger 1143 * addresses than the new one, insert the lock here. 1144 */ 1145 if (fl->fl_start - 1 > request->fl_end) 1146 break; 1147 1148 /* If we come here, the new and old lock are of the 1149 * same type and adjacent or overlapping. Make one 1150 * lock yielding from the lower start address of both 1151 * locks to the higher end address. 1152 */ 1153 if (fl->fl_start > request->fl_start) 1154 fl->fl_start = request->fl_start; 1155 else 1156 request->fl_start = fl->fl_start; 1157 if (fl->fl_end < request->fl_end) 1158 fl->fl_end = request->fl_end; 1159 else 1160 request->fl_end = fl->fl_end; 1161 if (added) { 1162 locks_delete_lock_ctx(fl, &dispose); 1163 continue; 1164 } 1165 request = fl; 1166 added = true; 1167 } else { 1168 /* Processing for different lock types is a bit 1169 * more complex. 1170 */ 1171 if (fl->fl_end < request->fl_start) 1172 continue; 1173 if (fl->fl_start > request->fl_end) 1174 break; 1175 if (request->fl_type == F_UNLCK) 1176 added = true; 1177 if (fl->fl_start < request->fl_start) 1178 left = fl; 1179 /* If the next lock in the list has a higher end 1180 * address than the new one, insert the new one here. 1181 */ 1182 if (fl->fl_end > request->fl_end) { 1183 right = fl; 1184 break; 1185 } 1186 if (fl->fl_start >= request->fl_start) { 1187 /* The new lock completely replaces an old 1188 * one (This may happen several times). 1189 */ 1190 if (added) { 1191 locks_delete_lock_ctx(fl, &dispose); 1192 continue; 1193 } 1194 /* 1195 * Replace the old lock with new_fl, and 1196 * remove the old one. It's safe to do the 1197 * insert here since we know that we won't be 1198 * using new_fl later, and that the lock is 1199 * just replacing an existing lock. 1200 */ 1201 error = -ENOLCK; 1202 if (!new_fl) 1203 goto out; 1204 locks_copy_lock(new_fl, request); 1205 locks_move_blocks(new_fl, request); 1206 request = new_fl; 1207 new_fl = NULL; 1208 locks_insert_lock_ctx(request, &fl->fl_list); 1209 locks_delete_lock_ctx(fl, &dispose); 1210 added = true; 1211 } 1212 } 1213 } 1214 1215 /* 1216 * The above code only modifies existing locks in case of merging or 1217 * replacing. If new lock(s) need to be inserted all modifications are 1218 * done below this, so it's safe yet to bail out. 1219 */ 1220 error = -ENOLCK; /* "no luck" */ 1221 if (right && left == right && !new_fl2) 1222 goto out; 1223 1224 error = 0; 1225 if (!added) { 1226 if (request->fl_type == F_UNLCK) { 1227 if (request->fl_flags & FL_EXISTS) 1228 error = -ENOENT; 1229 goto out; 1230 } 1231 1232 if (!new_fl) { 1233 error = -ENOLCK; 1234 goto out; 1235 } 1236 locks_copy_lock(new_fl, request); 1237 locks_move_blocks(new_fl, request); 1238 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1239 fl = new_fl; 1240 new_fl = NULL; 1241 } 1242 if (right) { 1243 if (left == right) { 1244 /* The new lock breaks the old one in two pieces, 1245 * so we have to use the second new lock. 1246 */ 1247 left = new_fl2; 1248 new_fl2 = NULL; 1249 locks_copy_lock(left, right); 1250 locks_insert_lock_ctx(left, &fl->fl_list); 1251 } 1252 right->fl_start = request->fl_end + 1; 1253 locks_wake_up_blocks(right); 1254 } 1255 if (left) { 1256 left->fl_end = request->fl_start - 1; 1257 locks_wake_up_blocks(left); 1258 } 1259 out: 1260 spin_unlock(&ctx->flc_lock); 1261 percpu_up_read(&file_rwsem); 1262 /* 1263 * Free any unused locks. 1264 */ 1265 if (new_fl) 1266 locks_free_lock(new_fl); 1267 if (new_fl2) 1268 locks_free_lock(new_fl2); 1269 locks_dispose_list(&dispose); 1270 trace_posix_lock_inode(inode, request, error); 1271 1272 return error; 1273 } 1274 1275 /** 1276 * posix_lock_file - Apply a POSIX-style lock to a file 1277 * @filp: The file to apply the lock to 1278 * @fl: The lock to be applied 1279 * @conflock: Place to return a copy of the conflicting lock, if found. 1280 * 1281 * Add a POSIX style lock to a file. 1282 * We merge adjacent & overlapping locks whenever possible. 1283 * POSIX locks are sorted by owner task, then by starting address 1284 * 1285 * Note that if called with an FL_EXISTS argument, the caller may determine 1286 * whether or not a lock was successfully freed by testing the return 1287 * value for -ENOENT. 1288 */ 1289 int posix_lock_file(struct file *filp, struct file_lock *fl, 1290 struct file_lock *conflock) 1291 { 1292 return posix_lock_inode(locks_inode(filp), fl, conflock); 1293 } 1294 EXPORT_SYMBOL(posix_lock_file); 1295 1296 /** 1297 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1298 * @inode: inode of file to which lock request should be applied 1299 * @fl: The lock to be applied 1300 * 1301 * Apply a POSIX style lock request to an inode. 1302 */ 1303 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1304 { 1305 int error; 1306 might_sleep (); 1307 for (;;) { 1308 error = posix_lock_inode(inode, fl, NULL); 1309 if (error != FILE_LOCK_DEFERRED) 1310 break; 1311 error = wait_event_interruptible(fl->fl_wait, 1312 list_empty(&fl->fl_blocked_member)); 1313 if (error) 1314 break; 1315 } 1316 locks_delete_block(fl); 1317 return error; 1318 } 1319 1320 static void lease_clear_pending(struct file_lock *fl, int arg) 1321 { 1322 switch (arg) { 1323 case F_UNLCK: 1324 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1325 fallthrough; 1326 case F_RDLCK: 1327 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1328 } 1329 } 1330 1331 /* We already had a lease on this file; just change its type */ 1332 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1333 { 1334 int error = assign_type(fl, arg); 1335 1336 if (error) 1337 return error; 1338 lease_clear_pending(fl, arg); 1339 locks_wake_up_blocks(fl); 1340 if (arg == F_UNLCK) { 1341 struct file *filp = fl->fl_file; 1342 1343 f_delown(filp); 1344 filp->f_owner.signum = 0; 1345 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1346 if (fl->fl_fasync != NULL) { 1347 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1348 fl->fl_fasync = NULL; 1349 } 1350 locks_delete_lock_ctx(fl, dispose); 1351 } 1352 return 0; 1353 } 1354 EXPORT_SYMBOL(lease_modify); 1355 1356 static bool past_time(unsigned long then) 1357 { 1358 if (!then) 1359 /* 0 is a special value meaning "this never expires": */ 1360 return false; 1361 return time_after(jiffies, then); 1362 } 1363 1364 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1365 { 1366 struct file_lock_context *ctx = inode->i_flctx; 1367 struct file_lock *fl, *tmp; 1368 1369 lockdep_assert_held(&ctx->flc_lock); 1370 1371 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1372 trace_time_out_leases(inode, fl); 1373 if (past_time(fl->fl_downgrade_time)) 1374 lease_modify(fl, F_RDLCK, dispose); 1375 if (past_time(fl->fl_break_time)) 1376 lease_modify(fl, F_UNLCK, dispose); 1377 } 1378 } 1379 1380 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1381 { 1382 bool rc; 1383 1384 if (lease->fl_lmops->lm_breaker_owns_lease 1385 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1386 return false; 1387 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) { 1388 rc = false; 1389 goto trace; 1390 } 1391 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) { 1392 rc = false; 1393 goto trace; 1394 } 1395 1396 rc = locks_conflict(breaker, lease); 1397 trace: 1398 trace_leases_conflict(rc, lease, breaker); 1399 return rc; 1400 } 1401 1402 static bool 1403 any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1404 { 1405 struct file_lock_context *ctx = inode->i_flctx; 1406 struct file_lock *fl; 1407 1408 lockdep_assert_held(&ctx->flc_lock); 1409 1410 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1411 if (leases_conflict(fl, breaker)) 1412 return true; 1413 } 1414 return false; 1415 } 1416 1417 /** 1418 * __break_lease - revoke all outstanding leases on file 1419 * @inode: the inode of the file to return 1420 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1421 * break all leases 1422 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1423 * only delegations 1424 * 1425 * break_lease (inlined for speed) has checked there already is at least 1426 * some kind of lock (maybe a lease) on this file. Leases are broken on 1427 * a call to open() or truncate(). This function can sleep unless you 1428 * specified %O_NONBLOCK to your open(). 1429 */ 1430 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1431 { 1432 int error = 0; 1433 struct file_lock_context *ctx; 1434 struct file_lock *new_fl, *fl, *tmp; 1435 unsigned long break_time; 1436 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1437 LIST_HEAD(dispose); 1438 1439 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1440 if (IS_ERR(new_fl)) 1441 return PTR_ERR(new_fl); 1442 new_fl->fl_flags = type; 1443 1444 /* typically we will check that ctx is non-NULL before calling */ 1445 ctx = smp_load_acquire(&inode->i_flctx); 1446 if (!ctx) { 1447 WARN_ON_ONCE(1); 1448 goto free_lock; 1449 } 1450 1451 percpu_down_read(&file_rwsem); 1452 spin_lock(&ctx->flc_lock); 1453 1454 time_out_leases(inode, &dispose); 1455 1456 if (!any_leases_conflict(inode, new_fl)) 1457 goto out; 1458 1459 break_time = 0; 1460 if (lease_break_time > 0) { 1461 break_time = jiffies + lease_break_time * HZ; 1462 if (break_time == 0) 1463 break_time++; /* so that 0 means no break time */ 1464 } 1465 1466 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1467 if (!leases_conflict(fl, new_fl)) 1468 continue; 1469 if (want_write) { 1470 if (fl->fl_flags & FL_UNLOCK_PENDING) 1471 continue; 1472 fl->fl_flags |= FL_UNLOCK_PENDING; 1473 fl->fl_break_time = break_time; 1474 } else { 1475 if (lease_breaking(fl)) 1476 continue; 1477 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1478 fl->fl_downgrade_time = break_time; 1479 } 1480 if (fl->fl_lmops->lm_break(fl)) 1481 locks_delete_lock_ctx(fl, &dispose); 1482 } 1483 1484 if (list_empty(&ctx->flc_lease)) 1485 goto out; 1486 1487 if (mode & O_NONBLOCK) { 1488 trace_break_lease_noblock(inode, new_fl); 1489 error = -EWOULDBLOCK; 1490 goto out; 1491 } 1492 1493 restart: 1494 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1495 break_time = fl->fl_break_time; 1496 if (break_time != 0) 1497 break_time -= jiffies; 1498 if (break_time == 0) 1499 break_time++; 1500 locks_insert_block(fl, new_fl, leases_conflict); 1501 trace_break_lease_block(inode, new_fl); 1502 spin_unlock(&ctx->flc_lock); 1503 percpu_up_read(&file_rwsem); 1504 1505 locks_dispose_list(&dispose); 1506 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1507 list_empty(&new_fl->fl_blocked_member), 1508 break_time); 1509 1510 percpu_down_read(&file_rwsem); 1511 spin_lock(&ctx->flc_lock); 1512 trace_break_lease_unblock(inode, new_fl); 1513 locks_delete_block(new_fl); 1514 if (error >= 0) { 1515 /* 1516 * Wait for the next conflicting lease that has not been 1517 * broken yet 1518 */ 1519 if (error == 0) 1520 time_out_leases(inode, &dispose); 1521 if (any_leases_conflict(inode, new_fl)) 1522 goto restart; 1523 error = 0; 1524 } 1525 out: 1526 spin_unlock(&ctx->flc_lock); 1527 percpu_up_read(&file_rwsem); 1528 locks_dispose_list(&dispose); 1529 free_lock: 1530 locks_free_lock(new_fl); 1531 return error; 1532 } 1533 EXPORT_SYMBOL(__break_lease); 1534 1535 /** 1536 * lease_get_mtime - update modified time of an inode with exclusive lease 1537 * @inode: the inode 1538 * @time: pointer to a timespec which contains the last modified time 1539 * 1540 * This is to force NFS clients to flush their caches for files with 1541 * exclusive leases. The justification is that if someone has an 1542 * exclusive lease, then they could be modifying it. 1543 */ 1544 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1545 { 1546 bool has_lease = false; 1547 struct file_lock_context *ctx; 1548 struct file_lock *fl; 1549 1550 ctx = smp_load_acquire(&inode->i_flctx); 1551 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1552 spin_lock(&ctx->flc_lock); 1553 fl = list_first_entry_or_null(&ctx->flc_lease, 1554 struct file_lock, fl_list); 1555 if (fl && (fl->fl_type == F_WRLCK)) 1556 has_lease = true; 1557 spin_unlock(&ctx->flc_lock); 1558 } 1559 1560 if (has_lease) 1561 *time = current_time(inode); 1562 } 1563 EXPORT_SYMBOL(lease_get_mtime); 1564 1565 /** 1566 * fcntl_getlease - Enquire what lease is currently active 1567 * @filp: the file 1568 * 1569 * The value returned by this function will be one of 1570 * (if no lease break is pending): 1571 * 1572 * %F_RDLCK to indicate a shared lease is held. 1573 * 1574 * %F_WRLCK to indicate an exclusive lease is held. 1575 * 1576 * %F_UNLCK to indicate no lease is held. 1577 * 1578 * (if a lease break is pending): 1579 * 1580 * %F_RDLCK to indicate an exclusive lease needs to be 1581 * changed to a shared lease (or removed). 1582 * 1583 * %F_UNLCK to indicate the lease needs to be removed. 1584 * 1585 * XXX: sfr & willy disagree over whether F_INPROGRESS 1586 * should be returned to userspace. 1587 */ 1588 int fcntl_getlease(struct file *filp) 1589 { 1590 struct file_lock *fl; 1591 struct inode *inode = locks_inode(filp); 1592 struct file_lock_context *ctx; 1593 int type = F_UNLCK; 1594 LIST_HEAD(dispose); 1595 1596 ctx = smp_load_acquire(&inode->i_flctx); 1597 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1598 percpu_down_read(&file_rwsem); 1599 spin_lock(&ctx->flc_lock); 1600 time_out_leases(inode, &dispose); 1601 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1602 if (fl->fl_file != filp) 1603 continue; 1604 type = target_leasetype(fl); 1605 break; 1606 } 1607 spin_unlock(&ctx->flc_lock); 1608 percpu_up_read(&file_rwsem); 1609 1610 locks_dispose_list(&dispose); 1611 } 1612 return type; 1613 } 1614 1615 /** 1616 * check_conflicting_open - see if the given file points to an inode that has 1617 * an existing open that would conflict with the 1618 * desired lease. 1619 * @filp: file to check 1620 * @arg: type of lease that we're trying to acquire 1621 * @flags: current lock flags 1622 * 1623 * Check to see if there's an existing open fd on this file that would 1624 * conflict with the lease we're trying to set. 1625 */ 1626 static int 1627 check_conflicting_open(struct file *filp, const long arg, int flags) 1628 { 1629 struct inode *inode = locks_inode(filp); 1630 int self_wcount = 0, self_rcount = 0; 1631 1632 if (flags & FL_LAYOUT) 1633 return 0; 1634 if (flags & FL_DELEG) 1635 /* We leave these checks to the caller */ 1636 return 0; 1637 1638 if (arg == F_RDLCK) 1639 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1640 else if (arg != F_WRLCK) 1641 return 0; 1642 1643 /* 1644 * Make sure that only read/write count is from lease requestor. 1645 * Note that this will result in denying write leases when i_writecount 1646 * is negative, which is what we want. (We shouldn't grant write leases 1647 * on files open for execution.) 1648 */ 1649 if (filp->f_mode & FMODE_WRITE) 1650 self_wcount = 1; 1651 else if (filp->f_mode & FMODE_READ) 1652 self_rcount = 1; 1653 1654 if (atomic_read(&inode->i_writecount) != self_wcount || 1655 atomic_read(&inode->i_readcount) != self_rcount) 1656 return -EAGAIN; 1657 1658 return 0; 1659 } 1660 1661 static int 1662 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1663 { 1664 struct file_lock *fl, *my_fl = NULL, *lease; 1665 struct inode *inode = locks_inode(filp); 1666 struct file_lock_context *ctx; 1667 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1668 int error; 1669 LIST_HEAD(dispose); 1670 1671 lease = *flp; 1672 trace_generic_add_lease(inode, lease); 1673 1674 /* Note that arg is never F_UNLCK here */ 1675 ctx = locks_get_lock_context(inode, arg); 1676 if (!ctx) 1677 return -ENOMEM; 1678 1679 /* 1680 * In the delegation case we need mutual exclusion with 1681 * a number of operations that take the i_mutex. We trylock 1682 * because delegations are an optional optimization, and if 1683 * there's some chance of a conflict--we'd rather not 1684 * bother, maybe that's a sign this just isn't a good file to 1685 * hand out a delegation on. 1686 */ 1687 if (is_deleg && !inode_trylock(inode)) 1688 return -EAGAIN; 1689 1690 if (is_deleg && arg == F_WRLCK) { 1691 /* Write delegations are not currently supported: */ 1692 inode_unlock(inode); 1693 WARN_ON_ONCE(1); 1694 return -EINVAL; 1695 } 1696 1697 percpu_down_read(&file_rwsem); 1698 spin_lock(&ctx->flc_lock); 1699 time_out_leases(inode, &dispose); 1700 error = check_conflicting_open(filp, arg, lease->fl_flags); 1701 if (error) 1702 goto out; 1703 1704 /* 1705 * At this point, we know that if there is an exclusive 1706 * lease on this file, then we hold it on this filp 1707 * (otherwise our open of this file would have blocked). 1708 * And if we are trying to acquire an exclusive lease, 1709 * then the file is not open by anyone (including us) 1710 * except for this filp. 1711 */ 1712 error = -EAGAIN; 1713 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1714 if (fl->fl_file == filp && 1715 fl->fl_owner == lease->fl_owner) { 1716 my_fl = fl; 1717 continue; 1718 } 1719 1720 /* 1721 * No exclusive leases if someone else has a lease on 1722 * this file: 1723 */ 1724 if (arg == F_WRLCK) 1725 goto out; 1726 /* 1727 * Modifying our existing lease is OK, but no getting a 1728 * new lease if someone else is opening for write: 1729 */ 1730 if (fl->fl_flags & FL_UNLOCK_PENDING) 1731 goto out; 1732 } 1733 1734 if (my_fl != NULL) { 1735 lease = my_fl; 1736 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1737 if (error) 1738 goto out; 1739 goto out_setup; 1740 } 1741 1742 error = -EINVAL; 1743 if (!leases_enable) 1744 goto out; 1745 1746 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1747 /* 1748 * The check in break_lease() is lockless. It's possible for another 1749 * open to race in after we did the earlier check for a conflicting 1750 * open but before the lease was inserted. Check again for a 1751 * conflicting open and cancel the lease if there is one. 1752 * 1753 * We also add a barrier here to ensure that the insertion of the lock 1754 * precedes these checks. 1755 */ 1756 smp_mb(); 1757 error = check_conflicting_open(filp, arg, lease->fl_flags); 1758 if (error) { 1759 locks_unlink_lock_ctx(lease); 1760 goto out; 1761 } 1762 1763 out_setup: 1764 if (lease->fl_lmops->lm_setup) 1765 lease->fl_lmops->lm_setup(lease, priv); 1766 out: 1767 spin_unlock(&ctx->flc_lock); 1768 percpu_up_read(&file_rwsem); 1769 locks_dispose_list(&dispose); 1770 if (is_deleg) 1771 inode_unlock(inode); 1772 if (!error && !my_fl) 1773 *flp = NULL; 1774 return error; 1775 } 1776 1777 static int generic_delete_lease(struct file *filp, void *owner) 1778 { 1779 int error = -EAGAIN; 1780 struct file_lock *fl, *victim = NULL; 1781 struct inode *inode = locks_inode(filp); 1782 struct file_lock_context *ctx; 1783 LIST_HEAD(dispose); 1784 1785 ctx = smp_load_acquire(&inode->i_flctx); 1786 if (!ctx) { 1787 trace_generic_delete_lease(inode, NULL); 1788 return error; 1789 } 1790 1791 percpu_down_read(&file_rwsem); 1792 spin_lock(&ctx->flc_lock); 1793 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1794 if (fl->fl_file == filp && 1795 fl->fl_owner == owner) { 1796 victim = fl; 1797 break; 1798 } 1799 } 1800 trace_generic_delete_lease(inode, victim); 1801 if (victim) 1802 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1803 spin_unlock(&ctx->flc_lock); 1804 percpu_up_read(&file_rwsem); 1805 locks_dispose_list(&dispose); 1806 return error; 1807 } 1808 1809 /** 1810 * generic_setlease - sets a lease on an open file 1811 * @filp: file pointer 1812 * @arg: type of lease to obtain 1813 * @flp: input - file_lock to use, output - file_lock inserted 1814 * @priv: private data for lm_setup (may be NULL if lm_setup 1815 * doesn't require it) 1816 * 1817 * The (input) flp->fl_lmops->lm_break function is required 1818 * by break_lease(). 1819 */ 1820 int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1821 void **priv) 1822 { 1823 struct inode *inode = locks_inode(filp); 1824 int error; 1825 1826 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1827 return -EACCES; 1828 if (!S_ISREG(inode->i_mode)) 1829 return -EINVAL; 1830 error = security_file_lock(filp, arg); 1831 if (error) 1832 return error; 1833 1834 switch (arg) { 1835 case F_UNLCK: 1836 return generic_delete_lease(filp, *priv); 1837 case F_RDLCK: 1838 case F_WRLCK: 1839 if (!(*flp)->fl_lmops->lm_break) { 1840 WARN_ON_ONCE(1); 1841 return -ENOLCK; 1842 } 1843 1844 return generic_add_lease(filp, arg, flp, priv); 1845 default: 1846 return -EINVAL; 1847 } 1848 } 1849 EXPORT_SYMBOL(generic_setlease); 1850 1851 #if IS_ENABLED(CONFIG_SRCU) 1852 /* 1853 * Kernel subsystems can register to be notified on any attempt to set 1854 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 1855 * to close files that it may have cached when there is an attempt to set a 1856 * conflicting lease. 1857 */ 1858 static struct srcu_notifier_head lease_notifier_chain; 1859 1860 static inline void 1861 lease_notifier_chain_init(void) 1862 { 1863 srcu_init_notifier_head(&lease_notifier_chain); 1864 } 1865 1866 static inline void 1867 setlease_notifier(long arg, struct file_lock *lease) 1868 { 1869 if (arg != F_UNLCK) 1870 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 1871 } 1872 1873 int lease_register_notifier(struct notifier_block *nb) 1874 { 1875 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 1876 } 1877 EXPORT_SYMBOL_GPL(lease_register_notifier); 1878 1879 void lease_unregister_notifier(struct notifier_block *nb) 1880 { 1881 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 1882 } 1883 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1884 1885 #else /* !IS_ENABLED(CONFIG_SRCU) */ 1886 static inline void 1887 lease_notifier_chain_init(void) 1888 { 1889 } 1890 1891 static inline void 1892 setlease_notifier(long arg, struct file_lock *lease) 1893 { 1894 } 1895 1896 int lease_register_notifier(struct notifier_block *nb) 1897 { 1898 return 0; 1899 } 1900 EXPORT_SYMBOL_GPL(lease_register_notifier); 1901 1902 void lease_unregister_notifier(struct notifier_block *nb) 1903 { 1904 } 1905 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1906 1907 #endif /* IS_ENABLED(CONFIG_SRCU) */ 1908 1909 /** 1910 * vfs_setlease - sets a lease on an open file 1911 * @filp: file pointer 1912 * @arg: type of lease to obtain 1913 * @lease: file_lock to use when adding a lease 1914 * @priv: private info for lm_setup when adding a lease (may be 1915 * NULL if lm_setup doesn't require it) 1916 * 1917 * Call this to establish a lease on the file. The "lease" argument is not 1918 * used for F_UNLCK requests and may be NULL. For commands that set or alter 1919 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 1920 * set; if not, this function will return -ENOLCK (and generate a scary-looking 1921 * stack trace). 1922 * 1923 * The "priv" pointer is passed directly to the lm_setup function as-is. It 1924 * may be NULL if the lm_setup operation doesn't require it. 1925 */ 1926 int 1927 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 1928 { 1929 if (lease) 1930 setlease_notifier(arg, *lease); 1931 if (filp->f_op->setlease) 1932 return filp->f_op->setlease(filp, arg, lease, priv); 1933 else 1934 return generic_setlease(filp, arg, lease, priv); 1935 } 1936 EXPORT_SYMBOL_GPL(vfs_setlease); 1937 1938 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1939 { 1940 struct file_lock *fl; 1941 struct fasync_struct *new; 1942 int error; 1943 1944 fl = lease_alloc(filp, arg); 1945 if (IS_ERR(fl)) 1946 return PTR_ERR(fl); 1947 1948 new = fasync_alloc(); 1949 if (!new) { 1950 locks_free_lock(fl); 1951 return -ENOMEM; 1952 } 1953 new->fa_fd = fd; 1954 1955 error = vfs_setlease(filp, arg, &fl, (void **)&new); 1956 if (fl) 1957 locks_free_lock(fl); 1958 if (new) 1959 fasync_free(new); 1960 return error; 1961 } 1962 1963 /** 1964 * fcntl_setlease - sets a lease on an open file 1965 * @fd: open file descriptor 1966 * @filp: file pointer 1967 * @arg: type of lease to obtain 1968 * 1969 * Call this fcntl to establish a lease on the file. 1970 * Note that you also need to call %F_SETSIG to 1971 * receive a signal when the lease is broken. 1972 */ 1973 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 1974 { 1975 if (arg == F_UNLCK) 1976 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 1977 return do_fcntl_add_lease(fd, filp, arg); 1978 } 1979 1980 /** 1981 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 1982 * @inode: inode of the file to apply to 1983 * @fl: The lock to be applied 1984 * 1985 * Apply a FLOCK style lock request to an inode. 1986 */ 1987 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1988 { 1989 int error; 1990 might_sleep(); 1991 for (;;) { 1992 error = flock_lock_inode(inode, fl); 1993 if (error != FILE_LOCK_DEFERRED) 1994 break; 1995 error = wait_event_interruptible(fl->fl_wait, 1996 list_empty(&fl->fl_blocked_member)); 1997 if (error) 1998 break; 1999 } 2000 locks_delete_block(fl); 2001 return error; 2002 } 2003 2004 /** 2005 * locks_lock_inode_wait - Apply a lock to an inode 2006 * @inode: inode of the file to apply to 2007 * @fl: The lock to be applied 2008 * 2009 * Apply a POSIX or FLOCK style lock request to an inode. 2010 */ 2011 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2012 { 2013 int res = 0; 2014 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2015 case FL_POSIX: 2016 res = posix_lock_inode_wait(inode, fl); 2017 break; 2018 case FL_FLOCK: 2019 res = flock_lock_inode_wait(inode, fl); 2020 break; 2021 default: 2022 BUG(); 2023 } 2024 return res; 2025 } 2026 EXPORT_SYMBOL(locks_lock_inode_wait); 2027 2028 /** 2029 * sys_flock: - flock() system call. 2030 * @fd: the file descriptor to lock. 2031 * @cmd: the type of lock to apply. 2032 * 2033 * Apply a %FL_FLOCK style lock to an open file descriptor. 2034 * The @cmd can be one of: 2035 * 2036 * - %LOCK_SH -- a shared lock. 2037 * - %LOCK_EX -- an exclusive lock. 2038 * - %LOCK_UN -- remove an existing lock. 2039 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED) 2040 * 2041 * %LOCK_MAND support has been removed from the kernel. 2042 */ 2043 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2044 { 2045 struct fd f = fdget(fd); 2046 struct file_lock *lock; 2047 int can_sleep, unlock; 2048 int error; 2049 2050 error = -EBADF; 2051 if (!f.file) 2052 goto out; 2053 2054 can_sleep = !(cmd & LOCK_NB); 2055 cmd &= ~LOCK_NB; 2056 unlock = (cmd == LOCK_UN); 2057 2058 if (!unlock && !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 2059 goto out_putf; 2060 2061 /* 2062 * LOCK_MAND locks were broken for a long time in that they never 2063 * conflicted with one another and didn't prevent any sort of open, 2064 * read or write activity. 2065 * 2066 * Just ignore these requests now, to preserve legacy behavior, but 2067 * throw a warning to let people know that they don't actually work. 2068 */ 2069 if (cmd & LOCK_MAND) { 2070 pr_warn_once("Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n"); 2071 error = 0; 2072 goto out_putf; 2073 } 2074 2075 lock = flock_make_lock(f.file, cmd, NULL); 2076 if (IS_ERR(lock)) { 2077 error = PTR_ERR(lock); 2078 goto out_putf; 2079 } 2080 2081 if (can_sleep) 2082 lock->fl_flags |= FL_SLEEP; 2083 2084 error = security_file_lock(f.file, lock->fl_type); 2085 if (error) 2086 goto out_free; 2087 2088 if (f.file->f_op->flock) 2089 error = f.file->f_op->flock(f.file, 2090 (can_sleep) ? F_SETLKW : F_SETLK, 2091 lock); 2092 else 2093 error = locks_lock_file_wait(f.file, lock); 2094 2095 out_free: 2096 locks_free_lock(lock); 2097 2098 out_putf: 2099 fdput(f); 2100 out: 2101 return error; 2102 } 2103 2104 /** 2105 * vfs_test_lock - test file byte range lock 2106 * @filp: The file to test lock for 2107 * @fl: The lock to test; also used to hold result 2108 * 2109 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2110 * setting conf->fl_type to something other than F_UNLCK. 2111 */ 2112 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2113 { 2114 if (filp->f_op->lock) 2115 return filp->f_op->lock(filp, F_GETLK, fl); 2116 posix_test_lock(filp, fl); 2117 return 0; 2118 } 2119 EXPORT_SYMBOL_GPL(vfs_test_lock); 2120 2121 /** 2122 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2123 * @fl: The file_lock who's fl_pid should be translated 2124 * @ns: The namespace into which the pid should be translated 2125 * 2126 * Used to tranlate a fl_pid into a namespace virtual pid number 2127 */ 2128 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2129 { 2130 pid_t vnr; 2131 struct pid *pid; 2132 2133 if (IS_OFDLCK(fl)) 2134 return -1; 2135 if (IS_REMOTELCK(fl)) 2136 return fl->fl_pid; 2137 /* 2138 * If the flock owner process is dead and its pid has been already 2139 * freed, the translation below won't work, but we still want to show 2140 * flock owner pid number in init pidns. 2141 */ 2142 if (ns == &init_pid_ns) 2143 return (pid_t)fl->fl_pid; 2144 2145 rcu_read_lock(); 2146 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2147 vnr = pid_nr_ns(pid, ns); 2148 rcu_read_unlock(); 2149 return vnr; 2150 } 2151 2152 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2153 { 2154 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2155 #if BITS_PER_LONG == 32 2156 /* 2157 * Make sure we can represent the posix lock via 2158 * legacy 32bit flock. 2159 */ 2160 if (fl->fl_start > OFFT_OFFSET_MAX) 2161 return -EOVERFLOW; 2162 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2163 return -EOVERFLOW; 2164 #endif 2165 flock->l_start = fl->fl_start; 2166 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2167 fl->fl_end - fl->fl_start + 1; 2168 flock->l_whence = 0; 2169 flock->l_type = fl->fl_type; 2170 return 0; 2171 } 2172 2173 #if BITS_PER_LONG == 32 2174 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2175 { 2176 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2177 flock->l_start = fl->fl_start; 2178 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2179 fl->fl_end - fl->fl_start + 1; 2180 flock->l_whence = 0; 2181 flock->l_type = fl->fl_type; 2182 } 2183 #endif 2184 2185 /* Report the first existing lock that would conflict with l. 2186 * This implements the F_GETLK command of fcntl(). 2187 */ 2188 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2189 { 2190 struct file_lock *fl; 2191 int error; 2192 2193 fl = locks_alloc_lock(); 2194 if (fl == NULL) 2195 return -ENOMEM; 2196 error = -EINVAL; 2197 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2198 goto out; 2199 2200 error = flock_to_posix_lock(filp, fl, flock); 2201 if (error) 2202 goto out; 2203 2204 if (cmd == F_OFD_GETLK) { 2205 error = -EINVAL; 2206 if (flock->l_pid != 0) 2207 goto out; 2208 2209 fl->fl_flags |= FL_OFDLCK; 2210 fl->fl_owner = filp; 2211 } 2212 2213 error = vfs_test_lock(filp, fl); 2214 if (error) 2215 goto out; 2216 2217 flock->l_type = fl->fl_type; 2218 if (fl->fl_type != F_UNLCK) { 2219 error = posix_lock_to_flock(flock, fl); 2220 if (error) 2221 goto out; 2222 } 2223 out: 2224 locks_free_lock(fl); 2225 return error; 2226 } 2227 2228 /** 2229 * vfs_lock_file - file byte range lock 2230 * @filp: The file to apply the lock to 2231 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2232 * @fl: The lock to be applied 2233 * @conf: Place to return a copy of the conflicting lock, if found. 2234 * 2235 * A caller that doesn't care about the conflicting lock may pass NULL 2236 * as the final argument. 2237 * 2238 * If the filesystem defines a private ->lock() method, then @conf will 2239 * be left unchanged; so a caller that cares should initialize it to 2240 * some acceptable default. 2241 * 2242 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2243 * locks, the ->lock() interface may return asynchronously, before the lock has 2244 * been granted or denied by the underlying filesystem, if (and only if) 2245 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2246 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2247 * the request is for a blocking lock. When ->lock() does return asynchronously, 2248 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2249 * request completes. 2250 * If the request is for non-blocking lock the file system should return 2251 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2252 * with the result. If the request timed out the callback routine will return a 2253 * nonzero return code and the file system should release the lock. The file 2254 * system is also responsible to keep a corresponding posix lock when it 2255 * grants a lock so the VFS can find out which locks are locally held and do 2256 * the correct lock cleanup when required. 2257 * The underlying filesystem must not drop the kernel lock or call 2258 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2259 * return code. 2260 */ 2261 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2262 { 2263 if (filp->f_op->lock) 2264 return filp->f_op->lock(filp, cmd, fl); 2265 else 2266 return posix_lock_file(filp, fl, conf); 2267 } 2268 EXPORT_SYMBOL_GPL(vfs_lock_file); 2269 2270 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2271 struct file_lock *fl) 2272 { 2273 int error; 2274 2275 error = security_file_lock(filp, fl->fl_type); 2276 if (error) 2277 return error; 2278 2279 for (;;) { 2280 error = vfs_lock_file(filp, cmd, fl, NULL); 2281 if (error != FILE_LOCK_DEFERRED) 2282 break; 2283 error = wait_event_interruptible(fl->fl_wait, 2284 list_empty(&fl->fl_blocked_member)); 2285 if (error) 2286 break; 2287 } 2288 locks_delete_block(fl); 2289 2290 return error; 2291 } 2292 2293 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2294 static int 2295 check_fmode_for_setlk(struct file_lock *fl) 2296 { 2297 switch (fl->fl_type) { 2298 case F_RDLCK: 2299 if (!(fl->fl_file->f_mode & FMODE_READ)) 2300 return -EBADF; 2301 break; 2302 case F_WRLCK: 2303 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2304 return -EBADF; 2305 } 2306 return 0; 2307 } 2308 2309 /* Apply the lock described by l to an open file descriptor. 2310 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2311 */ 2312 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2313 struct flock *flock) 2314 { 2315 struct file_lock *file_lock = locks_alloc_lock(); 2316 struct inode *inode = locks_inode(filp); 2317 struct file *f; 2318 int error; 2319 2320 if (file_lock == NULL) 2321 return -ENOLCK; 2322 2323 error = flock_to_posix_lock(filp, file_lock, flock); 2324 if (error) 2325 goto out; 2326 2327 error = check_fmode_for_setlk(file_lock); 2328 if (error) 2329 goto out; 2330 2331 /* 2332 * If the cmd is requesting file-private locks, then set the 2333 * FL_OFDLCK flag and override the owner. 2334 */ 2335 switch (cmd) { 2336 case F_OFD_SETLK: 2337 error = -EINVAL; 2338 if (flock->l_pid != 0) 2339 goto out; 2340 2341 cmd = F_SETLK; 2342 file_lock->fl_flags |= FL_OFDLCK; 2343 file_lock->fl_owner = filp; 2344 break; 2345 case F_OFD_SETLKW: 2346 error = -EINVAL; 2347 if (flock->l_pid != 0) 2348 goto out; 2349 2350 cmd = F_SETLKW; 2351 file_lock->fl_flags |= FL_OFDLCK; 2352 file_lock->fl_owner = filp; 2353 fallthrough; 2354 case F_SETLKW: 2355 file_lock->fl_flags |= FL_SLEEP; 2356 } 2357 2358 error = do_lock_file_wait(filp, cmd, file_lock); 2359 2360 /* 2361 * Attempt to detect a close/fcntl race and recover by releasing the 2362 * lock that was just acquired. There is no need to do that when we're 2363 * unlocking though, or for OFD locks. 2364 */ 2365 if (!error && file_lock->fl_type != F_UNLCK && 2366 !(file_lock->fl_flags & FL_OFDLCK)) { 2367 struct files_struct *files = current->files; 2368 /* 2369 * We need that spin_lock here - it prevents reordering between 2370 * update of i_flctx->flc_posix and check for it done in 2371 * close(). rcu_read_lock() wouldn't do. 2372 */ 2373 spin_lock(&files->file_lock); 2374 f = files_lookup_fd_locked(files, fd); 2375 spin_unlock(&files->file_lock); 2376 if (f != filp) { 2377 file_lock->fl_type = F_UNLCK; 2378 error = do_lock_file_wait(filp, cmd, file_lock); 2379 WARN_ON_ONCE(error); 2380 error = -EBADF; 2381 } 2382 } 2383 out: 2384 trace_fcntl_setlk(inode, file_lock, error); 2385 locks_free_lock(file_lock); 2386 return error; 2387 } 2388 2389 #if BITS_PER_LONG == 32 2390 /* Report the first existing lock that would conflict with l. 2391 * This implements the F_GETLK command of fcntl(). 2392 */ 2393 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2394 { 2395 struct file_lock *fl; 2396 int error; 2397 2398 fl = locks_alloc_lock(); 2399 if (fl == NULL) 2400 return -ENOMEM; 2401 2402 error = -EINVAL; 2403 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2404 goto out; 2405 2406 error = flock64_to_posix_lock(filp, fl, flock); 2407 if (error) 2408 goto out; 2409 2410 if (cmd == F_OFD_GETLK) { 2411 error = -EINVAL; 2412 if (flock->l_pid != 0) 2413 goto out; 2414 2415 cmd = F_GETLK64; 2416 fl->fl_flags |= FL_OFDLCK; 2417 fl->fl_owner = filp; 2418 } 2419 2420 error = vfs_test_lock(filp, fl); 2421 if (error) 2422 goto out; 2423 2424 flock->l_type = fl->fl_type; 2425 if (fl->fl_type != F_UNLCK) 2426 posix_lock_to_flock64(flock, fl); 2427 2428 out: 2429 locks_free_lock(fl); 2430 return error; 2431 } 2432 2433 /* Apply the lock described by l to an open file descriptor. 2434 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2435 */ 2436 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2437 struct flock64 *flock) 2438 { 2439 struct file_lock *file_lock = locks_alloc_lock(); 2440 struct file *f; 2441 int error; 2442 2443 if (file_lock == NULL) 2444 return -ENOLCK; 2445 2446 error = flock64_to_posix_lock(filp, file_lock, flock); 2447 if (error) 2448 goto out; 2449 2450 error = check_fmode_for_setlk(file_lock); 2451 if (error) 2452 goto out; 2453 2454 /* 2455 * If the cmd is requesting file-private locks, then set the 2456 * FL_OFDLCK flag and override the owner. 2457 */ 2458 switch (cmd) { 2459 case F_OFD_SETLK: 2460 error = -EINVAL; 2461 if (flock->l_pid != 0) 2462 goto out; 2463 2464 cmd = F_SETLK64; 2465 file_lock->fl_flags |= FL_OFDLCK; 2466 file_lock->fl_owner = filp; 2467 break; 2468 case F_OFD_SETLKW: 2469 error = -EINVAL; 2470 if (flock->l_pid != 0) 2471 goto out; 2472 2473 cmd = F_SETLKW64; 2474 file_lock->fl_flags |= FL_OFDLCK; 2475 file_lock->fl_owner = filp; 2476 fallthrough; 2477 case F_SETLKW64: 2478 file_lock->fl_flags |= FL_SLEEP; 2479 } 2480 2481 error = do_lock_file_wait(filp, cmd, file_lock); 2482 2483 /* 2484 * Attempt to detect a close/fcntl race and recover by releasing the 2485 * lock that was just acquired. There is no need to do that when we're 2486 * unlocking though, or for OFD locks. 2487 */ 2488 if (!error && file_lock->fl_type != F_UNLCK && 2489 !(file_lock->fl_flags & FL_OFDLCK)) { 2490 struct files_struct *files = current->files; 2491 /* 2492 * We need that spin_lock here - it prevents reordering between 2493 * update of i_flctx->flc_posix and check for it done in 2494 * close(). rcu_read_lock() wouldn't do. 2495 */ 2496 spin_lock(&files->file_lock); 2497 f = files_lookup_fd_locked(files, fd); 2498 spin_unlock(&files->file_lock); 2499 if (f != filp) { 2500 file_lock->fl_type = F_UNLCK; 2501 error = do_lock_file_wait(filp, cmd, file_lock); 2502 WARN_ON_ONCE(error); 2503 error = -EBADF; 2504 } 2505 } 2506 out: 2507 locks_free_lock(file_lock); 2508 return error; 2509 } 2510 #endif /* BITS_PER_LONG == 32 */ 2511 2512 /* 2513 * This function is called when the file is being removed 2514 * from the task's fd array. POSIX locks belonging to this task 2515 * are deleted at this time. 2516 */ 2517 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2518 { 2519 int error; 2520 struct inode *inode = locks_inode(filp); 2521 struct file_lock lock; 2522 struct file_lock_context *ctx; 2523 2524 /* 2525 * If there are no locks held on this file, we don't need to call 2526 * posix_lock_file(). Another process could be setting a lock on this 2527 * file at the same time, but we wouldn't remove that lock anyway. 2528 */ 2529 ctx = smp_load_acquire(&inode->i_flctx); 2530 if (!ctx || list_empty(&ctx->flc_posix)) 2531 return; 2532 2533 locks_init_lock(&lock); 2534 lock.fl_type = F_UNLCK; 2535 lock.fl_flags = FL_POSIX | FL_CLOSE; 2536 lock.fl_start = 0; 2537 lock.fl_end = OFFSET_MAX; 2538 lock.fl_owner = owner; 2539 lock.fl_pid = current->tgid; 2540 lock.fl_file = filp; 2541 lock.fl_ops = NULL; 2542 lock.fl_lmops = NULL; 2543 2544 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2545 2546 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2547 lock.fl_ops->fl_release_private(&lock); 2548 trace_locks_remove_posix(inode, &lock, error); 2549 } 2550 EXPORT_SYMBOL(locks_remove_posix); 2551 2552 /* The i_flctx must be valid when calling into here */ 2553 static void 2554 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2555 { 2556 struct file_lock fl; 2557 struct inode *inode = locks_inode(filp); 2558 2559 if (list_empty(&flctx->flc_flock)) 2560 return; 2561 2562 flock_make_lock(filp, LOCK_UN, &fl); 2563 fl.fl_flags |= FL_CLOSE; 2564 2565 if (filp->f_op->flock) 2566 filp->f_op->flock(filp, F_SETLKW, &fl); 2567 else 2568 flock_lock_inode(inode, &fl); 2569 2570 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2571 fl.fl_ops->fl_release_private(&fl); 2572 } 2573 2574 /* The i_flctx must be valid when calling into here */ 2575 static void 2576 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2577 { 2578 struct file_lock *fl, *tmp; 2579 LIST_HEAD(dispose); 2580 2581 if (list_empty(&ctx->flc_lease)) 2582 return; 2583 2584 percpu_down_read(&file_rwsem); 2585 spin_lock(&ctx->flc_lock); 2586 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2587 if (filp == fl->fl_file) 2588 lease_modify(fl, F_UNLCK, &dispose); 2589 spin_unlock(&ctx->flc_lock); 2590 percpu_up_read(&file_rwsem); 2591 2592 locks_dispose_list(&dispose); 2593 } 2594 2595 /* 2596 * This function is called on the last close of an open file. 2597 */ 2598 void locks_remove_file(struct file *filp) 2599 { 2600 struct file_lock_context *ctx; 2601 2602 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2603 if (!ctx) 2604 return; 2605 2606 /* remove any OFD locks */ 2607 locks_remove_posix(filp, filp); 2608 2609 /* remove flock locks */ 2610 locks_remove_flock(filp, ctx); 2611 2612 /* remove any leases */ 2613 locks_remove_lease(filp, ctx); 2614 2615 spin_lock(&ctx->flc_lock); 2616 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2617 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2618 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2619 spin_unlock(&ctx->flc_lock); 2620 } 2621 2622 /** 2623 * vfs_cancel_lock - file byte range unblock lock 2624 * @filp: The file to apply the unblock to 2625 * @fl: The lock to be unblocked 2626 * 2627 * Used by lock managers to cancel blocked requests 2628 */ 2629 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2630 { 2631 if (filp->f_op->lock) 2632 return filp->f_op->lock(filp, F_CANCELLK, fl); 2633 return 0; 2634 } 2635 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2636 2637 #ifdef CONFIG_PROC_FS 2638 #include <linux/proc_fs.h> 2639 #include <linux/seq_file.h> 2640 2641 struct locks_iterator { 2642 int li_cpu; 2643 loff_t li_pos; 2644 }; 2645 2646 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2647 loff_t id, char *pfx, int repeat) 2648 { 2649 struct inode *inode = NULL; 2650 unsigned int fl_pid; 2651 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2652 int type; 2653 2654 fl_pid = locks_translate_pid(fl, proc_pidns); 2655 /* 2656 * If lock owner is dead (and pid is freed) or not visible in current 2657 * pidns, zero is shown as a pid value. Check lock info from 2658 * init_pid_ns to get saved lock pid value. 2659 */ 2660 2661 if (fl->fl_file != NULL) 2662 inode = locks_inode(fl->fl_file); 2663 2664 seq_printf(f, "%lld: ", id); 2665 2666 if (repeat) 2667 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2668 2669 if (IS_POSIX(fl)) { 2670 if (fl->fl_flags & FL_ACCESS) 2671 seq_puts(f, "ACCESS"); 2672 else if (IS_OFDLCK(fl)) 2673 seq_puts(f, "OFDLCK"); 2674 else 2675 seq_puts(f, "POSIX "); 2676 2677 seq_printf(f, " %s ", 2678 (inode == NULL) ? "*NOINODE*" : "ADVISORY "); 2679 } else if (IS_FLOCK(fl)) { 2680 seq_puts(f, "FLOCK ADVISORY "); 2681 } else if (IS_LEASE(fl)) { 2682 if (fl->fl_flags & FL_DELEG) 2683 seq_puts(f, "DELEG "); 2684 else 2685 seq_puts(f, "LEASE "); 2686 2687 if (lease_breaking(fl)) 2688 seq_puts(f, "BREAKING "); 2689 else if (fl->fl_file) 2690 seq_puts(f, "ACTIVE "); 2691 else 2692 seq_puts(f, "BREAKER "); 2693 } else { 2694 seq_puts(f, "UNKNOWN UNKNOWN "); 2695 } 2696 type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type; 2697 2698 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2699 (type == F_RDLCK) ? "READ" : "UNLCK"); 2700 if (inode) { 2701 /* userspace relies on this representation of dev_t */ 2702 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid, 2703 MAJOR(inode->i_sb->s_dev), 2704 MINOR(inode->i_sb->s_dev), inode->i_ino); 2705 } else { 2706 seq_printf(f, "%d <none>:0 ", fl_pid); 2707 } 2708 if (IS_POSIX(fl)) { 2709 if (fl->fl_end == OFFSET_MAX) 2710 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2711 else 2712 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2713 } else { 2714 seq_puts(f, "0 EOF\n"); 2715 } 2716 } 2717 2718 static struct file_lock *get_next_blocked_member(struct file_lock *node) 2719 { 2720 struct file_lock *tmp; 2721 2722 /* NULL node or root node */ 2723 if (node == NULL || node->fl_blocker == NULL) 2724 return NULL; 2725 2726 /* Next member in the linked list could be itself */ 2727 tmp = list_next_entry(node, fl_blocked_member); 2728 if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member) 2729 || tmp == node) { 2730 return NULL; 2731 } 2732 2733 return tmp; 2734 } 2735 2736 static int locks_show(struct seq_file *f, void *v) 2737 { 2738 struct locks_iterator *iter = f->private; 2739 struct file_lock *cur, *tmp; 2740 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2741 int level = 0; 2742 2743 cur = hlist_entry(v, struct file_lock, fl_link); 2744 2745 if (locks_translate_pid(cur, proc_pidns) == 0) 2746 return 0; 2747 2748 /* View this crossed linked list as a binary tree, the first member of fl_blocked_requests 2749 * is the left child of current node, the next silibing in fl_blocked_member is the 2750 * right child, we can alse get the parent of current node from fl_blocker, so this 2751 * question becomes traversal of a binary tree 2752 */ 2753 while (cur != NULL) { 2754 if (level) 2755 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2756 else 2757 lock_get_status(f, cur, iter->li_pos, "", level); 2758 2759 if (!list_empty(&cur->fl_blocked_requests)) { 2760 /* Turn left */ 2761 cur = list_first_entry_or_null(&cur->fl_blocked_requests, 2762 struct file_lock, fl_blocked_member); 2763 level++; 2764 } else { 2765 /* Turn right */ 2766 tmp = get_next_blocked_member(cur); 2767 /* Fall back to parent node */ 2768 while (tmp == NULL && cur->fl_blocker != NULL) { 2769 cur = cur->fl_blocker; 2770 level--; 2771 tmp = get_next_blocked_member(cur); 2772 } 2773 cur = tmp; 2774 } 2775 } 2776 2777 return 0; 2778 } 2779 2780 static void __show_fd_locks(struct seq_file *f, 2781 struct list_head *head, int *id, 2782 struct file *filp, struct files_struct *files) 2783 { 2784 struct file_lock *fl; 2785 2786 list_for_each_entry(fl, head, fl_list) { 2787 2788 if (filp != fl->fl_file) 2789 continue; 2790 if (fl->fl_owner != files && 2791 fl->fl_owner != filp) 2792 continue; 2793 2794 (*id)++; 2795 seq_puts(f, "lock:\t"); 2796 lock_get_status(f, fl, *id, "", 0); 2797 } 2798 } 2799 2800 void show_fd_locks(struct seq_file *f, 2801 struct file *filp, struct files_struct *files) 2802 { 2803 struct inode *inode = locks_inode(filp); 2804 struct file_lock_context *ctx; 2805 int id = 0; 2806 2807 ctx = smp_load_acquire(&inode->i_flctx); 2808 if (!ctx) 2809 return; 2810 2811 spin_lock(&ctx->flc_lock); 2812 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2813 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2814 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2815 spin_unlock(&ctx->flc_lock); 2816 } 2817 2818 static void *locks_start(struct seq_file *f, loff_t *pos) 2819 __acquires(&blocked_lock_lock) 2820 { 2821 struct locks_iterator *iter = f->private; 2822 2823 iter->li_pos = *pos + 1; 2824 percpu_down_write(&file_rwsem); 2825 spin_lock(&blocked_lock_lock); 2826 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2827 } 2828 2829 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2830 { 2831 struct locks_iterator *iter = f->private; 2832 2833 ++iter->li_pos; 2834 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2835 } 2836 2837 static void locks_stop(struct seq_file *f, void *v) 2838 __releases(&blocked_lock_lock) 2839 { 2840 spin_unlock(&blocked_lock_lock); 2841 percpu_up_write(&file_rwsem); 2842 } 2843 2844 static const struct seq_operations locks_seq_operations = { 2845 .start = locks_start, 2846 .next = locks_next, 2847 .stop = locks_stop, 2848 .show = locks_show, 2849 }; 2850 2851 static int __init proc_locks_init(void) 2852 { 2853 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2854 sizeof(struct locks_iterator), NULL); 2855 return 0; 2856 } 2857 fs_initcall(proc_locks_init); 2858 #endif 2859 2860 static int __init filelock_init(void) 2861 { 2862 int i; 2863 2864 flctx_cache = kmem_cache_create("file_lock_ctx", 2865 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 2866 2867 filelock_cache = kmem_cache_create("file_lock_cache", 2868 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2869 2870 for_each_possible_cpu(i) { 2871 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 2872 2873 spin_lock_init(&fll->lock); 2874 INIT_HLIST_HEAD(&fll->hlist); 2875 } 2876 2877 lease_notifier_chain_init(); 2878 return 0; 2879 } 2880 core_initcall(filelock_init); 2881